
123

Robert Deng
Jian Weng
Kui Ren
Vinod Yegneswaran (Eds.)

Security and Privacy
in Communication 
Networks
12th International Conference, SecureComm 2016
Guangzhou, China, October 10–12, 2016
Proceedings

198



Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 198

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong, Hong Kong

Geoffrey Coulson
Lancaster University, Lancaster, UK

Falko Dressler
University of Erlangen, Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Piacenza, Italy

Mario Gerla
UCLA, Los Angeles, USA

Hisashi Kobayashi
Princeton University, Princeton, USA

Sergio Palazzo
University of Catania, Catania, Italy

Sartaj Sahni
University of Florida, Florida, USA

Xuemin Sherman Shen
University of Waterloo, Waterloo, Canada

Mircea Stan
University of Virginia, Charlottesville, USA

Jia Xiaohua
City University of Hong Kong, Kowloon, Hong Kong

Albert Y. Zomaya
University of Sydney, Sydney, Australia



More information about this series at http://www.springer.com/series/8197

http://www.springer.com/series/8197


Robert Deng • Jian Weng
Kui Ren • Vinod Yegneswaran (Eds.)

Security and Privacy
in Communication Networks
12th International Conference, SecureComm 2016
Guangzhou, China, October 10–12, 2016
Proceedings

123



Editors
Robert Deng
Singapore Management University
Singapore
Singapore

Jian Weng
Jinan University
Guangzhou, Guangdong
China

Kui Ren
University at Buffalo
Buffalo, NY
USA

Vinod Yegneswaran
SRI International
Menlo Park, CA
USA

ISSN 1867-8211 ISSN 1867-822X (electronic)
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering
ISBN 978-3-319-59607-5 ISBN 978-3-319-59608-2 (eBook)
DOI 10.1007/978-3-319-59608-2

Library of Congress Control Number: 2017943011

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The 12th EAI International Conference on Security and Privacy in Communication
Networks (SecureComm) was held during October 10–12, 2016, in the beautiful city of
Guangzhou, China. SecureComm 2016, one of the premier conferences in cyber
security, was the first EAI-supported conference organized in Southern China. It
provided an opportunity for researchers, technologists, and industry specialists in cyber
security to meet and exchange ideas and information.

We were honored to have hosted keynote speeches by Dr. Moti Yung and Dr.
Guofei Gu. The conference program included technical papers selected through peer
reviews by the Program Committee members, invited talks, special sessions, industrial
presentations, and student demo sessions. Out of a total number of 137 submissions, 30
were selected as full papers and 25 as poster papers.

We would like to thank many people for having worked hard to make SecureComm
2016 a success. First, we would like to thank the EAI, especially Prof. Imrich Chlamtac
of EAI, for their strong support of this conference. We thank the members of the
conference committees and the reviewers for their dedicated and passionate work. In
particular, we thank the Program Committee co-chairs, Dr. Kui Ren and Dr. Vinod
Yegneswaran, for their leadership in putting up such a wonderful program. We also
thank Ms. Anna Horvathova and Ms. Ivana Allen of EAI and Ms. Xiujie Huang of
Jinan University for their hard work and dedication in taking great care of the con-
ference organization. We are grateful to all the authors who submitted papers to the
conference, for none of this would have happened without their valuable contributions.
We also thank our sponsors for their financial support: Jinan University and
Create-Net. Without the extremely generous support of EAI, this conference could not
have taken place. Last but not least, we thank the Steering Committee of SecureComm
for having invited us to serve as the general chairs of SecureComm 2016.

We hope you enjoy the proceedings of SECURECOMM 2016 as much as we
enjoyed the conference.

April 2017 Robert Deng
Jian Weng
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AppShield: Enabling Multi-entity Access Control
Cross Platforms for Mobile App Management

Zhengyang Qu1(B), Guanyu Guo2, Zhengyue Shao2, Vaibhav Rastogi3,
Yan Chen1, Hao Chen4, and Wangjun Hong1

1 Northwestern University, Evanston, IL 60208, USA
{zhengyangqu2017,wangjunhong2015}@u.northwestern.edu,
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2 Zhejiang University, Hangzhou, China

{guanyuguo,szylover}@zju.edu.cn
3 University of Wisconsin, Madison, WI 53706, USA
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4 University of California, Davis, CA 95616, USA

hchen@ucdavis.edu

Abstract. Bring-your-own-device (BYOD) is getting popular. Diverse
personal devices are used to access enterprise resources, and deployment
of the solutions with customized operating system (OS) dependency will
thus be restricted. Moreover, device utilization for both business and per-
sonal purposes creates new threats involving leakage of sensitive data.
As for functionalities, a BYOD solution should isolate an arbitrary num-
ber of entities, such as those relating to business and personal uses and
provide fine-grained access control on multi-entity management. Existing
BYOD solutions lack in these aspects; we propose a system, called App-
Shield, which supports multi-entity management and role-based access
control with file-level granularity, apart from local data sharing/isolation.
AppShield includes (1) application rewriting framework for Android
apps, which builds Mobile Application Management (MAM) features into
app automatically with complete mediation, (2) cross-platform proxy-
based data access mechanism, which can enforce arbitrary access control
policies. The fully functional controller with data proxy is implemented
for both Android and iOS. AppShield allows for enterprise policy man-
agement without modifying device OS. The evaluation shows that App-
Shield is successful at policy enforcement and is reliable. It induces
little impact on application’s performance and size, for example, our app
rewriting introduces less than 5% code size increment in over 95% apps
in our evaluation.

1 Introduction

Bring your own device (BYOD) enterprise policies have been growing in popu-
larity. Employees use their personal devices to access an enterprise’s proprietary
resources. According to the survey by RCR Wireless News in 2015 [1], 85% of
respondents indicated BYOD was incorporated into their organization’s current
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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telecom offering. The popularity of BYOD represents both an opportunity and
a challenge. On the one hand, it boosts productivity and reduces the cost of
dedicated devices. On the other hand, using the same device for both business
and personal activities incurs new security threats, such as data exfiltration and
revenue loss due to lost devices, employee job hopping, and malware. For exam-
ple, considering the threat of malware alone, both Android and iOS have been
reported to be affected by malware or low-reputation content [16,19,30]. Used in
a BYOD setting, infected devices could threaten the confidentiality and integrity
of business data. The concept of Mobile Application Management (MAM) is thus
proposed to secure the BYOD utilization. Specifically, MAM solutions are the
software and services that control access to enterprise resources at the mobile
application level.

Android and iOS have discretionary access control to isolate data among
apps. Regarding data sharing, Android provides the world read-/writable exter-
nal storage, and iOS maintains a similar directory /Documents/Inbox/. The
system default data sharing/isolation mechanisms are insufficient for the compli-
cated scenario of BYOD, given the numerous inter-app information flows from
various entities. We also investigate existing BYOD commercial solutions (in
Sect. 3.1), studies on information flow control [25,31–33,42] and application vir-
tualization/sandboxing [21,29,43]. The following issues are not addressed.

• Portability. Many existing studies have been proposed to secure privileged
resources in the enterprise environment [29,37], but they are rarely adopted
by vendors. Users have to get the customized firmware in deploying the secu-
rity extension on their devices; this may not be possible because most devices
have locked boot loaders and even in cases where this is technically pos-
sible, users may lack the right skills. The fragmentation issue of Android
is another dominant factor that hinders the solutions with customized OS
dependency from deploying in large scale. A recent report [8] showed 599 dis-
tinct Android brands with 11,868 distinct devices in 2013 and 18,796 distinct
devices in 2014. Moreover, each of Android OS versions 2.3, 4.0, 4.1, 4.2, 4.4
has more than 10% of the worldwide market share. A solid MAM solution
should not have any OS-specific requirement, e.g. version, firmware, to bolster
the portability.

• Multi-entity management. Given a device, parallel data access control
among application sets of various business entities is essential in the sce-
nario of external business partner collaboration. For example, when a con-
sulting company works closely with multiple clients simultaneously, it requires
privileged data from those companies. The data sharing within each com-
pany’s application set should be orthogonal. Existing BYOD solutions cannot
address this issue because they only support bisecting the apps on device into
the personal set and the business set.

• Role-based access control (RBAC). Role-based access control (RBAC)
[36–38] associate permissions with roles and users are made members of roles.
It eases access management and is especially beneficial to large organizations
like financial and medical institutions.
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While some operating systems (such as Android 5.0 and above) offer multi-
account based management, the approach is not as flexible and lacks multi-
entity management and RBAC support. We believe a BYOD solution should
provide greater flexibility to enterprise policy administrators with respect to
these aspects.

• Fine-grained access control. More stringent privacy laws have recently
imposed new levels of confidentiality on health care and insurance companies,
and financial institutions. Existing solutions do not have the policy enforce-
ment flexible enough to secure high-credential data. In a solid solution, the
data access among apps is controlled at a file level. For example, a user can
share normal attachments received via email to Dropbox, but for a patent
document with high-credential, any file sharing app’s access can be blocked.

To resolve these problems in existing MAM solutions, we take the approach
of application rewriting and provide it in a fully implemented prototype App-
Shield with the consideration of portability, which is able to enforce arbitrary
access control policies with no dependency of OS. AppShield includes two parts:
(1) application rewriting framework for Android platform, which builds MAM
features into an app, (2) cross platform proxy-based data access mechanism,
which is able to enforce arbitrary access control policies.

The application rewriting framework automatically converts a personal app
to the business version with almost no developer support. Specifically, the appli-
cation using AppShield does not need to be developed in a certain way w.r.t
storing/accessing documents. We hook into the libc [6] to capture all file system
system-call related calls and those relevant to Android content provider [7]. This
design enables AppShield to achieve complete mediation. AppShield protects
privileged data access through the stealth channels: (1) native code, (2) dynamic
code loading [34], and (3) Java reflection. The interposed low-level system calls
can reliably intercept the privileged data request from the application level in
all these scenarios. While we provide our proxy-based data access mechanism
for both platforms, the application rewriting is available for Android only due
to the closed-source nature of iOS. Nonetheless, with a little developer support
(such as using an “AppShield” SDK), it is possible to provide iOS support.

The proxy-based data access mechanism is implemented within a controller
application. Then we transparently proxy the data requests through our own
controller that manages the applications’ file-system-level data, content provider
data and enforces access control policies. Apart from portability, the novel design
of decoupling policy enforcement from OS also brings the benefit of cross plat-
form. With the idea of data request proxy, we implement the fully functional
controller application on iOS platform.

The AppShield Android app1 has been released on both Google Play in
North America, and Myapp in China. Our contributions are:

• We design a proxy-based data access mechanism that does not need OS
support to enforce arbitrary access control policies, including those like

1 https://play.google.com/store/apps/details?id=com.webshield.appshield&hl=en.

https://play.google.com/store/apps/details?id=com.webshield.appshield&hl=en
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MAC/SELinux [39] also. It is easily extended to other platforms, which is
implemented on both Android and iOS.

• We investigate applying our proxy-based data access mechanism to Android
MAM. The system prototype supports the configuration/enforcement of four
types of security policies. File isolation. The privileged files of business apps
are isolated from personal apps. Multi-entity management & RBAC. Apps
can be divided into an arbitrary number of logical sets. It is further utilized
in modeling RBAC, with orthogonal intra-set data access and multicast secu-
rity policy update. Although we are not the first to apply RBAC to Android
platform [36,37], we propose a novel design without OS modification to boost
portability. Fine-grained file access control. To provide special protection on
high-credential data, the access control policy could be defined at file-level
granularity. Content provider isolation. Other than managing the privileged
structured data in system content provider, the data requests from the busi-
ness apps are redirected to a private mirror content provider. For example,
the business contacts are hidden from the personal apps.

• Our evaluation shows that AppShield has low overhead in memory, runtime,
and package size and that it can reliably rewrite a large number of apps.

The remainder of this paper is organized as follows. Section 2 presents a brief
background. Next, we cover the problem statement and AppShield design in
detail in Sect. 3, followed by the implementation aspects in Sect. 4. Section 5
deals with the evaluation of AppShield. We have the relevant discussion and
related work in Sects. 6 and 7. Finally, we conclude our work in Sect. 8.

2 Background and Threat Model

Background. Android apps are implemented in Java, which is compiled down
to Dalvik bytecode. It is also possible to use native code in apps. Android run-
time environment enforces the sandbox mechanism to separate running apps.
An app is assigned a unique user identifier (UID), by which the Linux kernel
enforces discretionary access control (DAC) on low-level resources. Specifically,
each app holds a private directory to keep the data in the internal storage, which
cannot be accessed by any other app. The middleware further offers a permis-
sion system [9]. An app is granted permissions during installation. Apart from
the pre-defined permissions guarding the system services, an app can define its
customized permissions to restrict the access to their own components: Activi-
ties, Services, Content Providers [7], and Broadcast Receivers. Android includes
content providers to control the access to a structured set of data.

3 types of MAM solutions have been proposed for BYOD.

• Application Rewriting. This approach inserts management hooks into existing
Android apps. It has the advantages that it requires no developer collabora-
tion and that it is independent of the OS version. However, it fails on apps
that have been protected by anti-decompilation techniques.
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• Software Development Kit (SDK). MAM vendors provide software develop-
ment kits (SDK) for developers to incorporate into their apps. This approach
has the disadvantage that developers must build and distribute two versions
of the same app, and users’ choice of business apps is limited to the markets.

• OS Modification. MAM features are directly built into the OS, so it neither
requires developer collaboration nor can be defeated by anti-decompilation.
However, since it relies on OS customization, the portability is limited.

In the case of application rewriting, third-party BYOD services are deployed
with enterprise mobile marketplace. The client company selects useful general
app, and BYOD vendor generates the enterprise version. Application rewriting
requests reverse-engineering the personal app. With developer’s cooperation in
an enterprise setting, the developers can be asked not to apply anti-decompilation
techniques, and either the developer’s certificate or the unique certificate gener-
ated by BYOD vendor can be used to sign the business app under the agreement.
Thus, app update can be easily managed in a timely manner.

Permissions are associated with roles, and users are made members of appro-
priate roles. Compared with the traditional group-based access control that only
involves a set of users, using the role concept to bridge the user set and the
permission set largely simplifies management of permissions and brings extra
semantics in access control, which is valuable in the scenario of MAM.

Threat Model. On the device, both personal apps and business apps are installed.
The personal apps may contain malware, which is able to access and leak the
privileged data to untrusted servers. Moreover, for the data owned by an enter-
prise, other companies are motivated to track it.

OS level protection sacrifices the portability. Considering Android fragmen-
tation, a solution without portability cannot fulfill the needs of BYOD, where
employees utilize their diverse personal smartphones for business usage also. We
agree that our defenses can be compromised if a device is rooted. Root is how-
ever too strong a threat model. Only hardware or hypervisor-based solutions can
ensure defense against superuser attacks. OS-level defenses remain vulnerable.
Furthermore, a lot of modern devices are not rootable by any known means,
meaning our defenses can offer complete protection.

3 System Design

3.1 Problem Statement

Security Model. The security model of AppShield is depicted in Fig. 1. An
employee may install both personal and business apps on her device. A personal
app may be any app that the user wishes to install, including possibly malicious
apps. The business app, however, is issued by the IT administrator, who grants
business apps as follows. First, he selects any off-the-shelf app from a mobile
marketplace that is useful for his organization and submits the request to the
BYOD vendor. Then, BYOD provider vets it using existing malware detection
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Fig. 1. Security model

systems, such as [20,26,35]. Finally, the app is converted into business version
and deployed in the enterprise mobile application marketplace after getting the
agreement from the application developer.

Personal apps share data by existing mechanisms, such as content provider
and public external storage, on Android. For example, Instagram posts the pho-
tos managed by Dropbox. Business apps share corporate data using the mech-
anisms provided by AppShield. AppShield manages a secure space where all
the business data are maintained and security policies can be dynamically con-
figured and enforced at file-level granularity as the tuple:

Policy = (App S, Obj, App R, D), (1)

where App S and App R are the apps to share and receive the data, Obj is the
object to be shared, and D is the decision made. When the Office app, for exam-
ple, opens a document “allow.doc” from the business Email Client, App-
Shield validates the identity of the Office app, verifies against the security
policy, opens the attachment file, and provides the business version of Office
with the file descriptor of the opened file, whereas the app Dropbox could not
access the file “deny.doc” owned by Email Client due to the policy violation.

As for multi-entity management, business apps from different companies
installed on a device can be classified into various logic sets by the IT adminis-
trator. Given the flexibility and simplicity of management, RBAC is introduced
to model the capabilities assigned to the user through the user-role review phase.
Specifically, in Fig. 1, the business app set A represents that a user is assigned
the role holding the permissions to check the email and edit attached enterprise
document belonging to enterprise A. The business app set B grants higher privi-
lege to the user and allows the access to the address book and scanned document
shared via the cloud service of enterprise B.
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Table 1. Comparison with existing MAM solutions

Method System Isolation Multi-entity

management

RBAC Granularity Sharing Portability

Rewriting AppShield Sandbox Yes Yes File-level

dynamic

Local High

AirWatch [2] Sandbox No Yes Static Online

Mocana [15] Sandbox No No Static Online

SDK Good [13] Sandbox No No Coarse

dynamic

Online High

Citrix [12] Sandbox &

Encryption

No Yes Static Local

AirWatch Sandbox No Yes Static Online

OS modifi-

cation

Android L DAC No No Coarse

dynamic

Local Low

System Overview. Our system is organized into two parts: (1) an application
rewriting framework for Android platform as the back-end that converts a per-
sonal app from mobile markets to a hardened business version by injecting MAM
functionalities; (2) a front-end mobile app for both Android and iOS platforms
that enforces the security policies with our proxy-based data access mechanism.

Table 1 lists existing MAM solutions on corporate data isolation/sharing and
access control. The leading MAM vendors, except Citrix [12], fail to support local
privileged data sharing, which requires the network connection and reduces the
usability. Given the lack of fine-grained access control, these solutions are not
able to provide special care of data with high-credential. All of the existing
MAM solutions listed in Table 1 only bisect apps into the business set and the
personal set. AppShield supports classifying the installed apps into an arbitrary
number of groups, which enables multi-entity management. Some current BYOD
systems provide RBAC support, but they deploy the access control module on
the server side handled by their own administrators, which is not feasible in
managing the data from multiple companies on the same device due to the
lack of communication channel among IT administrators. Our solution jointly
considers role modeling and multi-entity management.

To our best knowledge, Bring Android to work [11] deployed on Android 5.0
and above is closest to our framework but it still fails to satisfy all the require-
ments listed in Sect. 1. This system is implemented at the operating system level.
It divides the external storage into two directories: /storage/emulated/0/ for
personal apps and /storage/emulated/10/ for business apps. The two versions
of an app run with different UIDs. The data in one directory is only publicly
accessible and shareable by apps from the corresponding set.

On Android L, we found that enterprise data could be shared among them
without proper regulation. Because Android L only enforces DAC at the root
directories of the two application sets, the fundamental data sharing mecha-
nism of authorized apps remains the same with general personal apps. When
a privileged file is shared via file system, it goes through the public storage
that is readable by other business apps, and the only difference is that data
exchange is in the business root directory. It is not capable of setting up multiple
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business application sets, and thus neither the multi-entity management nor the
fine-grained access control is supported.

Given our radically different design and methodology from existing studies,
we summarize the following challenges:

• Lack of OS support. The existing Android storage mechanism can only
support either data isolation by private internal storage or data sharing by
the system-wide read-/writable external storage or by content providers. Pre-
vious work, such as TrustDroid [28,43], Maxoid [42], Aquifer [31], and DR
BACA [37], need to modify Android middleware to achieve the domain-level
data isolation or permission regulation, which strongly reduces the portabil-
ity. Thus, it is non-trivial to enable allocating a selective set of apps privileged
data access permission without OS modification and root privilege.

• Diversity of data access behavior. Developers could utilize a diverse set
of methods to access privileged data. We need to abstract the data access
behavior to completely enforce the data isolation/sharing policies.

• Performance penalty. Some previous studies employ virtualization-based
approaches to provide isolation between private and corporate domains [22].
Such methods do not scale well on the resource-constrained mobile device.
Moreover, deep virtualization reduces the battery lifetime given the duplica-
tion of complete OS.

3.2 Application Rewriting Framework

The developer can either call the OS API based on the framework interface
written in Java or directly invoke the native libraries. All the OS-level API invo-
cations go through libc, which then makes system calls into the kernel. The libc
layer provides us with a reliable point that abstracts all the complex high-level
data access requests. Overwriting the entries in the global offset table (GOT)
during the dynamic linking procedure allows us to inject our hooks to monitor
the app’s data access behavior and enforce our security policies. Details of this
application rewriting method were discussed in Aurasium [41]. We do not claim
the application rewriting design as our contribution, but rather our investigation
on its usage in data access control.

Android apps are distributed in APK, which is a JAR archive including com-
piled Java source files in Dalvik bytecode, compiled manifest file, resources such
as layout, images, and native libraries. We first unpack the APK file and decom-
pile the dex bytecode to an intermediate representation (IR) smali [17] to enable
our modification on bytecode. Our rewriting modifies 3 parts of application:

• Native code. We implement our customized system call hooks in C/C++
to monitor the privacy-sensitive behavior, such as open() and rename() for
file access and ioctl() for data exchange via the content provider. Java
code cannot modify process memory space, so we include the native code to
overwrite the GOT with the address of our detour hooks whenever any ELF
file is loaded. Moreover, business apps have frequent communication with



AppShield 11

AppShield, which includes information such as the identifier of business app
to enforce security policies, and we thus implement the communication via
the socket in the native layer for the latency performance.

• Manifest file. Android OS has the process zygote to initialize all the apps.
When an app is running, its runtime environment is established. To enable
GOT overwriting in ELF file, we modify the Manifest file to wrap the target
app with our preprocess procedure. Specifically, we inject a service into the
app that invokes the native code to modify the GOTs of all the loaded ELFs,
and the preprocess procedure is configured in the parent class of the whole
target app to guarantee it is running in the middle of zygote initialization
and the start of the app. Moreover, AppShield front-end app manages the
security policy repository set by the IT administrator and enforces the secu-
rity policies that grant the app the access to privileged data. Thus, we need
to declare the Activities in the manifest file, which are injected into the target
app’s bytecode to popup UI message about the violation of secure policies.
Regarding the data sharing/isolation of content provider, we create a mirror
content provider in the private internal storage of AppShield and guard it
with a special permission. Therefore, if a business app needs access to this
content provider, it must declare this permission in the Manifest file.

• Bytecode. We modify the bytecode to configure the preprocess procedure in
the parent class of the app. For example, class A is the child class of class
B whose parent class is android.app.Application [4]. Then we replace the
parent class of class B with our injected service. The Activities showing UI
message are written in Java, compiled and converted to Dalvik bytecode.

We then compile the IR into the rewritten version of bytecode and repack
the app into an APK file. An app needs to be signed, but rewriting invalidates
its original signature, and AppShield cannot sign the rewritten app using its
original private key. The signature is mainly used for identifying the developer.
Moreover, app updates require the new version of each app to be signed with
the same private key as the old version. AppShield can achieve these functions
by signing apps originally signed with same keys with same (but new) keys.

AppShield is deployed as a remote service and generates a random private
key to sign each business app. When the app is installed, the client side App-
Shield keeps the mapping from the package name to its signature, which is used
to differentiate business apps and personal apps. Due to the physical isolation of
signature generation and the one-to-one mapping of original keys to new keys, it
is difficult for an attacker to create a malicious app with the same signature as
that of a legitimate business app to launch the privilege escalation attack. Our
remote service can manage app update in the same way as mobile markets.

3.3 Proxy-Based Data Access Mechanism

Figure 2 illustrates our proxy-based data access mechanism. In Android, any
operation on privileged data via file system and content provider goes through
our customized low-level system calls. The injected bytecode collects the context
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Fig. 2. Proxy-based data access mechanism

of the operation, such as the package name, signature, and data properties. The
context is then sent to the Policy Enforcement Point (PEP), which is imple-
mented as a Service in AppShield and can be accessed by other apps through
the socket in the native layer. On iOS platform, the request of file operation
carrying the app’s identity and target file object is sent to PEP, which is imple-
mented as a handler. The Policy Decision Point (PDP) decides whether the
operation is allowed based on the context from PEP and the query results from
the Policy Repository (PR) that could be remotely updated by IT adminis-
trator via Remote Policy Manager (RPM).

Android. AppShield virtually maintains a file system and content providers in
its internal storage. If data sharing is allowed, AppShield generates a reference
to the data, which is granted to the business app. The business app indirectly
operates on privileged data based on the reference to avoid creating duplicated
data for the sake of performance, security, and synchronization. Data isolation
is achieved, because the file system and the content provider are privately stored
in the internal storage, and PDP validates whether the app requesting data
operation is a business one; if so, application identity is further verified against
security policy set.

File-system. Wherever the original app stores the data, such as public external
storage and privately accessible space, AppShield redirects the file operations
from business apps to its own internal storage. We need to hook the following
system calls:

• open(), creat(). As an app invokes these two system calls, AppShield
invokes the original system calls with a modified file path in the internal
storage of AppShield and passes the flags and modes with a returned file
descriptor.
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• rename(), mkdir(), remove(). The file paths in the parameters of these
system calls are replaced with the business file paths in its internal storage.

• stat(), lstat(). AppShield first gets a file descriptor to the business file in
its internal storage and then invokes the fstat() to fetch the file status.

Content Provider. Content providers manage the access to a structured set of
data, which is identified by URI [10]. Our proxy-based data access mechanism
on content provider goes as follows:

• Mirror content provider. The core of content provider is the SQLite
database. AppShield duplicates the target content provider with the same
schema and table definition in its private internal storage. AppShield guards
the mirror content provider with a special permission.

• System call ioctl(). This is the main system call through which all binder
IPCs are sent. By interposing on this system call, AppShield replaces the
URIs to the original content provider with the URIs to the mirror content
provider to redirect the data operation. Using context in this system call,
AppShield validates who initiates the operations on the content provider,
and the PDP module decides whether to allow the access. The malicious app
thus cannot operate on the mirror content provider by the overwriting URI
and permission declaration.

iOS. Given the closed source iOS, it is difficult to have the rewriting framework
inject the MAM features into general iOS apps without developer support. How-
ever, we easily extend our proxy-based data access mechanism on iOS platform
and implement the AppShield iOS client in Swift, which manages the virtual
file system in its private space. The business app, which owns the privileged file,
could create and update privileged file by sending it to AppShield’s directory
Documents/Inbox/. At the same time, AppShield records the mapping between
the app’s identity and the file object, which is expressed as App S and Obj in
Eq. 1. The “Open-in management” feature, introduced from iOS 7 [14], allows
AppShield to control which app the device uses to open a file. Thus, when an
app App R attempts to operate on the privileged file, AppShield validates the
request against the policies in PR.

3.4 Security Policy

File Isolation. The file-related operations from personal apps to business apps
are strictly prohibited. All the files owned by business apps are kept in the inter-
nal storage of AppShield client app, which is invisible to all the other apps.
When an app initializes the file operation request, the package name bound with
its signature are sent to AppShield, which verifies whether it is a business app
against the record in a database. It is extremely challenging to evade this secu-
rity check because it requires the attacker to get the mapping relation between
package name to app signature, which is constructed on the remote server side
and securely stored in the private space of AppShield client side.
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Multi-entity Management and RBAC. Given the business apps from differ-
ent companies, IT administrators can set up multiple app sets, where the union
of the apps set’s functionalities represents the permissions granted to this role
(set). After a business app is pushed and installed on the device, it is assigned to
a business app set following the configuration made by IT administrators, which
can be dynamically adjusted on-the-fly. Once the business identity of the app
requesting file access App R is verified, AppShield would further check whether
there is an app set including both the owner of the target file App S and App R. If
the two apps are not grouped into the same set, the file operation will be denied,
which thus guarantees the orthogonal data access among roles. The example is
illustrated in Fig. 3a and b, where one app set includes email client Outlook,
document editor Docs to Go, and another set consists of the app Quickoffice.
When Quickoffice tries to open the file allow.doc as an attachment in Outlook,
the request is denied because the policy maintains the parallel access among dif-
ferent roles.

Fig. 3. Multi-entity management, RBAC & Content provider isolation

Fine-Grained File Access Control. Android Lollipop allows all the requests
across the business apps. In contrast, AppShield’s file sharing is managed at
file-level granularity for the apps in the same set. Given the sender app App S, the
receiver app App R, and the file object Obj, AppShield checks the corresponding
security policy in its repository, whose default value is Allow. This mechanism
enables more flexible access control in protecting the high confidential file.

Content Provider Isolation. Business app conducts operations on the mirror
content provider. If the app’s identity is verified, the cursor of the mirror content
provider will be returned, or AppShield will assign the app with the reference
to the system content provider. This design guarantees the isolated operation on
data in system default content provider and business privileged content provider.
Note the example app in Fig. 3c and d, with the behavior of accessing the sys-
tem’s address book, the enterprise app fetches the business contacts in mirror
content provider.
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4 Implementation

We leverage the existing open source tools apktool [3] to unpack, decompile,
and repack the app. We implement our customized system calls in C/C++. The
open source tool AXML [5] allows us to modify the Manifest file at ease. The
activities used to popup warning message are implemented in Java and those
.class files are converted to bytecode using dx included in Android build tools.
We also implement a script in Python to rewrite the bytecode in IR.

Android has 3 system content providers: contact provider, SMS provider, and
calendar provider. The proxy-based data access mechanism is currently imple-
mented on the contact provider. The calendar provider and SMS provider could
be extended easily with small engineering efforts. For the content providers of
third-party apps, our solution interposes on the system call ioctl() and blocks
the operation when the app managing the content provider and the app accessing
the data are from different sets.

5 Evaluation

We evaluated AppShield on a Samsung Galaxy Nexus with 4.3 Jelly Bean and
an iPhone 5 s with iOS 8.1.1.

5.1 Security Policy Enforcement

We selected 50 apps from Google Play to evaluate the effectiveness of our proxy-
based data access mechanism. These apps have common business functions,
such as email, file-sharing, document editing/viewing, and contact management,
which were classified into two sets by the type of sensitive data operation: (1)
35 file-related apps, and (2) 15 contact provider-related apps.

We first used AppShield to convert these 50 apps to business versions. Then
we manually interacted with these apps. Only one app can not be rewritten
due to its obfuscation, which crashed the reverse engineering toolchain during
unpacking, decoding, and repacking. One app crashed after rewriting. Even if
we just decompiled and repacked the app without any code modification or
injection, this app still crashed, which is probably attributed to the usage of
repackage-detection techniques, e.g. integrity verification.

We then tested each file-related app against three security policies. Specif-
ically, whether the file owned by the business app was isolated from personal
apps and business apps from another group; whether the request from other
business apps in the same group can be allowed and blocked according to the
configuration. The results are listed in Table 2. Two apps cannot enforce the secu-
rity policies regarding multi-entity management and fine-grained access control.
After investigating the reason through application reverse-engineering, we found
that these two apps looked up files with the path starting with “/./sdcard”,
which was not considered when being converted to paths in the private space of
AppShield and thus the business files cannot be located.
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Table 2. 35 File-related applications

Package name Isolation Multi-entity
management &
RBAC

File-level
granularity

com.pixatel.apps.filemgr
√ √ √

cn.wps.moffice eng
√ √ √

com.aor.droidedit
√ √ √

com.dataviz.docstogo
√ √ √

net.appositedesigns.fileexplorer
√ √ √

com.ImaginationUnlimited.instaframe
√ √ √

com.joodioapps.DocToPdf
√ √ √

com.lyrebirdstudio.mirror
√ √ √

com.mail.emails
√ √ √

com.majedev.superbeam
√ √ √

com.microsoft.skydrive
√ √ √

com.outlook.Z7
√ √ √

com.outthinking.textonpic
√ √ √

org.devgiant.project.zipfileextracter
√ √ √

com.sketchpicture.pictutreeffect
√ √ √

com.taxaly.noteme
√ √ √

com.thomasgravina.pdfscanner
√ √ √

com.ToDoReminder.gen
√ √ √

com.youthhr.phonto
√ √ √

cz.awk.android.docconv
√ √ √

joa.zipper.editor
√ √ √

jp.ne.shira.csv.viewer
√ √ √

net.daum.android.solmail
√ √ √

com.acr.sdfilemanager
√ √ √

com.sapparray.docmgr
√ √ √

com.jellydog.freereader
√ √ √

com.olivephone.office
√ √ √

vn.esse.WordToText
√ × ×

couchDev.tools.DocxParser
√ × ×

com.qo.android.am3
√ √ √

com.probcomp.filexplorer
√ √ √

com.seeke.pdfreader Crash

com.topnet999.android.filemanager
√ √ √

com.nimblesoft.filemanager
√ √ √

com.infraware.office.link Cannot rewrite

Succeed 33/35 31/35 31/35
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Table 3. 15 Contact provider-related applications

Package name Isolation

com.appyown.contactsbackuprestore
√

com.globile.mycontactbackup
√

com.idea.backup.smscontacts
√

com.ijinshan.kbackup
√

com.mofinity.ui
√

com.payneservices.LifeReminders ×
com.tos.contact

√

net.IntouchApp
√

com.actimust.simplecontacts
√

com.netqin.contactbackup
√

no.uia.android.backupcontacts
√

com.xuecs.ContactHelper
√

digiteria.backup
√

nexg.contactbackup
√

com.brainworks.contacts.cuteblue
√

Succeed 14/15

The 15 contact provider-related apps were evaluated on content provider
isolation. We checked whether each app loaded data from the system contact
provider before rewriting and from the mirror contact provider as the business
version. The results are abstracted in Table 3. One app failed in policy enforce-
ment. Unlike the normal case where app loaded the address book data from
contact provider, this app indirectly used Intent to start the system contact
manager app. Our solution does not have the control over system apps.

Across the 120 times of policy enforcement (3 for each file-related app, 1
for each contact provider-related app), our mechanism achieves the success rate
109/120 (90.8%). The general reason for the failure is that our implementation
does not consider developer’s specific pattern of API invocation. e.g., the path
of the privileged file.

5.2 Reliability

For the test on the reliability of AppShield, we picked top 250 apps by popular-
ity on Google Play in September 2015 within the following categories: Business,
Finance, Medical, and Productivity. We used AppShield to convert these
1000 apps to their business versions, and then automatically ran the apps using
the UI/Application Exerciser Monkey [18]. The results are shown in Table 4.

12 apps failed during rewriting because their obfuscation crashed the reverse
engineering tools apktool in unpacking, decoding, and repacking. While we
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Table 4. Large-scale evaluation on 1000 applications

Total apps Succeed Cannot be rewritten Crashed

1000 953(95.3%) 12(1.2%) 35(3.5%)

acknowledge that AppShield cannot reliably rewrite apps with anti-reverse
engineering techniques, our large-scale test shows that the percentage of these
apps is still low. Also, developers are actively improving the reverse engineering
tools that AppShield relies on. For the 35 rewritten apps that crashed during
execution, we ran their original versions and found 29 of them also crashed,
which clearly were not caused by AppShield. To investigate the reasons why
the remaining 6 rewritten apps crashed while their original versions did not, we
just unpacked and repacked them without modifying their code or data, and
found all of them still crashed after repacking. We hypothesize that they might
use anti-repacking techniques, such as signature validation. We performed these
tests on real-world apps without developer support. In an enterprise MAM sit-
uation, however, it is reasonable to assume that the MAM provider can work
with the developers so as to enable successful rewriting of their apps. Developers
have strong incentive to work with MAM providers as this allows their apps to
be used across entire enterprises.

5.3 Impact of Application Rewriting

Latency. We evaluated AppShield’s performance by both micro-benchmark
and macro-benchmark. We implemented a test app that opens files and loads
data from contact provider. Moreover, we developed an iOS app that can delegate
the permission of accessing its private files to a selective set of apps. Given the
closed nature of iOS, we could not modify the invocation of low-level system
calls and hence cannot build an application rewriting framework. For evaluation,
we implemented the proxy-based data access mechanism inside the app. Even
though our rewriting framework is not cross platform, our proxy-based data
access mechanism is. We expect that with reasonable developer support, our
solution is still feasible on iOS platform.

• Micro-benchmark. We conducted a stress test with 1000 data access opera-
tions to investigate the latency introduced by AppShield. First, we recorded
the accumulated time spent on getting the file descriptor on Android and get-
ting the file contents from the iOS AppShield client with and without our
security policies enforced. Because we cannot dig into low-level system calls
of closed-source iOS, we measured the time of loading file contents on that
platform. We also measured the total time of fetching the cursor, which is a
reference to the content provider. Only the operations that we benchmarked
contain the latency introduced by AppShield for policy enforcement, and
the further operations on data remained the same with the unmodified app.
The results are listed in Table 5. In the worst case, AppShield introduced
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an overall latency of 0.202 s on Android file system during 1000 operations,
because acquiring each file descriptor involves one round of IPC with App-
Shield. For the performance on iOS, AppShield introduced a latency of
0.176 s. AppShield introduced a latency of 1.711 s when getting the cursor
of a content provider. Since IPC is the dominant factor in the latency and
has a fixed cost, the relative latency decreases, as the original operation takes
longer.

• Macro-benchmark. We asked one user to manually load data via the file
system and contact provider on the smartphone. We recorded the time from
when the user started to access the data until when she closed the app after
the data was fully rendered on screen. The user performed a series of data
access operations for 5 times with and without AppShield. Table 5 shows
the average of time. AppShield introduced a latency of 52 ms, 110 ms, and
126 ms in data operations on Android file system, iOS file system, and Android
content provider, respectively. Such latency is barely perceptible. Although
user experience on application response might not be accurate to the order of
millisecond and there is a slight difference in each round of manual operation,
we try our best to simulate user’s daily usage manner.

Memory Consumption and Code Size. Figure 4 shows the cumulative dis-
tribution function (CDF) of the overhead in memory usage and code size caused
by rewriting. To eliminate the side effect of Android garbage collection when
calculating memory usage, we used the tool dumpsys in Android Debug Bridge
(adb) to get the maximal memory usage during the execution of an app. To elim-
inate the side effect of compression during app packing, when calculating code
size, we sum up the customized native libraries, Manifest file, and bytecode.

AppShield’s rewriting introduced less than 5% code size increment in over
95% apps, and more than 85% apps incurred the memory usage overhead less
than 60%. The average overhead was 8049.1KiB in memory usage and 121.2KiB
in code size. Our system hooks into the low-level system calls, and the dynamic
linking naturally supports the efficient memory utilization by avoiding code
duplication. Moreover, we add our customized system calls, and the classes for
UI notification just once rather than inlining them at every point where the
original app accesses privileged data.

Table 5. Runtime latency introduced by AppShield

File system Content provider

Android iOS Android

Original AppShield Original AppShield Original AppShield

Micro-benchmark×1000 (s) 0.180 0.382 0.171 0.347 7.303 9.014

Macro-benchmark (s) 1.472 1.524 1.643 1.753 1.068 1.194
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6 Discussion

AppShield does have some limitations because of its current implementation.
Our rewriting mechanism involves unpacking the APK file and decompiling the
dex bytecode to IR. App developers sometimes use anti-reverse engineering tech-
niques to crash decompilation tools to protect their intellectual property. More-
over, when the IT administrators conduct the security verification on the apps to
be selected as business ones, the obfuscated app may challenge the correctness of
the verification. However, our large-scale evaluation shows that the percentage
of these apps is low. Moreover, the app developer could be asked not to apply
such tools, where tiny developer support is needed. Developers are often willing
to work with enterprises as this offers them a large high-payoff user base.

Another limitation is that it depends on hooking on the dynamically-linked
libc. Any system call invoked not via the system libc, such as by using a
statically-linked libc, will bypass our hooking mechanism. The chance of this
happening is very low, and can be detected statically. Regarding the iOS plat-
form, it is extremely hard to automatically rewrite apps and hook those system
calls, given its closed-source nature. However, the proxy-based data access mech-
anism is cross-platform, which is implemented as a client iOS app leveraging the
“Open-in management” feature.

7 Related Work

Virtualization and Sandboxing. L4Android [29] combines the L4Linux and
Google modifications of Linux kernel to enable executing Android OS on top of
a microkernel. Running multiple Android OS instances in parallel on the same
device enables the complete isolation but has high performance penalty. Trust-
Droid [43] addresses the performance issues. It introduces the logical domain
isolation approach, where two single domains are considered and isolation is
enforced as a data flow property between the logical domains without running
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each domain as a single virtual machine. Boxify [21] constructs virtual sandboxes
to secure Android apps, but the decision on which app to be isolated relies on
manual identification. We model the data access control problem in the scenario
of MAM, and app identity is classified by its business/personal purpose. These
approaches fail to consider the data-sharing problem to give a fine-granulated
control that grants a selective set of apps the access to privileged data.

Rewriting. Davis et al. [24] rewrite the Dalvik bytecode to allow interposing on
security sensitive APIs. Retroskeleton [23] supports the retrofit of app’s behav-
iors by static and dynamic method interposition. These approaches are based on
the high-level API interposition, and thus, they cannot completely enforce the
security policies across all layers of Android framework. Aurasium [41] adopts the
design most similar to us that provides reference monitor capabilities by repack-
aging Android apps to use a customized version of libc. AppShield extends the
usage of this application rewriting technique with the proxy-based data access
mechanism to achieve data access control, and multi-entity management. Simi-
larly, ASM [27] provides a programmable interface for API hooking, which can
also be leveraged to implement user-level access control.

RBAC. Vaidya et al. [40] propose RoleMiner to assist automatic role construc-
tion following a learning approach. Previous studies mostly focus on the general
modeling of RBAC. Rohrer et al. [36,37] further investigate the specific RBAC
problem when using Android device in sensitive environment, such as finance
and health, but the mechanism involves the modification of system middleware
and lacks a system prototype to be evaluated.

8 Conclusion

In this paper, we present the proxy-based data access mechanism, which can
enforce arbitrary access control policies. Given the critical issues of MAM, our
prototype system AppShield achieves multi-entity management and RBAC at
file-level granularity, apart from privileged data isolation from personal apps and
corporate data sharing across business apps. We implement it on both Android
and iOS platforms to demonstrate its cross platform property. Our design has
neither dependency on OS nor the root privilege, which thus has good portability.
AppShield is successful at policy enforcement with low latency and is reliable.
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Abstract. The Binder framework is at the core of Android systems due
to its fundamental role for interprocess communications. Applications
use the Binder to perform high level tasks such as accessing location
information. The importance of the Binder makes it an attractive target
for attackers. Rootkits on Android platforms can arbitrarily access any
Binder transaction data and therefore have system-wide security impact.
In this paper, we propose H-Binder to secure the Binder IPC channel
between two applications. It runs transparently with Android and COTS
applications without making changes on their binaries. In this work, we
design a bare-metal ARM hypervisor with a tiny code base at runtime.
The hypervisor interposes on the main steps of a Binder transaction by
leveraging ARM hardware virtualization techniques. It protects secrecy
and integrity of the Binder transaction data. We have implemented a
prototype of the H-Binder hypervisor and tested its performance. The
experiment results show that H-Binder incurs an insignificant overhead
to the applications.

Keywords: Android · Binder · Virtualization · ARM · System security ·
Hypervisor

1 Introduction

Android is designed with an object-oriented philosophy where a variety of built-
in system applications (named as managers by Android) are abstracted as
objects and tasked to manage system-wide resources, such as display and net-
work I/O. User applications such as games and m-banking apps usually do not
directly access system resources like their counterparts on a PC. To access system
resources or to distribute data, applications heavily utilize interprocess commu-
nication (IPC) to remotely call other objects’ methods. The Linux kernel in the
Android system offers the Binder mechanism [28] as the main avenue for IPC
transactions. Functionality-wise, the centerpiece of Android’s Binder framework
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is its Binder driver residing in the kernel, although a large portion of code is in
user space for marshaling the data.

Of the similar consequence of a rogue router attacking networking applica-
tions, a malware with kernel privilege can attack the Binder-based interprocess
communications. Recent attacks [4,24,34] have demonstrated the feasibility and
easiness of reading and manipulating the Binder transaction data, including key-
board inputs, SMS messages. Note that the Binder IPC is also sometimes used
for an application’s internal data exchanges. For instance, an m-banking app’s
user-interface thread may use the Binder to forward the transaction amount to
its processing thread. The usage of the Binder could be transparent to the app
developer. As shown in [4], an app using HTTPS for its Internet communica-
tions does not send out ciphertext directly. Instead, its plaintext data is firstly
forwarded to Android’s Network Manager through the Binder channel. In short,
the corrupted Binder framework is a single point of failure of system security
because the rootkit can easily read/write all applications’ transaction data by
accessing their memory buffers, without applying any sophisticated tricks. Most
existing schemes of secure Binder transactions [5,30,35] focus on application-
level protection, which cannot deal with rootkit attacks.

In this paper, we design a tiny trustworthy hypervisor called H-Binder with a
small trusted computing base (TCB) to protect sensitive Binder transaction data
against the rootkit on the ARM platform. H-Binder interposes on the Binder
transactions to ensure the secrecy and integrity of the transaction data against
the rootkit’s malicious accesses.

H-Binder functions transparently to the Linux kernel, Android middleware
and COTS applications without any modification on their binary codes. It can
smoothly work in tandem with other virtualization based schemes [9,10,20,36]
to harden the platform’s security such as data protection in the kernel. To the
best of our knowledge, H-Binder is the first work on Binder security against
the rootkit. We have built a proof of concept of H-Binder and evaluated its
performance. The results show that it is practical to use H-Binder on mobile
phones to protect critical Binder transactions.

Organization. In the next section, we explain the background of Android
Binder framework and recent virtualization techniques introduced to ARM
processors. In Sect. 3, we present an overview of H-Binder including the security
problem, the threat model and the challenges. We present two building blocks
of H-Binder in Sect. 4 and the details of H-Binder workflow in Sect. 5. A report
on H-Binder implementation and performance evaluation is in Sect. 6. We then
present related work in Sect. 7 and a conclusion in Sect. 8.

2 Background

We explain below the background information of Android’s Binder framework
and the virtualization techniques on ARM platforms.
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2.1 The Binder Framework

The Android platform is designed with an object oriented style with a wide
range of system manager applications managing various resources and providing
capabilities for user applications. The Binder IPC is the primary channel for
user applications to interact and collaborate with system services or among
themselves to carry out their intended tasks. For instance, a user application
needs to interact with Android’s LocationManager to access the mobile phone’s
location data.

A Binder transaction follows the traditional client-server model. In a typical
scenario, it involves three parties: a thread of a resource manager app acting
as a server, a thread of a user app as a client, and the Binder driver in the
kernel. To facilitate applications to engage in a Binder transaction, Android’s
ServiceManager works as a registry service for user apps to look up a registered
service provider. In a high level view, the client and server thread interact in a
Binder transaction with the following steps. Note that the server has a pool of
worker threads in sleeping mode waiting for processing the requests.

(1) To request the service from a service thread, the client thread issues a block-
ing ioctl system call through which it issues a command to the Binder driver.

(2) The Binder driver saves the client thread information, locates the intended
server’s sleeping worker thread, and wakes it up to handle the request.

(3) The wakened worker thread immediately processes the request and issues
an ioctl system call to return the reply to the Binder driver.

(4) The Binder driver uses the information saved in step 2 to locate the client
thread, wakes it up and passes the data to it.

One of the most critical data structures in the Binder framework is the
binder transaction data (as depicted in Fig. 1) which is passed by the user-
space threads to the Binder driver as one of the parameters of ioctl. The shadowed
boxes are those bytes which are not changed by an honest kernel. In essence, code
specifies the method for the receiving app to execute, while the buffer pointed to
by data.ptr.buffer stores the parameters and objects needed by that remote
method with length data size. For ease of reference, we collectively call the
bytes in the shadowed boxes as transaction raw data throughout the paper. As
shown later, we are concerned with the integrity of the transaction raw data and
secrecy of bytes pointed to by data.ptr.buffer.

It is necessary to highlight how a client application looks up and identifies the
service application it intends to engage, because it is relevant to authentication
issues of a Binder transaction. The lookup procedure is also a Binder transaction.

The target field in Fig. 1 is a local handler passed to the Binder driver to
specify the intended destination. To look up a service application, the client
sets target as 0 in a Binder request containing a text string. The Binder driver
forwards this lookup request to Android’s ServiceManager which then returns
a handler to the client. Therefore, to engage with the service application, the
client sets its target with the handler in its Binder request.
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Fig. 1. Binder transaction data. The shadowed regions refer to the Binder transaction
raw data which are the actual payload of a Binder communication.

2.2 Hardware Virtualization on ARM Processor

The recent ARMv7-A [1] architecture introduces hardware-assisted virtualiza-
tion on ARM processors as an architectural extension. Different from x86 hard-
ware virtualization where the CPU runs in the root mode (for the hypervisor) or
the non-root mode (for the guest), ARM’s hardware virtualization introduces a
new privilege mode called the hyp mode for the hypervisor, which has a higher
privilege level, i.e., Privilege Level 2 (or PL2 for short), than the svc mode used
by the kernel.

When the CPU runs in the hyp mode, it accesses not only to those general
registers and banked registers, but also to a set of new mode-specific registers
including the Hyp Configuration Register (HCR) and the Hyp Syndrome Register
(HSR). The former is used to configure the types of exceptions to be trapped
into the hypervisor. For example, when HCR’s Trap General Exception (TGE)
bit is set to 0× 1, the supervisor call exception will be trapped to the hypervi-
sor, which allows the hypervisor to intercept system calls from user space. HSR
records the information about the exceptions trapping to the hypervisor. The
Exception Class (EC) bits HSR[31:26] indicate the cause of the trap, e.g., 0× 12
for a hypervisor call.

The HVC instruction can be used to enter into the hyp mode from the svc mode
by raising a hypervisor call exception. After handling the call, the hypervisor
uses the ERET instruction to switch the mode and returns to the next instruction
following the HVC instruction. All exceptions trapping to the hyp mode use the
exception vector at offset 0 × 14 of the hypervisor vector table.

Similar to memory virtualization on x86 platforms, ARM virtualization also
supports two-stage address mapping for the virtual machine (VM). A virtual
address (VA) in both usr and svc modes in the non-secure world is mapped to
an intermediate physical address (IPA) by the Stage-1 page table managed by the
kernel. Then, the IPA is mapped to the physical address (PA) by the Stage-2 page
table managed by the hypervisor and is beyond the kernel’s control. Therefore,
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the hypervisor can control the attribute bits in the Stage-2 page table entries
(PTEs) to regulate memory accesses from the VM for interception and isolation
purposes.

3 Overview

This section presents an overview of our work. We begin with the explanation
of the security problems.

3.1 The Problem Scope

Our aim is to protect the secrecy and integrity of sensitive transaction data
transmitted between two Android applications through the Binder IPC. We
consider the following adversary model and design restrictions.

Adversary Model. We consider rootkits whose attacks are targeted at the
Linux kernel, e.g., reading and writing arbitrary kernel objects and manipulating
the kernel’s control flow. For instance, a rootkit can start its attack on Binder
transactions by locating the global kernel object called binder context mgr
node which contains a pointer pointing to an array of buffers used for each
Binder transaction.

Caveat. Out of several reasons, we do not consider rootkits that directly
reads/writes an application’s user space data and tampers with its control flow.
Firstly, most rootkits do not target a specific application because it is less cost-
effective to attack user space. It requires non-significant semantic knowledge of
the victim application (e.g., the source code) while the damage is limited to the
victim. Secondly, attacking on the kernel objects is much more catastrophic as
it impacts all applications. Lastly, user-space protection techniques have been
proposed on x86 platforms. Systems like Overshadow [9], InkTag [20], TrustPath
[36], AppShield [11] can be exported to the ARM platform to cope with the user
space security problem. The systems can run in tandem with H-Binder for the
full protections. We do not attempt to re-invent the wheel.

Design Restriction. We restrict our design from modifying the existing Linux
kernel, Android middleware or the applications. It is also refrained from changing
the existing Binder framework, including the protocol and the syntax of relevant
data objects. This is mainly due to compatibility concern.

Caveat. Under the design restriction above, the Binder data integrity pro-
tection only prevents rootkits from modifying the Binder data sent by applica-
tions. It does not deal with forgery. A rootkit can always inject its own Binder
data to an application. Any countermeasure requires changes on either the appli-
cation code or the Binder framework.

3.2 Challenges

The security problems described above present several challenges. Firstly, H-
Binder should not incur significant overhead to the mobile phone. Since mobile



H-Binder: A Hardened Binder Framework on Android Systems 29

phones are power constrained, this requirement is especially more critical than
a secure system on desktop computers. Therefore, the hypervisor should only
interpose on system call for Binder transactions, instead of all system calls.
Unfortunately, the current ARM virtualization technology does not have the
ability to filter out system calls.

Secondly, the interposition on Binder transactions should be at the thread
level rather than in the process level, because Android apps are multi-threaded.
A process level interposition may stall all running threads no matter whether
they are relevant to the security, and therefore downgrades the performance of
the application.

Another challenge is the transparency and compatibility to the COTS
Android system and applications. It precludes any changes to the present Binder
framework, including the IPC protocol and the data structures. A tentative way
to protect Binder IPC is to follow the SSL style on communication protection.
Namely, the Binder client and server run a key exchange protocol (possibly medi-
ated by a trusted party) and then exchange their encrypted Binder requests and
replies. We do not opt for this method because it requires non-negligible changes
not only on the Android runtime, but also the applications’ code.

3.3 Our Contributions

The rest of the paper presents our proposed solution to the aforementioned
problems. In a nutshell, our work makes the following contributions.

– We propose two novel techniques which can be used in hypervisors, i.e., selec-
tive system call issuance interception and thread-level system call return inter-
ception. These techniques can be used in H-Binder and in other hypervisors
as well.

– We propose H-Binder, a security system running in the hyp mode that pro-
tects the Binder transactions to ensure the transaction raw data’s integrity
and secrecy. H-Binder is fully compatible and transparent to Android and its
applications without requiring any changes on their codes.

– We build a prototype of H-Binder and evaluate the performance and com-
patibility with off-the-shelf applications.

4 H-Binder Building Blocks

In the following, we first introduce two novel techniques used as building blocks
for H-Binder, i.e., selective interception for system call issuance and thread-level
interception for system call return. We then present the details of H-Binder
workflow.

4.1 Selective Interception for System Call Issuance

With ARM virtualization extensions, the system calls can be easily trapped to
the hypervisor by setting HCR.TGE bit to 0× 1. Nonetheless, it traps all system
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calls from user space, which takes a significant performance toll on the whole
system. To avoid unnecessary traps, H-Binder does not set HCR.TGE bit. Instead,
it securely places a hook in the kernel which notifies the hypervisor on selected
system calls according to the system call number and the issuing process. Unre-
lated calls are passed to the kernel directly.

Normal System Call Trap to Svc Mode. The system call trap from the usr
mode to the svc mode is triggered by the SVC instruction. The exception vector
addresses are stored in a vector page shown in Fig. 2 where the base address
vectors start is set according to the 13th bit of the System Control Register

(SCTLR), i.e. SCTLR.V bit.

1 v e c t o r s s t a r t :
2 b v e c t o r r s t
3 b vector und
4 l d r pc , v e c t o r s s t a r t+0x1000
5 b vec to r pabt
6 . . .

Fig. 2. Exception vectors stored in the vector page at either 0×00000000 or
0×FFFF0000 based on SCTLR.V bit.

An SVC instruction causes the Program Counter (PC) to jump to Line
4 in Fig. 2. As a result, the hardware loads PC with the content stored at
vectors start+0×1000, which is exactly the address of the kernel’s SVC han-

dler. Thus, the control flow jumps to the SVC handler which then responds to
the system call.

System Call Hook. We use a hook to filter out unrelated system calls as
depicted in Fig. 3. When H-Binder protection starts (at secure boot up or trig-
gered by a hypervisor call at runtime), the hypervisor writes the hook code into
a reserved memory page in kernel space. It then places the entry address of
the hook into vectors start+0×1000. As a result, whenever a system call
is invoked in the user space, the hardware passes the control to the hook code
instead of the kernel’s handler. The hook code examines the system call number
in R7 and the value of the Translation Table Base Register 0 (TTBR0)1 which
allows the hypervisor to check the identity of the issuer process. For instance, if
it is ioctl issued by a concerned process, the hook issues a hypervisor call to the
hypervisor. When the control returns from the hypervisor, the hook passes the
control back to the original handler.
1 In ARM architecture, TTBR0 points to the translation tables used by the current

running user process and the Translation Table Base Register 1 (TTBR1) points to
the translation tables used by the kernel.



H-Binder: A Hardened Binder Framework on Android Systems 31

Fig. 3. Illustration of hooking the system call control flow where the shadowed boxes
refer to pages that are read-only to the kernel and whose addresses cannot be changed.
Step 2 and 3 are executed when the intercepted system call needs to be trapped.

Hook Protection. A rootkit may tamper with the physical addresses of the
vector page or the hook page to bypass the interception. For this purpose, the
hypervisor freezes the control flow path from the vector page to the hook code,
in the sense that (1) the physical addresses of the vector page and the hook
code page cannot be remapped by the kernel; (2) the code and data in both
pages cannot be altered by the kernel. For this purpose, the hypervisor takes the
following steps before placing the hook code page.

1. Set the Trap Virtual Memory (TVM) bit of HCR to 0× 1 in order to intercept
the kernel’s write access to SCTLR and the Translation Table Base Register 1
(TTBR1) so that the hypervisor blocks all changes to SCTLR.V bit and TTBR1.

2. It traverses from the root of the Stage-1 page table pointed by TTBR1 to the
page table page pointing to the vector page which resides at 0×00000000 or
0×FFFF0000 depending on the SCTLR.V bit. Set all pages on this path as
read-only by configuring the Stage-2 page table. In this way, any attempt to
remap the physical address of the vector page is then trapped and blocked
by the hypervisor.

3. It traverses from the root of the Stage-1 page table pointed by TTBR1 to the
page table page pointing to the hook code page. In the same fashion as the
previous step, an update on any page on this path is not allowed if it affects
the mapping of the hook code.

4. The hypervisor sets both the vector page and the hook code page as read-only
so that the kernel cannot tamper with their contents.

Therefore, when a system call is invoked, the hardware always locates the vector
page and the hook page at their predefined addresses. Moreover, since both pages
are read-only, the correct hook code is executed as expected.

4.2 Thread-Level Interception for System Call Return

A thread expecting the Binder transaction data sleeps after issuing an ioctl sys-
tem call. When the data arrives, the kernel completes the system call invocation
by waking up the thread.
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Unlike system call issuance, system call return does not throw out any excep-
tion. Hence we need to inject an exception in order to intercept the event. The
challenge is how to generate a thread-specific event. It is a common practice
for Android applications to use a dedicated worker thread for handling Binder
transactions. Process-level interception affects all threads of the application and
is not a good choice. For instance, setting a code page as non-executable intro-
duces a page fault for all threads attempting to fetch instructions from this page,
because the application’s code (data) sections are shared among threads.

Our proposed method is based on the fact that threads do not share their
stacks. The underlying idea is to manipulate the relevant thread’s user space
stack so that a stack operation after system call return is trapped to the
hypervisor.

The first step is to map an empty physical memory page into the target
application’s heap. This page, named as vault page is to introduce the needed
exception. The application is in fact not aware of its vault page and never uses it.
The hypervisor sets the vault page inaccessible by configuring the Stage-2 page
table, in order to block any access and to introduce the page fault for system call
return. Note that the vault page must be mapped to the application’s virtual
address space. Otherwise, the exception it incurs is trapped to the kernel instead
of the hypervisor.

Next, when the system call for receiving data is issued, the hypervisor inter-
cepts it using the technique described previously. The hypervisor saves the
thread’s SP usr into the hypervisor space, and then sets SP usr to point to
the application’s vault page. The stack manipulation does not affect the kernel’s
execution because both the system call parameters and the return address are
passed to the kernel through registers.

Lastly, when the system call returns upon data arrival, the thread returns
from the svc mode to the usr mode. The user space stack is then used to resume
user space execution. Since SP usr points to the inaccessible page, a stack popup
operation triggers a page fault exception and is trapped to the hypervisor.

5 The H-Binder Workflow

To facilitate the description of H-Binder, we present the basic idea and details
of H-Binder.

5.1 The Approach

While it is straightforward to encipher the Binder raw data for a sending applica-
tion, it is challenging to perform decryption securely. Without a rigorous checking
of the recipient’s identity, the improper decryption may reveal the plaintext to
an imposter application. Therefore, the issues of data confidentiality and entity
authentication are mingled together. It is difficult to authenticate the recipient
thread because of the semantic gap faced by the hypervisor. The actual des-
tination of the Binder transaction data is determined by the Binder driver at
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runtime, instead of by the user threads. A rootkit can tamper with the data used
by the Binder driver, and as a result, the driver delivers the transaction data to
an imposter.

In a nutshell, the H-Binder scheme uses the building blocks introduced in
Sect. 4 to interpose on each of the four Binder steps. After a step is intercepted,
the hypervisor either saves or restores the data, depending whether it is to
send or to receive the data. Nonetheless, the interception is transaction-agnostic
in the sense that the intercepted data does not exhibit its relation to other
events or any specific Binder transaction. Hence, the hypervisor has to trace the
Binder transaction data flows in order to restore the data properly, including
the lookup transaction. In specific, when a client issues a Binder request, the
hypervisor saves the data and replaces it with a random number as an ID which
is different from the existing entries. When the request arrives at the server end,
the corresponding client’s request is restored by checking the received request’s
ID. Therefore, when the server’s worker thread replies, the hypervisor knows
exactly its intended destination. When the reply arrives at the client end, the
hypervisor checks whether the present application is the intended thread.

5.2 Details

We elaborate the details of H-Binder by explaining its protection over a Binder
transaction between a user app and a resource manager app.

Initialization. When a user app is launched, an untrusted kernel module allo-
cates a vault page whose virtual address is passed to the hypervisor. The hyper-
visor configures the Stage-2 page table to set the vault page inaccessible. It saves
into the hypervisor space a pair 〈ttbr, addr〉 representing TTBR0 data and the
vault page’s physical address, respectively. This page is used to intercept system
call return as described in Sect. 4.2 and save the Binder data.

The hypervisor also maintains a Service Table whose entries pair a service
description with the TTBR0 value of the corresponding system service application,
e.g., LocationManager. For each user application, the hypervisor also maintains
a Handler Table whose entries pair a handler with the corresponding service’s
TTBR0. A user application’s Handler Table is initialized with an entry 〈0, ttbr∗〉
where ttbr∗ is the TTBR0 used by ServiceManager.

The hypervisor creates the Transaction Table shown in Table 1 to save data
related to every Binder transactions such that each intercepted event can be
linked to a Binder transaction. In this table, ClientID is set as the client appli-
cation’s TTBR0 which points to the root of its page table. SApp identifies the
server app by using its TTBR0 value while SThread identifies the server’s worker
thread by using the virtual address of its stack base. ReqID and AckID save
the ID of the request and reply as their respective identifiers. State records the
present transaction states.
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Table 1. The format of the transaction table

ClientID SApp SThread ReqID AckID State

0×96206f40 0×960b4280 0×76ef2000 0×47aa6d75 0×b0aacdf4 2

. . . . . . . . . . . . . . . . . .

Runtime. The H-Binder hypervisor interposes on all four steps of a Binder
transaction by using the building blocks priorly described. The workflow of H-
Binder proceeds in four phases as depicted in Fig. 4 wherein a user app requests
data from a manager app through a Binder IPC channel.

User AppManagerUser 
space

Kernel 

2)receive 1) request3) reply 4) receive

data data

Kernel 
space

Binder driver
data data

data flow control flow data encrypted data

thread wakeup 
interception

system call 
interception

HypervisorHypervisor 
space

Fig. 4. Overview of H-Binder work flow.

Phase 1: User App Sending Request. Using techniques in Sect. 4.1, the
hypervisor intercepts the user app’s ioctl call right after it traps to the kernel. If
the second parameter of ioctl is BINDER WRITE READ, the hypervisor locates the
binder transaction data structure via the third parameter. Then it executes
the following steps:

(1) It saves the request data in the client’s vault page and replaces it with a
random number which is different from the ReqID entries in the Transaction
Table.

(2) It inserts to the Transaction Table a new record T , where T .ClientID is the
current value of TTBR0; T .ReqID is the generated random number in the
first step; T .State is set to 0 to indicate that a request is sent out. Based on
the target of the intercepted Binder structure, the hypervisor looks up the
client app’s Handler Table to retrieve the corresponding TTBR0 and assigns
it to T .SApp. (An error is returned if no matching record is found in the
Handler Table.) All other fields of the new entry are set as NULL.
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Phase 2: Manager Receiving Request. When the request is delivered by the
Binder driver to the manager app, the manager’s worker thread is wakened up to
handle it. Using techniques in Sect. 4.2, the control is trapped to the hypervisor
before the request is processed further by the thread. The hypervisor first checks
data integrity and verifies whether the intercepted app is an imposter. It executes
the following steps:

(1) It looks up the Transaction Table for a record with a matching record T
such that T .ReqID equals to the request data.

(2) If no matching record is found or T .State is not 0, it drops this request and
returns an error to the manager because the incoming request’s integrity is
compromised.

(3) To check whether the intercepted app is legitimate for receiving the request,
it compares T .SApp with the present TTBR0. If they do not match, an
exception is thrown out. Otherwise, it loads the data from the client’s
vault page to recover its original Binder request, saves T .SThread with
SP usr&0×FFFFE000 to record the worker thread’s identity, and lastly set
T .State to 1 to indicate that the request is received by the server.

Phase 3: Manager Sending Reply. After handling the user app’s request,
the manager’s worker thread returns a reply to the user app. Using the hook in
Sect. 4.1, the thread’s ioctl is trapped to the hypervisor which then performs the
following steps:

(1) It looks up the Transaction Table for a matching record T such that
T .SThread equals to the present worker thread’s stack base address. If no
matching record is found, it drops the reply and returns an error indicating
that the reply is not associated with any previously checked Binder request.
Otherwise, it goes to the next step.

(2) It checks whether T .State is 1. If not, it drops the reply and returns an error
indicating inconsistent states. Otherwise, it goes to the next step.

(3) It saves the data pointed to by data.ptr.buffer in Binder transaction
data structure in the vault page, and replaces it with a random number
which is different from the AckID entries in the Transaction Table. It then
updates T by assigning T .AckID with the generated random number and
setting T .State to 2.

Phase 4: User App Receiving Reply. When the Binder driver delivers
the manager’s reply to the user app, it wakes up the user’s blocked thread
described in Phase 1. Using the techniques in Sect. 4.2, the control is trapped
to the hypervisor before the thread processes the reply. Similar to Phase 2, the
hypervisor checks both data integrity and the recipient app’s authenticity before
restoring the data. It runs the following steps:

(1) It looks up the Transaction Table to find a matching record T such that
T .AckID equals to the reply data. If no matching record is found, it discards
the reply as its integrity is compromised and returns an error. Otherwise, it
proceeds to the next step.
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(2) It checks whether the present TTBR0 is the same as T .ClientID and whether
T .State is 2. If either one fails, it returns an error because the present appli-
cation is not the intended destination of the reply.

(3) It loads the data from the server’s vault page, deletes T from the Transac-
tion Table, and passes the control back to the user app. If T .SApp refers
to ServiceManager, the hypervisor obtains the handler from the data and
updates the Handler Table of the client app. Note that if a suitable per-
mission model is in place, the hypervisor can also enforce the access control
policies before restoring data.

5.3 Security Analysis

We provide an informal analysis to explain how the Binder transaction is pro-
tected. The analysis begins with recipient authenticity which is the premise of
proper Binder data protection.

Recipient Authenticity. Recipient authenticity is about whether a Binder trans-
action request/reply is delivered to the intended destination. For the flow from
the client to the server, the hypervisor extracts the intended recipient’s identity
when the request is sent out and verifies the recipient’s identity by checking
its TTBR0 value when the request is delivered. Note that the rootkit’s attack
on an app’s handler only leads to denial-of-service and cannot be used for
impersonation.

For the return trip from the server to the client, the hypervisor verifies
the recipient’s identity by tracking the transactions flows using the Transac-
tion Table. Specifically, for the matching record T , T .ReqID links Phase 1 and
Phase 2, and T .SThread links Phase 2 and 3, while T .AckID links Phase 3 and
4. In this way, the hypervisor has sufficient knowledge to decide the intended
recipient for a Binder reply from the server app.

Application Data Integrity and Secrecy. The rootkit’s attack on the Binder data
is neutralized by the data replacement used by the hypervisor. The sensitive
data in the Binder transaction data structure is replaced before it is passed
to kernel space in a system call issuance. As shown in Phase 2 and 4, a restoring is
only performed after a successful authentication of the recipient app. Therefore,
only the intended applications can access those data.

Binder data integrity is ensured by T .ReqID and T .AckID. A fraudulent
Binder request is detected in Phase 2 and 4 before the recipient app processes it.
The transaction’s state stored in T .State is used to detect replay attacks which
show inconsistence.

Caveat. The security of H-Binder hypervisor can be protected by the hard-
ware. The hyp mode is transparent to the system so that the rootkits don’t
know the existence of the hypervisor. Furthermore, the small TCB can reduce
the probability of vulnerability.
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6 Implementation and Performance Evaluation

We have implemented a prototype of H-Binder running in the hyp mode. The
runtime TCB of H-Binder only consists of 1,813 SLOC (1,144 lines of C code
and 669 lines of asm code).

The experimental environment is Linux Ubuntu 14.04 on a PC with an
Intel(R) Core(TM) i7-4790 CPU @3.6 GHz processor and 16 GB main mem-
ory. In this platform, we run ARM FastModels [3] with FVP which emulates a
mobile phone with a Cortex-A15× 1 processor. The H-Binder hypervisor runs
in the emulated phone as a bare-metal hypervisor. On top of the hypervisor,
it runs Android 4.1 with a Linux kernel 3.9.0-rc3+. Due to the emulation, we
do not measure the absolute time in our experiments. Instead, we use the CPU
cycles to evaluate H-Binder performance.

6.1 Component Cost of H-Binder

The overall time overhead incurred by H-Binder is the sum of the CPU time
for context switches due to the hypervisor interceptions or hypervisor calls and
the CPU time spent by the hypervisor’s execution. To evaluate the former cost,
we measure the turnaround time of an empty hypcall which causes the CPU to
enter to the hyp mode and return immediately. Our experiments show that the
average cost for a round-trip mode switch cycle in a hypervisor call is about 96
cycles in our environment.

We also measure the CPU time spent in each of the four phases described in
Sect. 5. The average CPU cycles spent in each of the phases are listed in Table 2
where the transaction involves 100 bytes returned by the server application.
In general, the hypervisor spends 854 CPU cycles for involving in sending the
Binder data, and spends 630 cycles for involving in receiving the Binder data.

Table 2. The number of CPU cycles spent in four phases of a Binder transaction,
where the Binder request has 48 bytes and the Binder reply has 100 bytes

Phase 1 Phase 2 Phase 3 Phase 4

712 607 996 654

As shown in Sect. 5, a Binder IPC upon H-Binder involves 4 traps into the
hypervisor. Therefore, the overall H-Binder cost for protecting a Binder based
IPC is the sum of mode switch costs and the hypervisor’s processing time, which
amounts to 3, 353 CPU cycles. For a mobile phone with 1 GHz CPU frequency,
the time latency for one Binder transaction is about 3.4µs, which is very tiny.

Note that the system call hook has negligible performance overhead as it
only adds few instructions in the existing system call handler.
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6.2 Application Level Performance Evaluation

To measure the performance impact of H-Binder on Android applications
using the Binder, we measure the time spent for completing a task, e.g.,
to acquire the current location. We use the open-source application RMaps2

as the client requesting for the mobile phone’s location data. The program
is instrumented to count the CPU cycles for invoking the LocationMan-
ager’s getLastKnownLocation() function which runs Binder transactions with
Android’s LocationManager. We conduct the experiment in three different envi-
ronments: the native Android, the Android running inside the host domain of
KVM, and the Android running on the H-Binder hypervisor. Note that all three
environments are hosted by ARM FastModels emulation. The results are pre-
sented in Table 3 below.

Table 3. Turnaround time (in CPU cycles) needed to obtain the location in different
settings

Android KVM H-Binder

Read location 68,577 69,929 77,344

Overhead – 1,352 8,767

It shows that H-Binder incurs about 9,000 CPU cycles to get the location
more than in Android. This relative overhead does not affect the whole applica-
tion’s performance because the absolute time delay is insignificant. For a mobile
phone with 1 GHz CPU frequency, the time latency incurred by H-Binder is less
than 9µs. Note that the physical location is normally obtained in every one sec-
ond or every three meters the device has moved. Therefore, supposing that the
phone is on a running car moving with the speed of 15 m/s, the shortest time
interval of location update is 67 ms. The latency of 9µs is only around 0.01%
compared to the time interval of location update. Hence the delay caused by
H-Binder does not affect the location software’s performance. The delay is also
imperceptible for human users as the shortest time interval a human perceives
is roughly between 50 ms to 150 ms [29].

Caveat. Our selective system call interception technique in Sect. 4.1 allows
for performance isolation since those unrelated system calls are not intercepted
and their performance is not affected by H-Binder. It can be further extended
to select the critical applications and service to protect.

6.3 Time Cost for Different Sizes of Transferred Data

We then analyze how the size of the transferred data affects the overhead.
We implement two Android applications using Binder IPC to transfer data

2 https://github.com/ramnathv/rMaps.

https://github.com/ramnathv/rMaps
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between them. One app registers itself to Android’s ServiceManager as the ser-
vice providers while the other acts as a client. We vary the size of the data
the server application returns and evaluate the turnaround time of getting the
data, including the time spent for the Binder channel setup. Table 4 reports the
experiment results in three different platforms.

Table 4. A whole binder transaction time in CPU cycles with different sizes of trans-
ferred data

# of Bytes Android With KVM H-Binder

4 94,848 94,932 95,170 (0.3%)

8 95,070 95,178 95,781 (0.7%)

12 95,670 95,900 96,812 (1.2%)

20 96,070 96,318 96,960 (0.9%)

40 97,196 97,579 102,871 (5.8%)

80 100,349 100,743 107,118 (6.7%)

200 109,219 109,631 118,508 (8.5%)

400 120,875 121,353 130,496 (8.0%)

It shows that the time cost grows with the size growing. The main overhead
is incurred by H-Binder’s protection. As the size of data is not very large when
the data is transferred in the Binder directly, the overhead of H-Binder in a
whole Binder transaction will be less than 9%.

7 Related Work

Xen [6] is one of the earliest open source hypervisors initially developed for
x86 platforms. Based on the Xen hypervisor, Hwang et al. proposed and imple-
mented Xen-on-ARM [22] for the ARM architecture. Xen-on-ARM is a para-
virtualization hypervisor and requires modifications to the kernel, as it is built on
ARMv4/v5 which does not offer virtualization extension. From ARMv7 onwards,
virtualization extension was introduced to support hardware virtualization on
ARM architecture [1]. The first hypervisor using ARM virtualization extension
was proposed in [31]. EmbeddedXen presents a new virtualization framework
tailored to various ARM-based embedded systems [27]. ARMvisor [15] provides
system virtualization for ARM, and KVM/ARM [13] is the first full system ARM
virtualization solution that can run unmodified operating system on ARM mul-
ticore hardware. KVM/ARM has been integrated to the Linux kernel as a Linux
ARM hypervisor.

H-Binder addresses the security of the Binder framework. A brief study on the
technical details of Binder mechanism and its security weaknesses was described
in [26]. More recent attacks [4] presented in the Black Hat conference further
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demonstrated the cruciality of Binder security. It is shown in [4] that a malware
which controls the Binder framework by attacking the ioctl system call can access
and manipulate a variety of sensitive data, including keystrokes, in-app data, and
SMS messages. ComDroid [12] proposes a tool to detect the vulnerabilities in
Binder transaction, but it can’t provide a runtime protection. AppFence [21] is
built based on TaintDroid [16], using dynamic taint analysis to track the spread
of the taint data. H-Binder can combine with this method to get stronger ability.
However, TaintDroid can only protect the sensitive data while H-Binder can also
protect the RPC with the Binder transactions.

The protection of Binder transactions has a direct impact on Android’s access
control mechanism. Some fine-grained access control mechanism [8,25,32] are
proposed for diverse security and privacy policies. Android has a systematic
permission model to control how applications access sensitive devices and data
stores [33]. Most sensitive resource accesses are through the Binder framework
where the data is returned or through call-backs by the resource manager app.
The manager app typically checks the permission of the requesting apps before
offering the service. Nonetheless, malicious apps without proper permissions may
bypass the permission check by launching the permission re-delegation attacks
[19]. In [17], Felt et al. analyzed different kinds of permission re-delegation
attacks and proposed some possible ways to address this problem. Their method
is to reduce the privileges of callee. In [7], Bugiel et al. also proposed a solution
for a system-centric and policy-driven runtime monitoring of communication
channels between applications at multiple layers in the inspiration of QUIRE
[14] and a tool called Woodpecker [18] is developed to employ inter-procedural
data flow analysis. The ways above are faced to the usr mode of Android. If the
binder driver is hijacked by attackers, two data buffers will be changed which will
lead to the leakage of some sensitive data. While H-Binder is faced to untrusted
kernel, the encryption will keep the security of the sensitive information.

In a broader sense, H-Binder is related to Android’s malware defense. Copper-
Droid [30] and VetDroid [35] leverage system call analysis and Binder transaction
analysis to detect the application behavior. While Scippa [5] uses a call chain to
get provenance information to implement the defense of the attack in Binder
transaction. Cells [2] provides a virtualization architecture for enabling multiple
virtual smartphones to run in an isolated secure manner. Nonetheless, neither
of these systems can deal with kernel space attacks. To the attacks towards ker-
nel space, many of them are against kernel interfaces like system call interface
[23]. Attackers will hijack the system call handlers to let the kernel execute the
attackers’ instructions. H-Binder may not block all these attacks, but it can pro-
tect the sensitive data from being leaked as the data will be encrypted before
entering the svc mode.

8 Conclusion

We have proposed H-Binder which leverages the recent ARM hardware virtual-
ization techniques to secure Binder transactions in Android platforms. H-Binder
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ensures secrecy and integrity of the sensitive data transported between two appli-
cation threads interacting via Binder IPC. The H-Binder hypervisor intercepts
the critical system calls from target applications and protects their data by using
replacement techniques against attacks from rootkit. We have implemented a
prototype of H-Binder on ARM FastModels. Our experiments show that the
overhead incurred by H-Binder is not significant. Our future work is to pre-
vent malicious code residing in the Android framework from attacking Binder
transactions.
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Abstract. Android allows applications to communicate with system
service via system service helper so that applications can use various
functions wrapped in the system services. Meanwhile, system services
leverage the service helpers to enforce security mechanisms, e.g. input
parameter validation, to protect themselves against attacks. However,
service helpers can be easily bypassed, which poses severe security and
privacy threats to system services, e.g., privilege escalation, function exe-
cution without users’ interactions, system service crash, and DoS attacks.
In this paper, we perform the first systematic study on such vulnerabili-
ties and investigate their impacts. We develop a tool to analyze all system
services in the newly released Android system. Among the 104 system
services and over 3,400 system service methods in the system, we dis-
cover 22 vulnerable service interfaces that can be exploited to launch
real-world attacks. Furthermore, we implement and construct attacks to
demonstrate the impacts of these vulnerabilities. In particular, by utiliz-
ing these vulnerabilities, these attacks result in implicit user fingerprint
authentication in background, NFC data retrieval in background, Blue-
tooth service crash, and Android system crash.

Keywords: Android · System services · Service helpers · Vulnerabilities

1 Introduction

One of the most salient features in Android is that it wraps various functions in
its system services, such as telephony, notification, and clipboard, so that differ-
ent applications (“apps”) can easily access these functions through inter-process
communication (IPC). Normally, apps use these system services via system ser-
vice helper. In order to protect system services, service helpers provide various
security mechanisms so as to protect the system services, e.g., validating input
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parameters against service crash, checking callers’ status against user authen-
tication in background, identifying and handling duplicated requests against
unnecessary resource consumption, and passing callers’ identities (IDs) to allow
system services to authenticate the callers.

However, we find that these mechanisms can be easily bypassed, which incurs
serious security problems. For example, as shown in Fig. 1, FingerprintManager,
i.e., the service helper of system service FingerprintService, automatically
obtains a caller’s identity (i.e., the app’s package name) and passes it to
FingerprintService so that the service could enforce particular restrictions
based on the caller’s identity. Unfortunately, a malicious app can bypass the ser-
vice helper and directly feed fake ID to FingerprintService. Therefore, the
system service will directly accept the fake ID without any authentication. As
we observed, the vulnerabilities of bypassing service helpers can incur privilege
escalation, automatic function execution without user interaction, system service
crash, and Denial-of-Service (DoS) attacks. Therefore, it is necessary to system-
atically study such vulnerabilities and their impacts, which has not yet been well
studied in the literature.

Fig. 1. A benign app interacts with a system service through the corresponding service
helper which automatically collects the caller’s identity and passes it to the system
service. However, a malicious app can bypass the service helper, and directly feed a
fake identity to the system service.

In this paper, we perform a systematic study on the above security breaches
related to service helper bypass. The root cause of the breaches is that system
services assume correct execution of security mechanisms in the corresponding
service helpers that actually can be bypassed. In order to find out all vulnerable
IPC methods in system services that can be exploited because of service helper
bypass, we develop a four-step approach to identify IPC methods that do not
enforce security mechanisms corresponding to that in the service helpers. Firstly,
we enumerate all system services as well as their IPC methods in the Android
source code. Secondly, we identify the corresponding service helper classes for
each of the services. Here, we need to consider internal and hidden APIs which
can be invoked by third-party apps through Java reflection. By scrutinizing
the source code, we extend Android SDK and define service helpers as the
classes in the extended SDK that can access system services via IPC methods.
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The extended SDK includes all APIs accessible to third-party apps. Thirdly,
after obtaining system services and their helpers, we identify the presence of
security mechanisms for each method in two categories of classes, i.e., system
services and the corresponding service helpers, by applying static analysis. Since
service helpers run in the same process with the calling apps, while services do
not, we cannot use the same method to identify the mechanisms in these two
classes. To address this issue, we extract and compare code features of security
mechanisms in the system services and the corresponding service helpers so as
to obtain the difference in the security mechanisms. Finally, vulnerabilities are
detected if system services do not enforce security mechanisms that are enabled
in the corresponding service helpers.

We study the vulnerabilities in the Android 6.0.1. We find 22 vulnerabilities
in system services resulted from bypassing service helpers that can be exploited
by third-party apps to launch real-world attacks. We have submitted all vulner-
abilities to Android Security Team and got confirmed by multiple Android Bug
IDs. To demonstrate the impacts of the vulnerabilities, we exploit several rep-
resentative vulnerabilities by constructing real-world attacks that lead to user
fingerprint authentication in background, NFC data retrieval in background,
Bluetooth service crash, and Android system crash.

In summary, the contributions of this paper are three-fold.

– To the best of our knowledge, this paper performs the first systematic study
on security problems incurred by bypassing system service helpers. We find
that bypassing service helpers can lead to the abuse of system services.

– We propose a method to identify the vulnerabilities in system services that
are caused by bypassing service helpers and could be exploited to launch
real-work attacks.

– We identify 22 vulnerabilities in total in Android 6.0.1, all of which are
confirmed by Android Security Team. Moreover, we construct several mali-
cious apps to exploit the vulnerabilities to illustrate the impacts of the
vulnerabilities.

2 Background

In this section, we briefly review system services and service helpers, and the
security mechanisms enabled in service helpers.

2.1 System Service vs. Service Helper

System services encapsulate essential functions in Android and compose signifi-
cant parts of Android Open Source Project (AOSP) [1]. Two representatives of
the functions in the form of system service are Near Field Communication (NFC)
service and notification service. Usually, system services run as system processes
and are registered in the service manager which serves as a service information
center. Apps that intend to use a system service can query available services in
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the service manager, and then obtain the service proxy object through which
functions in the system service can be used.

Service helpers enabled in Android SDK provide interfaces of functions in the
system services for apps so that apps can easily use the functions, e.g., service
helpers can automatically feed in parameters for functions in the system services.
Most of system services that can be accessed by third-party apps are with one
or more service helpers. In order to protect system services, the corresponding
service helpers also use some security mechanisms to validate the requests from
apps before issuing an IPC call to the system services.

A data flow of accessing system service is shown in Fig. 1. Since service helpers
run in the same process with the calling app, an app directly calls the service
helper within its own process. The service helper acquires the corresponding
service proxy from the service manager, and then sends the request to the service
proxy that is responsible for communicating with the target service via IPC calls
so as to execute the system functions. The detailed communication procedures
between services and the corresponding service proxies are defined by Android
Interface Definition Language (AIDL) [2].

2.2 Security Mechanisms in Service Helpers

In order to ensure security, reliability, and efficiency of system services, service
helpers include the following mechanisms. First of all, they enable the fail-fast
principle [3] to ensure system reliability. As providing direct interfaces to apps,
service helpers should detect failures as early as possible. We find that service
helpers validate parameters and the caller’s status to prevent service failures
incurred by wrong parameters and status. Secondly, service helpers automati-
cally collect data required by the system services, e.g., passing caller’s identity,
which reduces the risk incurred by passing invalid parameters to services. Mean-
while, they decrease the number of parameters that apps need to feed in. Lastly,
service helpers help the system services to deal with duplicated requests that
waste the service resources. Now we use four examples to illustrate the typical
protection enabled by service helpers to protect the system services.

Validating Input Parameters. Parameter validation is one of the most
important security mechanisms. For example, BluetoothHealth, the helper
of the system service BluetoothHealthService, checks in BluetoothHealth.
registerAppConfiguration (String name, int dataType, ...) to verify
whether the first string parameter is non-null. It will send the remote request to
HealthService via its service proxy only if the parameter is not empty.

Validating Callers’ Status. Some Android system services may be allowed
to be used only when the callers are currently active in the foreground. Ser-
vice helpers provide such assistance to verify caller’s status. One example is
NfcAdapter, which is the helper of system service NfcService, verifies a caller’s
status in NfcAdapter.enableForegroundDispatch(). If the caller is not cur-
rently active in the foreground, the registration request for using NFC listeners
will be rejected.
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Passing Callers’ Identities. System services need to verify various identity
information of the callers (see Sect. 3.3.1), such as caller’s uid, which can be
achieved by interacting with Binder [4]. For other information, such as pack-
age name, system services rely on their helpers to collect. For instance, in the
notification service, the first parameter of NotificationManagerService.
enqueueToast (String pkg, ITransientNotification callback, int
duration) is collected by one of its helpers Toast. Note that, such information
delivery is transparent to apps because it is automatically performed by service
helpers.

Constraining Duplicated Requests. There may exist multiple IPC requests
from an app to a system service during the app’s lifetime. IPC requests will con-
sume the limited system resources, such as memories, CPU time, and file descrip-
tors. Therefore, if a system service accepts all duplicated requests, the limited
resources may be exhausted. In order to prevent resource being exhausted by
duplicated requests, service helpers handle duplicated calls locally and mitigate
the impacts. Service helpers use two strategies to constrain duplicated requests.
For resource requests, service helpers restrict the number of calls that an app
can issue. If the number of duplicated calls exceeds a threshold, which can be
treated as abnormal or unnecessary, the following calls will be ignored locally.
While for requests of registering listeners, service helpers initiate an IPC call to
the remote system service only under receipt of the first request from the app. For
instance, an app can get a notification when the clipboard changes by registering
a listener to the system service ClipboardService. ClipboardManager, which
is the service helper of ClipboardService, only registers the service once to
get such listener after receiving the first request. After that, ClipboardManager
maintains a local listener queue. Any duplicated requests of registering listeners
afterwards will be only added to this queue locally. When the clipboard changes,
ClipboardService notifies its helper ClipboardManager of the change. Then,
ClipboardManager notifies all the listeners in its local queue. Thereby, system
services only allocate resources for one request from the app, but still can notify
the app when there is any update.

Unfortunately, these mechanisms can be easily bypassed if a malicious app
directly invokes methods in system services instead of that in the service helpers.
In this paper, we will focus on the vulnerabilities incurred by bypassing service
helpers and the consequent impacts on the system services.

3 Identifying Vulnerabilities

In this section, we present an approach to systemically studying the vulnerabil-
ities caused by bypassing service helpers.

3.1 Overview

The main idea of our approach is to find out whether the security mechanisms
enforced by system services are consistent with that in their service helpers.
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Fig. 2. Overview of our approach.

If they are not consistent, we regard it as a potential vulnerability that may
be exploited through bypassing the service helper. For each potential vulnera-
bility, we need to manually confirm it since not all potential vulnerabilities can
be exploited. Following this, our study based on the source code of Android
composes of four steps as shown in Fig. 2.

Firstly, we identify all system services as well as their IPC methods that
can be accessed by third-party apps. We need to consider the services both in
framework layer and native layer. We leverage service manager, in which all
services are registered, as choke points to obtain all system services. We obtain
IPC methods for most services that can be extracted from the AIDL files. Note
that, a small portion of services (i.e., five system services) do not have their
public IPC methods in the AIDL files. We manually extract their IPC methods.

Secondly, for each service, we need to find out its service helper class(es). We
extend Android SDK to define service helpers as the classes that request services
via IPC methods and can be accessed by third-party apps. We associate system
services with their service helpers in the method level. If a service helper method
includes an IPC call to invoke a remote service method, we treat these two meth-
ods as a pair. Here, we need to take all APIs into consideration, including the inter-
nal and hidden ones that can be invoked by third-party apps using Java reflection.

Thirdly, we examine the presence of security mechanisms in both system
services and service helpers. We extract the code features of different security
mechanisms. In this step, we need to detect the presence of security mechanisms
in system services and their helper classes separately due to their differences.

Finally, potential vulnerabilities are detected by comparing whether the secu-
rity mechanisms in the method pairs are consistent. If they do not match, it
means that the service includes a potential risk of being exploited by bypassing
service helpers and the inside security mechanisms. We manually confirm the
vulnerabilities by launching real attacks.

There are two major challenges to identify all vulnerabilities. Firstly, it is not
easy to find out all service helper classes. The internal and hidden APIs [5] that
can be invoked by third-party apps through Java reflection are not included in
the official Android SDK. If we intend to find out all service helper classes that
third-party apps can access, we need to consider all APIs. Secondly, it is difficult
to identify security mechanisms in system service methods and the corresponding
service helper methods. The security mechanisms in service helpers and the
system services are implemented with different methods, in particular, service
helpers run in the same processes with the caller app, whereas system services
run in a separate system process. Therefore, we cannot directly compare the
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source code of security mechanisms in system services and their corresponding
service helpers.

3.2 Enumerating Service Helper Classes

We show how to find service helper classes for various system services. Since
the standard Android SDK does not include the internal and hidden APIs that
can be invoked by third-party apps through Java reflection, we cannot directly
enumerate all the APIs. To address this, we extend Android SDK to define
service helpers as the classes that can use the corresponding system services
via IPC methods. Internal APIs are located in com.android.internal package
which is available in the framework.jar file on real Android device, while hidden
APIs are located in android.jar file with @hide javadoc attribute. We merge
the android.jar file and the framework.jar file to generate the extended SDK
which includes all APIs that can be directly accessed by third-party apps.

We use Soot [6] to automatically analyze all classes in the extended SDK. One
class is treated as a service helper as long as it invokes an IPC method of a sys-
tem service by using one or more methods. If an identified class is a nested class,
an inner class, a local class or an anonymous class, the top level enclosing class
is considered as the service helper class. We further associate the service helper
method with the service IPC method, and these methods compose a method pair
that will be used to analyze security mechanisms in a later subsection.

3.3 Detecting Security Mechanisms

We identify the presence of security mechanisms in these methods by construct-
ing a call graph and detecting their code features in the graph. We construct call
graphs to express the relationships inside system services and service helpers and
that between them. The call graphs are constructed by using Soot on the method
level according to system services and service helpers. Moreover, we use PScout [7]
to parse indirect dependency, e.g., Message Handler invokes different methods to
handle messages according to the message content, so as to construct complete call
graphs. Note that, in order to allow our approach to work with the latest Android
6.0, we also adopt the new compiling strategy in Android 6.0. Since Android 6.0,
AOSP adopts a new Java Android Compiler Kit (Jack) toolchain [8] to generate
.jack and .dex files as build targets. Since PScout uses .jar files as default input,
we need to convert .dex files to .jar files by using dex2jar tool [9].

3.3.1 Identify Security Mechanisms in Service Helpers
We use different methods to identify the presence of the four types of security
mechanisms in service helpers, separately.

Identifying Parameter Validation. We adopt def-use analysis [10] to iden-
tify the parameter validation mechanisms. Def-use analysis links each variable
definition with that is referred, which can be used to identify if the variable, i.e.,
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an input parameter, is referred in a validation process. Firstly, we check whether
input parameters of a method are used in boolean expressions or whether they
are used in other methods that return boolean values. Secondly, if the parameters
are indeed related to boolean values, we further verify whether the boolean values
are used in conditional statements, which contain statements with early returns
or thrown exceptions. If these two conditions are met, the method includes input
parameter validation.

Identifying Caller Status Validation. For the caller status validation, it is
similar to the input parameter validation from the perspective of code features.
We can identify caller status validation by analyzing APIs that return callers’
status and verifying if these APIs are used in conditional statements.

Identifying the Process of Passing Caller’s Identity. Apps provide differ-
ent types of identities. As we observed, there are seven types of identity infor-
mation in Android, i.e., package name, uid (i.e., linux user identifier), pid (i.e.,
linux process identifier), gid (i.e., linux group identifier), tid (i.e., linux thread
identifier), ppid (i.e., linux parent process identifier), and UserHandle (i.e., rep-
resenting a user in Android that supports multiple users). Each of them can be
obtained by calling relevant methods that are summarized in Table 1. If there is
any method included in a service helper method before an IPC method of the
target service in the call graph, there is a high possibility that this service helper
will pass a caller’s identity to its service.

Identifying the Constraint of Duplicated Requests. In order to prevent
resource consumption incurred by duplicated requests from apps, service helpers

Table 1. Methods used by service helpers to obtain caller’s identity.

Identity type Method

Package name Context.getPackageName()

Context.getBasePackageName()

Context.getOpPackageName()

UID Process.myUid()

Process.getUidForPid()

Context.getUserId()

PID Process.myPid()

Process.getPids()

Process.getPidsForCommands()

GID Process.getGidForName()

Process.getProcessGroup()

PPID Process.myPpid()

Process.getParentPid()

TID Process.myTid()

UserHandle Process.myUserHandle()
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adopt two ways to constrain the number of duplicated requests delivered to
the system services according to the type of requested resources (see Sect. 2.2).
The first approach is to restrict the number of requests that an app can issue
to request resources. If the total number of requests exceeds a threshold, the
following requests would be ignored. To identify the existence of this approach,
we search all methods in service helpers to locate the conditional statements
where the conditions are with constant integer expressions. If such conditional
statement is located after the entry of the corresponding service helper and
before the IPC calls to the service in the call graph, there is a high probability
that the statement is used to check duplicated requests, which is similar to input
parameter validation. Therefore, we can use a similar method to further confirm
the detected mechanisms.

The second approach is to constrict the number of duplicated requests to
register listeners. Usually, a service helper method accepts a listener as its para-
meter, and saves the listener to a local list. For example, the service helper
method, EthernetManager.addListener(Listener listener) saves the para-
meter listener to ArrayList <Listener> mListeners. If it is the first registra-
tion request, the helper will register in the remote service via IPC. Otherwise, the
service helper method only adds the request’s listener to the local list. When the
service helper receives the update from the service, it dispatches the update to
all the listener maintained in that list. We capture the mechanism by identifying
the code maintaining the listener lists.

3.3.2 Identifying Security Mechanisms in System Services
The idea of identifying security mechanisms in service helpers can be used to
identify the security mechanisms enforced in system services. However, we can-
not directly adopt the methods in Sect. 3.3.1 to system services because of the
difference between systems services and service helpers.

Firstly, service helpers run in the same process with the caller while
services do not. Service helpers can directly obtain the caller’s identity
via methods in Table 1. However, system services need different APIs to
obtain the information about the caller and check the caller’s properties,
since they run in system processes which are separate from the caller
processes. For instance, system services use Binder.getCallingUid() and
Binder.getCallingPid() to obtain the callers’ identities instead of the meth-
ods listed in Table 1. Secondly, system services need to validate app iden-
tities and verify whether the calling app is privileged to perform sensitive
operations, which is not required in the service helpers. Fortunately, we find
that system services heavily rely on the functions provided by AppOpsService
to perform validation. For example, AppOpsService.checkPackage(int uid,
String packageName) checks whether the input package name actually belongs
to the given uid, and AppOpsService.checkOperation(int code, int uid,
String packageName) checks whether the uid has the privilege to perform the
sensitive operation indicated by the code. We can use these key methods to
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Table 2. Methods used by services to obtain and check identity.

Function Method

Get caller’s UID Binder.getCallingUid()

Get caller’s PID Binder.getCallingPid()

Get caller’s UserHandle Binder.getCallingUserHandle()

Check package name AppOpsService.checkPackage()

Check operation AppOpsService.checkOperation()

identify the process of verifying identities in system services. These key methods
in system services are listed in Table 2.

3.3.3 Detect Possible Vulnerabilities
The final step is to examine whether the security mechanisms are consistent
in the method pairs we identified in Sect. 3.2, i.e., the service method and the
corresponding service helper method. The examination is straightforward and
can be automated in most cases. Taking parameter validation as an example,
we separately form the parameters validated in each party of the method pair
into two sets. The parameters validated in the service method are denoted as
set S, and those in the service helper method are denoted as set H. If S is not
the superset of H, which means the helper checks more parameters than the
service, the parameters p, which belongs to H but does not belong to S, may
be abused with illegal values. For the processes of dealing with duplicated calls
which are few in numbers (9 methods of 7 system helpers), we manually verify
the enforcement consistency within the pairs.

4 Vulnerability Results

We develop a tool based on the methodology in Sect. 3, and apply it to analyze
the latest AOSP 6.0.1. This section firstly summarizes our experimental findings,
including the vulnerabilities related to the four types of security mechanisms in
service helpers. Then, we construct real-world attacks exploiting representative
vulnerabilities.

4.1 Vulnerability Summary

In the extended SDK containing 8130 classes, we find out 158 service helper
classes. Among these service helpers, there are 86 cases where the helper passes
caller’s identity to the service. Also, these helpers classes include 227 methods
that validate input parameters, six methods that verify caller’s status, and nine
methods that handle duplicated requests. Among these service helpers, as shown
in Table 3, we capture 22 vulnerabilities, which can lead to privilege escalation,
bypass of user interactions, service crash, or Android system soft reboot. All these
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Table 3. Summary of vulnerabilities resulted from bypassing service helpers.

Service helper Vulnerable service method Security implication Type

Toast enqueueToast Soft reboot Fake identity

NotificationManager setNotificationPolicy Privilege escalation Fake Identity

getNotificationPolicy

setInterruptionFilter

FingerprintManager authenticate Privilege escalation Fake identity

cancelAuthentication

getEnrolledFingerprints

hasEnrolledFingerprints

isHardwareDetected

MediaBrowser addSubscription DoS Illegal parameter

removeSubscription

BluetoothHealth registerAppConfiguration DoS Illegal parameter

NfcAdapter enableForegroundDispatch Bypass of user

interaction

requirements

Fake status

ClipboardManager addPrimaryClipChangedListener Soft reboot IPC flooding

AccessibilityManager addClient Soft reboot IPC flooding

LauncherApps addOnAppsChangedListener Soft reboot IPC flooding

TvInputManager registerCallback Soft reboot IPC flooding

EthernetManager addListener Soft reboot IPC flooding

WifiManager WifiLock.acquire Soft reboot IPC flooding

MulticastLock.acquire

LocationManager addGpsMeasurementsListener Soft reboot IPC flooding

addGpsNavigationMessageListener

vulnerabilities have been confirmed by Android Security Team and assigned with
different Android Bug IDs. We describe the vulnerabilities in the following.

Vulnerabilities Caused by Passing Fake Identity. We find 19 inconsis-
tent method pairs that are identified in 86 cases where service helpers pass the
callers’ identities to the services. That is, 19 service methods receive callers’
identities from the corresponding service helpers but fail to verify the authen-
ticity of the received identities as the service helpers do. We manually verify
whether all of them can be exploited. Our verification shows that nine out
of the 19 inconsistent method pairs can be used to launch real-world attacks.
The rest 10 methods are not vulnerable to the fake identity attacks. Among
them, five methods are protected by high level permissions (i.e., signature and
signatureOrSystem levels) and cannot be granted to third-party apps, such as
StatusBarManager.setIcon(), and the other five methods do not incur security
issues, such as BackupManager.dataChanged().

One vulnerability is abuse of enqueueToast() in notification service, which
can lead to system reboot. Malicious apps will be regarded as one of the system
apps by passing a fake package name “android” and can exhaust the system
resources. The other eight vulnerabilities are in the notification service and
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the fingerprint service, which will result in the privilege escalation. A real-
world attack to fingerprint service is illustrated in Sect. 4.2.1.

Vulnerabilities Caused by Passing Illegal Parameter. We find out 227
service helper methods validating their input parameters. Among these ser-
vice helper methods and their corresponding service IPC methods, 51 method
pairs are inconsistent in validating the input parameters. These methods may
be exploited. After manual verification, three methods are identified to be vul-
nerable, i.e., they can be exploited to crash their services.

The reason most of inconsistent method pairs are secure is that Android
automatically adds handle code for some common exceptions when generating
Java classes from AIDL. The six most common exceptions are well handled
in the system services defined by AIDL, including BadParcelableException,
IllegalArgumentException, IllegalStateException, NullPointer
Exception, SecurityException, and NetworkOnMainThreadException [11].
For other exceptions, it re-throws them as RuntimeExceptions. The exceptions
thrown by system service IPC methods are caught by the Binder framework.
The Binder framework then passes the exception to the IPC caller through
Parcel.writeException() so that the caller could handle these exceptions in
its own process. Therefore, if the exception triggered by illegal parameters occurs
inside the service IPC methods, it would be handled well and not crash the ser-
vice. However, if the parameter is used outside the service IPC methods, such
as being used in asynchronous handler or stored for later access, it may lead to
security issues due to the failure of handling exceptions. These three vulnera-
bilities in MediaBrowserService and HealthService are due to such failure in
handling exceptions. In Sect. 4.2.3, we construct a real-world attack to illustrate
the process of crashing Bluetooth service by passing illegal parameters.

Vulnerabilities Caused by Invoking IPC with Fake Status. We find that
six service helper methods check the caller’s status. One of them lacks the valida-
tion of the caller’s status in its corresponding service method, i.e., NfcService.
It bypasses user interaction to access function without user initiation or user
permission, we will show such a case in Sect. 4.2.2 that an app can retrieve NFC
data in background.

Vulnerabilities Caused by IPC Flooding. We identify nine methods in
service helpers that handle duplicated requests which can be bypassed. These
helper methods firstly check whether the current request is a duplicated one.
These methods handle duplicated requests either by processing the requests
locally (but not delivering them to the services) or restricting the number of
the requests that can be delivered to the services. However, as we point out,
these methods can be easily bypassed by directly using the methods in the cor-
responding services. A malicious app can abusively invoke corresponding service
via IPC without any restriction. A large number of IPC calls would lead to
Android resource exhaustion, which can further cause the system reboot. An
attack leading to Android soft reboot will be described in Sect. 4.2.1.
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4.2 Real-World Attacks

In this section, we demonstrate the impacts of several representative vulnerabil-
ities by constructing real-world attacks to exploit these vulnerabilities.

4.2.1 User Fingerprint Authentication in Background
The FingerprintService provides functions related to user fingerprint authen-
tication. We discover that there are five vulnerable methods in Fingerprint
Service which all result in the privilege escalation by passing fake iden-
tify. The functions include fingerprint authentication (authenticate() and
cancelAuthentication()), accessing the information about the enrolled fin-
gerprints of a particular user (getEnrolledFingerprints() and hasEnrolled
Fingerprints), and determining if the fingerprint sensor is present and func-
tional on the current device (isHardwareDetected()).

Take FingerprintService.authenticate() as an example, the helper class
of FingerprintService, i.e., FingerprintManager, is responsible for automat-
ically collecting and passing the caller’s package name to FingerprintService.
FingerprintService.authenticate() is used to authenticate a given finger-
print. As shown in Listing 1, in authenticate(), it verifies whether the caller
is allowed to use fingerprint based on received package name (Line 2). In
canUseFingerprint(), it evaluates whether the caller is the current user or
profile (Line 12), whether App Ops allows the operation (Line 14), and whether
the caller is currently in the foreground (Line 16). Note that if the caller’s
package name is of KeyguardService, the caller is always allowed to use the
fingerprint, and above restrictions could be bypassed (Line 10). Unfortunately,
authenticate() never verify the authenticity of received package name. A mali-
cious app can bypass the service helper to directly feed the KeyguardService’s
package name to the service method FingerprintService.authenticate().
In this case, a malicious app can circumvent these three restrictions in
canUseFingerprint(). This vulnerability is confirmed with Bug ID AndroidID-
29324069.

( )
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4.2.2 NFC Data Retrieval in Background
The NfcService provides NFC operations such as reading data from a close NFC
tag. The service helper of NfcService checks the app’s status by its method,
i.e., NfcAdapter.enableForegroundDispatch(), so that only the app currently
running in the foreground could register NFC listeners (see Listing 2). It is a
rational design that the activity currently in the foreground should be the pref-
erential destination for new coming NFC events. However, a malicious app could
directly call service proxy method INfcAdapter.enableForegroundDispatch()
to register an NFC listener. This is different from passing fake identities. There
is no need to feed a fake status as the status is not passed to the service side.
The NFC service does not verify whether the app is indeed in the foreground.
In this case, the malicious app in the background can successfully register NFC
listeners. When an NFC tag approaches the device, the malicious app in the
background can read data on the NFC tag which may lead to user privacy leak-
age. We have reported this vulnerability to Android Security Team. It is tracked
with AndroidID-28300969 with moderate severity level.

4.2.3 Bluetooth Service Crash
The HealthService service, which provides health-related Bluetooth service,
contains a vulnerability that can be exploited by passing illegal parame-
ters. The method pairs, i.e., the service helper method BluetoothHealth.
registerAppConfiguraton(String name, int dataType...) and the corre-
sponding service method HealthService.BluetoothHealthBinder.register
AppConfiguration(String name, int dataType...), do not use the same
method to validate parameters. The helper method checks the “name” para-
meter to make sure it is not null, whereas the service method does not.
The service does not use the value of “name” parameter immediately in the
IPC method. Instead, it stores the value and uses it in BluetoothHealthApp
Configuration.equals(). In BluetoothHealthAppConfiguration.equals(),
it assumes config.getName(), that returns the value of “name”, can never
be null as shown in Listing 3. When a malicious app bypasses the ser-
vice helper and registers a config with null-value in “name” parameter, there
would be a NullPointerExcetion in BluetoothHealthAppConfiguration.
equals(). Unfortunately, this method fails to handle the exception, and hence
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the HealthService crashes. This vulnerability is acknowledged by Android
Security Team, and tracked as AndroidID-28271086.

4.2.4 Android System Crash
This is an attack related to restriction on duplicated requests. The helper
class associated with Wi-Fi service is WifiManager. An app can acquire
Wi-Fi lock to prevent Wi-Fi to go in stand-by. This is done by calling
WifiManager.WifiLock.acquire(). The source code is shown in Listing . This
method examines whether the current request exceeds the maximum lock num-
ber that an app can acquire. If it detects that the current request has exceeded
the threshold, it would release the lock immediately. We can see from the com-
ments in AOSP that the restriction here is to “prevent apps from creating a
ridiculous number of locks and crashing the system by overflowing the global ref
table.” However, a malicious app can easily bypass such restriction in the service
helper by directly issuing requests to Wi-Fi service via the service proxy, i.e.,
IWifiManager.acquireWifiLock(). A large number of IPC calls would over-
flow the reference table, and lead to the crash of Wi-Fi service and then the
reboot of Android. This vulnerability is tracked as AndroidID-27596394.
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5 Discussion

5.1 Lessons Learned

Service helpers play an important role in assisting both app developers (for easy
app development) and services (for security verification). Unfortunately, we show
that the use of the service helpers could be manipulated. In a manipulated process,
service helpers can be bypassed. It means all the security mechanisms would be
in vain. We have identified that there are indeed a large number of such vulnera-
bilities (Sect. 4). These vulnerabilities can lead to privilege escalation, bypass of
user interaction requirements, service crash, and Android system soft reboot.

All vulnerabilities discussed in our paper are incurred by that security mech-
anisms in service helpers are bypassed. Since Android cannot guarantee a con-
trol flow to the service is initiated by a service helper, to completely prevent
the attacks, an intuitive solution is to let services enforce the same security
mechanisms as that in the corresponding service helpers, i.e., verifying callers’
identities, verifying callers’ status, validating input parameters, or constraining
duplicated requests.

5.2 Limitations

False Negatives. Even though we have detected a series of vulnerabilities
caused by the bypass of service helpers, we have to admit that there may be
more such vulnerabilities to be uncovered. There are two factors leading to false
negatives. One factor is that we do not consider the sequence of check and use.
In our approach, we examine whether the service enforces the same security
mechanisms as the service helper does. We assume that as long as there are
the same enforcements in services, the adversary cannot abuse the service even
though (s)he can bypass its service helpers. However, some defective services
may perform sensitive operations before the security checking, e.g., using the
parameter before the validation. In this case, the early use may lead to potential
risks even with the presence of the same verifications in services. Another factor
is that some services invoke native code using JNI, which is a small portion of
the service code [5]. We do not study on these native code in our analysis, which
also results in false negatives. We leave the analysis on services with JNI native
code as future works.

Manual Work. Our approach is mostly automated, but still involves some
manual works. The manual works are used in three processes. The first one is to
identify the IPC methods that are not defined by AIDL. Fortunately, there are
only five such services implementing their own IPC methods without AIDL. The
second manual work is to examine whether the process of dealing with duplicated
request are consistent in method pairs. There are nine pairs in total that need to
be manually verified. The third one is to verify whether the experimental results
can indeed be exploited to launch real-world attacks. It is also necessary to
investigate the impacts of the vulnerabilities by verifying if they can be exploited.
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6 Related Work

Vulnerabilities in Android have been extensively studied, including private data
leakage [12–16], privilege escalation [17–21] and component hijacking [22–25].
In this section, we only summarize and compare with the existing studies closely
related to ours.

Android System Service Security. There have been only a few works [5,
26,27] on the security of system services, despite the significant part they take
in Android framework and the important role they play in Android. Huang
et al. [26] discover a design flaw in the concurrency control of Android system
services. They notice that Android system services often use the lock mechanism
to protect critical sections or synchronized methods. If an application takes a lock
for a long time, other services sharing the same lock would freeze, and then the
watchdog thread would force Android to reboot. Shao et al. [5] find out that there
are multiple execution paths leading to the same system service function but with
inconsistent privilege requirement. Malicious apps can escalate their privileges
or even perform DoS attacks by redirecting their requests to the paths with less
enforced permissions. Different from the study only on the service side, our work
focuses on investigating the impacts of bypassing service helpers by studying
the security mechanisms in both services and service helpers. Another related
work [27] examines the input validation in system services using fuzzing. They
have identified several DoS attacks due to the lack of proper input validation in
system services. Parts of our work is related to the input validation of system
services. The identity collected by the service helper and the parameters prepared
by the developer are passed to the service as its input. Our relevant findings in
Sects. 4.2.1 and 4.2.3 reveal more vulnerabilities in the parameter validation
which are missed in their detection. These studies are unable to discover the
vulnerabilities since they can be exploited by constructing special parameters.
For example, the FingerprintService service can be exploited if the input
parameter is set to be the package name of KeyguardService (see Sect. 4.2.1.
However, it is not easy for fuzzing to construct the parameters so as to effectively
find this vulnerability.

Static Analysis in Android. Static analysis is one of the most effective ways
to analyze the vulnerabilities in both Android systems and apps. Based on
static analysis, there have been various researches on malware detection [28–
30], library security [31], repackaging detection [32,33], component security [25],
system service security [5,26], and permission specification [7]. Static analysis
tools [6,34,35] also have been proposed to solve different problems. The two
[5,26] closely related to our work both use static analysis. The difference is that
our study focuses on the security breaches related to bypassing service helpers.
Moreover, since static analysis cannot accurately reflect the precise situations in
runtime, the analysis results may not be accurate. In our paper, we verifies the
found vulnerabilities by constructing real-world attacks.
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7 Conclusion

To our best knowledge, our study is the first systemic study on security problems
of bypassing service helper of various Android system services. We point out that
system services face the risk of being abused via bypassing the security mecha-
nisms in service helpers. In order to identify such vulnerabilities and demonstrate
the impacts of vulnerabilities, we develop a tool to analyze the system services
in the latest AOSP. The experimental results reveal 22 vulnerabilities that can
be used to launch real-world attacks.

Acknowledgments. This work was partially supported by the National Natural Sci-
ence Foundation of China under grants 61572278, 61502468, 61502469 and 61572483,
the National Key R&D Program of China under grant 2016YFB0800102, and the
National Basic Research Program of China (973 Program) under grant 2012CB315804.

References

1. Android open source project. https://android.googlesource.com/
2. Android interface definition language. https://goo.gl/UFrnT3
3. Gray, J.: Why do computers stop and what can be done about it? In: Symposium

on Reliability in Distributed Software and Database Systems (1986)
4. Android API reference: Binder. https://goo.gl/w2fXFH
5. Shao, Y., Chen, Q.A., Mao, Z.M., Ott, J., Qian, Z.: Kratos: discovering inconsistent

security policy enforcement in the android framework. In: Proceedings of the 23rd
NDSS (2016)

6. Soot. https://sable.github.io/soot/
7. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-

mission specification. In: Proceedings of the 19th CCS (2012)
8. Compling with jack. https://goo.gl/o9RYX8
9. Dex2jar. https://goo.gl/skfQLl

10. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques, and Tools.
Addison Wesley, Boston (1986)

11. Android API reference: Parcel.writeexception(). https://goo.gl/7zuXuR
12. Rasthofer, S., Arzt, S., Bodden, E.: A machine-learning approach for classifying

and categorizing android sources and sinks. In: Proceedings of the 21st NDSS
(2014)

13. Cai, L., Chen, H.: Touchlogger: inferring keystrokes on touch screen from smart-
phone motion. In: Proceedings of the 6th HotSec (2011)

14. Xu, Z., Bai, K., Zhu, S.: Taplogger: inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proceedings of the Fifth WISEC (2012)

15. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on smartphones. In: Proceedings of the 28th ACSAC (2012)

16. Cheng, Y., Ying, L., Jiao, S., Su, P., Feng, D.: Bind your phone number with
caution: automated user profiling through address book matching on smartphone.
In: Proceedings of the 8th ASIACCS (2013)

17. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.:
Towards taming privilege-escalation attacks on android. In: Proceedings of the
19th NDSS (2012)

https://android.googlesource.com/
https://goo.gl/UFrnT3
https://goo.gl/w2fXFH
https://sable.github.io/soot/
https://goo.gl/o9RYX8
https://goo.gl/skfQLl
https://goo.gl/7zuXuR


62 Y. Gu et al.

18. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R.: Xmandroid: a new
android evolution to mitigate privilege escalation attacks. Technische Universität
Darmstadt, Technical Report TR-2011-04 (2011)

19. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: Proceedings of the 20th USENIX Security
(2011)

20. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
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Abstract. Nowadays, attackers seek various covert channels to access
the users’ privacy on the mobile devices. Recent research has demon-
strated that the built-in motion sensors can be exploited to monitor the
users’ screen taps and infer what they have typed. This paper presents
several practical and convenient countermeasures against this attack in
terms of the soft keyboard. We find that this attack is sensitive to the
motion noise of the mobile device and the layout variation of the soft
keyboard. We, thus, present two kinds of countermeasures against this
attack by introducing vibration noise in sensor readings and dynamics
in the keyboard layout, respectively. We implement these countermea-
sures on Android platform and recruit 20 volunteers to evaluate these
countermeasures’ effectiveness and usability on both the smartphones
and tablets. The results show that the proposed countermeasures can
effectively reduce the attackers’ keystroke inference accuracy without
significantly hurting the typing efficiency.

Keywords: Keystroke inference attack · Motion sensor · Mobile device ·
Countermeasure · Soft keyboard

1 Introduction

The mobile devices’ popularity makes themselves become one of the key targets
of the attackers. To collect the users’ privacy on the mobile devices, the attackers
seek various covert channels, for example, the on-board sensors. It has been
demonstrated that the cameras [9], gyroscopes [12], microphones [16,19] and
ambient-light sensors [21] all can be used directly to exhibit the users’ sensitive
information.

Recent research [1,2,4,5,8,14,17,23] has demonstrated that the motion sen-
sors can be utilized to record the user’s screen taps so as to further infer what the
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user has typed on the soft keyboard, which is called the motion based keystroke
inference attack (MoBaKIA attack). It is first proposed by Cai et al. in [4] and
they give a detailed presentation about it in [5]. Owusu et al. have proved that
it is possible to infer the 6-character passwords in as few as 4.5 trails with the
accelerometer readings [17]. Meanwhile, it can also get high accuracy on infer-
ring English words on both the smartphone and tablet [14]. Aviv et al. enhance
MoBaKIA attack with the polynomial fitting and signal processing techniques,
making it possible to infer 40% of the patterns and 20% of the PINs within 5
attempts when users are walking [2]. A real Android Trojan application about
MoBaKIA attack, TapLogger [23], has been implemented by Xu et al.

Nowadays, besides the standard soft keyboard, the users can utilize a vari-
ety of novel soft keyboards in the mobile application market, such as Swype1

and Dynamic Keyboard2, to type something on the mobile devices. Despite the
innovative user experience provided, these soft keyboards pay little attention to
defending against the covert channel attacks on the mobile devices, for example,
MoBaKIA attack. They are still vulnerable to MoBaKIA attack, since the oper-
ations on them depend heavily on the entered content, which can be recorded
by the motion sensors.

Prior work [2,14,17,23] has presented some countermeasures on MoBaKIA
attack such as reducing the sampling rate, requiring specific permission on the
motion sensors and so on, but they leave these countermeasures alone without
any further implementation or evaluation. Some researchers attempt to provide
a dynamic, flexible and fine-grained control on the access to the motion sensors
[3,6,7,13,18,22,24]. However, these countermeasures are highly specified, which
are implemented on the specific operating systems and require the alterations
on the Android framework as well as the Linux kernel that can only be done by
ROOT. With rooted Android, the users will encounter some practical problems,
such as invalidating warranty and causing update issues3. As a result, these
countermeasures cannot be widely applied to current Android versions.

To make the countermeasures more practical, a number of researchers seek to
defend against MoBaKIA attack on the application layer in terms of keyboard
[10,11,15,25–27], instead of security framework. Since these keyboards are much
different from the standard keyboard, the users have to spend much longer time
to learn about them and be more concentrative when they type.

In this paper, we take both the countermeasure’s effectiveness and usabil-
ity into account, and propose some practical and convenient countermeasures
against MoBaKIA attack in terms of keyboard.

When we analyze the process of launching MoBaKIA attack, we have the
following two observations:

I. MoBaKIA attack is sensitive to the shaking noise of the mobile device. When
the motion data are used to infer the typed content, the motion noise of the

1 https://play.google.com/store/apps/details?id=com.nuance.swype.trial.
2 https://play.google.com/store/apps/details?id=com.alastairbreeze.dynamickey

board&hl=en.
3 http://betanews.com/2013/10/01/5-reasons-not-to-root-android/.

https://play.google.com/store/apps/details?id=com.nuance.swype.trial
https://play.google.com/store/apps/details?id=com.alastairbreeze.dynamickeyboard&hl=en
https://play.google.com/store/apps/details?id=com.alastairbreeze.dynamickeyboard&hl=en
http://betanews.com/2013/10/01/5-reasons-not-to-root-android/
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mobile device has a great influence on the inference result. For example, the
shaking caused by the user’s movement usually has a greater influence on
the mobile device’s state than just tapping the screen, which makes it more
difficult to infer the typed content [23].

II. MoBaKIA attack relies on the fixed screen area and constant layout of the
soft keyboard. It is the soft keyboard’s fixed position and constant layout
that enable MoBaKIA attack to infer the content that the user has typed
with high accuracy [4]. Therefore, the fixed mappings from the keys to their
screen locations are very critical to MoBaKIA attack. We can try to break
these fixed mappings by dynamically modifying the soft keyboard’s layout.

Our countermeasures against MoBaKIA attack are just based on these two
observations. In this paper, we make the following contributions:

1. Driven by the first observation, we propose our first kind of countermeasures
that we take advantage of the vibrator in the mobile device to add noise to
the motion sensor readings. We make a detailed analysis of the vibration noise
in terms of correlation and frequency spectrum, and we find that it can be
difficult for the attackers to remove this noise.

2. Based on the second observation, we propose the second kind of countermea-
sures, which defends against MoBaKIA attack through dynamically modify-
ing the layout of the keyboard. We make use of the entropy theory to analyze
and select the modification strategies. Meanwhile, we present several effective
strategies to reduce the side effects on the usability.

3. Based on Google’s sample soft keyboard project, we implement these coun-
termeasures and evaluate their effectiveness and usability on both the smart-
phones and tablets. With the experiment conducted among 20 volunteers and
more than 90,000 keystrokes collected, we can see that the proposed coun-
termeasures can effectively reduce the attackers’ keystroke inference accuracy
without significantly affecting the typing efficiency.

As for the soft keyboard, it can be unavoidable to sacrifice some usability to
protect the user’s privacy. We try our best to keep the soft keyboard’s usability
while modifying it. What is more, we do not want to persuade the users to use
our countermeasures all the time. It depends on the specific contexts. When the
users type their account numbers, passwords and other sensitive information, it
could be acceptable for them to sacrifice the usability to protect their private
information. At other time, they can still use the standard keyboard without
any modification.

The rest of this paper is organized as follows. We start our work with the
realization of MoBaKIA attack in Sect. 2. In Sects. 3 and 4, we give a detailed
description of our two kinds of countermeasures against MoBaKIA attack respec-
tively. We present our experiments and evaluations of these countermeasures in
Sect. 5. We show the related work in Sect. 6. In Sect. 7, we conclude the whole
paper.
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2 MoBaKIA Attack Introduction

MoBaKIA attack can be considered as a problem of classification, and it can
be divided into two stages: training stage and inferring stage. Through a well-
designed malicious application (e.g., a mobile game application), the attacker can
collect the labeled motion data sequences, which have been associated with the
accurate touched areas on the mobile device. And then, the attacker builds the
classifiers with these labeled motion data sequences. When the malicious appli-
cation runs in the background, it stealthily accesses the motion data sequences
when the user types something on the mobile device. With these unlabeled
motion data sequences, the attacker can infer the original content that the user
has typed.

To make an evaluation of our countermeasures’ effectiveness, we implement
and launch MoBaKIA attack on Android platform first:

Step 1. Motion sensor selection: We use the accelerometer and orientation
sensor, which are utilized in prior work [2,4,5,14,17,23], to launch this attack.

Step 2. Configuration of motion sensor: To get a detailed presentation
about the touch event, we set the sensor’s receiving rate to the fastest one,
100 Hz.

Step 3. Touch event extraction: We record the exact time when a key is
pressed and released so that we can easily locate the touch event in the
motion data.

Step 4. Feature selection: Following the prior work [14,17], we extract both
time domain and frequency domain features from the motion data.

Step 5. Classifier selection: Different classification algorithms’ effect on
MoBaKIA attack has been compared by Owusu et al. in [17] and they have
claimed that the Random Forest classification algorithm has the best effect,
so in this paper we adopt the Random Forest classification algorithm.

In the following parts, we will give a detailed description about our counter-
measures which are based on the observations presented in Sect. 1. In this paper,
we only focus on the alphabetic soft keyboard. Other soft keyboards can utilize
the same strategies.

3 Countermeasure Based on Observation I

The prior work [23] has pointed out that MoBaKIA attack is sensitive to the
motion noise of the mobile device. Based on this point, we can add some noise
to the motion data before they are delivered to the registered SensorListeners.
There are two measures to add noise. The first one is to modify the real sensor
data by the programs. Raghavan et al. in [18] propose to add Gaussian noise to
the acceleration data when the soft keyboard is activated. However, it requires
the modifications of current operating systems, contradictive to our intention.
The second one is to dynamically change the state of the mobile device. It can
depend on the users to make extra motion when they operate the mobile devices,
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which can be inconvenient for the users. A more convenient way is to utilize the
vibrator in the mobile device. Once a key is pressed, the vibrator is started. In
Fig. 1, we can see that the noise produced by the vibrator can absolutely disturb
the motion sensor readings. In this part, we mainly consider the accelerometer’s
readings, since the vibration noise has the similar influence on the other motion
sensors’ readings, according to our observation.
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Fig. 1. Comparison of the accelerometer readings on the z-axis with the key “U” typed
(The blue lines mark the time when the touch events start and stop.) (Color figure
online)
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Fig. 2. Vibration noise analysis

Before fully utilizing the vibration noise, we start with an investigation to
learn about the features of the vibration noise. In Fig. 2(a), we can see that the
noise is periodic when the vibrator keeps working for some time, except for the
first 0.5 s when the vibrator starts to work. Our extra experiments’ result in
Fig. 2(b) validates our observation. Based on our observation, we can see that
the correlation coefficient of the vibration noise in the first 0.5 s each time follows
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the uniform distribution over [−1, 1], making it hard to filter out this kind of
noise. With 27,307 touch events collected, we obtain the average touching time
which is just 0.48 s, shorter than 0.5 s. Therefore, we can take advantage of the
irregular vibration noise in the first 0.5 s to disturb the original motion data
about the touch events. Moreover, with the spectral analysis, we can see that
the frequency spectrum of the vibration noise in Fig. 3(a) is much similar to that
of the touch events in Fig. 3(b). Therefore, even with the band-pass filter, it is
still difficult to remove the vibration noise from the motion sensor readings.
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Fig. 3. Spectral analysis of the touch event and the vibration noise
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(b) Mi One S

Fig. 4. Comparison of the touch events with different smartphones

Now, we test the vibration noise on different smartphones to gain the further
insights about it. We find that it highly relies on the smartphones, which can
be classified into two categories. To make a brief presentation about them, we
take the representative one from each category in this part. Compared with
the motion data without noise, some of the noise, in Fig. 4(a), can be strong
enough to disturb the original motion data, while some of them, in Fig. 4(b),
cannot. Moreover, with the spectral analysis of the touch events with different
smartphones’ vibration noise in Fig. 5, we can see that some vibration noise’s
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Fig. 5. Spectral analysis of the touch events with different smartphones’ vibration noise
(Mi One S vibration noises frequency is marked by the red dash rectangle.) (Color figure
online)

frequency in Fig. 5(b) is so high that it can be filtered out by the band-pass filter,
when compared with the touch events’ frequency in Fig. 3(a). Therefore, this
countermeasure’s effect heavily depends on the smartphones. In the next section,
we introduce some countermeasures that can be used on the whole smartphones.

4 Countermeasures Based on Observation II

The soft keyboard’s fixed position on the screen and constant layout establish
the fixed relations between letter keys and screen locations, which makes it
possible to infer the typed information with the motion data. Therefore, we
can dynamically adjust the keyboard’s layout to break the fixed relations so as
to increase the difficulty of MoBaKIA attack. Before we describe our detailed
schemes, we first present the principle guiding our design.

Fig. 6. The standard soft keyboard
layout

Fig. 7. Randomize the layout without
improvement

In the standard soft keyboard in Fig. 6, there are a total of 28 keys. We
represent them by k1, k2, · · · , k28. If the user taps on ki, a classifier may falsely
recognize it as a different key based on the eavesdropped motion data. We denote
by Pij the probability that the tapped key ki is falsely recognized as kj . To
break the fixed layout of the keyboard, we aim to find a randomization strategy
to dynamically change the representing letter of each key. Supposing that after
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applying this strategy, the probability that ki represents letter lj is Qkilj . Note
that the value of Pij is determined by the locations of ki and kj , which have
nothing to do with the randomization of the representing letters. Taking the
inference error into consideration, if the classifier claims that the user has tapped
on kj in the last tapping event, the probability that letter ls is entered is

Pkj→ls =
i=28∑

i=1

(Pij × Qkils). (1)

The values of Pkj→ls for s = 1, 2, · · · , 28 can be regarded as the probability
distribution of a stochastic event, which is denoted by Ekj

. Then, the entropy
of this event is

H(Ekj
) = −

s=28∑

s=1

(Pkj→ls × log(Pkj→ls)). (2)

As we know that a greater entropy indicates that the stochastic event is more
difficult to predict. Thus, we can claim that the greater the value of H(Ekj

) is, the
more difficult it is for the attacker to predict which letter has been typed when
the MoBaKIA attack classifier infers that kj has been tapped on. Therefore, we
should find a randomization strategy of the letter keys to maximize H(Ekj

) for
each i for security. Usability has a great influence on the users’ acceptance of
these strategies. Therefore, when we design these strategies, we take full consid-
eration of the usability and try to make the strategies user-friendly by following
users’ typing habits.

4.1 Completely Randomize the Layout

When we want to dynamically adjust the keyboard’s layout, the most direct way
is to completely randomize it. However, when the keyboard’s layout is completely
randomized, it makes it difficult for the user to pick up the target key. Therefore,
in this part, besides the basic strategy to randomize the layout, we come up with
some improved strategies to accelerate the user’s typing speed.

Basic Strategy. According to the entropy theory, H(Ekj
) reaches its maximal

value when Pkj→ls = 1/28 for all s = 1, 2, · · · , 28. We can easily prove that this
condition is satisfied when ∀i, Qkil1 = Qkil2 = · · · = Qkil28 = 1/28, which means
that the letters are completely randomly distributed to the keys. Therefore, our
first countermeasure follows this observation and completely randomizes the lay-
out of the alphabet keyboard as shown in Fig. 7. Note that our randomization
does not include “Shift” and “Del” keys. When this strategy is applied, once a
touched screen area is identified, the attacker can predict nothing but randomly
select one letter to report. The probability that one input letter is inferred cor-
rectly is 3.85% ( 1

26 ). This is the best strategy as for security. Nevertheless, this
solution may make it difficult for the user to find out the target letter, slowing
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(a) Decentralized (b) Centralized

Fig. 8. Randomize the layout with
improvement (keys marked with the white
dash rectangles are the keys with high
probabilities to be pressed.)

Fig. 9. Randomly resize the keys

down the typing speed. In our opinion, it can be acceptable for the users when
they are typing very sensitive information on the screens such as bank accounts
and passwords.

Improved Strategies. To provide a comprehensive and acceptable protection
on the typed content no matter whether it is sensitive or not, we need to work
further on the basic strategy to improve its usability. With the occurrence fre-
quencies of words and the letter sequence entered by the user, we can predict the
next letters with some probability and highlight them so as to speed up typing.
The first improvement that we make is to resize the letter keys according to the
probabilities that they are going to be pressed with. The higher probability the
letter key is going to be pressed, the larger its size will be made. Once the user
types one letter, we follow the basic strategy to randomize the letter keys’ posi-
tions and then resize each key according to the associated probability. It keeps
the basic strategy’s effectiveness. Figure 8(a) shows the soft keyboard when the
letter key “A” is touched. However, the predicted letter keys are decentralized,
which is still hard for the user to find out his target letter key. Therefore, we can
add an additional step to move the predicted letter keys with high probabilities
to the center of the soft keyboard so that the user can pick up his desired letter
key more easily. The initial keyboard’s layout is just as the one of the basic strat-
egy. With more letters typed, the attacker still can learn nothing since he cannot
build a robust classifier, in advance, to infer the associated letters, except for
random guess. Therefore, this improved strategy still keeps the basic strategy’s
effectiveness. Figure 8(b) shows the soft keyboard when the letter key “A” is
touched in this case. To make the countermeasures not only effective in resisting
MoBaKIA attack but also user-friendly, we should consider more information,
such as the keys’ proximate relations.

4.2 Randomly Resize the Keys

Randomly resizing the keys can adjust the soft keyboard’s layout as well as keep
the proximate relations between the keys in some degree in Fig. 9. Therefore, we
treat it as one of the promising strategies, but we should pay attention to its
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side effects such as it can be difficult for the user to touch the key accurately
and it may be impossible to present the whole soft keyboard on the screen. With
the minimum key size considered, we resize the keys. We firstly randomize the
keys’ width in each row and guarantee that they cover the whole space in the
horizontal direction. And then, we modify the keys’ height in each row. When we
modify the keys’ width and height, we also adjust the keys’ positions to avoid the
block between the keys. Based on the remained space in the vertical direction,
we randomly modify all the keys’ y-coordinate values in the first row so that all
the keys are randomly shifted in the vertical direction.

4.3 Heuristically Adjust the Layout

The neglect of the users’ habits formed on the standard soft keyboard leads to
the bad user experience. To guarantee the usability of the soft keyboard, we
focus our attention on the users’ habits. In Sect. 4.2, we randomly resize each
key. It keeps the proximate relations between the keys in some degree. However,
when the user tries to type the key with the small size, he may accidentally type
the key nearby instead of it. It is just because of the key’s small size. In this part,
we still adjust the keyboard’s layout, but we adjust the keys’ positions in the
local areas around their original positions, following some specific regulations.
Based on the entropy theory discussed in Sect. 4, it is easy to see that the larger
the key’s adjustment area is, the larger the key’s entropy value is. Driven by this
observation, we come up with the following strategies:

H1. Shift each column within a random distance. We make uniform modification
of the whole letter keys’ height so that the original 3 rows in Fig. 6 are
divided into 6 rows. In this way, each column can be shifted within a random
distance in the vertical direction in Fig. 10(a).

H2. Randomize the row order. We just randomly resort the three rows each time
a key is pressed just as shown in Fig. 10(b).

H3. Randomize the keys within a local area. We dynamically take the four keys
nearby as a group, and randomly rearrange them among these four posi-
tions, as shown in Fig. 10(c).

H4. Randomly shift the keys in each row. We randomly select a constant for
each row and all the keys in the same row are moved with the randomly
selected constant in a circle, just as shown in Fig. 10(d).

We can see that there can be various heuristic strategies to adjust the soft
keyboard’s layout and we just enumerate some of them. However, we want to find
a representative one among them. Now we give analysis about the effectiveness
of the above schemes based on the entropy theory that we described earlier.

We first divide the keyboard area into a grid of 3×10 cells as shown in Fig. 6.
Each cell represents a key (i.e., the minimal recognizable area that we consider
in this analysis). For simplicity, we think that the keystroke inference accuracy
reaches 100%, i.e., Pii = 1 and Pij = 0 (i �= j). We take the key kexample

highlighted in Fig. 6 as an example to compare the effectiveness of different
schemes.
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(a) H1 (b) H2 (c) H3 (d) H4

Fig. 10. Heuristic strategies ((c) is a moment that the keys marked within the white
dash rectangles are randomly rearranged. The keys marked with the white dash rec-
tangles in (d) are the first keys in each row in the standard soft keyboard.)

We first consider the strategy H1 shown in Fig. 10(a). In this scheme, if
kexample is considered to be tapped on, the input letter has three possibilities:
“Y”, “H”, and “V”. We can derive that QkexampleY = 1/3, QkexampleH = 1/3
and QkexampleV = 1/3. Therefore, according to Eq. 2, the entropy value is
H(kexample) = −3 × 1

3 log
1
3 = 1.58. Similarly, we can compute H(kexample) with

the other heuristic strategies H2–H4, which are equal to 1.92, 2.50, and 3.17,
respectively. We can see that H4 have the largest entropy value, so we choose
H4 as the representative of the heuristic strategies and make further evaluation
on it in the following section.

5 Experiment and Evaluation

From the aforementioned countermeasures, we select the representative ones
and implement them on Android platform to evaluate their effectiveness and
usability. For simplicity, we index all these countermeasures as Table 1. We use
BASIC, the standard soft keyboard without any modification, as a baseline to
make comparison with other countermeasures.

Table 1. Indexed countermeasures

Index Countermeasure

BASIC The standard soft keyboard without modification

C1 Add noise with the vibrator

C2 Randomize the layout without improvement

C3 Randomize the layout with improvement decentralized

C4 Randomize the layout with improvement centralized

C5 Randomly resize the keys

C6 Randomly shift the keys in each row

1. Participants: We recruit 20 volunteers (10 males, 10 females), whose average
age is 24.50 years old, to make evaluations of all these countermeasures on
both the smartphones and tablets.
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2. Test Devices: We conduct our experiments on 5 different smartphones
(Motorola XT910, Mi One S, Mi 2, Samsung Galaxy SII and Samsung Galaxy
S4 ) and 2 different tablets (Samsung GT-N8000 and Huawei MediaPad 10 ).

3. Further Illustrations: During the experiments, the participants sit when
they are typing and all the devices are kept in portrait mode. We do not have
any further restrictions on the participants’ typing manners so that they can
follow their own habits to keep the mobile device and type the content on it.

5.1 Effectiveness

Settings. As our purpose in this paper is to resist MoBaKIA attack, we evaluate
the countermeasures’ effectiveness at first. Prior work [1,2,4,14,17,23] focuses
on the keystroke inference accuracy, since it can directly affect the target key’s
rank among the candidates, which has a significant influence on the number of
attempts needed to correctly infer the whole content. Therefore, we also focus
on the keystroke inference accuracy when we evaluate these countermeasures’
effectiveness.

We require the participants to touch the keys one by one (“A” → “B” →
“C” → ... → “Z”) in each round and go on for about 10 rounds with each
countermeasure. With the captured motion data, we build the personal keystroke
inference models for each participant and make K-fold cross validations (K=10),
which are used in prior work [1,2,5,14,17], to obtain the inference accuracy on
each key with each countermeasure.

We do not take C3 and C4 into account in this subsection, as they are just
made to improve the usability of C2, which does not work in this experiment.
Just as we have talked in Sect. 3, C1 ’s effect highly depends on the mobile
devices, in this part, we only evaluate it on the mobile devices whose vibration
noise can be similar to that in Figs. 4(a) and 5(a).

Effectiveness on Smartphone. We firstly conduct the effectiveness evaluation
on the smartphones. Before we begin to evaluate these countermeasures, we
deploy BASIC at first to show MoBaKIA attack’s keystroke inference accuracy
without any countermeasures. Following the steps presented in Sect. 2, we obtain
the result in Fig. 11(a), similar to the result of Owusu et al. in [17]. We can see
that the inference accuracy of the letter keys varies, which is mainly because
of the keys’ positions in the soft keyboard. The average inference accuracy is
40.84%.

Compared with the average keystroke inference accuracy obtained without
any countermeasures, all the average keystroke inference accuracies are reduced
in Fig. 12 when we apply our countermeasures. We can see that C1 does have
some influence on the keystroke inference accuracy. However, since we do not
have any restrictions on the participants’ typing manners, C1 ’s effect varies
among the participants, which leads to the inconspicuous reducing on the average
keystroke inference accuracy. Although C1 ’s effect is not very significant, under
some conditions it can be still effective to defend against MoBaKIA attack as it
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Fig. 11. Keystroke inference accuracy of standard soft keyboard
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makes it hard to detect when a type starts and stops when the user types some
information continually.

Among these countermeasures, C2 is the most effective one to defend against
MoBaKIA attack, as it reduces the average inference accuracy to about 3.85%,
the inference accuracy of random guess. Just as we have talked above, it may cost
the user a much longer time to pick up the target letter key. If the content that is
going to be typed is sensitive, it can be acceptable for the user in consideration
of security. The second candidate is C6. Compared with C2, it preserves some
proximate relations on the standard soft keyboard, but it may not be as effective
as the first one, since it just reduces the accuracy to 10.89%. We can see that C5
does have some influence on the keystroke inference accuracy, but its influence
is not very significant. It is mainly because that when we dynamically modify
the keys’ size, the majority of the keys’ position do not change dramatically.
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Therefore, each letter key is still located in a fixed area, compared with C6 in
which each letter key can appear at 7 possible areas at least.

Effectiveness on Tablet. Besides the smartphones, we also make an evaluation
on the tablets. The process on the tablets is the same as that on the smartphones.
With BASIC, we obtain the original keystroke inference accuracy as shown in
Fig. 11(b). The average value is 44.82%. The evaluation result of the proposed
countermeasures on the tablets is also presented in Fig. 12, from which the similar
result can be achieved.

Comparing the evaluation results on the smartphones and tablets, we can
see that the average keystroke inference accuracy of BASIC on the tablets is
higher than that on the smartphones, which is mainly because that the key’s
size on the tablets is larger than that on the smartphones, making it easier to
infer the target key, just as Owusu et al. state in [17]. It is also the keyboard’s
larger display area on the tablets that makes C2, C5 and C6 more effective on
the tablets, as the key’s variation that can be made is much larger on the tablets
than on the smartphones.

5.2 Usability

When we make some modifications of the soft keyboard’s layout, we need to
take the usability into account. In this paper, we pay attention to the time cost
to type. In Fig. 13, we can see that C1 does not introduce extra time when
compared with BASIC. Therefore, in this part, we do not take C1 into account
and just list time statistics on BASIC and the countermeasures that modify the
keyboard’s layout.

Table 2. Application scenarios

Index Scenario

S1 Entering account numbers and passwords

S2 Writing SMSes and making phone calls

S3 On-line chatting through the mobile social network Apps

S4 Posting and replying on the social networks

S5 Sending E-mails

S6 Searching through the Internet

We start our evaluation with a survey, which fully considers the application
scenarios in Table 2. It is about the keyboard’s popular application scenarios as
well as the sensitive information that the participants consider. There are 132
participants (96 males and 36 females, the average age of which is 22.27 years
old) taking part in this investigation. The obtained result is presented in Fig. 14.
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Fig. 14. Voting results about the keyboard’s application scenarios in Table 2
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In Fig. 2(a), we can see that the top 3 popular scenarios are S3, S2 and S1.
Under these scenarios, it is common that the content cannot be too long to type
at one time. In this way, we design 10 sentences for testing, the average length
of which is 11 words (about 56 letters per sentence, except for the blanks).
20 participants use the devices that we provide for testing. Considering their
familiarity with the keyboard as well as the content to be typed, which can have
some influence on the time cost to type, we demand them to repeatedly type
the sentence for 6 times with each countermeasure, and then we calculate and
compare the average typing time. We take into account the time that they spend
on correcting the mistakes that they accidentally made. The detailed result is
presented in Fig. 15. C2 is very effective to defend against MoBaKIA attack, but
it costs the longest time to enter which is about 3.63X times longer than that
cost by BASIC in Fig. 15 on smartphones, so it can be applied only when users
are entering some sensitive information such as account numbers and passwords.
With the improvement on usability, in Fig. 15, C4 can reduce the time to be only
about 2.21X times of that with BASIC. In this way, no matter what the users
enter, they can choose C4 that not only can resist MoBaKIA attack but also
does not cost too much time. However, if users think that the content to be
entered is long but not so sensitive, they can also select other secure strategies
instead, like C5.
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Fig. 17. Voting result about the keyboards over different application scenarios

What is more, we can see that the error rate that the participants tap the
wrong keys by mistake varies over the keyboards in Fig. 16. The error rates of
C2 and C3 are lower than that of BASIC, on both the smartphones and tablets.
It is mainly because that the participants need to spend more time searching the
target keys with C2 and C3 than with BASIC. C5 has the higher error rate than
BASIC, due to some keys’ small size that cannot be accurately tapped by the
users. On the smartphones, C4 has the highest error rate, since the centralized
target keys as well as the small key size lead to the users typing the wrong letters
frequently.

We conduct a further survey on the countermeasures’ adoption in different
scenarios with the 132 participants. However, in this part, only 107 participants’
feedbacks are analyzed since there are 25 participants who do not take MoBaKIA
attack seriously and persist in using current keyboard on the whole scenarios.
The obtained result is presented in Fig. 17. Comparing it with Fig. 14, we can
see that the more sensitive the content to enter is, the more effective secure
strategy they will choose. Under S1, 88.79% participants tend to adopt some
countermeasures to defend against MoBaKIA attack and 55.14% participants
directly select C2 to protect their sensitive information at the cost of usability.
Moreover, over the whole application scenarios, at least 40% participants tend
to adopt some defenses against MoBaKIA attack. In fact, these countermeasures
can be set to switch automatically based on the importance of the content to
be typed and so is the refreshing rate to modify the soft keyboard’s layout,
which can further improve our countermeasures’ usability as well as keep the
effectiveness in defending against MoBaKIA attack.

6 Related Work

The keyboard based countermeasure can be widely applied to current Android
versions, so it has attracted many researchers’ attention. Making use of the drag-
ging, dropping and tapping action, Kwon et al. propose Drag-and-Type [10], to
improve the typing accuracy. To defend against MoBaKIA attack, they propose
to randomize the keyboard layout based on their basic method. Furthermore,
they propose a rolling image visual keyboard, RIK [15], to fully utilize dragging
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and dropping actions to enter, which can effectively counter with MoBaKIA
attack. CoverPad [25] introduces variants that are randomly generated and only
can be seen by the users when they enter the sensitive information to build
a random mapping between the entering keys and the target keys so as to
defend against MoBaKIA attack. PassWindow [26] guarantees the security of
PIN with a moving grid-configured window over a virtual keypad. To defend
against MoBaKIA attack, the rear camera is utilized to imitate the touch events
instead of touching on the screen. This kind of keyboards is much different from
the standard keyboard, so the users need to spend much longer time to learn
about them and be more concentrative when they type.

Yue et al. in [27] propose Privacy Enhancing Keyboard (PEK), randomly
shuffling the keys and introducing the Brownian motion, respectively. Chu
et al. propose para-randomized keyboard with MoBaKIA attack considered when
designing TrustUI [11]. While both PEK and para-randomized keyboard can be
utilized to defend against MoBaKIA attack, the researchers do not pay much
attention to the further improvement on usability.

The most similar work is what Song et al. do in [20]. They propose two
kinds of defenses: reducing the accuracy of accelerometer readings with a ker-
nel modification that sets their square sum to a constant value, and completely
randomizing keyboard layout. Much different from their work, we make a deep
investigation on the vibrator’s effect on defending against MoBaKIA attack.
What is more, when we randomize the keyboard layout, we apply the entropy
theory to guide our design and analyze the proposed countermeasures’ effective-
ness. Meanwhile, we try our best to improve the countermeasures’ usability.

7 Conclusion

In this paper, we are engaged in the practical countermeasures against MoBaKIA
attack. In our opinion, it is the motion data without noise as well as the fixed
screen area and constant layout of soft keyboard that provide the opportunity to
launch this attack, based on which, we propose our countermeasures. We evaluate
them on Android platform in terms of effectiveness and usability. The result
shows that while all the countermeasures have some influence on the keystroke
inference accuracy, some of them can reduce the keystroke inference accuracy of
MoBaKIA attack without significantly hurting the typing efficiency.
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Abstract. Finding a vacant parking space in a congested area, such
as shopping mall, airport, etc., is always time-consuming and frustrat-
ing for drivers. Real-time parking information can avoid vehicles being
cruising on the roads. However, when the drivers are acquiring park
ing information, their privacy is inevitable to be disclosed. In this paper,
to minimize drivers’ hassle and preserve drivers’ privacy, we propose
CPARN, a Cloud-based Privacy-preserving pARking Navigation system
through vehicular communications, in which a cloud server guides drivers
to vacant parking spaces close to their desired destinations without
exposing the privacy of drivers, including drivers’ identities, references
and routes. Specifically, CPARN allows drivers to query vacant park-
ing spaces in an anonymous manner to a cloud server that maintains
the parking information, and retrieve the protected navigation responses
from the roadside units when the vehicles are passing through. CPARN
has the advantage that it is unnecessary for a vehicle to keep connected
with the queried roadside unit to ensure the retrievability of the naviga-
tion result, such that the navigation retrieving probability can be signif-
icantly improved. Performance evaluation through extensive simulations
demonstrates the efficiency and practicality of CPARN.

Keywords: Vehicular ad hoc networks (VANETs) · Parking naviga-
tion · Privacy preservation · Vehicular communications

1 Introduction

With the large number of vehicles in metropolises, parking in a congested
area, e.g., downtown, shopping mall, particularly in peak hours, has become
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a conflicting and confusing issue for a number of drivers [1]. It is common for
vehicles to cruise among parking lots or circle within a large parking lot for an
accessible parking spot. In crowded area, such vehicles cause an average 30%
of the traffic on the road [2]. This situation becomes worse in some developing
countries, such as China and India, where the number of the parking facilities
is not sufficient for private vehicles. The extra traffic leads to significant social
problems, such as traffic congestions, fuel waste, air pollution and vehicle acci-
dents. Although traditional navigation systems, e.g., Google map and on-board
navigation systems, can assist to locate parking garages, drivers may still worry
about whether there is available parking space when they arrive, specifically
in peak hours and congested area. Parking guidance information systems [3,4]
can broadcast the availability of parking spaces at some specific spots or on the
Internet. However, the former method may increase the traffic pressure around
these spots, and the latter approach is unrecommended since it is dangerous for
the drivers to use mobile devices when driving.

Recently, vehicular ad hoc networks (VANETs) become increasingly pop-
ular in both industry and academia [5,6]. In VANET, each vehicle, equipped
with an onboard unit (OBU) device, is allowed to communicate with other vehi-
cles nearby, e.g., vehicle-to-vehicle (V2V) communications, and with roadside
units (RSUs), i.e., vehicle-to-roadside (V2R) communications [7,8]. VANET-
based parking navigation systems can provide real-time parking navigation ser-
vices for drivers on roads. By means of the widely deployed vehicular communi-
cation infrastructure, the vehicles can use OBUs to acquire the real-time parking
information. Specifically, a vehicle can query the available parking space near
the destination through the nearby RSUs and obtain the up-to-date informa-
tion to find the accessible parking lot. Such a parking navigation system has the
advantage that the driver can conveniently enjoy real-time parking navigation
services and reach available parking space within short time and low fuel cost.

However, security and privacy issues are preliminary concerns for drivers in
VANETs, since the infrastructure is confronted with various malicious attacks.
If these issues cannot be well addressed, it is impossible for drivers to adopt the
parking navigation services. To prevent attackers from submitting invalid queries
to the RSUs, registration is necessary for the navigation services. The drivers must
be authenticated to make sure that they are the registers, such that it is feasible
for detecting a fabricated vehicle, which pretends a legal vehicle to enjoy free ser-
vices. Besides, to ensure the trustworthiness of the interactions, all messages sent
by vehicles and RSUs must be signed to guarantee that they are not polluted or
forged by the attackers. Confidentiality of queries and responses is another secu-
rity issue for VANET-based parking navigation systems. A driver does not want
other drivers nearby to learn the destination by eavesdropping on the queries. Fur-
thermore, the navigation response should not be shared with all vehicles nearby
if this service is charged; otherwise, the vehicles can enjoy free parking navigation
services, in case they have the same destination with the querying vehicle.

Location privacy is another concern for drivers, and there have been numer-
ous controversies due to the track exposure [9,10]. For example, some navigation
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applications, offered by Google and Apple, collect drivers’ locations and desti-
nations [11], which may reveal sensitive information about the drivers’ personal
lives. In VANET-based parking navigation systems, the OBUs on vehicles fre-
quently communicate with RSUs to query and receive the parking information.
The vehicle’s location is inevitable to be exposed, which is tightly related to
the driver however. An attacker can learn the routes of vehicles and predict the
location of drivers at a specific time, and even identify the references, health con-
dition, social and political affiliations based on the visiting frequency of specific
places. Moreover, the disclosure of vehicles’ location may bring significant conve-
nience for car thieves, since the thieves may trace the vehicles several days before
action and prefer to steal cars parking in quiet places [12]. Therefore, location
privacy is a must to be preserved for the wide acceptance of navigation service to
the public. One common approach of location privacy leakage-resilient is to keep
the drivers anonymous using pseudonyms or anonymous credentials. As a result,
no attacker can identify the identities of drivers or link navigation messages to
reconstruct the route of a specific driver. Nevertheless, once the drivers’ identities
are preserved, it is impossible to return the navigation responses to the target
vehicles. To address the contradiction between identity privacy preservation and
navigation responses retrievability, Chim et al. [13] require the vehicle to keep
the connection alive with the RSU after sending the navigation query until it
successfully obtains the reply, which is quite challenging in reality, particularly,
when the vehicle moves at a pretty high speed. As a result, the successful deliv-
ery probability of navigation responses is limited. In addition, full anonymity is
not perfect because a vehicle may launch a denial-of-service attack by sending a
large number of queries to the RSUs in a short period of time. The misbehaving
drivers should be traced when necessary.

In this paper, we propose a Cloud-based Privacy-preserving pARking Nav-
igation (CPARN) system by integrating vehicular communications and a cloud
server, which provides navigation service to assist drivers to find available park-
ing spots efficiently. In specific, a driver can query a vacant parking spot by
submitting his/her current location and desired destination to the cloud server.
Then, the server automatically searches for an available parking lot close to the
destination and vacant parking spots in the recommended lot using the real-time
parking information outsourced by parking lots. Finally, the server returns the
navigation response to the driver through RSUs on the way to his/her destina-
tion. This is reasonable because most of drivers use GPS, so that the driving
direction to a destination from an area can be predicted. As a result, the RSUs
that the driver will pass through can also be determined, and thereby receive the
navigation response successfully. The contributions of this paper are four-fold:

– We propose CPARN based on VANETs to achieve parking navigation for
drivers. With the parking navigation offered by the cloud server, a vehicle
can quickly find a vacant parking space close to the desired destination. The
gasoline and the time wasted on searching for parking spaces can be reduced.

– CPARN achieves conditional privacy preservation for drivers by utiliz-
ing anonymous credentials. Specifically, an authenticated vehicle sends the
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parking navigation query to the cloud server without exposing the real iden-
tity. Meanwhile, a trusted authority can trace the identity of a misbehaving
vehicle.

– We propose a novel approach to improve navigation retrieving probability in
anonymous vehicular communications. We do not require the vehicle to com-
municate with the same RSU in the query and response procedures. Instead,
the driver can send parking navigation query to the cloud server through a
nearby RSU, and search and retrieve the response from the RSUs built on
the driving routes. In this case, the communication delay is tolerable, and the
probability that vehicles can retrieve the navigation responses successfully
can be dramatically improved. Note that the new method is still suitable for
the situation where the response of the query is returned rapidly, and thus,
the vehicle can retrieve the navigation response from the queried RSU.

– We discuss the security features and evaluate the performance of CPARN. The
extensive simulations demonstrate that the system is efficient and practical.

The remainder of this paper is organized as follows. In Sect. 2, we formal-
ize system model, threat model and security goals. In Sect. 3, we propose the
CPARN system, followed by security discussion in Sect. 4, and the performance
evaluation in Sect. 5, respectively. We review the related work in Sect. 6 and
conclude our paper in Sect. 7.

2 Problem Statement

In this section, we state the problem by formalizing the system and threat mod-
els, and identify the security goals.

2.1 System Model

We consider the system model of the parking navigation service, which consists
of a trusted authority (TA), a cloud, parking lots, a large number of vehicles and
some RSUs.

– TA. The TA is a trusted party, whose responsibility is to generate the public
key certificates for all the entities in the system, and to trace the identities
of vehicles when necessary.

– Cloud. The cloud, which consists of a server and connected RSUs, can provide
two types of services. One service is offering the real-time parking data storage
for the parking lots in a specific area; the other is providing the parking
navigation for drivers by using the maintaining real-time parking data. For
example, the red points in Fig. 1(a) are parking lots around CN tower, and
the cloud stores the parking data for these lots and navigates for the drivers
whose destination is CN tower.

– Parking Lots. Parking lots offer parking spots to vehicles. To manage the
parking spaces and charge the parking fee, parking lots record the real-time
occupancy of each parking space, and outsource their data to the cloud to
reduce the cost of data management and maintenance.
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– Vehicles. Each vehicle is equipped with an irreplaceable and temper-proof
OBU, which provides the capacity to communicate with the nearby vehicles
and the RSUs. OBUs can also execute some simple computations and have a
small amount of read-only memory.

– RSUs. RSUs are deployed on the road, which can communicate with each
other and with vehicles driving through. They can also interact with the
cloud and the TA via the Internet. Each RSU is resource in rich, indicating
that it has enough storage space to maintain the navigation responses and
computational capacity to perform the cryptographic operations.

Figure 1(b) shows the system model of parking navigation service. Firstly,
the cloud server, vehicles and RSUs generate the public-secret key pairs and
register the public key certificates at TA, respectively. The cloud offers parking
data storage service to parking lots and the parking lots outsource their real-
time parking data to the cloud through the Internet. As there is no security
and privacy issues for the parking lots, the data storage service is beyond our
work. To make fully use of the real-time parking data, the cloud provides parking
navigation for drivers. To participate the parking navigation service, each vehicle
needs to register at the cloud server and obtain an anonymous credential to
access the service. The parking navigation consists of two phases: querying and
retrieving. In the querying phase, a vehicle firstly generates and sends a parking
query to the nearby RSU (Step 1). Upon receiving a query, the RSU forwards it
to the cloud server (Step 2). The cloud server recommends an accessible parking
lot to the vehicle according to the real-time parking information and the desired
destination of the vehicle. In the retrieving phase, the cloud server firstly sends
the navigation response to the RSUs located on the roads that the querying
vehicle may drive through (Step 1). The RSUs store the navigation responses
on a navigation table temporarily after receiving the messages from the cloud
server. When the vehicle enters the coverage area of an RSU, it sends a retrieving
query to the RSU (Step 2). Upon receiving the retrieving query from a vehicle,
the RSU searches the navigation response and returns it to the vehicle if the
RSU is maintaining the response; otherwise, the RSU returns failure and the
vehicle tries to retrieve the response from the next RSU (Step 3).

2.2 Threat Models

The threats may be from internal and external attackers. The external attackers
may compromise the cloud server and RSUs to steal sensitive information about
drivers. The eavesdroppers can listen on the communication channels and cap-
ture the transmitting messages to analyze driver’s references. Internal threats
come from the curious employees in cloud or drivers who want to learn more
information about other drivers. Therefore, the whole infrastructure is con-
fronted with a variety of security threats and no entity can be fully-trusted
except the TA. Although the cloud server has to follow the regulations and
agreements that are agreed with the vehicles, it is also interested in drivers’ pri-
vacy and eager to mine private knowledge from the parking navigation queries.
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(a) Parking around CN Tower, Toronto (b) System Model

Fig. 1. System model of CPARN

The vehicles may be compromised and launch some attacks to the cloud server,
e.g., denial-of-service attack, impersonation attack and replay attack. Besides,
they are also curious about the driving routes of the nearby drivers. The RSUs
may also be compromised and the attackers can obtain the navigation messages
maintained on storage devices. The RSUs are interested in the drivers’ privacy
and try to learn information by analyzing the forwarding data, e.g., navigation
queries and navigation responses.

2.3 Security Goals

We aim to construct a system, which can provide real-time parking navigation,
to achieve the following security goals:

– Service Authentication. A vehicle should be authenticated before submitting
the parking navigation query, such that no attacker can impersonate a regis-
tered vehicle to enjoy free navigation service if the service is charged.

– Message Authentication and Integrity. The cloud server, the RSUs and the
vehicles should ensure that the sent messages, including the navigation queries
and responses, would not be polluted or forged by attackers. Thus, the
receivers can believe the genuine of the messages.

– Identity Privacy Preservation. The identities of the drivers should be well-
protected against the cloud server, the RSUs and other vehicles during the
parking navigation procedure. Moreover, given two navigation queries, neither
the cloud server nor the RSUs can identify whether these queries are sent by
the same vehicle.

– Confidentiality. The contents of a navigation query and the corresponding
response should be confidential to the vehicles nearby, the RSUs and the
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eavesdroppers. Even the compromised RSUs cannot learn any knowledge
about the navigation queries and responses.

– Traceability. The TA can trace the real identities of the vehicles who submit
the parking navigation queries to the cloud server. Furthermore, to prevent
the denial-of-service attack, the identity of the vehicle who submits more than
two different parking navigation queries in a time period, e.g., one second,
can be recovered by the cloud server.

3 The CPARN System

In this section, we demonstrate the preliminaries and describe CPARN in detail.

3.1 Preliminaries

If S is a non-empty set, s ∈R S denotes s is randomly chosen from S.
(G1,G2,GT ) is a set of cyclic groups of the same prime order p. ê : G1×G2 → GT

is type 3 bilinear pairing [14], in which G1 �= G2 and there is no efficiently com-
putable homomorphism between G1 and G2 in either direction.

PS Signature. The PS signature is proposed by Pointcheval and Sanders [14],
which has the same features as the CL signature [15], but is more efficient than
the CL signature due to the advantage of using type 3 pairing. The existential
unforgeability of the PS signature under chosen message attacks can be reduced
to the modified LRSW Assumption 2 [14].

Let ĝ be a generator of G2. The secret key of the signer is (x, y1, · · · , yr) ∈R

Z
r+1
p and the public key is ( ̂X, ̂Y1, · · · , ̂Yr) ← (ĝx, ĝy1 , · · · , ĝyr ). A signature on

multi-block messages (m1, · · · ,mr) ∈ Z
r
p is σ = (σ1, σ2) = (h, hx+

∑r
j=1 yjmj ),

where h is randomly chosen from G1 \ 1G1 . The signature σ can be verified
publicly as σ1 �= G1 \ 1G1 and ê(σ1, ̂X

∏r
j=1

̂Y
mj

j ) = ê(σ2, ĝ).

3.2 The CPARN System

Our proposed CPARN consists of five phases: system setup, vehicle registration,
navigation querying, response retrieving and vehicle tracing. The details of the
CPARN are described as follows.

System Setup. Let G1, G2 and GT be three cyclic groups of the same large
prime order p. Suppose that G1, G2 and GT are equipped with type 3 pairing,
that is, ê : G1×G2 → GT . g is a generator of the group G1 with g �= 1G1 , and ĝ, ĝ0
are two generators of the group G2 with ĝ �= ĝ0 �= 1G2 . Define a collision-resistant
hash function H : {0, 1}∗ → Zp. C = AESENC(K,M) and M = AESDES(K, C)
denote the encryption and decryption algorithms of AES scheme, respectively.
The TA chooses (x, x1) ∈R Z

2
p and computes ̂X = ĝx, ̂X1 = ĝx1 . The secret key

of the TA is (x, x1) and the public key is (g, ĝ, ̂X, ̂X1).
The cloud server randomly chooses (y, y1, y2, y3) ∈R Z

4
p and computes
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(Y, Y1, Y2, Y3, ̂Y , ̂Y1, ̂Y2, ̂Y3) ← (gy, gy1 , gy2 , gy3 , ĝy, ĝy1 , ĝy2 , ĝy3).

The secret key of the cloud server is (y, y1, y2, y3, Y ), and the public key is
(Y1, Y2, Y3, ̂Y , ̂Y1, ̂Y2, ̂Y3).

Each RSU has a unique number RID associated with its location. The RSU
chooses a random number z ∈R Zp as its secret key and computes Z = gz

as its public key. In addition, the RSU defines three Bloom filters. BFK is a
(m,n, k,H)-Bloom filter, CBFK is a (m,n, k,H, λ)-counting Bloom filter and
V BFK is a variant of the Bloom filter. In these Bloom filters, k hash functions
hl ∈ H are defined as hl : G1 → Zm, for 1 ≤ l ≤ k. The difference between
V BFK and the traditional Bloom filter is that instead of using an array of
bits to represent the set membership in Bloom filter, V BFK uses an array of
γ-bit strings to indicate the storage addresses of the navigation messages. Every
storage address S is divided into k shares of γ-bit, S1, S2, · · · , Sk, using the
XOR-based secret sharing scheme, and each share is stored on one index in
V BFK according to the hash values of the input. Initially, the array in BFK ,
the counters in CBFK and the strings in V BFK are set to be zero.

Each vehicle has a unique identity V ID. To register on the TA, a vehicle
chooses two random (v, v′) ∈R Z

2
p and computes

(V, ̂V , ̂V ′, ̂V0) ← (gv, ̂Xv
1

̂Xv′
, ĝv′

, ̂Xv
1 ).

It sends (V ID, V, ̂V , ̂V ′) to the TA, along with the zero-knowledge proof:

PK1 = {(v, v′) : V = gv ∧ ̂V = ̂Xv
1

̂Xv′ ∧ ̂V ′ = ĝv′}.

The TA firstly computes ̂V1 = ̂V /̂V ′x. Then, the TA verifies the validity of the
proof PK1 and checks the equation ê(V, ̂X1) = ê(g, ̂V1). If either is invalid, the
TA returns failure and aborts. Otherwise, the TA generates a random w ∈R Zp

to calculate
(B1, B2, B3) ← (gw, (gxV x1)w, ê(B1, ̂X1)).

(B1, B2) is a valid PS signature on v and B3 is a pre-computed item that allows
the vehicle to avoid the bilinear pairing computation during the signing proce-
dure. Finally, the TA returns (V ID,B1, B2, B3) to the vehicle through secure
channel and stores (V ID, V, ̂V1) in a secret database. Upon getting the response,
the vehicle sets its secret key as (v, ̂V0, B1, B2) and the corresponding public key
as (V,B3). The key pair is stored in the read-only memory of the OBU.

Vehicle Registration. To enjoy the parking navigation service, a vehicle
should register on the cloud server to obtain an anonymous credential. The
vehicle with an identity V ID selects two random (t, s) ∈R Z

2
p to compute

C = gtY V ID
1 Y s

2 Y v
3 , and sends (V ID,C, V ) to the cloud server, along with the

zero-knowledge proof:

PK2 = {(t, s, v) : C = gtY V ID
1 Y s

2 Y v
3 ∧ V = gv}.
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When the cloud server receives the message, it checks the validity of PK2. If
it is invalid, the cloud server returns failure and aborts; otherwise, it chooses a
random u ∈R Zp to compute

(A1, A2) ← (gu, (Y C)u).

Then, the cloud server returns (A1, A2) to the vehicle through secure channel
and stores (V ID,C, V,A1, A2) in its database. The vehicle checks

ê(A1, ̂Y )ê(A1, ĝ
t
̂Y V ID
1

̂Y s
2

̂Y v
3 ) ?= ê(A2, ĝ).

If yes, the vehicle calculates A3 = A2/A
t
1, and obtains the anonymous credential

AC = (A1, A3). Finally, it stores (AC, s) in the read-only memory of the OBU.

Navigation Querying. When a vehicle with the identity V ID and the anony-
mous credential AC is on the road, the driver submits a parking navigation
query to the cloud server to find a vacant parking space close to the desired
destination. The vehicle generates the basic query information, including the
destination DEST , current location CL, acceptable price range AP , current
time t1, expected arrival time t2, expiration time t3, etc., and performs the fol-
lowing steps to generate a parking navigation query:

– Pick a random κ ∈R Zp to compute a temporary session key U = ĝκ and
calculate L = H(DEST,CL, AP, t1, t2, t3, N) and T = ĝvt1 ĝLs

0 , where N is a
random number chosen from Zp.

– Choose two random (α, β) ∈R Z
2
p to compute AC ′ = (A′

1, A
′
3) = (Aα

1 , A3A
β
1 )α

and generate a zero-knowledge proof as

SPK
⎧

⎨

⎩

(V ID, v, s, κ, β) : ê(A′
3, ĝ) = ê(A′

1, ̂Y )ê(A′
1, ̂Y

V ID
1

̂Y s
2
̂Y v
3 )(̂A′

1, ĝ)β

∧U = gκ

∧ T = ĝvt1 ĝLs
0

⎫

⎬

⎭

(N).

– Encrypt (DEST,CL,AP, t2, t3) by selecting two random r ∈R Zp and r1 ∈
G1, and computing c1 = gr, c2 = r1Y

r
1 , and c3 = AESENC(r1,DEST ||

CL||AP ||t2||t3).
– Randomise (B1, B2, B3) by selecting two random (r′, r′′) ∈R Z

2
p and comput-

ing
( ˜B1, ˜B2, ˜B3) ← (Br′

1 , Br′
2 , Br′r′′

3 ),

calculate c = H( ˜B1, ˜B2, ˜B3, N, t1, U, T,AC ′,SPK, c1, c2, c3), τ = r′′ +cv, and
output ( ˜B1, ˜B2, c, τ) as a signature.

Finally, the vehicle stores (U, κ) on the OBU and sends the query Q =
(N, t1, U, T,AC ′,SPK, c1, c2, c3, ˜B1, ˜B2, c, τ) to the nearby RSU, if it is in the
coverage area of an RSU. Otherwise, the vehicle can send Q to the nearby vehi-
cles, and they deliver the query Q to RSUs via delay-tolerant V2V communica-
tions. When the vehicle enters the coverage area of an RSU, it sends Q to the
RSU again.
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When an RSU with RID receives a query Q from a vehicle, it
verifies the validity of the signature ( ˜B1, ˜B2, c, τ) by computing B =
ê( ˜B1, ̂Xc)ê( ˜B2, ĝ

−c) ê( ˜B1, ̂Xτ
1 ) and checking whether c

?= H( ˜B1, ˜B2, B,N,
t1, U, T,AC ′, SPK, c1, c2, c3) holds. If it is invalid, the RSU broadcasts failure
and requests the vehicle to re-transmit the query. Otherwise, the RSU checks
whether the new query Q has the same tag T with a received query. If yes, it
ignores Q. Otherwise, the RSU generates a signature on Q by selecting a random
r2 ∈R Zp and computing

Br = gr2 , cr = H(RID,Q,Br), τr = r2 + zcr.

Finally, the RSU sends (RID,Q,Br, τr) to the cloud server.
When the cloud server receives the query (RID,Q,Br, τr), it verifies the

validity of the signature of the RSU by computing c′
r = H(RID,Q,Br) and

checking the equation BrZ
c′
r

?= gτr . If it does not hold, the server returns
failure and requests the RSU to re-transmit the query. Otherwise, the server
checks whether the tag T in Q is equal to the one in a received query. If
yes, the server ignores this query. Otherwise, the server checks the validity
of the signature ( ˜B1, ˜B2, c, τ) and SPK. If either is invalid, the server sends
the query Q to the TA and aborts. Otherwise, the server decrypts (c1, c2, c3)
to obtain DEST ||CL||AP ||t2||t3 as r1 = c2/cy1

1 , DEST ||CL||AP ||t2||t3 =
AESDEC(r1, c3). If the query is expired, the server aborts; otherwise, it searches
an accessible parking lot for the vehicle according to the destination DEST , the
current location CL, acceptable price range AP , the expected arrival time t2
and the real-time data of parking lots.

Response Retrieving. The cloud server firstly generates a navigation response
RES, including the location of accessible parking lot, the number of vacant park-
ing spots, the parking price. To prevent the response from being obtained by
unregistered vehicles, the server picks two random values k1 ∈R Zp, k2 ∈R G1

and computes s1 = gk1 , s2 = k2U
k1 , s3 = AESENC(k2, RES) and K = Uy1 .

Then, to prevent attackers from corrupting the response, the server generates
a signature by selecting a random value k3 ∈R Zp to compute σ1 = gk3 ,
σ2 = H(t3,K, s1, s2, s3, σ1) and σ3 = k3 + y1σ2. After that, the cloud server
predicts the current location of the vehicle according to the destination and
the previous location, and determines R, the set of RSUs that the vehicle
would drive through. Finally, the cloud server sends the navigation message
R = (t3,K, s1, s2, s3, σ1, σ3) to the RSUs in R. If the parking information of
the recommended parking lot changes, the server generates a new navigation
message R∗ and sends it to the RSUs in R in the same way described above.

Upon receiving the message R from the cloud server, each RSU in R computes
σ′
2 = H(t3,K, s1, s2, s3, σ1) and verifies the signature (σ1, σ3) as σ1Y

σ′
2

1
?= gσ3 . If

it does not hold, the RSU returns failure and requests the server to re-transmit
the navigation message. Otherwise, as shown in Fig. 2, the RSU performs the
following steps to store the navigation message:
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Fig. 2. Insert operation for the RSU.

– Insert K into the counting Bloom filter CBFK . Specifically, for each 1 ≤ l ≤
k, the counter CBhl(K) increases by one and the rest counters keep the same.

– Store R on the navigation table and obtain the storage address S.
– Insert S into the Bloom filter V BFK . Firstly, the RSU splits S into k shares

of γ-bit, S1, S2, · · · , Sk, using the XOR-based secret sharing scheme. If the
location on the index hl(K) of V BFK has been occupied, the RSU reuses the
string V Bhl(K), that is, Sl is fixed to be V Bhl(K), where l ∈ {1, · · · , k − 1};
otherwise, Sl is a random γ-bit string. The last string Sk is set to be Sk =
S ⊕ S1 ⊕ S2 ⊕ · · · ⊕ Sk−1. Note that the probability that all the locations in
V BFK have been occupied when an address S inserts, is equal to the false
positive probability of a Bloom filter. Then, the RSU sets V Bhl(K) to be Sl,
for each 1 ≤ l ≤ k.

When the vehicle enters the coverage area of an RSU∗ with RID∗ and
(z∗, Z∗), it queries whether the parking navigation message R exists on the
RSU∗. Firstly, the vehicle reads (U, κ) from the memory of the OBU device and
computes K∗ = ̂Y κ

1 . Then, the vehicle chooses (u1, u2) ∈R Z
2
p to calculate

(C1, C2, C3) ← (Bu1
1 , Bu1

2 , Bu1u2
3 ),

β1 = H(C1, C2, C3,K
∗, t̃),

τ1 = u2 + β1v,

where t̃ is the current time used to resist the replay attack. Finally, the vehicle
sends the retrieving query (K∗, C1, C2, β1, τ1, t̃) to the RSU∗ to retrieve the
response of the navigation query.

Upon receiving (K∗, C1, C2, β1, τ1, t̃), the RSU∗ verifies the signature (C1, C2,

β1, τ1) by computing C ′
3 = ê(C1, ̂Xβ1)ê(C2, ĝ

−β1)ê(C1, ̂Xτ1
1 ) and checking

whether β1 = H(C1, C2, C
′
3,K

∗, t̃) holds. If not, the RSU∗ returns failure and
requests the vehicle to re-send the message. Otherwise, the RSU∗ checks whether
all counters in CBFK on the locations h1(K∗), · · · hk(K∗) are nonzero. If one of
them is zero, the RSU∗ returns failure to the vehicle and aborts. Otherwise, it
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recovers the storage address S by computing S = V Bh1(K∗) ⊕ V Bh2(K∗) ⊕ · · · ⊕
V Bhk(K∗) and finds the navigation message R directly according the storage
address S. Then, the RSU∗ picks a random r3 ∈R Zp to compute σ∗

1 = gr3 ,
σ∗
2 = H(RID∗, R, σ∗

1) and σ∗
3 = r3 + z∗σ∗

2 . After that, the RSU∗ returns
(RID∗, R, σ∗

1 , σ
∗
3) to the vehicle and broadcasts a Bloom filter BFK∗ to other

RSUs, in which BFK∗ [hl(K∗)] = 1 for 1 ≤ l ≤ k, and the other bits in the
array are zero. Finally, the RSU∗ performs the deletion operation to remove K∗

from CBFK and delete S in V BFK . Specifically, the counters in CBFK on the
indices hl(K∗) for 1 ≤ l ≤ k decrease by one, and the shares of S in V BFK are
removed if the corresponding counters in CBFK are set to be zero. In addition,
if the stored response is expired or an RSU receives a broadcasted BFK∗ , the
RSU performs deletion operation by deleting the expired or retrieved navigation
message and updating the Bloom filters, CBFK and V BFK .

If the vehicle receives failure from the RSU∗, it can send the retrieving query
to other RSUs. Otherwise, the vehicle obtains (RID∗, R, σ∗

1 , σ
∗
3). The vehicle

checks the validity of the signature (σ∗
1 , σ

∗
3) by computing σ∗

4 = H(RID∗, R, σ∗
1)

and verifying whether σ∗
1(Z

∗)σ∗
4 = gσ∗

3 holds. If not, the vehicle returns failure
and requests the RSU to re-transmit the message. Otherwise, the vehicle calcu-
lates σ4 = H(t3,K, s1, s2, s3, σ1) and verifies whether σ1Y

σ4
1 = gσ3 holds. If not,

the vehicle sends the message R to the TA for complaint. Otherwise, the vehicle
computes k2 = s2/sκ

1 and recovers the navigation response RES = AESDEC(k2,
s3). Finally, the vehicle can find a vacant parking space according to the parking
navigation response. When the vehicle is driving through other RSUs, it would
still send the retrieving query to the nearby RSU to check whether the navigation
message is updated and retrieve the latest response.

Vehicle Tracing. The vehicle tracing consists of two phases: the cloud server
tracing and the TA tracing. In the cloud server tracing phase, the cloud server can
recover the identity of a vehicle who submits two different navigation queries in
the same time period, which is detected as the denial-of-service attacks. Having
two queries Q1 and Q2, the cloud server obtains (DEST,CL,AP, t1, t2, t3, N, T )
from Q1 and (DEST ,CL,AP , t1, t̄2, t̄3, N, T ) from Q2, respectively. To trace the
identity of the vehicle, the server computes L = H(DEST,CL,AP, t1, t2, t3, N),

L = H(DEST ,CL,AP , t1, t̄2, t̄3, N), and ĝv = (TL

T
L )

1
t1(L−L) . Then, the cloud

server tests ê(g, ĝv) = ê(V, ĝ) to find the misbehaving vehicle.
In the TA tracing phase, the TA uses the vehicle’s signature ( ˜B1, ˜B2, c, τ) to

trace the identity of the vehicle. The TA checks whether ê( ˜B2, ĝ) = ê( ˜B1, ̂X)
ê( ˜B1, ̂V1) holds or not, until it gets a match.

4 Security Discussion

In this section, we demonstrate that our CPARN meets all security and privacy
goals described in Sect. 2.3.
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Service Authentication: Each vehicle is delegated with an anonymous credential
AC by the cloud server in vehicle registration phase, which is used to access
the parking navigation service. To query an available parking spot, the vehi-
cle firstly proves the possession of AC and then sends the navigation query
to the cloud server. Therefore, only the vehicles having the anonymous cre-
dentials can enjoy this service if the credentials cannot be forged. To gener-
ate the credentials for vehicles, the cloud server uses its secret key to sign
the commitments of the vehicles to generate a blind signature. Now we show
that the unforgeability of the blind signature (A1, A3) can be reduced to the
modified LRSW Assumption 1 [14]. The credential AC satisfies A1 = gu,
A3 = (Y gtY V ID

1 Y s
2 Y v

3 )u/gut = (Y Y V ID
1 Y s

2 Y v
3 )u, which is a valid PS signa-

ture on message (V ID, s, v). However, the blind signature has the public para-
meters (Y1, Y2, Y3) compared with the PS signature. Thus, the security of the
blind signature can be reduced to the modified LRSW Assumption 1, while the
unforgeability of PS signature depends on the modified LRSW Assumption 2
[14]. Therefore, if the modified LRSW Assumption 1 holds, it is impossible for
the attackers to forge the anonymous credentials.

Messages Authentication and Integrity : We utilize signature schemes to ensure
that all messages sent by authenticated entities cannot be polluted or forged by
attackers. The interactions between the cloud server and the RSUs are authen-
ticated using the Schnorr signature scheme, as well as the messages sent by the
RSUs to vehicles. Since the Schnorr signature is proved secure under the discrete
logarithm assumption, the authentication and integrity of the messages are sat-
isfied. The queries are signed by the vehicles using a randomized secret key,
which is a valid PS signature [14] distributed by the TA. Since the PS signature
is unforgeable if the modified LRSW Assumption 2 holds, no attacker can forge
the secret key (B1, B2) and further generate the signatures on vehicles’ queries.
Therefore, all the exchanged messages between the cloud server and vehicles are
authenticated and intact.

Identity Privacy Preservation: We discuss the identity privacy preservation from
two aspects. Firstly, in the navigation querying phase, the identities of vehicles
cannot be disclosed to the attackers and the curious entities, including the cloud
server, RSUs and other vehicles. To prove the possession of the credential AC, the
vehicle utilizes the zero-knowledge proof SPK to show its qualification to enjoy
the service, without exposing the identity V ID or (V,B3). The signature on the
query ( ˜B1, ˜B2, c, τ) also does not reveal any information about vehicle’s identity,
since ˜B1, ˜B2 are randomized and only the TA’s public key is required to verify
the signature. In addition, although the tag T includes vehicle’s secret key v, an
attacker cannot identify the vehicle’s identity or link two tags to the same vehicle,
unless the DDH assumption in G2 does not hold. Specifically, if there exists an
adversary A that can identify an honest vehicle out of two challenging vehicles,
we show how to construct a simulator S to solve an instance of the Decisional
Diffie-Hellman (DDH) problem in G2. That is, given G,G1, G2, G3 ∈ G2, S can
tell whether there exists (ω1, ω2), such that G1 = Gω1 , G2 = Gω2 , G3 = Gω1ω2 .
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We use the security model due to Au et al. [15] to formalize the adversary’s
capacity and the anonymity goal.

S generates the system parameters and sets ĝ = G, ĝ0 = G1. S chooses two
vehicles (V ID0, g

v0) and (V ID1, g
v1), where v0, v1 ∈R Zp and sends them to A.

S simulates the registration phase acting as the authority and the cloud server.
S interacts with A on behalf of the vehicles V ID0 and V ID1 in the following
interactions.

S honestly acts as V ID0 to answer the parking navigation query. For V ID1,
S randomly picks κ, v, s, t1, L ∈R Zp to compute U = Gκ, T = Gvt1GLs

1 , gener-
ates (c1, c2, c3, AC ′, ˜B1, ˜B2, c, τ), and simulates the zero-knowledge proof SPK
to interact with A.

S chooses a random β ∈ {0, 1}. If β = 0, S honestly generates a navigation
query; otherwise, S chooses κ∗, v∗, t∗1, L

∗ ∈R Zp to compute U∗ = Gκ∗
, T ∗ =

Gv∗t∗
1GL∗

3 , and generates (c∗
1, c

∗
2, c

∗
3, AC∗, ˜B∗

1 , ˜B∗
2 , c∗, τ∗). S simulates the zero-

knowledge proof SPK∗ and sends them to A. It is easy to see that the simulation
is perfect if logGG3 = logGG1 · logGG2. Otherwise, it contains no information
about V ID0 and V ID1.

Finally, A returns β′. If β′ = β, S confirms that there exists (ω1, ω2), such
that G1 = Gω1 , G2 = Gω2 , G3 = Gω1ω2 . Thus, S resolves the DDH problem [16]
in G2.

Secondly, in the response retrieving phase, the identities of vehicles are pro-
tected against other entities. Specifically, the retrieving query (K∗, C1, C2, β1,
τ1, t̃) sent by the vehicle contains no information about the identity. K∗ is a
result of Diffie-Hellman agreement, which can be viewed as a random value, and
(C1, C2, β1, τ1) is a signature that only the TA’ public key is required for verifica-
tion. Therefore, our CPARN meets the goal of identity privacy preservation.

Confidentiality : For the navigation queries and responses, we adopt the
AES encryption scheme to encrypt them and the Elgamal encryption
scheme to securely transmit the symmetric keys to receivers. Specifically,
DEST ||CL||AP ||t2|| t3 is protected by a random symmetric key r1, which is
encrypted by the public key of the cloud server to generate (c1, c2). Thus, the
cloud server can decrypt (c1, c2) to obtain the random key r1 and further recover
the navigation query. In terms of the navigation response RES, a random sym-
metric key k2 is chosen to encrypt RES and k2 is encrypted by the vehicle’s
temporary public key U using the Elgamal encryption scheme. Since the AES
encryption and Elgamal encryption are deemed to be secure, the navigation
queries and responses are well-protected against the curious vehicles, RSUs and
eavesdroppers.

Traceability : The cloud server traces a vehicle’s identity successfully if it finds a
match of the equation ê(g, ĝv) = ê(V, ĝ), where ĝv = (TL

T
L )

1
t1(L−L) . As the infor-

mation (DEST,CL,AP, t2, t3) is required to compute L, which can be obtained
by decrypting (c1, c2, c3) using the secret key of the cloud server, only the cloud
server can trace the identity of the vehicle, who sends more than one navigation
queries in a time period. The TA can recover the vehicle’s identity by checking
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the equation ê( ˜B2, ĝ) = ê( ˜B1, ̂X)ê( ˜B1, ̂V1). Here ̂V1 is only known by the TA, so
that only the TA can recover the vehicle’s identity from its signatures.

In summary, CPARN achieves service authentication, message authentica-
tion and integrity, identity privacy preservation, confidentiality and traceability,
simultaneously.

5 Performance Evaluation

In this section, we evaluate the performance of our CPARN in terms of the
computational and communication overheads.

5.1 Computational Overhead

We firstly evaluate the computational overhead of vehicles. By counting the
number of the scalar multiplication in G1 or G2, AES encryption/decryption,
exponentiation in GT and bilinear pairing required in each phase, we show the
efficiency of CPARN. Other operations, e.g., point addition, integer multiplica-
tion, are not resource-consuming compared with the scalar multiplication and
bilinear pairing operations. We use TSM , TAES , TExp, Tp to denote the running
time of the scalar multiplication in G1 or G2, AES encryption or decryption,
exponentiation in GT and bilinear pairing operations for vehicles, respectively.
We compare our CPARN with VSPN [13] and show the comparison results
in Table 1. Since the bilinear pairing operation in querying phase can be pre-
computed with the aid of the cloud server, there is no bilinear pairing operation
in querying and retrieving phases in CPARN, which are frequently performed
by the vehicles to enjoy the parking navigation service. The retrieving phase in
CPARN is much more efficient than that in VSPN, although the querying phase
in CPARN costs a little more time than that in VSPN.

Table 1. Computational burden of vehicles

Phases CPARN VSPN

System setup 8TSM 3TSM + Tp + TAES

Vehicle registration 13TSM + 3Tp 6TSM + TAES

Navigation querying 14TSM + 4(Tp) + TAES + 4TExp TSM + TAES

Response retrieving 9TSM 4νTp
∗ν is the number of RSUs that relay the navigation query in VSPN.

We also run these operations on HUAWEI MT2-L01 smartphone with Kirin
910 CPU and 1250M memory. The operation system is Android 4.2.2 and the
toolset is Android NDK r8d with MIRACL 5.6.1 library [17]. The parameter p
is approximately 160 bits and the elliptic curve is defined as y = x3 + 1 over
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Table 2. Computational burden of RSUs

Phases CPARN VSPN

Vehicle registration 0 2Tp + 3TSM + TAES

Navigation querying 3Tp + 4TSM 2Tp + TSM + TAES

Response retrieving 3Tp + 8TSM TSM

Fq, where q is 512 bits. The scalar multiplication operation and AES encryp-
tion/decryption operation takes 3.609 ms and 0.023 ms, respectively. The execut-
ing time of the exponentiation operation in GT and bilinear pairing operation
is 0.001 ms and 56.201 ms. Thus, the rough running time of vehicles in system
setup and registration phases is 28.869 ms and 215.518 ms, respectively. A vehicle
should perform approximately 54.197 ms and 32.478 ms to generate a navigation
query and obtain the response.

As for computational overhead of RSUs, we show the comparison results of
CPARN and VSPN in Table 2. Our CPARN needs more bilinear pairing opera-
tions than VSPN in both querying and retrieving phases. However, these pairing
operations in CPARN come from the verification of the vehicle’s signature, which
is used to ensure the integrity of the messages sent by vehicles, while Chim et al.
VSPN [13] does not achieve this security requirement.

5.2 Communication Overhead

We show the communication overhead of CPARN among vehicles, RSUs and
the cloud server. The parameters are set the same as those in the simulation. To
find a vacant parking space, the vehicle sends the parking navigation query
Q, which is 5216 + |N | + |DEST | + |CL| + |AP | + |t1| + |t2| + |t3| bits, to
the nearby RSU, where |N |, |DEST |, |CL|, |AP |, |t1|, |t2|, |t3| denote the binary
length of N,DEST,CL,AP, t1, t2, t3, respectively. Then, the RSU appends a
672-bit Schnorr signature to Q and forwards them to the cloud server. The cloud
server generates the message R with binary length of 1696 + |t3| + |RES| bits,
where |RES| denotes the binary length of RES. After that, the vehicle sends
(K∗, C1, C2, β1, τ1) to the RSU∗, which is of the length 1856 + |t̃| bits, where |t̃|
denotes the binary length of t̃. If the navigation message R is stored on RSU∗, it
returns (RID∗, R, σ∗

1 , σ
∗
3) to the vehicle, which is 2368 + |RID∗| + |t3| + |RES|

bits, where |RID∗| denotes the binary length of RID∗.
To compare the communication overhead of CPARN and VSPN in the

response retrieving phase, we assume the length of navigation response RES
in CPARN is equal to that in VSPN and |RID∗| = |t3| = 160 bits. The com-
parison results are shown in Fig. 3. The communication overhead of vehicles is
constant in our CPARN, while the overhead increases linearly with respect to
the number of RSUs in VSPN.
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Fig. 3. Communication cost for vehicles.

6 Related Work

Some works [1,13,18,19] have been proposed to achieve privacy-preserving nav-
igation based on VANETs recently. However, the differences between their pro-
tocols and ours are significant, as shown in Table 3. Lu et al. [1] presented an
intelligent privacy-preserving parking scheme that uses three RSUs to localize
the vehicles and assist them to find vacant parking spaces in a large parking
lot. While this scheme is of small scale that covers vehicles parking lot. Chim
et al. [13] proposed a VANET-based secure and privacy-preserving navigation
scheme, in which the online road information collected by RSUs is utilized to
guide the drivers to desired destinations in a distributed manner. However, this
scheme suffers from inside attack since a system master key is shared among
all vehicles. Therefore, Cho et al. [18] developed an improved privacy-preserving
navigation protocol to eliminate the system master secret distribution. Conse-
quently, Sur et al. [19] demonstrated that the protocols [13,18] are constructed
under the assumption that all RSUs are trusted, and they cannot provide non-
transferability of anonymous credentials, i.e., a vehicle can share its creden-
tial with others illegitimately. To overcome these weakness, they proposed a
secure navigation protocol from one-time credential pseudonymous certificates
and proof of knowledge. Different from the existing work, we remove the strong
assumption that the querying vehicle can hold the alive connection with the
RSU, and allow the vehicle to retrieve the navigation response from the RSUs
driving through.
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Table 3. Comparison of five navigation protocols

Lu et al. [1] Chim et al. [13] Cho et al. [18] Sur et al. [19] CPARN

Privacy preserving
√ √ √ √ √

Cover large scale X
√ √ √ √

Untrusted RSUs X X X
√ √

Multi-time pseudonym
√ √ √

X
√

No alive connection X X X X
√

7 Conclusions

In this paper, we have proposed a cloud-based privacy-preserving parking navi-
gation system in VANETs to find accessible parking spots for vehicles. Specifi-
cally, a vehicle can query the available parking space to a centralized server and
retrieve the result without exposing any sensitive information about the driver.
We have presented a novel method to improve the navigation retrieving proba-
bility for anonymous vehicular communications under the assumption that the
connection between the vehicle and the RSU is difficult to be hold due to the
high mobility of the vehicle. Through the security discussion, we have shown that
the proposed system meets all the security and privacy goals, and demonstrated
its efficiency and practicality for implementation in performance evaluation. For
the future work, we will design a privacy-preserving navigation system based on
mobile crowdsensing and VANETs to achieve real-time navigation for drivers.
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Abstract. Software-Defined Networking (SDN) is a novel architectural model
for cloud network infrastructure, improving resource utilization, scalability and
administration. SDN deployments increasingly rely on virtual switches exe-
cuting on commodity operating systems with large code bases, which are prime
targets for adversaries attacking the network infrastructure. We describe and
implement TruSDN, a framework for bootstrapping trust in SDN infrastructure
using Intel Software Guard Extensions (SGX), allowing to securely deploy SDN
components and protect communication between network endpoints. We
introduce ephemeral flow-specific pre-shared keys and propose a novel defense
against cuckoo attacks on SGX enclaves. TruSDN is secure under a powerful
adversary model, with a minor performance overhead.

Keywords: Software Defined Networking � Trust � Integrity � Virtual switches

1 Introduction

Renewed and widespread interest in virtualization – along with proliferation of cloud
computing – has spurred a series of innovations, allowing cloud service providers to
deliver on-demand compute, storage and network resources for highly dynamic
workloads. Consequently, more hardware and virtual components are added to already
large networks, complicating network management. To help address this, SDN
emerged as a novel network architecture model. Separation of the data and control
planes is its core principle, allowing network operators to implement high-level con-
figuration goals by interacting with a single network controller, rather than configuring
discrete network components. The controller applies the configuration to the network
edge, i.e. to its global view of the data plane [11]. Data and control plane separation in
SDN challenges network infrastructure security best practices evolved in the decades
since packet-switched digital network communication gained popularity [16, 22].

In the cloud infrastructure model, SDN allows tenants to configure complex
topologies with rich network functionality, managed by a network controller. The
availability of a global view of the data plane enables advanced controller capabilities –
from pre-calculating optimized traffic routing to managing applications that replace
hardware middleboxes. However, these capabilities also make the controller a valuable
attack target: once compromised, it yields the adversary complete control over the
network [27]. The global view itself is security sensitive: an adversary capable of
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impersonating network components may distort a controller’s global view and influ-
ence network-wide routing policies [13].

Virtual switches are another category of security sensitive components in SDN
deployments. They execute on commodity operating systems (OS) and are often
assigned the same trust level and privileges as hardware switches – specialized network
components with compact embedded software [28] or application specific integrated
circuits. Commodity OS are likely to contain security flaws which can be exploited to
compromise virtual switches. For example, their configuration can be modified to
disobey the protocol, breach network isolation and reroute traffic to a malicious des-
tination or compromise other network edge elements through lateral attacks. Such risks
are accentuated by the extensive control a cloud provider has over the infrastructure of
its tenants.

Security and isolation of tenant infrastructure can be strengthened by confining
select SDN components to trusted execution environments (TEE) and attesting their
integrity before provisioning security-sensitive data. TEEs with strong security guar-
antees can be built using SGX, a set of recently introduced extensions to the x86
instruction set architecture and related hardware [1, 18]. Earlier work used SGX to
protect computation in cloud environments, by executing modified OS instances in
SGX enclaves [2] or a data processing framework in a set of SGX enclaves [33].
However, while both of the above efforts highlighted the need to secure network
communication, they did not address it.

1.1 Contribution

This paper makes the following contributions:

– We present TruSDN, a framework to bootstrap trust in SDN infrastructure.
– We introduce flow-specific pre-shared keys for communication protection.
– We propose a defense against cuckoo attacks [23], based on properties of the

enhanced privacy ID (EPID) scheme [4] used for remote enclave attestation.
– We describe the implementation and a performance evaluation of TruSDN.

1.2 Organization

We introduce the system model in Sect. 2, describe the adversary model in Sect. 3 and
the design of TruSDN in Sect. 4. In Sect. 5 we provide a security analysis, describe the
prototype implementation and performance evaluation in Sect. 6 and review the related
work in Sect. 7. We discuss future work in Sect. 8 and conclude in Sect. 9.

2 System Model

In this section we describe the SDN architectural model and the SDN deployment
layers. Furthermore, we describe the use of TEEs based on Intel SGX.
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2.1 Software Defined Networking

In this paper we target SDN in infrastructure cloud deployments. The system model
follows the architecture presented in [5] and depicted in Fig. 1.

The data plane includes hardware and software switch implementations. Software
switching is used in cloud deployments due to its scalability and configuration flexi-
bility. Figure 2 illustrates the software switching approaches for communication
between two collocated endpoints. In a typical switch implementation, its kernel-space
component is optimized for forwarding performance, lacks decision logic and only
forwards packets matching rules in its forwarding information base (FIB) [20].
The FIB comprises packet forwarding rules deployed to satisfy network administrator
goals. Mismatching packets are discarded or redirected to the control plane through the
southbound API. While the data plane uses complementary functionality of both virtual
and physical switches, the role of the latter is often reduced to routing IP-tunneled
traffic between hypervisors [25]. In this paper we do not address control of hardware
switches and traffic routing between hosts; we assume that the physical network pro-
vides uniform capacity across hosts, based on e.g. equal-cost multi-path routing [14],
such that if multiple equal-cost routes to the same destination exist, they can be dis-
covered and used to provide load balancing among redundant paths. Overlay networks
– e.g. VLANs or GRE [10] – are used for communication between endpoints. In this
work, we focus exclusively on software switching and use the term “switch” to denote
a virtual, software implementation. We refer to hardware switch implementations as
“hardware switches”.

In the control plane, high-level network operator goals are translated into discrete
routing policies based on the global network view, i.e. a graph representation of the
virtual network topology. The main component of a control plane is the network
controller, which we define as follows:

Definition 1. Network Controller (NC) is a logically centralized component that
manages network communication in a given deployment by updating the FIB with

Fig. 1. The SDN architectural model. Fig. 2. Communication paths between
collocated endpoints: (1) virtual switch;
(2) host-local, e.g. native bridging; (3) vir-
tual queues in the NIC.
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specific forwarding rules. The NC compiles forwarding rules based on three inputs: the
dynamic global network view, the high-level configuration goals of the network
operator, and the output of the network management applications.

The NC is typically implemented as part of a logically centralized network OS,
which builds and maintains the global network view and may include a network
hypervisor, to multiplex network resources among distinct virtual network
deployments.

Southbound API is a set of vendor-agnostic instructions for communication
between data and control planes. It is often limited to flow-based traffic control of the
data plane, with management done through a configuration database [25].

Network operators use network management applications (NMAs), e.g. fire walls,
traffic shapers, etc., to configure the network using high-level commands.

2.2 Deployment Layers

We next describe the deployment layers of SDN infrastructure (Fig. 3).
The hardware layer includes infrastructure for data transfer, processing and storage

and is comprised of network hardware (including hardware switches and communi-
cation channels), hardware server platforms and data storage.

The infrastructure layer includes software components for virtualization and
resource provisioning to infrastructure users, referred to as tenants. For network
resources, this layer includes the network hypervisor, which creates network slices by
multiplexing physical network infrastructure between tenants. Infrastructure providers
expose a slice (i.e. a quota) of network resources to the tenants.

The service layer includes components controlled by tenants. Network components
operated by tenants are grouped into network domains, comprising the virtual network

Fig. 3. Deployment layers. Fig. 4. Logical communication segments: a:
between the NC and switches; b: among the
switches on each host; c between host-local
switches and network endpoints.
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resources and topologies that logically belong to the same organizational unit and
network slice, and perform related tasks or provide a common service. The network
hypervisor ensures that a tenant’s control plane can only control switches in its own
slice. Within their slice, tenants have exhaustive creation, destruction and configuration
privileges over components, such as instances of switches, the NC, NMAs and network
domains. We define three logical communication segments (Fig. 4): between the
network controller and switches (a segments); among the switches on each host (b
segments); between host-local switches and network endpoints (c segments).

The user layer includes endpoint consumers of network services, e.g. virtualization
guests, containers and applications in a network domain.

2.3 Trusted Execution Environments

The proposed solution relies on TEEs that both provide strong isolation and allow
remote code and data integrity attestation. Such a TEE can be created using Intel SGX
enclaves (introduced in [1, 18]) during OS runtime and relies for its security on a
trusted computing base (TCB) of code and data loaded at build time, processor firm-
ware and processor hardware. At build time, the CPU measures the loaded code, data
and memory page layout. At initialization time, the CPU produces a final measurement,
after which the enclave becomes immutable and cannot be externally modified.
The CPU maintains the measurement throughout the enclave’s lifetime to later assert
the integrity of the enclave contents. Processor firmware is the root of trust (ROT) of an
enclave. It prevents access to the enclave’s memory segment by either the platform OS,
other enclaves, or other external agents. Enclaves operate in a separate memory region
inaccessible to non-enclave processes, called the enclave page cache (EPC). Multiple
mutually distrusting enclaves can operate on the platform. The processor enforces
separation of memory access among enclaves based on the layout in the EPC map.
Program execution within an enclave is transparent to both the underlying OS and other
enclaves.

Remote attestation allows an enclave to provide integrity guarantees of its contents
[1]. For this, the platform produces an attestation assertion with information about the
identity of the enclave and details of its state (e.g. the mode of the software environ-
ment, associated data, and a cryptographic binding to the platform TCB making the
assertion). For intra-platform attestation (i.e. between enclaves on the same platform),
the reporting enclave (reporter) invokes the EREPORT instruction to create a
REPORT structure with the assertion and calculate a message authentication code
(MAC), using a report key, known only to the target enclave (target) and the CPU. The
structure contains a user data field, where the reporter can store a hash of the auxiliary
data provided. The target recomputes the MAC with its report key to verify the
authenticity of the structure, and compares the hash in the user data with the hash of the
auxiliary data, to verify its integrity. Enclaves then use the auxiliary data to establish a
secure communication channel. For inter-platform attestation the remote verifier first
sends a challenge to the enclave platform, where the challenge is complemented with
the indentity of a quoting enclave (QE) and forwarded to the reporter, which appends
the challenge response to the REPORT and attests itself to the QE. The QE verifies the
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structure, signs it with a platform-specific key using the enhanced privacy ID group
signature scheme (EPID) [4] and returns it to the verifier, to check the authenticity of
the signature and the report itself [1]. The use of the EPID scheme is part of the SGX
implementation and allows to maintain the privacy of the platform which hosts the
enclave.

3 Adversary Model

We now describe the adopted adversary model, as well as the core security assumptions
on which we base our design. The adversary model we adopt can be described by the
capabilities of the adversary at the network and platform levels respectively (overview
in Table 1).

3.1 Network Infrastructure

For SDN infrastructure, we adopt the adversary model introduced in [7] and extended
with SDN-specific attack vectors in [22]. We assume a powerful adversary (Adv),
which controls the cloud deployment network infrastructure; it can intercept, record,
forge, drop and replay any message on the network, and is only limited by the con-
straints of the employed cryptographic methods. Particularly, the Adv may forge
messages that do not match any of the rules installed in the FIB. Furthermore the Adv
may create own instances of switches and launch Sybil attacks [8] and launch other
types of topology poisoning attacks [13] to distort the global network view. Finally,
Adv can store arbitrary quantities of intercepted communication and attempt its
decryption with encryption keys intercepted or leaked at a later point. It can analyze the
traffic patterns in the network through passive probing and may disrupt or degrade
network connectivity to achieve its goals. We explicitly exclude Denial-of-Service
attacks on the SDN infrastructure.

Table 1. Summary of the Adv capabilities in relation to the adversary model.

Type Network Platform

Included Intercept, record, forge,
drop,
Replay messages;
Analyze the traffic
patterns;
Disrupt or degrade
network connectivity;
Launch topology
poisoning attacks

Control non-processor hardware;
Control software stack OS, hypervisor;
Pause execution;
Deploy arbitrary software components;
“Cuckoo attack”: Forward function calls to
compromised SGX enclaves;
Return arbitrary values to system calls

Not included,
mitigations known

Side-channels: cache-collision,
Controlled channel;
Attacks on shielded execution;

Excplicitly
excluded

Denial-of-Service
(DoS) attacks

Side-channels: power analysis; DoS
attacks
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3.2 Platform

For platform security, we consider a powerful adversary, similar to [2, 33], that may
control the entire software stack in the cloud provider’s infrastructure.

On the hardware level, we assume the processor is correctly implemented and
remains uncompromised; furthermore, we assume a reliable and secure source of
random numbers (which can be provided by the CPU). Adv has full control over the
remaining hardware, including memory, I/O devices, periferials, etc. Similarly, Adv
fully controls the software stack, including the platform OS and the hypervisor. This
implies that Adv may pause indefinitely the execution of the code in the TEE and return
arbitrary values in response to OS system calls. However, a deployment orchestrator
and NC execute under tenant control, on a fully trusted platform and software stack.
We exclude side-channel attacks. While some side-channel attacks – e.g. timing,
cache-collision, controlled channel attacks – can be mitigated through software mod-
ification [36], preventing other side-channel attacks – such as power analysis – requires
hardware modifications. An Adv with advanced capabilities may leverage its full
control over the OS to utilize the class of known attacks on shielded execution; while
we do not address such attacks, they have known countermeasures [2, 6].

SGX, similar to other trusted computing solutions, is vulnerable to cuckoo attacks
[23]. In one attack scenario, malware on the target platform forwards the messages
intended for the local SGX enclave (SGXE

L ) to a remote enclave under Adv’s physical
control (malicious enclave, SGXE

M). Having physical access to SGXE
M , Adv can apply

hardware attacks to violate its security guarantees. As a result, Adv controls all com-
munication between the verifier and SGXE

L , with access to an oracle that provides all of
the answers a benign SGX

E
would, but without its expected security properties.

Briefly, the adversary model for platform security largely matches the remote
administrator capabilities of an infrastructure cloud provider.

4 Solution Description

In this section we present TruSDN, a framework for bootstrapping trust in SDN
deployments. Its goal is to allow tenants to securely deploy computing tasks and create
virtualized network infrastructure deployments, given the adversary model defined in
Sect. 3. To satisfy this goal, the framework must satisfy the following set of
requirements:

– Authentication: communication in the domain must the authenticated, and a secure
enrollment mechanism for data plane components must be in place.

– Topology integrity: the NC must be protected from network components that
attempt to distort the global network view.

– Component integrity: integrity of switches must be attested prior to enrollment and
the cryptographic material required for their network access must be protected with
a hardware ROT.

– Confidentiality protection of domain secrets: network domain secrets – such as
VPN session keys – should not be revealed to the Adv.
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– Protected network communication: network communication in the tenant domain
must be confidentiality and integrity protected.

4.1 TruSDN Overview

We begin by introducing the building blocks of TruSDN (Fig. 5).

Trusted Execution Environments: TruSDN uses TEEs that guarantee secure execution
in the given adversary model, assuming the CPU and executed code are correctly
implemented.

Protected Compute Tasks: Security sensitive compute tasks (CT) are deployed in
TEEs. Such tasks include all operations that tenants aim to protect from the Adv.
However, CTs rely on the untrusted OS for I/O and support functionality.

Protected Data Plane: Switches are deployed in TEEs – they route traffic between CTs
according to forwarding rules communicated through secure channels and maintained
in the FIB. The FIB of the switches, and the key material necessary to establish the
secure channels are stored in TEEs.

Attested code in TEEs: An orchestrator under tenant control attests the TEEs during
network infrastructure deployment, to ensure integrity of the deployed code and data
before keys or key material are provisioned to the respective TEE.

In a typical deployment scenario, the tenant invokes an orchestrator to deploy a
switch bootstrap application on the hosts in the tenant’s domain. The bootstrap
application invokes a host-local SGX driver to build an SGX enclave containing a
switch. Next, the orchestrator attests the created enclave (as described in Sect. 2.3)
prior to enrolling the switch with the NC. The orchestrator uses the enclave’s public
key from the attestation quote to securely transfer the enclave-specific integrity and
confidentiality protection session keys used to establish a protected communication
channel between the NC and the TEE. Finally, the NC communicates any remaining
security-sensitive payload to the created TEE, e.g. the initial FIB. Next, CTs are
deployed in TEEs on the host and the switch forwards packets between the CTs,
matching them against the rules in the FIB. Mismatching packets are forwarded to the
NC, which may update the FIB with new rules. For clarity, we assume the orchestrator

TEE1.1 TEE1.2

Compute Task 1.2

TEE2.1 TEE2.2

Compute Task 2.2Compute Task 1.1 Compute Task 2.1

Protected compute tasks Secure Communication Channels Trusted Execution Enviroments

Host 1 Host 2
Network
Controller

TEE1.3 TEE2.3

Attested code
in TEEs Protected data plane

O
rc
h
e
st
ra
to
r

Fig. 5. Illustration of core building blocks of TruSDN.
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and NC are collocated on a platform under tenant control and view both as a single
component, further referred to as “NC”.

Secure Communication: TruSDN protects the communication between CTs, between
switches and the NC, as well as among the switches, in the above adversary model.
Communication security is ensured using confidentiality and integrity protection keys
provisioned to authenticated network components and endpoints executing in TEEs.
Furthermore, TruSDN leverages SDN principles to introduce a novel mechanism –

per-flow communication protection using ephemeral flow-specific pre-shared keys
(PSKs).

4.2 Cryptographic Primitives

We now define the cryptographic primitives and notations used in the remainder of this
paper. We denote by {0, 1}n the set of all binary strings of length n, and by {0, 1}� the
set of all finite binary strings. In a set U, we refer to the ith element as ui, and use the
following notation for cryptographic operations:

– Given an arbitrary message m 2 {0, 1}�, we denote by c ¼ EncðK;mÞ a symmetric
encryption of m using the secret key K 2 {0, 1}�. The corresponding symmetric
decryption operation is m ¼ DecðK; cÞ ¼ DecðK;EncðK;mÞÞ.

– We denote by pk=sk a public/private key pair for a public key encryption scheme.
We denote by c ¼ EncpkðmÞ the encryption of message m with the public key pk,
and the decryption by m ¼ DecskðcÞ ¼ DecskðEncpkðmÞÞ.

– We denote a digital signature over a message m by r ¼ SignskðmÞ and the cor-
responding verification of a digital signature by m ¼ Verifypkðm; rÞ, where m = 1 if
the signature is valid and m = 0 otherwise.

– We denote a Message Authentication Code (MAC) using a secret key K over a
message m by l ¼ MACðK;mÞ.
We next describe key sharing and communication protection mechanisms on the

identified logical segments. Table 2 summarizes the keys used by TruSDN.

4.3 SDN Trust Bootstrapping and Secure Communication

The first step in deploying a TruSDN infrastructure is to launch a set of trusted
switches for connectivity and topology building. The NC requests the creation of
switch enclaves to deploy switches in TEEs on hosts in its domain. Switches are
deployed based on parameters provided by the NC in plaintext (application code and
configuration). Next, the NC attests the integrity of switch enclaves and only enrolls
the successfully attested ones (Fig. 6). A TEE Ei is attested following the protocol
introduced in [1]. With TruSDN however, the reporter generates an enclave-specific
public-private keypair and submits its public key EKpk

i along with the attestation data; a
hash of the public key is stored in the user data field. The switch enclave is only
enrolled to the global network view if its reported state matches the one expected by
NC.
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Having attested enclave Ei, NC communicates an Enrollmentmessage (Table 3)
with the enclave-specific pre-shared key Ka

i and domain-specific preshared key Kb
j ,

encrypted with an ephemeral key K 0
i . Switches within a domain use Kb

j to protect
communication on b segments. The NC appends a MAC of the message calculated
with K 00

i and encrypts the keys K 0
i , K

00
i with EKpk

i .

Once switches are deployed and enrolled, tenants may configure the network
topology using the NC to update the switch FIBs. Communication on a segments – e.g.
FIB updates or unmatched packets forwarded to the NC – is protected using the session
key Ka

i (e.g. using TLS [9]), which never leaves the TEE.
Similarly, a secure channel is established among the switches within the same

domain, using the pre-shared key Kb
j , to protect communication between switches on

different hosts (e.g. TEEs 1.2 and 2.3 in Fig. 5). Kb
j never leaves the TEEs, has a

limited validity time and is periodically redeployed by the NC. On b segments, traffic
may traverse multiple hardware switches, forwarded to the host over tunnels deployed
on top of a standard routing protocol (e.g. [14]).

Next, the tenant may deploy CTs in TEEs and attest their integrity using the very
same scheme and principles as for the switch deployment described above. The CTs
and the network controller use the Enrollment message to establish a secure com-
munication channel (e.g. TLS).

Once the NC has deployed and attested the TEEs with switches and CTs, intra-host
communication (i.e. between two CT enclaves on the same host) is straightforward

Table 2. Summary of keys used in the TruSDN framework.

Key Created by Access Usage

Ka
i NC NC, switch Enclave-specific session, segment a

Kb
j

NC NC, switch Domain-specific session, segment b

K 0 NC NC, switch Ephemeral session key
K 00 NC NC, switch Ephemeral MAC key

EKpk
i

Switch Public Public key of the switch enclave

EKsk
i Switch Switch Private key of the switch enclave

CKpk
i

CT Public Public key of the compute task

CKsk
i CT CT Private key of the compute task

QEpk Vendor Public Public key of the quoting enclave

QEsk Vendor Vendor, QE Private key of the quoting enclave

SKc
ij NC NC, CTi, CTj Ephemeral flow-specific pre-shared key

Table 3. Enrollment message sent by the NC upon switch enrollment.

m ¼ EncðK 0
i ; ðKa

i ;K
b
j ÞÞ l ¼ MACðK 00

i ; mÞ EncðEKpk
i ; ðK 0

i ;K
00
i Þ
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(Fig. 7): when a packet m sent from C1 (e.g. a TLS ClientHello message) reaches the
local host switch A, it attempts to match m against a FIB entry; if no suitable flow rule
f is present, the switch forwards EncðKa

A;mÞ to NC, which processes the packet,
generates and deploys on the CTs C1, C2 a flow-specific pre-shared key SKc

12 and
finally updates the switch FIB with f, after which steps 2 and 3 are ignored; once the
FIB is updated, the switch forwards m to C2, which continues the message exchange

BE NC API E QE

1.n

2.QEi, n

3.m = REPORT, EKpk
i

4.σ = Signsk(m)

5. σ, m

TruSDN.ObtainQuoteTruSDN.ObtainQuote Obtain Enclave Quote

6.Verifypk(m, σ)

ν

7.Attest Em
i

Enrollment message

ack

8. Updated Global View

TruSDN.EnrolTruSDN.Enrol Attest and Enrol Enclave

Fig. 6. TruSDN enclave attestation and enrollment: (1.) Random nonce n is (2.) supplemented
with the host QE identity; (3.) Quote m produced by the enclave is (4.) signed by the QE. (6.) The
verifier checks the signature of the QE, (7.) attests the integrity of the enclave and (8.) only
enrolls the enclave upon success. BE: back-end.

C1 Switch A C2 NC

1. m

2. Enc(Kα
A, m)

4. Enc(CKpk
1 , SKγ

12)

5. Enc(CKpk
2 , SKγ

12)

3. Enc(Kα
A, f)

6. m

7. Handshake protocol continued, SKγ
12 as PSK

Fig. 7. Intra-host communication with TruSDN.
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and uses SKc
12 to protect the communication with C1, using e.g. TLS with a PSK

ciphersuite [9].
Communication between CTs C1 and C3 deployed on distinct hosts is similar, with

the only notable difference that the NC updates the FIB of the local switches on both
hosts where C1, C3 are deployed.

In the above scenarios TruSDN leverages two aspects of the SDN model – (1) the
deployment has a central authority (the NC) and (2) the first packet of a flow is
forwarded to the central authority – to deliver on demand ephemeral PSKs to com-
munication endpoints. This allows to relax the need for high-quality entropy being
available to CTs (a known issue in virtualized environments [30]). Furthermore, this
approach ensures communication security without compromising packet visibility –

having control over the keys used to protect communication between the CTs allows
the NC to maintain fine-grained insight into the traffic.

4.4 Preventing Cuckoo Attacks

To prevent cuckoo attacks [23], we propose a solution that leverages cryptographic
properties of the EPID scheme used by the QE [4] and the SIGn and Message
Authentication (SIGMA) protocol [35], which are both part of the Intel SGX imple-
mentation. The EPID scheme supports two signature modes: fully anonymous mode –

the verifier cannot associate a given signature with a particular member of the group;
pseudo-anonymous mode – the verifier can determine whether it has verified the
platform previously. The unlinkability property distinguished in the two modes
depends on the chosen base. A signature includes a pseudonym Bf where B is the base
chosen for a signature and revealed during the signature; f is unique per member and
private. For a random base R, the pseudonym is Rf

– in this case the signatures are
unlinkable. For a name base, the pseudonym is Nf where N is the name of the verifier –
in this case the signatures remain unlinkable for different verifiers, while signatures
with a common N can be linked. For privacy reasons, the EPID scheme currently
implemented in Intel SGX accepts name base pseudonyms only from verifiers
authorized by the EPID authority [31], which is done by provisioning qualified verifiers
with an X.509 certificate – e.g. an intermediate certification authority (CA) certificate –
signed by the EPID authority acting as root CA.

We propose the following algorithm to prevent cuckoo attacks. At deployment
time, the EPID authority issues, to an authorized verifier VP, an intermediate CA
verifier certificate for the platforms in the cloud provider’s data center. Next, VP attests
its platforms following the SIGMA protocol and publishes a list of resulting platform
EPID signatures and the signature name base, BN

P . To guard against cuckoo attacks,
tenants first request VP to issue an X.509 certificate and enable them to become au-
thorized verifiers. Next, tenants choose the same pseudonym base BN

P (and a private f),
follow the SIGMA protocol, and verify that the resulting signature is linkable to a
signature in the published list. The cloud provider has multiple tools to protect platform
privacy and prevent untrusted tenants from fingerprinting the platform infrastructure,
e.g. limiting the validity of issued certificates, changing the name base, etc.
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Considering that the EPID scheme is currently not implemented in the SGX emulation
software we used for prototyping, we intend to describe the implementation of the
above algorithm in a follow-up report.

5 Security Analysis

In this section we analyze the security properties of the proposed framework in the
adversary model described in Sect. 3. On the network level, many of the Adv capa-
bilities are thwarted by first authenticating the switches deployed on the data plane, as
well as the network edge (i.e. the compute tasks that generate or receive the network
traffic), in combination with confidentiality and integrity protection of the traffic on the
three identified segments. Authenticating the network components prevents topology
poisoning attacks (a countermeasure mentioned in [13]), while confidentiality and
integrity protection of all of the network traffic in the deployment prevents the Adv from
either learning the contents of the exchanged packets or successfully forging packets.
The Adv may in this case still intercept and record messages. However, collecting
encrypted traffic does not yield the Adv any more information about the contents of the
exchanged packets. Similarly, the Adv does not gain an advantage by simply dropping
or replaying messages, since these actions would at most simply reduce the channel
capacity (as would the ability of the Adv to disrupt network connectivity). Finally, the
proposed framework does not prevent the Adv analyzing the traffic patterns and does
not prevent it from fingerprinting the components of the deployment, making it vul-
nerable to rule scanning and denial of service attacks. While the goals of TruSDN did
not include this, such traffic analysis could be prevented using anti-fingerprinting
techniques, as proposed in [3].

On the platform level, the security of the proposed framework relies to a large
extent on the security properties of Intel SGX enclaves. This allows to protect the
execution of switches and network edge components deployed in TEEs from the
capabilities of an Adv controlling non-processor hardware, the software stack of the OS
and the hypervisor. Similarly, pausing execution of switches executing in TEEs, while
possible, would have no further effect than degrading network connectivity, already
discussed above. While the Adv may attempt to deploy own arbitrary components on
the data plane or the network edge in order to launch Sybill attacks, the integrity of
such components would not be successfully attested, unless they are identical to
legitimate components, which are assumed to be executing correctly – rendering Sybill
behavior impossible. The Adv is prevented from launching cuckoo attacks by enabling
tenants to verify the platforms, as described in Sect. 4.4. As presented in Table 1,
several relevant classes of attacks are not addressed by TruSDN, but have known
mitigations, namely cache-collision, controlled channel and attacks on shielded exe-
cution (addressed in [33, 36]). The capability of the Adv to return arbitrary values to
system calls, while not addressed in this work, can be mitigated by a validation
component as described in [2].
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6 Implementation and Evaluation

We now describe the implementation and evaluation of TruSDN.

6.1 TruSDN Implementation

The TruSDN prototype deployment follows the design presented in Sect. 4 and is
illustrated in Fig. 8. Host 1 and Host 2 are instances of Ubuntu OS 15.04. In each
instance, we deployed Linux Containers1, similarly based on Ubuntu OS 15.04.
Containers create an environment with own process and network space, implemented
using namespaces, with a distinct user ID, network stack, mount points, file systems,
processes, inter-process communication, and hostname. We chose containers to facil-
itate prototype implementation, using their lightweight process isolation. Containers are
part of the untrusted OS and this implementation choice is orthogonal to the security of
TruSDN. Compute tasks are deployed in TEEs created using SGX enclaves (Fig. 8):
enclaves E1, E2, E4, E5 are placed respectively within containers C1, C2, C3, C4. The
switches are deployed in TEEs created using SGX enclaves (enclaves E3, E6 in Fig. 8).

Considering that platforms with hardware and software support for SGX were not
publicly available at the time of writing, we used OpenSGX [15] to emulate the TEEs.
It is a software SGX emulator and a platform for SGX development, implemented
using binary translation of QEMU and emulating Intel SGX hardware components at
instruction level. It includes emulated hardware and OS components, enclave program
loader, the OpenSGX user libraries, debugging and performance monitoring support.
The emulator allows to implement, debug, and evaluate SGX applications, but does not
support binary compatibility with Intel SGX. Furthermore, OpenSGX does not
implement all instructions, e.g. debugging instructions. While OpenSGX does not
provide security gurantees, it allows us to obtain performance estimates for the pro-
posed approach. We used mbedTLS2 v1.3.11 (distributed with the emulator) for

Fig. 8. Prototype deployment of TruSDN

1 Linux Containers Project Website: https://linuxcontainers.org/.
2 mbed TLS project website https://tls.mbed.org/.
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attestation of the SGX enclaves. We used OpenSSL v1.0.2d (distributed with the
emulator) to set up protected communication channels between the CT enclaves and the
local switches, and among switches within the same domain.

An SDN network controller is deployed in a third instance (Host 3). We used the
Ryu3 SDN framework, due to its flexibility and versatile APIs.

6.2 TruSDN Evaluation

We now analyze the performance impact, present evaluation results and discuss aspects
that cannot be measured with the current prototype.

Sources of Performance Impact. TruSDN introduces several potential sources of
performance impact (Table 4). We distinguish between transient performance over-
head, which occurs occasionally (e.g. TLS key negotiation) and continuous perfor-
mance overhead, present throughout the infrastructure operation. We do not consider
the one-time cost of infrastructure deployment, e.g. provisioning the software, attesting
TEEs and enrolling the components.

Measured Performance Impact. To evaluate the performance impact, we measured
the footprint of establishing TLS sessions on a and c segments. We used iperf, openssl
s_time and an own Ryu application (Table 5).

TLS overhead on the a segment: We measured the round-trip latency of packets sent in
plaintext and with TLS, over 1000 tests, each request sending messages of 100 bytes
with the 80 bit OpenFlow header. Furthermore, we measured the data transfer rates for
plaintext and TLS communication. Use of TLS increased total transfer time by 14.2%
and reduced the transfer rate by 15.98%.

Delay on c segment: As mentioned above, the first packet of the flow is intercepted by
the switch and forwarded to the NC in a packet in message [24]. At this point the NC
processes the flow and installs a flow rule on the switch. TruSDN extends this pro-
cedure by generating and distributing to the communicating CTs a pre-shared key, to be
used for communication protection. Since this must be done prior to both forwarding
the message to the destination CT and installing the flow rule, generating and

Table 4. Sources and types of performance overhead in TruSDN

Source Type Clarification

TLS negotiation all segments Transient Negotiate session keys for TLS
PSK distribution Transient Distribute PSK for c segments
TLS protection all segments Continuous Overhead induced by TLS
Compute task execution in TEEs Continuous Overhead induced by TEE
Switch execution in TEEs Continuous Overhead induced by TEE

3 Ryu SDN framework: https://osrg.github.io/ryu/.
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distributing the PSK would normally delay the installation of the flow rule and increase
the latency of the first packet (all subsequent packets are forwarded according to the
flow rule). To measure the introduced delay, we have sequentially established 1000
TLS sessions between compute tasks C1 and C2 (according to Fig. 8). After each TLS
session, we flushed the installed flow rules (with ovs-ofctl del-flows br0), which
resulted in a packet in message upon each new session. The latency of the first packet is
shown in Fig. 9, and compared against the latency of a first packet without the
TruSDN extension.

The induced delay is primarily caused by two operations performed by the NC:
generating a 256-bit PSK and distributing it to the CTs. Figure 10 displays a
fine-grained picture of the induced delay. Key generation lasted on average 0.178 ms,
while key distribution on average 0.54 ms (Table 5). We remind that the test envi-
ronment is fully virtualized and posit that overhead of key generation can be reduced in
a production environment, either by using pre-generated keys or with specialized
hardware (e.g. crypto processors). In our tests, the duration of establishing a TLS
session with ephemeral flow-specific pre-shared keys using the PSK-AES256-CBC-
SHA cipher suite was 2.41% less compared to the use of e.g. ECDH-RSA-AES128-
SHA256. Thus, TruSDN enables flexible use of pre-shared keys, which in turn reduces
the duration of the TLS handshake, by avoiding expensive public key cryptographic

Table 5. Summary of performance evaluation of TruSDN

Data Minimum Maximum Mean Median Std
dev

Total transfer time, ms 0.4 1.1 0.66 0.7 0.07
Total transfer time w.
TruSDN, ms

0.5 7.1 0.8 0.8 0.22

TruSDN overhead, total
transfer time

21.2% 14.2%

Transfer rate, bytes per second 1225 2095 1595 1583 98.07
Transfer rate w. TruSDN,
bytes per second

919 1589 1338 1330 64.86

TruSDN overhead, transfer
rate

16.11% 15.98%

First packet latency c 1.53 6.50 3.48 3.38 0.42
First packet latency c w.
TruSDN

3.35 10.7 5.37 5.14 0.93

TruSDN overhead, first
packet latency

54.31% 52.07%

TLS handshake, ms 36.53 77.72 67.97 67.48 7.42
TLS handshake w. TruSDN,
ms

52.35 76.44 67.15 66.53 3.93

TruSDN overhead, TLS
handshake

−2.21% −2.41%

Key generation NC, ms 0.11 0.51 0.178 0.16 0.04
Key distribution c, ms 0.37 1.06 0.54 0.53 0.08
Key total c, ms 0.50 1.30 0.71 0.7 0.11
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operations [17]. Moreover, it reduces the CPU utilization for key derivation in CTs, at
the cost of a minimal flow rule installation delay. The above approach may be appli-
cable to other protocols. For example, none of the differences between the datagram
TLS (DTLS) and TLS protocols specified in [29] indicate that the above approach is
incompatible with DTLS. We leave further investigation for future work.

Unmeasured Performance Overhead. Implementing TEEs with OpenSGX limits the
level of detail when it comes to performance evaluation, since: (a) the OpenSGX
emulator is not binary compatible with Intel SGX [15]; (b) in its current version4 and
unlike Intel’s description of SGX [1], OpenSGX has yet to implement support mul-
tithreaded applications5. Thus, a fully accurate measurement on TruSDN performance
cannot be done until Intel SGX hardware and software is made available. However, we
believe our experiments yield a fair picture of the expected performance impact.

7 Related Work

Adversary models: Kreutz et al. presented a list of attack vectors in SDN [16] (forged
traffic flows, vulnerabilities in switches and NCs, lack of trust establishment mecha-
nisms, etc.). However, only part of the described attack vectors are exclusively relevant
to SDN networks and no specific solutions are proposed. Work in [22] introduced an
adversary model, attack vectors, and security requirements towards multi-tenant SDN
infrastructure, highlighting the need to limit the effect of NC vulnerabilities, protect
internal SDN communication, verify integrity of SDN components prior to enrollment,
and enforce policy and quota isolation. TruSDN addresses several of the attack vectors
described in [16, 22].

Secure SDN controllers: The “NOX” network OS [11] presents NMAs with a cen-
tralized programming model, allowing to operate with higher-level abstractions and
apply graph processing algorithms to compute paths. It consists of several controller

Fig. 9. Coarse-grained view Fig. 10. Fine-grained view

4 Commit e0713c7 on https://github.com/sslab-gatech/opensgx.
5 Issue #34 on https://github.com/sslab-gatech/opensgx/issues/34.
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processes which use the global view for network management decisions and update
switch FIBs over the OpenFlow API [19]. FortNOX [26] extends NOX with role-based
authorization (RBA) and enforcement of security constraints. It translates high-level
threats into flow rules to handle suspicious traffic as well as detects rule conflicts,
resolves them depending on the authorization of the rule requestor and enforces least
privilege authorization. Neither NOX nor FortNOX address malicious network com-
ponents and Sybill attacks, addressed by TruSDN. “Rosemary” NOS [34] uses NMA
sandboxing to improve network resilience, by launching each NMA in a separate
process context with access to the required libraries, along with a resource monitor to
supervise NMA compliance. It does not address data plane security; TruSDN com-
plements it and creates a foundation for trusted deployment of a secure NOS. Topo-
Guard [13] detects network topology poisoning and mitigates this through port
property management, network edge probing and verification of topology updates.
TruSDN complements this by verifying the integrity of switches prior to enrollment
into the topology.

Software Guard Extensions: SGX was introduced in [18] with a description of the
software model, extensions to the x86 ISA and hardware modifications for isolated
execution; work in [1] described CPU based attestation. SGX-based solutions in a
cloud setting are first described in [2, 33]. “Haven” [2] is a modified version of
Windows 8 OS ported to an SGX enclave, evaluated with Apache Web Server and
SQL Server using synthetic data sets. It includes a mechanism to protect the enclave
from a malicious kernel and a semantically secure data store protecting data and file
metadata confidentiality against malicious hosts. TruSDN protects network commu-
nication for a similar adversary model. While we deploy compute tasks in SGX
enclave-based TEEs, the work in [2] is largely complementary, and similar “Haven”-
like OSs could be used.

“VC3” [33] is a Map-Reduce deployment using SGX enclaves. Map and reduce
functions are compiled into private (encrypted) code and public code implementing key
exchange and job execution protocols. Code is initialized in enclaves and attested by
the users. Public code performs the key exchange, decrypts the private code and runs
the job execution protocol. To defend against cuckoo attacks, cloud quoting enclaves
are created on each platform in the cloud provider data centers, to “countersign” quotes
produced by the QE. The approach is largely complementary to protecting commu-
nication between CTs with TruSDN. However, the proposed defense against cuckoo
attacks increases the complexity of the attestation protocol and does not prevent Adv
from exploiting a compromised cloud QE outside of the physically secure datacenter
perimeter. Instead, the approach described in Sect. 4.4 leverages the cryptographic
properties of EPID scheme, without modifying the attestation protocol.

8 Future Work

Along with security guarantees, the use of Intel SGX imposes limitations on TruSDN.
Further performance evaluation may be done once software and hardware support for
Intel SGX becomes available; moreover, we note several security limitations.
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Controlled-channel attacks [36] are a novel type of side-channel attacks allowing the
OS to extract data from protected applications. They were successfully applied to
“Haven” [2] and TruSDN could also be vulnerable; however, we explicitly excluded
such attacks from the adversary model. Known mitigations are: rewriting applications
to decouple memory access patterns from sensitive data, prohibiting paging by the OS,
or obfuscating memory access patterns [36]. Another limitation stems from the reliance
on the platform vendor, which could leak QEsk, to create a “deniable back-door” and
allow person-in-the-middle attacks on attestation [32]. This challenge remains
unaddressed.

In future work we aim to integrate TruSDN with other approaches to cloud
infrastructure security, such as in [21], to provide a complete framework for secure
cloud infrastructure deployments in the given adversarial model.

9 Conclusion

We described, implemented and evaluated TruSDN – a framework for bootstrapping
trust in SDN infrastructure. It isolates network endpoints and switches in SGX
enclaves, remotely attests their integrity, and establishes secure communication chan-
nels. We leveraged the principles of SDN to introduce ephemeral flow-specific PSK
distributed at flow creation, which reduce the overhead of key derivation and reduce the
total time to establish protected channels, at the cost of a minor delay in the flow rule
installation. Finally, we leveraged the properties of the EPID scheme to propose an
improved approach to prevent cuckoo attacks.

Acknowledgements. This research has been performed within 5G-ENSURE project (www.
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Abstract. Modern train systems adopt communication-based train con-
trol (CBTC), which uses wireless communications to better monitor
and control the train operations. Despite the well-studied security issues
in wireless networking in information technology applications, security
implementations in trains have been lagging; many train systems rely on
security by obscurity and forgo well-established security practices such as
key updates. To secure train systems against increasingly evolving and
persistent attackers and mitigate key breach (which can occur due to
misuse of the key), we build a key update scheme, Key Update at Train
Stations (KUTS), that leverages the inherent physical aspects of train
operations (mobility/infrastructure-asymmetry between the stations and
the trains and the operational differences when the trains are at stations
and between the stations). Furthermore, by incorporating separation of
key chain and use and on the entities providing the key seeds, KUTS pro-
tects the key seeds for future updates against the breach of the current
key and is both key-collision irrelevant (thwarting known collision-based
threats on one-way random functions) and system-compromise resilient
(protecting the key secrecy even when the train system is compromised).
We theoretically analyze KUTS’s effectiveness, security strength, and
security properties. We also implement KUTS on various computing
devices to study the performance overhead.

1 Introduction

Communication-based train control (CBTC) uses wireless communication to
deliver operational-control messages from the train to the track-side antenna,
which in turn relays the message to the operational control center (OCC) via
wired connection, and vice versa. In addition to being lightweight in infrastruc-
ture and better supporting the mobility of the trains, CBTC enables finer gran-
ularity for the train vehicle’s location sensing (which is a key parameter for train
control) than the traditional fixed-block technology (which uses discrete railway-
track segments for train localization). Consequentially, because CBTC enables
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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greater customer transport efficiency (e.g., enabling more trains to get packed per
distance during busy hours), train operators have increasingly deployed CBTC
for train systems.

While safety issues have been well-studied in train systems (some measures of
which can also mitigate communication availability issues) because of the phys-
ical consequences of failure, security in general has not garnered much attention
from the train system integrators and operators. They, instead, largely rely on
security by obscurity and that the protocols are confidential and proprietary.
While this does increase the barrier for security breach, especially for the type
of system that is not readily accessible by the public (e.g., unlike computers
or cars, not many people own/operate a train), history has shown that such
approach is insufficient against motivated and persistent cyber-attackers, e.g.,
Stuxnet malware discovered in 2010. The security-by-obscurity approach is fur-
ther challenged by the recent push to make the train systems interoperable across
European nations, which will involve effort to unify and standardize the prac-
tice/design and thus make the information more obtainable [1]. Previous failures
in train systems, e.g., whether accidental [2] or playful [3], demonstrate vulnera-
bilities in train systems and let us wonder how much more of an impact sophis-
ticated attackers can make on train operations. Also, the recent high-profile
security incidents in car applications that allowed remote (Internet-connected)
attackers to take control of car operations [4–7] are alarming to train opera-
tors as well because while the wireless channels breached during these incidents
deliver allegedly non-critical communications, e.g., software updates, the trains
use them for critical CBTC messages that directly control the train operations.
Only recently, there has been concerted effort into begin addressing security for
train communication systems [8–10].

To address the security gap of train communications, we study key manage-
ment within the train communication systems, which is a fundamental building
block of many secure communication protocols and practice. Given an initial
seed acting as a root of trust, we design a key update protocol, so that the key
remains fresh and secret. Our work not only makes the key breach significantly
harder but also limits the impact of such breach to the current key.

Our solution takes advantage of the unique physical aspects that are inherent
in train applications. In specific, trains transport people in two phases: at sta-
tions, the human customers embark or get off of the train vehicle, and between
stations, the train vehicle moves from one point to another to transport pas-
sengers and goods. Because the train at stations is static or moving much more
slowly and because the station contains more infrastructure, stations provide a
more tightly controlled environment for trains; CBTC implementations to track
the train vehicle locations also focus more on the latter periods when the trains
are travelling between the stations because such period generally presents greater
challenges (less resources/equipment along the rail tracks, more exposure to the
public wild, mobility of the train, and so on). We also align our scheme to these
two phases and update the key when the train is at the station and use the key
when the trains are between the stations, time-interleaving the key update and
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its use. We thus call our scheme key update at train stations (KUTS); however,
KUTS does not need to be implemented at all physical stations but only a subset
of the stations (KUTS stations).

KUTS is based on one-way functions that generate pseudo-randomness. How-
ever, it defeats the known output-collision-based threats on one-way functions
that significantly reduce the entropy (key strength) by introducing a two-layer
approach for updating the KUTS keys; the separation between the two layers
(one for the key seeds/chain and the other for the keys being used) also pro-
tect the future keys even when the currently used keys (for CBTC operations)
are compromised. Furthermore, KUTS uses key seeds from both the train and
the station (which are logically separate from each other) to increase resilience
against train-system compromise.

The rest of the paper is organized as follows. Section 2 describes related work
while Sect. 3.1 provides an overview of the train system, focusing on the part that
is relevant to our work. We build the corresponding system and threat models
in Sects. 3.2 and 3.3, respectively. KUTS scheme (the key update and the key
failure detection) is described in Sect. 4, and we theoretically analyze its security
effectiveness and properties in Sect. 5. Furthermore, KUTS is implemented and
its efficiency and effectiveness analyzed in Sect. 6. Lastly, we conclude our work
in Sect. 7.

2 Related Work

As discussed in Sect. 1, security developments in train networks has lagged
other fields in computer security and has largely focus on wireless availabil-
ity, e.g., [1,10,11]. We study an orthogonal problem of key exchange, a critical
building block on which many security protocols in the digital domain rely. In
related work, Lopez and Aguado [12] sketch an improvement of the European
Rail Traffic Management System (ERTMS)’s outdated PKI system, which was
designed in the 1990s. Separately, Hartong et al. [13] also proposes key man-
agement requirements for train systems. Our work also studies key management
but, in contrast to prior work studying broader aspects of key management, we
focus on improving the security by introducing updates and dynamism on the
keys (with the update cycle synchronized with the physical train operations of
periodic station visits).

Our work is inspired by path authentication work in computer security.
Path authentication provides assurance that the object of the mechanism went
through a specific path by having the relaying entities (along that path) interact
with the object. It is used in the contexts of network routing [14–16] and device
manufacturing/supply-chain [17–20] to identify the path and avoid the tamper-
ing of the object. Although our work is similar in the sense that the relaying
nodes (stations) are stationary and help with the authentication via interactions
with the moving objects (trains), KUTS is fundamentally different because the
train’s mobility trajectory is defined by the railway tracks and its route pre-
established by the OCC while the stations have fixed geographical locations and
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are interwoven with many aspects of the train operations. In other words, while
the objective of path authentication in supply-chain and network-routing is to
ensure that the object travels through a path, the travel path actually serves as
a source of assurance in KUTS, as it is difficult to make the train diverge from
the path defined by the railway tracks.

KUTS uses two layers of pseudo-random generators (hash chains). Prior work
also adopt multiple layers of hashing, but the schemes are in different contexts
and the different layers are for orthogonality purpose, for example, multicast
source authentication work by Challal et al. [21] uses different layers for redun-
dancy control and chooses one layer from multiple layers for execution, and
Fredman et al. designed a scheme for efficient data lookup [22] that has differ-
ent layers to describe orthogonal dimensions of the pointer. In contrast, KUTS
uses multiple layers for greater security, and the layers are sequentially executed
to generate the key update. On the other hand, our cryptographic construc-
tion shares greater similarity with Ohkubo et al.’s use of two-layer hash chains
for RFID privacy [23]; their work aims to achieve forward security (preventing
backward tracking, so that the breach does not enable an attacker to trace the
data back through past events). However, in contrast to their work, we protect
both the future and the past keys from the key breach by separating the keys
being used for CBTC and the key seeds used for updates; furthermore, our con-
struction also involves multiple independent parties distributing the key seeds to
build resiliency against system compromise and is thus more complex. The use of
such cryptographic constructions in resource-constrained RFID tags shows great
promise that the overhead will be even more marginal for train applications, as
train-borne devices has much less hardware constraints and requirements.

Our instantiation of KUTS uses SHA-256 hash for the pseudo-random gen-
erator. To put the attacker’s cost in perspective, we discuss SHA-256’s use in
bitcoins and bitcoin mining in Sects. 4.2 and 6.2.

3 Train System Model

3.1 The Application System

Trains are designed to transport people from one geographical point to another.
And to provide the customers with more options for the geographical points
for their departure/arrival, trains operate on pre-established and fixed stations,
which are where the customers ride or get off the train. The stations are con-
nected with railway tracks, on which the trains operate and move, and thus the
train operational trajectories are fixed/limited and clearly defined by the rail-
way tracks. We make use of these physical aspects, e.g., the trains visit and stop
at the more controlled environment of stations, to build security in the cyber-
domain; for example, it is difficult for an attacker to physically take the train
and have it diverge from the railway tracks.

In CBTC, the operational control center (OCC) is actively involved in the
real-time control of all the trains on the line. However, since the centralized OCC
controls many spatially distributed trains, it uses networking to communicate
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Fig. 1. CBTC communication architecture. CBN stands for communication backbone
network, and the solid/dotted line represent wired/wireless connectivity, respectively.

with the trains; the OCC communicates its operational control messages, and
the trains report their statuses to the OCC. OCC thus has a central view of
the train line and know the time schedules/itineraries of the train operations
and the train vehicles’ locations at any given time, which can also be used
for safety (e.g., train collision avoidance) and better traffic management. To
enable real-time monitoring and control, the OCC and the trains communicate
periodically; the protocol has failed if the expected messages do not arrive in a
timely manner or if any of the channels conflict with each other and result in
inconsistency (train systems rely on redundancy for many logical operations),
which events can trigger fail-safe. Any deviation resulting in inconsistency will
be detected, regardless of the failure source or the cause, and we build on such
protocols to develop a failure-detection scheme in the endhosts’s (OCC’s and
trains’s) perspectives in Sect. 4.3.

Train operations rely more heavily on CBTC between stations than at sta-
tions, as discussed in Sect. 1, because of the following reasons. First, train’s loca-
tion (which is the most important sensing factor for CBTC) changes in faster
pace than at stations, requiring greater amount of information exchange between
the individual train and the OCC. Second, there are greater resources for train
sensing at stations, enabling tighter and more precise control of the train oper-
ations; for example, as the train enters the stations, a dense sequential array of
trackside beacons (operating independently to CBTC) are deployed for better
alignment of the platform screen doors for passenger boarding.
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As depicted in Fig. 1, the path between OCC and the trains are comprised
of both wired connections (from the OCC to the network switches and then
to the stations and/or trackside equipment) and wireless connections (between
the stations/trackside and the trains); the trains physically move over long dis-
tances and thus require wireless channels. Often acting as a communication relay
between the OCC and the trains, the stations also incorporate control, e.g., con-
trol booth to oversee the on-site operations.

Because the OCC primarily acts as the brain in CBTC-based train opera-
tions, it assumes the role of credential management in our work. Specifically, it
allocates the identities and the roots of trust to the trains and the stations. We
assume that the OCC is secure and that the initial roots of trust are established;
OCC failure is beyond the scope of our contribution.

3.2 Train Model

We build our model from the unique aspects of train system operations, i.e.,
the hierarchical structure (from the OCC to the stations to the trains) and the
mobile/static nature of trains/stations, respectively.

Given trains i ∈ T and the established railway path with the stations
j ∈ S (with S being a vector set with the elements in a particular order),
we model the train system discussed in Sect. 3.1 and the host connectivity
with a graph. Figure 2 shows a sample snapshot of the connectivity graph with

S1 S2 S3

T5 T4 T3 T2 T1

OCC

Fig. 2. A sample graph with three KUTS stations and five trains on the line. The
nodes indicate the hosts involved in KUTS (with S being stations and T being trains),
and the edges indicate logical KUTS interactions.
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three KUTS stations and five trains on the line, i.e., S = {S1, S2, S3} and
T = {T1, T2, T3, T4, T5}. Only the hosts that are involved in KUTS - the
OCC, KUTS stations, and trains - are represented in the graph, and not all
physical train stations (where the passengers embark/debark the trains) need to
be involved in KUTS1. Henceforth, we define stations to mean KUTS stations,
and not the rest of the train stations irrelevant to KUTS. S nodes correspond
to stations and T to trains, and the edges indicate the current connectivity.
The lowest row with trains are mobile, thus making the graph dynamic in time,
while the two upper rows are stationary. The indices correspond to time where
the trains travel from left to right. For example, T1 is the first train, T2 the sec-
ond train, and so on. Similarly, S1 is the first station that the trains encounter,
S2 the second, and so on. In the figure, for example, T1 passed S1 and S2 and
is currently either stationed at S3 or just passed S3 enroute to the next station.
Our model applies generally to the train-line topology, e.g., for a line that is a
loop with 5 stations, the same physical station can be captured by incrementing
j for every train cycle (so that the physical station owns all the indices of j
modulo 5 and enables that the station’s keys be unique per train cycle) and can
be straightforwardly adapted for multiple train-route cases (as long as there is
a countably finite sets of stations and trains and the OCC knows each of the
train’s routes); in fact, KUTS is largely described in each of the train’s view in
Sect. 4, e.g., station j corresponds to the j-th station that a train encounters.

As described in Sect. 3.1, the OCC distributes keys to the stations and the
trains, and the trains use those keys to secure their communications to/from the
stations and the OCC. The stations’ key seeds are denoted kj while the trains’
key seeds are ki

j where j and i are, respectively, the station index and train
index as described previously; the presence of the subscript indicates whether it
is train’s key seed (subscript present) or station’s key seed (subscript absent).
The subscript for train key seeds corresponds to time and gets incremented when
the train passes KUTS stations, i.e., j in ki

j corresponds to the last station that
the train stopped. For example, for Fig. 2, T1 currently passed S3 and thus uses
k1
3 to drive the key chain. As the initial root-of-trust, the OCC also distributes ki

0

to train i. KUTS provides a key update scheme given kj , ∀j ∈ S and ki
0, ∀i ∈ T .

In other words, given a train i and its initial seed ki
0, KUTS computes ki

j (when
passing the station j), which afterward is used to generate the keys that are used
for securing train communication protocols. Section 4 discusses KUTS in greater
details.

3.3 Threat Model

As in other key-establishment work, we consider attackers whose objectives are
to learn the key. In addition to the traditional threat model of attackers resid-
ing outside of the train system, we consider any attackers but the OCC (the
1 The choice of KUTS stations is a design parameter which has a tradeoff between

security strength and complexity/computation and is beyond the scope of this paper.
Section 5 provides analyses and insights that can be helpful in making such design
choices.
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trusted authority, as discussed in Sect. 3.1) and the corresponding train (who
owns the set of keys). The attackers do not have control over or did not com-
promise the hosts depicted in Fig. 2 (the logical entities that govern KUTS),
but they can physically reside within the train infrastructure system, e.g., the
station-trackside relay/switch or the parts of the station irrelevant to KUTS
intelligence are within the scope of our attacker model. Such attackers can also
conduct active attacks and disrupt the KUTS by diverging from the protocol,
e.g., drop the KUTS exchange or relay incorrect keys; we develop a detection
countermeasure for such active threats in Sect. 4.3. Such insider compromise
(where attackers breached parts of the system) is increasingly being considered
in critical infrastructure security, such as in the car vehicular networking (mul-
tiple credential authorities collaborating with each other for vehicular credential
management system) [24] and in device and chip manufacturing (split manufac-
turing) [25,26].

4 KUTS Scheme

We build our scheme on the model described in Sect. 3.2 and, using the jth
station’s key seed (kj) and train i’s initial key seed (ki

0), describe KUTS which
updates the key for dynamic key establishment. The key updates are gener-
ated on the train when it is at the KUTS stations (OCC, keeping track of the
trains’ locations, also separately update the key using KUTS) and used while the
train is moving between the stations, which provides well-defined time-separation
between the key updates and use. We use well-established cryptographic tools,
e.g., one-way functions, for the key update in Sect. 4.2 and describe the key fail-
ure detection in Sect. 4.3. But first, we define the contribution scope of KUTS
in Sect. 4.1.

4.1 KUTS Contribution Scope

Our contribution lies in establishing the keys between the OCC and trains for
CBTC, but not in how to use those keys to secure the communications. How
to use the keys for secure networking depends on the threat model and the
corresponding threat vectors, on which the security measure focuses, and such
developments are widely studied in computer security. For example, the keys can
generate digital signatures for communication integrity; the keys can be used
for message encryption for confidentiality; the keys can drive randomization
to thwart network reconnaissance or wireless denial-of-service attacks; and so
on. Our work thus serves as a building block to secure communication against
attackers in various scopes (whether they compromised the network and are
physically residing within the train network, e.g., switch, or have access to the
wireless link between the train and the station). Our analyses for KUTS in Sect. 5
also supports such generality in key use and attacker scope.

We focus on key updates given a key infrastructure with key seeds distributed
a priori, as discussed in Sect. 3.2. While key updates in other contexts, such
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H H H …ki0 ki1 ki2 ki3

k1 k2 k3 …

(a) KUTS key-chain update

H’

ki0

ki1

ki2

kij
…

H’({ki} t,0≤t≤j)

(b) KUTS key generation

Fig. 3. KUTS scheme for train i

as those discussed in Sect. 2, are either time-dependent (periodic updates with
regular time intervals) or event-based (triggered by an event), KUTS update is
space-dependent (updates at the stations) and uses the train’s pre-established
route (defined by the railway tracks and publicly announced).

4.2 KUTS Update and Key Generation

OCC, as the trusted authority, knows all the keys. For any i ∈ T and j ∈ S,
the station j knows its own key seed kj and shares it to train i upon the arrival
of the expected train i. Train i takes its current key seed ki

j−1 and the station’s
key seed kj to update its key seed to ki

j . Only kj is communicated, and the other
keys (e.g., ki

j−1 and its history) are locally stored within the train and the OCC;
the computations are also performed locally. We design KUTS to provide such an
update and, for scalability, keep the train’s key seeds ki

j , ∀j ∈ S the same size.
KUTS uses two cryptographic one-way functions, H and H ′. H is used for

key seed update and to drive the one-way chain, while H ′ is used for generating
the key that will be actually used for CBTC. In other words,

H : (ki
j−1, k

j) → ki
j (1)

H ′ : {ki
t}0≤t≤j → H ′({ki

t}0≤t≤j) (2)



134 S.-Y. Chang et al.

H H H

H’ H’ H’

…ki0 ki1 ki2 ki3

k1 k2 k3

H’(ki1) H’(ki2) H’(ki3)

…

…

…

Fig. 4. Our KUTS instantiation

As cryptographic one-way functions, both H and H ′ are easy to compute but
difficult to reverse, i.e., given H(x) for some x, it is difficult to find that x. Also,
as discussed in Sect. 5.1, KUTS is not sensitive to collision and is not subject to
many collision-based attacks on one-way computations.

Figure 3(a) describes KUTS’s key seed updates using H. For any i ∈ T and
j ∈ S, train i receives kj when it is stopped at station j (the upper row of
key seeds), then it uses H to compute ki

j from kj and ki
j−1 (the lower row of

key seeds). Afterward, as described in Fig. 3(b), it uses {ki
t}0≤t≤j to compute

H ′({ki
t}0≤t≤j); the weight can be controlled for the input seeds of {ki

t}0≤t≤j ; for
example, our instantiation described in Fig. 4 uses only ki

j and ki
j−1 at station

j. H ′({ki
t}0≤t≤j) is used as a key for secure CBTC operations, i.e., kj

i are not
designed to be directly used. Introducing additional complexity of H ′ protects
the security of the key chain, as discussed in Sect. 5.1.

We build an instantiation of KUTS, described in Fig. 4, to analyze the effi-
ciency and the overhead in Sect. 6. In particular, we use SHA-256 hashes for
both H and H ′ with input size of 512 bits. We use SHA-256 because it is quick
(as we will see in Sect. 6.1) and is computationally infeasible to reverse the com-
putation. Since we use a 512-bit-long inputs for H and H ′, the input for H is a
concatenation of kj and ki

j−1, and the input for H ′ is a concatenation of ki
j−1

and ki
j .

Like KUTS, bit-coins use one-way hash chains driven by SHA-256. However,
KUTS is fundamentally different from bit-coin mining in the following three
aspects. First, the upcoming bit-coin blocks are generated by solving the reverse of
Hash or finding collisions, while KUTS is given the inputs and compute the Hash in
the forward-direction to generate the key updates. Second, while the bit-coin hash
blocks, once solved, are publicly advertised, KUTS-output keys are sensitive and
are designed to be protected from adversaries. Third, a realistic adversary (even
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for a particularly persistent one) against train systems is significantly less compu-
tationally capable than the combined effort of bit-coin miners, as bit-coin miners
are a global network of machines with some individual miners investing millions
of dollars (even with such massive-scale distributed network, each SHA-256-based
bit-coin block gets solved roughly in every ten minutes by design).

4.3 Detection of Key Failure

KUTS key update failure occurs when the OCC and the train do not agree on
the key, and the failure event can happen because of the fault on the train side
(e.g., receiving the station’s key seeds and computing the updates) or the fault
on the station side (e.g., transferring the station’s seeds to the trains). KUTS
detection uses the following aspects of the train communication infrastructure:
it is hierarchical with OCC communicating with the stations and the stations
communicating with the trains and vice versa, as described in Fig. 2; it is also
dynamic with the trains moving from one station to another; and the trains’
operations (and their KUTS key uses) are orthogonal to each other.

KUTS detects key-update failures (e.g., an outdated/incorrect key is used)
when two or more distinct failure events are observed, where the distinctness
of failure events come from different connectivity edges (relayed from different
stations in the OCC view) or from the same edge but with different train/time
instances (where time instances are according to j updates in any of the train’s
view, e.g., any train on the station’s child branch leaves or enters). The dis-
tinctness is required because the key update relies on the cooperation with the
stations and needs to distinguish between the protocol failure on the station and
that on the train. This limits the failure event to one occurrence until another
distinct failure event is observed, which can trigger further investigation on the
node that has repeatedly caused failures. In the case of an update failure event
(and before the second event occurs), the train involved in the failure uses the
key before the failed update, and proceeds with the key for KUTS once it arrives
the next station; OCC keeps track of this to leave a record of key failures.

For example, in Fig. 2, suppose the OCC senses a KUTS failure event when
the communication got relayed from S2 and originated from T4. However, since it
does not know whether the failure is from S2 or T4, it waits until T4 moves to S3
or until T5 enters S2. If T4 is misbehaving, then a failure event will occur on S3
or any other future stations that T4 will encounter; if S2 is the one misbehaving,
then another failure event will occur for T5 or any of the later trains. After the
first observation of the failure (with k4

2), T4 and the OCC use the key that they
agreed on before T4 arrived at S2 (k4

1) before arriving to S3 and, upon arriving
in S3, updates the new key with H(k4

1, k
3).

5 Security Analyses

We analyze the KUTS scheme in this section. While Sect. 5.1 derives security
properties from the KUTS design, Sect. 5.2 theoretically analyzes the security
strength.
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5.1 Security Properties

KUTS is designed carefully to have the following properties that will be useful
in securing the train communications. In addition to being scalable (because the
key sizes remain the same for all updates) and enabling detection of misbehaving
insider station or train (as described in Sect. 4.3), it is interwound with the estab-
lished physical operations of the trains, insensitive to key collisions (defending
some known attacks on hash algorithms), and robust to compromise. We discuss
about these properties in greater details in this section.

Established and Publicly Known Trajectory of Train Operations.
KUTS uses the established operational trajectory/path of the trains as a source
of security assurance. Because the path is clearly defined by the railway tracks
and many users involved in the operation (the train-borne customers, the train-
borne logic, the stations, the OCC, and so on) a priori agreed on the path, it is
difficult to change the train’s operational path during CBTC (i.e., when KUTS
keys are used). For example, in contrast to the path authentication work in
packet routing and supply chains discussed in Sect. 2, it is challenging to make
the train physically diverge from the railway tracks, re-route it without any of
the entities noticing, or stop it in between stations and engage the train with
KUTS; not only do the trains themselves also keep track of their own locations
relative to the stations, e.g., by using odometry and/or beacons, but there are
also additional redundant mechanisms to check whether the train is at a station,
e.g., more capable and densely populated sensors enable higher precisions on
train sensing and better alignment with the platform screen doors.

Two-Layer Approach for Collision Irrelevance. KUTS introducing two
distinct hash computations (H using the key seeds and H ′ using the outputs of
H) provides the following security properties. First, collision-based attacks on
KUTS-output keys do not breach the security of the KUTS key chain because of
the separation of the two hashes, as finding a collision of one hash does not also
yield a collision in the other hash. As it is generally easier to find a collision than
the exact hash input, this property makes KUTS more secure and thwarts many
collision-based threats that has been studied to break hash algorithms. Thus, for
many one-way functions, e.g., SHA-256 hash that we used in our instantiation
implementation, the state-of-the-art attackers are forced to resort to brute-force.
Second, it enables the additional protection of key seeds, as the key seeds are
separate from H ′ and are not directly used to generate the keys that are actually
being used for train communications. We investigate this further in Sect. 5.2.

Two-Seed Approach for Compromise Resilience. In addition to separat-
ing the key chain from the CBTC-driving keys, the train’s key seed and the
station’s key seed are independent and originate from separate entities. There-
fore, even if either of them gets compromised (which by itself is a difficult task,
as the train key seed is stored and computed inside the train vehicle with no need
for networking, and there is a mature set of digital cryptography techniques that
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can be used to ensure confidentiality of the train-station exchange for the sta-
tion’s seed, e.g., using the current before-update key), the entropy for the other
key seed still holds against the attacker. Section 5.2 investigates this property
further against varying attacker capabilities.

5.2 Security Strength Analyses

We analyze the security strength of KUTS, against an attacker whose goal is
to learn the key as described in Sect. 3.3, and use the metric of entropy which
quantifies how random the value is against an unauthorized attacker [27,28] to
abstract away from the key length and other implementation details (and the
corresponding information leakage). The entropy of a discrete random value α,
whose sample size is S, is H(α), and H(α) = −

∑
i∈S Pri log(Pri) where Pri is

the probability of i occurring; if the logarithm is base-2, then H(α) is in bits. The
entropy H becomes additive across independent random values. For example, if
α is a sequence of independent uniformly-distributed bits (standard practice for
digital keys) that are n bits long, then Pr[α = γ] = 1

2H(α) = 1
2n , ∀γ ∈ S, and it

takes the attacker 2H(α)−1 = 2n−1 trials to guess the correct α in expectation.

Definition 1. Given any function f , yf is the entropy of the output of f , and
xf is the entropy of the input of f . In other words, if β = f(α), yf = H(β) and
xf = H(α).

In our instantiation, xf > yf for both f = H and f = H ′, because both
H and H ′ compress information (lossy) and have longer inputs than outputs.
We initially assume that the keys, both ki

j and kj , ∀j ∈ S, ∀i ∈ T , are secure.
However, we take a step-by-step approach to introduce stronger threat scenar-
ios (under our threat model in Sect. 3.3) to break the assumption and show
that KUTS still remains secure and the key random; the rest of the section is
organized in the increasing order of attacker capability/difficulty. Through this
analysis, we highlight the effectiveness of the separation and provide insights
helpful for choosing the parameters for KUTS, such as the key seed length.

General Security Strength of KUTS. For static keys, the attacker only
needs to breach the key that is being used for the train networking, and the
entropy is yH′ .

In contrast, KUTS dynamically updates the keys. Because it separates the
key chain and the key used for CBTC, as described in Sect. 5.1, and the com-
putations are done locally within the KUTS machines, the attacker needs to
jointly attack H and H ′ (as H is beyond H ′), and the cost of doing so is
xH . For example, against our implementation instantiation described in Fig. 4,
xH = H(ki

j−1, k
j) = H(ki

j−1) + H(kj) where the last equality comes from ki
j−1

and kj being independent to each other. KUTS key chain remains secure if xH

is positive, because the exact input is required and KUTS is irrelevant to hash
collisions; in fact, the following paragraphs study when parts of KUTS is com-
promised, starting from when H ′ is breached and yH′ = 0.
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Outsider Attacker Breaching H ′

Depending on the use of the KUTS-driven CBTC keys (H ′) and the computa-
tional capability of an attacker, the attacker can learn H ′. Suppose this happens
and yH′ = 0. If static keys were used, the key is compromised, and the attacker
has access to the CBTC communications.

On the other hand, against KUTS dynamic keys, the attack is mitigated and
its breach impact is limited to the following key update, as the rest of the KUTS
is still secure, e.g., xH′ = H(ki

j , k
j) > 0 for our instantiation, because H ′ is a

one-way function and is not injective, i.e., many-to-one mapping. Section 4.3 also
provides a fall-back mechanism against temporarily compromised keys.

Infrastructure Compromise and Breaching kj

An insider attacker who compromised the train infrastructure can learn kj , for
example, by attacking the key exchange between the station-side KUTS machine
and the train. In cases where a capable insider attacker breaches the key kj , i.e.,
H(kj) = 0, KUTS still remains secure because of the randomness in ki

j−1 and
xH = H(ki

j−1) > 0.

Train Compromise and Breaching ki
j–1

It is difficult to compromise ki
j−1 because this key does not leave the train’s

KUTS engine, which also performs the local computations for KUTS updates.
Nevertheless, even if ki

j−1 is compromised and H(ki
j−1) = 0, xH = H(kj) > 0

and the security strength depends on kj .

6 Implementation Analyses

To estimate the computational overhead, we implement KUTS on three
machines: i7 (Intel i7 64-bit processor at 2.5 GHz, 16 GB RAM, Mac OS),
i5 (Intel i5 64-bit processor at 1.6 GHz, 16 GB RAM, Linux OS), and AVR
(Atmel AVR 8-bit microcontroller at 8 MHz, 4 KB RAM). i7 and i5 machines
are widely used for general-purpose computers, and AVR microcontrollers are
playing greater roles in modern computing as more devices and applications,
especially those constrained in resource, require logic and connectivity to realize
Internet of Things (IoT); even with the processing-limited AVR and no effort to
optimize, KUTS overhead is marginal as discussed in Sect. 6.2. SHA-256-based
hash algorithms (for KUTS H and H ′) are adapted from OpenSSL, which pro-
vides a commercial-grade open-source library, widely adopted on modern-day
Internet and other digital transactions.

6.1 Computational Overhead from Hashing

Figure 5(a) and (b) show the average processing overhead of computing a hash,
respectively, in clock cycles and in seconds while varying the hash input size.
Both i7 and i5 use 64-bit processors and have comparable processing overhead
in clock cycles (e.g., i5 is slightly more efficient, requiring 3–10% less number of
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(a) Computation overhead in clock cycles

(b) Computation overhead in time

Fig. 5. KUTS hash computation overhead
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clock cycles to compute a hash depending on the input size), and the primary
difference between i7 and i5 in seconds is derived from the clock frequency. On the
other hand, the AVR significantly requires greater overhead in both clock cycles
and seconds; it requires 118–150 times more clock cycles than i5, depending on
the hash input size, and 114–139 times greater than i7. The difference becomes
even greater in seconds due to the processing frequency difference; AVR at least
takes 3.578 × 104 times longer than i7, and the difference in computational time
becomes greater than four orders of magnitude. We leverage these measurements
to estimate the cost of KUTS in Sect. 6.2.

6.2 KUTS Cost Analysis Between Train and Attacker

As described in Sect. 4.2, to implement KUTS, we use SHA-256 for both H and
H ′, and the input for H is a concatenation of kj and ki

j−1 while the input for
H ′ is a concatenation of ki

j−1 and ki
j . Thus, we focus on 512-bit or 64-Byte

inputs. For KUTS, the overhead is dominated by the two hash computations of
H and H ′ (the overhead from memory-based processing, i.e., read/write of the
bit registry, is relatively minor). For a legitimate train, the computation takes
2 × 326.9 = 653.8 ns for i7, 2 × 482.4 = 964.8 ns for i5, and 2 × 12.57 = 25.14 ms
for AVR. Even if the train system requires the security measure to be entirely
modular to the rest of the system and uses the AVR microcontroller, the KUTS
processing time overhead (of less than 3% of a second) is dominated by the time
spent at the trains with customer and physical-operation-related delays (which
are in the order of seconds) and is thus acceptable for deployment.

On the other hand, the attacker cannot access the hash chain and, not having
the inputs of the hash, need to resort to brute-force, as described in Sect. 5.1.
For example, in our implementation using the most capable i7, the attacker cost
to break KUTS is 2 × 2512−1 × 326.9 ns = 1.409 × 10140 years in expectation. In
contrast, depending on the design of the train operations, our key updates can
occur in the order of minutes (for urban metros) or hours (for rural inter-city
trains). Our result corroborates with the general belief that SHA is secure enough
(KUTS is also insensitive to collisions) and is thus widely used for security-
sensitive digital transactions such as finance and crypto-currency (as discussed
in Sect. 4.2); it will take a computing power as big as the globally distributed
network of bit-coin miners to compete with the KUTS updates.

7 Conclusion

To achieve secure key establishment for train-to-infrastructure networking, we
develop a key update scheme KUTS that mitigates the key breach by limiting
the breach impact to the current key and builds resiliency against system com-
promise. KUTS design is tightly interwound with the inherent train applications
(the hierarchical architecture for the vehicle-to-infrastructure CBTC communi-
cations and the differences in physical operations at and between stations, which
lead to the logical separation of KUTS key update and use). We also provide
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a temporary fall-back mechanism and a detection scheme, which can be used
to trigger a failure-response mechanism. We build KUTS based on the state-of-
the-art pseudo-random generator function (SHA-256 in our instantiation) and
analyze its security strength and properties while keeping the security overhead
marginal (a small fraction of a second per KUTS operation).
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with 0(1) worst case access time. J. ACM 31(3), 538–544 (1984).
http://doi.acm.org/10.1145/828.1884

23. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to “privacy-
friendly” tags. In: RFID Privacy Workshop (2003)

24. Whyte, W., Weimerskirch, A., Kumar, V., Hehn, T.: A security credential man-
agement system for V2V communications. In: Vehicular Networking Conference
(VNC), pp. 1–8. IEEE, December 2013

25. Rajendran, J., Sinanoglu, O., Karri, R.: Is split manufacturing secure? In: Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1259–1264, March
2013

http://doi.acm.org/10.1145/1102120.1102139
http://doi.acm.org/10.1145/1102120.1102139
http://doi.acm.org/10.1145/2619239.2626323
http://www.eurecom.fr/publication/3233
http://www.eurecom.fr/publication/3233
http://doi.acm.org/10.1145/2185448.2185471
http://dx.doi.org/10.1007/978-3-642-31284-7_28
http://doi.acm.org/10.1145/828.1884


Key Update at Train Stations 143

26. Imeson, F., Emtenan, A., Garg, S., Tripunitara, M.: Securing computer hardware
using 3D integrated circuit (IC) technology, split manufacturing for obfuscation.
In: Presented as Part of the 22nd USENIX Security Symposium (USENIX Security
2013), pp. 495–510. USENIX, Washington, D.C. (2013). https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/presentation/imeson

27. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948). http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x

28. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/imeson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/imeson
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x


Faulty Node Repair and Dynamically Spawned
Black Hole Search

Wei Shi1(&), Mengfei Peng2, Jean-Pierre Corriveau3,
and William Lee Croft3

1 School of Information Technology, Carleton University, Ottawa, Canada
wei.shi@carleton.ca

2 Aurora Technology Development Inc., Toronto, Canada
mengfei@auroratd.com

3 School of Computer Science, Carleton University, Ottawa, Canada
jeanpier@scs.carleton.ca, LeeCroft@cmail.carleton.ca

Abstract. New threats to networks are constantly arising. This justifies pro-
tecting network assets and mitigating the risk associated with attacks. In a
distributed environment, researchers aim, in particular, at eliminating faulty
network entities. More specifically, much research has been conducted on
locating a single static black hole, which is defined as a network site whose
existence is known a priori and that disposes of any incoming data without
leaving any trace of this occurrence. However, the prevalence of faulty nodes
requires an algorithm able to (a) identify faulty nodes that can be repaired
without human intervention and (b) locate black holes, which are taken to be
faulty nodes whose repair does require human intervention. In this paper, we
consider a specific attack model that involves multiple faulty nodes that can be
repaired by mobile software agents, as well as a virus v that can infect a pre-
viously repaired faulty node and turn it into a black hole. We refer to the task of
repairing multiple faulty nodes and pointing out the location of the black hole as
the Faulty Node Repair and Dynamically Spawned Black Hole Search. We first
analyze the attack model we put forth. We then explain (a) how to identify
whether a node is either (1) a normal node or (2) a repairable faulty node or
(3) the black hole that has been infected by virus v during the search/repair
process and, (b) how to perform the correct relevant actions. These two steps
constitute a complex task, which, we explain, significantly differs from the
traditional Black Hole Search. We continue by proposing an algorithm to solve
this problem in an asynchronous ring network with only one whiteboard (which
resides in a node called the homebase). We prove the correctness of our solution
and analyze its complexity by both theoretical analysis and experiment evalu-
ation. We conclude that, using our proposed algorithm, b + 4 agents can repair
all faulty nodes and locate the black hole infected by a virus v within finite time.
Our algorithm works even when the number of faulty nodes b is unknown a
priori.
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1 Introduction

Over the past few years, as cloud-based services have become prevalent, so has the
need for effective diagnosis of all-too-frequent network anomalies and faults. As cloud
servers involving multiple data centers are usually geographically dispersed (thus not
physically coupled), locating a network fault physically may be expensive and difficult,
if not impossible. Using software agents to locate and/or repair network faults becomes
a reasonable solution and thus has attracted the attention of researchers, especially in
distributed computing [31]. Many types of faults exist in a network, such as black holes
(e.g., [9, 15, 19]), repairable black holes (e.g., [8, 12]), faulty agents (e.g., [5, 23]), etc.
Among these, a black hole is a severe and pervasive problem. A black hole models a
computer that is accidentally off-line or a network site in which a resident process (e.g.,
an unknowingly-installed virus) deletes any visiting agents or incoming data upon their
arrival without leaving any observable trace [16].

In practice, many computer faults/virus cannot be completely removed by anti-virus
software: After a repair, a previously infected node may still be more vulnerable than
the ones that have never been infected, and can be easily reinfected. For instance, a
hacker injects into a computer host a virus that can delete any incoming data and that
may later be removed by an anti-virus agent. However, after repair, an unknown
vulnerability remains on that host and it enables the hacker’s next attack. Indeed, with
fast spreading worms mentioned in [33] (such as W32/CodeRed, Linux/Slapper,
W32/Blaster or Solaris/Sadmind), a host can be exploited only if the system has a
vulnerability known a priori. Such virus behaviour is commonly referred to as vul-
nerability dependency. More generally, in cloud computing, the term vulnerability
refers to the flaws in a system that allow an attack to be successful [25]. The vulner-
ability security issue has been widely discussed in research works such as [1, 6, 24].

Cooper et al. [8] first introduced a type of weaker black hole, which he called a
hole, that eliminates any incoming data but can be repaired by the first encountering
agent. Assuming vulnerability dependency, the hacker can then inject an even more
powerful virus and turn this repaired host into a genuine (i.e., unrepairable without
human intervention) black hole at some point in the future. Our work originates in that
attack model. A black hole is still taken to be a node that is not repairable without
human intervention. But to avoid any ambiguity around the term “hole”, we will refer
to a node with abnormalities that can be repaired by a software agent as a faulty node
(rather than a hole). In this paper, we introduce the Faulty Node Repair and Dynam-
ically Spawned Black Hole Search problem (repair and search problem for brevity).

In our new attack model, there are multiple faulty nodes. Each such node eliminates
any incoming data and can be repaired upon being visited by an antivirus agent who, in
effect, “dies” at the end of this repair. That is, following Cooper [8], we assume there is
a cost for repairing a fault, namely, the repairing agent is unable to continue exploring
the network. Furthermore, we assume that when multiple antivirus agents simultane-
ously enter a faulty node, they all die at the end of the repair.1. We assume this worst

1 This is the worst case scenario, which we use to calculate, later in the paper, the theoretical maximum
number of agents sacrificed to solve the problem.
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case scenario for the design of our solution to the proposed repair and search problem.
Obviously, fewer agents are required in less damaging cases.

In our attack model, a faulty node, once repaired, behaves like a normal one but
remains vulnerable and can be infected again after attacked by what we call a gray
virus. A gray virus (GV for brevity) is a piece of malicious software that can infect a
repaired node (due to the latter’s vulnerability) by residing in it and turning it into a
black hole. In this paper, we consider what we call a one-stop GV, that is, a virus that
permanently resides in the node it infects and thus cannot harm other nodes. (More
generally, a multi-stop gray virus can infect multiple repaired nodes.) A GV is taken to
have no destructive power on a normal node or link. Here, we consider a single
one-stop GV that infects a single faulty node. That is, we consider searching for a single
black hole. (More generally, there could be multiple black holes resulting from one or
more multistop GV s.) Furthermore, in this paper, we specifically study the search and
repair problem in an asynchronous ring network.

The solution we propose for this version of the repair and search problem uses a
team of mobile agents to repair all faulty nodes and locate the single black hole (by
marking the edges leading to it). These agents have limited computing capabilities and
bounded storage. They all obey an identical set of behavioural rules (referred to as the
“protocol”), and can move from a node to a neighbouring node. Also, these agents are
anonymous (i.e., do not have distinct identifiers) and autonomous (i.e., each has its own
computing and bounded memory capabilities). Such characteristics are systematically
adopted for the traditional black hole location problem in computer networks.

Contrary to the traditional black hole search [32], in which all agents start in a
network knowing a priori that there is one and only one black hole, in our proposed
new attack model, a repaired faulty node can be infected again and turned into a black
hole at any point in time (regardless of the agents traversing the network and trying to
repair faulty nodes). That is, at what time a node becomes the black hole is unpre-
dictable. Additionally, this unpredictable black hole may coexist with multiple faulty
nodes. This drastically changes the nature of the black hole search problem in asyn-
chronous networks. That is, the possible scenarios we must consider are significantly
more complex than those associated with traditional black hole search. Let us briefly
elaborate. To locate a black hole in traditional black hole search in an asynchronous
network, there is a commonly used technique called cautious walk: a first agent has to
leave a “mark” indicating a potential danger (e.g. a token or a whiteboard message) in
its current node before it moves along a link potentially leading to the black hole. When
a second agent sees this mark, it does not go to visit the same potentially dangerous
node. This technique is used to minimize the loss of mobile agents. The cautious walk
technique points to the fact that the only mechanism used to terminate a traditional
black hole search algorithm is to let at least one agent survive and successfully traverse
the entire network except one node. This only unexplored (i.e. never been visited by
any agent) node is then declared to be the black hole. But when there are multiple
faulty nodes in the network, even when more sophisticated communications between
agents are available, none of the existing black hole search algorithms solve the repair
and search problem. This is because, in these algorithms, there is no mechanism to
distinguish a black hole from a faulty node. Consequently, given a faulty node would
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be treated the same way as the black hole, no agent is able to successfully explore
(n − 1) nodes and survive.

2 Related Work

The problem of finding the most efficient solution (with respect to time and minimum
number of agents required) for the black hole search is studied in an edge-labeled
undirected synchronous network using 2 co-located agents using the face-to-face
communication model in [9–11, 26, 27]. Czyzowicz et al. [10] show any efficient
solution is NP-hard, and propose a 9.3-approximation algorithm for it. Klasing et al.
[27] prove that this problem is not a polynomial- time approximation within any
constant factor less than 389

388 (unless P = NP), and give a 6-approximation algorithm.
Czyzowicz et al. present a 5

3 -approximation algorithm in an arbitrary tree without a
map in [9]. Furthermore, Klasing et al. [26] provide a 3 3

8 -approximation algorithm for
an arbitrary network with the help of a network map.

The black hole search problem in an asynchronous network is much more complex
and more significant in practice. Dobrev et al. [20] introduce an algorithm to locate the
black hole in an un-oriented ring networkwith dispersed agents inO(kn + nlog n) moves.
For some other common interconnection networks, Dobrev et al. [13] present a general
strategy to locate the black hole inO(n) moves by using 2 co-located agents. Shi et al. [32]
prove that 2 co-located agents, each with O(1) tokens, can locate the black hole in
H(n) moves for hyper- cube, torus and complete networks. Moreover, for an arbitrary
unknown network graph with known n, Dobrev et al. [14] present an algorithm using
D + 1 agents, one token per agent and O(D2M 2n7) moves to locate the black hole. Here,
M is the total number of edges of the graph. In an arbitrary network, Dobrev et al. [17]
prove that in the whiteboard model, the black hole search problem can be solved with
D + 1 agents inH(n2) moves without networkmaps. Balamohan et al. [3] prove that in an
unknown graph with a constant number of agents, at least D + 2 agents and at least 3
tokens are necessary in total to locate the black hole, where D is the maximum node
degree.

Multiple black hole search (MBHS for brevity) problem has been studied by
Cooper et al. [7] in synchronous networks. Later, the same authors [8] present solutions
to the multiple repairable black holes (faulty nodes) problem. D’Emidio et al. [12]
study the same problem under the same condition as [8] with a change of one
assumption: if more than one agent enters the same faulty node at the same time, all
agents die. Flocchini et al. tackle the MBHS problem via a subway model in [21]. The
authors use carriers (the subway trains) to transport agents (the passengers) from node
to node (subway stops), and the black holes no longer affect the carriers and can only
eliminate the agents. After assuming that the graph is strongly connected after all black
holes have been removed, Kosowski et al. [28] study a synchronous network with
arbitrary size, while Flocchini et al. [22] study the MBHS problem with asynchronous
dispersed agents.

Cai et al. [5] study a network decontamination problem with a black virus, which is
related to both black hole search and intruder capture problems. The authors define a
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black virus as a dangerous process that is initially resident in the network. A black virus
behaves like a moving black hole that can destroy any arriving agent and can move
from node to node. However, unlike a black hole that cannot be repaired or destroyed, a
black virus can be eliminated when it enters into a node with an anti-viral agent. Luccio
et al. [30] consider a mobile agents rendezvous problem in spite of a malicious agent,
which is similar to [18], which rendezvouses agents in a ring in spite of a black hole.
While a malicious agent in [30] can only block other agents from visiting its resident
node and can move in the network at arbitrary speed, a black hole in [30] can delete all
visiting agents but it cannot move. Královič et al. [29] research a periodic data retrieval
problem using a whiteboard in asynchronous ring networks with a malicious host. The
malicious host can manipulate the agent by storing and copying it and releasing the
replica later to confuse other agents, or by killing an agent. Bampas et al. [4] improve
this result by showing that at least 4 agents are required when the malicious host is a
gray hole, which can choose to behave as a black hole or as a safe node, and 5 agents
are necessary when the whiteboard on the malicious host is unreliable.

3 Premises

In this section, we present our assumptions for the solution we propose for the Faulty
Node Repair and Dynamically Spawned Black Hole Search problem in an asyn-
chronous ring network.

Let G = (E, V) denote an edge-labeled undirected ring network, where E is the set
of edges, V is the set of network nodes and n (n = |V|) denotes the number of nodes in
G. (u, v) 2 E represents the link from u to v, where u 2 V and v 2 V and u to v are
neighbouring nodes. The links and nodes in the network enforce a FIFO rule, that is,
mobile agents cannot overtake each other when traveling in the same direction over the
same link or node. Without this assumption, systematical termination of a repair and
search algorithm with minimal number of agents cannot be guaranteed.

Let A denote a group of k (k � 2) identical mobile agents initially waking up in
the same node referred to as their homebase (hb). This homebase is assumed to be safe
in the ring network: it is neither faulty nor a black hole. These agents have limited
computing capabilities and bounded storage2, obey the same set of behavioural rules
(the “protocol”), and can move from node to node via neighbouring nodes. We make
no assumptions on the amount of time required by an agent’s actions (e.g., computation
or movement, etc.) except that it is finite. Thus, the agents are asynchronous. Also,
these agents are anonymous (i.e., have no ID) and know the topology of the network in
which they reside. Most importantly, these agents have no knowledge of the number of
faulty nodes.

We let Vf � V denote the static, i.e., fixed a priori set of b (b < n) faulty nodes.
Once a faulty node has been repaired, it is referred to as a repaired node. We

2 Minimal storage just sufficient to keep track of the number of moves an agent has performed during
each exploration of a new node.
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emphasize that, unlike a normal node, a repaired node can be infected by a GV and turn
into a black hole.

We postulate that a whiteboard [16] (i.e., shared memory) in the hb offers the only
means of communication between agents. This whiteboard in hb can be accessed by
agents in fair mutual exclusion [2].

We assume the network is an un-oriented ring, that is, there is no agreement on a
common sense of direction among the agents [16]. However, using the whiteboard in
hb, all agents shall be able to agree on what corresponds to the clockwise direction
(also referred to as the left direction) and the counterclockwise direction (also referred
to as the right direction) of the ring. In order to ease the understanding of the algorithm
description, N0, N1, … Nn−1 are used to label the nodes of the ring sequentially using
the left direction starting from the hb. Such labelling is only used for explanation and
algorithm proof purpose; it is not required by our algorithm per se.

Observation 1. When a repaired node gets reinfected by a GV only after all faulty
nodes have been repaired, the Repair and Search problem becomes a faulty node
repair problem followed by a single black hole search problem for which all possible
locations of the black hole are known a priori since only repaired nodes can be
reinfected.

In this special case, the proposed problem becomes easier to solve than a traditional
single black hole search problem. Consequently, this special case is of no interest here.
That is, in this paper, we are only interested in studying the scenario in which a
one-stop GV may infect a repaired node before the last faulty node is repaired. As
previously mentioned, in contrast with the traditional black hole search, it is the
coexistence of a black hole with at least one faulty node that makes the Repair and
Search problem complex. We present a solution to this challenging problem in the next
section.

4 Algorithm and Solutions

4.1 General Description

The status of each node in a network can be either “faulty” or “repaired” or “black
hole” or “normal” or “unknown”. The general goal of each agent is to explore a new
node (we call it a status unknown node or just unknown node) and update the white-
board upon returning to the hb. During this exploration, an agent may die after
repairing a faulty node, or in a black hole or survive and successfully return to the hb
and restart the procedure of exploring a new node. This new exploration and checking
the whiteboard get repeated until all nodes’ status are marked as either a repaired node,
or a black hole or a normal node. In order to prevent multiple agents die in the same
faulty node or black hole, we develop a status marking process as part of agents’
protocol to execute. The following paragraph and Tables 1 and 2 explain such a
process:
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Upon an agent A wakes up at hb, it initializes the whiteboard as shown in Table 1.
All nodes are unknown nodes. Agent A puts a leaving mark (?) in the cell of First Agent
for node N1, and then goes to visit node N1. Upon its arrival, agent A returns to hb
immediately. Once A returns to hb, agent A changes the leaving mark to a returned
mark (

p
) (Table 2 shows an example).

By repeating this process, agent A explores nodes N2, N3, ���, Ni. Other agents such
as B may wake up any time during A’s exploration. When B sees a leaving mark for
node Ni. Agent B goes to node Ni to confirm the status of node Ni. B puts a leaving
mark under Second Agent column on node Ni. Upon its arrival, agent B returns to hb
immediately and changes the leaving mark into a returned mark. By the time agent
B returns, agent A may have returned (i.e. A’s mark is changed from leaving to
returned), which means node Ni is not a faulty node. Otherwise, agent B concludes that
agent A has died after repairing a faulty node Ni. In this situation, B will change the
leaving mark (?) of A into a died mark (�) (see Scenario S5 in Table 3) and mark Ni as
a repaired node under the Repaired Node List column.

While agents A and B are out exploring in the left direction, other agentsC andDmay
wake up. C and D immediately start exploring the ring in the right direction to visit node
Nn−1,Nn−2,…,Nn−j. This mechanism is designed to avoid unnecessary loss of agents (i.e.
the black hole has already appeared, sending agents to the same direction will lead to
agent loss). As long as there is one unknown node showed in the whiteboard, a newly

Table 1. Homebase whiteboard initial state

Node list First agent Second agent Third agent Fourth agent Repaired node list

N1

…

Ni−1

Ni

…

Nn−j

Nn−j+1

…

Nn−1

Table 2. An example of how agents indicate their status.

Node list First agent Second agent

N1
p
(l)

N2 � p
(l)

…

Ni ?(l) ?(l)
…

Nn−2 ?(r)
Nn−1

p
(r) ?(r)
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awake agent will not go to the direction, in which there are already 2 agents. Furthermore,
as long as the ring has one unknown nodes and 4 agents are currently exploring a new
node, a newly waking up agent will just wait at hb until at least 1 of the 4 agents returns.
This mechanism is used to minimize the total agent moves, that is to minimize the
network traffic. The details are described in Procedure New Node Exploration
(Subsect. 4.2).

When an agent sees that there is only one unknown node left in the network, it
starts executing Procedure Find the Meeting Node. Eventually 2 agents enter the last
unknown node from the left direction and 2 agents from the right one. If one of these 4
agents, say agent E dies in the black hole (just appeared) on its way to check the last
unknown node, this last unknown node is not a black hole. Hence, at least 1 out of the 4
agents left to explore the last unknown node can return to the hb successfully. If the last
unexplored node is the black hole, we need a mechanism to make sure at least one
agent is able to safely return to the hb and concludes that the last unexplored node. This
mechanism is described in Procedure Find the Meeting Node (Subsect. 4.3) and
Procedure Double Check (Algorithm 3).

4.2 Procedure New Node Exploration

Whenever an agent returns to hb, it scans the whiteboard. It goes through the node list
from the top to the bottom. The agent may find a node to be: unexplored, that is a node
that has never been visited by any agent, namely, no mark on the whiteboard (i.e. the
row of the node in Table 1 is empty); or repaired, that is a node that has a

p
under the

Second Agent column and a � mark under the First Agent column (i.e. the Second
Agent returned but the first one did not. See Scenario S5 in Table 3); or safe, that is a
non-faulty node that has a

p
under the First Agent column (i.e. the First Agent has

returned. See Scenario S2, S4 and S6 in Table 3); or unknown, that is a node that has a ?
under under the First Agent column or both First and Second Agent columns. (i.e. both
agents have left but no agent ever returned. See Scenarios S1 and S3 in Table 3). The
status of a node is considered to be known if it is either safe or repaired.

While scanning the nodes list in the whiteboard, an agent A counts the number pdl
of ?(l) if there is any unexplored node. It determines the next step accordingly.

Table 3. Agents leaving and returning to the homebase scenarios as marked on the whiteboard.

Scenarios First agent Second agent Targeted node is No. of status unknown agents

S1 ? (l/r) Unknown 1
S2

p
(l/r) Safe 0

S3 ? (l/r) ? (l/r) Unknown 2
S4

p
(l/r) ? (l/r) Safe 1

S5 � p
(l/r) Repaired node 0 (1 died)

S6
p

(l/r)
p

(l/r) Safe 0

?: a status unknown agent that left to explore a node.
�: an agent died either in a black hole or after repairing a faulty node.p
: an agent that has returned to hb
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If A cannot find an unexplored node, the agent will finish searching the whole list and
execute Procedure Find The Meeting Node. When at most one agent has left in the left
direction (pdl < 2), agent A leaves in the left direction to visit an unexplored node or
confirm the status of an unknown node. When pdl = 2, the agent counts the number pdr
of ?(r). If pdr < 2, agent A leaves in the right direction. When 2 agents are out in each
direction (pdl = 2&pdr = 2), agent A has to wait at hb until one returns. If node Ni is
the last unexplored node, once Ni is explored, it becomes a meeting node, that is the last
unexplored node in the network.

4.3 Procedure Find the Meeting Node

When an agent A cannot find an unexplored node in the whiteboard, it executes
Procedure Double Check if there are no more unknown nodes. Otherwise, A counts the
number of status unknown agents pd in the entire list and executes the following:

1. When pd > 4, A waits at hb.
2. When pd = 4 and the 4 status unknown agents are not on the same node,Awaits at hb.
3. When pd = 4 and the 4 status unknown agents are marked on the same node,

A starts Procedure Double Check immediately.
4. When pd < 4 and there are no nodes in Scenario S1: a. If all status unknown agents

are not on the same node, A waits at hb; b. If all status unknown agents are on the
same node, A goes to that node.

Algorithm 1. New Node Exploration

1: initialize the whiteboard to Table 1
2: loop
3: if an unexplored node Ni is found then
4: count the number pdl of status unknown agents out in the left direction ?(l)
5: else if no unexplored node is found then
6: execute FIND THE MEETING NODE
7: end if
8: if pdl = 0 then
9: go to node Ni

10: else if pdl = 1 and node Ni−1 is in Scenario S1 then
11: go to node Ni−1

12: else if pdl = 1 and node Ni−1 is in Scenario S4 then
13: go to node Ni

14: else if pd = 2 then
15: count the number pdr of ?(r)
16: leave in the right direction when pdr < 2, otherwise wait at hb
17: end if
18: upon arriving, return to hb immediately, then change own ?(l/r) into

√
(l/r)

19: if the current agent is the Second Agent and the First Agent is ? then
20: change the ? of the First Agent to ×
21: end if
22: end loop
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5. When pd < 4 and there are one/two nodes in Scenario S1, A goes to a node which
can be reached without passing through a status unknown agent, otherwise, A waits
at hb until one returns.

If A returns to hb from a node with 4 status unknown agents, it marks this node as
the “Last” node.

4.4 Procedure “Double Check”

As detailed in Procedure Find the Meeting Node, an agent A will only start executing
Procedure Double Check when A sees that all nodes’ statuses are known (either safe or
repaired) or all nodes’ statuses are known save for one. In this latter scenario, according
to line 10 in Procedure Find the Meeting Node, four ?s are on that node.

Agent A continues this task by marking all repaired nodes in Table 1. A then
searches the Third Agent column:

1. If there are 2 status unknown agents in this column, A wait at hb until one of them
returns;

2. If there is only 1 status unknown agent, A searches this column from top to bottom
until it finds an empty cell. If the empty cell is above the status unknown agent,
A puts a ?(l) in the cell, and then goes to the node. Otherwise A leaves in the right
direction after putting down a ?(r). A returns to hb immediately after visiting this
node. It changes the ? to a

p
.

Algorithm 2. Find the Meeting Node

1: loop
2: count the number of status unknown agents pd
3: if every node is known to be safe or repaired then
4: execute Double Check
5: end if
6: if pd > 4 or pd = 4 and the 4 ? are not on the same node then
7: wait at hb
8: else if pd = 4 and the 4 status unknown agents are on the same node then
9: execute Double Check
10: else if pd < 4 and no node is in Scenario S1 then
11: if all status unknown agents are not on the same node then
12: wait at hb
13: else if all status unknown agents are on the same node then
14: go to this node, and ensure 2 agents from the left direction and 2 from

the right
15: end if
16: else if pd < 4 and one/more than one node is in Scenario S1 then
17: go to a reachable node in Scenario S1, otherwise wait at hb
18: end if
19: upon arriving, return to hb
20: if hb is reached and the cell of the Third Agent for the same node is ? then
21: change the third ?(l/r) into ×, mark this node “Last”
22: end if
23: end loop
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3. If there is only 1 status unknown agent and no empty cell in the Third Agent
column, the node with the only status unknown agent is the black hole.

5 Theoretical Correctness and Complexity Analysis

Lemma 1. There can be no more than 4 status unknown agents co-exist in the network
as long as at least one node has not been marked on the whiteboard by any agent. At
least 1 of these 4 agents will return to hb.

Proof. In the homebase hb, as long as an agent A can find an unexplored node in the
node list, it always needs to explore a new node (by executing Procedure New Node
Exploration) before it executes any other procedure.

An agent A always searches the node list starting from the top first, if at most one
agent have left in the left direction, A will also leave in the left direction. Otherwise it
searches the node list starting from the bottom. Hence, there will never be more than 2
status unknown agents leaving in the left direction. Similarly, when A searches from
bottom to top of the node list, A leaves in the right direction if at most one agent has left
in the right direction. If A finds 2 agents have left in both left and right directions, A will
wait at hb until Table 1 is changed by a returned agent (see Line 16 in Procedure New
Node Exploration). Consequently, there will never be an occasion in which any agent
will leave hb when there are two ?s on each side of it. Hence, there cannot be more than
4 status unknown agents as long as at least one node is unexplored.

Algorithm 3. Double Check

1: search the repaired node list
2: if the list is blank then
3: mark all repaired nodes in the list
4: end if
5: while the black hole has not been located do
6: search the Third Agent column
7: if there are 2 ? in this column then
8: wait at hb until an agent returns
9: else if there is 1 ? in this column then
10: search this column from top to bottom until an empty cell is found
11: if the empty cell is above the ? then
12: go left to the node, upon arriving, return to hb immediately
13: else if the empty cell is below the ? then
14: search this column from top to bottom until an empty cell is found, go

to the node
15: else if an empty cell cannot be found then
16: the black hole is determined to be the node with ?
17: end if
18: else if there is no ? in this column then
19: search this column from top to bottom until an empty cell is found, go to

the node
20: end if
21: end while
22: ALGORITHM TERMINATES
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We now prove that at least 1 of these 4 agents will return to hb eventually. It is
trivial to observe that all the explored nodes are in one or two consecutive sections in a
ring: when there is no unexplored node remaining in the ring, all explored nodes are in
one consecutive section; otherwise, the two sections of explored nodes are separated at
each end by the hb and a consecutive section of unexplored nodes. We call these two
sections the left part and the right part. When there are 4 status unknown agents in the
network, it can only be the case that 2 are in the left part and 2 in the right
part. According to our assumptions, we know that once the black hole appears, it can
only exist either in the left part, or in the right part.

Clearly if the black hole has not appeared yet, the two second-agents (1 on each
side) in both parts will return to hb traversing through the section of the ring with
consecutive explored nodes while the two first-agents (1 on each side) may die if the
last unexplored node happens to be a faulty node. If the black hole appears in the left
part, the second-agent in the right part will return successfully and the two agents in the
left part die in the black hole. Similarly, if the black hole is in the right part, the
second-agent in the left part will return while the other three die. In summary, no matter
when the black hole appears and no matter where the black hole is, in the process of
exploring the last an unexplored node, at least 1 of the 4 status unknown agents will
return to the hb.

Lemma 2. At most 5 status unknown agents coexist during the time the at least node is
being explored. At least 1 of these 5 status unknown agents will return to hb.

Proof. When the last unexplored node is being explored, according to Procedure New
Node Exploration lines 16, only when there are fewer than 4 status unknown agents
coexist in the network, a newly waking up agent will decide accordingly to go to the
last unexplored node. After this agent has left, there are no more unexplored nodes in
Table 1 and 4 status unknown agents exist in the ring at this moment. Furthermore,
according to Procedure Find The Meeting Node lines 4 and 7, Procedure Double Check
can be executed when either all nodes’ statuses are known or when 4 status unknown
agents are exploring the same node. This latter case is where the fifth agent is needed in
the network. In all other cases, a newly waking up agent waits at hb.

If this last node is not a black hole, none of the 4 agents can return. According to
Procedure Double Check a new agent enters the network. It goes to check each node as
the fifth status unknown agent in the network. It conclude that the last node is the black
hole according to Line 16 in Procedure Double Check. If this last node is not a black
hole, the fifth Agent may die stepping into a black hole that just appeared. However,
the two other agents that successfully explored the last unexplored node should return
to the hb successfully. Eventually one of the two will die in the black hole while the
other one survive after Therefore, at least 1 of the 5 status unknown agents will return
to hb.

Lemma 3. All faulty nodes will be repaired within finite time.

Proof. If a faulty node Nx has not been repaired, its status shown in the whiteboard in
hb must be either unexplored or unknown, that is the exploring agent either died after
repairing a faulty node or in a back hole or has not returned to hb yet. If Nx is
unexplored, according to Lines 4, 9 and 11 in Procedure New Node Exploration, an
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agent will explore Nx and any other unexplored node before it executing the procedure
that can lead to the termination of the algorithm.

If Nx is a status unknown node, it can be either in Scenario S1 or S3. When Nx is in
Scenario S1, according to Lines 11 and 13 in Procedure New Node Exploration, it is
either the case that the First Agent returns to hb after exploring Nx and marks this node
safe in the whiteboard; or a Second Agent will explore Nx and consequently change the
marking in the whiteboard into Scenario S3.

When Nx is in Scenario S3, it may become S4-safe, S5-repaired, S6-safe, or stay
S3-unknown. As proven in Lemma 1, at most 2 nodes may be in Scenario S3. When 2
nodes are in Scenario S3, at least one agent will return to hb, since there is only one
black hole. This returning agent will change one of the two Scenario S3 nodes.
Consequently, at most 1 node remains in Scenario S3.

For this last unknown node, a third and a fourth agent will go to this node according
to Line 14 in Procedure Find the Meeting Node. As proven in Lemma 2, as long as this
node is not a black hole, one of the 4 agents will return to hb. If this node is the black
hole, it must have been a repaired node first. Therefore, we conclude that all faulty
nodes will be repaired within finite time.

Lemma 4. Procedure Double Check locates the black hole correctly.

Proof. Procedure Double Check gets executed in two only conditions: (1) all nodes
have known status, (2) only one node is unknown and it has 4 status unknown agents.
In the former case, according to Line 12 and 14 in Procedure Double Check, each new
agent or a newly returned (to hb) agent simply leaves to check each node one by one,
and the last repaired node that has no agent returned is the black hole. In the latter case,
a Fifth Agent is needed to continue the Double Check. As previously proven in Lemma
2, at least 1 of these 5 status unknown agents will return to hb. If the returning agent is
this Fifth Agent, it will continue checking another node until it returns to hb and notices
that there is only one repaired node with no agent has returned. If the returning agent is
one of the 4 agents that were marked on the last status unknown node, according to
Line lst:line:Meet8 in Procedure Find the Meeting Node, the status of this unknown
node becomes known and is marked “Last”. Consequently, this latter case is turned into
the former case, and the black hole is located.

Lemma 5. Minimally b + 2 agents are necessary to repair all faulty nodes and locate
the black hole in an asynchronous ring network.

Proof. Since there are b faulty nodes in the ring network and 1 agent can only repair 1
faulty node, b agents are needed. To distinguish the black hole from the repaired nodes,
at least one agent has to enter the black hole and die, thus, b + 1 agents are required. To
report the locations of the faulty nodes and the black hole, at least 1 agent has to
survive, hence, b + 2 agents are necessary.

Lemma 6. b + 4 agents suffice to repair all faulty nodes and locate the black hole in a
ring network using only one whiteboard in the homebase.

Proof. To repair b − 1 faulty nodes, b − 1 agents are necessary and sufficient. In the
worst case, the last unknown node is the black hole and all 4 status unknown agents die
in it, and one more agent is needed to perform the Procedure Double Check. All other
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cases are proven in Lemma 2: at least 1 of these 5 agents will return to hb and locate the
black hole. Therefore, b + 4 agents suffice.

Lemma 7. In an arbitrary ring that contains b faulty nodes and a one-stop GV, b + 2
agents are necessary to repair all faulty nodes and locate the black hole.

Proof. b agents are required to repair all b faulty nodes and 1 extra agent has to die in
the black hole in order to locate it, while 1 agent needs to survive and report. Therefore,
b + 2 agents are necessary to repair all faulty nodes and locate the black hole.

Lemma 8. All faulty nodes can be repaired and the black hole can be located within O
(n2) moves.

Proof. In the worst case, the b faulty nodes are the nodes from Nn−1 to Nn−b and each
node in the ring has been visited by 2 agents in Procedure New Node Exploration.
Therefore, it costs 2 � 2 � (1 + 2+3 + 4 + ��� + (n − 1)) = 2(n − 1)(n − 2) moves.
The last unknown node may be explored by 4 agents in Procedure Find the Meeting
Node. Hence, at most 4 � 2(n − 1) moves are performed. In Procedure Double Check,
each node needs to be visited again which costs 2(n − 1)(n − 2) moves. In total,
4 � (n − 1)(n − 2) + 4 � 2(n − 1) = O(n2) moves are needed.

Theorem 1. Algorithm Dynamically Spawned Black Hole Search (DSBHS) can repair
all faulty nodes and locate the black hole with b + 4 co-located agents in O(n2) moves
using only one whiteboard in the homebase.

6 Verifying Correctness and Complexity Using Simulation

In this section, we present the experimental results obtained from a series of Java
simulations of the proposed algorithm. The experiment is done in a ring network with
only one whiteboard in the homebase node which can only be accessed when the agents
are in the homebase. All agents start from this homebase and execute the same protocol
as described above. For the number of faulty nodes, we use a variable (faulty posb)
to present the possibility that whether or not a node in the experimental network is
faulty. This possibility varies between 20% to 40%. Thus, at the beginning of the
exploration, the agents do not know the number of faulty nodes or their locations. In
addition to the possibility of a node is faulty or normal, we assign a probability that
dictates how likely a repaired node becomes a black hole. The dynamically generated
location of a black hole is used to simulate the behaviour of the GV that is it can infected
a repaired node at any time before the last repaired node is found.

To make the implementation more realistic, the distance of each link between two
neighbouring nodes are randomly assigned to simulate an asynchronous network; that
is, the time an agent spends on a link is unpredictable but finite. The implementation
has a task scheduler, which will wake up a sleeping agent after a random amount of
time. This is used to simulate the behaviours of agents that sleeps unpredictable amount
of time in an asynchronous network.

Our simulation is executed in networks consist of number of nodes vary from 20 to
100. The execution of a simulation is considered to be successful if the location of the
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black hole and faulty nodes are correctly marked on the homebase whiteboard.
Otherwise, the simulation is counted as a failure. For each successful simulation, we
count the total number of moves that are used to repair all faulty nodes and locate the
black hole. All data is calculated from 100 independent successful runs of each setting
with random generated faulty nodes and a black hole. For each faulty posb = 20%,
30%, 40% and n = 20, 30, 40, …, 90, 100, we provide 100 independent runs which are
2700 runs in total. In each setting, only 100 times executions are necessary in order to
obtain 100 independent successful runs. All results show that b + 4 agents are sufficient
to finish the repair and search task. Additionally, there is a 14.8% possibility that the
task can be finished using only b + 3 agents or fewer.

Figure 1 illustrates the average move results as well as the lower and upper bound
of the total number of moves for each setting. Results confirm that O(n2) moves suffice
to repair all faulty nodes and locate the black hole in all simulations. It is obvious (as
confirmed in Fig. 1) that the larger the network is, the more moves are necessary for the
task to complete.

We further analyze whether the number of faulty nodes will affect the number of
moves. Figures 2 and 3 show that as the number of faulty nodes increases, the total
number of moves also has a slight increase. However, the same as above mentioned,
the increase is not continuous and obvious. Thus, we conclude the number of faulty
nodes does not have a direct relation to the total number of moves performed by the
team of agents.

The theoretical analysis and simulation results both prove that, all faulty nodes can
be repaired and the black hole can be located with b + 4 agents in O(n2) moves using
only one whiteboard in the homebase. Furthermore, this simulation study further prove
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the correctness of the algorithm. It should be noticed that, our algorithm requires no
knowledge of the number b of faulty nodes a priori.

7 Conclusion and Future Work

In this paper, we first present a new attack model containing both faulty nodes and a
gray virus that may infect a repaired faulty node at an arbitrary point in time. We then
propose a solution to the Faulty Node Repair and Dynamically Spawned Black Hole
Search problem with only one whiteboard in an asynchronous ring network with the
presence of a GV. This drastic network behaviour change significantly increases the
difficulty and complexity of the solution to the traditional black hole search containing
a single static black hole, whose existence must be known before the search starts.
After the proof of algorithm correctness and complexity analysis, we conclude that
b + 4 agents can repair all faulty nodes as well as locate the black hole that is infected
by a one-stop GV.

A GV that can move from node to node, therefore infect multiple repaired nodes is
not discussed in this paper and is a direction that should be explored in the future. It is
important to notice that in an asynchronous network, the GV may move much faster

Fig. 2. The Relationship between number of moves and faulty nodes (20 to 50-node networks)

Fig. 3. The Relationship between number of moves and faulty nodes (60 to 100-node networks)
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than the agents. From the agents’ view point, it could appear that all the repaired nodes
appear to be black holes. Thus, the Repair and Search problem becomes a MBHS
problem and remains unsolvable in an asynchronous network. A potential assumption
we can bring into the equation is that a moveable GV can only move to another node
after deleting at least one agent instead of being able to move freely.
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Abstract. Attribute-based encryption (ABE) enables an access control mecha-
nism over encrypted data by specifying access policies over attributes associated
with private keys or ciphertexts, which is a promising solution to protect data
privacy in cloud storage services. As an encryption system that involves many
data users whose attributes might change over time, it is essential to provide a
mechanism to selectively revoke data users’ attributes in an ABE system.
However, most of the previous revokable ABE schemes consider how to disable
revoked data users to access (newly) encrypted data in the system, and there are
few of them that can be used to revoke one or more attributes of a data user while
keeping this user active in the system. Due to this observation, in this paper, we
focus on designing ABE schemes supporting selective revocation, i.e., a data
user’s attributes can be selectively revoked, which we call ABE with granular
revocation (ABE-GR). Our idea is to utilize the key separation technique, such
that for any data user, key elements corresponding to his/her attributes are
generated separately but are linkable to each other. To begin with, we give a basic
ABE-GR scheme to accomplish selective revocation using the binary tree data
structure. Then, to further improve the efficiency, we present a server-aided
ABE-GR scheme, where an untrusted server is introduced to the system to
mitigate data users’workloads during the key update phase. Both of the ABE-GR
constructions are formally proved to be secure under our defined security model.

Keywords: Granular revocation � ABE � Efficiency � Cloud storage

1 Introduction

Attribute-based encryption (ABE) [21] provides a promising solution to preserve data
privacy in a scenario (e.g., cloud storage services [23]) where data users are identified
by their attributes (or credentials), and data owners want to share their data according to
some policy based on the attributes of data users. In a ciphertext-policy ABE
(CP-ABE) system, each data user is given a private attribute-key reflecting his/her
attributes generated by the attribute authority (AA), and each data owner specifies an
access policy to the message over a set of attributes1. A data user will be able to decrypt

1 There are two complimentary forms of ABE: CP-ABE and key-policy ABE (KP-ABE). In a
KP-ABE system, the situation is reversed that the keys are associated with the access policies and the
ciphertexts are associated with the attributes. In the rest of this paper, unless otherwise specified,
what we talk about is CP-ABE.
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a ciphertext if and only if the attributes ascribed to his/her private attribute-key satisfy
the access policy (or access structure) associated with the ciphertext. Though ABE
favorably solves the problem arising in the situations where different users with dif-
ferent attributes are given access to different levels of the encrypted data, it fails to
address the issue of dynamic credentials where the attributes of every data user change
with time. This challenge motivates the study of revocation mechanisms [1], where a
periodical key update process disables revoked data users to update their decryption
keys to decrypt newly encrypted data.

In terms of attribute-based setting, user revocation is divided into indirect revo-
cation and direct revocation [1]. Regarding indirect revocation, one solution is to ask
data users to periodically renew their private attribute-keys [7], but this requires the
update key size to be O N � Rð Þ group elements where N is the number of all users and
R is the number of revoked users. To reduce the cost of key update from linear to
logarithmic i.e:;O R log N

R

� �� �� �
, Boldyreva, Goyal and Kumar [5] put forth a revo-

cation methodology by combining the fuzzy IBE scheme [21] with the binary tree data
structure [18] where the AA publicly broadcasts the key update information for each
time period, but only non-revoked data users can update their decryption keys to
decrypt a newly generated ciphertext. In direct revocation [1, 2], data owners possess a
current revocation list, and specify the revocation list directly when running the
encrypting algorithm so that user revocation can be done instantly without requiring the
key update phase as in the indirect method2. There are also constructions (e.g., [25])
that delegate the direct revocation ability to a semi-trusted server who cannot collude
with the data users, where the server helps data users with decryption but terminates the
decryption operation for any revoked data user.

Since an attribute-based encryption system might involve a large number of data
users whose attributes change over time, it is desirable to build an attribute-based
encryption scheme that the credentials possessed by data users can be selectively
revoked. However, most of the previous revocable ABE systems [1, 2, 5, 20, 25] only
consider efficient user revocation to prevent revoked data users from accessing the
encrypted data, and there is little attention on how to independently revoke one or more
attributes from a data user, i.e., selective revocation on attributes. Due to this obser-
vation, in this paper, we focus on the design of efficient and revocable attribute-based
encryption schemes where the attributes possessed by each data user can be selectively
revoked via a periodical key update phase, which we call attribute-based encryption
with granular revocation (ABE-GR). Notice that ABE-GR can achieve user revocation
by revoking all credentials possessed by a data user.

2 Note that direct revocation can be done immediately without the key update process which asks for
the communication from the AA to all the non-revoked users over all the time periods, but it requires
all the data owners to keep the current revocation list. This makes the system impurely
attribute-based, since data owners in the attribute-based setting create ciphertext based only on
attributes without caring revocation. In this paper, unless otherwise specified, the revocation
mechanism we talk about is indirect revocation.
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1.1 Our Contributions

We describe the system architecture of an ABE-GR scheme in Fig. 1-(a). In an
ABE-GR system, each data user’s key is divided into three parts: private user-key (with
a corresponding public user-key), private attribute-keys (associated with different
attributes) and public key update information, from the latter two of which a data user
can extract a decryption key. The AA, who keeps the master private key and publishes
the public parameter, is responsible for the distribution of personalized pairs of public
and private user-keys and private attribute-keys. In addition, the AA regularly posts the
public key update information. Each data owner encrypts a message under an access
structure and a time period using the public parameter. To decrypt a newly generated
ciphertext, a data user needs to possess a pair of public and private user-keys as well as
a decryption key on the current time period satisfying the access policy of this
ciphertext. The key challenge in building an ABE-GR scheme is to prevent a data user
from using his/her revoked attributes to decrypt any newly generated ciphertext. Tra-
ditionally, in an ABE scheme, each attribute possessed by a data user corresponds to
one element in his/her private attribute-key, and these key elements are tied together
through a random value. In order to support granular revocation in ABE, we need a
technique to enable different key components on different attributes to be created
separately but linkable to each other. Thanks to the key separation technique in dis-
tributed ABE [17] where the task of the single AA is split across multiple AAs and
each attribute is controlled by one specific AA, we can equip an ABE scheme with a
similar technique but under a single AA. Thus, each key component associated with the
corresponding attribute will be created separately, but they still bind together due to the
sharing of the same identification information (i.e., the public user-key) which is
unique to each data user. As a result, we build an ABE-GR scheme by combining an
ABE scheme with the key separation technique in distributed ABE [17]. To reduce the
size of key update for the AA from linear to logarithmic in the number of users, we
apply the binary tree data structure [18] in the algorithms of our ABE-GR scheme.
Details about this ABE-GR scheme, which we will refer to as a basic ABE-GR scheme,
is given in Sect. 4.

As alluded in [19], binary tree data structure [18] is useful in alleviating the
workload of the AA, but it could not mitigate the workload of each data user who needs
to periodically update the decryption key. Is it possible to fix the keys stored by data
users such that they are not required to frequently update their decryption keys while
without affecting the revocation? To give an affirmative answer to this question, we
bring in an untrusted server3 to the basic ABE-GR system to mitigate the workloads of
data users. We depict the system architecture in Fig. 1-(b), which involves four entities:
an AA, data owners, data users, and a server. Different from that in the basic ABE-GR
construction, the public and private user-key pair is divided into a pair of public and
private user-user-keys and a pair of public and private authority-user-keys, of which the

3 The server is untrusted in the sense that it honestly follows the protocol but without holding any
secret information (i.e., it may collude with data users). Besides, all operations done by the server can
be performed by anyone, including data users (i.e., any dishonest behaviour from the server can be
easily detected).
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former is generated by each data user himself/herself4 and the latter is extracted by the
AA based on the public user-user-key. The server is given the public and private
authority-user-keys and private attribute-keys of data users as well as the key update
information. A data user fetches a ciphertext from the cloud, and sends it to the server
for partial decryption. For any non-revoked user, from the private attribute-keys and
key update information, the server can generate a collection of decryption keys (as-
sociated with a set of attributes), which, combining with the public and private
authority-user-keys, can partially decrypt a ciphertext forwarded by this user if his/her
non-revoked attributes satisfy the access structure ascribed to the ciphertext. A data
user can obtain the plaintext by decrypting the partially decrypted ciphertext using
his/her self-generated private user-user-key. This does not compromise the security,
because the public user-user-key is embedded in the private authority-user-key, the
server cannot fully unwrap the ciphertext without the private user-user-key. A detailed
description of the construction is presented in Sect. 4.

Since both our constructions are built on an ABE scheme that is selectively secure
[17, 24], where the adversary has to commit the challenge access structure in advance,
we can only achieve selective security in our ABE-GR schemes. Note that the tech-
niques can be applied to fully secure ABE schemes (e.g., [20]) to obtain fully secure
(server-aided) ABE-GR schemes.

1.2 Related Work

Revocable IBE. With regard to revocable IBE, Boneh and Franklin [7] suggested that
users periodically renew their private keys, but this method has a disadvantage in that it
requires all users to regularly contact the key generation centre (KGC) to obtain new
private keys, and thus a secure channel must be established between the KGC and each
user for such transactions. Hanaoka et al. [10] presented a convenient methodology for
users to periodically renew their private keys without communicating with the KGC by
making the KGC publicly post the key update information. However, as each user in
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4 This pair of user-user-keys can also be generated by the AA, but this requires a secure channel
between each data user and the AA for private key distribution.
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this case needs to posses a tamper-resistant hardware device, the solution is very
cumbersome. Boldyreva, Goyal and Kumar [5] put forth an efficient revocable IBE
scheme to reduce the size of key update from linear to logarithmic, but it asks all
non-revoked users to regularly update their decryption keys. To address the revocation
issue in a better way, revocation with a third party [3, 6, 9, 13, 15, 16, 19] has been
introduced, in which a semi-trusted5 (or untrusted) third party is assigned to share the
decryption capability with all users and help them the ciphertext decryption. Once an
identity is revoked, the mediator immediately terminates decrypting the ciphertext for
this user.

Revocable ABE. Regarding user revocation in ABE, there are two revocation mech-
anisms [1, 8]: direct revocation and indirect revocation. Considering the former, in
which each data owner keeps a current revocation list, and directly specify the revo-
cation list when encrypting, there are schemes in [2, 11, 14]. In addition, Yang et al.
[25] put forward an approach by assigning a semi-trusted server to share the decryption
capability with data users such that when a data user is revoked, the server stops the
decryption for the user. Regarding the latter, which we intend to achieve in this paper,
Boldyreva, Goyal and Kumar [5] proposed a revocable KP-ABE scheme where the AA
indirectly achieves the revocation by disabling revoked users to update their keys.
Later, based on the same technique adopted in [5], Attrapadung and Imai [1] gave a
hybrid revocable KP-ABE scheme under selective security model which allows a data
owner to select the revocation mode (direct or indirect) when performing encryption.
Sahai, Seyalioglu and Waters [20] showed a generic way to build ABE schemes that
support dynamic credentials, where the AA indirectly accomplishes revocation by
stopping updating the keys for revoked users. Cui and Deng [8] proposed two indi-
rectly revocable and decentralized ABE schemes in the composite-order groups where
the AA’role is split over multiple AAs.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we briefly review the
relevant notions and definitions to be used in this paper. In Sect. 3, after describing the
framework for ABE-GR, we present its security model. In Sect. 4, we present two
concrete constructions of ABE-GR, and provably reduce their security. In addition, we
compare our ABE-GR schemes with previous revocable ABE schemes in Sect. 4. We
conclude the paper in Sect. 5.

2 Preliminaries

In this section, we review some basic cryptographic notions and definitions that are to
be used in this paper.

5 In this paper, unless otherwise specified, “semi-trusted” means that the corresponding entity is
disallowed to collude with the malicious data users.
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2.1 Bilinear Pairings and Complexity Assumptions

Let p be a prime number, and G be a group of order p that is generated from g. We
define ê : G � G ! G1 to be a bilinear map if it has two properties [7].

– Bilinear: for all g2G, and a; b 2 Zp, we have êðga; gbÞ ¼ êðg; gÞab.
– Non-degenerate: êðg; gÞ 6¼ 1.

We say that G is a bilinear group if the group operation in G is efficiently com-
putable and there exists a group G1 and an efficiently computable bilinear map ê :
G� G ! G1 as above.

Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption [24]. The deci-
sional q-parallel bilinear Diffie-Hellman exponent (BDHE) problem is that for any
probabilistic polynomial-time (PPT) algorithm, given

y!¼
g; gl; ga; . . .; ga

q
; ga

qþ 2
; . . .; ga

2q
;

8 j 2 ½1; q� gl�bj ; ga=bj ; . . .; ga
q=bj

; ga
qþ 2=bj

; . . .; ga
2q=bj

;
81� j; k� q; k 6¼ j ga�l�bk=bj ; . . .; ga

q�l�bk=bj ;

it is difficult to distinguish y!; êðg; gÞaqþ 1l
� �

from y!; Z
� �

, where g 2 G; Z 2G1; a;

l; b1; . . .; bq 2 Zp are chosen independently and uniformly at random.

2.2 Access Structures and Linear Secret Sharing

Definition 1 (Access Structure [12, 24]). Let fP1; . . .;Png be a set of parties. A col-
lection A� 2fP1;...;Png is monotone if 8B;C : if B 2 A and B�C, then C�A A
monotone access structure is a monotone collection A of non-empty subsets of
fP1; . . .;Png, i.e., A� 2fP1;...;Pngn ;f g. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret Sharing Schemes (LSSS) [12, 24]). Let P be a set of
parties. Let M be a matrix of size l� n (l rows and n columns). Let q : f1; . . .; lg ! P
be a function mapping a row to a party for labeling. A secret sharing scheme P over a
set of parties P is a linear secret-sharing scheme over Zp if

1. The shares for each party form a vector over Zp.
2. There exists an l� n matrix M named the share-generating matrix for P. For

x ¼ 1; . . .; l, the x-th row of matrix M is labeled by a party qðiÞ for q : f1; . . .; lg !
P being a function mapping a row to a party for labeling. Considering that the
column vector v!¼ ðl; r2; . . .; rnÞ with l2Zp being the secret to be shared and
r2; . . .; rn 2 Zp, then M v! is the vector of l shares of the secret l according to P.
The share ðM v!Þi belongs to party qðiÞ.
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It has been concluded in [12] that every LSSS enjoys a property called linear
reconstruction. Assume that P is an LSSS for an access structure A. Denote A as an
authorized set, and I�f1; . . .; lg as I ¼ fijqðiÞ 2 Ag. Then the vector ð1; 0; . . .; 0Þ is in
the span of rows of matrix M indexed by I, and there exist constants fwi 2 Zpgi2I such
that, for any valid shares fvig of a secret l according to P,

P
i2I wivi ¼ l holds. These

constants fwig can be found in polynomial time depending on the size of the
share-generating matrix M [4].

Boolean Formulas [12]. An access policies can be described in a monotonic boolean
formula as well. An LSSS access structure is more general, and can be derived from a
representation as a boolean formula. There are generic techniques to transfer any
monotonic boolean formula into an LSSS matrix. An boolean formula can be repre-
sented as an access tree with the interior nodes being AND and OR gates and the leaf
nodes corresponding to attributes. Note that the number of rows in the corresponding
LSSS matrix is the same as the number of leaf nodes in the access tree.

2.3 Terminologies on Binary Tree

We follow the definitions about the binary tree in [5, 19]. Denote BT as a binary tree
with N leaves representing N users, and root as the root node of the tree BT. Let Path
(h) be the set of nodes on the path from h to root (which includes both h and root) if h
is a leaf node. Let hl and hr be left and right child of h if h is a non-leaf node. Assume
that nodes in the tree are uniquely encoded as strings, and the tree is defined by all
descriptions of its nodes. There is an algorithm KUNodes defined to calculate the
minimal set of nodes for which the key update needs to be published so that only
non-revoked users at a time period t can decrypt ciphertexts, which works by firstly
marking all the ancestors of the revoked nodes as revoked, and then outputting all the
non-revoked children of revoked nodes. Formally, the KUNodes algorithm takes a
binary tree BT, a revocation list rl and a time period t as the input, and outputs a set of
nodes, the minimal set of nodes in BT, such that none of the nodes in rl with the
corresponding time period at or before t (users revoked at or before t) have any ancestor
(or, themselves) in the set, and all other leaf nodes (corresponding to non-revoked
users) have exactly one ancestor (or, themselves) in the set.

KUNodes ðBT; rl; tÞ
X, Y ← ∅.
8 (hi, ti) 2 rl, if ti � t, then add Path(hi) to X.
8 x 2 X, if xl 62 X, then add xl to Y; if xr 62 X, then add xr to Y.
If Y = ∅, then add root to Y.
Return Y.

3 System Architecture and Security Definition

We describe the system architecture and formal security definition of attribute-based
encryption with granular revocation in this section.
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3.1 Framework

An ABE-GR scheme involves three entities: attribute authority (AA), data owners and
data users, where the algorithms run by these parties are described as follows.

– GSetupð1kÞ ! (par, msk). Taking a security parameter k as the input, this algo-
rithm, run by the AA, outputs the public parameter par and the master private key
msk.

– ASetupðpar; AiÞ ! ðPKAi ; SKAi ; rli; stiÞ. Taking the public parameter par and an
attribute Ai as the input, this algorithm, run by the AA, outputs a public key PKAi a
private key SKAi an initially empty revocation list rli and a state sti.

– UserKG(par, msk, id) ! (skid, pkid). Taking the public parameter par, the master
private key msk and an identity id as the input, this algorithm, run by the AA,
outputs a private user-key skid and a public user-key pkid for user id.

– PrivKGðpar; SKAi ; pkid ; stiÞ ! ðpkAiid ; stiÞ. Taking the public parameter par, the
private key SKAi a pubic user-key pkid and a state sti as the input, this algorithm, run
by the AA, outputs a private attribute-key pkAiid and an updated state sti for user id
possessing an attribute Ai.

– TKeyUpðpar; SKAi ; t; rli; stiÞ ! ðkuðiÞt ; stiÞ. Taking the public parameter par, the
private key SKAi a time period t, a revocation list rli and a state sti as the input, this

algorithm, run by the AA, outputs the key update information kuðiÞt and an updated
state sti.

– DecKGðpar; pkAi
id ; tku

ðiÞ
t Þ ! dkðiÞid;t. Taking the public parameter par, a private

attribute-key pkAi
id and the key update information tkuðiÞt as the input, this algorithm,

run by each data user, outputs a decryption key dkðiÞid;t for used id at time period t.
– Encryptðpar; ðM; qÞ; t; fPKAig;MÞ ! CT. Taking the public parameter par, an

access structure (M, q), a time period t, a set of public keys PKAif g for relevant
attributes and a message M as the input, this algorithm, run by each data owner,
outputs a ciphertext CT (will be stored to the cloud).

– Decryptðpar; pkid; skid; fdkðiÞid;tg; CT) ! M=?. Taking the public parameter par, a

public user-key pkid, a private user-key skid, a collection of decryption keys fdkðiÞid;tg
of the same id and a ciphertext CT as the input, this algorithm, run by each data
user, outputs a message M if the attribute set {Ai} satisfies the access matrix
associated with the ciphertext or a failure symbol ⊥.

– Revoke(id, Ai, t, rli, sti) ! rli. Taking an attribute Ai of identity id to be revoked, a
time period t, a revocation list rli and a state sti as the input, this algorithm, run by
the AA, outputs an updated revocation list rli.

Note that in order to create public and private keys, private attribute-keys, key
update information and decryption keys corresponding to multiple attributes, the cor-
responding algorithms ASetup, PrivKG, TKeyUp and DecKG are extended to take in
many attributes by running the “single attribute” version once for each attribute.

For the correctness of an ABE-GR scheme, we require that for any security
parameter k and any message M (in the message space), if the data user is not revoked
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at time period t (in the space of time periods), and if all entities follow the above

algorithms as described, then Decrypt ðpar; skid ; fdkðiÞid;tg; CT) = M if fdkðiÞid;tg is a set
of decryption keys for the same identity id over a set of attributes satisfying the access
structure of the ciphertext CT.

3.2 Security Definition

Below we describe the security game between an adversary algorithm A and a chal-
lenger algorithm B as indistinguishability under chosen plaintext attacks (IND-CPA
security) for an ABE-GR scheme.

– Setup. Algorithm B runs the GSetup algorithm, sends algorithm A the public
parameter par and keeps the master private key msk. Also, it runs the ASetup
algorithm, keeps the private keys SKAif g, initially empty revocation lists {rli} and
states {sti} and sends the public keys PKAif g to algorithm A.

– Phase 1. Algorithm A adaptively issues queries to the following oracles.

1. Private-User-Key oracle. Algorithm A issues a private user-key query to algo-
rithm B on an identity id, and algorithm B returns skid by running UserKG(par,
msk, id), and adds (id, pkid) to the user list.

2. Private-Attribute-Key oracle. Algorithm A issues a public attribute-key query to
algorithm B on an identity id with an attribute set {Ai}, and algorithm B returns
fpkAiid g by running UserKG(par, msk, id) (if id does not exist in the user list),
PrivKG ðpar; SKAi ; pkid; stiÞ for each Ai of id.

3. Key-Update oracle. Algorithm A issues a key update query to algorithm B on a

time period t, and algorithm B returns ftkuðiÞt g by running TKeyUp
ðpar; SKAi ; t; rli; stiÞ for each Ai.

4. Decryption-Key oracle. Algorithm A issues a decryption key query to algorithm
B on a time period t and an identity id with an attribute set {Ai}, and algorithm B
returns fdkðiÞid;tg by running UserKG(par, msk, id) (if id does not exist in the user
list), PrivKG ðpar; SKAi ; pkid ; stiÞ, TKeyUp ðpar; SKAi ; t; rli; stiÞ, DecKG

ðpar; pkAi
id ; tku

ðiÞ
t Þ on each Ai of id. Notice that queries on a time period t that has

not been issued to the Key-Update oracle cannot be issued to this oracle.
5. Revocation oracle. Algorithm A issues a revocation query to algorithm B on an

attribute Ai of identity id and a time period t, and algorithm B runs Revoke(id, t,
rli, sti) and outputs an updated revocation list rli. If a key update query has been
issued on a time period t, this oracle cannot be queried on t.

– Challenge. Let IM�;q� ¼ fI1; . . .I v be a set of minimum subsets of attributes sat-
isfying ðM�; q�Þ. Algorithm A outputs two messages M�

0 and M�
1 of the same size,

an access structure ðM�; q�Þ and a time period t� following the constraint that for
each id, if algorithm A asks for a collection of private attribute-keys on an attribute
set covering an I j 2 IM�;q� ðj 2 ½1; v�Þ then (1) the revocation oracle must be
queried on some tuple (id, t, Ai) where t happens at or before t� and
Ai 2 I j ðj 2 ½1; v�Þ, and (2) the Decryption- Key oracle cannot be queried on (id, t,
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{Ai}) for any t = t� and I j �fAigðj 2 ½1; v�Þ. Algorithm B randomly chooses
c 2 f0; 1g�, runs Encrypt ðpar; ðM�; q�Þ; fPKAig; t�; M�

cÞ to obtain the challenge
ciphertext CT�, and sends CT� to algorithm A:

– Phase 2. Following the restriction defined in the Challenge phase, algorithm A
continues issuing queries to algorithm B as that in Phase 1.

– Guess. Algorithm A makes a guess c0 for c. It wins the game if c0 ¼ c.

Algorithm A’s advantage in the above game is defined to be Pr[c¼c0� � 1=2. An
ABE-GR scheme is said to be IND-CPA secure under the defined security model if all
PPT adversaries have at most a negligible advantage in the security parameter k k. In
addition, an ABE-GR scheme is said to be selectively IND-CPA secure if an Init stage
where algorithm A commits to the challenge access structure ðM�; q�Þ which it
attempts to attack is added before the Setup phase.

Remarks. Note that the above security definition is different from those in previous
revocable ABE schemes. The definitions in [1, 8, 20] did not consider a realistic threat
called decryption key exposure attacks [22]6, while the above model allows an addi-
tional Decryption-Key oracle to resist such attacks so that no information of the
plaintext is revealed from a ciphertext even if all (short-term) decryption keys of
different time periods are exposed.

4 Attribute-Based Encryption with Granular Revocation

In this section, we present two ABE-GR constructions and their security analysis. Also,
we compare them with several existing revocable ABE schemes.

4.1 Basic Construction

Let the attribute space be Zp, the time space be Zp, and the message space be G1. The
basic attribute-based encryption scheme supporting granular revocation is composed of
the following algorithms, which is built upon the CP-ABE scheme presented in [24].

– GSetup. On input a security parameter k, it randomly chooses a group G of a prime
order p with g 2 G being the generator, and defines a bilinear map ê : G� G ! G1

Additionally, it randomly chooses u, h 2 G, a, a 2 Zp, and defines a function
F (y) = uy h to map an element y in Zp to an element in G. The public parameter is
par ¼ ðg; ga; u; h; êðg; gÞaÞ. The master private key is msk = a.

– ASetup. On input the public parameter par and an attribute Ai, it randomly chooses
ai 2 Zp, and computes PKAi ¼ gai . Let rli be an empty list storing revoked users and
BTi be a binary tree with at least N leaf nodes. It outputs the public key PKAi along
with rli and sti where sti is a state which is set to be BTi, and keeps ai as the private
key SKAi .

6 This does not affect the security of these schemes, because such attacks are not covered by their
security models.
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– UserKG. On input the public parameter par, the master private key msk and an
identity id, it randomly chooses b 2 Zp, and outputs a private user-key skid =
ga(ga)b and a public user-key pkid = gb.

– PrivKG. On input the public parameter par, a private key SKAi a public user-key
pkid and a state sti, it firstly chooses an undefined leaf node h(i) from the binary tree
BTi, and stores id in this node. Then, for each node x(i) 2 Path(h(i)), it runs as
follows.

1. It obtains gi,x from the node x(i). If x(i) is undefined, it randomly chooses gi,x 2 G,

and computes PðiÞ
x ¼ ðgb=gi;xÞai . It stores gi;x in the node x(i).

2. It outputs the private attribute-key pkAi
id ¼ fxðiÞ;PðiÞ

x gxðiÞ2 pathðhðiÞÞ, and an updated

state sti:

– TKeyUp. On input the public parameter par, a private key SKAi a time period t, a
revocation list rli and a state BTi, for all x

(i) 2 KUNodes(BTi, rli, t), it gets gi,x
7 from

the node x. Then, it randomly chooses si,x 2 Zp, and computes QðiÞ
x;1 ¼ gaii;x � FðtÞsi;x ;

QðiÞ
x;2 ¼ gsi;x . It outputs kuðiÞt ¼ fxðiÞ;QðiÞ

x;1;Q
ðiÞ
x;2gxðiÞ2KUNodesðBTi; rli; tÞ as the key update

information.
– DecKG. On input the public parameter par, a private attribute-key pkAiid and the key

update information tkuðiÞt as the input, it parses each pkAiid as fxðiÞ;PðiÞ
x g

xðiÞ2I; tku
ðiÞ
t

as

fxðiÞ;QðiÞ
x;1;Q

ðiÞ
x;2gxðiÞ2J for some set of nodes I ¼ Path(hðiÞÞ, J ¼ KUNodes(BTi; rli; tÞ.

If I \ J ¼ ;, it returns ?. Otherwise, for any xðiÞ 2 I \ J, it randomly chooses
s
0
i;x 2 Zp, and computes

dkðiÞ1 ¼ PðiÞ
x � QðiÞ

x;1 � FðtÞs
0
i;x ¼ pkaiid � FðtÞsi;x þ s0i;x ;

dkðiÞ2 ¼ QðiÞ
x;2 � gs

0
i;x ¼ gsi;x þ s0i;x :

It outputs the decryption key dkðiÞid;t ¼ ðdkðiÞ1 ; dkðiÞ2 Þ.
– Encrypt. On input the public parameter par, an LSSS access structure ðM; qÞ with

M being an l � n matrix, a set of public keys fPKAig for relevant attributes, a time
period t and a message M, it randomly chooses a vector v!¼ ðl; y2; . . .; ynÞ? 2 Zn

p

(these values will be used to share the encryption exponent µ). For i = 1 to l, it
calculates vi ¼ Mi � v! where Mi is the i-th row of M. Also, it randomly chooses
µ, µ1, …, µk 2 Zp, and computes

C0 ¼ êðg; gÞal �M; CðiÞ
2 ¼ ðgaÞvi � ðPKqðiÞÞ�li ;

C1 ¼ gl; CðiÞ
3 ¼ gli ; CðiÞ

4 ¼ FðtÞli :

– It outputs the ciphertext CT = ((M; qÞ; t; C0; C1; fCðiÞ
2 ; CðiÞ

3 ; CðiÞ
4 gi2½i;l�Þ.

7 Here gi,x is always predefined in the PrivKG algorithm.
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– Decrypt. On input the public parameter par, a public user-key pkid, a private

user-key skid, a set of decryption keys fdkðiÞid;tg and a ciphertext CT, it computes

êðC1; skidÞ
Q

i2I êðCðiÞ
4 ; dkðiÞ2 Þ

ðQi2I êðCðiÞ
2 ; pkidÞêðCðiÞ

3 ; dkðiÞ1 ÞÞwi
¼ êðg; gÞal;

and then cancels out this value from C0 to obtain the plaintext M. Suppose that {Ai}
associated with fpkAiid g satisfies the access structure ðM; qÞ. Let I be defined as
I = {i : q(i) 2 {Ai}}. Denote {wi 2 Zp}i2I as a set of constants such that if {vi} are
valid shares of any secret µ according to M, then

P
i2I wivi ¼ l.

– Revoke. On input an attribute Ai of identity id, a time period t, a revocation list rli
and a state sti, for all the nodes x

(i) associated with identity id, it adds (x(i), t) to rli,
and outputs the updated rli.

Theorem 1. Under the decisional q-parallel BDHE assumption, the above basic ABE-
GR scheme is selectively IND-CPA secure.

Proof. In the proof, it is assumed that if an adversary has issued a private user-key
query on an identity id, and a private attribute-key query on attributes {Ai} of this
identity id satisfying the challenge access structure ðM�; q�Þ, then at least one attribute
in each set of minimum attributes satisfying ðM�; q�Þ of this identity id is revoked at or
before the challenge time period t�. We detail the proof in the full version of this paper
due to the space limit8.

4.2 Construction with Improved Efficiency

The main drawback in our previous construction lies in that all non-revokes data users
need to periodically update their decryption keys. To remove such cumbersome
workloads from data users, we give another ABE-GR scheme, which we call a
server-aided ABE-GR scheme. Our method is to introduce an untrusted server to the
basic ABE-GR scheme such that the server will help data users with the workloads in
key update stage. The algorithms of our server-aided ABE-GR scheme mostly follow
those in the basic ABE-GR scheme except with two differences.

– Firstly, the user-key generation algorithm is replaced by two algorithms, where one
is run by each data user himself/herself called UUserKG, and the other one is run by
the AA called AUserKG. The UUserKG algorithm outputs a public and private
user-user-key pair. On input a public user-user-key and the master private key of the
AA, the AUserKG algorithm outputs a public and private authority-user-key pair
and publicly transmits them to the server.

– Secondly, the decryption algorithm is divided into two parts, of which one is run by
the server called SDecrypt using the public and private authority user-keys and
decryption key, and the other one is run the data user called UDecrypt with the

8 Please contact the author for the full version.
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private user-user-key. The SDecrypt algorithm takes a ciphertext as the input, and
outputs a partially decrypted ciphertext. The UDecrypt algorithm takes a partially
decrypted ciphertext as the input, and outputs the plaintext.

Assume that for each data user, the server keeps a list of tuples (identity, attributes,
public and private authority-user-keys, a set of private attribute-keys), i.e.,
ðid; fAig; ðpkid ; skidÞ; fpkAiid gÞ. We detail the concrete construction as follows.

– GSetup. The same as that in the basic ABE-GR construction.
– ASetup. The same as that in the basic ABE-GR construction.
– UUserKG. The data user id randomly chooses s 2 Zp, and outputs a public and

private user-user-key pair ðpk0id ; sk0idÞ ¼ ðgs; sÞ.
– AUserKG. The AA randomly chooses b 2 Zp, and outputs a private and public

authority-user-key pair ðskid ; pkidÞ ¼ ððpk0idÞaðgaÞb; gbÞ. The AA will publicly send
(skid, pkid) to the server.

– PrivKG. The same as that in the basic ABE-GR construction. The AA will publicly
send pkAiid to the server.

– TKeyUp. The same as that in the basic ABE-GR construction. The AA will publicly

send kuðiÞt to the server.
– DecKG. The same as that in the basic ABE-GR construction except that it is run by

the server rather than the data user.
– Encrypt. The same as that in the basic ABE-GR construction.
– SDecrypt. Given the private authority-user-key and decryption key, the server

computes

C0
0 ¼

êðC1; skidÞ
Q

i2I êðCðiÞ
4 ; dkðiÞ2 Þ

ðQi2I êðCðiÞ
2 ; pkidÞêðCðiÞ

3 ; dkðiÞ1 ÞÞwi
¼ êðpk0id; gÞal;

and sends CT0 ¼ ðid; C0; C0
0Þ to the data user.

– UDecrypt. The data user computes M ¼ C0=ðC0
0Þ

1
s using the private user-user-key.

– Revoke. The same as that in the basic ABE-GR construction.

Remarks. It is worth noticing that the server-aided ABE-GR scheme has an edge over
the basic ABE-GR one in both storage and computation overheads. Firstly, each data
user in the server-aided ABE-GR construction only needs to keep one short private key,
while in the basic ABE-GR one each data user keeps a private key of large size
(depending on the size of attribute sets he/she owns and the total number of data users
allowed in the system). Secondly, each data user in the server-aided ABE-GR system
only needs to perform one exponentiation and no pairing computation to decrypt a
ciphertext, while in the basic ABE-GR one each data user needs to perform many
exponentiation and pairing computations. Thirdly, there is no secure channel required
in the server-aided ABE-GR scheme for private key transmission, but the AA in the
basic ABE-GR one needs to send the private user-key and attribute-keys to each data
user via a secure channel.
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Theorem 2. Under the decisional q-parallel BDHE assumption, the above server
aided ABE-GR scheme is selectively IND-CPA secure.

Proof. In the proof, it is assumed that if an adversary has issued a private user- user-key
query, a private authority-user-key query, and a private attribute-key on attributes {Ai}
satisfying the challenge access structure ðM�; q�Þ on an identity id, then at least one
attribute in each set of minimum attributes satisfying ðM�; q�Þ of this identity id is
revoked at or before the challenge time period t�. The proof is similar to that in
Theorem 1, and we detail it in the full version of this paper due to the space limit.

4.3 System Analysis

To the best of our knowledge, besides the result in this paper, [1, 5, 20, 25] are also
about constructions on revocable ABE from the bilinear maps in the prime-order
groups. This paper aims to achieve granular revocation in CP-ABE such that the AA
can selectively revoke specific attributes of data users. The KP-ABE scheme with
indirect user revocation is proposed in [5] where the AA enables the revocation by
disallowing revoked users to update their keys. In [1], a KP-ABE scheme with hybrid
user revocation is raised in which a data owner can select to use either direct or indirect
revocation mode when encrypting a message. A generic way to build ABE schemes
supporting dynamic credentials is elaborated in [20], in which the AA indirectly
accomplishes user revocation by preventing revoked data users from updating their
keys. In [25], a semi-trusted server is assigned to share the decryption capability with
data users such that the server can indirectly revoke a data user by stopping helping this
data user with decryption.

Denote “NA” by the meaning of not-applicable. Let R be the number of revoked
users, N be the number of all data users, l be the number of attributes presented in the

Table 1. Comparison of properties among revocable ABE (RABE) schemes

RABE in
[5]

RABE in
[1]

RABE in
[25]

RABE in [20] Basic ABE-GR Server-aided
ABE-GR

Revocation mode Indirect Indirect &
direct

Direct Indirect Indirect Indirect

Selective
revocation

No No No No Yes Yes

Type of ABE KP-ABE KP-ABE CP-ABE KP-ABE &
CP-ABE

CP-ABE CP-ABE

Key exposure
Resistance

No No No No Yes Yes

Secure channel Yes Yes Yes Yes Yes No

Server NA NA Semi-trust NA NA Untrust

Size of key updates OðR log( NRÞÞ OðR log( NRÞÞ NA OðR log( NRÞÞ OðmR � log( NRÞÞ OðmR � log( NRÞÞ
Size of key stored
by user

O(l log N) O(l log N) O(1) O(l log N) &
O(k log N)

O(k log N) O(1)

Data user’s
computation
overhead

	 2(E + P) 	 3E + 4P E 	E + P 	E + 4P E
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access structure, k be the size of attribute set possed by each data user, and m be the
maximum size allowed for k. In Table 1, we compare our revocable systems with the
revocable ABE constructions in [1, 5, 20, 25], where “E” and “P” denote the calcu-
lation of exponentiation and pairing, respectively. It is straightforward to see that our
notion of ABE-GR is the first that achieves selective revocation while preserving
desirable properties in terms of both security and efficiency. Additionally, our
server-aided ABE-GR scheme greatly reduces the storage and computation overhead
incurred to each data user with the help of an untrusted server.

5 Conclusions

In this paper, we introduced a notion called attribute-based encryption with granular
revocation (ABE-GR) to achieve selective revocation, where each data user’s attributes
(or credentials) can be selectively revoked. To our knowledge, there are few works on
such a revocation mechanism, and most of the existing revocable ABE schemes aim to
revoke a data user from the system such that a revoked data user will become
underprivileged to all (newly) encrypted data in the system. Motivated by the key
separation technique in distributed ABE [17] where one single AA’s workload is split
across several AAs and each AA is responsible for at least one specific attribute, we
equipped a normal ABE system with a similar technique such that each data user’s
attribute-keys are composed of key elements (corresponding to different attributes)
generated separately but essentially linkable to each other. Thus, each data user’s
attributes can be selectively revoked by the AA, and a data user can be revoked from
the system by separately revoking all of his/her attributes. After the description of
security model for SR-ABE, we presented a basic construction of ABE-GR, which
utilizes the binary tree data structure to reduce the workload of the AA. Then, we
further improved the efficiency by introducing an untrusted server to the proposed
ABE-GR scheme to help data users with the workloads incurred in key update and
decryption, which we call server-aided ABE-GR. In addition, we formally proved the
security of our ABE-GR and server-aided ABE-GR schemes, and compared them with
other concrete constructions of revocable ABE that are related to our work.
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Abstract. Payment cards make use of a Primary Account Number
(PAN) that is normally used by merchants to uniquely identify users, and
if necessary to deny users service by blacklisting. However, tokenisation
is a technique whereby the PAN is replaced by a temporary equivalent,
for use in mobile devices that emulate payment cards, but with reduced
attack resistance. This paper outlines how tokenised payments contra-
dict the process of blacklisting in open transport systems. We propose
the use of a linkable group signature to link different transactions by a
user regardless of the variable token. This allows the transport operator
to check if a user’s signature is linked to a previous dishonest transaction
in the blacklist, while still maintaining the anonymity of the user.

1 Introduction

Card payments rely on the high levels of security and tamper-resistance provided
by the chip embedded in the bank card. The chip provides secure storage for
sensitive credentials such as the Primary Account Number (PAN) [1], as well
as performing cryptographic operations. More recently, the use of contactless
payments has risen significantly. There are now more than 81 million contactless
bank cards on issue in the UK alone [2]. Contactless payments are quick and typ-
ically do not require cardholder verification, which makes them suitable for low
value transactions. This opens up new use-cases for contactless payments such
as transport. Major Transport Operators (TrOs) such as Transport for London
(TfL) and the Utah Transit Authority (UTA) have moved from using proprietary
smart card solutions exclusively, to accepting contactless credit/debit bank cards
already in the user’s possession. This model is generally referred to as the ‘Open
Ticketing Model’. In open ticketing, the TrO typically relies on the PAN of the
user, to determine the points of entry and exit that make up a complete journey.

In addition, by already having the infrastructure (terminals) to accept con-
tactless bank cards, TrOs can also accept payments by Near Field Communica-
tion (NFC)-enabled devices with minimal or no changes. This is because both
contactless cards and NFC devices comply with the ISO/IEC 14443 standards
[3]. In fact, a terminal sees an NFC device in card emulation mode as if it were a
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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regular contactless card. In this paper we focus on NFC device-based payments
in transport.

Traditionally, an NFC device in card emulation mode relies on the Secure
Element (SE) for enhanced security. It was envisaged that the host Operating
System (OS) cannot guarantee the levels of security required by applications
such as payment and transport. The SE is a small hardware tamper-resistant
chip similar to the chip in a bank card in terms of functionality. The SE is
typically embedded in the device, but could also be realised using the SIM card
or an external memory card. The NFC controller routes messages received from a
terminal to an application in the SE. The SE is tightly controlled by the Original
Equipment Manufacturer (OEM) or by the Mobile Network Operator (MNO) in
the case of a SIM card. This means only they can dictate who can provision an
application on the SE and will usually charge a fee to do so. This adds an extra
cost to NFC-based payments and adds to the complexity of the ecosystem.

However, Host-based Card Emulation (HCE) offers a drastic alternative to
card emulation with an SE. HCE was first introduced by Cyanogenmod [4] and
more notably by Google on Android 4.4 (KitKat) [5] onwards. It lets an applica-
tion on the OS emulate a smart card. The NFC controller here routes messages
directly to the application, bypassing the SE. Therefore security is traded for
flexibility, because the guarantees of hardware-backed security are lost.

Different techniques have been proposed to manage the risks of HCE’s
reliance on software and make it acceptably secure for payments. More details
on HCE and the feasibility of these approaches, as well their pros and cons can
be found in [6,7]. Of significance to this paper is tokenisation. The idea of tokeni-
sation is to replace the PAN in the user’s device with a surrogate value that has
a shorter life-span than the original PAN.

1.1 Problem Statement

The PAN has evolved from being just an account reference of the user. Mer-
chants, in this case TrOs, rely on the PAN as a static value to uniquely identify
users, and consequently blacklist them [8,9]. However, in the case of tokenised
payments, it is paradoxical for a merchant to rely on a non-static token for black-
listing. We highlight how tokenised payments in transport call into question the
ability to blacklist dishonest users on the transport network. This variability in
‘identity’ exposes the TrO to attacks similar to the Sybil attack [10]. This is
a potential problem for both academic proposals and real life implementations
that rely on a static value to identify or distinguish users.

1.2 Proposed Solution

In this paper, we ue linkable group digital signatures to propose a solution to
the blacklisting problem [11,12]. Linkable signatures have a property that lets a
verifier link the signatures of a user on different messages, anonymously. We rely
on the ‘linkability’ property to blacklist dishonest users, regardless of their non-
static token. We also exploit the anonymity provided by the linkable signature,
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which is an important requirement for transport ticketing systems. ‘Dishonest
user’ in this paper refers to a user travelling with no funds in the account, or
an attacker using a stolen or compromised device. We are able to blacklist users
regardless of their short-lived tokens while maintaining user anonymity. We test
the feasibility of our solution by implementing it on an NFC mobile device.

1.3 Related Work

The work in [13] evaluates open ticketing using TfL and the Chicago Transit
Authority (CTA) as case studies. The author mainly focused on the theoretical
aspects of adoption, such as the issue of unbanked riders. In [14], linkable group
signatures were used to detect the double usage of tickets; however, their proposal
was based on a closed model and tickets were purchased well before the travel.
To the best of our knowledge, the only academic open ticketing proposal is [15].
The authors proposed the use of bank cards and, specifically, using the PAN to
identify users. However, the authors rely on Certificate Revocation List (CRL) to
blacklist dishonest users. We shall discuss the problems with using CRLs below.

2 Transport Ticketing Systems

Transport ticketing systems can be classified into two broad categories: closed
and open ticketing systems. Closed ticketing systems are proprietary systems
that are typically ‘card/device centric’; i.e. the card holds the logic, tickets,
transaction value and other accounting related data used in the calculation of
fares. In this model, the TrO is essentially its own ‘bank’. Notable examples are
the London Oyster card and the Hong Kong Octopus card. However, this paper
focuses on the open ticketing systems described in more detail below.

2.1 Open Ticketing Systems

Open systems rely on the well established global payment infrastructure. This
means users can make travel payments with contactless cards, mobile applica-
tions issued by the bank cards, or even digital wallets. Therefore the TrO in
this model accepts payments like any other merchant. The TrO saves the cost
of issuing the cards and managing the card system. It is considered that almost
10% of revenue generated on the London transport network goes to managing
the Oyster card system [16].

Open ticketing can be realised in different ways. To that effect, the UK Cards
Association (UKCA)1 has designed a framework that outlines three contactless
ticketing models as agreed by the card and transit industries [17]. This paper
focuses on the ‘Aggregated Pay As You Go’ model. In this model, the payment
device is used multiple times and the price is not known at the beginning of the

1 “The UK Cards Association is the trade body for the card payments industry in the
UK, representing financial institutions which act as card issuers and acquirers”.
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journey. Each usage of the device in a day is acknowledged and later aggregated
at the back-office to determine the fare to be charged; and subsequently request
for payments from the user’s bank through the payment network. It is important
to highlight the concept of delayed authorisation of payments as it forms the basis
upon which the aggregated pay as you go model relies.

In delayed authorisation, instead of requesting authorisation for every trans-
action as usual, the TrO only acknowledges the usage of the user’s device at
various points on the transport network (also known as a TAP) and sends the
TAPs to the back-office. At the back office, all TAPs by the same user are aggre-
gated at the end of the day. And only then does the TrO request for authorisation
of funds. The apparent risk here is that a dishonest user can travel with no funds
in the account since authorisation is not done at the time of travel. We refer to
this as the ‘first time travel risk’. Currently, this risk is negotiated and accepted
between the TrO and the bank issuers [17].

2.2 Blacklisting in Transport Ticketing

With over £200 million lost by UK transport operators in revenue due to dishon-
est users [18], blacklisting is an essential requirement for ticketing systems. Black-
listing becomes even more important for systems that rely on delayed authori-
sation due to first time travel risk. This gives the TrO monetary incentives to
deny the user travel until outstanding payments and possibly fines are settled.
Therefore, a blacklisting solution must be able to uniquely identify a dishon-
est user and subsequently deny travel. In open ticketing, the two unique values
that could potentially be used for blacklisting are the user’s public keys through
CRLs, or the PAN. Earlier solutions [15] have relied on CRLs. However, the use
of CRLs for real life implementations has its challenges, the distribution of CRLs
to merchants faces problems of efficiency. Furthermore, due to the strict timing
requirements of transport ticketing systems, the look-up times of CRLs may
prove to be too high. Also, with a huge number of transactions, it is impossible
to update CRLs in an efficient way. More on CRLs can be found in [19].

2.3 EMV Payment Tokenisation

Tokenisation replaces the PAN with a short-lived surrogate value referred to as a
‘token’ [20]. The idea is to eliminate sensitive cardholder information, specifically
the PAN, from the payment device as well as merchant terminals and replace it
with a token. If the device is compromised, the token will be of minimal impor-
tance as it is only valid for a short time. EMVCo2 has released a specification
on the use of tokenisation for mobile payments [20].

EMVco introduces a new entity to the existing payment network known as the
Token Service Provider (TSP). The TSP is responsible for generating, issuing,

2 EMVCo, made up of six members; American Express, Discover, JCB, MasterCard,
UnionPay, and Visa, facilitates worldwide interoperability and acceptance of secure
payment transactions.
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Detokenisa on

Fig. 1. Diagram showing the transaction flow of a tokenised payment

and provisioning payment tokens to legitimate token requests. The TSP is also
responsible for maintaining the PAN-token mapping in the token vault, as well as
detokenisation, i.e. the translation of tokens back to PANs for legitimate requests.
Figure 1 shows the transaction flow in an EMV tokenised transaction. Methods of
verifying the legitimacy of these requests, the token generation methods, and the
way in which these tokens are provisioned to the device are out of the scope of
this paper. We assume tokens will be generated and provisioned using global best
practices. Also the validity period of tokens is out of scope; the amount of time for
which a token is valid should be determined based on the perceived risk level.

3 Linkable Group Digital Signatures

Group signatures as first proposed by Chaum in [21] allow any member of a
particular group to generate signatures anonymously. The verifier gets crypto-
graphic assurances that a legitimate member of the group signed the message
without revealing the signer’s identity.

Group signatures with different properties have been proposed in the liter-
ature. In this paper, we use the linkable group signature first proposed in [12]
(referred to as a list signature) and standardised by ISO/IEC in [11]. In its origi-
nal construction, it supports the linking of signatures provided they were signed
using the same linking tag. In [12] a time frame was used as the linking tag,
allowing the linking of all signatures generated by a user within a given time
frame. However, [11] shows the linking tag can also be any random value, as
long as it is constant. This signature also supports revocation; it supports both
private key revocation and verifier blacklist revocation. In the section below,
we give an overview of the processes involved in this signature. For a detailed
outline of the process and mathematical proofs, please refer to [11,12].
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3.1 Intractability Solutions

Strong RSA Assumption. First introduced in [22]; Let p′ and q′ be two
distinct primes of equal length such that: p = 2p′ + 1 and q = 2q′ + 1 are also
primes. The multiplicative group of quadratic residues modulo n denoted by
QR(n), is a cyclic group of order p′q′. Where n = pq, and is referred to as safe
RSA modulus.

Decision Diffie-Hellman Assumption (DDH). Let g be the generator of
a finite cyclic group G. The DDH assumption for group G states that it is hard
to distinguish the DDH tuple: (gx, gy, gxy) from random triples (gx, gy, gz), for
a random (x, y, z) modulo the order of group G.

In general, the DDH problem can also be constructed for arbitrary finite
abelian groups. Therefore, if G = QR(n), then G has composite order. If the
group composition of G is known, then the DDH problem in G is reduced to the
DDH problem in the components of G.

Table 1. Notations and meanings

Notation Meaning

Tk Token generated from the PAN

tnt Timestamp at the point of entry

txt Timestamp at the point of exit

Rn Random nonce

s t nid Unique train station identity

Sigx Linkable signature with key x

bsn Linking base

T4 Linking tag

A, e, x Signature key

Gpk Group public key = (n, a, a0, g, h, b)

Gmk Group membership issuing key = (p′, q′)

CHALL {tnt/txt||Rn||s t nid}
TAP {tnt/txt||Rn||s t nid||Tk||T4}

3.2 Phases

Below we describe the phases involved in a linkable group signature. We maintain
the notations used in [11] and their meanings are given in Table 1 above.

1. Key Generation Phase: The key generation is made up of two parts: Setup
phase and the group membership issuing phase. In the setup phase, the group
manager creates the group public parameter, Gpk, and Gmk. The group mem-
bership issuing process is a protocol run between the group manager and a
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group member to create a unique signature key (A, e, x), where (x) is the
private key and (A, e) is the group membership certificate for each group
member. We assume the presence of a secure channel between the group
manager and the group member.
(a) Setup Phase: We assume the existence of two hash functions H: {0, 1}∗ →

{0, 1}k and HΓ : {0, 1} → {0, 1}2lp. The group manager chooses the group
public parameters: (lp, k, lx, le, lE , lX , ε). The group manager also chooses
random generators: (a, a0, g, h, b) of QR(n). Gpk = (n, a, a0, g, h, b) and
Gmk = (p′, q′)

(b) Group Membership Issuing Phase: At the end of this phase, the member
knows a random x ∈ [0, 2lx − 1] and the group manager knows ax mod
n and nothing more. Then the group manager chooses a random prime
e ∈ [2lE − 2le + 1] and computes A = (a0C2)d1 mod n where C2 = ax

mod n and d1 = 1/e mod n. The group manager sends A and e to the
member. The member checks that Ae = a0a

x mod n. The group member
signature key is (A, e, x) and x is the private key.

2. Signing Phase: The signature process takes as input; the (Gpk), the group
member signature key (A, e, x), a linking base (bsn) and the message to be
signed and outputs a linkable signature Sigx.

Algorithm 1. Signing
1: Compute f = (HΓ(bsn))2 (mod n)
2: Chooses random integers: w1, w2, w3 ∈ [0, 22lp − 1]
3: Compute: T1 = Abw1 (mod n),

T2 = gw1hw2 (mod n),
T3 = gehw3 (mod n),
T4 = fx (mod n).

4: Choose random integers:
r1 ∈ [0, 2ε(le+k) − 1],
r2 ∈ [0, 2ε(lx+k) − 1],
r3, r4, r5 ∈ [0, 2ε(lp+k) − 1]

5: Choose random integers: r9, r10 ∈ [0, 2ε(2lp+le+k) − 1]
6: Compute: d1 = T r1

1 /(ar2br9) (mod n)
d2 = T r1

2 /(gr9hr10) (mod n)
d3 = gr3hr4 (mod n)
d4 = gr1hr5 (mod n)
d5 = fr2 (mod n)

7: Compute:
c = H(a||a0||g||h||T1||T2||T3||T4||d1||...d5||m)
s1 = r1 − c(e − 2lE), s2 = r2 − c(x − 2lX),
s3 = r3 − cw1, s4 = r4 − cw2,
s5 = r5 − cw3, s9 = r9 − cew1,
s10 = r10 − cew2

8: Set the signature as:
Sigx = (c, s1, s2, s3, s4, s5, s9, s10, T1, T2, T3, T4)
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3. Verification Phase: The verification process takes as input a message, bsn,
a linkable signature Sigx, and Gpk corresponding to the group of the signer.
It returns 1 if the signature is VALID, else it returns 0.

Algorithm 2. Verification
1: Compute:

f = HΓ(bsn))2 (mod n)

t1 = ac
0T

s1−cl′
1 /(as2−cLbs9) (mod n) where l′ = 2lE and L = 2lX

t2 = T s1−cl′
2 /(gs9hs10) (mod n) where l′ = 2lE

t3 = T c
2 g

s3hs4 (mod n)

t4 = T c
3 g

s1−cl′hs5 (mod n) where l′ = 2lE

t5 = T c
4 f

s2−cL (mod n) where L = 2lX

2: Compute:
c′ = H(a||a0||g||h||T1||T2||T3||T4||d1||d2||d3||d4||d5||m)

3: If
c′ = c, s1 ∈ [−2le+k, 2ε(le+k) − 1],
s2 ∈ [−2lx+k, 2ε(lx+k) − 1],
s3 ∈ [−22lp+k, 2ε(2lp+k) − 1],
s4 ∈ [−22lp+k, 2ε(2lp+k) − 1],
s5 ∈ [−22lp+k, 2ε(2lp+k) − 1],
s9 ∈ [−22lp+le+k, 2ε(2lp+le+k) − 1],
s10 ∈ [−2lp+le+k, 2ε(2lp+le+k) − 1] return 1 (valid signature) else return

0 (invalid signature)

4. Linking Phase: The linking process takes two valid linkable signatures and
determines if they are linked, i.e. if they were signed by the same user.

Algorithm 3. Linking
Takes two valid linkable signatures:

(c, s1, s2, s3, s4, s5, s9, s10, T1, T2, T3, T4) and
(c′, s′

1, s
′
2, s

′
3, s

′
4, s

′
5, s

′
9, s10′ , T ′

1, T
′
2, T

′
3, T

′
4)) If T4 = T ′

4 output 1 i.e they are linked,
otherwise 0

5. Revocation Phase: The original construction of the signature supports two
types of revocation: Private Key Revocation and Verifier Blacklist Revocation.
In this paper we focus on the latter. In verifier blacklist revocation, the verifier
generates a blacklist using T4. So if the verifier needs to blacklist a dishonest
signer, the signer’s T4 is added to the blacklist. Therefore the verifier can check
if future signatures by the same signer are revoked by checking as follows: for
each T4′ , check T4′ �= T4. If any of the checks fail, output 0 (revoked), else,
output 1 (valid).
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4 Transport Ticketing Requirements and Adversary
Model

Transport ticketing systems have both functional and security requirements. A
general survey of electronic ticketing requirements can be found in [23]. Open
ticketing models however, have fewer requirements than closed systems because
most of the logic and fare calculation is moved to the back-office. We outline
the requirements below. We also explain the capabilities and motivations of a
determined adversary.

4.1 Adversary Model

The motivation for an adversary here is to abuse the ‘first time travel risk’ men-
tioned in Sect. 2.1 above, by maliciously evading detection on the blacklist. The
adversary could either be an attacker in possession of a stolen device, or a legiti-
mate user trying to cheat the system. A determined attacker will try to avoid the
blacklisting mechanism by producing a signature with a fake linking tag. Accord-
ing to the described Adversary model, we list the presumptive capabilities of the
attacker below:

1. The attacker cannot break the linkable signature algorithm used in this paper.
2. The attacker is active, and can generate fake tokens and linking tags.
3. The attacker has access to the payment device, as well as a legitimate sign-

ing key.

4.2 Functional Requirements

1. Offline Verification: It should be possible to validate offline, if the user is
allowed to travel. This is because network connectivity cannot be guaranteed
in some areas such as underground stations. Connecting to a back-end will
also introduce latency to the overall transaction speed.

2. Efficiency: Transport ticketing systems should be very efficient in terms of
passenger throughput. Therefore they are required to produce transaction
speeds of 300–500 ms from the time the user taps the device to the time the
terminal grants or rejects access.

4.3 Security Requirements

1. Integrity: It should be possible to verify if a wrong ticketing credential is used.
There should also be cryptographic evidence binding the user’s transaction
to a location at a particular time.

2. Anonymity: Although more of a privacy concern, the identity of the users of
a transport system must not be revealed.

3. Exculpability: It should be impossible for any entity, including the group
manager to falsely accuse a user of making a transaction at an entry or exit
point on the transport network.
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4. Blacklistability: It should be possible to build a blacklist of dishonest users
(or compromised devices), and be able to deny them further usage of the
transport network.

5 Proposed Model

In this section, we outline the general architecture of our proposed model. We
define the entities involved, as well as the roles played by each entity. We also high-
light the general assumptions made which are necessary for our proposed model.

We propose an open transport ticketing model which relies on EMV tokens
provisioned to NFC devices. The protocol makes use of linkable digital sig-
natures. Linkable digital signatures provide security features suitable for open
transport ticketing models. By correctly verifying a user’s signature, the TrO has
assurance that the user belongs to a known group. More importantly for this
paper, we use linkable signatures to solve the problem of blacklisting in tokenised
payments. In case of a dishonest user, the TrO is able to link the signatures of the
user on different tokens, while maintaining the anonymity of the user. Figure 2
shows the sequence of messages exchanged in the proposed protocol.

5.1 Assumptions

1. The transport application, and credentials including cryptographic material,
shall be provisioned to the user’s device using secure best practices such as
using GlobalPlatform.

Fig. 2. Sequence diagram showing the protocol of the proposed solution
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2. The payment networks act as TSPs, and shall subject users to necessary
identification and verification (ID&V) prior to issuing new tokens.

3. Each user is part of a group of users depending on their payment network.
For example, all MasterCard users are part of the same group.

4. The validity of the token in this paper is at least seven days.
5. We assume the maximum security features available via the platform/OS will

be in place to store tokens, keys, and other cryptographic material. Therefore,
in reality, the validity of the token will be based on the perceived residual risk.

6. The user is in possession of an NFC device with a payment application used
for regular tokenised payments such as retail.

7. There is mutual trust between the TrO and the rest of the EMV ecosystem,
and the terminals will be provided with the group public keys of the payment
network.

8. Each train station has entry and exit gates, equipped with a terminal and a
turnstile to grant or deny entry.

5.2 Entities

Below we describe the functions of the entities that make up the architecture of
the proposed model.

User: A user in this context will already have a bank account and possibly a
bank card. The user also has a NFC-enabled mobile device as well as a payment
application provisioned to the device.

Transport Operator: The TrO is in charge of validating users before travel.
The TrO also aggregates TAPs at the end of each day in the back-office to
determine the fare, and subsequently apply for authorisation from the user’s bank
via the payment network. The TrO shall also maintain a blacklist of dishonest
users in cases where the user has insufficient funds or in the case of a compromise.

Payment Networks: The payment networks will also serve as the TSP, and
are in charge of provisioning new tokens to the users device, translating tokens
back to PANs, and subsequently facilitating the authorisation of payments. The
rationale behind the decision to use the payment network as the TSP is due to
the fact that there are fewer payment networks globally, than banks3. Therefore
this means that the TrO’s terminal will have to keep a few group public keys for
signature verification.

3 The EMVco specification on tokenisation indicates that the payment networks can
additionally act as the TSP, while still maintaining their primary roles in the EMV
ecosystem.
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5.3 Phases

Our solution is divided into 4 phases: the setup phase, validation phase, account-
ing phase and the blacklisting phase. The specifics of the accounting phase are
out of the scope of this paper. It is however important to mention as it precedes
the blacklisting phase.

Setup Phase: This phase is executed between a user and the payment network.
A user initiates this phase by opting to use the payment application on his device
for transport payments. They both engage in an ID&V process to verify the
user’s identity and bank account, and check if the user’s has any outstanding
transport fares. The process is terminated if any of the checks fail. Otherwise
they go through the key generation process as explained in Sect. 3.2. In the end,
the user will have a unique signature key; (A, e, x), a token (Tk), and a TrO-
specific (bsn). We assume the TSPs group public keys to be well known and are
provided to the TrOs well before hand.

Validation Phase: This phase is illustrated in Fig. 2. We see that a user taps
the device on a terminal at a train station, the terminal sends a challenge to the
user. Challenge includes; timestamp (tX), random nonce (Rn) and the station ID
(s t nid). User concatenates the token (Tk) to the challenge, and signs as explained
in the signing phase in Sect. 3.2, using the (bsn) of the TrO. (tx) could either be
(tnt) or (txt) for entry and exit gates respectively. The user concatenates (Tk) to
the signed message and sends to the terminal. The terminal verifies the signature
using (Gpk) as outlined in verification phase in Sect. 3.2. If the signature is valid,
the terminal checks to see if the user’s (T4) is included in the blacklist. If it
doesn’t correspond with any (T4) on the blacklist, the user is allowed to travel
otherwise the user is denied travel. Afterwards, the terminal records a TAP . A
TAP includes the challenge signed by the user, the users (Tk), and the amount
to be charged which is determined in the accounting phase below. The blacklist
check is only needed at the entry gates.

Accounting Phase: This is a back-office process where TAPs of all users for
the day are aggregated to determine the fare to be paid by the user. The TrO
sends a payment request (payReq), which includes the (Tk) and the amount to
be charged, to the payment network for authorisation4.

Blacklisting Phase: This phase only becomes necessary in cases where an
authorisation fails due to insufficient funds in the user’s account. The TSP sends
a transaction decline message to the TrO. The TrO then puts the users T4 in
its blacklist database and updates the terminals at the stations with the latest
blacklist entries. A user’s device can also be put in the blacklist in the case of
compromise or a lost device.
4 The payment network, acting as the TSP, translates the token back to a real PAN

and authorisation is processed as per normal EMV flow.
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5.4 Proof of Concept

A proof of concept was developed to test the feasibility of our proposal and
also analyse it against the requirements mentioned in Sect. 4. A HCE-based
Android application was installed on an NFC device for the digital signature
implementation. We adapted an implementation of the digital signature in [24]
which was part of an analysis of group signatures on mobile devices [25]. For
the terminal, we had a Java application using the smartcard I/O Application
Programming Interface (API) running on a PC; this acts as the terminal at a
train station (Table 2).

Table 2. Devices used in proof of concept

Device Manufacturer Operating system RAM

Phone (Nexus 5) LG Electronics Android 5.1.1 (Lollipop) 2GB

Laptop Dell Windows 10 8GB

Reader ACS (ACR1281U) N/A N/A

5.5 Lessons Learned/Considerations

Support for extended Application Protocol Data Unit (APDUs)5 on NFC devices
is still not as extensive as smart cards. Therefore most NFC devices can only
send normal APDUs with a maximum length of 256 bytes. We realised this is a
software-based restriction rather than the NFC controller’s inability to handle
bigger messages. Due to the size of the signature in our protocol, we modified
the Android source to allow the device to send back the signature in one APDU,
rather than in chunks.

Sending a substantial amount of data over the NFC channel may not always
be efficient. Due to the size of the signature we used, we realised the time cost
of compressing the message and decompressing at the terminal’s side is trivial.
We found the BZip2 compression algorithm to be the most efficient.

Most of the parts of the signature can be precomputed; that is those parts
that do not depend on the challenge from the reader.

5.6 Performance Analysis

The total size of Sigx{{tnt/txt||Rn||s t nid} ||Tk}||Tk is 3536 bytes, with a 512
bit key, plus additional 15 bytes for concatenating the token to the signature in
plain text. This is compressed to 1617 bytes, providing 45.7% compression.

We took average timings of individual processes, as well as the total time
it takes the full protocol to run over 100 iterations. The mobile device takes
5 Application Protocol Data Unit is the unit of communication between a device and

a reader. APDUs are specified in ISO/IEC 7816 be.
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an average of 9.92 ms to sign the challenge received from the reader and also
compress the signature. The Round Trip Time (RTT), i.e. the time from when
the reader sends the challenge to when it receives the response, takes on average
420.75 ms. We refer to this as CHALL. It is important to note that about 90%
of the RTT is spent on the NFC communication link. The signature verification
on the terminal side, including decompression of the received data, takes 20.5 ms
on average. The whole protocol takes on average 451.17 ms.

For performance measurements of checking the blacklist, we rely on a com-
parative study of Database Management Systems (DBMS) in [26]. Each DBMS
was populated with 1,000,000 records, and the timings for a ‘select’ query for
each was taken. The select query emulates the look up of a user’s (T4) from a
blacklist database. SQL Server was the fastest and took 18ms, while the slowest
was Oracle and took 23 ms. These projections show that the delay introduced
by searching a blacklisting is trivial and therefore, our protocol still runs within
the accepted transaction time range for transport usage.

Table 3. Table showing transaction times in milliseconds (ms)

CHALL Sign Verify Full protocol

Average 420.75 9.92 20.5 451.17

Min 405.55 7.65 17.32 430.45

Max 445.63 10.65 23.75 480.03

5.7 Requirements Analysis

We analyse our proposal against both the security and functional requirements
mentioned in Sect. 4.3 above. Our model meets the offline verification require-
ment because the terminal is able to verify a signature, as well as run the black-
listing function offline, i.e. without connecting to a back-office or relying on a
third party. The protocol, as shown in Table 3 above, is within the acceptable
transaction speed range, as stipulated by the efficiency requirement. It is worth
noting that, currently, NFC devices in HCE only operate at the lowest NFC data
rate of 106 kbps6. We found out this limitation is also a software limitation and
not the NFC controller’s inability to operate at higher data rates. Therefore at
higher rates, our solution is expected to be much faster.

In terms of security, for a signature verified to be valid, it is computation-
ally hard for anyone except the group manager to reveal the identity of the
actual signer. In the random oracle model, the proof of knowledge that is part
of the signature can be proven in statistically zero knowledge. Also trying to
identify a particular signer with certificate (A, e) requires the adversary to know
if logbT1/A, loggT2, and loggT3/ge are equal. This is assumed to be infeasible

6 NFC supports data rate of 106, 212, 424, and 848 kbps.
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under the decisional Diffie-Hellman assumption. Therefore our protocol meets
the anonymity requirement.

As shown in the key generation phase in Sect. 3.2, the group manager does
not learn any new information about the user’s private key (x ), and at the end
of the phase, the group manager only learns ax. Also, because (T1, T2 and T3)
represent an unconditional binding commitments to (A and e). This implies that
if the factorization of n is feasible, the group signature is a proof of knowledge of
the discrete logarithm of A/a0 [27]. Therefore no entity, including the transport
operator and the payment network – acting as the group manager, can sign a
message on behalf of a user as computing discrete logarithm is assumed to be
infeasible. Therefore our protocol thereby meets the exculpability requirement
because a user cannot be framed for a false transaction.

In addition, integrity is achieved because it is not possible for anyone without
access to the private key (x) to generate a valid signature. Secondly, the TrO
is able to verify that the signed message includes the correct challenge it had
sent, thereby cryptographically linking the user to that point on the transport
network at that particular time. Hence creating the ‘TAP’.

User blacklisting is achieved because a legitimate user cannot avoid detection
on the blacklist by forging a false linking base. (T4) is linked with (T1) through
the proof of knowledge and also the private key x. In addition, a legitimate
user cannot repeatedly cheat the system by signing on a rogue token with a
legitimate credential, because after the first payment request is declined, the
TrO can blacklist the user with the corresponding (T4).

6 Conclusion and Future Work

In this paper, we have looked at how a security solution – tokenisation, affects
the unique identification of users in certain scenarios. In particular, we have
highlighted how this calls into question user blacklisting in transport ticketing.
We have shown how linkable group signatures can be used to link two transac-
tions regardless of the changing token. This concept is used to create a blacklist
of dishonest users.

We have also shown the feasibility of our solution by building a proof-of-
concept which is analysed against the outlined requirements. Our solution can
also be used in use-cases outside ticketing that rely on the static nature of PANs.
For example, in retail to link different transactions of a user (with different
tokens) for loyalty and promotional purposes.

As future work, we plan to investigate more efficient methods of achieving
linkability while maintaining anonymity. We also plan to further improve the
security of our proposed solution by implementing it on a Trusted Execution
Environment (TEE).
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Abstract. Multi-pattern matching compares a large set of patterns
against a given query string, which has wide application in various
domains such as bio-informatics and intrusion detection. This paper
presents a privacy-preserving multi-pattern matching system which
processes an encrypted query string over an encrypted pattern set. Our
construction is a symmetric-key system based on Aho-Corasick automa-
ton. The computation complexity is the same as the basic automaton
in the base case, and within a multiplicative cost in the length of the
longest pattern in general.

Keywords: Multi-pattern matching · Symmetric searchable encryption

1 Introduction

Storage service witnesses an increasing popularity for satisfying different needs.
Some cloud services also provide applications which perform computation over
the outsourced data. However, the data is often sensitive. The users may not
fully trust the well behaviour of the cloud. A natural solution for the client is
to encrypt the data and outsource the ciphertexts instead. Without the key, one
learns nothing about the plaintext. The cloud thus cannot perform any useful
function over the data. For example, one may want to apply multi-pattern search
over the emails or network traffic for virus scanning or intrusion detection.

Chase and Shen [6] propose a queryable encryption scheme for substring
queries based on suffix trees. It can find all occurrences of a query string p as
a substring of an outsourced string s. This is like the dual of the multi-pattern
search problem — a set of pattern is outsourced and the query is a string for
checking which pattern appears at which position of the string.

This paper studies multi-pattern matching over encrypted pattern sets and
encrypted query. Given a large pattern set M where each pattern consists of the
characters from an alphabet set Σ, the multi-pattern matching algorithm can
locate all the patterns from M which appear in a query string q (also consisting of
the characters in Σ). This allows the owner of a large set of patterns to outsource
the set to a cloud server. At the same time, the data owner can allow any client
to make queries to this encrypted pattern set. The cloud server is deterred from
learning the pattern or the query. Multi-pattern matching is one of the key
technologies for string analysis, and has found application in bioinformatics,
business analytics, natural language processing, web search engines, etc.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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1.1 Related Work

Searchable Encryption and Structured Encryption. Symmetric search-
able encryption (SSE) [7] is a symmetric-key encryption scheme which allows
any server hosting the ciphertexts to search over them. The search requires a
token generated by the client who holds the symmetric-key. The server is usually
considered honest-but-curious, except in special schemes such as verifiable SSE
proposed by Kurosawa and Ohtaki [10]. In a typical SSE, the server can easily
know which parts of the memory have been accessed when the same memory
block is accessed again. The security definition of SSE acknowledged the leakage
of information about the plaintext due to a query, such as access pattern.

Most of the existing schemes aim to locate where the keyword query is in
the outsourced files, if exists. Some SSE schemes support search beyond the
basic keyword equality testing. For example, Cash et al. [4] proposed an efficient
construction for searches involving multiple keywords. Generally speaking, exact
keyword search and pattern matching are quite different. A recent scheme by
Wang et al. [13] uses locality sensitive hash (LSH) with other techniques to
achieve fuzzy search. Yet, LSH is for hashing similar keywords to the same
output, but is not applicable for pattern matching in general.

Our privacy-preserving multi-pattern matching scheme falls in the scope of
structured encryption [5,11]. Structured encryption is a generalization of SSE,
which protects the data privacy while preserving the functionality in the original
data structure. However, existing instantiations [5,11] only support data struc-
tures which are not readily extensible for our multi-pattern matching problem.

Secure Two-Party Computation of Pattern Matching. Pattern matching
and other text processing has been studied in the context of secure two-party
computation [3,8,9,12]. The motivation is to protect sensitive data such as DNA
records from the client. In other words, the client has no knowledge about the
data on the server, and should not obtain extra knowledge beyond each query.
In contrast, our setting assumes the client knows and prepares the data to be
outsourced to the server. It partially explains why efficient query is possible.

Authenticated Multi-pattern Matching. Recently, Zhou et al. [14] pro-
posed an authenticated but not privacy-preserving solution for Aho-Corasick
automaton [2]. Their scheme use dynamic accumulator (e.g., [1]) to ensure the
authenticity of the query result, which features constant-size proof. However,
when the data stored on the server is encrypted, it is unclear how to follow
their technique and generate accumulator for different nodes dynamically dur-
ing a query. Instead, our proposed scheme uses symmetric-key encryption for
authentication.

1.2 Our Contribution

We propose the first multi-pattern matching algorithm on encrypted pat-
tern which is secure against malicious adversaries. Our scheme is based on
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Aho-Corasick automaton (AC automaton) [2] and benefits from its efficiency.
The computation complexity is O(n+m) in the best case (the same as the plain
AC-automaton with direct fail pointers), or O(n ·d) in the worst case, where n is
the length of the query string, m is the number of matched patterns, and d is the
length of the longest pattern. The communication complexity is proportional to
the computation complexity, as both are proportional to the nodes processed.

2 Preliminaries

This section reviews the pattern matching algorithm and some cryptographic
primitives used in our proposed system.

2.1 Trie

Trie, also known as prefix tree or radix tree, is a |Σ|-ary tree for storing a
large amount of strings formed by characters from the alphabet Σ. Each path
from the root to a node represents a string, which is a common prefix of the
strings represented by its succeeding (child) nodes. Every string in a trie can
be represented by a path from the root to a node, and this path represents
a common prefix of some strings. The root node denotes a null string. Any
other node represents a prefix that is created by appending the character of the
incoming edge, to the prefix that its parent node represents.

Figure 1 shows a sample trie. A trie T is setup by adding the patterns to it
one by one. We traverse T from the root with respect to the character sequence
of a pattern string. During the traversal, the current node may not have an
outgoing edge which represents the next character in the string. In such cases,
we add a new edge, from the current node to a new child node, to denote this
missing character. The node identifier is its timestamp of insertion. We continue
the traversal until the current node is the end of the pattern. We then mark
it as a gray ending node, e.g., node 4. Trie can reduce storage by merging all
the common prefixes. The dashed and dotted edges (representing fail and sp
pointers respectively) will be used by the AC automaton.

Searching on a trie is performed in a depth-first manner by sequentially
taking one character from the query each time. If there is an outgoing edge for
the character, it moves along it. If the outgoing edge for the next character does
not exist or the query ends on a non-ending node, the search fails.

2.2 Aho-Corasick String Matching Algorithm

A näıve and costly way of multi-pattern matching is to enumerate all the pat-
terns. Aho-Corasick algorithm [2] (AC automaton) is a pattern matching algo-
rithm based on the trie structure which aims to guarantee the correctness with-
out explicitly processing the patterns one by one. Multi-pattern matching algo-
rithm can locate all the pattern occurrences in the query text by checking if the
pattern is a prefix of any suffix of the text. The major idea is to sort all the
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prefixes of the query string (e.g., “otear”) from short to long (e.g., “o”, “ot”,
“ote”, “otea”, “otear”), then find all the suffixes which are in the pattern set
for each prefix (e.g., “tea” and “a” for “otea”). Correctness is guaranteed by
conceptually covering all the suffixes.

For the searching process, the automaton traverses the trie from the root
according to the query string, except for the following two special treatments.

The AC automaton adds fail pointers to the trie for quick traversal when
mismatch happens, i.e., if a node does not have an outgoing edge for a charac-
ter c, it must have a fail pointer pointing at a node to which the searcher should
go since that represents a suffix of the current node. Specifically, consider the
string denoted by the path from the root to a node v, if there exists another path
which denotes a suffix of it, and the last node on this path has a child node w
denoting the character c, then fail pointer for c of node v points at w. If there
is no such suffix on the trie, the fail pointer for c of node v points at the root.

In Fig. 1, fail pointers are shown as dashed edges. For example, consider
node 8, it has one fail pointer for ‘n’ pointing at node 5, and one for ‘r’ pointing
at node 3. Note that a null string is always a suffix, we omit the fail pointers
pointing at the root or the second level nodes because there are too many of
them (e.g., fail pointers pointing at nodes 1, 4, 6 for ‘e’, ‘a’, ‘t’, respectively are
omitted). Step 5 in Table 1 is an example of quick traversal via fail pointers.
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Fig. 1. AC automaton with pattern set {“ear”, “a”, “an”, “tea”, “to”}

When the traversal returns to the root via a fail pointer, it gives up the
current character and moves to the next character in the query string. Step 1 in
Table 1 gives an example, which removes ‘o’ and starts processing ‘t’.

The second special treatment is the suffix pattern (sp) pointers. They are
shown as dotted edges in Fig. 1. For a node (may not storing a pattern) which
the traversal path from the root to it gives the string s, its sp pointer points to
an ending node (except itself) which denotes the longest suffix of s in the pattern
set. In this way, we can efficiently output all the matched patterns for a given
query by backtracing along sp pointers until the root is reached. (See Step 4 in
Table 1 as an example.) Since all the suffixes corresponding to a particular node
were accessed, backtracing guarantees that any results will not be missed even
though the traversal is processing a particular path.
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Table 1. Matching Flow for “otear”

Step Prefix Suffix Movement Action

1 “o” “” 0 → 0 The root has no edge for ‘o’, and its fail
pointer for ‘o’ points at the root itself, so stay
at the root, and the character in the query to
be processed is now ‘t”

2 “ot” “t” 0 → 6 The root has an edge for ‘t’, move to Node 6

3 “ote” “te” 5 → 7 Node 6 has an edge ‘e’, move to Node 7

4 “otea” “tea” 7 → 8 Node 7 has an edge ‘a’, move to Node 8.
Output “tea” as it is an ending node. Also
output “a”, because Node 4 is linked by the sp
pointer of Node 8

5 “otear” “ear” 8 → 3 Node 8 has no edge ‘r’, use fail pointer fr to
jump to Node 3. Output “ear” as it is an
ending node. Node 3 has no sp/fail pointer, so
search ends

Each node v stores a set of pointers for its child nodes {wc}c∈Σ, fail pointers,
and its sp pointer. We require the total number of the child edges and the fail
pointers of each node is exactly the size of the alphabet |Σ|, which is a constant.
Every nodes thus look the same in this regard which helps us to achieve privacy.

Efficiency. We omit the factor of |Σ| in our analysis since it is a small constant
for all alphabetic scripts such as English, French, etc. Let N denote the number
of patterns stored by T , and � is the average pattern length. For setup, the time
complexity is O(N�), including constructing the trie, the fail pointers and the
sp pointers for each node of the trie. The storage size is also O(N�).

Searching accesses O(n + m) nodes where n is for traversal, and m is for
outputting result including backtracing.

2.3 Cryptographic Building Blocks

Symmetric-Key Encryption (SKE). An SKE Π = (Gen,Enc,Dec) consists of the
following three probabilistic polynomial-time (PPT) algorithms:

– K ← Gen(1λ): this algorithm takes the security parameter λ and outputs a
secret key K of length determined by λ.

– CT ← EncK(M): this algorithm takes a key K and a message M , outputs a
ciphertext CT .

– (M,⊥) ← DecK(CT ): this algorithm takes a key K and a ciphertext CT ,
outputs a message M , or the symbol ⊥ indicating CT is invalid.

We require the following security properties for symmetric encryption:

– Correctness requires DecK(EncK(M)) = M with probability of 1 for all K
and M .
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– CPA (chosen-plaintext attack) security requires that for any PPT adversary
who can adaptively query an encryption oracle, the ciphertexts reveal no
information about plaintexts (other than their lengths).

– Ciphertext integrity requires that given accesses to an encryption oracle,
all PPT adversaries cannot construct a new ciphertext (not output by
the encryption oracle) that decrypts successfully. We say that a symmetric
encryption scheme is authenticated if it has both CPA security and ciphertext
integrity.

– Key hiding (also known as which-key concealing) requires that given two
encryption oracles, all PPT adversaries cannot tell whether they encrypt using
the same key or different keys.

Pseudorandom Function (PRF) Family. A PRF F : {0, 1}λ × {0, 1}∗ → {0, 1}∗

is a family of functions with efficient evaluation. The output of a PRF is com-
putationally indistinguishable from a uniform distribution over the range of F .

2.4 Queryable Encryption

We borrow the notion of queryable encryption introduced by Chase and Shen [6]
to model our privacy-preserving multi-pattern matching scheme.

Definition 1 (Queryable Encryption). For message space M, query space Q,
and result space R, we define a queryable encryption scheme which supports
query functionality F : M × Q → R by the PPT algorithms/protocols below.

– Gen(1λ) → sk: this algorithm takes a security parameter λ as an input and
outputs a secret key sk.

– Enc(sk,M) → CT : this algorithm takes a secret key sk and a plaintext mes-
sage M ∈ M as inputs and outputs a ciphertext CT .

– Query((sk, q), CT ): this is an interactive query protocol between a client and
a server. The client input is a secret key sk and a query q ∈ Q. During
the interaction, the client generates a query token to be sent to the server.
The server input is a ciphertext CT . The server interacts with the client by
receiving query tokens and returning intermediate results. The final output
of the client is a query result R ∈ R. The server has no final output.

Correctness of queryable encryption requires, for all λ ∈ N, q ∈ Q, M ∈ M,
let sk ← Gen(1λ), CT ← Enc(sk,M), and R ← Query(sk, q, CT ), we have that
Pr[R = F(M, q)] = 1 − negl(λ), where negl(λ) is a negligible function of λ.

The security definition of a queryable encryption is parameterized by two
leakage functions L1 and L2. L1 denotes the information about the message
leaked by the ciphertext. For any j, L2(M,Q1, · · · , Qj) denotes the information
about the message and all queries made so far that is leaked by the j-th query.

We allow the adversary to be arbitrarily malicious in the protocol. Thus we
require that a malicious server either produces the correct output or will be
detected. This definition guarantees both privacy and correctness. We recall the
definition of security against (L1,L2)-chosen query attack (CQA2) [6].
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Definition 2 (Malicious (L1,L2)-CQA2 security). Let E = (Gen, Enc,
Query) be a queryable encryption scheme for message space M, query space Q,
result space R, and query functionality F : M×Q → R. We define the following
experiments for leakage functions L1 and L2, adversary A, and simulator S:

– RealE,A(λ): The challenger uses Gen(1λ) to output a secret key K. The adver-
sary A outputs a message M . The challenger runs CT ← Enc(K,M) and
sends CT to the adversary. The challenger adaptively makes a polynomial
number of queries Q1, · · · , Qt. The challenger plays the role of client in the
query protocol with input (K,Qi) and sends the output to adversary. Finally,
A outputs a bit b.

– IdealE,A,S(λ): The adversary outputs a message M . Given L1(M), the simu-
lator S outputs CT . The adversary adaptively makes a polynomial number of
queries Q1, · · · , Qt. For each query Qi, the simulator is given L2(M , Q1, · · · ,
Qi) and interacts with the adversary. Then the simulator produces a flag fi.
If fi =⊥, then the challenger sends ⊥ to A. Otherwise it outputs F(M,Qi).
Finally, A outputs a bit b.

We say that E is (L1,L2)-CQA2 secure against malicious adversaries if, for
all PPT adversaries A, there exists a simulator S such that:

|Pr[RealE,A(λ) = 1] − Pr[IdealE,A,S(λ) = 1]| ≤ negl(λ).

3 Privacy-Preserving Multi-pattern Matching Solution

We first give some intuitions about how to process the AC-automaton for pre-
serving its privacy, then we present the details of our construction.

3.1 Modified AC-automaton

To preserve privacy, we need to hide as much structure as possible. We should
allow the recovery of the pointers only when needed. A straightforward approach
which works on encrypted trie requires a high number of interactions. It can be
as much as the number of traversal steps since the client cannot predict ahead
the path of traversal, especially for fail or sp pointers. Here, we describe how to
preprocess the AC-automaton for hiding all the pointers, and encrypt both the
query string and the trie, while keeping communication complexity in mind.

Matching the Encrypted Query and the Encrypted Trie. A straight-
forward way to let the server query over the encrypted trie is to process each
character in the query one by one. Our scheme instead generates a sequence of
substrings of length d + 1 from the query, i.e., one character longer than the
longest pattern. We can thus reduce the interaction rounds from O(n) to O(n

d )
in the best case.

The client prepares the query token by encrypting the query substrings as a
series of ciphertexts. The server uses the pre-computed keys stored in the trie
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to try decrypting them. The keys are pre-computed by the data owner in the
following way. For each node, the data owner derives its address in the dictionary
and a symmetric key to be stored in its parent node by using two PRFs, both
taking as input the string denoted by the path from the root to this node.

During the traversal, if there exists a key which can successfully decrypt
the given ciphertext, which happens when the string corresponding to the node
matches the sub-string corresponding to the query token, the server can locate
the next node with the address obtained from the decryption. Otherwise, the
client and the server rely on the fail pointer to continue searching.

Handling the fail Pointers. Recall that if there is a mismatch happens while
searching on the current path, the traversal follows the fail pointer which indi-
cates a node to go. When this happens, we say that the search triggers a fail
event. As described in the previous part, a query is divided into substrings. A
fail event ends the current substring at the fail position, and starts the next
substring at this fail position. The node pointed at by the fail pointer is the
entrance node for continuing the next query substring.

Whenever a fail event happens, the client can always know the string denoted
by the path from the root to the entrance node, when given the level of this
node. The reason is that this string is a suffix string of the current substring.
The current node indicates the ending position and the level of the next entrance
node indicates the length of this suffix string. With this suffix string, the client
can compute and send to the server the address of this entrance node (recall
how the address in the dictionary is computed from the previous part).

Instead of storing the fail pointer directly, a node stores a tuple (c, Lc),
denoting that a fail pointer for the character c points at a node at level Lc. The
client finds the entry for the first mismatching character to get the level of the
next entrance node, and recovers the fail pointer on spot during the search.

One could omit the fail pointers which point to the root. However, this
approach leaks the number of fail pointers. Instead, each node stores an entry
for every character in the alphabet (e.g., by setting Lc = −1 for a child edge
denoting c which is not a fail pointer). The overhead is reasonable for a small
alphabet size.

Handling the sp Pointers. Consider the string denoted by the path from the
root to current node, recall that the sp pointer indicates its longest suffix which
is in the pattern set. Instead of storing the sp pointers, each node stores all the
suffix patterns of a node (located by tracing recursively through the sp pointers
until the root) with its own pattern. This modification reduces the number of
steps during the search to O(n) where n is the length of the query, but increases
the server storage to O(N�). The maximum number of suffix patterns a node
has is the same as the height d of T . We can hide the number by additionally
storing at most d dummy patterns for each node. To reduce the storage, we store
an encryption of the pattern identities instead of the actual strings.
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Handling Malicious Servers. We allow the server to be malicious (returning
tampered messages) instead of just being honest-but-curious. We use authenti-
cated symmetric-key encryption such that the client (decryptor) can check the
authenticity of the ciphertext returned by the server.

For a node in the trie, the data owner encrypts the information of the path
of this node, its child node, its fail pointers, and its patterns. Modification of
the path requires the server to modify the encrypted information of one or more
nodes. For deletion of any nodes, the server needs to return the ciphertext stored
on the parent node of the node it wants to delete, but that is also authenticated.
In these ways, any malicious tampering of servers can be detected.

3.2 Our Proposed Construction

Our scheme requires a PRF F : {0, 1}λ×{0, 1}∗ → {0, 1}λ, and an authenticated,
key-hiding, CPA-secure symmetric-key encryption scheme Π = (Gen,Enc,Dec)
where Π.Gen outputs a λ-bit key. Table 2 lists the major notations. Below we
describe the three algorithms/protocols Gen, Enc, and Query of our scheme.

Table 2. Notations

N The number of all patterns on the trie T
d The height of T and the length of the longest pattern

� The average pattern length

m The number of matched patterns

wc A child node of v that the edge between v and wc denotes the character c

Lc The level of the node wc pointed at by the fail pointer for character c

wsp A node linked by the sp pointer of v

pv The string denoted by the path from the root to the node v

proot A special symbol denoting a “null” string corresponding to the string of the root

P The set of patterns stored in a node

N The set of decryption keys (fc for character c) for locating next nodes

F The set storing the character of the fail pointer and the level of the node it points at

O The set of search results sent from the server to the client

n The length of the query string q

qη The η-th substring of q (division of q into substrings is done in a specific way)

qη
i The i-th character in the η-th substring qη

Σ The alphabet

Σv The set of characters corresponding to the existing child edges of node v

Σfail The set of characters corresponding to the non-existing child edges of v

Gen(1λ) → sk. The data owner randomly chooses KD, K1, K2
$← {0, 1}λ,

and sets sk = (KD,K1,K2).
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Enc(sk,M) → CT . Based on the plaintext pattern set M , the data owner sets
up the AC-automation T . The data owner encrypts each node of the resulting T
in a specific way (to be detailed below), and stores the encrypted structure as
address/value pairs in a dictionary D on the server. Note that the data owner
also stores the height d of T locally. Algorithm 1 shows the pseudocode. Below
we explain the pseudocode and illustrate it with an example.

Algorithm 1. Encrypting the pattern set M with the secret key sk

1: procedure Enc(sk, M)
2: Setup AC-automaton T to store the pattern set M
3: Initialize a dictionary D and a queue Q
4: Q.enqueue(root) // first enqueue the root of T
5: while Q is not empty do
6: v := Q.dequeue()
7: v.P := ∅; v.F := ∅; v.N := ∅;
8: ({wc}c∈Σv∪Σfail , wsp) ← v
9: if pv is a pattern then v.P := {pv}

10: if v has a suffix pattern pointer sp then v.P := v.P ∪ v.wsp.P
11: for all c ∈ Σ do
12: v.N := v.N ∪ {FK2(pv||c)}
13: v.F := v.F ∪ {(c, (c ∈ Σfail ? Lc : −1)}
14: end for
15: addrv := FK1(pv)
16: Cv := Π.EncKD ((addrv, v.P, v.F , v.N ))
17: D[addrv] := (v.N , Cv)
18: for all c ∈ Σv do
19: Q.enqueue(wc) //child node w of v
20: end for
21: end while
22: Output: D
23: end procedure

For each node v in the trie setup by the AC-automation, we define three sets.

1. Set P stores the pattern of v and all its suffixes which are also patterns.
2. Set F stores all the fail pointers including those pointing at the root or the

child nodes of the root (at level 2). Each entry is in the form of (c, Lc):
– c is the next character in the query which cannot be reached.
– Lc is the level of the node that the fail pointer for c points to.

If a character c ∈ Σv, then the entry (c,−1) is stored to make sure that
|F| = |Σ|.

3. Set N stores a set of decryption keys used for decrypting the address of next
node. For next node wc, the key is FK2(pwc

) where pwc
denotes the path from

the root to node wc. No matter whether there exists an outgoing edge for the
character c, N contains an entry for all character c in the alphabet.
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The client encrypts (addrv = FK1(pv),P,F ,N ) as Cv under key KD, and stores
the value (N , Cv) at address addrv of dictionary D, i.e., D[addrv] = (N , Cv).

Consider the example in Fig. 1. Suppose the alphabet is {a, e, n, o, r, t}. The
pattern set is {P1 = “ear”, P2 = “a”, P3 = “an”, P4 = “tea”, P5 = “to”}. For
node 8, p8 = “tea” as the traversal from the root passes through edges marked
with ‘t’, ‘e’, ‘a’. It has fail pointers marked with ‘n’ and ‘r’ in particular (fail
pointers for ‘a’, ‘’e’, ‘o’, ‘t’ are not drawn in Fig. 1), i.e.,

– P = {P4, P2}, F = {(a, 2), (e, 2), (n, 3), (o, 1), (r, 4), (t, 2)}.
– N = {FK2(“teaa”), FK2(“teae”), FK2(“tean”), · · · , FK2(“teat”)}, in which all

of them are never re-used in the trie as node 8 has no next (child) node.
– D[addr8] = (N ,Π.EncKD

(addr8,P,F ,N )), where addr8 = FK1(‘tea’).

The client also stores locally that T is of height 3. We do not model it as secret
state information kept by the client since it is difficult to protect its secrecy unless
the client adds many dummy entries and occasionally issues dummy requests.

Query(sk, q, CT ) → R. This protocol contains two parts: queryclient() (Algo-
rithm 2) on client side, and queryserver() (Algorithm 3) on server side. These two
algorithms interactively compute search result R as the client private output.

The client runs queryclient() with the input of the secret key sk from the data
owner, and a query string q ∈ Σn where n can be an arbitrary integer. We
separate the query string twice instead of processing the entire q at one shot.

The first separation, from line 5 to line 10 of Algorithm 2, is to protect the
access sequence for a long query string. We divide the query string q of length n
into overlapping sub-query strings {qη} of length randomly chosen from the range
[d + 1, n − 1], where d is the length of the longest pattern (a state information
kept at the client side). Setting the maximum length to n−1 means q is divided
into at least 2 sub-query strings when |q| > d. If |q| ≤ d, there will be only one
sub-query string which is q itself. We also randomly permute the order of these
sub-query strings. We make the overlap to be exactly of length d. The overlap
ensures that the division and the order permutation do not affect the match
result. Any duplication caused by the overlapping part can be eliminated since
the results correspond to not only the matched pattern but also the matched
position in the entire query q. Other than duplicate elimination, one can treat
each sub-query string as an independent query.

The second separation is for constructing the substrings dynamically for
each communication round. Each sub-query string is separated into substrings
of length d+1. If the total length of the rest of the query is not long enough, the
client appends randomly chosen characters (denoted by cpad,j where j denotes
the position of the padded character) to the end. The corresponding matching
results will be discarded. The length of d + 1 ensures that every interaction will
raise a transition via a fail pointer, so the server is able to send back all the
matched results.

For a substring from position i to i + d of a sub-query string qη, if i is
beyond the length of qη, the client proceeds to search for another unprocessed
sub-query. Otherwise, the client performs the following steps to generate the
query ciphertexts:
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1. The client computes indj = FK1(q
η
i · · · qη

i+j−1) as the search index and K∗
j =

FK2(q
η
i · · · qη

i+j−1) as the search key, for the j-th substring qi · · · qi+j−1 (where
j ∈ [1, d + 1]) of the query string.

2. The client encrypts indj using K∗
j as Tj ← Π.EncK∗

j
(indj).

3. If the remaining query length is less than d + 1, the client continues to pad
random character cpad and generate Tj for j ∈ [|qη| + 1, d + 1].

4. The client sends (entrance, {Tj}d+1
j=1) to the server where entrance is the start-

ing entry for searching in D. This entrance is either FK1(proot) (the address
for the root where the input for pseudo-random function F is null string) or
decided by the previous communication in the same sub-query string qη. The
latter case will be elaborated later.

To illustrate, suppose the client queries for “otear”, i.e., n = 5. Recall that
the client stores locally the height of tree d = 3. The range is [3 + 1, 5 − 1], the
length of sub-query string can only be 4. Thus the sub-query strings after first
separation are “otea” and “tear”. Suppose “tear” is permuted as the first, the
second separation first picks a substring of length 3 + 1 from it, which is “tear”
itself in this case and nothing remains.

Then the client performs the second separation and processes in the first
round of the query and sends Q = {entrance = FK1(proot), Tt, Te, Ta, Tr} to the
server. For example, indt = FK1(“t”), K∗

t = FK2(“t”), indr = FK1(“tear”),
K∗

r = FK2(“tear”), Tt = Π.EncK∗
t
(indt), and Tr = Π.EncK∗

r
(indr).

Once received Q, the server runs queryserver(entrance, {Tj}d+1
j=1).

1. The server sets addr = entrance and locates the entry (N , Cv) ← D[addr].
2. The server adds the ciphertext Cv as the value of entry D[addr] and add the

tuple (0, Cv) to the response set O which 0 is the current position in this
sub-query. The server tries addrj ← Π.Decfc

(Tj) for all fc ∈ N of the node
at entrance where j = 1. If there exists fc which successfully decrypts T1,
updates addr = indj and repeats the process for j ∈ [2, d + 1]; otherwise,
breaks the iteration.

Algorithm 2. Part of the Query protocol executed by the Client for querying q

1: procedure queryclient(sk, q)
2: R := ∅
3: Parse q = q1q2 · · · qn

4: i := 1, cnt := 0 // i is the starting position of the cnt-th sub-query string
5: while (i ≤ max(n − d, 1)) ∨ (i > 0) do // divide q into sub-query strings
6: cnt := cnt + 1

7: ncnt
$← [d + 1, n − 1]

8: ncnt := min(ncnt, n − i + 1) // to set the length of the last sub-query string
9: qcnt := qiqi+1 · · · qi+ncnt−1

10: i := i + ncnt − d // to ensure the overlapping length is d
11: end while
12: ζ := cnt // the number of sub-query strings
13: Choose a random permutation P : [ζ] → [ζ]
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14: for all η′ = 1 to ζ do
15: η ← P (η′) // {qη}ζ

η=1 is the set of sub-query strings after permutation
16: i := 1
17: entrance := FK1(proot)
18: while i ≤ |qη| do
19: for all j = i to min(i + d, |qη|) do
20: indj := FK1(q

η
i qη

i+1 · · · qη
j ); K∗

j := FK2(q
η
i qη

i+1 · · · qη
j );

21: Tj := Π.EncK∗
j
(indj)

22: end for
23: if |qη| < d+ i then // pad the substrings to be of the same length d+1
24: for all j = |qη| + 1 to i + d do

25: cpad,j
$← Σ

26: indj := FK1(q
ηcpad,|qη|+1 · · · cpad,j)

27: K∗
j := FK2(q

ηcpad,|qη|+1 · · · cpad,j)
28: Tj := Π.EncK∗

j
(indj)

29: end for
30: end if
31: Client sends Q := (entrance, Ti, Ti+1, · · · , Ti+d) to the server
32: Client receives the response O
33: {(k, Ck,v)}n′

k=0 ← O
34: n∗ = min(n′, |qη| − i + 1) // the ending position without padding
35: for all k = 0 to n∗ do
36: (addrk, Pk, Fk, Nk) ← Π.DecKD (Ck,v)
37: if decryption in the above line returns ⊥ then abort
38: i′ := k + i
39: if (k > 0 ∧ indi′ �= addrk) then abort
40: if (⊥ ← Π.Decfc(Ti′), ∀fc ∈ Nk) then abort

41: pos :=
∑η′−1

j=1 |qj | + k + i − 1
42: for all p ∈ Pk do
43: if (pos, p) /∈ R then R := R ∪ {(pos, p)}
44: end for
45: end for
46: L := Lq

η
i+n∗ − 1, where Lq

η
i+n∗ is from Fn∗ for character qη

i+n∗

47: if L == 0 then // fail pointer points to root
48: i := i + n∗ + 1
49: entrance := FK1(proot)
50: else if L > 0 then // fail pointer does not point to root
51: i := i + n∗

52: entrance := FK1(q
η
i−L+1 · · · qη

i )
53: else // invalid L value or the response set is incomplete
54: resend Q to the server or abort
55: end if
56: end while
57: end for
58: Output: R
59: end procedure
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Algorithm 3. Part of the Query protocol executed by the Server
1: procedure queryserver(Q)
2: Parse (entrance, T1, T2, · · · , Td+1) ← Q
3: v := (N , Cv) ← D[entrance]
4: Initialize an empty set O
5: O := O ∪ {(0, Cv)}
6: for all i = 1 to d + 1 do
7: for all fc ∈ v.N do
8: addrc ← Π.Decfc(Ti)
9: if addrc �= ⊥ then

10: v := (N , Cv) ← D[addrc]
11: O := O ∪ {(i, Cv)} // i is the occurring position of Cv

12: break // quit the inner loop once the matching character c is found
13: end if
14: end for
15: if addrc == ⊥, ∀fc ∈ N then
16: break // quit the outer loop once the query string “disconnected”
17: end if
18: end for
19: Output: O // send O to the client
20: end procedure

3. When the server has iterated all the d + 1 items or the iteration was broken
due to failing in decryption for all fc ∈ N , the server sends the set O to the
client as the result for this interaction.

To illustrate, the server can use FK2(“t”) in N of the root to decrypt
Tt = Π.EncK∗

t
(indt), and get indt = FK1(“t”), which is the address of node 6.

Similarly, N of node 6 has a key to decrypt Te = Π.EncFK2
(“te”)(inde) for

address of node 7, and N of node 7 has a key to decrypt Ta for address of
node 8. Once the search reaches address addr = inda (node 8), decryption leads
to indr = FK1(“tear”) but D has no corresponding entry at this index since
there exists no path for “tear” in the trie (or node 8 which corresponds to “tea”
has no child pointer of ‘r’). The server returns O.

The client continues executing queryclient() after it gets O = {(k,Ck,v)}n′
k=1

of size at most d for the last interaction starting at position i. The client then
recovers the ending position in the query string where the pattern occurs as
pos :=

∑η′−1
j=1 |qj | + k + i − 1, where η′ is the number of sub-queries processed

so far. This position can be further used to eliminate duplications.
The client first checks whether the size of the received sequence exceeds the

query length. If n′ ≤ |qη| − i + 1, the received items Tj correspond to characters
within the query for all j ∈ [1, n′]. In this case, n∗ = n′ is the number of
valid responses. Otherwise, the items Tj for j ∈ [|qη| − i + 2, n′] correspond
to the padded random characters. In this case, n∗ = |qη| − i + 1 is the size
of valid response items. The client decrypts all Ck,v to get (addrk,Pk,Fk,Nk)
for k ∈ [0, n∗], where the tuple for k = 0 corresponds to the entrance. If any
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decryption returns ⊥ or addrk �= indk for any k, the client concludes that the
server misbehaved and aborts the execution. The client adds the patterns along
with their occurring position pos to the result set R.

After obtained the item (qη
i+n∗ , Lqη

i+n∗ ) from Fn∗ where qη
i+n∗ is the first

mismatched character in the current substring, the client can get the depth of the
parent node for the character qη

i+n∗ linked by this fail pointer via L = Lqη
i+n∗ −1.

The client generates the starting position for the next substring as follows.

– If L = 0, the fail pointer points at the root of T . There is no match for the
(i+n∗)-th character in the current sub-query string. There is no pattern whose
prefix is also a suffix of the string from the first to the (i+n∗)-th character of
this sub-query string. The client needs to skip the character qi+n∗ by setting
the next substring starting at position i + n∗ + 1 and entrance = FK1(proot).

– If L > 0, we should find the next node at level Lqη
i+n∗ > 1. The client sets

this node as the entrance by entrance = FK1(q
η
i+n∗−L+1 · · · qη

i+n∗). The fail
pointer of the last matched node is qi+n∗ . Hence the next substring starts
searching at position i + n∗ of the current sub-query string.

– If L < 0, which means that there exists a child node for the last tuple in O.
By construction L is a positive number and hence an invalid value is returned.
It means the obtained response set is incomplete. The client can try resend
the query for current substring to the server, or the client simply aborts and
issues a complaint against the server.

The client and the server iteratively proceed with the substrings in the
above way. When the client finishes querying all the substrings and sub-query
strings qη for a query q, it outputs R.

In our example, after received the response set for the first interaction, the
client generates the second round of query as follows.

1. The client reaches the last matched item (addr8,P,F ,N ). The client finds
that there is a fail pointer (‘r’, 4) in F for the mismatching character “r” of
the last matched item. The client traces back 4 − 1 = 3 characters from ‘r’
to get the starting position of the path the fail pointer pointing at and the
substring “ear”.

2. The client generates the new entrance for the second round of query where
entrance = FK1(“ear”). This is exactly the address for node 3. As the former
interaction has searched for a substring of “tea”, the second substring for
sub-query string “tear” is generated as ‘r’. The client pads this string with
randomly chosen cpad,j until it has the length of 4. Then the client generates
the ciphertexts for these padding characters.

3. The client sends new Q = {entrance, Tcpad,1 , · · · , Tcpad,4} to the server.

After the server receives Q it directly locates the address for ‘r’ through the new
entrance and adds the tuple (0, Cr) into the new O set, where 0 is the occurrence
position of ‘r’ in this substring and Cr is the ciphertext of the entry for ‘r’. It
continues the search until a fail event happens and then sends back the new
response set.
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During the second separation, the pattern query of sub-query string “tear”
can be finished in two rounds of interaction. However, if the sub-query string is
long, the interactions will increase accordingly.

After querying all the substrings in sub-query string “tear”, the client can
get back the patterns and their occurrence from the result set, and delete those
patterns matched by padding characters. The client can perform the query for
the second sub-query string “otea” with the same method.

Finally, we remark that the result for a sub-query string is constructed by
performing all its interactions in a right sequence, but the result for a query is
constructed by combining all the results of its sub-query strings regardless of
the order. As long as the substrings for one sub-query string are queried in the
right order, mixing the substrings from different sub-query strings or even from
different queries during communication will not affect the matching results. The
client can switch among different sub-query strings qη of the same query q, or
switch among multiple different queries while interacting with the server, and
still get the correct answer for each query. The randomized sub-query string order
and the mixing of substrings can further hide the information of the queries and
the dictionary. The server can only learn the sequence of nodes hit by a substring,
but not the sequence of nodes for a whole query.

3.3 Complexity Analysis

We discuss the complexity of our schemes in this section, and further discuss the
feasibility to parallelize the schemes.

Encryption. The computational complexity for AC automaton setup is O(N�),
which is the total length of all the patterns. The data hiding for the small
alphabet case accesses every node on the trie once in a breadth-first manner.
The number of nodes does not exceed N�, so the total complexity is O(N�). For
each node, at most |Σ| + 1 PRF evaluations (1 for each character and 1 for the
dictionary address) and 1 encryption are performed. So Enc contains N�·(|Σ|+1)
PRF evaluations and N� encryption operations.

The storage for the original AC automaton is N�|Σ|. After we remove sp
pointers, and store all the patterns hit by the node, including the patterns
traced via sp, on every node, the average storage of a node is increased by a
multiplicative factor of d. We require |Σ| to be a small constant, or we cannot
use this implementation of fail pointers (as described in Sect. 2.2). The storage
complexity is thus O(N�d).

Query. We first divide the query string into sub-query strings which overlap
with the adjacent substrings for length at most d. In the worst case, all the
sub-query strings are of the length d+1. In this case, each sub-query string only
contains one substring. We have n sub-query strings. For each sub-query string,
considering that fail event happens for each character, then there will be O(d)
generation of Tj for each sub-query. Hence, the worst case complexity is O(n ·d).
The original query computational complexity of the AC automaton is O(n+m),
where the worst case is also n + m.
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As our algorithm stores the suffix pattern set in each node instead of using
an sp pointer to trace the suffix patterns, the number of steps is further reduced
to O(n), where the worst case is also n. At each step, the server performs at
most |Σ| decryptions; and the client performs 1 encryption, 1 decryption, and 2
PRF evaluations. The best case computational complexity remains to be O(n).
In the worst case, the server performs at most n · |Σ| decryptions while every
step requires |Σ| decryptions. In our scheme, dividing one sub-query string into
several substrings of length (d + 1) introduces extra computation overhead. The
worst case computational complexity is increased to O(n · d) for the client in
the case that each step triggers a fail event, as each substring involves d + 1
encryptions. The time complexity on for the server remains the same. This case
is the same as that the sub-query strings are of length d + 1, which is discussed
previously.

Similar to the computational complexity, the communication bandwidth
between the server and the client is O(n) for the best case, and O(n · d) for
the worst case. The number of interactions for the best case is O(n

d ), while for
the worst case is O(n).

3.4 Security

Due to page limitation, we informally define the leakage of our scheme and
outline some important parts of its security proof. We first define the information
leakage L1 and L2. L1(D) contains:

– the number of nodes in T ,
– the height of T which is d.

L2(D,Q) contains:

– the sequence of entries (entrance, addr1, addr2, · · · , addrfail) in D hit by each
substring Qi including the entrance entries and the fail positions,

– the distribution of fail events.

The queries Qi ∈ Q are substrings of length d + 1, and may be from different
queries or different divisions of the same query. The substrings in the set Q and
the corresponding result from the actual server are given to the simulator S to
perform the simulation. This information is leaked to S by eavesdropping. By
our design, the server cannot tell whether two substrings Qi, Qj are from the
same query or not, where i �= j. S uses the leaked information from the previous
queries in Q to answer the adversary’s query in Query phase.

Theorem 1. The privacy-preserving multi-pattern matching scheme satisfies
malicious (L1,L2)-CQA2 security under the random oracle model, if F is a
PRF, and Π is an authenticated, key-hiding, symmetric-key encryption scheme.

Proof. We show that our scheme only leaks L1,L2 by showing that no PPT
adversary A can distinguish an interaction with the real client from one with a
simulator S which is only given the leakages.
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Encryption. S chooses a secret key KD
$← {0, 1}λ, and sets up the dictionary D

with the number of entries matching the number of nodes according to L1(D).

For each entry i, S randomly chooses fi,c
$← {0, 1}λ for c ∈ Σ, and sets D[fi,1] =

({fi,c}c∈Σ, Ci) where fi,1
$← {0, 1}λ and Ci = Π.EncKD

(0, ∅p, ∅fail, ∅f ).
S maintains two lists R1, R2. R1 stores the visited items in D. For a queried

sub-query Qi, at the j-th position, the string pi,j is the string denoted by the
path from the root to the current node. If this is the first time pi,j appears, S ran-
domly picks an item with address addr in D, and sets R1[i, j] = addr. R2 stores
the status of each node and its child nodes. R2[addr] = (K∗, flag, {flagc}c∈Σ).
flag, {flagc}c∈Σ are the status of the nodes on the simulated trie indicating
whether the nodes or their child nodes are accessed by the previous queries.
The initial values of flag and flagc are all 0, indicating that the node denoted
by addr and its child node corresponding to the character c are all unvisited.
If addr is chosen as the item for pi,j in the substring Qi at the j-th step,
S finds addr = R1[(i, j)], sets R2[addr].flag = 1, picks a character c where
R2[R1[(i, j−1)]].flagc = 0, sets it to 1, and sets R2[addr].K∗ = D[R1[(i, j−1])]·fc.
If a fail event occurs at the position j, S will stop the process.

Query. For a new incoming substring Q′ = (entrance, T1, · · · , Td+1), S first
checks L2(D,Q) for an entrance. If Q′ has a common entrance with any one
of the substrings in Q, S uses this entrance, otherwise, S randomly chooses an
entry in D (no matter visited or not), updates it as visited, and updates R1, R2

accordingly.
At the j-th step of the substring Q′, S checks L2(D,Q) for a common prefix

string pj . If S finds an item pi,j which equals pj , which means this prefix string
pj has been visited by the previous substrings Qi, S sets indj = R1[(i, j)] and
K∗

j = R2[FK1(pj)].K∗, and computes Tj = Π.EncK∗
j
(indj). If pi,j found from Q

which equals pj has triggered a fail event, or j = d + 1, S generates the rest of
Tj with randomly chosen indj and K∗

j . Otherwise, if pj is not a common prefix
or common fail event for any substrings in Q, S first flips a coin according to
the distribution of fail event, and proceed with the following two cases:

– If S decides that pj is not a fail event, it randomly chooses an item addr in D,
updates R1 and R2, and computes Tj as described previously.

– Otherwise, it generates the rest of Tj with randomly chosen indj and K∗
j .

When a fail event occurs or the index d + 1 is reached, S sends Q′ to A. A then
follows the process in the real scheme to return O′ = {k,Ck}n′

k=0 to S. S checks
whether the returned Ck is the same as the ciphertext stored in D[indj ]. If not, S
aborts the simulation and concludes that A returns wrong response.

Here, we show that the real scheme (Game 0) and the simulation above
(Game 5) are indistinguishable from A’s view through the transitions below.

Game 0. This game is the real scheme. A chooses a series of substrings (not
necessarily from the same query), and interacts with S to obtain the outputs
from S.
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Game 1. This game is the same as Game 0, except that FK1 and FK2 are
replaced with two random oracles. S keeps records of the evaluation of FK1

and FK2 in two tables. Game 0 and Game 1 are indistinguishable due to the
pseudorandomness of F .

Game 2. This game is the same as Game 1, except that S decides whether
to output ⊥ by checking whether the returned ciphertext Ck,v equals the one
stored in D for each k ∈ [1, n′] instead of decrypting Ck,v. Game 1 and Game 2
are indistinguishable due to the authenticity (ciphertext integrity) of Π.

Game 3. This game is the same as Game 2, except that

– Cv encrypts two empty sets instead of the real pattern set and the real fail
information set for each node;

– Tj encrypts randomly chosen ind for j ≥ i if fail event occurs at position i.

Game 2 and Game 3 are indistinguishable due to the CPA-security of Π.

Game 4. This game is the same as Game 3, except that Tj is generated with
randomly chosen symmetric key K∗ for j ≥ i if fail event occurs at position i.
Game 3 and Game 4 are indistinguishable due to the key-hiding property of Π.

Game 5. This game is the same as Game 4, except that S simulates the scheme
without the real pattern set or the real substrings. This is easily achieved, because
from Game 1 to Game 4, S has gradually replaced all the parts related to the pat-
tern set or the substrings with either randomness or the information from L1(D)
and L2(D,Q). Game 5 is actually the simulation described previously, and is
indistinguishable with Game 4.

Hence, S can successfully simulate the scheme with only the information
leakage provided by L1 and L2, if F is a PRF, and Π is an authenticated,
key-hiding, symmetric-key encryption scheme. �

4 Conclusion

In this paper, we propose the first privacy-preserving multi-pattern matching
scheme. The previous privacy-preserving searching schemes can only support
searching for one pattern at a time. Our scheme enables the feature to search for
multiple target patterns simultaneously. A data owner can outsource the storage
of a large pattern set and the computation of the searching. Our scheme protects
the privacy of both the queried string and the target pattern set. The client does
not need to download any data other than the matching result in the process.
Our design considers the adversary to be malicious. The client can catch any
dishonest behavior of the cloud server during the pattern matching process.

Our scheme is a symmetric-key scheme in which the data owner needs to
share the secret key with the clients who need to use the multi-pattern matching
service. It is also interesting to design a public-key scheme.
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Abstract. We design a searchable symmetric encryption scheme for
structured data which supports dynamic updates and parallel compu-
tation. The abstract data type supported by our scheme not only can
represent the usual keyword-file search but also other data type such as
graph structure. Unlike previous parallelizable schemes, search complex-
ity of our scheme is optimal, namely, linear in the number of matches
divided by the number of processors. Moreover, previous parallel and
dynamic schemes require an interactive update protocol to minimize the
leakage caused by the updates. It is thus a major technical challenge
to mandate non-interactive updates. While achieving multiple require-
ments simultaneously, our scheme leverages a simple tree structure. Our
scheme is secure against adaptive chosen query attack. We also evaluate
the efficiency of our scheme with synthetic data (of higher edge den-
sity) and real-life data for the application of online social network where
connections among users are represented by graphs.

Keywords: Searchable symmetric encryption · Structured encryption ·
Non-interactive · Dynamic · Parallel · Graph encryption

1 Introduction

In searchable symmetric encryption (SSE), the key used for encryption has an
additional capability of generating a search token, with which the encrypted
content can be queried efficiently without leaking the plaintext data. A com-
mon application of SSE is to outsource the storage of a set of documents to an
untrusted server. The ability to search is especially critical to mobile devices
where transmission speed and storage space are usually limited.

Structured Encryption. Since the seminal work of Song et al. [11], many SSE
schemes focus on keyword search over files. Later schemes extended the query
type to more complex keyword searches, such as range search [13], similarity
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search [14], etc. Chase and Kamara [1] generalize SSE to structured encryption
for supporting queries over arbitrary structured data.

Leakage. Ideally, an SSE scheme should satisfy two security requirements: (1) the
encrypted database does not reveal any information about the plaintext, and (2)
the tokens for adaptively issued queries and updates do not reveal any further
information beyond the query results. Typically, SSE schemes often reveal the
access and search pattern [2,3]. Yet they are non-interactive, which means that
the client only needs to delegate the search token and needs not to provide further
help for any subsequent searches. There are interactive solutions like oblivious
RAM [4] which can hide the access pattern, yet at the cost of efficiency.

Beyond access and search patterns, other information about the plaintext
could be leaked to the server. This information can be precisely defined by a
set of leakage functions [1,2,7]. Informally, we say that an SSE scheme is secure
against adaptive chosen query attack (CQA2), a generalization of adaptive cho-
sen keyword attack (CKA2) [2], if any adversary issuing a polynomial number of
queries adaptively cannot distinguish a real SSE scheme from one simulated with
the knowledge of the leakages. Note that the adversaries for different schemes
(of different efficiency) are often given different sets of leakage functions.

Existing Parallel and Dynamic SSE. SSE schemes proposed by Kamara et al. [7],
Kamara and Papamanthou [6], and Hahn and Kerschbaum [5] (denoted by KPR,
KP, and HK respectively) support dynamic updates of files, i.e., files can be
added or removed. This can be done via the help of an update token. A recent SSE
scheme proposed by Stefanov et al. [12] (denoted by SPS) can update individual
(keyword, file) pairs dynamically, but is unable to directly remove a file, i.e., the
client needs to manually remove all the (keyword, file) pairs for the unwanted file.

Supporting update poses more challenges in preventing leakage. For sup-
porting efficient dynamic updates, early work (e.g., KPR [7]) made compromise
in allowing more leakage when compared with some prior static SSE schemes.
Moreover, KPR uses linked list as its internal data structure which is inherently
sequential, making the scheme not parallelizable and less practical to be used in
parallel computing architecture.

Recent parallel and dynamic schemes (KP [6] and SPS [12]) made the trade-
off by requiring interaction between the data owner and the server in every
updates to minimize leakage. These schemes adopt different design principles in
addressing the same problem. From a high-level point of view, KP employs a
simple and direct approach which passes the data structure maintenance prob-
lem incurred by the update back to the owner. On the other hand, SPS relies on
an interactive cryptographic protocol known as oblivious sorting. One can view
these two schemes as adopting approaches at two ends of a spectrum. The for-
mer method requires the data owner to locally decrypt the relevant part of the
data structure, and upload again an encryption of them after maintenance for
keeping the parallel efficiency. The use of oblivious sorting requires local storage
at the client side (apart from the private key) and makes the resulting scheme
relatively heavyweight. In short, both approaches require quite a large amount of
communication and work at the client side. These schemes also store redundant



Parallel and Dynamic Structured Encryption 221

information which required to be traversed during a search, thus the full power
of parallel computation diminishes. In more details, KP stores the actual data
only in the leaf nodes of a tree and SPS firstly creates a “Delete” node during
deletion rather than actually removing the data.

HK uses a simplistic approach for handling data dynamic by exploiting the
leakage incurred from the first search on any keyword. While the majority of
the existing SSE schemes required a pre-computed inverted index, HK simply
stores the encrypted files as sequences of encrypted keywords in the database,
and creates a simple inverted index on the fly using the leaked access pattern.
Therefore, adding and deleting files in HK are as easy as adding or removing
the corresponding sequence of encrypted keywords as a whole, and updating the
rather small inverted index. Subsequent search can be easily parallelized as the
inverted index is stored in plaintext. However, as the search history becomes
longer, the inverted index becomes larger which slows down the addition and
deletion algorithms.

To summarize, it is fair to say that designing SSE with a desirable trade-off
between functionality, security, and efficiency is a challenging problem.

Our Contribution. We propose a searchable symmetric encryption scheme RBT
which supports dynamic updates and parallel computation. In summary, our
scheme makes technical contributions in two dimensions.

First, we extend structured encryption for dynamic abstract data type which
allows updates to both the data space and the query space. Specifically, RBT
allows updates to individual (query, data) pairs. This requires a more fine-grained
access control over the encrypted database. Under this abstraction, RBT allows
deletion of data which automatically deletes all (query, data) pairs related to
the piece of data in question. To the best of our knowledge, our scheme is the
first to support both types of updates. In addition to returning all data related
to a given query, our scheme also supports meta-query to check if a (query,
data) pair exists in the database, i.e., that the query is related to the data. This
contribution will be presented in Sect. 2. We will illustrate the applicability of
this abstract data type, particularly to representing connections in online social
network, in Sect. 2.2.

Second, in the premise of parallel SSE, we aim at the optimal search com-
plexity linear in the number of matches divided by the number of processors,
simultaneously ensuring that searches only leak search and access patterns,
while minimizing the leakages during updates. This will be presented in Sect. 4.
Despite making the above improvements, our scheme leverages a simple random-
ized binary tree (hence the name RBT) to achieve non-interactive queries and
updates.

Finally, we show that our scheme is secure against adaptive chosen query
attack, and demonstrate its performance in Sect. 5 using both synthetic data for
general scenarios and real-life data for online social networks.

Performance Comparison. We compare our scheme with KPR, KP, and SPS
and HK in Table 1. Yet, we remark that it is a simplified discussion due
to the differences in leakages (of different data-structures), the interaction
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Table 1. The search complexities of KPR, KP, SPS, HK, and RBT (m, N , and p denote
the number of matches, number of all files/data, and number of processors resp.)

Scheme Search complexity

KPR O(m)

KP O(m/p) log N (∵ storing data only in leaf nodes)

SPS O(m/p) log3 N (∵ rebuild mechanism)

HK O(N/p) (first time, ∵ no pre-built inverted index)

O(m/p) (subsequent search)

RBT O(m/p)

requirements, etc. In particular, during updates, KPR leaks local information;
RBT leaks the affected sub-trees’ traversal information μt (Table 2); KP and
SPS leak nothing by interaction (throwing back the update-task to the client
and performing interactive oblivious-updates respectively) as we explained.

2 Our Dynamic Abstract Data Type

2.1 Definition

We extend the definition of static data type by Chase and Kamara [1] to dynamic
data type. A dynamic abstract data type T is defined by a data space D with
a query operation Query : D × Q → R and an update operation Update :
D × U → D, where Q is the query space, R is the response space, and U is the
update space.

As in most of the other SSE schemes, the responses to the queries are pre-
pared during encryption. Without loss of generality, we let a data structure δ of
type T and size parameter (M,N) to have the following structure:

– Data set: δ ⊂ δ∗ = {(qi, rj)}M,N
i=1,j=1 ∈ D

– Query space: Q(δ) = {q : ∃r s.t. (q, r) ∈ δ}
– Response space: R(δ) = {r : ∃q s.t. (q, r) ∈ δ}
– Update space: U(δ) = {(“Add”, d) : d ∈ δ∗ \ δ} ∪ {(“Del”, d) : d ∈ δ}

where qi is a query, rj is a piece of data corresponding to a query, and δ∗ is
considered to be the largest possible collection of data. The operations Query
and Update are defined in the natural way. This representation expresses each
of the possible query-response pairs as a data item.

It can be useful to check if a certain pair of query and response exists. We
therefore build extra “meta-queries” based on the normal query-response pairs.
Concretely, we extend the query space to Q′ = Q ∪ δ and the response space
to R′ = R ∪ {true, false}. The query operation is also extended so that, given a
“meta-query” d = (q, r), it checks if (q, r) is in the data set. If so, it returns true.
Otherwise, it returns false. The update operation is extended in the natural way.
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2.2 Instantiating Our Abstract Data Type

To illustrate the generality and flexibility of our abstract data type, we show how
it covers (the common) searches for keyword in files, and other common data
types considered in existing structured encryption of Chase and Kamara [1].

For keyword search, each keyword is encoded as a query, all the files con-
taining a certain keyword are the corresponding responses. Via the meta-query,
our data type further supports the query for checking if a certain keyword exists
in a particular file, which minimizes the unnecessary traversal (and leakage) of
other files containing the same keyword.

For lookup queries on matrix-structured data (e.g., pixel-based images) [1],
we just encode the matrix data (e.g., the colors in different models like RGB
and CMYK) as the responses. There can be various instantiations according
to the specific needs of the application, e.g., one may assign (the index of) a
row as the query and all the responses as the entries of that row, or one may
assign a multi-dimension index (e.g., (row, column) pair in a 2D matrix) as the
query, and our list of responses allow storing more than one data item in a single
(indexed) entry. Looking ahead, with the dual structure storing both (query,
response) and (response, query) pairs, our schemes can be extended to support
transpose-related operations on matrices natively.

Finally, for graph, one natural representation is to assign nodes with outgoing
edges as queries, and those with incoming edges as responses. The existing struc-
tured encryption [1] scheme supports neighbor queries and adjacency queries.
Neighbor queries return all the nodes adjacent to a given node i. It is apparent
that i will be the query and the adjacent nodes are all stored as its response.
For queries to check if two nodes are adjacent, it can be easily supported by our
meta-query. As mentioned in the original application [1], this allows us to sup-
port controlled disclosure of friendship graphs of a social network, for example.

3 Cryptography Background

3.1 Basic Notations

Let λ be the security parameter. All sets and other parameters depend on λ
implicitly. {0, 1}n denotes the set of all binary strings of length n. {0, 1}∗ denotes
the set of all finite length binary strings. 0 denotes the λ-bit string with all zeros.
0k denotes k consecutive zero strings 0. φ denotes the empty set. If X is a set,
x ← X denotes the sampling of an element x uniformly from X. If A is an
algorithm, x ← A means that x is the output of A. “⊕” denotes the bit-wise
exclusive OR (XOR) operation. If x, y ∈ {0, 1}n, |y| denotes the length of y,
i.e., n; and x ⊕= y denotes x = x ⊕ y, i.e., assigning x ⊕ y as the new value of
variable x. “;” denotes string concatenation.

3.2 Pseudorandom Functions and Symmetric-Key Encryption

Pseudorandom functions (PRFs), informally, is a class of polynomial-time com-
putable function family such that no polynomial-time adversary can distinguish



224 R.W.F. Lai and S.S.M. Chow

between a randomly chosen function among this family and a truly random func-
tion (whose outputs are sampled uniformly and independently at random), with
a significant advantage relative to the security parameter. Each PRF takes a
secret key and an input. The secret key serves as an index to determine which
function in the family to use.

To build a symmetric-key encryption scheme with computational security,
one can use a PRF to output the mask to be XOR-ed with the message. Note
that the input of the PRF should be unique to ensure security.

3.3 Dynamic Symmetric Structured Encryption

We combine and simplify existing definitions of dynamic SSE and (static) struc-
tured encryption to dynamic structured encryption for our abstract data type
defined in Sect. 2. The standard security notion of SSE designed for keyword
search over files is the notion of security against adaptive chosen keyword attack
(CKA2). Below we generalize it to the notion of security against adaptive cho-
sen query attack (CQA2) for structured encryption. For modeling the security of
our dynamic structured encryption, we also extend dynamic CKA2 and (static)
CQA2 security [1,7] to dynamic CQA2.

Definition 1. Let T be a dynamic abstract data type with query operation
Query : D × Q → R and update operation Update : D × U → D. A dynamic
symmetric-key structured encryption scheme for T is a tuple of six probabilistic
polynomial-time algorithms DSSE = (Gen,Enc,QryTkn,Qry,UdtTkn,Udt):

– K ← Gen(1λ): The key generation algorithm inputs a security parameter λ
and outputs a secret key K.

– γ ← Enc(K, δ): The encryption algorithm inputs a secret key K and a data
structure δ of type T . It outputs an encrypted data structure γ.

– τq ← QryTkn(K, q): The query token generation algorithm inputs a secret
key K and a query q ∈ Q. It outputs a query token τq.

– R ← Qry(τq, γ): The query algorithm inputs a query token τq and an
encrypted data structure γ. It outputs a sequence of identifiers R.

– τu ← UdtTkn(K,u): The update token generation algorithm inputs a secret
key K and an update u ∈ U . It outputs an update token τu.

– γ′ ← Udt(τu, γ): The update algorithm inputs an update token τu and an
encrypted data structure γ. It outputs a new encrypted data structure γ′.

We say that DSSE is correct if for all λ ∈ N, for all K output by Gen(1λ), for
all δ ∈ D, for all γ output by Enc(K, δ), for all sequences of queries and updates,
the queries always return the correct sequences of identifiers of the responses
from δ matching to the queries.

Definition 2 (Dynamic CQA2-security). Let DSSE be a structured encryption
scheme as defined in Definition 1. Consider two probabilistic experiments, where
A is a stateful adversary, S is a stateful simulator, and Le, Lq, Lu are stateful
leakage algorithms:
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– RealA(1λ): the challenger runs DSSE with the input data structure δ specified
by A. A returns a bit b that is output by the experiment.

– IdealA,S(1λ): A outputs δ. Given Le(δ), S generates and sends γ to A. A
makes a polynomial number of adaptive updates u and queries q. For queries,
S is given Lq(δ, q). It returns a query token τq and a response R. For updates,
S is given Lu(δ, u). It returns an update token τu and an encrypted data
structure γ. Finally, A returns a bit b that is output by the experiment.

We say that DSSE is (Le, Lq, Lu)-secure against adaptive dynamic chosen-
query attacks if for all PPT adversaries A, there exists a PPT simulator S such
that

|Pr[RealA(1λ) = 1] − Pr[IdealA,S(1λ) = 1]| ≤ negl(λ).

4 DSSE from Random Binary Tree

Our goal is to construct a dynamic SSE scheme for structured data, such that:
(1) the computation complexity of the server during queries is optimal up to
a constant time overhead, and (2) updates are non-interactive. Our solution is
to represent the response spaces using random binary search trees. We use the
concept of normal and dual nodes to support updates like KPR [7]. For any data
(q, r) ∈ δ, there are a normal node and a dual node storing (q, r) which is indexed
by q and r respectively.

4.1 Intuition

Take keyword search over files as an example. All keyword-file pairs are prepared;
and an index is built where the pairs with the same keyword are grouped into
sets. Searching for a keyword (or making a query q) is then equivalent to travers-
ing through a set (of responses {r : (q, r) ∈ δ}). Yet, the server can only traverse
the set upon receipt of the corresponding token; otherwise, it can identify all
(encrypted) responses to a specific (unknown) query by traversing a set.

To delete a file, the server needs to retrieve all the keywords associated with
it. Hence, one can consider it as “file search over keywords” instead of keyword
search over files. This explains the role played by the set of dual nodes.

The simplest method to represent either kind of set is to use a linked list, as
adopted in, for example, KPR. Yet traversing a linked list is inherently sequential.
Another way is to use binary trees (e.g., KP). While traversing a binary tree
can be parallelized, updating a binary tree requires balancing or the tree will
eventually degenerate to a linked list. However, balancing a tree often requires
finding a suitable “replacement” node which can be at a branch “faraway” from
the position where the modification was originally made. Reaching this node
requires traversal and hence the client needs to leak sufficient secret to the server.
To avoid balancing the tree explicitly, we use binary search trees with random
addresses as their search keys [10].
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4.2 High-Level Description

We first describe our scheme RBT in high-level. This part emphasizes on the
encryption and decryption part, in particular, how to use different kinds of keys
in the tokens (listed in Table 3) to retrieve the information stored in each cell
(listed in Table 2).

(a) Setup: RBT consists of dictionaries I and A, where I is an index pointing
to some cell of A, and the cells of A are connected in random binary trees. For
each data (q; r) ∈ δ, query q ∈ Q(δ), and response r ∈ R(δ), a normal node and
a dual node are created and stored at random addresses in A. Each node stores
multiple types of information labeled as μs, μt, μd, and μa as explained in Table 2.
This information is masked by XOR-ing with a pseudo-random function (PRF)
output computed from a key and the randomness stored in μa of the node. The
keys for masking each type of information are listed in Table 3.

The dictionary I maps an index to a masked address of A, where the index
and the mask are computed by applying PRFs to the corresponding data, query,
or response. The normal nodes in A correspond to the data (q, ·). Data cor-
responding to the same q are connected in a random binary search tree using
random addresses as their search keys. Similarly, the dual nodes correspond to
the data (·, r) and response r are connected in a random binary search tree.
Figure 1 shows a toy-example of an encrypted database. Since our binary search
trees use random addresses as their search keys, the trees are roughly balanced
even after a sequence of insertion and deletion [10], hence expect no balancing.

Table 2. The information stored in an array cell of RBT, with subscript in boldface in
the description: μt of a node stores the traversal keys of its children, which thus grants
the access to all μt down its sub-tree

Info. Description

μs The response r to be returned upon search query corresponding to the
data (q; r)

μt The addresses of the parent and children nodes, and the traversal keys
of the children nodes used for traversal during queries and updates

μd The address and traversal key of the dual node used for delete updates
only

μa The randomness used (in PRF to derive the key) for masking the above

Table 3. The keys required for masking the information stored in an array cell: S, Tb

and Db are PRFs where b is the type (0:normal; or 1:dual) of the node

Info Key

μs of all (q; ·) The search key S(q)

μt of (q; r) The traversal key Tb(q; r)

μd of (q; r) The dual key D0(q̂) or D1(r̂)
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As in KPR [7], one reason for storing a dual structure is to support the dele-
tion of queries and responses. For example, to delete a response r′, all nodes
corresponding to r′, namely {(q, r′) ∈ δ}, must also be removed from the data-
base. The dual structure provides a mechanism for updating each (q, r) which
belongs to different trees.

66, (q1,⊥)

82, (q1, r2)

99, (q1, r5)75, (q1, r8)

30, (q1, r7)

50, (q1, r3)27, (q1, r1)

7, (⊥, r2)
∗

42, (q4, r2)
∗

87, (q5, r2)
∗39, (q1, r2)

∗

2, (q3, r2)
∗

Fig. 1. Setup: Tree for q1 and dual tree for r2; Searching q1 returns r1, r7, r3, r8, r2, r5
(in-order traversal based on the randomly assigned addresses 27, 30, 50, 66, 75, 82, 99)

(b) Queries: μt of a node is masked using a traversal key stored in its parent
node. So, to query q, the client computes and sends the following to the server:
the index (in I), the index mask (to unmask the entry in I), the search key (to
unmask μs and get back response r of a node), and the traversal key of q.

In more details, by unmasking the appropriate index of I, the server locates
the root node of q, and traverses down by unlocking the traversal key of the
children nodes iteratively. Parallel traversal is done by traversing both the left
and right sub-trees of a node simultaneously. Upon arrival at a node, it uses the
search key to unmask μs. The response to client contains all μs obtained during
traversal.

(c) Meta-Queries: For meta-query (q, r), the client only sends the index and the
index mask to the server (while the search key and traversal key are replaced
by random strings). This means that the server is able to locate the node cor-
responding to (q, r), but cannot obtain the μs stored nor traverse down the
sub-tree. Nevertheless, the server performs the same operations as for (normal)
queries and returns the “unmasked” μs if a node is located. The client interprets
the response as false if the server returns the empty set φ, or true otherwise.

(d) Add and Link Updates: The server creates a new node to be inserted under
a random address in A. Adding a new query q or response r are considered to
be Add updates, while adding a new data d = (q, r) is a Link update.

For the Add update, the new node for q or r serves as the root node. For
the Link update, node d is inserted into the tree corresponding to query q. To
do this, the update token includes the traversal key of the root node, so that
the server can use it to unmask the traversal keys of its children, traverse down
the tree, and update the tree linkage. The same procedure is then repeated for
adding the dual node of d. Figure 2 shows an example of a “Link” update.
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66, (q1,⊥)

82, (q1, r2)

99, (q1, r5)75, (q1, r8)

68, (q1, r6)

30, (q1, r7)

50, (q1, r3)27, (q1, r1)

7, (⊥, r2)
∗

42, (q4, r2)
∗

87, (q5, r2)
∗39, (q1, r2)

∗

2, (q3, r2)
∗

Fig. 2. Adding (q1, r6) to address 68

(e) Unlink Updates: Deleting d = (q, r) from the database is considered to be
an Unlink update. The server looks up I and locates the normal node for d
in A, traverses down the sub-tree using the traversal key Tb(d) to find the right-
most left-sibling (or left-most right-sibling), and replaces the target node with
the sibling. The same procedure is repeated for removing the dual node of d.
Figure 3 shows an example of an “Unlink” update.

66, (q1,⊥)

75, (q1, r8)

99, (q1, r5)68, (q1, r6)

30, (q1, r7)

50, (q1, r3)27, (q1, r1)

7, (⊥, r2)
∗

42, (q4, r2)
∗

87, (q5, r2)
∗

2, (q3, r2)
∗

Fig. 3. Removing (q1, r2) from address 82 (replaced by (q1, r8) in address 75) and
(q1, r2)

∗ in address 39

(f) Delete Updates: To delete a response r, the server traverses the dual tree
corresponding to r and delete all the dual nodes down the tree. Each dual of
the dual nodes, which is a normal node, is also deleted from the corresponding
normal tree. Parallel deletion is possible by deleting the left and right sub-trees
simultaneously. Similar procedures can be done to delete a query q.

4.3 Concrete Construction

Now we give the details in how to construct our RBT scheme, according to the
high-level description explained in the last sub-section. This part will be espe-
cially helpful for those who want to implement or possibly optimize our scheme.
Recall that in last sub-section we have explained the encryption/decryption part
of RBT. The rest is mostly about tree traversal and addition/deletion of nodes,
which should be simple to understand for any computer scientists. While con-
ceptually simple, writing down the actual steps in algorithm require a careful
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management of the pointers involved in (possibly more than one kinds of) the
tree. Readers who are interested in its security can go straight to Sect. 4.4, or
the performance evaluation in Sect. 5 which also explains part of the codes below
and their sub-routines in AppendixA.

Let δ be a data structure of type T of size parameter (M,N) as defined
in Sect. 2. Let ∗ be a special symbol denoting an empty string. Let F =
{{Fb, Gb, Tb,Db}b∈{0,1}, S} be a set of PRFs such that for each f ∈ F ,
f : {0, 1}λ × {0, 1}∗ → {0, 1}λ. Let Hs : {0, 1}λ × {0, 1}∗ → {0, 1}λ, Ht :
{0, 1}λ × {0, 1}∗ → {0, 1}5λ, and Hd : {0, 1}λ × {0, 1}∗ → {0, 1}2λ be another
three PRFs to be modeled as random oracles. All PRFs use different keys. For
brevity, we will not specify the key each time we use a PRF.

Our scheme RBT = (Gen,Enc,QryTkn,Qry,UdtTkn,Udt,Dec) is defined as
follows, and the sub-routines QryTrav, Ins, Del, DelTrav, and replc are defined in
AppendixA.

Algorithm K ← Gen(1λ):
1: Generate λ-bit random strings as keys of each PRF
2: Output K which includes all the generated keys

Algorithm γ ← Enc(K, δ):
1: Initialize empty dictionaries I and A
2: Set γ = (I,A)
3: for all d = (q; r) ∈ δ do
4: if q̂ = (q; ∗) is not added then
5: Run τu ← UdtTkn(K, (“Add”, (q̂)))
6: Run γ ← Udt(τu, γ)
7: end if
8: if r̂ = (∗; r) is not added then
9: Run τu ← UdtTkn(K, (“Add”, (r̂)))

10: Run γ ← Udt(τu, γ)
11: end if
12: Run τu ← UdtTkn(K, (“Add”, d))
13: Run γ ← Udt(τu, γ)
14: end for
15: Return γ

Algorithm τq ← QryTkn(K, d):
1: Parse d as (q, r)
2: if r = ∗ then
3: Return τq = (F0(d), G0(d), T0(d), S(d))
4: else
5: Return τq = (Fb(d), Gb(d), t, s), where b ← {0, 1} and t, s ← {0, 1}λ

6: end if

Algorithm R ← Qry(τq, γ):
1: Parse γ as (I,A) and τq as (τ1, τ2, τ3, τ4)
2: Abort if τ1 is not in I
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3: Retrieve addr = I[τ1] ⊕ τ2
4: Run R ← QryTrav(addr, τ3, τ4)
5: Return R

Algorithm τu ← UdtTkn(K, (mode, d)):
1: Parse d as (q, r)
2: if mode = “Add” and (q = ∗ or r = ∗) then
3: Set b = (q = ∗)
4: Set μs ← {0, 1}λ

5: Set μt = Ht(Tb(d), rt)
6: Set μd ← {0, 1}2λ

7: Set μa = (rs, rt, rd) ← {0, 1}3λ

8: Set τu = (“Add”, Fb(d), Gb(d), (μs, μt, μd, μa))
9: else if mode = “Add”, q �= ∗ and r �= ∗ then

10: Set μa = (rs, rt, rd) ← {0, 1}3λ

11: Set μa
′ = (r′

s, r
′
t, r

′
d) ← {0, 1}3λ

12: Set μs = r ⊕ Hs(S(q̂), rs).
13: Set μs

′ ← {0, 1}λ

14: Set μt = Ht(T0(d), rt)
15: Set μt

′ = Ht(T1(d), r′
t)

16: Set μd = (0, T1(d)) ⊕ Hd(D0(d), rd)
17: Set μd

′ = (0, T0(d)) ⊕ Hd(D1(d), r′
d)

18: Set

τu = (“Link”,

F0(q̂), G0(q̂), T0(q̂), F0(d), G0(d), T0(d),
F1(r̂), G1(r̂), T1(r̂), F1(d), G1(d), T1(d),

(μs, μt, μd, μa), (μs
′, μt

′, μd
′, μa

′))

19: else if mode = “Del” and (q = ∗ or r = ∗) then
20: Set b = (q = ∗)
21: Set τu = (“Del”, Fb(d), Gb(d), Tb(d),Db(d))
22: else if mode = “Del”, q �= ∗ and r �= ∗ then
23: Set τu =

(“Unlink”, F0(d), G0(d), T0(d), F1(d), G1(d), T1(d))

24: else
25: Set τu =⊥
26: end if
27: Return τu

Algorithm γ′ ← Udt(τu, γ):
1: Parse γ as (I,A) and τu as (mode, τ1, τ2, . . .)
2: if mode = “Add” then
3: Recall that

τu = (“Add”, Fb(d), Gb(d), (μs, μt, μd, μa))
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4: Abort if τ1 or τ4 is in I
5: repeat
6: Sample root ← {0, 1}λ

7: until A[root] is free
8: Set I[τ1] = root ⊕ τ2
9: Set A[root] = τ3

10: else if mode = “Link” then
11: Recall that

τu = (“Link”,

F0(q̂), G0(q̂), T0(q̂), F0(d), G0(d), T0(d),
F1(r̂), G1(r̂), T1(r̂), F1(d), G1(d), T1(d),

(μs, μt, μd, μa), (μs
′, μt

′, μd
′, μa

′))

12: Abort if τ1 or τ7 is not in I
13: Set rootq = I[τ1] ⊕ τ2
14: Set rootr = I[τ7] ⊕ τ8
15: repeat
16: Sample tgt, dual ← {0, 1}λ

17: until A[tgt] and A[dual] are free
18: Set I[τ4] = tgt ⊕ τ5 and I[τ10] = dual ⊕ τ11
19: Set A[tgt] = τ13 and A[dual] = τ14
20: Set A[tgt].μd.dual ⊕= dual
21: Set A[dual].μd.dual ⊕= tgt
22: Run A ← Ins(rootq, τ3, tgt, τ6)
23: Run A ← Ins(rootr, τ9, dual, τ12)
24: else if mode = “Del” then
25: Recall that

τu = (“Del”, Fb(d), Gb(d), Tb(d),Db(d))

26: Abort if τ1 is not in I
27: Set root = I[τ1] ⊕ τ2
28: Run A ← DelTrav(root, τ3, τ4)
29: else if mode = “Unlink” then
30: Recall that

τu = (“Unlink”, F0(d), G0(d), T0(d), F1(d), G1(d), T1(d))

31: Set tgt = I[τ1] ⊕ τ2
32: Set dual = I[τ4] ⊕ τ6
33: Run A ← Del(tgt, τ3)
34: Run A ← Del(dual, τ6)
35: end if
36: Set γ = (I,A)
37: Return γ
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4.4 Security Analysis

We follow the existing framework [7] which describes the security of SSE schemes
against an honest-but-curious server by a set of leakage functions (Le,Lq,Lu)
for encryption, queries, and updates respectively. RBT leaks information about
the internal data structure when performing updates on the tree structure. Its
security is asserted in Theorem 1 while the details of (Le, Lq, Lu) are specified
in its proof. The proof can be found in AppendixB.

Theorem 1. The dynamic searchable symmetric encryption scheme on struc-
tured data presented above is (Le, Lq, Lu)-secure against adaptive dynamic
chosen-query attacks in the random oracle model.

5 Efficiency Evaluation

5.1 Complexities Analysis

Let p be the number of processors and m be the number of data related to a
given query q or response r. It is easy to see from Qry algorithm that (after
Line 1–3 which takes O(1) time) it just applies QryTrav to traverse from the
root of a tree. The algorithm QryTrav (after Line 4–8 which recovers the key for
unwrapping the two child pointers in particular) just applies QryTrav to traverse
the tree recursively. So the query complexity of our scheme is optimal, namely
O(m/p).

The update algorithm Udt encapsulates different modes of updates, namely,
“Add”, “Link”, “Unlink”, and “Delete”. For “Add” update, which just samples a
free address (Line 5–7) and masks them (Line 8–9) from the corresponding keys
in the update token (Line 3), is constant time. “Link” and “Unlink” updates
have complexity O(log m). Here we just explain “Link”. Similar to “Add’, it
firstly parses the update token (Line 11). From there, the root addresses for q
and r are obtained (Line 13–14). To insert the new node, it samples a target
address (tgt) for storing the node itself and dual for storing its dual (Line 15–17),
sets them up (e.g., masking) appropriately (Line 18–21), and eventually calls Ins
(Line 22–23) for locating the actual place to insert into an existing tree. Ins then
calls itself recursively if needed just like the traversal in QryTrav. The longest
traversal happens when it is inserted at the leaves level of the tree having m
nodes, hence the complexity is O(log m).

Finally, “Delete” mode of update, i.e., DelTrav, traverses the tree to find the
node to be deleted similar to Qry. This traversal can be done in parallel, results
in a complexity of O(m/p). The sub-routine Del in DelTrav performs the actual
deletion. It updates the pointers related to the normal node and the dual node
accordingly after finding the replacement node, which is in O(1) time. The step
of finding replacement node via Replc simply traverses a tree which can be done
in O(log m) time. To summarize, the complexity of the whole DelTrav algorithm
is O(m/p).
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5.2 Experiments on Implementations

To demonstrate the applicability of RBT, we consider a privacy-preserving ver-
sion of decentralized social networks where user connections are represented by
graphs. The connections between users are encrypted by RBT, and are search-
able by the users possessing search tokens delegated by the host. As described
in Sect. 2.2, our scheme naturally supports “friends of friends” and “are Alice
and Bob friends” types of queries.

To evaluate the performance of our scheme we implemented RBT in C++

using Crypto++ 5.6.2 library for cryptographic primitives and Intel Threading
Building Blocks 4.2 Update 3 library for multi-threading. All PRFs are imple-
mented by HMAC-SHA256. All computations were performed locally in memory
(without network transfer). A distinctive feature of RBT over existing schemes
is that it supports non-interactive parallel queries and updates. Computations
are sequential unless specified.

The experiments were conducted on a machine with Intel Core i5-4590 at
3.50 GHz and 8.00 GB of memory running Windows 8.1. In each experiment,
we used RBT to encrypt a set of synthetic data or real-life data. For real-life
data, we used a graph [9] representing some Facebook social circles with 4039

Table 4. Timing for RBT (“//” denotes parallel computation)

Type Synthetic Synthetic Facebook

M 500 1000 4039

N 500 1000 4039

|δ| 125,000 500,000 176,468

Density 50% 50% 1.08%

Enc 88 s 451 s 110 s

QryTkn (Normal) 15µs 17µs 15µs

QryTkn (Meta) 12µs 12µs 12µs

Qry (Meta) 420µs 1173µs 5µs

Qry (Normal, //) 39µs 101µs 59µs

Qry (Normal) 64µs 168µs 94µs

UdtTkn (Add) 122µs 121µs 121µs

UdtTkn (Link) 139µs 137µs 141µs

UdtTkn (Delete) 14µs 20µs 12µs

UdtTkn (Unlink) 11µs 11µs 12µs

Udt (Add) 577µs 780µs 453µs

Udt (Delete, //) 29ms 89 ms 5 ms

Udt (Delete) 38ms 133 ms 9 ms

Udt (Link) 582µs 783µs 472µs

Udt (Unlink) 360µs 566µs 353µs
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nodes and 88,234 undirected (i.e., 176,468 directed) edges. The edge density
is relatively small for this set of data. Hence, we also perform experiments on
synthetic data which better model other application scenarios. The synthetic
data contains graphs with 500 and 1000 nodes respectively with 50% of edge
density.

The timing for encryption, “Add” updates, and “Link” updates, are com-
puted by taking the average time needed for the respective operations for
building the encrypted database from scratch. The timing for queries, “Delete”
updates, and “Link” updates are computed by taking the average time needed
for 100 times of the respective operations selected at random. For the timing
of normal queries, the values are further divided by the number of responses
returned by each query.

Our implementations were hardly optimized, yet the results show the mod-
erate efficiency of our scheme; in particular, parallel computation effectively
reduces the time for queries and especially for deletion (Table 4).

6 Conclusion

Searchable symmetric encryption (SSE) has been extensively studied in recent
years. One can view the researches on designing SSE as finding a desirable trade-
off between functionalities, security, and efficiency. As shown in the literature,
devising an SSE scheme which simultaneously achieves a number of desirable
properties across these three domains is not an easy task. In this paper, we pre-
sented an SSE scheme on structured data supporting parallel traversal. Our aim
is to achieve optimal query efficiency while minimizing leakage and communica-
tion incurred by the updates.

The abstract data type supported by our SSE scheme can represent queries
over many common structured data. In particular, we consider an online social
network such as Facebook. The connections between users can be represented
by graphs, and common types of queries such as “friends of Alice” and “are
Alice and Bob friends” can be represented by neighbor and adjacency queries
respectively, which naturally correspond to the normal and meta queries over
our abstract data type.

Moreover, we demonstrated the practicality of our scheme by evaluating its
efficiency against both real-life graph data of online social network, and synthetic
data for graphs in general. We believe our work makes an important step in
advancing the field of SSE.

A Sub-routines in Our Construction

To make our scheme easier to understand, we modularize a number of operations
for traversal during a query, insertion, and (the traversal needed for) deletion.
Specifically, now we give the details of the operations1 performed in the sub-
routines QryTrav, Ins, Del, DelTrav, and Replc. Algorithms QryTrav and DelTrav

1 Our poster [8] suggested a preliminary idea of using tree structure, but gave no
details on the actual construction.
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are invoked by Qry and “Del” mode of Udt respectively to traverse the binary
search trees. They are identical to ordinary tree traversal algorithms except that
the addresses of the children nodes need to be unmasked by using the traversal
key. Due to the nature of tree traversal, QryTrav and DelTrav are parallelizable.

Algorithm R ← QryTrav(tgt, tkey, ksrch):
1: if A[tgt] is free then
2: Return φ
3: end if
4: Compute h0 = Hs(ksrch, A[tgt].μa.rs)
5: Compute h1 = Ht(tkey, A[tgt].μa.rt)
6: Compute μs = A[tgt].μs ⊕ h0

7: Compute μt = A[tgt].μt ⊕ h1

8: Parse μt as (prt, chd0, k0, chd1, k1)
9: Set R0 ← QryTrav(chd0, k0, ksrch)

10: Set R1 ← QryTrav(chd1, k1, ksrch)
11: Return R = R0 ∪ R1 ∪ {μs}

Algorithm A′ ← DelTrav(tgt, tkey, dkey):
1: if A[tgt] is free then
2: Return A
3: end if
4: Compute h1 = Ht(tkey, A[tgt].μa.rt)
5: Compute h2 = Hd(dkey, A[tgt].μa.rd)
6: Compute μt = A[tgt].μt ⊕ h1

7: Compute μd = A[tgt].μd ⊕ h2

8: Parse μt as (prt, chd0, k0, chd1, k1)
9: Parse μd as (dual, kD)

10: Run A ← Del(dual, kD)
11: Run A ← DelTrav(chd0, k0, dkey)
12: Run A ← DelTrav(chd1, k1, dkey)
13: Remove tgt from A
14: Return A

Ins is identical to an ordinary tree insertion algorithm except that it uses the
traversal key to unmask the addresses of the children. Note that Ins determines
the position of the insertion based on the address, which is chosen at random.

Algorithm A′ ← Ins(root, tkeyroot, tgt, tkeytgt):
1: Compute h1 = Ht(tkeyroot, A[root].μa.rt)
2: Compute μt = A[root].μt ⊕ h1

3: Parse μt as (prt, chd0, k0, chd1, k1)
4: Set b = (addr > root)
5: if chdb = 0 then
6: Set A[root].μt.chdb ⊕= tgt
7: Set A[root].μt.kb ⊕= tkeytgt
8: Set A[tgt].μt.prt ⊕= root
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9: else
10: Run A ← Ins(chdb, kb, tgt, tkeytgt)
11: end if
12: Output A

Del is identical to an ordinary tree deletion algorithm except that it uses the
traversal key to unmask the addresses of the children nodes, and uses the dual
key to unmask the addresses of the dual node. It also truly deletes the target node
by updating its children and parent to point to the replacement node, instead
of just copying the values as in some tree deletion algorithms, or just marked
as “deletion pending” which requires housekeeping later. The replacement node
is either the right-most left-sibling or the left-most right-sibling of the tree,
computed using the algorithm Replc.

Algorithm A′ ← Del(tgt, tkeytgt):
1: if A[tgt] is free then
2: Return A
3: end if
4: Compute h1 = Ht(tkeytgt, A[tgt].μa.rt)
5: Compute μt = A[tgt].μt ⊕ h1

6: Parse μt as (prt, chd0, k0, chd1, k1)
� Updating Replacement Node and its Neighbors

7: Sample b ← {0, 1}
8: Compute Δ ← replc(b, chdb, kb)
9: Parse Δ as (replc, tkeyreplc, μt

′)
10: Parse μt

′ as (prt′, chd′
0, k0

′, chd′
1, k1

′)
11: Set A[prt′].μt.chd1−b ⊕= replc ⊕ chd′

b

12: Set A[prt′].μt.k1−b ⊕= tkeyreplc ⊕ kb
′

13: Set A[chd′
b].μt.prt ⊕= replc ⊕ prt′

14: Set A[replc].μt.prt ⊕= prt′ ⊕ prt
15: Set A[replc].μt.chd0 ⊕= chd′

0 ⊕ chd0
16: Set A[replc].μt.k0 ⊕= k0

′ ⊕ k0
17: Set A[replc].μt.chd1 ⊕= chd′

1 ⊕ chd1
18: Set A[replc].μt.k1 ⊕= k1

′ ⊕ k1
� Updating Target Node and its Neighbors

19: Set b = (tgt > prt)
20: Set A[prt].μt.chdb ⊕= tgt ⊕ replc
21: Set A[prt].μt.kb ⊕= tkeytgt ⊕ tkeyreplc
22: Set A[chd0].μt.prt ⊕= tgt ⊕ replc
23: Set A[chd1].μt.prt ⊕= tgt ⊕ replc
24: Remove tgt from A
25: Return A

Algorithm (replc, tkeyreplc, μt) ← Replc(b, tgt, tkeytgt):
1: if A[tgt] is free then
2: Return (tgt, tkeytgt,05)
3: end if
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4: Compute h1 = Ht(tkeytgt, A[tgt].μa.rt)
5: Compute μt = A[tgt].μt ⊕ h1

6: Parse μt as (prt, chd0, k0, chd1, k1)
7: if A[chd1−b] is free then
8: Return (tgt, tkeytgt, μt)
9: else

10: Return replc(b, chd1−b, k1−b)
11: end if

B Security Proof

Proof (of Theorem 1). The leakage of our scheme is implied by the capability of
the search keys skey, traversal key tkey, and dual keys dkey. Initially, with the
encrypted database, Le leaks the size of itself, namely |Q| + |R| + 2|δ|. Suppose
each of the |Q|+ |R|+2|δ| nodes has a unique identifier. Lq leaks upon a query q
the access pattern, or precisely all μs stored in the normal nodes corresponding
to (q; ·). It also leaks the identifiers of these nodes. Lu leaks upon an update
the type of the update. In addition, a “Link” update for d = (q; r) leaks the
identifiers of the normal nodes for (q; ·), and the identifiers of the dual nodes
for (·; r); an “Unlink” update for d = (q; r) leaks the identifiers of the normal
nodes for (q; ·) under the sub-tree rooted at the normal node for (q; r), and the
identifiers of the dual nodes for (·; r) under the sub-tree rooted at the dual node
for (q; r); a “Delete” update for (q; ∗) (resp. (∗; r)) leaks the identifiers of the
normal (resp. dual) nodes for (q; ∗) (resp. (∗; r)), as well the identifiers of the
corresponding dual (resp. normal) nodes of these nodes.

To prove the security of our scheme, we need to construct a simulator S
which interacts with an adversary A in the experiment IdealA,S(1λ) defined
in Definition 2. Due to space limitation, we provide the essential idea here, but
remark that the simulation is straightforward given the set of leakage functions
and follows the same structure of existing proofs [2,6,7].

The simulator simulates the encrypted database by random dictionaries of
appropriate sizes given by the leakage function Le. It simulates all PRF by ran-
dom functions, and all random oracles (RO) by maintaining and programming
the corresponding tables.

For each query/update, the respective leakage (Lq/Lu) reveals the identifiers
of some of the nodes stored in A. The simulator programs the corresponding RO
(e.g., Hs and Ht for queries) such that on input the corresponding simulated
key (e.g., skey) and randomness (e.g., rs) stored in μa of the entry, it produces
the suitable mask.

Finally, for answering the random oracle queries, it checks whether the answer
for this query to the random oracle is programmed to some particular value. If
so, it outputs the programmed value. Otherwise, it outputs a random value. The
only possibility that an adversary can distinguish the simulated database from
the real database is when it queries the random oracle for a valid pair of (key,
randomness), while the corresponding information is not yet revealed in any
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queries or updates. However, since all simulated keys are produced by random
functions, the probability of having such collision is negligible. �

References

1. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 33

2. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R., Encryption, S.S.: Improved
definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

3. Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216
4. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
5. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.

In: ACM Conference on Computer and Communications Security (CCS), pp. 310–
320 (2014)

6. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Financial Cryptography, pp. 258–274 (2013)

7. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security (CCS), pp.
965–976 (2012)

8. Lai, R., Chow, S.: Structured encryption with non-interactive updates and parallel
traversal. In: IEEE International Conference on Distributed Computing Systems
(ICDCS), pp. 776–777 (2015)

9. Leskovec, J., Krevl, A., Datasets, S.: Stanford Large Network Dataset Collection,
June 2014. http://snap.stanford.edu/data

10. Reed, B.A.: The height of a random binary search tree. J. ACM 50(3), 306–332
(2003)

11. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

12. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS (2014)

13. Wang, B., Hou, Y., Li, M., Wang, H., Li, H.: Maple: scalable multi-dimensional
range search over encrypted cloud data with tree-based index. In: ASIACCS, pp.
111–122 (2014)

14. Wang, Q., He, M., Du, M., Chow, S.S.M., Lai, R.W.F., Zou, Q.: Searchable encryp-
tion over feature-rich data. IEEE Trans. Depend. Secure Comput. (to appear).
doi:10.1109/TDSC.2016.2593444

http://dx.doi.org/10.1007/978-3-642-17373-8_33
http://snap.stanford.edu/data
http://dx.doi.org/10.1109/TDSC.2016.2593444


ATCS Workshop - Session 1



Secure IoT Using Weighted Signed Graphs

Pinaki Sarkar1(&) and Morshed Uddin Chowdhury2

1 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, Karnataka, India

pinakisark@csa.iisc.ernet.in
2 School of Information Technology, Deakin University,

Burwood Campus, Burwood, VIC, Australia
morshed.chowdhury@deakin.edu.au

Abstract. Key management has always remained a challenging problem for the
entire security community. Standard practice in modern times is to agree on
symmetric keys using public key protocols. However, public key protocols use
heavy computations; rendering them inappropriate for application to low cost
devices of Internet of Things (IoT). This led to proposals of various key man-
agement strategies for low cost networks; a prominent discovery being key
predistribution technique for Wireless Sensor Network (WSN)–a prototype of
IoT. Such schemes require several communicating nodes to share the same
cryptographic key. This leads to interesting (combinatorial) graphical models
and related optimality problems, that get intense for hierarchical architecture.
Most protocols meant for hierarchical (low cost) networks employ separate
designs for individual levels and/or clusters. Consequently only local optimal
values can be computed. We develop a single universal platform using weighted
signed graph (WSG) that designs the entire network for a hierarchical
setup. This model can be used as itself or clubbed with a key predistribution
scheme (KPS) to enhance the latter’s security when applied to a WSN. After
generic presentation, we combine our universal model with prominent KPS to
facilitate comparative study with existing protocols.

Keywords: IoT � WSN � Weighted Signed Graph � Key management � Smart
attacks

1 Introduction

Internet of Things (IoT) is a sophisticated concept that aims to connect our world more
than we ever thought possible. IoT employs various types of devices to gather infor-
mation about physical surroundings, process them and communicate these data intel-
ligently among themselves before sending feedback to an end user. Since devices can
be resource constrained and are expected to exchange large volumes of data, com-
munication and storage overheads should be minimized. Prominent applications of IoT
are smart homes, smart cities, smart grids, smart water networks, vehicular networks,
peer-to-peer (P2P) networks, agriculture, health-care, etc.

Wireless Sensor Networks (WSN) are nice prototype of IoT. They are regarded as
revolutionary information gathering systems owing to their easy deployment and
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flexible topology. They consists of numerous low-cost identically resource starved
wireless devices (sensors or nodes) that deal with sensitive IoT data. WSN finds
wide-scale applications in military and scientific arenas (listed above) where security is
a premium.

Due to resource constraints in constituent sensors, symmetric key cryptosystems
(SKC) are preferred over a public key setup in such networks. SKC schemes requires
both sender and receiver to possess same encryption-decryption key before message
exchange. This is achievable by various techniques; key predistribution being preferred
due to cost effective implementation. Ideally any key predistribution schemes
(KPS) should have small key-rings, and yet support large number of nodes with
appreciable resiliency, scalability and communication probability (or connectivity).
However, renowned scientists proved the impossibility of constructing a ‘perfect KPS’
that meet all these criteria [17, 18, 21]. This motivated proposals of several designs that
are robust for specific purpose(s). We try to unify them under a single banner after
investigation.

Employing a hierarchy with certain powerful special nodes is perhaps wiser and
more practical approach for IoT. An extensive literature survey reveals that all
prominent hierarchical schemes [1–4, 10, 23, 25–28] try to glue local and global graphs
quite artificially. We try to give a more natural description of the local and global
models of any hierarchical network using an uniform banner of Weighted Signed
Graph (WSG) and thereby demonstrate the impact on various aspect of such networks.
To date, to the best of our knowledge, no scheme represents an hierarchical structure by
a single (deterministic) model though there have been some elegant trials [2, 4, 26, 27].

1.1 Motivation and Plan of Work

A critical challenge encountered while designing secure protocols for low cost IoT
networks like WSN is to ensure secure communication between two nodes that are not
in each other’s communication range. Priors works use intermediate users who gets
access to these communications in clear text. Our work ascertain that these commu-
nications remain protected by use of two different cryptosytems possessing separate
keys. This concept is set out in Sect. 6 while applying of our WSG model to low cost
networks.

KPS involves preloading of symmetric cryptographic keys before deployment and
establishing them immediately after deployment. Use of unique association of keys to
their ids that are transmitted in open during key establishment ensure that actual keys
are not revealed; though the network graph becomes public. A node’s secondary id (set
of key ids or their unique function–node ids [25]) is extra information that gets hidden
during adaptation of our WSG model. These converted private information of indi-
vidual nodes are used during key establishment to hide the network graph from an
adversary.

This helps to eradicate selective node attack or smart attack. Refer to Sect. 2.
Ruj and Pal [23] state that random graph models are well suited for ‘scalability’ and

‘resilience’. Thereby they try to justify their random designs based on preferential
attachment models with degree bounds. Unfortunately, all designs of [23] suffers from
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highly skewed load distribution, poor connectivity and resiliency; and hence, are
inappropriate for IoT applications. Interestingly, renowned researchers [17, 18, 21, 25]
report that deterministic schemes possess advantages like predictable connectivity,
resilience, scalability etc., which occurs with certain probability in random ones.

Sensitive IoT applications require protocols to yield connected networks (thereby
reduce hops; so attacks). So we opt deterministic protocols for security applications in
IoT networks, despite most them having restricted scaling operations. Our WSG model
can supports large number of such scaling operations (not unrestricted, though), as
demonstrated in Sect. 4.3.

2 Basic Concepts and Definitions

Design of our graphical model requires formalizing of fundamental notions, like
hierarchical WSN–various connectivity radii and neighbors; two types of network
graphs– global and local for individual clusters; hence respective keys; security models.

– Hierarchical WSN (HWSN): A standard method to incorporate an hierarchy in
these networks is to inject special (purpose) devices. They are relatively more
resourceful than an ordinary sensor; however, much weaker than any Base Station
(BS). Such devices are generally called Cluster Heads (CH) or Gateway Nodes
(GN). Some authors also term them as super nodes [3] or agents [1, 25].

– Radius of communication: of a device is the maximum of the distances that it can
transmit and/or receive messages from other devices. This maximum distance,
denoted by rdevice, and is varied for different type of entities. The identical sensors
have the least value ‘rnode’; while any BS has the highest communication radius.
The communication radius for any CH (assumed identical for all) is usually greater
than the identical nodes, however, less than the BS(s). Since any designer’s target is
to increase network connectivity, we focus on rnode and simply denote as r.

– Neighboring devices or Neighbors: two devices with same rdevice are neighbors if
they are within communication radius of each other. In case rdevice1\rdevice2 for two
devices device1 (say a node) and device2 (say a CH) and distance between device1
and device2 is greater than rdevice1 but less than rdevice2 , then device1 is a neighbor of
device2 but not otherwise. Providing security to such communication that often
happens among varied type of IoT devices is a major challenge.
More critical challenge is to secure communication of two low power devices that
are not neighbors. Priors works usually use intermediate users who gets to see these
communications in clear text. Our work ensure that these communications remain
protected by recursive use of two different keys of independent cryptosytems.1

– Global, Local graphs, respective keys: Our model has two types of graphs–global
(network) graph and local (cluster) graphs. Any device will be treated as vertex and
a link between two devices as an edge between them. For the same pair of vertex,

1 Use of double encryption requires careful implementation. For instance, double encryption with two
smartly chosen AES − 128 keys may enhance the security level by 1.5 times. That is, from
120 − BIT security to approximately 180 − BIT against any present day adversary.
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there may be multiple edges–exactly one local and others, global (if any, see
Sect. 3). These graphs are used to employ independent cryptosystems; hence
respective (complementary sets) of keys. Refer to footnote 1 (above).

– Local graphs: are ‘in-cluster’ or ‘local’ graphs for individual cluster that depicts
the key sharing between devices of a given cluster. A generic construction presented
in Sect. 3 denotes the edges of these graphs by negative sign for consistency. Here
we assume that all the nodes in a cluster are in each other’s communication radius.

– Global graph and key sharing: Our weighted signed graph can simultaneously
model a complete network. This owes to the fact that the graphical representations
supports any number of links (weights) and assigns signs. We exploit the positive
sign to denote secure links for pairs of nodes that share a common key, globally.
Due to limited memory of any sensor and large sized network, single key must be
shared by multiple nodes to assure desired (high) level of (secure) connectivity.

– Secure communication: between a pair of entities is assured if their communica-
tion is secured by some shared cryptographic key, either local or global (or both).

Sharing of global (network) keys leads to a certain weakness in any protocol,
specially considering that IoT networks are vulnerable to device compromise. We
consider the robustness of our networks against two such attacks, as described below:2

– Random node compromise: may lead to partial disclosure key-rings of existing
devices; thereby restrict the use of links that were secured by these keys. A system’s
resilience against such an attack may be measured by a standard metric, viz., fail(s)
which estimates the ratio of links broken of non-compromised nodes to the
remaining number of links in the network after random compromise of s nodes.

– Smart Attack [22] or Selective Node Capture Attack [25]: Essentially in this
type of attack, an attacker tries to break communications of two specific nodes by
selectively capturing other node(s) that share the same key(s) being used for
communications of the former nodes. This happens because sharing of (global) keys
usually leads to exchange of (unencrypted) key ids during key establishment. This
reveals the global key sharing graph. This key sharing knowledge may aid an
adversary in selectively (or smartly) targeting specific nodes that share key(s) with
the communicating nodes. All existing works, for instance [5, 7–14, 16–19, 21–25,
28, 29] are prone to this attack. Readers are referred to [22] for a more technical
definition.

3 Graphical Model and Its Representation

We use weighted signed graph to design an entire hierarchical network. Enumerate
each ordinary network user (node for a WSN) by a specific id (node id./node no.).
Special purpose users (CHs for a WSN) are separately enumerated. Their enumeration
is prefixed with specific number of 0’s denoting their height above the node level. The
following convention are adapted while defining our local and global graphs:

2 This can be best analyzed by employing a particular KPS as a candidate for our global graph.
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– Denote a link between two specific entities of the global (distributed) graph as:
(lower entity no.)(e)(higher entity no.). In most case, we will only have (lower
node no.)(e)(higher node no.). This is because we do not allow hierarchical
communication using global keys. This will make our model have wide-spread
applicability to any distributed system. Such networks employ a fixed cryptosystem
with single type of key; for instance, application of KPS in WSN.

– Local graphs have two types of entities, viz several lower level devices
(nodes/CHs) and an upper level user (corresponding CH/BS). So we need to define
separate links for distinct type of connections:

– Local graph links or simply local links that involve user at different level shall be
denoted by: (−)(lower level entity no.)(e)(higher level entity no.). Resultant local
links triplet for a CH at penultimate level (one level above ordinary node level) and
its CH at two level above node level is: −(0)(CH no.)(e)(0)(0)(CH no.); while that
of a node and its CH (one level above the level of this ordinary node) is: −(node
no.)(e)(0)(CH no.). Specifically, connectivity link between any Node i under its CH
A is denoted by −ie0A. Here ‘−ve’ implies local link.

– Local links involving same level entities are denoted by: (−)(lower entity no.)(e)
(higher entity no.). We use ordering of node id (or CH id) due to global network to
ensure unique representation of this link and ‘−ve’ sign implies local link.3

– Local link between CH A and CH B is denoted by −0Ae0B whenever A < B. ‘−ve’
denotes that this edge is due to local graph at cluster head level. Convention prefix
of ‘0’ symbolizes that these CHs are hierarchically one level above nodes.

These definition have canonical generalization for (corresponding) users higher up
in the hierarchy. Parenthesis are used for clarity of representation and shall be dropped
later when there is no ambiguity. That is, for consistency entities in each hierarchical
level adds a 0’s to the prefix of the already available representation of the links. The
following example clarifies the concept:

1. Suppose we want global link between nodes 2 and 5, then their edge or link is
represented by: (2)(e)(5) or simply 2e5.

2. various local links between various devices are as below:

– Same level local link between nodes 7 and 3 is represented by: −(3)(e)(7) or
simply −3e7. Figure 1 depicts the scenario pictorially.

– Connectivity link between a node (say, 2) and its cluster head (CH 1) is −2e01.
– link between CH 2 and CH 1 is −01e02. Observe order of representation in each.

Parallel edges/links: occur between a pair of nodes when they simultaneously possess
both local and global connectivity links. Evidently, they must be in the same cluster
(refer to Fig. 1) and share a global key. One edge (global link) will thus be represented
by a positive (‘+’) sign and another edge (local link) will have negative (‘−’) sign.
Since the local graphs results in less key sharing (in fact, pairwise key sharing in most
cases), using this local key may provide optimal security. In case, pairwise key sharing

3 Usually node ids are positive number (like KPS applications). Therefore 0 or negative numbers are
not used for global links. So we make extensive use of 0 and −ve sign for our local graph.
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is not assured by the local graphs (storage factor), use of hash of both the local and
global keys may give ideal resilience (up to security of underlying cryptosystem).

Suppose, for simplicity, that nodes with ids 2 and 5 belong to same cluster and
share both global and local link. Thus there will be two parallel edges or links con-
necting these two nodes. The global link will be denoted by 2e5, while the local
edge/link will be represented by −2e5. Note the difference in sign. We propose use of
the local link, i.e. −2e5 in case this is achieved pairwise; else use hash (shared local
keys||global key).

Sharing of multiple global keys is another case of occurrence of parallel links
between a pair of nodes. An example of this situation is to consider the global graph to
be a KPS design [24] where each pair of nodes share a minimum of 4 keys. This will
give rise to a minimum of 4 global key links. In such multiple key sharing cases, a
standard method [11] is to use hash of all the shared keys to effective obtain one global
link.

4 Design of Key Management Scheme

We propose a key management scheme that may find suitable applications in Internet
of Things (IoT). Primary focus is on low cost networks–WSN being a prototype. Basic
devices in such low cost IoT networks are resources starved; example ordinary nodes of
a WSN. This imposes certain restrictions while designing key management schemes for
such low cost networks; forcing us to opt for key predistribution strategies. So we aim
to apply our weighted signed graph design to a key predistribution scheme and ensure
enhanced security with minimum strain on ordinary devices. This upper bounds the key
storage in individual devices (key-ring) and imposes a degree bound on each of them.

Fig. 1. Connectivity between nodes of same cluster: parallel edges
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4.1 Keyrings and Degree Bound on Devices

Most key management protocols for IoT [1, 3, 5–14, 16–19, 21–25, 28, 29], distributed
or hierarchical, allow intermediate entities to access communication of
non-neighboring devices in clear text. This is because either there was single global
graph model (example, any KPS) or in case of two distinct graphical models (in-cluster
and global), their application did not complement each other. Thereby simultaneous use
of two separate cryptosystem and hence repeated encryption was prohibited. Though
some odd schemes like [2, 4, 26, 27] uses repeated encryption, their constructions are
actually super-imposition of three local graphs and a global. All existing protocols can
now be visualized as subgraphs of our WSG applied to individual schemes. By nature,
WSG permits titanic pliability and can support wide range of designs for arbitrary
networks; however constraints of devices of particular application platform may
compel additional restrictions.

Bearing in mind the constraints in resource of ordinary devices of a low cost IoT
network, we propose applications of weighted signed graphs with degree bound
(WSG − DB) to design security model for such networks. For this, a bound is first fixed
on the maximum number of keys k a node can have and the maximum number r of
nodes on the cycle of each key; thereby fixing the degree of each device and the
maximum degree (dmax) that the graph can have. We primarily try to assume a rea-
sonable (uniform) bound for dmax of ordinary nodes as their resources are at premium;
whereas the value of dmax may be much greater for relatively resourceful (fewer) CHs.
For the sake of simplicity of computation, let every ordinary device have kuser keys and
each key cycle be r so that dmax = duser = rkuser. It is easy to see that a node’s maxi-
mum degree dmax = duser = rkuser is obtained in case any two pair of nodes intersect in
exactly one local and/or global key. While combining with a suitable KPS, this opti-
mality condition may be exploited. Observe that r is also assumed same, and not
individual cycles (rl and rg) of local and global keys for simplicity.

4.2 Distribution of Local and Global Keys

WSG gives enormous flexibilities and can support wide range of designs; a particular
hierarchical one meant for resource constraint IoT (for instance, WSN) networks is
being discussed here. For a given user, let kluser := number of keys preallocated for its
local (in-cluster) connections and kguser := keys for a node’s links due to the global graph
(say a KPS). Evidently, kuser :¼ kluser þ kguser . For practical applications (to be dis-
cussed in Sect. 6), we assume kluser ¼ kguser ¼) kuser ¼ 2kluser ¼ 2kguserð¼ k; sayÞ.
To overcome storage problem, we preallocate as many local keys ðk2Þ as global; so that

an upper bound is dmax
2r for each node.

Establishment of global keys using their unique ids is the essence of any key
pre-distribution and leads to interesting combinatorial graph problems. Whereas, local
keys need not be established as the number of nodes per clusters is orders less than that
in entire network (see Sect. 5 below). Local keys can be used to secure key estab-
lishment of global keys (set out in Sect. 6). These keys can also form independent
(hierarchical) key predistribution systems themselves; but best effects occur when
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combined with keys of a global graph like a KPS. Our applications assume rl = 2
during initial deployment, that is, local graphs for every cluster yield a pairwise key
distribution.

4.3 Scalability: Addition of Nodes and/or CHs

Topology of most IoT networks is fast changing due to frequent node movements,
addition, deletion and/or compromise. Our WSG model supports both deletion and
addition of users. Deletion of users in our model is fairly simple–just delete remaining
network’s edges corresponding to all the keys exposed due to comprise of device(s).4

Addition of users may increase r values of existing users. Generally rg is fixed; so
effectively the increment may occur in rl. Employing WSG − DB concept during
scaling operations aids in enhancing our existing design as is briefed in Sect. 4.3.

Local graph induced by our WSG − DB allows the network graph to expand with
the addition of every extra vertex (node or CH). This is achieved by assigning all
inherited global edges and required local edges needed for this new vertex. Addition of
new nodes in existing clusters imply setting up new local links with existing nodes and
their CH.

Injection of moderate number of ordinary users and barely a few super users may
perhaps be managed by repeated use of same local key(s) to connect several users;
thereby increasing rl. Of course we assume that rg is fixed for all ordinary users
including the new comers. Further, assume that kuser is also fixed. Therefore the overall
degree bound dmax of the network implies an upper bound on rl. Though the global
graph is restrictive in its growth (due to fixed kguser ; rg), the above scaling strategy
results in better scalability for the combined model. Figure 2 explains the scenario
graphically. This overcomes the problem of storage cost for devices even during
scaling.

Enormous increment of nodes may lead to huge network growth. This can be
tackled by new cluster formation via local graphs. These links are governed by the rules
defined in Sect. 3. The incoming nodes and CH are injected with all required keys by
the BS to connect with its concerned CH. Cluster-wise deployment may ensure proper
cluster formation. In case of any ‘misplaced node’, a key rescheduling technique, set
out in Algorithm 1 of Sect. 5, may be invoked to ensure secure communication of this
node.

5 Deployment of Nodes and Cluster Heads

We suggest a cluster-wise deployment, i.e. deploy the nodes with their respective CH.
Desired cluster formation should result in most cases. Standard methods of challenge
and response [14, Sect. 2.1] using cluster wise broadcast keys may be adapted to check
correctness of deployment, i.e., proper cluster formation. Evidently, instead of totally

4 We have to rely on standard intrusion prevention system and/or traitor protocols like [15, 20] for
updated information about compromised nodes to facilitate their deletion.
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random deployment, we are proposing group-wise or locally random deployment of the
nodes and respective CH according to the local graph. However their exact positions
are still unknown. This implies that local keys for correctly deployed nodes need not be
established and can be directly utilized; for instance an application may be to establish
global keys (with large cycles rg). However, in an unlikely event of a node falling out
of their cluster, we adopt the below described key rescheduling technique:

BS generates and preallocates in each node and CH a global re-scheduling key
(rskuser). They are used for the specific purpose of cluster formation during initial
deployment and subsequent key refreshment as described in Algorithm 1. These keys
are temporary and recursive in the sense that: (i) a fresh set of such keys are generated
and transferred to all existing as well as in-coming nodes and CH using existing rskuser
keys that are (ii) thrashed soon afterwards during every round of key establishment. As
such, there is exactly one such key in every node at any given point of time barring
short-lived periods of key refreshment when there are exactly two such. Correspond-
ingly there are O(N)rskuser keys in the BS (since number of CHs is orders less than
number of nodes = N). We do not require such keys to be share between CHs and nodes.

Recursive use of rskuser keys expands the local graphs; thereby profound network
scaling occurs (see Sect. 4.3). Further, their use adapts our model to dynamic envi-
ronment. For any significant movement of an user (from its initial cluster into another),
we perform a fresh ‘key rescheduling’ process by treating this node as ‘misplaced
node’.5

Fig. 2. Communication of (distant) Nodes Ni, Nj of different clusters using local keys

5 These processes will be detailed in extended version of this work.

Secure IoT Using Weighted Signed Graphs 249



Remark 1. At times, there may be more than one CH in the communication radius of a
(misplaced) node. If one of these CHs can properly respond to the challenge and
response test, this node is in its desired cluster. Otherwise, this is a ‘misplaced node’. It
uses Global Positioning System (GPS) to find out the closest CH and treats it as the
‘new’ CH. In case two or more CHs are at minimum distance from this ‘misplaced
node’, we choose any of them (with lesser cluster size) to be its (new) CH.

6 Application to Low-Cost Networks

One standard application of our WSG model can yield a hierarchical key predistri-
bution scheme for a WSN. Any existing (distributed) KPS can play the role of our
(underlying) ‘global graph’ whose security gets enhanced by the application of ‘local
graph’. To this end, we observe that owing to large network size, keys were predis-
tributed and later established in any existing KPS following the footsteps of the
pioneering work [14]. Key predistribution process of our global graph can be treated in
a similar manner with secure key establishment due to local keys.6 We assume that
cluster size is small with all nodes being neighbors. Our combined WSG design
achieves improvements in:

6 Represent global links as (lower node no.)(ki)(higher node no.) for 1 � i � m; k1, k2, k3, � � � km are
all the keys of selected KPS. This automatically captures the (regular) degree (rKPS = rg) of
concerned KPS. Refer to [18, Sect. 2] for this definition of rKPS, where it is denoted as r.
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Key Establishment Protocol (KEP) of any existing KPS uses unencrypted trans-
mission of (global) key ids. This process reveals the network (key) graph to an
eavesdropper and induces smart attacks. Introduction of the ‘local keys’ facilitates
transmission of encrypted key ids during ‘(global) key establishment phases’ (of our
combined KPS); and so, restricts an attacker from equating the unencrypted key ids. As
a result, an attacker need to break the underlying cryptosystem meant for the local
graphs to trace the ‘(global) key sharing graph’ of combined networks; unlike previous
works. Hence, this novel key establishment technique results in eradication of the
pertinent weakness of ‘selective node attacks’ or ‘smart attacks’, generically prevalent
in most existing KPS [5–11, 13, 14, 16–19, 21, 22, 24, 28, 29].7

Message Exchange of any existing KPS involves the following steps:

– for neighboring sensors that share a common key (traced during key establishment),
a message to be transmitted is encrypt with that common key.8 Sender node then
transmits this encrypted message via wireless channels. Only those receivers who
posses the shared keys can decrypt this encryption to recover original text.

– direct encrypted communication is forbidden for sensors that do share any common
key or are not in communication radius of each other. An alternate (path key)
strategy of routing though other nodes is suggested. This brings in extra complexity
of tracing optimized secure path, which is a major challenge for any KPS.

Our WSG based combined model outperforms existing KPS due to supplementary
cryptosystem arising from the local graphs. ‘Local keys’ may provide unique direct
connectivity between nodes and CH of the same cluster; specially during initial
deployment. This results in ideal security in terms of key distribution; that is, here the
system’s security depends solely on the underlying (KPS) cryptosystem. Local keys
can independently links two nodes i and j of different clusters by use three local links as
below:

– local link −(ie0A) between the sender node i and its CH A;
– local link −(0Ae0B) between respective CH A, B of sender and receiver nodes;
– local link −je0B between the receiver node and its CH B.9

In case ‘misplaced nodes’ do not have any shared global key with its (new) neighbors,
above process ensures that it is still securely connected to the network. This problem
that every node, even misplaced ones, remain securely connected to the network is a
challenging one and not many KPS provide adequate solution like we just did.

7 Of course the use of local keys here requires proper cluster formation to ensure desired inter- cluster
connectivity. One plausible way to obtain the desired cluster formation is to deploy the nodes and
their Cluster Heads in a locally (uniform) random or group-wise random fashion. This assures proper
cluster formation in most cases. In a rare event of ‘misplaced node’, we propose implementation of
Key Rescheduling Protocol, described in Algorithm 1.

8 In the event of (same set of) multiple keys shared between a pair of nodes, a standard method [11] is
to concatenate all of these keys and use hash of this concatenated key.

9 These communications make use of (fixed) publicly available addresses (like MAC or I.P. or email
ids) of users (here nodes). Observe that these primary addresses are independent of the created
secondary node ids [24, 26, 27] used during (global) key establishment.
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Local connectivity defined above suffers from ‘one point’ attacks on the CH,
though such an attack may be practically harder to mount on a handful of CH. Previous
works generally assume considerable trust on CH and even nodes as message meant for
distant nodes are routed via intermediate CH/nodes who can see these message in clear
text. To be on safer side, we use an alternate trick of recursive encryption-decryption
(maintaining orders) for distant nodes that possess a shared global key; described
below:

– a sender (node i) encrypts the message twice; (i) first with the global key shared
with intended recipient(s); and (ii) second with local key shared with its parent CH
A. Sends the doubly encrypted message to its CH A using the link −ie0A (remember
recipient(s) are beyond communication range).

– Sender’s parent CH A opens the outer encryption and puts on another encryption
using the key shared with recipient’s parent CH B. Sends this double encrypted
message to recipient’s CH B via −0Ae0B.

– Receiver’s parent CH B opens the outer encryption and puts on another encryption
using local key shared with recipient node j and sends to recipient via link −0Be j.

– Intended recipient node j has both the required local and global keys to decrypt the
repeated encryption. Recursive decryption of this doubly encrypted message by:
(i) first by the shared local key with its parent CH B and (ii) then the global key
shared with sender node i reveals the clear text message.

Figure 2 represents these inter-cluster communications pictorially where Node i com-
municates with Node j with the KPS link ie j (positive sign). This is the only step in our
work that involves double encryption and results in highly enhanced network security.

7 Resiliency of Combined Model: Theoretical Analysis

Though most works concerning hierarchy in WSN restricts an attacker from com-
promising special nodes (CH), we think this assumption is rather strong. We give more
power to an adversary. Consider a weaker assumption that an adversary can comprise
CH but such captures are relatively harder as compared to compromising nodes. From
this section onwards, the symbol ‘s’ will represent number (no.) of nodes compro-
mised, and the symbol ‘t’ is reserved for number of CHs captured in penultimate tier
(just above the level of ordinary nodes). So our attack models assumes s >> t.

Resiliency of existing KPS are measured by a standard metric ‘fail(s)’ that denotes
the ratio of links broken after compromise of s nodes to the total links in remaining
network. Formally:

fail sð Þ ¼ number of links broken of non�compromised nodes due to capture of s nodes
total number of links in after compromise of s nodes

:

Evidently, most KPS [6, 7, 16–19, 21] try to minimize this ‘fail(s)’ values for their
respective schemes. We canonically extend this definition to fail(s,t) as below:
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Definition 1. For the combined (Weighted Signed Graph) system, define fail(s,t) to be

¼ number of global links broken due to capture of s nodes and t ðCHÞ
total number of KPS links in after compromise of s nodes

:

Remark 2. We do not consider links broken in our newly constructed local graphs.
Focus is on global (KPS) links since the corresponding keys are shared between many
nodes; whereas local keys are uniquely shared (at least initially). Details of scaling
effects on resilience of local graphs will be presented in extended version of our work.

Though it is difficult to have an estimate of the exact value of fail(s,t) when ‘s’ nodes
and ‘t’ CHs of aWSN are captured, we can compute an estimated upper bound of fail(s,t)
of the combined design for a particular chosen KPS scheme.

Theorem 1. Suppose s nodes of the chosen KPS t out of the original c CHs in the last
tier of the combined network are captured. Then an upper bound of fail(s,t) is

t
c
� failðsÞ;

where fail(s) is the resiliency of chosen KPS due to the capture of s nodes.

Proof. Special nodes (like CH for WSN) of the local graphs enable repeated encryption
of messages using unique local keys (at least initially). Messages being transmitted
always remain encrypted and only the outer encryption of these double encrypted on
messages are decrypted and re-encrypted (by different keys). Removal of a CH means
that the nodes of that cluster operate with only global keys; so that, extra security due to
our WSG model gets negated for nodes of this cluster. Of course, capture of all c CHs
at the penultimate level of the hierarchy eradicates every additional security imparted
due to the local graphs of WSG model. This (latter) unlikely event reduces the security
of this compromised combined system to that of underlying KPS.

Under the standard assumption that nodes are uniformly distributed under their CH

in individual clusters, we conclude resilience upon capture of a CH, fail s; tð Þ ¼ fail s;tð Þ
c .

So when t CHs out of total c CHs at penultimate level are compromised, resiliency

metric fail s; tð Þ ¼ fail s;tð Þ
c . Thus, our desired result is achieved. □

7.1 Simulation Results: Comparative Study

We select TD(k, p) deign of Lee and Stinson [18] with k = p as underlying KPS of our
combined model; i.e., KPS based on TD(k, p) designs our global graph. From here on,
by combined protocol, we shall refer to this combination of KPS [18] as global graph
and pairwise local graphs (due to negative signs). This combined system has been used
to conducted simulations with s = 100, 200,…, 1000 and t ¼ s

25 under hypothetical
conditions that replicate real life scenarios. Results obtained were compared with some
prominent existing schemes [11, 13, 14, 18, 25, 28]. Each network is assumed to have
roughly N � 10000 nodes and stated connectivity probability pc. These results
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presented in Fig. 3 help in visualizing the improvements achieved when our combined
scheme is compared with KPS having following set of parameters:

1. Lee and Stinson (LS05) (distributed) scheme [18]: p = 101, k = 101, pc = 0.99 and
N = 10201;

2. Proposed combined scheme: p = 101, kTD = 202, t ¼ s
25, pc = 1 and N = 11040;

3. Chakrabarti and Seberry (hierarchical) schemes [10] with 25 nodes compromised
per cluster (scluster = 25) and CH compromised = (4% of nodes compromised of
entire network) t = 4, 8,…, 40:
(a) CS06-1 where both tiers are based on symmetric BIBD [7] (construction

extended over Fpz ); parameter: pz = 11, 9 for node and CH levels respectively.
Therefore, key-rings of nodes: = knodes = 12 and key-rings of CH: = kCH = 10
and N = 133 � 91 = 12103;

(b) CS06-2 uses [18] for lower tier, extended symmetric BIBD [7] for upper;
parameter: pz = 11, 9 for node and CH levels respectively. Therefore,
knodes = 11 with kCH = 10 and N = 121 � 91 = 11011;

4. Simonova et al. (SLW06) (location aware) scheme [28]: k = 16, p = 11, m = 2,
N = 12100 over TD(k, p) KPS [18] with k = 4, p11, so that pc = 0.363;

5. Ruj and Roy (RR09) (hierarchical) scheme [25]: n = 143, k = 12, N = 16093.
6. Eschenauer and Gligor (EG02) (distributed) scheme [14]: k = 263, pc = 0.5,

N = 10000.
7. Chan et al. (CPS03) q-composite (distributed) scheme [11]: q = 2, k = 263, pc =

0.5, N = 10000.
8. Du et al. (DDHV06) (location aware) scheme [13]: k = 67, pc = 0.5 and

N = 10000;

Fig. 3. fail(s,t) comparison for almost equal sized (10000 nodes) networks

254 P. Sarkar and M.U. Chowdhury



8 Conclusion and Future Work

This paper proposes a universal design to model any hierarchical graph. This design is
based on Weighted Signed Graph (WSG). Such a model is particularly useful in
designing key management schemes for low cost networks. As an application, we
select any popular key predistribution scheme (KPS) that are particularly useful in
resource starved environment of WSN–a prototype of IoT. Comparative study of a
fixed KPS as the global (inter cluster) graph with a pairwise local (intra cluster) graph
establishes the superior performance of our scheme with prominent existing schemes.

Due to page limits, we leave detailed study of scalability (thanks to local/cluster
graph) of combined network for the extended version of this paper. We shall analyze
the side effects of scalability on resiliency for fully connected resultant networks.
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Abstract. In this paper we are proposing a multi-protocol security framework
for sensors and actuators used in Internet of Things (IoT). This is to make sure
that IoT security framework is capable of accommodating a number of secure
communication protocols to support diverse need of IoT systems. The proposed
framework will extend scope of combining common security functionalities like
mutual authentication, malware injection of all integrated secure communication
protocols and will make these services universally available to them. The IoT
provision requires all diverse actuators and sensor networks connected together.
The aim of the proposed security framework is to secure this connected diverse
networks universally with least amount of performance tradeoff.

Keywords: IoT � Framework � Security � Multi-protocol � Sensors and
actuators

1 Introduction

While securing a system like IoT, security provision needs a mechanism to accom-
modate more than one security protocols to ensure security and business needs of the
system. A framework with multi-protocol adaptation capability will be appropriate to
provide security for diverse networked system like IoT [1]. Furthermore, the IoT
security systems have to ensure that redundant security services are not repeatedly
executed for the system by multi-protocols. As an example, an ownership protocol [2]
implemented mutual authentication to an actuator and then immediately the same
system executed tracking protocol [3] which require to execute mutual authentication
too. In this case the duplication of mutual authentication is not required as long as
earlier one is still valid. A system like IoT needs to stop execution of this redundant
security services to make system scalable.

A number of work identified in literature that worked to provide security frame-
work for IoT. Among them, the proposed framework by Ray et al. [1] have attempted
to integrate multiple security protocols. However, none of the existing protocols have a
working process that allows a unified framework to integrate security protocols
therefore they can be used universally. This gives us a rational to develop a unified
security framework which is capable to adapt multi-protocol and eliminate duplicate
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security services for the system. In our work we have extended the framework from [1]
to achieve two things:

• Multiple security protocol adaption with in the same framework
• Elimination of redundant security service execution for the system.

The rest of the paper is organized as follow: in Sect. 2 we detail the relevant
existing work and the system model used in this paper. The proposed framework and
techniques are detailed in Sect. 3. The working process and computational details of
the required techniques for the framework are detailed in Subsects. 3.2 and 3.3. Finally
in Sect. 4 we conclude our paper.

2 Background

To allow seamless connectivity of global objects, multiple administrative domains need
to work together collaboratively. The IoT system must have a security mechanism that
are well accepted (universal) [1, 4] by all administrative domains. This prompts the
need of a security framework that offers unification for smoother integration of diverse
networked systems. Moreover, it also needs to offer scalability, security and adapt-
ability to make it usable with IoT. In Subsect. 2.1, we have presented existing research
and development on security framework, secure and scalable identification techniques,
universal security clearance to reduce security trade-off. The system model used in this
paper is detailed in Subsect. 2.2.

2.1 Literature Review

The security risks poses by sensors and actuators systems is a serious concern [2, 4] for
IoT deployment. To make security assurance acceptable by all involved entities in IoT,
the sensors and actuators system need to offer stronger security with easily deployable
universal security framework. However not much work has been done to address this
issue. We have identify three sensors and actuators security related frameworks pro-
posed in [4, 7, 8]. In [7], Konidala et al. have proposed a security framework for
RFID-based applications in smart home environment. This framework was designed to
protect consumer privacy in application level but it does not provide any guideline to
protect communication between reader and objects. It has proposed the use of HTTPS
to secure communication between mobile device and RFID backend server in appli-
cation layer. The smart home is a micro part of the IoT system.

Dong Seong et al. [4] have proposed a framework to achieve universal authenti-
cation and authorization for RFID multi-domain System. The work in this paper [4] can
be considered the pioneer work to address security requirements for sensors and
actuators in the context of IoT. This paper [4] also acknowledged a need of a universal
security framework to address security of sensors and actuators systems. However, the
work is focused to achieve authentication and authorization only and did not consider
other security properties required to be protected in the context of IoT. Lim et al. [8]
have proposed a cross- layer framework to address privacy of IoT system. The paper
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[8] has stated that traceability of sensors and actuators is a multi-layer problem, and
called for a multi-layer solution to address the problem appropriately. Their privacy
protection framework works in physical and MAC layer for protection from traceability
[8]. This work used randomized bit encoding scheme to mitigate ‘same-bit’ problem,
and proposed a more secure system model that can protect the unique identifier of
actuator autuators against disclosure to eavesdroppers and unauthorized interrogators.

Most recently, Cisco has announced a flagship Cisco IoT System which has 6
layers: Network Connectivity, Fog Computing, Security, Data Analytics, Management
with Automation and Application Enablement Platform [9]. The security layer of this
system has four sub-layers: authentication, authorization, network enforced policy and
inherent security analysis [9]. The Cisco IoT system aims to address security through
network- powered technology. Using this system, devices connecting to the network
will take advantage of the inherent security that the network provides (rather than
trying to ensure security at the device level) [9]. It left users privacy on the hand of
effective processes and policies of the organization. The security of Cisco IoT system
does not ensure device level security which is one of the crucial concerns for ubiquities
computing. Inclusion of the security layer in Cisco IoT system clearly justify that there
is a serious need of security protection for IoT systems. However their security solution
does not address requirements of IoT systems such as openness, unification, device
level security protection. Most importantly, Cisco security layer considered security of
the IoT ecosystem but forgot the security at individual IoT domain, device and business
service level.

Ray et al. proposed a security framework in [1] to combine multi-protocol in a
framework. This framework is the most relevant work in the literature which aims to
support diverse system for IoT. However, it doesn’t have any scope to adapt a new
protocol in it. In addition it does not show how a client and master reader communicate
with each other within the system.

In this paper we extend the work from [1] and address the following:

• Multiple security protocol adaption with in the same framework
• Elimination of redundant security service execution for the system.

2.2 System Model

In this section, we present an IoT system model where our proposed multiprotocol
framework can be used to secure the system. Our adapted IoT system for FP is shown
in Fig. 1. As illustrated in Fig. 1, the system is connecting diverse actuator systems to
ensure a global information network for objects. Each system of the IoT controlled by
different administrative domains with a common system structure as shown in zoomed
view in Fig. 1. This common system architecture has a master reader which coordinates
all other readers (client readers) of the system. The master reader is responsible to
represent the entire system to another system.

As illustrated in Fig. 1, the system model’s master readers are communicating over
Internet cloud. The authorized client readers will be able to execute the mutual
authentication and exchange information of the object according to the need of the
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system. However, this information need to be transported to other system via master
readers. The developed framework will have a client module in client readers to support
the master module of master readers.

The client and master module of the framework coordinate each other to ensure
security protection of the IoT system. It uses Security Check Handoff (SCH) to
dynamically choose security services required for an object based on system’s business
requirement. To illustrate the workflow of the system better, we have reading process
using our proposed framework in an IoT system illustrated in Fig. 2. As we can see in
Fig. 2, master reader of a system can presents it to another system with in IoT network.
It also contribute mainly in systems security management.

3 Proposed Framework and Techniques

In this section, we state our improved framework that will be the holistic unified
security solutions for IoT. This is followed by the SCH technique to support improved
framework. We also detail the working process of improved mutual authentication. We
will only state detail of our improvement over contributions in [1].

Fig. 1. Working system model for our updated FP
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3.1 The Framework

The updated framework is illustrated in Fig. 3. This framework is extending common
services to all the required security protocols by adapting them in a unified framework.
The framework has adapted System Components (SC) 1 to 4 from [1]. The func-
tionality of each of these SCs will be same as detailed in contribution [1]. The exe-
cution of SC1, SC2 and SC4 ensures mutual authentication between readers and

Fig. 2. A generic workflow of our system model that uses our proposed framework
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actuators in the system domain to safeguard the system. The SC3 is a simple malware
command checking layer that stop actuators to pass malicious command to the back-
end. To integrate a security protocol for specific security requirement we add a new
layer name integration layer. We present detail about the integration layer ðSCi

IÞ below.

System Component IðSCi
IÞ: is integration layer that accommodates additional

security services that are specific to a business need. Our work integrates two business
needs and their specific security services as shown in Fig. 3. Each sub-layer of inte-
gration layer SCI is identified by a unique i value as superscript that makes the pre-
senting symbol of this layer ðSCi

IÞ. The i value is a sequential number for each
integrated security protocol that uniquely identify the service of the integration
sub-layers. An IoT system can add integration sub-layers based on their need. It can
also dynamically choose which sub-layer to run for a particular execution using our
updated SCH. However, security protocols need to satisfy two simple requirements
below to be added to an integration sub-layer of SF.

• They have to support universal operation.
• They should not duplicate security services provided by SF in SC1 to SC4

The number of security protocols to be integrated in integration layer depend of sys-
tem’s requirements and need. This unified framework assumes that the system will
have a list of authentic readers in backend along with actuators information. The
integration layer manages the implementation of these integrated security protocols
using SCH that is explained in the following sub-section.

3.2 SCH to Support the SF

In this section, we will present our improved SCH to work with our new integration
layer. The SCH is the technique which not only provide faster security clearance but

Figure Error! No text of specified style in document..1: The ork 

Security Framework (SF)
SC1- Reader (RID) identification stage
SC2- Tag (TID) identification stage

– Integration layer
Ownership transferring protocol
Tracker protocol

SC3 – Malware detection stage

SC4 – Mutual authentication stage

Fig. 3. The unified proposed framework
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also provide a mechanism to manage system components of SF. It coordinates and
provides security services based on system’s security and business need. The updated
SCH has two system bits and identify bits to accommodate integration layer as illus-
trated in Fig. 3.

The security clearance bit type identify the security clearance status of the actua-
tors. The integration bit type specify the integration requirement for the tag by the
system.

The last SCH bits (Identity bits) only required if integration bit is “ON”. The
identity bits used to pass the identification value of the specific integration protocol
requested to be executed by the system. The proposed SCH only allow one integration
protocol to be executed by a specific execution at a time. We present the discussion
below to comprehend different possible SCH bits combination a system might need in
FP executions.

Let us first consider two system bits (security clearance bit and integration bit) so
SCHbjsizeðbTÞ ¼ 2 bits where security clearance bit control security related system
components (SC1, SC2, SC3 and SC4) and integration bit controls integration layer
ðSCi

IÞ system components. Each bit has two states ON 1ð Þ and OFFð0Þ makes four
maximum combinations when SCHbjsizeðbTÞ ¼ 2 bits as detailed below

• If SCHb ¼ 0ðOFFÞ0ðOFFÞ
– In this situation security clearance bit is 0ðOFFÞ, the actuator is not subject to

security clearance (need to execute SC 1 and SC 4). All actuator s will have its
initial security clearance value is 0ðOFFÞ.

– As integration bit is 0ðOFFÞ, the FP system does not require to execute any
integrated protocol for the actuator.

• If SCHb ¼ 1ðONÞ0ðOFFÞ
– In this case security clearance bit is 1ðONÞ, the actuator is subject to faster

security clearance (need to pass SC 1 to SC 2). In most cases, after its initial
identification the actuator sets its security clearance bit 1ðONÞ.

– However as the integration bit is 0ðOFFÞ, the FP system does not require to
execute any integrated security protocols for the actuator.

• If SCHb ¼ 1ðONÞ1ðONÞ
– In this event the security clearance bit is 1ðONÞ and also the integration bit is

1ðONÞ Therefore the actuator is subject to faster security clearance (need to pass
SC 1 to SC2 only) and the FP system require to execute an integrated security
protocol from its sub-layer. The selection of the integrated protocol will be based
on identification bits of the SCH.

• If SCHb ¼ 0ðOFFÞ1ðONÞ
– Here the security clearance bit is 0ðOFFÞ, the actuator is not subject to security

clearance (need to execute SC 1 and SC 4). This is ideal initial condition of the
actuator.

– However, the integration bit is 1ðONÞ therefore FP system require to execute an
integrated security protocol from the listed protocols of its sublayer.

The identification of the integration layers protocols will be represented using super-
scripted i value of the integrated protocol. For an example, if the SCH value for an
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actuator is SCH ¼ 1110 then the system can conclude that the actuator’s security
clearance and integration bits both are in ON state. The system also can extract that the
identification value that is 10 bits which is equivalent of decimal value 2. This means
system should run integration protocol with superscripted i value 2.

The working process of the new SCH is illustrated in Fig. 4 which shows that if
integration bit is OFF then identification bits are excluded from SCH to make it
moderated size value. We store the random position value and SCH value in the
backend to ensure intruders will not be able to exploit the system.

The SCH bit works as a bond of this framework to hold all the layers together and
provide a means to dynamically execute system components based on systems status,
requirement and security need.

3.3 Working Process of SF

This section detail working procedure of our proposed unified framework. The updated
SCH is an integral part of the framework as it supports the framework to achieve its
objectives. The framework works as a black-box so rest of the techniques used in the
framework can be replace by an updated one if required. Similarly, the security pro-
tocols adapted in integration sub-layer can be also replaced by an updated one, if
required. A new sub-layer can also be added to accommodate a new security protocol
as required by the system (Fig. 5).

In the discussion of this section our proposed SF is supported by

• Improved SCH from Subsect. 3.2.
• Reader/actuators identification and mutual authentication techniques detailed in [1].

The SF uses 96 bits frame formats illustrated in Fig. 6 to detail its process. The
frames have 5 bits header which carry information about the type of packet. There is a
End of a Header (EH) field that is one bit equivalent null non-writeable space to
separate header from payload. The payload portion carry actual data that is required to
execute relevant operations.

The frame always has a CRC-32 value to handle error in transmission.
The five bits header information will represent type of packet based on their “ON”

bits that is 1. The detail of each “ON” bits shown below:

Security 
clearance bit

Size= 1 bit 
only

Integra on bit
Size= 1 bit only

Iden ty bits 
size = various. depends 
on number of security 
protocols integrated in 

this layer

Fig. 4. Components of SCH
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Fig. 5. Working flow of the updated SCH

Header EH Payload CRC
5 bits Null bit 90 bits 32 bits

Fig. 6. Generic FP frame format
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10000 = Reader identification
01000 = Actuator identification
00100 = Malware detection
00010 = Mutual authentication
00001 = Integration layer’s protocol execution

These packet type values are different than SCH status value as header bits only
identify the type of packet. These values provide a degree of state full communication
by keeping some state information of the security clearance. Let us detail a specific case
to understand the working mechanism of our SF better. Here, we discuss updated
details only that need to be consider in association to details from [1].

Let us assume that an object came to a client reader’s vicinity that meet with the
specification below:

• The actuator is read by the specific system for first time.
• It is in the range of a client reader.
• The system require to execute an integrated protocol for the actuator as the actuator

is subject to an ownership transfer.

We choose above specification because it will allow us to detail most possible
communication combinations of the proposed framework. The above detail specify that
the system require to execute a SCH status where SCHb ¼ 0ðOFFÞ1ðONÞ½12� that
means the object need to be processed by SC1 to SC4 and it also need to pass through
integration layer to execute an integrated security protocol as integration bit is 1ðONÞ.
The last bit inside the square bracket is the integration protocol identification value. In
this specific case, identification value is 110 for ownership transfer protocol therefore
SCHb holds value 12 value to represent 110. The SCHb ¼ 0ðOFFÞ1ðONÞ value is
default for all actuator s which are read for first time by a reader with an integration
protocol execution request.

When the actuator come to the reader’s vicinity, the reader sends a signal to the
actuator for reading, using the frame format illustrates in Fig. 7.

The frame of this first communication has a header value to specify that it is a
reader and actuator identification packet. The frame has a randomized reader identifi-
cation value that occupies 90 bits or less. If the l bits payload is lesser than 90 bits then
a randomized padding value will be used.

The actuator then respond with a frame as illustrates in Fig. 8 below. In this frame
actuators transport a 16 bits randomized actuator set value, a read count value of 10 bits
and 64 bits hash value.

11000 EH Randomized reader’s identification 
value

CRC

5 bits header Null bit bits payload 90- bits pad 32
bits

Fig. 7. First FP frame format
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The system at this point initiate reader and actuator identification process.
As the actuator is read by a client reader of the system, it requires to send a

communication to the master reader or neighbor client reader for authorization by
sending randomized actuator set value and reader’s identification. If the client reader is
registered and authorized to process the actuator then the master reader will allow the
client reader to do the rest of the process.

If the actuator is read by the client reader for second time then it execute the
actuator identification process by itself without requiring authorization from anyone
else. The whitelist of registered reader is used to check the reader’s registration. The
neighbor client readers are those who have a trusted relation with the respective client
readers and registered. The communication process of this client reader’s validation is
illustrated in Fig. 9.

11000 EH Randomized 
Actuator set 

value

Read 
count value

A hash 
value

CRC

5 bits 
header

Null 
bit

16 bits bits bits 32 bits

90 bits payload 32 bits

Fig. 8. Second FP frame format

Master /Neighbor client 
reader

Client reader

Fig. 9. Verify identity of a client reader to eliminate rogue readers

11000 EH Token 
value

A hash 
value

unused CRC

5 bits 
header

Null bit bits bits 10 bits 32 bits

90 bits payload 32 bits

Fig. 10. SC4 FP frame format
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Let r2 be the randomized reader ID, rh = (h)(r2) is the hashed value of r2 protect
RRDB from disclosure, W0 be the randomized actuator set value and r1 is a l bit random
number that is used to randomize readers ID and actuator set value. The client reader
sends W0, r1 and rh values to master reader/neighbor client reader to validate itself. The
master reader then verify the readers ID using its registered client reader’s white list
and validity actuator set value W:

hðr2Þ¼¼? hðRRDB � r1Þ ð1Þ

If Eq. (1) returns true and actuator set value W is within the valid range, the master
reader sends client reader a random success token s which is calculated using Eq. (2).

s ¼ W � RC0
T ð2Þ

In our updated SF, the client reader use this token value in mutual authentication
stage to verify itself. If master reader cannot find reader ID in registered reader’s
database then it reject all communication from the reader.

After receiving the token s, the valid client reader use actuator identification
technique from [1] to identify the actuator. If the actuator ID is valid then it retrieve
SCH value from the database. In our case this system is reading the actuator for first
time and it requires to execute the ownership transferring process therefore the SCH
value of the actuator will be SCHb ¼ 011. The detail of each bit of SCHb value is
shown below

02 = the actuator is not subject to security check handoff
12 = The actuator need to execute a integration layer protocl
12 = 110 = the actuator requres to execute the first integration layer protocol.

Based on SCHb values, the reader execute SC3 for the actuator to identify any
malicious command in the values transmitted by the actuator. If actuator’s transmitted
values are clean then it executes the mutual authentication process in SC4.

Otherwise it rejects all the communicated information. In addition to mutual
authentication process detailed in [1], the client reader also send s to validate its own
identify. The new frame format of the communication of SC4 is illustrated in Fig. 10
which is an updated version of Fig. 11.

As we can see in Fig. 11, we are transmitting a token code and a hash value.
Because of this new token value, our updated mutual authentication process is

shown in Fig. 11. As illustrated in Fig. 11, the master or a neighbour client reader send
the verification token s to the reader. The reader send this in its communication along
with r4 that constitute SC4 (mutual authentication) of the framework and protocol
details in [1]. The actuator executed Eq. (4) of Fig. 11 to verify the identity of the
reader before executing Eq. (5) as illustrated in Fig. 11. The token code and hash value
let the actuator verify the validity of the reader. These values also let the actuator
update its read count information and actuator ID, if required.

At the end of the successful execution of SC4, the actuator wait for a communi-
cation from it’s current owner to execute ownership transfer protocol as specified in
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SCH which follow the execution detail discussed in [1]. The execution cycle remains
incomplete until the ownership transfer is done. During this incomplete stage, the
actuator does not communicate with any other owner except the one just executed
mutual verification. The actuator gets back to normal state as soon as it finishes it’s
ownership transfer (Complete execution cycle) as specified in SCH value. The overall
process flow of our unified framework is illustrated in Fig. 2.

4 Conclusion

In this paper, we proposed a security framework to ensure there is a scope for security
protocols adaptation. The integrity layer of the protocol can adapt any number of
security services and protocols to support the entire system. Our proposed holistic
unified framework in this chapter is built on enhanced SC4 and SCH detailed in this
paper. These improvements are done to ensure that our framework is ready to support
unified security service requirements of IoT. The IoT has many administratively
controlled domains as a result universality and unification of security and business
services are crucial to increase acceptance of uses. This chapter detailed working
process of our enhanced SF and updated packet formats required to achieve objectives
of our study. The solutions proposed in this study are simple and can work with
existing hardware. This study also considered the constraint of the actuator s compu-
tational capability to ensure high implacability of the SF.

Fig. 11. Updated mutual authentication process for SC4
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Abstract. There are known privacy concerns with the use of Tinder, a popular
dating app. In this paper, we examine previous attacks on Tinder that have not
been documented academically. We also documented the Tinder network API in
order to test the previous attacks in a live environment. Although our testing
revealed accurate user location data, which was the crux of the prior attacks, has
since been patched; we were able to: associate a Facebook profile with a Tinder
account due to their shared information, see Facebook pages a user had liked or
was a member of, as well as gather user images, which Tinder sends via plain
HTTP, for a reverse image search. We also demonstrated the potential for a less
accurate location attack that takes into account Tinder’s updated security.

Keywords: Tinder privacy risks � Dating app risks � Geo-social privacy risks �
Mobile app security

1 Introduction

Tinder is a mobile application (i.e. an “app”) that provides a matchmaking service,
which has facilitated over 10 billion matches [1]. Tinder’s defining quirk is that
matchmaking only occurs between users that are geographically close, and messaging
is only allowed between users that encounter and “like” each other through the
matchmaking process, which also provides only a single chance to like or pass on each
match. Once matched, users are able to freely message each other to chat or to arrange
real-world meetings for friendship, dating, or, as identified in popular culture - for
casual relationships called “hook-ups” [2].

Privacy has always been a concern with geo-social apps [3, 4]. Tinder and many
other dating apps allow users to vet each other before agreeing to meet. However,
because Tinder is also a geo-social app, it has an inherent privacy flaw: geo-social apps
need to collect location information about their users in order to function. By exam-
ining the output of the app, as well as manipulating the input, it is possible that the app
might leak personal information about its users. As a trivial example, if you move away
from another user until the app no longer considers them nearby, you now know the
other user is outside the cut-off distance of the app.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 271–286, 2017.
DOI: 10.1007/978-3-319-59608-2_15



While rigorous academic research on Tinder has been limited, Tinder is certainly in
the public consciousness. The latter is unsurprising, as Tinder attracts thousands of
news and blog posts, millions of users, and billions of swipes. While many stories deal
with the social aspects and implications of Tinder and related apps, such as discussions
on hook-up culture, there are significantly fewer that deal with privacy and security
issues surrounding Tinder. Of these, the most crucial involved attacks that were able to
obtain the GPS data and Facebook ID of a Tinder user. These attacks provided the
motivation for our research. While Tinder has since reportedly patched these vulner-
abilities, there is still a question about whether fundamental geo-location information
could be exploited to recreate the effects of some of the attacks.

In this paper, we examine and document the network protocol of Tinder to
determine what sort of data travels between the Tinder app and the Tinder servers. We
then examined how this data might be manipulated to affect the privacy and security of
Tinder users. We also conducted tests using Tinder data and our proposed methods in a
live environment to get a glimpse at possible real world implications.

2 Background and Related Work

2.1 Background

Tinder is a free mobile app for both Android and iOS devices, with 50–100 million
installs on Android devices alone, at the time of this research [5]. Tinder requires a
Facebook account, and uses Facebook permissions when a user creates an account to
give Tinder access to their list of friends, photos, and biographical information (e.g.
name, age, interests, education, and employment).

Once connected through Facebook, Tinder allows a user to customise their profile
from the Facebook entries collected. This includes setting the primary image displayed
during matchmaking, as well as up to 5 additional images for their profile. Employment
and current academic education are also able to be selected. First name and age are also
included on a user’s Tinder profile, but are only editable through their Facebook
account. In addition to Facebook-sourced information, Tinder allows a user to select
their gender, enter a 500 character biography, and connect to an Instagram account.

The ephemeral nature of Tinder’s matchmaking comes from the “stack” of potential
matches displayed to a user on the main Tinder screen. This stack is a set of recom-
mendations based on a user’s age, gender, and distance preferences, as well as Tinder’s
matchmaking algorithm which includes various hidden parameters, such as “desir-
ability” [6]. For each match in the stack, the user is able to either “pass”, “like”, or
“super like” the prospective match by swiping left, right, and up, respectively.

The profiles themselves are displayed as a stack of cards. While there are superficial
differences between the Android and iOS versions, the content of the profiles is the same
for both versions. Initially the primary profile picture, first name, and age are displayed,
along with buttons to pass, like, super like, and “rewind”. Rewind is a feature only
available for paying Tinder users, and allows the user to undo a swipe action made
immediately prior. Tapping on the profile picture brings up additional information – this
includes employment or education information, city, distance between users, photos
from a connected Instagram account, if applicable, as well as scrollable slides of up to 5
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other images the user has uploaded. Any shared interests, which are Facebook pages
both users have liked, as well as shared Facebook friends, are also displayed (Fig. 1).

Passing or liking a profile removes them from the stack and the next card in the
stack is displayed. Once a match has been removed from the stack, it is ostensibly gone
forever. However, circumstances such as creating a new account would reset matches.

Liking a profile initially does nothing. However, if the like is reciprocated at any
point, Tinder displays a match notification. This then enables messaging between the
two users. This is the only time messaging is enabled between users. Once messaging is
enabled, users are able to freely message each other through the Tinder app, enabling
the ability to continue the conversation, move to a different medium, or setup an off-
line meeting for friendship, dating, or a hook-up. Messaging is predominantly text-
based, although a partnership with the company GIPHY in 2016 means users can now
search and send preselected, “expressive”, video images [7]. Either party is able to
un-match at any stage, which revokes the ability to send messages (Fig. 2).

A super like is functionally similar to a like, but displays a blue background, a short
message, and a star-icon to your potential match when they view your card in their
stack. This may seem trivial at first glance, but with messaging disabled between
unmatched users, a super like is the only way to signal that you have seen and enjoyed
another user’s profile. Super likes are limited to 1 per day [8] (Fig. 3).

Fig. 1. A de-identified example of a Tinder user card. Initial view on left, truncated detailed
view on right (Source: http://orzzzz.com/find-out-what-tinder-really-is-before-you-rush-to-join-it.
html; Last accessed: 20/07/2016)
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Fig. 2. An example Match taking place (Source: Google App Store Tinder page, https://play.
google.com/store/apps/details?id=com.tinder; Last accessed 05/07/2016)

Fig. 3. An example of a super like indication. (Source: http://blog.gotinder.com/updated-
introducing-super-like-a-new-type-of-swipe/; Last accessed 23/07/2016)
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2.2 Previous Work

As stated earlier, existing technical research on Tinder is lacking. For example, in the
earliest and most dangerous exploit (described more fully below), the only information
we could find was obtained from social commentary websites and social media, due to
Tinder’s infancy at the time. Eventually we came across a news article displaying
emails sent to Tinder by the creator of the attack, disclosing its details [9]. Tinder
eventually claimed they had fixed these vulnerabilities, but only after a week without
reply lead the attacker to go public with his story [9]. Because the vulnerability was
only publicly known for a day, and the only evidence of it consisted of emails to and
from Tinder (rather than a well-documented formal disclosure), there was no way to
verify the correctness of the claims made. However, given that the server no longer
returned the location data when we tested it - see Fig. 4, and the fact that details of the
attack were reported on several social news websites, this attack appears to be
authentic.

The attack as described was completely straightforward. When the Tinder Appli-
cation Programming Interface (API) requested a user profile (which the app does to
display its profile stack), the API returned extra information. Unfortunately, this extra
information was in the form of exact GPS co-ordinates, and a Facebook ID, which the
attacker was able to read by examining the network traffic. GPS co-ordinates could
obviously then be used to compromise the location of the user. Furthermore, a Face-
book ID allowed the attacker to obtain the Facebook profile of the user, which gen-
erally contains more personal information than Tinder displays, which may escalate the
attack in other ways.

Fig. 4. The first major Tinder attack. GPS and Facebook ID data were returned when getting a
user profile
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Several months after the attack described above was fixed, a second attack, using a
more novel approach was described. While exact GPS co-ordinates were no longer
available, the response from the Tinder API included a very accurate distance between
two users [10]. The author of this attack utilised this by creating three fake profiles and
trilateration to determine the exact location of the user (see Fig. 5). Trilateration is
essentially the projection of three circles with radii set to the respective distances
reported by Tinder, and then seeing the point where all the circles intersect. Again, the
write-up was posted on a security blog (rather than a formal publication), and included
a tool, explanation, and video on how to locate your own Tinder account [10].

Such vulnerability motivated this research. Tinder also fixed this vulnerability and
now only provides approximate numbers in its API. However, we question whether this
is sufficient to keeps users safe.

While there have been two major security concerns for Tinder, there have also been
a considerable amount of effort invested into gaming the Tinder system. From basic
bots that automatically swipe right to give a “like” on every profile to maximise the
chance of getting a match [11, 12], to a much smarter bot that learns what facial
features you find attractive based on your swipe history, and can even automate con-
versation openers [13]. Other bots have a financial rather than romantic or sexual
interest at heart, where they pretend to be a highly attractive user that sends spam
messages to any matches it can make [14]. While Tinder has not implemented any
changes that directly target bots, a March 2015 update [15] limited the number of

Fig. 5. Visualising an example trilateration attack. Point ‘A’ (University of South Australia) is
the point where all three circles intersect
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swipes free users had per day, which significantly reduced the effectiveness of these
mass swiping bots. Paid users retained unlimited swipes.

The aim of this study is to determine if there are still privacy concerns when using
Tinder.

Specifically, we investigated whether Tinder now prevents the type of attacks
previously conducted, and whether other, more subtle attacks, were possible - partic-
ularly associated with the following: GPS location, personal user data and social media
connections. In order to do this, we used tools to understand how the Tinder API
worked and then used that information to examine the quality of Tinder’s security, and
to propose attacks.

3 Experiment Design

A client device (Table 1) was connected to Tinder to document its API. To accomplish
this, all of the network traffic from the client device was captured using a proxy, and
then documented. Once the API was well understood, we then replicated the phone’s
functionality by developing a specialised Tinder bot. The areas of the API we focussed
on understanding and attempting to exploit were:

• GPS location of users
• Personal user data (Birthday, name, pictures, etc.)
• Social media connections

3.1 Server Set-up

To properly capture the traffic from the Tinder application, a server was required to
analyse the network traffic from our client device. We chose a pre-packaged software
tool called Charles for this task because it was available for many different platforms,
was easy to use, and was able to analyse HTTPS traffic from the client. Because Tinder
uses HTTPS, which is encrypted, we needed to use Charles as a man-in-the-middle
proxy between the client phone and the Tinder API server (see Fig. 6; similar to the
approach in [16]). This set-up allows the proxy to pretend to be the server to the client
and the client to the server, allowing decryption for both. Further, we used the same
server machine to run our eventual bot, which was developed in C#.

Table 1. Client device details

Make Model OS Tinder version

Motorola Moto E Android 4.4.4 Tinder 4.5.2
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3.2 Client Set-up

To set-up our client, we first installed Tinder 4.5.2 on the client device. Next, we set
our Charles server as the phone’s internet proxy using the Wi-Fi settings page in
Android, which allows us to examine HTTP traffic on the Charles server. To allow us
to examine SSL traffic, we needed to generate a root Charles Certificate Authority
Certificate. A Certificate Authority is a trusted authority able to sign and distribute SSL
certificates, which is required to decrypt and re-encrypt the traffic from our phone to
forward to the Tinder server. After generating this certificate on the Charles computer,
we added the certificate as a Certificate Authority through the Android security settings.
With both the client and the server correctly configured, we then used Tinder in a
normal fashion on the phone for a few minutes while recording all the network traffic
through Charles.

4 Findings

4.1 API Testing

To map the API, we used a client device as described above and performed some
typical user actions, such as logging in, viewing profiles, “liking” a user, and “passing”
on a user. From these actions, we collated and tested a list of endpoints as described
below.

Authentication. Authentication is the first step when connecting to the Tinder API.
Other than the authentication (auth) endpoint, all requests to Tinder end-points require
the X-Auth-Token (“Tinder Token”) to be sent as a header in the request in the form of:

If the Tinder token is not supplied, then Tinder returns a “401 Unauthorized” error
message. Once the Tinder token has been set, requests can be made to all the other
Tinder endpoints. Further, the Tinder token is the one and only object Tinder uses for
verification, for all requests, following the initial authentication.

To receive a valid Tinder token, a user requires their Facebook ID as well as an
appropriate Facebook token (as distinct from a Tinder token). The Facebook token is

Fig. 6. Proxy setup with proxy in between the client device and the Tinder server
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generated by authenticating with Facebook through Tinder. The exact mechanics of
Facebook authentication are out of the scope of this paper, and can be found on
Facebook’s developer site [17]. Additionally, Tinder requires other headers to be set
which mimic a real phone’s request. This includes any valid user agent, for example:

In addition, the content type must also be set. This is in the form of:

We then used cURL1 to create a valid Tinder authentication request:

While the auth response also returned the authenticating user’s complete profile
information, our interest was the “token” field, which we set as our Tinder token. As
the Tinder token is the only thing required to access Tinder’s endpoints, we examined it
more closely: if the token was predictable, then impersonating users would be possible
by accessing the endpoints with other valid tokens. Having another user’s token is
extremely problematic because much of the authenticated user’s information is avail-
able by accessing the profile end-point through:

As you can see, this request only requires a valid Tinder token, and returns personal
information including Facebook ID, date of birth, and exact GPS co-ordinates.

The tokens themselves are Version 4 UUID tokens and the document which defines
them states:

“Do not assume that UUIDs are hard to guess; they should not be used as security capabilities
(identifiers whose mere possession grants access), for example. A predictable random number
source will exacerbate the situation [18]”.

While we personally found no problems with Tinder’s usage of UUIDs, a theo-
retical attack, which would require intimate knowledge of a predictable random gen-
erator in use by Tinder, does exist. In essence, the attacker would first authenticate
using their own account. Then, they would retrieve their randomly generated token, and

1 cURL is a command-line utility to send and retrieve data over the Internet. Detailed documentation
on history and usage is available at: http://linux.about.com/od/commands/l/blcmdl1_curl.htm (last
accessed: 20/07/2016).
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then use that token in the weak random number generator to generate the next valid
token in the sequence. The attacker could then access the profile of, and see personal
information of, the person who logged after them.

Testing HTTPS. One of the more basic things we wanted to check was that all
sensitive traffic to Tinder was being sent over HTTPS. HTTP, which is not encrypted,
is extremely vulnerable to man-in-the-middle attacks, as well as packet sniffing. Our
examination revealed all traffic, except images, were sent over HTTPS (Fig. 7).

Pictures sent over plain HTTP can be intercepted through the methods mentioned
above. We also found that a user’s Tinder ID was transmitted in the path of the image,
the relevance of which will become apparent when we discuss attacks further below. In
addition, we found that the first image requested after authenticating was always the
authenticated user. Being able to view images of people is not a security problem by
itself, however users’ belief that they are anonymous until they choose otherwise, may
mean that they are prone to using more compromising images on Tinder. For example,
there was an incident involving a married Canadian politician alleged to have made a
Tinder account linked to his official campaign Facebook page [19]. Compounding this,
users could be identified by using their image in a reverse image search. However, in
our testing, this did not happen because most large web-crawlers respect Facebook’s
rules which disallow user profile crawling [20]. Should a user re-use their Tinder
images elsewhere on the web, such as on other social media or dating websites, the
probability for a successful reverse image search does increase. Further, if a user has an
Instagram account connected, this again increases the chance that a user’s image will
be indexed on a search engine.

Setting Location. Setting the user’s location was one of the potential privacy prob-
lems we wanted to investigate. While the previous trilateration attack involved creating

Fig. 7. Left: images.gotinder.com is not transmitted over HTTPS. Right: Tinder ID is visible in
path of image URL (pixilated for privacy)
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fake accounts [10]: physically moving a phone to all of these locations would have
proven extremely time consuming. Indeed, most location-based attacks are only made
feasible by being able to freely and rapidly adjust the attacker’s location until ideal
conditions are found. This is to say, being able to freely change your own location is a
security concern. We found that adjusting your location through Tinder’s API was
trivial, as it can be accomplished through the following command:

As can been seen above, unlike some other geo-social apps, such as Mitalk or
LOVOO [4], Tinder does not use checksums or signatures to validate the location it
receives. Further, while Tinder does reject very small and very large changes to
location, small changes can be accomplished by performing them in two opposed larger
moves. Furthermore, very large changes can be performed by sending no location
changes for a few minutes, and then sending the large change. We believe this beha-
viour is to accommodate users who turn off their phones and catch a plane, for
example; otherwise these users may become permanently out of sync with Tinder.

4.2 Validating Previous Attacks

Now that all of the Tinder endpoints could be accessed, we wanted to verify that all of
the old attacks that we examined earlier were actually patched, and no longer func-
tional. The simplest method to test the first major vulnerability, which leaked exact user
GPS data and Facebook ID, was to request a user’s card and examine the results. We
used a cURL command to accomplish this, in the form of:

Our response from Tinder is presented in Fig. 8:
As can been seen from Fig. 9, we confirmed that GPS co-ordinates and Facebook

IDs are no longer being sent by Tinder. Furthermore, the distance returned is now a
whole number, rounded to the nearest mile, rather than the exact distance we saw in the
original trilateration attack [10]. However, we also wanted to test whether the distance
returned was still accurate under specific circumstances, for example, if the distance
was simply rounded to the nearest integer, gradually moving away from the target until
the distance switched between two integers would give you exactly half the distance
between those two integers, which you could then use as a point to conduct a
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trilateration attack. We developed a program to try and accomplish this, which is
detailed in the next section.

4.3 New Attacks

Identifying Facebook users. Our first attack came from noticing that an “ID” field is
sent with some of Facebook “groups” data. As an example, examination of the infor-
mation presented in Fig. 8 shows that ID “38078347904” was sent for our school details
at University of South Australia. We then used this ID to visit the Facebook page for that
group, and found everyone who liked the page. In this example, the URL would be:

Since we know that all Tinder users have a Facebook account and Tinder sources
both name and photos from Facebook - we manually examined the list produced by the
Facebook search until we found a user with a matching first name and similar image.
We also had some success simply Googling the user’s first name, along with their place
of schooling, job, and any relevant bio data provided by Tinder. Although extremely
basic, this attack did allow us to connect Tinder users and their Facebook accounts,
which we consider a privacy problem. Also remember, that the only piece of infor-
mation required for this attack to work is a Tinder ID, which, if you recall from our
findings in Fig. 8, is sent as plain text and is not encrypted.

Location attack. We wanted to propose and test a new version of the previous tri-
lateration attack. We developed a program that retrieved a Tinder ID from our
matchmaking list and then moved our profile away slightly. We then requested the
user’s profile using their Tinder ID again and looked at whether Tinder reported their
distance had changed. We picked 3 points, and did several refining passes on each to
dial in the accuracy. The next figure demonstrates one of our results.

Fig. 8. Partial response from Tinder server to a user GET request. The Tinder ID field has been
pixilated for privacy reasons
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We tested several things, such as treating the integer returned as the floor, ceiling,
as well as different rounding points – nothing seemed to produce anything more
accurate than Fig. 9.

If the distance measured was not an accurate representation of the actual distance,
then what was it? To test this we used two fake accounts, and had one “orbit” the other
at a set distance as reported by Tinder. To do this, we used a reverse Haversine function
that moved a set distance along a defined bearing. Again, we used several refining
passes at our chosendistance (11 miles) so the point captured was exactly when Tinder
changed from reporting 10 miles to 11 miles.

Fig. 9. Attempting our own trilateration when the reported distance changed from one whole
number to the next produced a large 3–4 km2 area of uncertainty (shaded orange). (Color figure
online)
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The function described above, looped over 360° produced the following:
From Fig. 10, it became obvious that Tinder has reduced accuracy in their distance

calculation. We believe accurate GPS co-ordinates are being “snapped” to a less
accurate grid which is then used for distance calculations performed by Tinder and
displayed to the user.

If indeed the accuracy is being reduced at some stage of the process, it makes it
extremely difficult, if not impossible to recover it.

While we were unable to perform an effective practical attack on the location of the
user, we would like to propose the possibility of a further attack. Unfortunately, we
were not able to determine if this attack would work, because pre-computing the Tinder
grid over the internet was an extremely slow process, taking hours to get results within
even one degree of accuracy. An attacker with considerable time, however, may gain
success.

This attack would involve accurately precomputing the grid for Tinder (Fig. 11).
The attacker would pick a GPS point, and move until they are snapped onto part of the
pre- computed distance grid. Then, the attacker would manoeuvre to the very corner of
the section they were in This would be Point 1. The attacker would then move to the
left or right to find the reciprocal point on the other half of the grid. This would be Point
2. By measuring the distance from Point 1 to Point 2, and using a pre-computed table of
distances, the attacker would now know which part of the grid they were on and be able
to determine the bearing to the target centre point.

Fig. 10. Outer circle: an 11 mile (All of Tinder’s internal representations of distance are in
miles, which we have opted to keep for the sake of clarity) radius circle projected around a point.
Inner shape: An 11 mile radius “circle” projected around the same point according to Tinder.
Actual distance of inner shape to centre point ranged between 9.4883 and 10.6578 miles.
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Armed with two points, one distance, and two angles, the attacker could use
trigonometry to find the final point, being the target (arrow on Fig. 11).

While this attack would only able to reveal which grid the target had snapped to,
the grids appear to be 1/6th of 0.1 degree of latitude or longitude at their most accurate.
This equates to a square of roughly 2.8 km2 (in South Australia), which is more
accurate than the 3–4 km2 identified in Fig. 9. Furthermore, it is unknown whether
these grids are static, or whether their shape or accuracy can change.

5 Conclusion and Future Work

After significant probing we found that all known, significant, prior attacks on Tinder
were no longer functional. We did find a number of security issues where Tinder has
not followed best practice, including solely relying on UUID tokens for authentication,
not properly validating location updates from users, sending user images over HTTPS,
and including the Tinder ID in the user image path.

In terms of practical attacks, we found we were able to connect a Facebook profile
to a Tinder account due to the shared information between them, the possibility of their
images appearing on a search, as well as Tinder leaking the ID of certain Facebook
groups the user was in. However, this attack was not consistent, required significant
manual work, and depended on various luck factors such as Google indexing the right
Facebook profile, or the user posting a Tinder image on the web.

For a location attack, we were able to get a rough location (3–4 km2) using existing
methods. We proposed a slightly more accurate attack (*2.8 km2) using new methods,
based on our belief that Tinder is now using grid snapping to remove exact user
co-ordinates from calculations. However, owing to the apparent extremely inefficient
pre- calculations required, we were unable to complete the attack ourselves.

Future work includes extending the research to grid-based attacks to speed up the
attacks, and to attempt a practical application.

Fig. 11. An attack against the Tinder grid. This is an example 11 mile grid
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Abstract. Biometric authentication has been gaining popularity for providing
privacy and security in many applications including secure access control,
surveillance systems, user identification and many more. This research proposes
a robust scheme for biometric authentication by analyzing and interpreting facial
image using a neural network. Human face has become as the key attribute for
biometric authentication over the recent years due to its uniqueness and
robustness. Our system focuses on efficient detection and recognition of user’s
face for precise authentication. The facial features of a user are compared with a
face database in order to perform matching for authentication and authorization.
The proposed system estimates the face by analyzing skin color components in
the facial image. The facial edge features are then extracted from the detected
face skeleton. A neural network is employed and trained with the extracted edge
features to recognize the user face by comparing with the facial database. Once
the user is identified, authentication is granted. Experimental evaluation
demonstrates that our proposed system provides better performance meeting
accuracy requirements and less computation time.

Keywords: Biometric authentication � Secure access control � Surveillance
system � Facial recognition

1 Introduction

Biometric authentication has become very popular nowadays in security and privacy
preserving applications such as, access control, surveillance system, visa processing,
border checking and so on. Biometric authentication is a technique that relies on the
unique biometric characteristics of individuals to verify user identity for secure access
to electronic devices or systems [1]. Biometric features such as, fingerprint, face, facial
components, palm print, hand geometry, iris, retina, gait and voice are common form of
key attributes in biometric authentication [2]. In recent years, human faces are widely
used as the most distinctive key attributes for biometric authentication due to their
uniqueness, robustness, availability, accessibility and acceptability characteristics [3].
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R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 287–295, 2017.
DOI: 10.1007/978-3-319-59608-2_16



User authentication is crucial in secure access control that provides the safety and
security of any system. User authentication is traditionally performed based on the
following arrangements: (a) something that the user knows (such as, a PIN, a password)
or (b) something that the user holds (typically a key, a token, a smart card, a badge, or a
passport). These traditional methods for the user authentication have deficiencies that
restrict their applicability in security systems. Traditional methods are based on prop-
erties that can be forgotten, disclosed, lost or stolen. Passwords often are easily
accessible to colleagues and even occasional visitors and users tend to pass their tokens
to or share their passwords with their colleagues to make their work easier. Biometric
authentication or simply biometrics, on the other hand, authenticates users properly and
reliably [4]. Biometric characteristics are unique and not duplicable or transferable.
Biometric authentication identifies and authorizes a person based on the physiological or
behavioral characteristics such as a fingerprint, an iris pattern, face or a voice sample [5].

The interest of doing research on biometrics is very significant due to its immense
importance in the privacy and security community. This paper aims to develop an
efficient scheme for biometric authentication based on facial recognition using a neural
network. The system works with visual and geometrical information of the user’s face
in an image and detects the face skeleton using the similarity measure of the colour
components of the image in the YCbCr colour space. Once the face is detected, the edge
features of the face skeleton are then extracted and fed into the neural network to teach
the network in order to identify the user face. Once the user is identified by facial
recognition, authentication is granted to access the secure system. The proposed
technique can treat images with different lighting conditions and complex backgrounds.

The rest of the paper is organized as follows. In Sect. 2, we present an overview of
facial recognition. Section 3 demonstrates the architecture of our proposed facial
recognition system. Experimental results are reported in Sect. 4. Finally, Sect. 5 con-
cludes the paper.

2 Facial Recognition

Human face plays an important role in person recognition in vision-based surveillance
system. Facial recognition is a technique for automatically identifying or verifying a
person from an image or a video frame. Compared with other biometrics, face
recognition has the potential to recognize uncooperative subjects in a non-intrusive
manner. It has now become the most common and widely used means of biometric
identification [6].

Facial recognition technology has been developed based on two arrangements:
facial metrics and eigenfaces [7]. Facial metrics relies on the measurement of the facial
features such as, eyes, nose, mouth. Eigenfaces refers to an appearance-based approach
to face recognition that seeks to capture the variation in a collection of face images and
use this information to encode and compare images of individual faces in a holistic (as
opposed to feature-based) manner. In the facial recognition technique, the system
captures the face image of the user by a camera or sensor and extracts the features from
the face. The features are then compared with one which is stored in a face database,
and if there is a match, the user’s face is identified.
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The face recognition process generally consists of the following steps. The initial
task of facial recognition is to locate the face within the image sequence. Then the
detected face block is normalized and extracted. The facial features are then extracted
from the selected face block. Finally, the face is recognized.

A tremendous amount of research works have been done for automatic detection
and recognition of human face over the last couple of decades [8, 9]. To name a few,
good surveys exist for illumination invariant face recognition [10], face recognition
across pose [11–13], video-based face recognition [14], and heterogeneous face
recognition [15], face recognition using multi-scale Local Binary Patterns (LBP) [16],
Locally linear regression based face recognition [17], and face recognition based on
Dual-Cross Patterns (DCP) features [18].

Facial recognition techniques mentioned above have some deficiencies. The
dependency on the light, resolution and facial expression reduces the accuracy of the
facial recognition. We therefore, have employed facial edge features in recognition
process which are independent of the variation of pose and illumination.

3 Proposed System Architecture

The general architecture of the proposed biometric authentication scheme is shown in
Fig. 1. The scheme comprises of the following steps: (i) Pre-processing of the face
image, (ii) Face detection, (iii) Facial features extraction, (iv) Feature matching,
(v) Face identification, and (vi) Authentication.

Human Face Detection

Authentication 

Face/User Identification 

Features Extraction

Feature Matching by NN

Face Database

Pre-processing

Input Image 
Sequence 

Fig. 1. Architecture of the proposed biometric authentication system.
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3.1 Preprocessing of the Face Images

In computer vision systems, there may be significant amount of noise in the captured
images. We therefore, employ a fuzzy median filtering technique [19] for refining the
facial images corrupted by noise. This filter employs fuzzy rules for deciding the gray
level of the pixels within a window in the image.

3.2 Face Detection

The most important part of the facial recognition is detecting the face in the image.
Face detection is concerned with determining the part of an image which contains face.
Several techniques have been developed for face detection in last couple of years,
which includes: geometric modeling, genetic approach, neural network, principal
component analysis, color analysis and so on [20–26].

In this paper, we have employed a fast and robust face detection technique based on
skin color segmentation [27]. The face skeleton is detected from the largest connected
area of the skin color segmented image. The method considers the frontal view of the
face in color scale image. The detected face image is normalized and cropped with a
dimension of 180 � 160 pixels. The steps of the face detection method are demon-
strated in Fig. 2. The outcomes of face detection and normalization process are shown
in Fig. 3.

3.3 Facial Features Extraction

One of the key tasks underlying facial recognition is the features extraction. Once the
face is detected, the facial features are then extracted from this face block for matching
with the one stored in the face database. This paper extracts the edge features from the
face region, since the edge features are invariant to pose variation and illumination

Input
Image

RGB Color
Extraction

HSV Color
Conversion

Skin-like Region
Segmentation

Largest Connected
Area Segmentation

Face
Area

Fig. 2. Block diagram of the face detection method.

(a) Input image (b) Detected face (c) Normalized and cropped
face block

Fig. 3. Face detection and normalization process for a real image sequence.
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changes. The extracted facial edge features are then fed into a back propagation neural
network (BPNN) to train the network for recognizing the face.

Edge or gradient histogram corresponds to the spatial distribution of the edge
features in the image. The gradient of an image f(x, y) can be expressed by,

rf ¼
@f
@x
@f
@y

" #
¼ Gx

Gy

� �
ð1Þ

where Gx ¼ @f
@x is the gradient in x direction, and

Gy ¼ @f
@y is the gradient in y direction.

The gradient direction can be calculated by the formula:

h ¼ tan�1 Gy

Gx

� �
ð2Þ

We use Sobel edge detector to extract the edge features from the images. Figure 4
shows the edge features extracted from the face image.

3.4 Facial Recognition with Neural Network

Facial recognition is achieved by employing a backpropagation neural network. The
architecture of the neural network is illustrated in Fig. 5.

(a) Face image (b) Detected Edge points

Fig. 4. Facial edge features extraction.

Input Layer Hidden Layer Output Layer

x1

yk

xi

●
●
●

●
●
●

Fig. 5. Architecture of the back propagation neural network.

Biometric Authentication using Facial Recognition 291



The nodes in the input layer receive the edge features. In this network, the layers
are connected with each other through their neurons with specific weights. The input
signals transmit from left to right directions while the error signals propagate from right
towards left. Back propagation algorithm presents a training sample to the neural
network and compares the obtained output to the desired output of that sample. It
calculates the error in each output neuron. The BPNN adjusts the weights of each
neuron for minimizing the error value. The minimum error margin is set to 0.001 for
experimental evaluation.

4 Experimental Evaluation

In order to evaluate the effectiveness of the proposed method, experiments have been
carried out for real images at different illumination conditions. We have performed
experiments on three different face databases (Face 94, Face 95 and Face 96) of the
University of Essex [29–31] with different poses and illuminations. Figure 6 demon-
strates some sample images of these face databases. The features of the face databases
are summarized in Table 1.

Fig. 6. Face image database of Essex: Face 94 (top), Face 95 (middle), Face 96 (bottom) with
different poses and illuminations.

Table 1. Features of the face databases

Data Set Total Images Resolutions Individuals

Face 94 3078 180 � 200 153
Face 95 1440 180 � 200 72
Face 96 3016 196 � 196 152
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Experiments are carried out on a computer with 2.2 GHz Intel Core i5 processor
and 4 GB RAM. The algorithm has been implemented using Visual C ++. Half of the
images of the each face database are used as a training dataset and the remaining
images are used as probe images in the recognition test. The extracted facial edge
features are used to train the neural network.

We have performed experiments to compare our proposed algorithm with other
existing methods including, principal component analysis (PCA) [11], Gabor [28], LBP
[16], and DCP [18]. The results as furnished in the Fig. 7 and Fig. 8.

Fig. 7. Recognition accuracy (%) of different methods for three datasets

Fig. 8. Computation time for different recognition methods.
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Experimental results demonstrate that our approach achieves almost similar
recognition accuracy comparable to the state-of-the art method, while taking significant
less amount of computation time. We believe that our method can be applicable in real
time commercial environment where computational efficiency is a major concern.

5 Conclusion

In this paper we propose an effective and robust biometric authentication scheme based
on facial recognition. The scheme employs a neural network with back propagation
algorithm to recognize the user face. The system authenticates a user based on the
correct matching of his/her face with a face database. Experimental evaluation
demonstrates that the proposed system achieves a significant recognition performance
with fulfillment of a tradeoff between accuracy and speed. The effectiveness of the
proposed system has been justified using standard face databases with different poses
and illuminations in complex and simple backgrounds. Our system is able to employ in
real time applications where computation speed is a crucial. Our next approach is to
extend the algorithm for multi-face detection and recognition.
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Abstract. Cloud computing is geared towards the effective and efficient use of
computational resources and it has been making a big revolution in the field of
information technology by reducing capital investment. It delivers computing as
a service, that enables effective utilization of computational resources, rather
than, a product, for a fraction of the cost. This paper explores key security issues
associated with PaaS and proposed mitigating strategies are provided. These
security challenges slow down the adoption of PaaS. Mitigating these security
issues could increase PaaS adoption. This paper focuses on the security issues
associated with Platform as a Service (PaaS) offering on a public cloud platform
and provides various mitigating techniques to address these security issues. If
properly implemented, we could realize an increase in PaaS adoption.

Keywords: PaaS � Cloud computing � Security

1 Introduction

Cloud computing is a concept that provides economic outsourcing of computational
resources and qualified maintenance [8]. Various kinds of computational resources are
shared through simple interfaces via high-capacity networks [12]. Despite the many
benefits of cloud computing, such as better utilization of resources and less time taken
in deploying new services, the sharing of resources in a PaaS platform has security
challenges. These challenges range from access control issues to privacy awareness.
Ubiquitously shared and distributed resources bring a new series of security problems
that professionals in information technology need to address.

Eliminating this security challenges will speed up PaaS adoption and increase its
usage. An increase in PaaS usage leads to better utilization of computational resources.
It will also shorten time to deploy new services, speeds up technology adaptation, as
well as carbon footprint [1].

Cloud computing has four deployment models [5]. These deployment models are:

• Public cloud – provides shared resources to a community of users
• Private cloud – provides services which are controlled and exclusive to the user
• Hybrid cloud – provides the ability to move workloads between private and public
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• Community cloud – provisioned for organizations with shared concerns Similarly,
cloud computing has three service delivery models [5]. These models are:

• Software as a Service (SaaS) – consumed as a service only for the applications
needed

• Platform as a Service (PaaS) – provides the core hosting operating system and
optional building block services that allow users to run their own applications

• Infrastructure as a Service (IaaS) – outsource the elements of infrastructure like
virtualization, storage, networking and load balancers.

PaaS plays a significant role in a cloud environment because it brings customs software
development to the cloud. Moreover, PaaS provides an environment for users to run
applications. Examples of PaaS services includes SharePoint or MSSQL server on
Azure. PaaS is defined as “the capability provided to the consumer to deploy onto the
cloud infrastructure consumer-created or acquired applications created using program-
ming languages and tools supported by the provider” [5]. PaaS will drive demand for
cloud computing as desktop operating systems and development tools drove the demand
for PCs in the 1990s. “PaaS consumers employ the tools and execution resources
provided by cloud providers to develop, test, deploy and manage the operation of PaaS
applications hosted in a cloud environment. PaaS consumers can be application
developers who design and implement application software; application testers who run
and test applications hosted in a cloud-based environment; or, application developers
who publish applications into the cloud. PaaS consumers can be billed according to the
number of PaaS users; the processing, storage and network resources consumed by the
PaaS application; and the duration of the platform usage” [5].

PaaS is not a single technology. It is a collection of related services used in creating
and deploying software on a cloud platform. PaaS brings challenges along with its
many benefits, like all new technologies. Getting to PaaS success requires under-
standing what can get in the way of its fullest realization. While some PaaS challenges
are organizational, others are technical in nature. However, these challenges do not
exist in a vacuum. They exist in an organizational specific setting. Depending on an
organizational potential PaaS users and choice of PaaS technology, they will encounter
different types of the major PaaS challenges.

Concerns about cloud security are not new, however, PaaS could increase risk
exposure. The cloud tends to blur the security perimeter in general because with PaaS,
an organization’s business extends to multi-tenant servers in unknown geographic
locations. If a PaaS application connects to other enterprise systems, it could become a
“route” for improper access and potential vulnerability. Connections between cloud-
based applications built on PaaS and other enterprise systems present security, oper-
ational and governance challenges. The paas-based software is inherently service-
oriented. It has the ability to call on application programming interfaces (APIs) exposed
on numerous systems. These include APIs that use Simple Object Access Protocol
(SOAP) as well as the increasingly popular Representational State Transfer (REST).
Without adequate controls, systems can be exposed through APIs along with the
business processes they support. Of course, few organizations simply leave an API
totally open to the world. However, the difference in development and change cycles
between legacy systems and PaaS software can lead to challenges because the legacy
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system cannot keep up with new PaaS features. If external users can access internal
business process through APIs that are out of sync, that can cause operational and
compliance difficulties. Alternatively, if an API is not available because a change in the
PaaS solution has broken the connection, that is also bad for business.

In this paper, we will focus on the key characteristics of a PaaS platform, security
risks associated with a PaaS environment and proposed mitigation strategy.

2 Key Characteristics of PaaS

PaaS offering is widely being adopted in the business world; as a result, it is gaining
rapid growth. This growth is bringing broad changes across the information technology
sector. PaaS vendors are contemplating how to take the opportunity to this new
expanding market and many developers are moving towards PaaS application devel-
opment. Moreover, the increase in PaaS application consumption and development is
driving the need for a platform technology built specifically to support the PaaS market.
Below are some of the attributes behind the PaaS market expansion:

• Multi-tenant architecture

A PaaS platform has to be multi-tenanted. A multi-tenant platform is one that uses
common computing resources including hardware, operating system, application code
and a single underlying database with a shared schema to support multiple customers
simultaneously.

• Customizable/Programmable User Interface

A PaaS platform must provide the capability to construct highly flexible user interfaces
through a simple “drag & drop” methodology that permits the creation and configu-
ration of UI components [2]. This “drag & drop” capability allows the creation of new
layers quickly and easily without requiring much custom coding.

• Unlimited Database Customizations

The core of many applications is data persistence. Therefore, a key characteristic of
PaaS is facilitating the creation, configuration, and deployment of persistent objects
without requiring programming knowledge. So, a PaaS platform must have the capa-
bility to support the construction of objects, the definition of relationships between the
objects and the configuration of advanced data behavior all from within the comfort of
the Web browser via a “point and click” declarative concept.

• Robust Workflow engine/capabilities

The objective of a business process execution through process automation is vital to
establish any business application in the business world. A PaaS offering should be able
to offer a business-logic engine that can support the definition of workflow processes
and the specification of business rules to engender process automation [8]. A workflow
process defines the different stages a business object flows through, during its life cycle.
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• Granular control over security/sharing (permissions model)

The PaaS offering should provide a flexible access control system that allows detailed
control over what users of the SaaS application can see and the data each user can
access. Definition of access from the application level (including tabs, menus, objects,
views, charts, reports and workflow actions) to the individual field level should be
possible. Defining an access control model should be possible through the creation of
groups and roles and the assignment of users to groups or roles. For complex large-
scale implementations, the ability to define which features and data each user can
access should be available so users can be segmented across common organizational
structures to provide fine-grained access to data/application features.

• Flexible “services-enabled” integration model

PaaS facilitates the rapid construction of applications in the cloud by providing
foundational elements, such as data persistence and workflow capabilities that are
essential to the creation of any business application. However, given the complex IT
environments that permeate most enterprises today, the PaaS offering should leverage
Service Oriented Architecture (SOA) principles to enable seamless integration of cloud
application data and functionality residing in the cloud platform with other on-
premise/on-demand systems and applications [8].

3 Challenges of PaaS

In the PaaS environment, the user objects are spread over the host. This could make it
easier for objects to gain access to resources. In order to mitigate such risk, the objects
will need to be protected from malicious providers.

PaaS is in a multi-tenant environment. This implies the environment is shared with
other customers. Accessing a network in a shared environment brings challenges, such
as access control and secure communication. However, access control and secure
communication are not the only concerns in a multi-tenancy environment.

In the cloud environment, software and hardware resources from different vendors
are integrated for efficient use. This integration of computing resources may bring
about security challenges because the security setting of each computing resource may
be different [12]. Similarly, each resource that is shared in a shared platform is a
communication channel [11]. This could lead to a potential communication leakage.

Below are some of the challenges encountered in PaaS in a public cloud and
strategies to mitigate the challenges.

• Lack of interoperability

The pooling of resources could eventually end up causing security vulnerabilities if
access to the resources is not controlled. A security setting for a particular resource
could lead to a breach to another. For example, Jones is authorized to access a file
named “Passive” but mistakenly gained access to a secret file named “PASSIVE”.
“Interoperability can be maintained by providing common interfaces to objects for
resource access” [8]. However, in order to control access to a PaaS platform, resource
interfaces should be designed carefully.
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• Vulnerable hosts

The idea of sharing the same platform in the cloud by multiple users has been
around for a long time [6]. In recent times, this concept is still widely used. A multi-
tenancy environment is made up of objects and hosts. These hosts and objects need
protection.

However, if this protection fails, an attacker could gain access to both the resources
of the hosts and tenant objects as well. This protection can be achieved by evaluating
resource access request from each object on the host. TCB is a solution for hosts’
vulnerability.

• Vulnerable objects

An object in a PaaS environment can either be compromised when a service provider
accesses a user’s object residing in the hosts, a user may attack another users’ object in
the same hosts or an attack by a third party. A service provider needs access to an
object to execute the object. An object cannot be executed only when it is stored in the
cloud.

• Access control

Access to remote entities must be controlled to keep network communication confi-
dential. Some of the common attacks in a cloud-based environment are; phishing
attacks, brute force attacks, and password reset attacks. Authentication, authorization,
and traceability are the major concepts of access control. Solutions such as two-factor
authentication (smart cards and biometric mechanisms) could protect against such
attacks.

3.1 Proposed Mitigating Strategies

Lack of interoperability and vulnerable hosts can be mitigated by the use of trusted
computing base (TCB). On the other hand, the risks posed by vulnerable objects can be
mitigated by protecting the sensitive parts of the objects with encryption.

• TCB is a secure collection of executable code and configuration files. It is assumed
to be secure because it is thoroughly analyzed for vulnerabilities before installing as
a layer over the operating system. It provides standardized application programming
interface (API) for the user objects. The principle of minimizing TCB is a widely
accepted solution for a secure solution [6]. Interoperability is achieved when TCB is
installed on every host and resource assignments are accessed via TCB. Every
request assignment is checked by TCB, thus, preventing any possible attack from
objects to hosts.

• Encrypting the objects to protect the integrity and privacy of a user object while the
object is on the host is the responsibility of the service provider. The consumer
trusts that the objects are protected. However, if a host is breached or the provider is
malicious, the object could be read, rendered inaccessible, modified or deleted.
Symmetric and asymmetric encryption schemes, hashing and signatures could be
used to protect the content in an object. This could prevent the content in an object
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from being accessed. Key storage is very important in a PaaS environment in a
public cloud. Users’ keys should be stored in an encapsulated key storage field
according to their access roles. Encryption should be applied on the keys them-
selves for added security (Tables 1 and 2).

3.2 Broad Network Access and Measured Services Challenges

There are some basic requirements for securing a network communication. The con-
fidentiality of communications over a network channel must be guaranteed and remote
users must be authenticated for a secure network access. Authentication, authorization,
confidentiality, and traceability are the backbone of access control.

• Authentication

This is a process in which credentials are compared with what is stored on file during
an interaction. Authentication is a method of identifying who is requesting or
attempting access.

• Authorization

Authorization is the method of granting access to specified resources. This is another
form of access control. When attempting to gain access to an object in a PaaS envi-
ronment, authorization will definitely allow only the authenticated individual with the
correct authorization to access the object. The object will be compromised if

Table 1. Challenges and solutions to breaching an object’s security.

Challenge Proposed solution

Lack of
interoperability

Use trusted computing base (TCB)

Vulnerable host Use TCB
Vulnerable object Encrypt objects

Use hashing schemes
Use signatures
Implement access controls policies encrypt key storage

Table 2. Network access challenges and proposed solution

Network challenge Proposed solution

Confidentiality • Use transport layer security (TLS)
• Implement access control policies

Authentication • Use TLS
• Implement access control policies

Authorization • Use policy enforcement points (PEPs)
• Implement access control policies

Traceability • Keep records of events
• Users should monitor their applications
• Users should audit their data
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authorization mechanisms are not in place. Objects in a PaaS public cloud are not
stable. They are constantly migrating and the host could also be reconfigured, it may be
possible that a reconfiguration may change or degrade the access policy.

In a PaaS environment, hosts are very intelligent because they have to know each
object’s specific policy. This will enable the host to apply the specific policy to an
individual object.

• Confidentiality

The notion that communication over a network channel needs to be confidential is one
of the most important roles of a network security professional. In a PaaS platform, the
users will need to communicate with the objects. This communication could be
intercepted and sensitive information could be stolen from the host. As a result, it is
vital to implement security in the communication.

• Traceability

This access control method can be realized by keeping records of all occurrences on the
platform. The stakeholder in the cloud would like to know what is actually going on.
Stakeholders are actually billed on usage, so as a result, they will like to monitor and
audit any access to their data. These records are actually kept in logging systems. These
systems should be protected and secured.

3.2.1 Proposed Mitigating Strategies
By using a transport layer security (TLS) we can achieve access control mechanisms in
a PaaS environment. Access control policies can be enclosed in similar objects. This
will enable an easy distribution and customization. “Authorization is applied on the
hosts with the help of policy enforcement points (PEPs) with respect to the encapsu-
lated access control policies” [10]. To trace events that happen in the cloud environ-
ment, a logging protocol is introduced.

• Transport Layer Security (TLS)

Confidential channels can be formed through TLS to prevent eavesdropping and for
secure authentication [11]. While the object is being accessed, it is recommended to
have mutual authentication in place, so as to avoid a man-in-the-middle attack [9].

• Policy Enforcement Points (PEPs)

PEP is software used to read and manage the encapsulated access control policies
embedded in the objects. During the decision-making process, PEPs of the host must
behave according to the undeniable logging protocol [10]. PEPs are normally tied to the
hosts. The PEP will read the object’s access control policies and consequently decides
if the connection will be established.

• Undeniable Logging Protocol

In this protocol, malicious activities are detected and exposed to the parties con-
cerned. This protocol helps in investigating incidents that occur in a PaaS environment
in the public cloud. There is an online bulletin board that helps to ensure that the logs
cached by this protocol have not been tampered with. The bulletin board is a public
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write-only storage. If a related party needs access, they will send an access request.
However, the request is not sent directly to the related party but through the bulletin
board. So the bulletin board logs the activities of both parties.

4 Privacy Awareness Challenges

For a user to be authenticated, the user will need to provide very specific information.
For example, if an employee of a company wants to access the company’s printer,
using his or her personal laptop, the printer will refuse access.

However, if the employee is using a work laptop, access will be granted. When
accessing devices or materials through the Internet, users should be careful not to
provide too much information because their privacy may be compromised [13]. Proxy
certificates can help to reduce the risk of revealing excess attributes [7]. When using
privacy aware authentication with a proxy certificate, the following will need to be met:

• More attributes must not be requested by the host and the object than the attributes
that they need. “If more attributes than required is requested, the only practical
solution is negotiating the service terms” [7].

• With the assistance of a trusted third party, the credentials should be easy to
configure.

5 Service Continuity and Fault-Tolerance Challenges

Service interruption is not new in a networked platform. Attacks such as distributed
denial of service (DDoS) can compromise the systems in a network and makes the
network stop. If there are any network issues in a PaaS environment, the contents of the
objects may be modified or even completely wiped out by a malicious attacker.
“Byzantine quorum approach is adopted to obtain fault-tolerance and service continuity
under these circumstances” [4]. In the Byzantine quorum approach, “any subset of all
hosts that resides the copies of the same object forms a quorum” [3]. We can determine
a copy of the object where the number of hosts is enough. As a result of that, in the
byzantine quorum system, any modification of the object will be detected.

6 Conclusion

PaaS technologies have the potential to accelerate software development while rein-
venting how IT supports the development process. With PaaS, developers are tempted
to take shortcuts and release applications without considering important security fac-
tors. There has to be a balance between the need for speed and sensible planning and
controls. Many software tools are available to coordinate and control the PaaS
development process. PaaS success is an organizational issue. However, the technology
itself can only do so much to bring about the kind of collaboration that will make PaaS
an effective mode of software development. However, PaaS infrastructure will deliver

Platform as a Service (PaaS) in Public Cloud 303



best results when security challenges are understood and mitigation strategies imple-
mented. Moreover, operational plans have to align with security.

In this paper, we have designed some strategies in which a PaaS offering in the
public cloud could be rendered secure. Some security challenges, such as resource
pooling and rapid elasticity, broadband network access and measured services, privacy
awareness issues, service continuity and fault-tolerance challenges have been investi-
gated and proposed strategies to mitigate the above security challenges discussed.
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Abstract. This paper combines architecture isolation with latest Intel
SGX technology to make a controllable virtual machine introspection
architecture on untrusted cloud. The main goal of SGX is to protect
important applications from being attacked by untrusted OS, while the
main goal of VMI is to protect OS from being attacked by untrusted
applications. So it seems like contradictory, but actually they are com-
plementary. By combining SGX and VMI, we can both monitoring the
behavior of untrusted applications and preventing sensitive applications
from being monitored. This is very practical in public cloud, as the cloud
server provider is untrusted, but we still rely on its resource to provide
computing. As far as we know, this is the first proposal to implement
security monitor in an untrusted cloud with the help of trusted hardware.
Preliminary security analysis and performance evaluation show that our
architecture can ensure the confidentiality and integrity of the VM hosted
on untrusted cloud server while providing VMI services with less than
20% overhead.

Keywords: VMI · SGX · Enclave · Untrusted cloud · Security design ·
Privacy

1 Introduction

Virtual Machine Introspection (VMI) [1] has been evolved over the last decade.
While it indeed improved the security of VMs by stealthily monitoring the execu-
tion of VMs of different tenants, it also has the risk of privacy invasion, especially
when the cloud server is untrusted. The condition of cloud service provider (CSP)
being untrusted includes: (1) The CSP itself abuse of privileges. Even though
large CSP companies such as Amazon and Microsoft have good reputation in
information area, they might still collect users’ data and behavior using tech-
niques including VMI in order to better provide service or coordinate with the
investigate demand of the government. Besides, internal staff who is vicious or
act as a spy might intentionally leave backdoors or manipulate the privileges
to steal users’ data or break VM integrity. (2) The cloud server being attacked.
This is especially true when a malicious or compromised VM escapes the con-
straint of VMM and breaks the isolation between VMs. When that happens, the
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attackers can either shutdown the VM on the same physical machine to cause
deny of service attack, or steal sensitive information of other VMs by VMI. As
the VMM is a privilege layer below the VMs and CSP takes control of all the
VMMs, these two situations are hard to prevent by the users.

To change that, we investigate the hardware routine to control VMM’s access
to resources of VMs. The resources a VM owns include disk, memory and network
packet. The network flow can be protected through security protocol such as SSL.
The disk can be encrypted using full disk encryption (FDE) technique. The most
difficult to protect is volatile storage including memory and CPU state due to
several reasons. Firstly, volatile storage is frequently read and wrote which makes
encryption extremely performance costing. Secondly, multiple VMs’ share of the
same physical memory space and frequently memory scheduling make it hard to
define the memory range to protect. While virtualization provides good memory
isolation between different VMs, it doesn’t consider the VMM being malicious.
So the VMM can arbitrarily manipulate the physical memory space to intercept
sensitive data or inject malicious code, including VMI operations.

Based on the analysis, we propose a controllable VMI architecture based
on existing hardware feature and new hardware enhancement technology. Our
architecture can provide VMI as a service based on the users’ requirements,
while in the same time prevent the VMM from monitoring the VM without the
permit of the user.

The organization of the paper is as follows. Relate works with VM and VMM
isolation are discussed in Sect. 2. To make our work more clear, the trusted model
of our architecture is described in Sect. 3, followed by our architecture design in
Sect. 4. The detailed implementation of our architecture is described in Sect. 5.
Sections 6 and 7 analyze the security and performance of our architecture. Lastly,
a short conclusion is drawn in Sect. 8.

2 Related Work

CryptVMI [2] proposes an encrypted VMI framework to prevent cloud manager
from forging VMI requests and intercepting VMI results. Even though it consid-
ers the problem of cloud manager being malicious, it assumes that the VMM is
secure and trusted, which is not always true as we discussed in the introduction
part. In order to control VMM’s access to memory of VMs, we need to re-design
the hardware architecture to support memory isolation between VMs and VMM.
Related researches include HyperWall [3], HyperCoffer [4] and Intel SGX [5].

HyperWall designs a confidentiality and integrity protection (CIP) architec-
ture to protect the VM memory from being tampered by VMM [3]. The architec-
ture uses resource isolation (focusing on the memory of the virtual machines),
as opposed to cryptographic isolation, to implement hypervisor secure virtu-
alization. The architecture includes modification of hardware, hypervisor and
VM, such as new instructions and registers to CPU, new procedure for updating
memory mapping, and new random number generators. By isolating memory
of VM and VMM, it can successfully prevent VMM from tampering with VM
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memory. However, this also adds challenge to VMI, as VMI requires mapping
the VM memory to where VMI applications are deployed. HyperWall scrubs
any memory pages that are freed and prevents them from being shared, which
disables most VMI applications that relied on memory sharing.

Compared with HyperWall, HyperCoffer has less effect on hypervisor as it
adds another separate layer called VM-shim to cooperate with the secure CPU
[4]. The security of VM-shim is ensured by combining each VM-shim with VM
to reduce the impact on TCB. Besides, it uses hardware encryption and integrity
checking to protect the data of VM memory and disk, which can defend both
VMM attack and hardware attack. However, it still needs the cooperation of
VM OS and hypervisor to work. Besides, as the hypervisor is authorized part of
the data access according to the type of VMEXIT, it is still possible to attack
the VM. Moreover, encryption of the VM memory disabled VMI tools, which is
a loss to security.

Both HyperWall and HyperCoffer aim at protecting the whole VM from
being accessed by VMM, however, this would add difficulties to management
of VMs as VMM is the main management layer. Besides, all-VM encryption
and integrity checking add high performance cost and are inflexible. To over-
come these disadvantages, Intel proposed new protection architecture named
Intel Software Guard Extension (SGX) in its sixth generation processor Sky-
lake. SGX is designed to protect the memory of applications, instead of all-VMs,
from being tampered and snooped by VMM without the acknowledgement of the
VM user. As it is application granularity, SGX is more flexible than HyperWall
and HyperCoffer. Besides, only encryption specific application memory brings
lower performance cost. Applications based on SGX include Haven [6], VC3 [7]
and M2R [8], most of which aim at providing a new protection of the existing
sensitive and vulnerable applications.

However, SGX only can protect the ring 3 applications from being accessed
by ring 0 software, including OS kernel and VMM. SGX cannot protect kernel-
level security applications, such as AV and Firewall, while these tools must run
in kernel mode to monitor other programs.

Our core idea is to put VMI-applications into a disjunctive VM (VMI Server)
and prevent VMM from being able to read or write other VMs’ memory. If VMM
is able to map memory addresses of the introspected VM, it might map the VM
memory to its own address space so as to read or write its contents, which must
be prevented in un-trusted cloud. The details will be discussed in Sect. 5.

3 Trusted Model

We assume the cloud service provider and the cloud server to be untrusted. This
indicates following potential threats to cloud users’ VM security and privacy:

1. The delivery of the VMI requests might be intercepted by CSP, and they
might use the intercepted data to replay the VMI requests. The CSP might
also forge VMI requests to get the state of the VM.
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2. The VMM might arbitrarily access the physical memory of the user’s VM
and use VMI to get sensitive information. As VMM has higher privilege than
the VM, it is hard to prevent by traditional cloud architecture.

3. The result of the VMI operations might be intercepted by VMM, as the results
would finally be sent via physical network which is controlled by VMM.

To counter these threats, our proposed architecture use following methods:

1. The VMI operations need the participation of the CSP, but only to locate
the position of the cloud server to which the VM locates, which requires only
the User-ID and VM-ID. The VMI command is encrypted by a user key and
always kept secret to CSP.

2. The memory access of the VM is strictly controlled by a hardware access
control list located in physical memory and protected by CPU. The memory to
store the ACL table is initialized before the VMM launches and only accessible
to the CPU.

3. The VMI results are encrypted using a CPU key and only the user can
decrypt it.

The trust root of our architecture is the new designed CPU, which reserves
a part of physical memory to store ACL and control the access to VM memory,
and provides a remote control mechanism for the user to adjust the policy of
ACL.

4 Architecture

To overcome the limits of HyperWall, we propose a new controllable VMI archi-
tecture based on hardware support. The core idea is to separate the memory of
VMM and VM by similar solutions with HyperWall, and enable VMI access to
VM memory by stripping VMI from VMM to a separate VM and authorize the
VMI VM to access target VM memory when there is a request from cloud user.
The VMI Server can be kept reliable by trust initialization and persist integrity
monitoring. Our architecture is shown in Fig. 1.

The main process of our architecture consists of the following steps.

1. The user sends its VMI request to cloud manager. The request is a 3-tuple
consists of User-ID, VM-ID and VMI command, with the command encrypted
using a public key EKvm and can only decrypted by server CPU with private
key DKvm. The command is a set of security related instructions, such as
process list and network connection list.

2. After receiving the request of user, the cloud manager will look up the corre-
sponding relationship between (User-ID, VM-ID) and physical machine, thus
locating the physical machine where the VM is. Then the cloud manager
sending the request to the physical machine.

3. On receiving VMI request from cloud server, the physical CPU adjusts the
ACL to enable VMI server’s access to the VM’s memory and decrypted the
VMI request.
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Fig. 1. Architecture of controllable VMI (VMI as a service)

4. On receiving plaintext request, the VMI server would look up the ACL list
to see if the vm belongs to the user and executes the VMI command. Then
encrypt the result and return it to the user. As the result is encrypted using
a session key (SKses), the VMM or CSP cannot decrypt it.

5. There would be a counter calculating the fails of VMI requests on user side
as the CSP might just discard the VMI requests or results. So if there are too
many failures, the user can stop the execution of the VM. Another counter
exists in the server side recording the number of VMI requests and is sent to
user with the VMI results. So if there are any forged VMI requests, the user
can discover it through the change of the counter.

5 Implementation

Our architecture mainly consists of three parts, including the memory isolation
of VM and VMM, the VMI control mechanism and the establishment of secret
communication channel. We will discuss them in the following parts. To disallow
memory sharing between VMM and VMs, we proposed an memory isolation
mechanism in Sect. 5.1. To enable and control VMI Server’s access to the VM
memory, we designed our access control list (ACL) which will be discussed in
Sect. 5.2. And to enable secure communication between the VMI Server and the
user, we enhanced the secure communication channel of HyperWall in Sect. 5.3.
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5.1 Isolation of VM and VMM

The context VMI need mainly consists of memory and register state. To prevent
VMM from arbitrarily introspect the VM without the permit of the owner of
the VM, memory and register state should be protected.

Hyperwall encrypts the general purpose registers and generates a hash over
the state so as to ensure its confidentiality and integrity when VM exits (except
for that of hypercall) [3]. While to memory, a VM’s memory pages are locked and
protected by CPU when the VM is initialized. And there is a part of hardware-
only accessible memory to store the CIP table (used for access control) and TEC
table (used for attestation and logging) of the VM memory.

Fig. 2. Memory Isolation of VM and VMM

To disable VMM access to VM memory while in the same time keep the
ability of introspecting a VM, we use the disjunctive VMI model proposed in
[9]. The core idea is to move the VMI applications from VMM to a separate VM
so as to reduce the size of TCB. The security of VM where VMI applications
are deployed can be ensured by varies of methods, including security boot and
integrity checking based on TPM, minimal kernel design to reduce the attack
surface and even the latest Intel SGX to protect VMI applications from being
tampered. By using SGX to execute VMI applications in enclaves, we can isolate
the VMI application from being accessed by the kernel and other applications of
the same VMI server. As shown in Fig. 2, and the others being untrusted. The
CPU is the root of the trust chain and the trust relationship is controlled and
transmitted by the ACL table.

5.2 VMI Control Mechanism

HyperWall control the access of VM memory by CIP table. To enable VMM
access the VM memory, we just need to remove the HD (Hypervisor Deny)



Controllable VMI 313

Protection bit of the corresponding pages. Different from HyperWall, HyperCof-
fer adjust the policy of VM-shim to authorize access to its memory. By using
raw ld and raw st instructions, the VMM can directly load the VM memory.
Both the method of HyperWall and HyperCoffer will break the isolation again
and give the VMM opportunity to subvert the VM and that’s why we use a
disjunctive VMI model as discussed in above section.

We use a tailored access control method of HyperWall to implement the
access control of VMI requests. To enable VMI server access the VM memory,
we add a ID (introspection deny) option to the protection field of the ACL. To
enable users’ attestation to the VMI actions, we add a counter field to the ACL
table, which is used to record the VMI times.

Table 1. Fields in ACL table

Fields Content Length

MA Machine address 48 bit

GPA Guest physical address 48 bit

VMID VM identifier, generated by CPU when VM is created 8 bit

In-use Controls whether the page is usable 1 bit

Protection Controls whether the page is accessible by VMM or VMI server 2 bit

Counts Record the times of this page being accessed by VMI server 21 bit

The detailed component of VMI access control list (ACL) is shown in Table 1.
The VMI Server deploys VMI applications in Enclave which are protected by
SGX from the VMM or other applications and kernel of the VMI Server. After
the hardware receive the VMI requests, it will enable memory share with VMI
Server by removing the ID protection, then deliver the requests to the VMI
Server. When the VMI requests arrive at VMI Server, the VMI applications
parses the requests and maps the memory pages of the introspected VM to its
own memory space. After that, the VMI applications are able to read the VM
memory and extract the security related information. After the VMI operations,
the counter field of the VM pages in ACL will increase. The VMI results and the
counter are encrypted and sent back to user via secret communication channel,
which will be discussed in detail in the following section. The user can compare
the counter to verify that the VMI Server has introspect the VM as he/her
requires, instead of arbitrarily introspecting the VM without the permit of the
user.

5.3 Secret Communication Channel

HyperCoffer provides no secure communication routine between the user and
VM. So we just discuss and improve the method of HyperWall. The keys we
used during secret communication channel building are listed in Table 2.
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Table 2. Keys in secure remote communication

Key Function

SKcpu Encrypt other keys, enclave memory. Sign VMI and attestation
results

(EKvm, DKvm) Public-private key pair used to build secure communication
between user and VM

Cert Certificate of CPU, issued by hardware manufactory, can verify
the signature’s validity of SKcpu

SKses Session key, used to encrypt communication between user and
VM

Secret communication channel is essential in securely transferring information
between remote users and the VMI server. As the VMM can intercept these
communications, it might suffer MITM attack. To counter this threat, user’s
data is send to VM via public-private key pair (EKvm,DKvm) so as to defend
against MITM attack. The key pair is generated during VM initialization and
the public key EKvm is signed by CPU with its key SKcpu, user verifies the sign
using CPU’s certificate to make sure the EKvm is coming from the VM, which
is very similar to SSL protocol.

HyperWall states that the user can establish secret channel using the
EKvm. However, as the VMM can intercept the EKvm during the above hand-
shake process, it can forge VMI requests and decrypt communication which is
encrypted using DKvm. So we cannot directly use DKvm to encrypt the result
data. Instead we add another modification to the process of HyperWall. After
getting EKvm, the user generates a session key and encrypts it with EKvm, then
send it to VMI server. After the VM server get that, they can establish secret
channel using the session key. As the session key changes whenever a new VMI
request is made, the VMM is unable to execute replay attack.

6 Security Analysis

Isolation is ensured by architecture support. We setup different separated mem-
ory regions for VMM and VMs, while keeping a ACL table to enable VMI server
with necessary access to VMs’ memory. This ACL table is controlled by CPU,
thus disabling VMM from tampering or snooping on it.

The confidentiality of VMI applications is ensured by moving them into
enclaves, which is provided by Intel SGX feature. This can disable the possi-
ble vulnerabilities of the VMI server which might affect the VMI applications
as it might be compromised by an attacker. The confidentiality of communica-
tions is ensured using a modified SSL protocol. This can disable the VMM from
replaying the VMI requests or snooping the VMI results.

Integrity is measured when the VM is created and can be attested in the run-
time by user. The details are the same with HyperWall, so we will not discussed
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them again as our main job is to enable VMI in untrusted cloud, instead of
integrity protecting.

Availability is not a goal of our architecture. Anyhow, availability is what
the cloud provides, without it there is no chance for the survival of the CSP.

7 Performance Evaluation

The main additional performance cost by our architecture is introduced by SGX
encryption and ACL of memory. The encryption cost of SGX MEE (memory
encryption engine) is evaluated by Intel, which is between 2.2% to 12%, with
average 5.5% for SPECINT 2006 test [10].

As the ACL of memory happens only during VMI operations, VM creation,
interruption and termination, it will have little impact on the overall CPU per-
formance during VM running. As our ACL mechanism is similar to that of
Hyperwall, the access overhead is similar too. In the worst case, it would intro-
duce 36% additional memory accesses during hypervisor boot, but it will only
introduce less than 15% additional memory accesses during the whole life cycle
of VMs [3].

However, our architecture will cost more memory (DRAM) space to store the
ACL table than Hyperwall. Each ACL entry is 14 bytes large as shown in Table 1,
for a physical server with 32 GB memory and 4 KB page size, there would need
32GB/4KB ∗ 14 byte = 112MB space to store the ACL, compared with 4MB
of Hyperwall [3]. As the DRAM is cheap enough, this storage cost is affordable.

Overall, our architecture will introduce less than 20% additional overhead
to enable VMI operations while in the same time enforce access control from
VMM to VMs. The practical performance cost depends on the type of VMI
applications and VMI frequencies.

8 Conclusion

We designed a controllable VMI architecture on untrusted cloud. Relative works
either totally prevent the VMI operations when the cloud is untrusted or enable
VMI operations when the cloud is trusted. In fact, with new hardware support
such as SGX, we are able to trust the VMI applications while distrust the VMM
layer. Besides, we use our former proposed disjunctive VMI model [9] to provide
VMI as a service.

We integrated SGX into HyperWall, so as to accomplish a two layer security.
The first layer is the isolation provided by architecture support of VM memory
and VMM memory, thus disabling VMM from introspecting VM. The second
layer is the isolation between VMI applications and other components of the
VMI server, including the OS kernel and other applications. The second layer is
used to protect the key security tools from being tampered by malware on the
same VM, which is often the case when there are system vulnerabilities.

We modified HyperWall to better support controllable VMI and audit. We
add two key fields, ID and count, with the former one controls whether a page
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is able to be accessed by a VMI server, the later one records the introspection
behavior so as to provide attestation to user. We enhanced the original secure
communication channel by introducing an additional session key which is ran-
domly changed during each VMI requests, thus disabling forged VMI requests
or replay attacks by VMM.

9 Future Work

As Sect. 7 analyzes, the overhead is mainly caused by two aspects, namely
encryption and decryption of enclave memory, and ACL policy enforcement.
However, implementation and quantitative performance analysis are still needed
to further evaluate our architecture’s performance in practical usage. Because
of the lack of open source simulation tool for this comprehensive architecture,
we need to further investigate similar works and modify related simulators to
analysis our work in quantity.
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Abstract. There exists a need for overall security analysis of a set of apps. We
demonstrate IacCE, a tool implementing our approach that applies concolic exe-
cution on combined apps guided by extended Inter-App taint paths. Furthermore,
we replay the event-and-input generated by concolic execution on the original app
set, tomonitor the actual data-leakage behavior. To our knowledge, we are the first
to apply concolic execution for dynamic analysis of Inter-App communications.

Keywords: Inter-App communication � Android application � Dynamic
analysis � Concolic execution � Static taint analysis

1 Introduction

Android is by far the most ubiquitous mobile operating system, and we are witnessing a
surge in the adoption of Android applications (also called apps). The situation for app
security is severe, due to the weakness of the permission system and the programming
model. The Inter-Component communication model for instance, which is used as an
efficient data-exchange mechanism for loosely-coupled apps, might be misused to leak
private data outside the device without user consent.

There are growing efforts for analyzing Android apps, aimed at discovering such
safety issues as malware behavior and application vulnerabilities. Static app analysis
tools, such as the static taint analysis tool FlowDroid [4], can efficiently analyze all the
code in the application, but they are inherently imprecise as there may be behavior
misses or falsely behavior report. Dynamic analysis tools, such as TaintDroid [29],
avoid those shortcomings, but are relatively slow as they have to run the code, and are
inherently incomplete as they can only tell the behavior that they execute [18–20].

Despite those researches on single app security, there are few tools for Inter-App
vulnerability analysis. Literature [3] performed an investigation on 500 apps from
Google Play [24], F-Droid [25], Bazaar [26], and MalGenome [27]. It found that only
32 percent of acquired permissions are necessary for API calls and averagely each app
has about two unchecked but used permissions. This incurs a vulnerable path from the
exported interface of the app component to the API use, which can be exploited by the
interaction of the app with other apps. Issues related to this kind of vulnerability
already exist, such as collusion attacks and privilege escalation chaining [28]. The need
for overall security analysis of a set of apps exists.
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Thus, in this paper, we propose the first tool named “IacCE” (analyzing Inter-App
Communications using Concolic Execution) that dynamically analyze Inter-App data
leakage by combining static taint analysis and cocolic execution. We first apply static
Inter-App data-flow analysis on the combined app of the app set, then generate inputs
and events to execute sensitive Inter-App paths by extended-taint-path guided concolic
execution, finally dynamically verify the leakage by executing apps in the app set with
those generated inputs and events.

The contribution of this paper is three fold. First, to our knowledge, we are the first
to apply concolic execution for dynamic analysis of Inter-App communications. Our
combination of static taint analysis and concolic execution achieves higher precision
and recall than state-of-the-art tools. Second, we developed IacCE, an open-source tool
for Inter-Component and Inter-App dynamic analysis. Third, we compose a benchmark
based on DroidBench [22] and ICC-Bench [23] for better assessment of Inter-
Component and Inter-App analyzers with 77 apps.

2 Background

Android Basis. Android defines four types of app component, i.e., Activity (defining
user interface), Service (performing background processing), ContentProvider
(managing database), and BroadcastReceiver (receiving Inter-App broadcast mes-
sages). There are discontinuities within a component, which are used to drive apps with
runtime events (system events or user interactions) and life-cycle callbacks (state
transition of an app) from Android framework, besides the traditional input form of
data inputs. Android provides specific methods, for triggering Inter-Component
communications (ICC) and Inter-App communications (IAC). These methods are called
with Intent, which specifies the action, category, mimetype, data, etc. Intent can be
either explicit or implicit by define the receiver component or not. Components
determine which Intent to receive by specifying an Intent Filter. Android permission
system identifies the privileges of an app in the manifest file.

Static Taint Analysis. Static taint analysis starts at a sensitive source (location get by
getLastKnownLocation(), for instance) and then tracks the sensitive data through the
app until it reaches a sensitive sink (e.g. the sendTextMessage() API) [4]. It gives
precise information about which data may be leaked.

Concolic Execution. Concolic (concrete + symbolic) execution (or dynamic symbolic
execution) uses a combination of concrete and symbolic execution to analyze how
input values flow through a program as it executes, and uses this analysis to identify
other inputs that can result in alternative execution behaviors [10]. It traces symbolic
registers at each conditional statement in order to build path conditions for specific
execution traces. After collecting path constraints, a constraint solver is used for
solving them and the result is just the program input we desire.
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3 Motivating Example

To motivate and illustrate our approach, consider the app set “SWE” (SendSMS,
WriteFile, and Echoer) in Fig. 1, which leaks data through Inter-App communication.
The apps are inspired those used by IccTA [1] and DidFail [2], but further contain
several challenging issues for existing static analysis methods as described in [3].

The SendSMS app get device’s id by calling the sensitive API getDeviceId(), and
sends the private data to other apps for returned results using the implicit Intent call
startActivityForResult(). Once some app receives the Intent (as long as the Intent
matches its Intent Filter) and replies with exactly the received Intent by calling
setResult(), the Echoer app for instance, the callback method onActivityResult() of
SendSMS will be called by Android SDK. This method sends replied data outwards in
SMS message by calling the sensitive API sendTextMessage(). Note that Android
framework requires the SendSMS app declare READ_PHONE_STATE and
SEND_SMS permissions to use those two sensitive APIs, while the Intent receiver app
Echoer need none of such declarations. It is similar for the WriteFile app.

Neither SendSMS nor WriteFile can leak private data independently. They rely on
Echoer to pass on those data to avoid merely intra-component data flows.

We further add the challenging stateful operations in SWE. For example, the field
of the Intent that SendSMS sends out contains a key constructed by StringBuilder. This
method appends “1” to the string “secrete”. When SendSMS receives the echoed
Intent, it only sends out the data specified by the key “secrete1” in SMS.

(B)

(A)

(C)

public class Echoer extends Activity {
protected void onCreate(Bundle savedInstanceState) {

...
Button b = (Button) findViewById(R.id.b);
b.setOnClickListener(new OnClickListener(){

public void onClick(View v) {
// check emul
if (!android.os.Build.BOARD.contains("goldfish")) {

Intent i = getIntent();// SRC
this.setResult(0, i);// SNK

}
}

});
}

}

public class SendSMS extends Activity {
protected void onCreate(Bundle savedInstanceState) {

...
Button b = (Button) findViewById(R.id.b);
b.setOnClickListener(new OnClickListener(){

public void onClick(View v) {
Intent i = new Intent(Intent.ACTION_SEND);
i.setType("text/plain");
String uid = (TelephonyManager) 

getSystemService(Context.TELEPHONY_SERVICE).getDeviceId();// SRC
StringBuilder sb = new StringBuilder();
sb.append("secret");
sb.append("1");// SRC
i.putExtra(sb.toString(), uid);
this.startActivityForResult(i, 0);// SNK

}
});

}

protected void onActivityResult(int rq, int rs, Intent i) {
...
String msg = i.getExtras().getString("secret1");// SRC
SmsManager.getDefault().sendTextMessage("10086",, msg,,);// SNK

    ...
}

}

public class WriteFile extends Activity {
protected void onCreate(Bundle savedInstanceState) {

...
Button b = (Button) findViewById(R.id.b);
b.setOnClickListener(new OnClickListener(){

public void onClick(View v) {
Intent i = new Intent(Intent.ACTION_SEND);
i.setType("text/plain");
String curLoc = (LocationManager) 

this.act.getSystemService(Context.LOCATION_SERVICE).getLastKnownLoc
ation(LocationManager.GPS_PROVIDER).toString();

i.putExtra("secret2", curLoc);
this.startActivityForResult(i, 0);// SNK

}
});

}

protected void onActivityResult(int rq, int rs, Intent i) {
…
StringBuilder sb = new StringBuilder();
sb.append("secret");
sb.append("2");
String sinkData = data.getExtras().getString(sb.toString());// SRC
FileOutputStream outputStream;
…
//  check perm
if  (checkCallingPermission(“android.permission.WRITE_EXTE 

RNAL_STORAGE”)==PackageManager.PERMISSION_GRANTED) {
    outputStream.write(sinkData.getBytes());// SNK

}
    ...
}

}

Fig. 1. Code snippets of the app set SWE.
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We also include runtime conditional execution. For instance, WriteFile checks
permission declared by the caller component, and it won’t write files if the caller does
not have the permission to access SD card. Echoer, for another instance, won’t send
sensitive data via SMS when resided in an emulator, thus circumventing detection.

4 Analysis Method

The workflow of IacCE can be depicted as Fig. 2, which proceeds as follows.

• App combination: The apps under analysis are analyzed for IAC/ICC links and are
combined as a single app.

• Static model extraction: We extract interface model, input specifications, control
flow graph, and sensitive Inter-App paths. We further extend taint paths with
implicit-control-flow-dependent event-chains.

• Instrumentation: The combined apk file will be instrumented for Android life-cycle
entry points, event handlers, symbolic registers, register-related assignments along
the extended taint paths, and user-specified external APIs.

• Concolic execution: It executes the instrumented app in emulator, performs sym-
bolic tracing, and generate app inputs.

• Runtime monitoring: A simple dynamic monitor is implemented by running and
observing the original apps with inputs generated by concolic executor.

4.1 App Combination

The first phase of IacCE builds links and combines apps in the set.

(1) ICC link exaction: An ICC link [1] is used to link two components in which the
source component contains an ICC method m that holds explicit/implicit Intent
information to access the target componentC. Our extraction includes identifying ICC
methods and Intent information, identifying target components by parsing the Intent

Concolic executorConcolic executor

Concolic engine

InstrumentorInstrumentor

API Modler

Handler instrumentor

Symbol instrumentor

Instrumented apk

Runner

Solver

Inputs

App

Combined App

Static model extractorStatic model extractor

Interface model,
input specification

XML parser

Taint path extractor

CFG analyzer

Inter-App taint paths

Extended taint paths

App ...

App combinerApp combiner

CombinerLink builder

Links

Runtime monitorRuntime monitor

Fig. 2. Overview of IacCE.
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Filters statically declared inmanifest file or dynamically defined in Java bytecode, and
finally matching ICC methods with target components according to [5].
(2) App combination: In order to perform Inter-App analysis, we combine multiple
Android apps to a single app in a naïve way, by extracting components and UI
layout files of each app and repacking them into one apk file. This combination
eases instrumentation and concolic execution of the apps, because we can consider
the apps as a whole without the need of dynamically coordinating them.

4.2 Static Model Extraction

This phase produces following models.

(1) The interface model: It provides information about all input fields, as well as
information about the Android IPC message (i.e., Intent) handled by Activities. All
Android components contained in the app and Intent information can be decided by
parsing the manifest file. Input fields can be obtained from the layout XML files.
(2) The Inter-App taint paths: Those paths cross app-boundaries before combina-
tion. They are computed by performing taint flow analysis on the connected app
code. Blindly execution of all possible program paths is boring, and instructions
which transmit sensitive information are better places which deserve our focus.

Before path extraction, we need to do some connection. Each ICC method call will
be replaced with an instantiation of the target component with the appropriate Intent.
And a dummyMain method will be generated for each component where all the
life-cycle and callback methods are modeled.

After specifying sensitive source-and-sink APIs, we can then apply static taint flow
analysis to find out all those Inter-App taint paths. For more details please refer to [1].

(3) The extended taint paths:

Firstly, we add supportive method calls to the paths. Taint paths only contain
taint-data transmitting instructions, which may be not able to execute all by
themselves. For the example shown in Fig. 3, the taint path we get is {getDevId,
i1} => {sendSMS, i2}. We need additionally include callers of getDevId() and
sendSMS(), that is, onCreate() and onResume() for getDevId(), and onClick(b2) for
sendSMS().

onCreate()

getDevId()

getDevId():

…
String uid;
i1: uid = telMgr.getDeviceId();
…

onResume() onClick(b2)

sendSMS()

sendSMS():

…
if (a == State.Started) {
i2: smsMgr.sendTextMessage(
"111",, uid,,);
}
…

onClick(b1)

onClick():

…
a = START;
…

Fig. 3. Example of taint path extension. (Color figure online)

IacCE: Extended Taint Path Guided Dynamic Analysis 321



Secondly, we consider supportive event-chain extension, which is inspired by [9].
We examine implicit-control-flow dependent events with regard to the branch condi-
tions of those extracted taint paths, for which we here only consider channels of static
fields. Other channels such as file system and network should be future works. We say
two events are dependent when the field read by one event is previous written by the
other. For each dependency, we added a directed edge. As shown in Fig. 3, the event
handler onClick(b2) contains a branch condition that depends on the global variable
a. The require value START for a is set by the event handler onClick(b1). Thus, the
taint path will additionally include the edge {onClick(b1),} => {onClick(b2),}, where
b1 and b2 are two distinct button instances.

The extended taint path for the example in Fig. 3 is depicted in red bold line.

4.3 Java Bytecode Instrumentation

The app is mostly executed normally, while only some variables have to be traced
symbolically. To achieve this, instrumentation is needed, as illustrated by Fig. 4.

(1) Inserting calls to event handlers: It is an optional heuristic to instrument
component’s default entry point, such as onCreate()/onResume() of Activity, to
allowing for direct calls to event handlers thus simulating the injection of raw
events. Events are distinguished by taint-path id, guaranteeing that only event
handlers related to current taint path will be called. Although it is more general to
inject raw events in the Android framework boundary, tracing the extra injection
path require heavy instrumentation of Android system.

public class MainActivity extends Activity {
...
protected void onCreate(android.os.Bundle)
{

Expression _sym_tmp_1 = null, $r2$sym, $z0$sym;
MainActivity $r0 := @this: MainActivity;
Button1Listener $r1 = new Button1Listener;
...
a3targs$symargs = argpop(0, 0, 2);
$r2$sym = models.strVar$sym;// Modeling user-specified external APIs or fields
String $r2 = strVar;
$r2 = getSolution_string("$X$sym_sample_vars__java_lang_String_strVar");// Injecting solutions
$z0$sym = _contains($r2$sym, null, $r2, "pwd");// Symbolizing registers
boolean $z0 = $r2.contains("pwd");
_sym_tmp_1 = $z0$sym;
if $z0 == 0 goto label1;// Symbolizing path conditions
assume(_sym_tmp_1, 0, 0);
... /*  SNK API  */

label1:
assume(_sym_tmp_1, 0, 1);
goto label2;

label2:
View $r3 = new View($r0.getApplicationContext());
$r1.onClick($r3);// Inserting calls to event handlers
return;

}
}

Fig. 4. A sample code after instrumentation. Method summaries are simplified for reading.
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(2) Symbolizing registers, assignments and path conditions: This prepares for
symbolic tracing, dumping path conditions, and overwriting registers with solutions
at runtime. We need instrument registers, assignments and path conditions with
their symbolic counterparts. However, we do not instrument all these occurrences in
the app, rather than limit to those on the extended taint paths. We symbolically trace
input-tainted variables within components as well as through Intent bundles.
(3) Modeling user-specified external APIs or fields: We specify user inputs such as
UI text field according to the interface model we get in the static model extraction
phase, to enable symbolic tracing of them. Besides, the target app might call
external APIs or fields which may be hard to be symbolized. We model those
user-specified APIs or fields by replacing the actual API methods with stub methods
which return certain concrete values or even symbolic variable.
(4) Injecting solutions: After constraint solver find a solution, we replace each
symbolic register or model w.r.t. the r-value of the original assignment with its
corresponding solution. This is done by inserting method calls in the form of
getSolution_Xxx(String symVarName), where “Xxx” is a certain variable type.

4.4 Concolic Execution

We run and symbolically trace the instrumented combined app in Android emulators.
Our extended-taint-path (ETP, for short) guided concolic execution iteratively does
following procedures as depicted in Algorithm 1.

For each ETP, we first generate symbolic model/input configuration according to
interface model which specifies user inputs. Secondly, the emulator’s environment is
cleaned and the instrumented combined apk is installed. Thirdly, we determine the
default entry component by finding the root’s containing component for each ETP. And
then we start the component via am-start command. Fourthly, the solutions to inputs
and modeled APIs will be injected into symbolic registers in the instrumented app*.
When execution deviates from the intended taint path by branching to the wrong basic
block, we dump conditions over symbolic registers in a path condition*, negate the last
clause of the path condition*1, and then feed the resulted path constraint to a SMT
solver for a new solution of concrete register values leading to execution of the
intended basic block. Iterate above steps until we hit the sink API for each taint path.

Note that our concolic execution is enforced only along the ETP, which avoids the
notorious problem of path explosion and drives execution only along data-transmitting
paths.

1 These steps marked with the superscript “*” will be done by the instrumented app itself, rather than
by the concolic engine.
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Algorithm 1. ETP guided concolic execution
Input: ETP:extended taint paths, IM:interface model APK:instrumented

combined apk,
Output: In:data inputs, Ev:event inputs

1 model← getInputAndModel(IM)
2 i← 0
3 foreach path in EPT.getPaths() do
4 do
5 In[i]← {}, Ev[i]← {}
6 clean()
7 install(APK)
8 entry← getEntry(ETP)
9 startComponent(entry)
10 path← EPT.getNextPath()
11 Ev[i].add(path.getHandlers())
12 In[i].add(getSolution(model))
13 while !isSnkHit()
14 i← i+1
15end
16return In,Ev

4.5 Runtime Monitoring

Although we can just directly observe the behavior of the instrumented combined app,
we should further ensure that discovered Inter-App data leaks do happen for the
original apps. What is more, vendors often do not expect that data-leak issues rendered
by analyst are merely related to a modified or combined version of the original app set.

We inject events and inputs through Android Debug Bridge (adb) [11], step by step
along each extended taint path, without any repacking of the original apps.

# start entry component
adb shell am start -n app1/app1.MainActivity

# tap button1
Tap(248.0,351.0)
UserWait(4000)

# set GPS
adb -s emulator-5554 emu geo fix 121.420413 31.215345

# tap button 2
Tap(279.0,493.0)
UserWait(4000)

# send sms
adb shell am start -a android.intent.action.SENDTO -d 
sms:10086 --es sms_body “secrete” --es exit_on_sent true

# press sender key to submit
adb shell input keyevent 66

Fig. 5. An example of Monkey scripts and am commands.
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Firstly, according to the triggering order of events and inputs along the path, we
generate a script for each path which contains directly injectable events. For instance, it
can be a Monkey script [12] for UI events according to their location on the screen, or
may be a list of the Activity Manager tool (am) [13] commands for system events
according to their concrete types and the solutions to event parameters. Note that as the
resolution and size of emulator’s screen is fully under control, we can statically
determine the location of UI widgets according to their layout files. The mixed scripts
and commands shown in Fig. 5 is an example of a test that we generate.

Then, we replay UI events and system events on the original app set, by means of
separate mechanisms. Raw UI events are injected directly to the emulator using the
monkeyrunner tool [12]. System events are triggered using am. Specifically, we need to
send an explicit Intent by am to launch the entry component of the current taint path.

Text inputs are regarded as the combination of UI events. For example, when
injecting a text-input solution to an editable text widget, we generate such sequence of
events as tapping the editable text widget, typing each character of the solution string
by tap the corresponding soft/hard key, and typing the submitting soft/hard key.

For those modeled environment-dependent APIs or fields which cannot be directly
injected, such as emulator checkers or timing bombs, we set them with the solution we
get from the SMT solver facilitated by Android InstrumentationTestRunner [14].

Finally, by observing the triggered behavior for each taint paths, we can confirm the
existence of data-leakage in our original app set.

5 Implementation Details

5.1 IC3 and AppCombiner

The ICC links are built by IC3 [16] and stored in database for further analysis of
Inter-Component/Inter-App taint paths. ApkCombiner [17] takes all apps in the target
app set as input, and outputs a combined app.

5.2 IccTA (Modified)

We use IccTA [1] to extract the Inter-App taint paths. To seamlessly integrate the static
analysis process with concolic executor, we modify IccTA to store paths in the global
ArrayList structure resided in the main entry of instrumentor. Along with that, we
extract interface model and extend taint paths, thus avoiding preparing Soot [15]
structures in memory for many times.

5.3 Instrumentor

We borrow ConDroid’s [8] instrumentation utility, which in fact is inherited from
Acteve [8]. For methods along the extended taint paths, we implement path-sensitive
event-handler instrumentation, symbolic tracing of various variable types, input
symbolization, and Android SDK and third-party libraries instrumentation.
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5.4 Concolic Executor

We used Acteve [8] as our concolic execution engine. Extended-taint-path guided
execution is already guaranteed by our customized instrumentation, while more works
are involved to determine the entry component of the combined app, and to store
event-and-input sequence for runtime replaying.

When encountering input-related objects which require complex instantiation, such
as strings created by StringBuilder and intent data contained in Bundle, we symboli-
cally trace them by modeling the instantiation operations of the data structure.

When those complex objects are not input-related, to avoid missing true positive,
just add paths from intent with complex key to receiver. We are not worried about the
might resulted false positive, as we can directly observing whether those paths actually
leak data in the runtime monitor.

We integrate the string-constraint solving via z3-str SMT solver, by referring to the
code of ConDroid [6] which introduces a back-tracing procedure for semantically
richer solutions to registers of boolean type.

5.5 Runtime Monitor

For runtime monitor, we write a generator of Monkey scripts and am commands. It
reads path information and solutions from concolic executor. We replay events and
inputs contained in those scripts and commands, and observe the dynamic behavior of
the whole app set.

6 Experimental Evaluation

In the following subsections, we evaluate how IacCE can be used to automatically
drive sensitive data transmission, how IacCE compares with existing tools, and what
capabilities IacCE has to analyze real-world apps.

6.1 Case Study: The SWE App Set

To demonstrate its capabilities in practice, we first evaluate IacCE on the SWE example
described in Sect. 3. IacCE analyzes the set as follows.

• Inter-App taint analysis

Two Inter-App taint paths will be extracted for the combined app. Methods con-
taining instructions along those two paths are SendSMS$1.onClick(View) => Echoer
$1.onClick(View) => SendSMS.onActivityResult(int,int,Intent) and WriteFile$1.
onClick(View) => Echoer$1.onClick(View) => WriteFile.onActivityResult(int,int,
Intent).

• Extending Inter-App taint paths

Supportive life-cycle handlers are added. As there exists none static-field-related
event dependency, no extra extension is needed.
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• Instrumentation for event-handler calls

Take SendSMS for example. The invocation “ocl.onClick(view);” is inserted at the
end of SendSMS.onCreate(Bundle), where ocl is an anonymous instance of
OnClickListener and view is created according to the app context.

• Symbolization, symbolic tracing, and solution injection

The API/field android.os.Build.BOARD is path-condition related. It is modeled and
to be symbolic traced during concolic execution. Every statement along taint paths will
be instrumented to have its symbolic counterpart. A solution will overwrite the variable
storing BOARD, when there is any. The instrumented code is similar to that of Fig. 4.

For each path, concolic executor iteratively performs following steps until hitting
the sink APIs. Just take the first path as example:

• Concolic execution

We perform concrete execution of the combined app along with the symbolic
tracing of the modeled BOARD field. As with an emulator, the branch condition in
Echoer will not be taken. The path constraint “not (Contains $X$sym_an-
droid_os_Build__java_lang_String_BOARD “goldfish”)” is dumped as the sink API is
not hit.

• Solving path consraints

The SMT solver find a solution string, say “abc”, which is injected into the variable
storing the value retrieved from the BOARD field.

• Hitting the sink API

As there is no other symbolic-variable related branch on the Inter-App taint path,
the sink sendTextMessage(“10086”,,msg,) is hit in the second run of concolic exe-
cution. The iteration for the first path will then stop.

Since no symbolic-variable related branch exists for the second path, concolic
execution degrades to simple concrete execution. As no relative permission granted, the
branch checking the permission of Echoer in WriteFile is not taken. Thus, the sink
write(sinkData.getBytes()) will never be hit, and the leakage implied by the second
taint path does not happen.

• Replaying inputs and monitoring data-leakage

All apps in SWE are installed in a fresh emulator. We launch the root component of
the first path, i.e., SendSMS, by running an am command that sends to it an explicit
starting Intent. The UI events, i.e., successive taps on the buttons, are injected via a
Monkey script. The field BOARD is set as the solved string “abc”. A message con-
taining device id is observed to be sent, and we confirm the first path as Inter-App
data-leaking.
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6.2 Comparison with Existing Tools

Subject Apps. We choose two benchmarks, one contains 40 apps from DroidBench
[22], ICC-Bench [23], and the SWE app set; the other with 77 apps is an improved
version of the first one. DroidBench and ICC-Bench are frequently used as ground truth
to evaluate data-leakage analyzers. DroidBench has lately added 3 app sets for eval-
uating IAC analyzers. As these naïve apps are initially composed for static analysis, no
branches appear on any data-flow paths. Therefore, we duplicate those apps (except
SWE) into two groups, and each sensitive-API call in those apps is enclosed by an
additional branch condition. The resulted apps along with SWE comprise our second
benchmark. All added branch conditions in one group are satisfiable, while those in the
other group cannot be satisfied at runtime.

As IAC and ICC are essentially the same, we also evaluate the efficacy of existing
analyzers on ICC leaks.

We compare IacCE with three existing tools: FlowDroid, IccTA, and ConDroid.
We manually match the Intra-Component results of FlowDroid to report ICC leaks, just
like [1] did. As with ConDroid, we add support for other components besides Activity
and instrumentation of explicit intent call to enable ICC analysis, which are all
described in the paper [7] while not implemented in the provided source code. We
guide ConDroid with taint flows analyzed by IccTA instead of targeted call graph.
COVERT is not considered as it does not perform data-leakage analysis.

For each tool on the first benchmark, each precision is 27.4%, 93.9%, 100%, and
100%, and each recall is 60.6%, 93.9%, 48.5%, and 100%.2 The result on the second
benchmark is detailedly given in Table 1.

(a) FlowDroid misses lots of ICC flows and all IAC leakages, as it cannot produce
precise data-flow traces, even in the case where the components are within a single
app. (b) ConDroid, as a dynamic methodology, reports no false positive. However, it
misses a large number of leakages as it does not solve the problem of symbolically
tracing implicit ICC Intents, not to mention those explicit and implicit IAC Intents. (c)
IccTA performs well on the first benchmark of simple apps. The precision sharply
degrades on the second benchmark, due to the inefficacy of static analysis for deter-
mining whether those added branch conditions on taint paths will be satisfied at run-
time. (d) IacCE achieves higher precision and recall. It reports no false positive as it
dynamically observes the execution of apps. And it does not miss any leakages as it
performs conservative static taint path extraction for complicated state-full operations.
However, the 100% result does not mean IacCE always detect exactly all leaks for
any app set, as will be described in Sect. 7.

2 Due to space limitation as well as the relative incapability of evaluating dynamic tools experienced
by this benchmark, the result is not included in the paper.
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Table 1. Experimental results on the second benchmark. For each app (or app set) and tool,
indication of explicit or implicit ICC/IAC, true positive (TP), false positive (FP), and false
negative (FN) are listed. Precision (TP/(TP + FP)) and recall (TP/(TP + FN)) are mesmerized.

App name Explicit? FlowDroid IccTA ConDroid IacCE

DroidBench (Extended)
startActivity1 Y TP, FP(3) TP, FP TP TP
startActivity2 Y TP, FP(9) TP, FP TP TP
startActivity3 Y TP, FP(65) TP, FP TP TP
startActivity4 N FP(4) – – –

startActivity5 N FP(4) – – –

startActivity6 Y FP(4) – – –

startActivity7 Y FP(4) FP(2) – –

startActivityForResult1 Y TP, FP TP, FP TP TP
startActivityForResult2 Y TP, FP TP, FP TP TP
startActivityForResult3 Y TP, FP(3) TP, FP TP TP
startActivityForResult4 Y TP(2), FP(4) TP(2), FP(2) TP(2) TP(2)
startService1 Y TP, FP(3) TP, FP TP TP
startService2 Y TP, FP(3) TP, FP TP TP
bindService1 Y TP, FP(3) TP, FP TP TP
bindService2 Y FN TP, FP TP TP
bindService3 Y FN TP, FP TP TP
bindService4 Y TP, FP(3), FN TP(2), FP(2) TP(2) TP(2)
sendBroadcast1 N TP, FP(3) TP, FP FN TP
insert1 N FN TP, FP FN TP
delete1 N FN TP, FP FN TP
update1 N FN TP, FP FN TP
query1 N FN TP, FP FN TP
startActivity1_src,snk N FN TP, FP FN TP
startService1_src,snk N FN TP, FP FN TP
sendBroadcast1_src,snk N FN TP, FP FN TP
ICC-Bench (extended)
Explicit1 Y TP, FP TP, FP TP TP
Implicit1 N TP, FP TP, FP FN TP
Implicit2 N TP, FP TP, FP FN TP
Implicit3 N TP, FP TP, FP FN TP
Implicit4 N TP, FP TP, FP FN TP
Implicit5 N TP, FP(3) TP, FP FN TP
Implicit6 N TP, FP TP, FP FN TP
DynRegister1 N FN TP, FP FN TP
DynRegister2 N FN FN FN TP
SWE
SendSMS,Echoer,WriteFile N FN FP, FN FN TP

(continued)
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6.3 Application to Real-World Apps

Although IacCE is only a prototype by far, we successfully dynamically confirm (or
eliminate false positives) several suspicious real-world leakages reported by previous
static analyzers [1, 3]. Those apps are crawled from Google Play [24] and F-Droid [25].

We here describe an example of our findings. Ermete SMS is reported by COVERT
to be vulnerable to privilege escalation if it is installed along with Binaural beats
therapy [3]. In that case, Binaural beats therapy, designed for relaxation, creativity and
many other desirable mental states and is without WRITE_SMS permission, sends an
Intent with SEND action and text/plain payload data to Ermete SMS, a free web-based
text messaging application that has WRITE_SMS permission.

The authors of COVERT, however, had to manually review them to confirm the
vulnerability. Rather, IacCE dynamically checks the vulnerability and find it is a false
positive as Ermete SMS acctually does not receive the Intent sent by the former app
due to Intent field mismatching.

We further compose a malicious app which leaks location through an Intent
deliberately constructed to be receivable by Ermete SMS. In this case, IacCE verified
that the Inter-App data leakage does take place.

7 Discussion and Limitations

Here are some sources of unsoundness and imprecision of IacCE.

(1) Complex object symbolization. Objects which require complex initialization are
difficult to symbolize and trace for symbolic execution. Although concolic execu-
tion already elevates this by concretely executing none relevant part of code and
only symbolizing a rather small part, there are situations where symbolization of
complex object is necessary. Presently, we tackle this problem by modeling some of
the most frequently used Android complex objects.
(2) Native code, reflection and dynamic loading. Both commercial apps and
malicious apps are starting to use native codes, reflection, dynamic loading, and
other tricks to hide their real business logic to avoid being analyzed. This is a
common issue for all existing static and dynamic analysis tools. Although
researchers are trying to solve this, none satisfying solutions are available.
(3) Remote procedure calls (RPC). Besides Intent-based ICC/IAC, apps also can
communicate through remote procedure calls. The latter induces method-invocation

Table 1. (continued)

App name Explicit? FlowDroid IccTA ConDroid IacCE

Summary
TP 20 31 16 32
FP 126 34 0 0
FN 13 2 17 0
Precision 13.7% 47.7% 100% 100%
Recall 60.6% 93.9% 48.5% 100%
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interaction using stubs which are automatically generated by specifying component
interface described in Android’s Interface Definition Language (AIDL). RPC is less
used than Intent. We plan to support RPC in the future.

8 Related Work

FlowDroid [4] is a state-of-the-art open-source tool for intra-component static taint
analysis. It is context-,flow-, object-, andfield-sensitive andAndroid app lifecycle-aware.
However, it is confined to single components.

Didfail [2] and IccTA [1] are state-of-the-art tools for statically detecting
Android ICC leaks, all based on FlowDroid. IccTA achieves better precision and recall
than Didfail. It extracts the ICC links and then modifies the Jimple code of apps to
directly connect the components to enable data-flow analysis between components. It
then uses FlowDroid to perform high precise intra-component taint analysis and builds
a complete control-flow graph of the whole Android application. IccTA allows prop-
agating the context (e.g., the value of Intents) between Android components.

TaintDroid [29] is probably the most prominent tool for dynamic analysis of
Android apps. It dynamically traces data leaks occurred during the execution of apps by
applying dynamic taint analysis. Such tools are not suited for fully automated analysis
since they require user interaction to drive execution of the apps.

AppIntent [6], ConDroid [7] and IntelliDroid [9], however, successfully tackles the
problem of automate input generation. They use concolic execution for dynamic
analysis of apps. AppIntent identifies paths which incur information leaks and performs
concolic execution only on those paths. The notion of event space proposed by
AppIntent is incomplete, as it only take method-call like control flow into account.
ConDroid is a directed concolic analyzer for dynamic code loading in Android apps.
Similar to AppIntent, it performs directed concolic execution. IntelliDroid [7] further
extract event dependency according to path conditions to generate event chains.

Only quite recently, tools have emerged for IAC analysis. COVERT [3], one of
such tools, detects Inter-App vulnerabilities with static model checking. It mainly
performs call graph analysis for privilege escalation vulnerability rather than flow
analysis for information leakage. Also, it inherits the drawbacks of static analysis.

9 Conclusion

We proposed a tool for dynamic analysis of Inter-App data leakage. It performs con-
colic execution guided by extended taint paths extracted by static taint analysis, and
then dynamically observe and confirm whether the leakage happens at runtime. Future
works include conducting tests on more real-world apps, and analyzing other types of
vulnerabilities by applying model checking.
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Abstract. A solution to spam emails remains elusive despite over a decade
long research efforts on spam filtering. Among different spam detection mech-
anisms that have been proposed, Naïve Bayesian Content Filtering has been
very popular and has attained a reasonable level of success. SpamBayes is one
such content filtering spam detection tool based on Naïve Bayesian classification
using textual features. It is easy to deceive the learning techniques focusing only
on textual attributes. Hence, in this paper we propose a multi-layer model that
imposes, on top of SpamBayes, a second layer of non-textual filtering that
exploits alternative machine learning techniques. This multi-layer model
improves the accuracy of classification and eliminates the grey email into spam
and ham emails. The experimental results of this model are quite encouraging.

Keywords: SpamBayes � Client based email filtering � Email spam � Content
filtering � Supervised learning

1 Introduction

Spam exists in various forms such as spam email, web spam [1, 2], spam SMS [3, 4],
and social spam [5]. Oxford dictionary defines spam as irrelevant messages sent on the
internet to a large number of recipients.

The spam emails in any user’s inbox has taken many forms such as phishing, image
spam, DOS attacks, and malware distribution. It has impacted users and organizations
from simple annoyance, loss of productivity, loss of personal information, system
crashes to financial losses. Spam has varied from 36–95% [6–10] in more than a
decade, the highest being 96% in 2010 [11] when this problem was at its peak and has
reduced to about 53% in April–June 2015 [12, 13].

Though email is a form of communication for most these days, majority of the
email traffic comes from business emails which account for over 116 billion emails sent
and received per day [14] in 2015. This trend is going to continue and emails remain
predominant form of communication in the business world [14]. Therefore, at least 58
billion emails sent and received daily are spam. For more than a decade efforts have
been put into controlling the issue of spam. Various solutions such as blacklists, white
lists, grey lists, content filtering, AIS (Artificial Immune Systems) filtering, reputation
based filtering, content filtering (at mail server and email client) techniques have been
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suggested [15–23], however the statistics above indicate that the issue is still ongoing
and the area is open to further research.

Among the above mentioned techniques, machine learning techniques [24–26]
have gained a reasonable amount of success and popularity in content filtering [27]
both at mail server and client side. When applying filtering solutions at mail server, it is
important to consider the following two points. Firstly, the filtering is being applied to
all the emails being received on behalf of email users of the organization. Secondly, the
same email may be spam to one user and not spam to some other user. Therefore, if the
level of filtering at server side is very stringent, it would lead to a high number of false
positives (FP: legitimate emails tagged/classified as spam by the filter). FP causes loss
of important information. On the other hand if filtering at server side is too relaxed it
would lead to high number of false negatives (FN: spam email that is classified/tagged
as legitimate email) which is a source of annoyance for the user. Hence, another level
of filtering at client’s end should be applied. In summary, server side mail filtering is
not enough to classify incoming emails correctly, and client side filtering is essential.
Many tools, both open source and commercial exist as an add-on to give another level
of filtering at the client side. The major focus of these tools is to filter spam email that
escapes the mail server filter. For this research, we are focusing on client level filtering
that is at an optimum level of accuracy to reduce FP and FN. Earlier experiments have
found that training this tool with user preferred training data reduces the FN in user
inbox by 86% [28].

Since Naïve Bayesian Content Filtering has been very popular and achieved some
level of success [22, 29–32], we explored Naïve Bayesian implementation. Many open
source tools based on Naïve Bayesian classification techniques exist; one of the
existing tools called SpamBayes was chosen to analyze the performance at client level
filtering. SpamBayes classifies emails using text features into three categories: spam,
ham and unsures. Unsure is an email that lies between the threshold values called the
grey area and is not clearly classified as spam or ham. It contains features that belong to
both spam and ham. From now on, we would refer to unsures as grey in this paper. An
example spam email that SpamBayes would successfully classify is given in Fig. 1. It
would be able to identify the words such as ‘information’, ‘$2 million’, ‘1–800’ as
spam words and classify the email a spam.

Spammers keep innovating new ways to deceive the filters. The content of the spam
has evolved to contain more than just words such as links, numeric digits, special
characters etc. Most of these features are non-textual as shown in the sample spam
(Fig. 2) and would not be identified by SpamBayes or any textual based filtering

Fig. 1. Sample spam email with text features
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mechanism. Therefore, as suggested in [33], to improve the performance of SpamBayes
we decided to introduce non-textual features.

The introduction of non-textual features is also testified by the Spam Reports
published by Kaspersky labs for Quarter 2, 2015 [12] which highlighted the variation
in features identified in spam emails that spammers are using to deceive the filtering
solutions. These features listed are modified IP addresses, presence of upper case and
lower case letters, special characters, use of number symbols, mis-spelt words, and
number of links used to go to spam resources. In order to identify potential non-textual
features, we analyzed the spam datasets and identified list of potential non-textual
features. Subsequently to select the optimal non-textual features, we ran the program
and observed the performance on the test set using F1 score and selected the features
that gave high performance.

We explored the possibility to change the token type, size and thresholds in
SpamBayes. To analyze the performance of the tool, we conducted further experiments
to monitor its performance with various thresholds, token types (unigrams, bigrams and
trigrams) and token sizes (15 to 25000 for different token types) which is elaborated in
Sect. 2.2. We found that the overall performance would not substantially improve by
increasing token type and size. Thresholds can be modified by the user as per need in
SpamBayes.

In this paper we propose a multi-layer model that firstly builds an attribute set using
many non-text features (Table 3) along with text features as a frequency matrix as
shown in Fig. 3. Various non-text features such as number of link symbols, number of
mis-spelt words, over use of numeric characters provide significant information about
emails.

The aim of the model is to increase user productivity by not losing important emails
as FP in greys and spam. This model eliminates unsures by classifying them as spam or
ham. It also removes any FP by verifying the emails identified as spam in the junk
folder. This model is based on CART, SVM, k nearest neighbor and Logistic regression
machine learning techniques that have been used for spam categorization and classi-
fication [34, 35]. It has been tested with 10 datasets and results show that it has
achieved 99+ % correct classification, with FP is as low as 0% to highest being 0.8%,
at the max averaging at 0.3–0.4%.

Fig. 2. Sample spam with non-text features
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The paper is structured as follows. Section 2 introduces Spam Bayes in Subsect. 2.1
followed by performance testing of SpamBayes using various token types, max-
discriminators (token sizes) and thresholds in Subsect. 2.2. Results of SpamBayes
experiments are reported in Sect. 2.3 along with the discussion justifying the need for a
model to improve the performance of SpamBayes. Section 3 focuses on the multi-layer
model and its integration with SpamBayes framework to eliminate greys from Spam-
Bayes with the acceptable level of FP and FN. The experimental results to validate the
model are reported in Sect. 4 followed by conclusion and future work in Sect. 5. In this
paper, we would refer to spam email as spam and a legitimate email as ham.

2 Spambayes Performance Testing

2.1 SpamBayes

SpamBayes1 is an open source content filtering tool that classifies emails on the basis of
Naïve Bayesian techniques and can be installed as an add-on to the users email client
such as Microsoft outlook. It builds the learning model from the training data and
classifies the new incoming emails into three categories-spam, ham and grey (unsure).
To classify an email, SpamBayes selects 150 significant unigram (single word) tokens
called max_discriminators from the header and body of an email and calculates the
total spam score of the email. It uses the default threshold of 0.15 and 0.9 to classify

Fig. 3. Flowchart showing 2 layer filtering process

1 http://spambayes.sourceforge.net.
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emails. In SpamBayes manager a user can change the settings of thresholds such as
ham and spam cut offs to suit their individual needs.

Readers are referred to [28] that elaborates background, training model and learning
method of SpamBayes. Training data plays an important role in training the classifier.
Our experiments on training the filter with user specific data [28] indicated that such
training improves the performance of the tool. We noted similar trend during the
experiments conducted while conducting this research as elaborated in Sect. 2.3.

2.2 Performance Testing Experiments

With an aim to find the optimal level of performance for SpamBayes, we conducted
experiments using various datasets. As mentioned in Sect. 2.1, SpamBayes uses uni-
grams with 150 significant tokens based on the probability of occurrence of a particular
token in the training data. To find the optimum performance parameters for SpamBayes
we decided to conduct experiments using bigrams and trigrams with varying thresholds
(Table 1) and tokens sizes (Table 2). Since getting access to live data is difficult, we
decided to use publically available spam email datasets. The datasets chosen were
Lingspam [36], PU1 [37], ENRON (divided into 6 preprocessed datasets since ENRON
is very large dataset) [38], and CSDMC2010 SPAM corpus2 available at csmining
website. We also used dataset published at the Text REtrieval conference 2007
(TREC20073), by University of Waterloo, Canada. In all, we used 10 datasets to
conduct the experiments.

Naïve Bayesian classification considers tokens as independent to each other;
however correlations are possible between various tokens in an email. To identify these
correlations we considered creating a correlation matrix. Since the size of matrix would

Table 1. Various thresholds

Ham cut-off 0.5 0.15 0.2 0.3 0.8
Spam cut-off 0.5 0.9 .9 0.8 0.6

Table 2. Various token sizes (max discriminators) used for 3 token types

Unigram Bigrams Trigrams

15 150 150
50 500 500
75 5000 5000
150 10000 10000
200 20000 20000

25000 25000

2 http://www.csmining.org/index.php/spam-email-datasets-.html.
3 http://plg.uwaterloo.ca/*gvcormac/treccorpus07/.
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become very large, consume large amount of memory, and make the classifier per-
formance very slow, we decided to consider the correlations between neighboring
tokens by using bigrams and trigrams.

Bigrams are created only with neighbouring tokens. For example, if a, b and c are
the three tokens then bigrams are ab, bc, a, b, and c. The frequencies of bigrams are
calculated as the number of times they appeared in spam and ham emails. Trigrams are
created in a similar manner. Subsequently, all tokens (normal, bigrams or trigrams) are
sorted by their importance and only first max_discriminators are taken for calculating
the score of an email.

We divided each dataset randomly in a 70–30 ratio; 70% used for training and 30%
used for testing. For each parameter set, we ran 20 iterations randomly selecting emails
for training and testing. For example, for unigrams, token size 15 and thresholds as
0.5–0.5 for spam and ham cut off, 20 iterations for each dataset was conducted with
emails selected randomly allocated into the pool of training and testing set for each
iteration. Results were recorded and averaged for FP, FN and Grey rates along with the
time taken to process for every parameter set. There were totals 85 parameter sets −25
for unigrams, 30 each for bigrams and trigrams.

2.3 Results and Discussion – Spam Bayes

Initial results indicated inconsistent behavior among various datasets. The value of FP,
FN and grey varied for all 5 datasets. Different data sets have different optimum values
for cutoffs and max discriminators. This may mean that each data set is a bit different
since data sets belong to different times, probably have different styles of both spam
and ham emails belonging to different authors and spam designs.

In this light, we can conclude that training data set has great impact on choice of
parameters of a classification [28]. So we decided to run experiments with mix of data
from all of the datasets and record the results. Mixed dataset namely, data from all the
datasets that are messages belonging to different persons, involving different authors,
styles, written in different times, showing different notions of what is spam, etc., thus
preventing the classifier to “find the rule” for classification.

From the results for unigrams for mixed dataset shown in Fig. 4, it is evident that
amount of greys are high, implying unacceptable loss of important emails.

The performance of the tool was monitored based on reduction in FP and FN verses the
time it takes to achieve these values of FP and FN. Though we found that using bigrams
with higher token sizes improved the performance of the tool with thresholds of .4 and .6, it
was taking longer to process. Increasing the number of tokens (max_discriminators) didn’t
contribute much to the performance of the classifier as shown in Fig. 5.

Hence, we conclude that though the values of unsures was high for the default
thresholds of .15 and .9 contributing to more FP and FN for default 150 token size, the
scores were comparable for unigrams, bigrams and trigrams as shown in Fig. 4.
Therefore, we decided to focus on improving the performance of SpamBayes for
unigrams with token size of 150.

It is known that merely increasing the number of features does not necessarily (and
usually does not) provide better models in machine learning. This is verified by the
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results obtained from our experiments. The trick is to find only a few most important
features. Hence, there is a need to find the optimum text features and to consider the
non-text features to be added to SpamBayes as stated in [33].

3 Multi-layer Model - A Hybrid Classifier

3.1 Definitions

3.1.1 Text Features
Text Features help user make sense of what they are reading. It generally comprises of
the actual text in the document that contributes towards user understanding the content
and context of the document. They are the building block of the document that
enhances the comprehension.

3.1.2 Non-text Features
Non-text features contribute to the information about the document such as the size and
structure of the document. It also includes the features such as illustrations, labels,
subtitles, table of contents, glossary, maps, index, comparisons etc. as shown in Fig. 6.
In case of emails non-text information would include date and time of an email, subject
field, hyperlinks, numeric digits, word count, use of special characters, etc. (Fig. 6).

3.1.3 Machine Learning Techniques

CART. Classification And Regression Trees (CART) algorithm is a supervised learn-
ing techniques for prediction, and classification. It constructs decision trees based upon
attributes that belong to predefined classes from a collection of training data.
For CART to construct these regression trees, we must define the list of attributes and
the number of classes as an outcome. It then uses the training data with assigned classes
to construct the rules via the decision trees. These decision trees are then used to
classify new data into the said classes defined.
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For our case the attributes defined are text as well as non-text attributes are defined in
Sect. 3.1.2 and the classes are spam and ham. The training data is the data used to train
SpamBayes and for experiments purpose the datasets listed in Sect. 2.2.

SVM. Support vector machines [34] (SVMs) are a set of supervised learning methods
used for classification, regression and detection. Unlike normal classification methods,
SVM uses a subset of training points called support vectors and finds a boundary that
has maximum margin by solving an optimization problem. In SVM, we tried to find a
hyperplane in an n-dimensional space defined by the attributes of the emails in the
training data. One side of this hyper plane is spam emails and other side is ham emails.
Since support vector machine are effective not only in high dimensional spaces, but
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Fig. 5. Results for three token types for 150 max_discriminators for mixed dataset
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also effective in cases where number of dimensions is greater than the number of
samples.

knn. k-nearest neighbors is a supervised learning method that, as its name suggest, uses
the labels of k-nearest training data points to figure out the label of the test data point
under consideration. Once again we imagine all the vectors as points in a space and the
distance being Euclidean distance.

KNN can be used for both classification and regression. In case of classification, we
take the majority vote of k-nearest neighbors to find the label of a test data point. For
regression, we take the average of the values for the k-nearest of a point to find the
response for a new test point. In order make the regression more accurate, the response
of the nearer neighbors is given more weight compared to the farther points. Usually,
the weight given to points decrease inversely with their distance from the test point.

Logistic Regression. Logistic regression is a common classification technique used
in situations where there is not much need to be very deterministic about the predic-
tions made.

It works by maximizing likelihood, i.e. maximizing P[y|X] where X is the feature
matrix each row of which is a feature vector and y is the vector of labels, one element
for each row in X. We train the model such that it learns the probability distribution of
the labels over the set of attributes.

Logistic regression is called regression even though we use it for classification
because we try to approximate a real continuous function in this case. This function is
the probability of getting a label; let’s say the label ‘spam’, given a feature vector of an
email. Since the probability function is continuous and real as opposed to discrete, it’s
called logistic regression.

Training a model for logistic regression involves defining an error measure. An
error is a value whose magnitude tells us how far we are from the learned model that
would predict correctly on the training data.

Once we have defined the error measure, the problem of learning the model is
translated into an optimization problem wherein we have to reduce the error measure
while changing the variables that it depends upon.

An example of error measure is that of likelihood, i.e. how likely are we to generate
the training responses from the training features.

3.2 Multi-layer-Model

The proposed multi-layer model, a hybrid classifier is based on supervised alternative
machine learning techniques applied to the features selected using text and non-text
components of the email. This classifier carries out supervised learning, extracts text as
well as non-text features from training data and applies that learning to detect and
classify new email documents.

The emails that arrive at the email client are first filtered by the mail server. The
filtering mechanism at the mail server marks an incoming email as ham, sends it to the
Inbox or as spam, and sends to the Junk Mail. Some other work has gone into this area
of adaptive, multi-stage learning systems to filter email spam using a variety of
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machine learning techniques [18, 39] but none of them provide 2 layer filtering at the
client side. SpamBayes provides a layer (Layer 1) of filtering that reclassifies the emails
in Inbox and Junk mail as spam, ham and grey, landing ham in Inbox, greys in Junk
Suspect and spam in Spam Folder. The proposed multi-layer model applies yet another
layer (Layer 2) of filtering as shown in Fig. 3, to the greys as well as spam classified by
SpamBayes to increase the precision and accuracy of classification since both would
contain FP and FN and the aim is to reduce FP. It is very important that this model
achieves a high level of performance (correct classification of spam and ham or least
FP). To ensure this we analyzed the data sets to carefully identify the features that
provide correct classification. The following sub-sections explain the selection of text
and non-text features and how they were combined to build the multi-layer model.

Text Features
To extract text features from the training data, bag-of-words approach has been applied
to transforms data into numerical features that can be used for machine learning
techniques. Term frequency-inverse document frequency (tf-idf) has been applied to
this bag of words. To do so tf-idf reflects the importance of each word related to a
document in the training documents. The value of tf-idf increases proportionally to
number of times a word appears in the document, but is offset by the frequency of the
word in the corpus, which helps to adjust for the fact that some words appear more
frequently in general in the training documents.

This gives us sparse Document-Term Matrix with a huge number of columns. To
apply machine learning algorithm to such a matrix, we have to filter these columns. We
tried different methods such as sparse LSA, mutual information and chi-square test for
filtering and found that chi-square test works well. Using this method we filter 1000–
2000 columns of the document-term matrix which is then used as feature for
classification.

Non-text Features
To extract non-text features, analysis of the selected datasets was conducted to identify
the possible list of attributes. To select the correct features cross validation of manual
analysis was done with classifier. The right feature is the feature that helps the classifier
to improve its performance i.e. if we run the classifier without feature and the F1-score
is F_without and then run it with feature and the score is F_with, then the feature is the
“right” feature if F_with > F_without with statistical significance. This corresponds to
suggestions made in [33]. Features set containing non-text features was developed as
given in Table 3.

For combining features, we used a statistical non-parametric learning technique
called Gradient Boosting Regression Trees classifier that gives the highest score. It’s
one of the strongest methods in machine learning for classification. After extracting the
features from training data and combining them using Gradient boosting, we tested the
performance using F-1 score.

Once the features extraction is completed, the model then uses those features as
attributes for classification. The model contains methods such as CART, Support vector
machine (SVM), k-Nearest Neighbor and Logistic Regression. These methods utilize
the decision boundaries that they identify from the training data and apply for classi-
fication. The detailed description of how these methods are applied has been provided
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in Sect. 3.1. Each of these methods individually classifies the email spam and greys
classified by Spam Bayes into clear spam and ham. The multi-layer model further uses
rules on these classifications to predict an email as spam or ham. The rules are defined
by the following voting system to classify an email document:

[all four methods agree]: outcome is the agreed classification decision
[Three methods agree]: outcome is the agreed classification decision
[Two methods agree]: outcome is Ham. This outcome has been chosen with an aim
to reduce FP as some degree of FN is acceptable whereas FP is not acceptable.

3.3 SpamBayes Framework with Multi-layer Model

Since SpamBayes results in classification of emails into three categories, we apply the
multi-layer model to the emails tagged as greys and spam. The rationale behind doing
this has been explained in Sect. 2. The integration of the multi-layer model – a hybrid
classifier to SpamBayes aims to eliminate greys category from the outcome classifi-
cation Fig. 7.

4 Experiments and Results - Multi Layer Model

The experiments were conducted to test the multi-layer model at two levels. At the first
level, we conducted experiments to test the performance of the multi-later model using
the datasets and at the second level after integrating the multi-layer model with
SpamBayes in order to classify the greys and reclassify the ‘spams’ moved to the junk
folder by the SpamBayes. The model was tested with same 10 datasets as mentioned in
Sect. 2.2 to measure the performance in terms of FP and FN. Once a satisfactory level
of performance was achieved with the multi-layer model on its own, the integrated
SpamBayes Framework (Fig. 7) was tested with the same set of 10 datasets.

Table 3. List of non-text attributes

0: email header and body lengths,
1: number of abnormal symbols,
2: number of numeric characters,
3: number of punctuation symbols,
4: number of links symbols,
5: ‘number of keywords’,
6: number of keyword ‘unsubscribe’
7: ‘send time in 8:00:00–18:59:59,
8: length of subject field,
9: mis-spelt word count
10: similar to abnormal words
11: maximum run length of capitals
12: average run length of capitals
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The performance of new SpamBayes framework was measured with respect to % of
ham, greys and FP in SpamBayes.

The results showed that the multi-layer model improves the performance of
SpamBayes by reducing the overall % of FP to less than 0.2. This means that model is
performing at 99.8% which is very encouraging improvement (Table 4).

We also calculated the % improvement for each of the datasets for overall FP which
includes ham greys in SpamBayes that contributes towards FP. Figure 8 below shows
the percentage improvement multi-layer model bring to SpamBayes for each dataset.

Table 4. Comparison of SpamBayes and multi-layer model showing % of FP, FN and greys

Dataset name Percentage of SpamBayes % Multi-layer model %

CSDMC2010 FP 0 0
FN 0 1.2
Ham greys 1.01 0

ENRON1 FP 1.3 0.9
FN 0 2.3
Ham greys 5.1 0

ENRON2 FP 0 0.2
FN 0.1 2
Ham greys 0.8 0

ENRON3 FP 0.1 0.06
FN 0.1 4.6
Ham greys 1.2 0

ENRON4 FP 0.1 0.2
FN 0.3 0.9
Ham greys 0.2 0

ENRON5 FP 0.1 0.4
FN 0.2 0.3
Ham greys 0.8 0

ENRON6 FP 0.2 0.6
FN 0.3 0.7
Ham greys 1.3 0

Lingspam FP 0 0.1
FN 0 1.4
Ham greys 1.7 0

PU1 FP 0.9 0.3
FN 0 5.4
Ham greys 4.8

TREC07 FP 0 0
FN 2.9 2.9
Ham greys 0
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5 Conclusion and Future Work

Spam is an annoying and causes financial damage to organizations and individual
users. This paper focused on supervised machine learning techniques based ensemble
and its implementation via an open source tool called SpamBayes. As a base point we
tested the performance of SpamBayes with various parameters such as different settings
for thresholds and token size as well as the characteristics of feature sets such as
unigrams, bigrams and trigrams of different sizes ranging from 75 to 20000 and noted
that there is room for improvement. SpamBayes classifies a new email as spam, ham or

Fig. 7. Multi-layer model integrated with Spam Bayes
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grey. Greys leave an area that user has to manually classify to eliminate the false
positives and false negatives. Results reported showed that for optimum parameters that
give the least amount of FP and FN, the size of greys needs to be reduced. A mul-
ti-layer model was proposed to eliminate the greys from SpamBayes. This model
applied to SpamBayes framework was tested and results are reported. We would like to
further compare these results of multi-layer model to some other models against the
same datasets.

We believe the application of this multi-layer can also be applied for social network
analysis. In our future work, we would like to extend the application of this multi-layer
model to social networks such as Twitter, Facebook and alike.
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Abstract. With the widespread success and adoption of cloud-based
solutions, we are witnessing an ever increasing reliance on external
providers for storing and managing data. This evolution is greatly facil-
itated by the availability of solutions - typically based on encryption
- ensuring the confidentiality of externally outsourced data against the
storing provider itself. Selective application of encryption (i.e., with dif-
ferent keys depending on the authorizations holding on data) provides a
convenient approach to access control policy enforcement. Effective real-
ization of such policy-based encryption entails addressing several prob-
lems related to key management, access control enforcement, and autho-
rization revocation, while ensuring efficiency of access and deployment
with current technology. We present the design and implementation of
an approach to realize policy-based encryption for enforcing access con-
trol in OpenStack Swift. We also report experimental results evaluating
and comparing different implementation choices of our approach.

1 Introduction

Cloud technology is increasingly becoming a central component for storing or
processing data. Such growing adoption and success of cloud-based solutions
is due to the considerable obvious benefits they provide in terms of reliability,
scalability, elasticity, efficiency, and economic cost. This adoption would further
accelerate in the presence of robust solutions guaranteeing effective control by
data owners over the data they outsource to cloud service providers.

A promising solution for providing data protection and maintaining control
in the hand of data owners is encryption, with data encrypted before being out-
sourced to the external cloud service provider. The first obvious benefit of using
encryption when outsourcing data is that data are kept unknown to the provider
hosting them. Also, encryption provides the ability to realize an approach where
the evaluation of the policy and user authentication are separate from the man-
agement of the physical access to the data. This also ensures the protection of
data confidentiality against adversaries who may have access to the physical
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representation or who may be able to subvert an access control service man-
aged by the cloud service provider. Another important benefit provided by data
encryption is that it enables effective enforcement of access control. In fact, data
can be encrypted with different keys, depending on the authorizations holding
on them, and keys shared with users according to authorization (policy-based
encryption [7]). This policy-based encryption translates the access control policy
into an equivalent encryption policy which provides self-protection and effective
access control enforcement on the outsourced data.

One of the complicating aspects in the management of policy-based encryp-
tion relates to the enforcement of possible changes to the access control policy,
and in particular revocation of authorizations. When resource maintenance is
decoupled from access control thanks to the use of encryption, revocation can-
not be simply managed by dropping access to the encryption key (as done in
other scenarios). The revoked user can, in fact, have maintained local copies of
the keys, and if the layer of protection is not refreshed, the user could still be
able to pass the encryption wrap and access objects for which she does not have
authorization anymore. On the other hand, changing the key and re-encrypting
objects affected by revocation would entail download and re-upload operations
by owners, which could become cumbersome and affect the performance of the
system. The solution that was proposed to this problem in [7] assumes the intro-
duction of over-encryption, based on the application by the server of an addi-
tional layer of encryption (operating on the object already encrypted by the
data owner) with a key not accessible by the revoked user, thus adapting the
encryption on objects to the new state of the access control policy.

Policy-based encryption for providing self-enforcement of the access con-
trol policy and over-encryption for supporting policy changes result particularly
appealing and promising. However, their integration and deployment in avail-
able cloud storage systems requires addressing several problems, including: the
support for co-existence of several data owners in a single system, the real-
ization of key management solutions to enable users to access keys used for
objects for which they have authorizations, and the implementation of policy-
based encryption and over-encryption functionality with services supported by
the cloud service providers. In this paper, we investigate all these issues and
illustrate the realization of policy-based encryption and over-encryption in the
context of OpenStack Swift. OpenStack [16] represents today the reference plat-
form for the cloud [19], and is receiving significant attention by the industrial
community, and Swift is the OpenStack’s object storage system. Swift exhibits
features that are shared by most object storage solutions for the cloud, like Ama-
zon S3. In this paper, we illustrate how policy-based encryption can be realized
building on the OpenStack Swift module. We also investigate how policy changes
can be enforced implementing over-encryption in Swift. For over-encryption, in
particular, we investigate different implementation alternatives, which can be
suitable for different scenarios, depending on the frequency of access requests
and policy changes. The contribution of the paper is therefore twofold. First, it
provides an effective design and implementation of policy-based encryption and
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over-encryption, which can be adopted by others and see immediate deployment
in current cloud storage solutions. Second, our extensive experimental evaluation
of different design choices can provide precious observations for such adoption,
enabling the tuning of the implementation depending on the characteristics of
the considered scenario.

Outline. The remainder of this paper is organized as follows. Section 2 describes
some basic concepts as well as the scenario and the problem considered. Section 3
illustrates how policy-based encryption can be realized in Swift. Section 4 shows
how policy changes can be enforced and describes different options for the imple-
mentation of over-encryption. Section 5 presents experimental results. Section 6
discusses related work. Finally, Sect. 7 presents our conclusions.

2 Basic Concepts

We consider a scenario where users wish to outsource data to an external cloud
service provider (CSP) and selectively share their data with others. Different
data (owned by the same user) may be accessible by different sets of users.
Every data owner has an access control policy specifying authorizations on her
data.

We assume that the CSP is based on the OpenStack framework, which
includes the Swift module, an object storage service allowing users to store and
access data in the form of objects (i.e., each resource, such as a file, uploaded on
Swift is an object). Swift organizes objects in containers, which are user-defined
storage areas containing sets of objects. Containers are organized in tenants,
which are sets of containers. Each tenant is usually assigned to an organiza-
tion. Swift enforces discretionary access control restrictions over the objects it
stores by associating a read access control list and a write access control list
with each container and tenant in the system. These access control lists iden-
tify the users who can read and write the container/tenant. To enforce access
control restrictions, Swift relies on Keystone for users authentication. Keystone
is an OpenStack component acting as identity server, which provides a central
directory of users mapped to the OpenStack services they can access.

We assume the cloud service provider to be honest-but-curious, that is,
trusted to correctly manage the data (i.e., trustworthy) but not trusted for
accessing the content of objects. Consistently with our focus on data confiden-
tiality, in this paper we are concerned with the representation and enforcement of
an access control policy regulating read access to objects. We note however that
our approach can be extended to the consideration of write authorizations [5]. In
the following, acl(o) denotes the read access control list of object o and Au is the
set of read access control lists defined by user u for her objects. Figure 1(a) illus-
trates an example of authorization policy defined by user Alice. In this example,
we assume that there are three users, Alice (A), Bob (B), and Dave (D), and
four objects (o1, o2, o3, and o4) owned by Alice. In the matrix in Fig. 1(a), entry
[u, o] has value 1 if u is authorized to read o (i.e., u ∈ acl(oi)) and 0 if u is not
authorized to read o (i.e., u �∈ acl(oi)).
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o1 o2 o3 o4

A 1 1 1 1
B 1 1 1 1
D 0 1 0 1

mA {k1,k2,k3,k4}
mB {k1,k2,k3,k4}
mD {k2,k4}

o1 o2 o3 o4

key k1 k2 k3 k4

Authorization policyAA Policy-based encryption EA

(a) (b)

Fig. 1. An example of authorization policy defined by user Alice (a) and corresponding
policy-based encryption (b)

Our work is based on the policy-based encryption and over-encryption app-
roach proposed in [7,8], and aims at their representation and enforcement with
Swift, which also require some re-definition and adjustment of these concepts.
Essentially, each user is associated with a symmetric key, and each object is
encrypted using a symmetric key that depends on the access control policy.
Keys are organized in such a way that a user u can derive (via public tokens),
all and only the keys of the objects oi she is authorized to access (i.e., u ∈ acl(oi)).
Policy updates, which would require re-encryption of an object, are enforced by
super-imposing a second layer of encryption on the encrypted object itself. Every
object can then have a first layer of encryption (BEL, Base Encryption Layer)
imposed by the data owner for protecting the confidentiality of the data from
unauthorized users as well as from the CSP, and a second layer of encryption
(SEL, Surface Encryption Layer) applied by the CSP for protecting the object
from users who are not be authorized to access the object but who might know
the underlying BEL key. A user will be able to access an object only if she knows
both the SEL key and the BEL key with which the object is encrypted. In the
following, we use notation Eu to denote the policy-based encryption equivalent to
the authorization policy Au defined by user u. Figure 1(b) illustrates the policy-
based encryption equivalent to the authorization policy in Fig. 1(a). In this figure,
keys mA,mB ,mD are the symmetric keys of the users and keys k1, k2, k3, k4 are
the symmetric keys used to encrypt the objects. Notation mx � ky represents
the fact that key ky is derivable from key mx. In the remaining sections, we first
describe how a policy-based encryption can be realized in Swift (Sect. 3), and
then illustrate how to enforce policy updates (Sect. 4).

3 Access Control Enforcement in Swift

Our approach translates the authorization policy defined by a user into a policy-
based encryption that relies on the use of different keys and ad-hoc structures
supporting the client-based Swift encryption. In this section, we describe such
keys and ad-hoc structures (which are stored as traditional Swift objects), and
then illustrate how policy-based encryption can be implemented.
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3.1 Keys and User-Based Repositories

Our approach is based on the definition and management of different keys. There
are (symmetric) keys associated with objects for objects’ encryption (enforcing
the self-protection mentioned in the introduction). Also, each user is associated
with a (symmetric) key as well as with two pairs of asymmetric keys to support
identity management and signature, respectively. Finally, authorizations are real-
ized by encrypting object keys with user keys. This allows users to retrieve the
key of objects they are authorized to access, providing the same functionality
that public-tokens provided in [7,8].

We describe the different keys and their characteristics and functionality in
the following.

Data Encryption Key (DEK) ki. Every object oi is protected by symmetric
encryption using a DEK ki. Each DEK ki has a given size, is associated with an
encryption algorithm, and has an identifier, denoted id(ki), that identifies the
key among all the keys used in the system.

Master Encryption Key (MEK) mu. Every user u has a personal symmetric
master encryption key mu . The knowledge of this key permits to access, directly
or indirectly, all the objects that user u is authorized to see. Given the user
identity loss that would derive from a compromise of the MEK, it is assumed
that the user keeps the MEK only on the client-side, never exposing it to the
server or to other users.

User encryption key pair 〈pu, su〉. Each user u is associated with an asym-
metric key pair 〈pu , su〉 for encryption (our implementation adopts RSA). As
we show later on, the availability of asymmetric cryptography supports the real-
ization of a cooperative cloud storage service, where each user may make her
objects available to other users. Note that in most application domains, the cor-
respondence between a user identity and a public key is supported by certificates
issued by a trusted Certification Authority. Swift can instead benefit from the
availability of Keystone, which already centralizes the management of user iden-
tities, and the public key is assumed to be available in the user profile managed
by Keystone.

User signing key pair 〈spu, ssu〉. Each user u is associated with an asymmetric
key pair 〈spu , ssu〉 for signing messages (our implementation adopts EC-DSA).
The reason for having a signing key pair is that it is common in security sys-
tems to separate the encrypting and signing identities. This improves security
and flexibility, giving the option to use a dedicated cryptographic technique for
each function. Signatures are used to guarantee the integrity of objects and of
the information that users adopt for deriving the DEKs. Like for asymmetric
encryption, the public key for signatures is also stored in the Keystone profile of
users.

Key Encryption Key (KEK). A KEK is at the basis of the mechanism that
translates the access control policy defined by a user into an equivalent policy-
based encryption. Intuitively, a KEK is the encryption of a DEK that a user
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can extract using a secret (key) that only she knows. For each container that a
user is authorized to access, there is therefore a KEK that the user can decrypt
to obtain the DEK used for encrypting the objects in the container. As we will
see in the following sub-section, there are two variants of KEKs, depending on
the cryptographic technique used to protect them: symmetric KEKs, encrypted
with the MEKs of users, and asymmetric KEKs, encrypted with the public
keys of users. The KEKs that allow a user u to derive the keys of the objects
she is authorized to access are stored in a user-based repository, denoted Ru .
Each KEK is characterized by the following information: a KEK identifier, the
identifier of the protection key, the identifier of the encrypted key, a timestamp,
the identifier of the creator (only for asymmetric KEKs), an authentication code,
and the encrypted key. The authentication code is used to verify the integrity
of a KEK and is generated with the symmetric key of the user who creates the
KEK (in case of symmetric KEK) or with the private signing key of the creator
(in case of asymmetric encryption). Functions are available that allow the user
to extract from her repository the KEK associated with a given protected key
identifier.

The identifier of the DEK used to protect an object is maintained in the
descriptor of the object itself. Such a piece of information is needed, whenever a
user accesses an object, to retrieve the right KEK that allows the user to derive
the corresponding DEK. Analogously, the descriptor of a container includes the
identifier of the key to be used to encrypt the objects that will be inserted in
the container. At initialization time, the key identifier in the descriptor of the
objects stored in a container coincides with the key identifier in the container
descriptor. As we will discuss in Sect. 4, due to policy changes, the key associated
with a container may change and objects in the container may still be protected
with a previous container key.

3.2 Policy-Based Encryption

All users in the system can define an access control policy for the objects they
own. We now describe how the authorization policy Au defined by user u is trans-
lated into an equivalent policy-based encryption Eu using the keys illustrated in
the previous section.

User u creates as many containers C1, . . . , Cm as needed and, for each of
them, creates a DEK ki, i = 1, . . . , m, using a robust source of entropy. Con-
sistently with Swift working, we assume that all objects in a container have the
same acl. User u then encrypts all objects in a container Ci with the DEK ki
of the container and stores them in Ci, which will have therefore the same acl
for all the objects in it. Each DEK ki is encrypted with the MEK mu of the
user who created the container and the resulting KEK is stored in the user’s
repository Ru . For each user uj in the acl corresponding to container Ci, user u
encrypts DEK ki with uj ’s public key puj

and signs it using ssu , thus producing
an asymmetric KEK usable by uj . This KEK is stored in uj ’s repository Ruj

.
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Fig. 2. Policy-based encryption EA equivalent to the authorization policy AA in
Fig. 1(a)

Example 1. Consider the authorization policy of Alice in Fig. 1(a). Figure 2
shows how this policy is translated into an equivalent policy-based encryp-
tion. Alice creates two containers C1 and C2 and stores objects o1 and o3 both
encrypted with key k1 in C1, objects o2 and o4 both encrypted with k2 in C2. She
then creates her KEKs as well as the KEKs that Bob and Dave can use to access
the objects for which they are authorized. In particular, Alice encrypts DEKs k1
and k2 with her MEK mA and stores the resulting KEKs in her repository RA.
Then, she encrypts DEK k1 with Bob’s public key pB and DEK k2 with public
keys pB and pD of Bob and Dave, respectively. The resulting KEKs are stored
in repositories RB and RD, respectively. The figure also illustrates the profiles
of Alice, Bob, and Dave managed by Keystone. These profiles contain the public
keys of the users.

When a user uj wishes to access an object ol, the object descriptor is first
accessed to retrieve the identifier of the DEK used to encrypt ol. This identifier
is then used to retrieve the corresponding KEK from repository Ruj

and then
derive the DEK kl. Derivation will require user uj either to use her own MEK
muj

(for symmetric KEK), or to apply the private encryption key suj
(for asym-

metric KEK). To improve the efficiency of the subsequent accesses to the key
and simplify the procedure, once a DEK provided by another user is extracted
from an asymmetric KEK, the KEK is replaced in the repository by a symmetric
KEK built using the user own MEK. For instance, suppose that Bob requires
access to object o1. Bob first retrieves from the descriptor of object o1 the iden-
tifier id(k1) of DEK k1. Then, it retrieves from RB the corresponding KEK,
decrypts it using his private key sB and uses the retrieved DEK for decrypting
o1. Furthermore, Bob replaces the original asymmetric KEK with a symmetric
KEK obtained by encrypting k1 with his master key mB .

When a new object ol is inserted into a container Ci, user u retrieves the
descriptor of the container and looks for the identifier id(ki) of the corresponding
DEK ki. The user will then look in her repository Ru for the KEK associated
with id(ki) and will extract the corresponding DEK. The DEK will be used to
encrypt object ol that will be given to Swift and DEK id(ki) will be inserted into
the object descriptor. For instance, suppose that Alice inserts a new object o5 in
C2. Since the DEK associated with C2 is k2, Alice encrypts o5 with k2, inserts
id(k2) in the descriptor of o5, and stores the encrypted version of o5 in C2.
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4 Policy Updates

Since the authorization policy regulating access to objects in Swift is enforced
through a policy-based encryption, every time the authorization policy changes,
also the encryption policy needs to be re-arranged accordingly. Updates to the
authorization policy include the insertion and deletion of users, objects, and
authorizations. The insertion of a user requires the generation of her master key,
user encryption key pair, and signing key pair, and the insertion of her public
keys in Keystone. The removal of a user requires only the removal from Keystone
of her public (encryption and signing) keys. The removal of an object instead
requires its deletion from the container including it. We then focus on granting
and revoking authorizations, and on the insertion of new objects. For simplicity,
but without loss of generality, we consider policy updates that involve a single
user ui and a single container C (the extension to a set of users and of containers
is immediate).

In the remainder of this section, we first illustrate how policy updates can be
realized, and then discuss different alternatives for the practical implementation
in Swift of the over-encryption requested for their enforcement.

4.1 Enforcement of Policy Updates

We now illustrate how granting and revoking authorizations as well as the inser-
tion of a new object with its authorization policy can be enforced. Recall that
authorization policies operate at the granularity of container. Then, grant and
revoke operations modify the set of users authorized to access a container C, and
hence all the objects that it stores. Also, the insertion of an object in a container
implies that it inherits the container acl.

Grant authorization. If user u grants ui access to container C (and hence
to the content of all its objects), she simply needs to create an (asymmetric)
KEK enabling ui to derive the DEK k of the container and to store it in the
repository Rui

of user ui. For instance, with reference to the authorization policy
in Fig. 1(a), to grant Dave access to container C1, Alice needs to create a KEK
enabling Dave to derive k1.

Revoke authorization. If user u revokes from ui access to container C (and
hence to all its objects), it is not sufficient to delete the KEK that allows ui to
derive the DEK k of the container, as the revoked user ui may have accessed
the KEK before being revoked and may have locally stored its value. A straight-
forward approach to revoke user ui access to container C consists in replacing
the DEK of the container with a new key knew. However, this would require
the owner u of the container to download from the server all the objects in C,
decrypt them with the original DEK k, encrypt them with the new DEK knew,
and then re-upload the encrypted objects, together with the KEKs necessary to
authorized users to derive knew. This would cause a significant performance and
economic cost to user u. To limit such an overhead, we adopt over-encryption
(Sect. 2). Hence, when a user u revokes from another user ui the authorization
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Fig. 3. An example of implementation of a revoke operation using immediate (a), on-
the-fly (b), and opportunistic (c) over-encryption

to access the objects in a container C, u updates C’s acl and asks the storing
server to over-encrypt the objects in C with a SEL key ks that only non-revoked
users can derive. Each container is then associated with a DEK k at the BEL
enforcing the initial authorization policy, and possibly also with a DEK ks at the
SEL enforcing revocations. Also, there is a KEK for each user initially autho-
rized for C enabling her to compute k, and a KEK for each non-revoked user
enabling her to compute ks. For instance, consider the authorization policy in
Fig. 1(a), and assume that Alice wants to revoke from Bob the access to C2.
As illustrated in Fig. 3(a), objects o2 and o4 are over-encrypted with a SEL key
ks. Also, the KEK enabling Bob to compute k2 is dropped from RB , while the
KEKs enabling Alice and Dave to compute ks are created and inserted into RA

and RD, respectively.

Insert object. When a new object oj is inserted into a container C, the object
inherits the acl of the container. To enforce such an authorization policy, the
object owner u can simply decide to encrypt oj in the same way as the objects
already in the container. However, if the authorization policy regulating access
to the container has already been modified, this would require to encrypt oj with
both the DEK at the BEL k and the DEK at the SEL ks associated with the
container. Since the policy of object oj has never been updated, the adoption
of the SEL might be an overdo. We therefore propose to adopt a new DEK
knew at the BEL to protect objects that are inserted into a container on which
revoke operations had been applied. As a consequence of the revoke operation
(and the new acl associated with the container), a new DEK BEL key (and the
corresponding KEKs) corresponding to the new acl is generated for the container,
and used for objects that will be inserted into the container after the revoke
operation. While for existing objects over-encryption is needed to guarantee
protection from the revoked user, new objects can be encrypted with the new
key known only to the users actually authorized for them. To enable non-revoked
users to derive the new (current) key of the container, an (asymmetric) KEK
enabling them to derive the new key is added to their repositories. Consider, as
an example, container C2 illustrated in Fig. 3(a), which is encrypted with k2 at
the BEL and with ks at the SEL because of the revoke of Bob. Assume now that
Alice needs to insert a new object o5 into C2. Object o5 will be encrypted at the
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Fig. 4. An example of insertion of an object into an over-encrypted container

BEL with key k3, generated when Bob has been revoked access to C2 (together
with the KEKs enabling Alice and Dave to compute k3 from their own private
key). Figure 4 illustrates the content of container C2 after the insertion of o5.

4.2 Implementation of Over-Encryption

The implementation of over-encryption for the enforcement of revoke operations
in Swift can operate in different ways, depending on the time at which SEL
encryption is applied, which can be: materialized at policy update time (imme-
diate), performed at access time (on-the-fly), or performed at the first access
and then materialized for subsequent accesses (opportunistic). In the following,
we elaborate on each of these strategies.

Immediate Over-Encryption. The storing server applies over-encryption
when a user revokes the authorization over container C to a user ui. Immediate
over-encryption requires the user to define, at policy update time: the SEL DEK
ks necessary to protect the objects in the revoked container C, and the KEKs
necessary to authorized users (and to the server) to derive ks. Also, the objects in
container C will be over-encrypted. The server will then immediately read from
the storage the objects in C, re-encrypt their content (possibly removing SEL
encryption), and write the over-encrypted objects back to the storage. Hence,
immediately after the policy update, the objects in C are stored encrypted with
two encryption layers. Every time a user needs to access an object in C, the
server will simply return the stored version of the requested object. Figure 3(a)
illustrates container C2 in Fig. 2 after Bob has been revoked access to C2, when
adopting immediate over-encryption.

Immediate over-encryption causes a considerable cost at policy update time,
which is however significantly lower than the cost that would be paid if over-
encryption is not used. The advantage of immediate over-encryption lays in its
simplicity in the management of get requests by clients, because objects will be
returned by the server as they are stored. This approach can be an interesting
option in scenarios where policy updates are extremely rare and the overall size
of objects is modest.
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On-the-fly Over-Encryption. The storing server applies over-encryption on-
the-fly, that is, every time a user accesses an object. Then, even if the owner of
the container asks the server to over-encrypt the objects in C, the server only
keeps track of this request, but it does not re-encrypt stored objects. When a
user needs to access an object in C, the server possibly over-encrypts the object
before returning it to the user. Figure 3(b) illustrates the adoption of on-the-fly
over-encryption when Alice accesses object o2, after Bob has been revoked access
to container C2 in Fig. 2. As it is visible from the figure, the server over-encrypts
o2 with ks, which can be computed by Alice and Dave but not by Bob, before
sending the object to the requesting user.

When adopting on-the-fly over-encryption, keys can be managed according
to the following two strategies.

– Static key generation: the owner of the container defines, at revoke time, the
SEL DEK ks necessary to protect the objects in the revoked container C, and
the KEKs necessary to non-revoked users (and to the server) to derive ks.

– Dynamic key generation: the server generates a fresh SEL DEK ks for every
get request involving an object in the revoked container C. Also, it creates
and makes available to the requesting user a KEK enabling her to derive ks.
At revoke time, the owner of the container only needs to communicate to the
server the container C subject to the revoke operation and the revoked user.

In terms of performance, if the same user makes repeated requests for objects
in the same container (i.e., protected with the same DEK), dynamic key gener-
ation may require a greater amount of work. On the other hand, if the number
of requests for the objects in a container is significantly lower than the number
of KEKs produced by the static approach for the same container, the dynamic
approach is more efficient. The profile of key management for the two alter-
natives presents significant differences, but key management operations exhibit
negligible computational and I/O costs compared to the management of the
objects themselves. This is the reason why in the experiments (Sect. 5), focusing
on the overall object management cost, we do not distinguish between static and
dynamic key generation.

The advantage of on-the-fly over-encryption is that over-encryption is applied
only when needed. However, if an object is asked multiple times during a period
when the policy is stable, the server will incur a higher cost than immediate over-
encryption, due to the multiple applications of encryption on the same object.
On-the-fly over-encryption can then be an interesting option in scenarios where
the ratio between accesses and revoke operations is low.

Opportunistic Over-Encryption. This approach aims at combining the
advantages of both immediate over-encryption and on-the-fly over-encryption.
It presents a similarity with the Copy-On-Write approach commonly used by
operating systems to improve the efficiency of copying operations. Analogously
to the immediate approach, opportunistic over-encryption requires the owner,
when a user is revoked access to a container, to define both the SEL DEK ks

necessary to protect the objects in the revoked container C, and the KEKs nec-
essary to authorized users (and to the server) to derive ks. Similarly to the
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on-the-fly approach, the server over-encrypts an object oj in the revoked con-
tainer C only when it is first accessed. However, instead of discarding it, the
result of over-encryption is written back to storage for future accesses.

The management of opportunistic over-encryption is more complicated than
the approaches illustrated above. In fact, after multiple policy updates and
object insertions, a container may include objects associated with different BEL
and SEL keys. Therefore, the object descriptor must specify also its state (i.e.,
not over-encrypted, over-encrypted with the most up-to-date SEL key, over-
encrypted with an old SEL key). When a user needs to access an object oj , the
server first checks its descriptor. If oj is protected only at BEL and it has been
subject to a revoke operation, the server derives the most recent SEL key and
over-encrypts oj on-the-fly, storing then the result. If oj is protected also at the
SEL with the most up-to-date key (or it is encrypted only at the BEL and no
revoke operation affected the container), it is returned to the requesting user.
Finally, if oj is protected at the SEL with an outdated key (e.g., because another
revoke operation has been performed after oj has been last accessed), the server
decrypts oj with the old SEL key, re-encrypts it with the new one, and stores the
result. Note that KEKs enabling to derive old SEL keys can be dropped from
repositories only when no object is protected with those keys. Figure 3(c) illus-
trates container C2 in Fig. 2 after Bob has been revoked access to C2 and Alice
has accessed object o2. As it is visible from the figure, object o2 is protected at
both the BEL and SEL, while o4 is encrypted only at the BEL as it has not been
accessed yet.

The critical advantage of opportunistic over-encryption is that it shows good
adaptability to a variety of scenarios. In some peculiar combinations of policy
update frequency, size of data collection, and access profile by clients, the other
solutions may be preferable. However, based on our experimental results, we
expect that this solution will be preferred in the majority of scenarios.

5 Experimental Results

We discuss the experimental results performed for evaluating the practical
applicability of our proposal. We performed different series of experiments aimed
at evaluating the following aspects:

– the benefits of the use of over-encryption compared to a system where pol-
icy changes are enforced by the client downloading, re-encrypting, and re-
uploading the objects involved (Sect. 5.1);

– the performance of the immediate, on-the-fly, and opportunistic options
(Sect. 5.2);

– the performance of a batch and a streaming option for the execution of encryp-
tion by the server (Sect. 5.3);

– the performance at the client-side for the removal of the two encryption layers
for over-encrypted objects (Sect. 5.4).
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The experiments were executed on two PCs with Linux Ubuntu 16.04, 16 GB
RAM, 4-core i7 CPU, 256 GB SSD disk. The client and the server were connected
with a 100 Mb/s network channel.

5.1 Comparison Between Client Re-Encryption and
Over-Encryption

We compare different options of over-encryption with a scenario where a policy
update on a container is enforced by the data owner through the download, re-
encryption and upload of the whole container. For this set of experiments, we
consider a container with 1000 files of size 1 MB. Client side re-encryption does
not require server work (except for the download and upload request, which are
the same in every scenario) and is necessary only for revocations.

Figure 5 compares the overall time required for the management of a policy
update followed by a number of get requests. The line on top corresponds to
the configuration without over-encryption. In the lower part, we have the lines
that describe the time required when using over-encryption, considering the on-
the-fly approach and the opportunistic approach with uniform distribution of
access requests (corresponding to α = 1). We also report the time exhibited by
the management of a sequence of direct get requests, where no encryption is
applied to the objects. The graph shows that the lower lines are all one near to
the other, proving that over-encryption has a small overhead.

5.2 Analysis of Over-Encryption Approaches

We compare the performance of immediate, on-the-fly, and opportunistic
approaches. For this set of experiments, we consider a container with 100 files
of size 1 MB. We focus on the time required for the processing on the server
module, without considering the time required for the transfer of data across
the network. This permits to focus on the component that is most influenced by
these options (the network is typically a bottleneck and it hides the difference

Fig. 5. Overhead of all the solutions Fig. 6. Cumulative server work with
different over-encryption approaches
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between the approaches, as shown in Fig. 5). Figure 6 reports the cumulated exe-
cution time associated with a sequence of requests, for the three over-encryption
approaches.

The immediate option requires, at policy update time, to read all the objects
in the container, possibly decrypt them, and encrypt and write them back. This
creates an immediate overhead at policy update, before the first request. Subse-
quent requests do not require a specific processing by this module, which man-
ages the get requests with a direct mapping to the retrieval of the over-encrypted
representation of the object. Figure 6 represents the immediate approach with a
horizontal line.

The on-the-fly option requires to apply SEL encryption on every returned
object. The cost is then identical for all the requests. Figure 6 shows that the
on-the-fly option is associated with a constant growth.

For the opportunistic approach, the cost depends on the number of files in
the container that are accessed more than once. When an object is accessed for
the first time after the policy update, the server will have to encrypt it at the
SEL level and then save its new representation. This adds to the encryption cost
the cost for the storage of the new version. Subsequent requests for the same
object will be managed as a simple get of the over-encrypted representation
of the object. The frequency of repeated accesses has then an impact on the
efficiency of this approach. In our experiments, we therefore consider request
profiles associated with power law distributions [11] with varying values for the
α parameter, from 1 to 4. A value of α equal to 1 corresponds to a uniform
distribution, where all the requests have an equal probability of asking any of
the objects in the container; increasing values of α lead to an increasingly skewed
distribution of requests. The analysis shows that for the first requests the cost
associated with the opportunistic approach is greater than that of the on-the-
fly approach. As requests continue to be executed, the opportunistic approach
becomes increasingly more efficient compared to the on-the-fly approach. The
advantage increases as the profile becomes more unbalanced. The worst case is
represented by the uniform distribution, which still becomes more efficient after
180 requests.

From this experimental analysis we conclude that the choice of the over-
encryption approach has to consider a few aspects. In terms of pure perfor-
mance, the opportunistic approach always dominates the immediate approach.
The choice between the on-the-fly and the opportunistic approach has to evaluate
the frequency of policy updates, the number of access requests generated between
each policy update, and the profile of access requests. For scenarios where policy
updates are relatively frequent compared to the frequency of access requests, and
the profile is uniform, the on-the-fly approach can be the most efficient solution.
In these scenarios, a choice should be made between the static and dynamic key
generation. This choice will have to take into account design and configuration
aspects, with the static generation requiring a greater upfront processing, but
then more efficient computation, and the dynamic generation minimizing setup
costs, but requiring a DEK and a KEK creation for every access request. In
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domains with a profile opposite to that leading to the on-the-fly approach, the
opportunistic approach can prove to be the best option.

In addition to performance, there are design and security requirements that
may have an impact on the choice. In terms of design, the opportunistic app-
roach requires a more complex procedure, whereas the immediate and on-the-fly
approaches both map to a simpler implementation. With respect to security,
the immediate approach (for all the objects) and the opportunistic approach
(for objects that have already been accessed since the last update) offer greater
protection, because a revoked user who may have access to the Swift storage
infrastructure would not be able to access the plaintext of the objects, whereas
in the on-the-fly approach such an attack would succeed for a revoked user.
System administrators will then have to make a choice based on the consid-
eration of a number of parameters. Our expectation is that in most scenarios
administrators will select the opportunistic approach.

5.3 Streaming and Batch Encryption

We performed a set of experiments aimed at comparing the execution time of a
number of get requests when two different kinds of encryptions are used by the
server: Streaming and Batch. They both use the AES-CTR encryption mode.
Streaming encryption makes use of the WSGI structure of the Swift servers, and
it consists in encrypting every chunk of the file as it is obtained from the proxy
server. On the contrary, Batch encryption consists in encrypting the whole file
after it is returned from the proxy server and before it is sent to the client.
In these experiments, files of the same size are inserted into a container, which
has the total size of 1 GB. We studied the benchmark of Streaming and Batch
encryption applied to the on-the-fly approach against the direct get call that
does not apply any encryption.

As it is visible from Fig. 7, compared to the direct get call, Streaming encryp-
tion adds an overhead between 1% and 3%, whereas Batch encryption adds an
overhead between 7% and 15%. It is then clear that Streaming encryption is
more efficient, both because of shorter response times and because it has a lower
memory usage, since it does not have to load the entire object in RAM before
encrypting it. Note that the encryption of the chunks could also be parallelized,
further reducing the overhead compared to the direct get call.

5.4 Application of Two Encryption Layers

When over-encryption is used, the client has to decrypt the downloaded objects
twice, using the same encryption algorithm with two distinct keys. The sim-
plest approach for the implementation of these two decryptions consists in first
removing the SEL layer on the full object and then removing the BEL layer. Such
an approach is not the most efficient option, because the portion of the object
that has been SEL-decrypted (and still BEL-encrypted) will have to either be
temporarily stored in RAM or on mass memory. This is similar to the analysis
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Fig. 7. Comparison of the overhead
caused by Streaming and Batch on-
the-fly approaches with respect to the
direct get call

Fig. 8. BEL+SEL encryption perfor-
mance on a 1MB file using two subse-
quent AES invocations and TWOAES

without AES-NI with AES-NI

ECB CBC CTR ECB CBC CTR

128 bits 253 MB/s 215 MB/s 154 MB/s 1857 MB/s 408 MB/s 284 MB/s

256 bits 192 MB/s 170 MB/s 133 MB/s 1301 MB/s 336 MB/s 248 MB/s

Fig. 9. AES encryption rate for the modes ECB, CBC, and CTR using the pycrypto
library without and with AES-NI

for Streaming and Batch encryption for the server, where Streaming encryption
proves to be more efficient.

We started from these considerations and investigated the joint application
of SEL and BEL decryptions. We were also interested in evaluating the perfor-
mance profile of decryption on the client and in evaluating the impact of the
hardware support offered for the execution of cryptographic functions. In par-
ticular, we verified the impact of the AES-NI (Intel AES New Instruction set)
instructions available on Intel processors. A first set of experiments, reported in
Fig. 9, showed that the encryption performance of AES-NI compared to an AES
software implementation (we used the one available in OpenSSL) is around 7
times faster.

We then focused on the application of two decryptions. Our expectation was
that the consecutive application of a SEL decryption and BEL decryption on the
same block would have produced a benefit, as it would have avoided to pay the
penalty of a transfer outside the CPU cache of the data. As shown in Fig. 8, where
AES-NI instructions were used, we instead observed that the performance of the
interleaved decryption depends on the number of consecutive blocks processed
with each key. The worst performance is observed when after each block there
is a switch of encryption key. Further investigation allowed us to verify that
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Fig. 10. Re-encryption using AES Fig. 11. Re-encryption using AES-NI

the source of this behavior was an optimization by the C compiler that avoided
to execute a write to the registers storing the key value when no changes had
occurred to the key since the previous execution. When the switch from the
application of the SEL decryption to the BEL decryption occurs after a number
of blocks, the cost of the key setup is amortized over a number of blocks, but
the blocks remain in the CPU cache after the first decryption and the second
decryption becomes more efficient.

We then compared the execution times for the (a) serial application of SEL
and BEL decryption (a full SEL decryption, followed by a full BEL decryption)
and (b) interleaved SEL and BEL decryption, with the application of the two
decryptions 8 blocks at a time. Figures 10 and 11 report the results of these
experiments when not using AES-NI and when using AES-NI, respectively. The
greater performance of hardware-accelerated AES emphasizes the impact that
the CPU/RAM interface has on performance. Figure 10 indeed shows that the
difference between the two approaches when hardware acceleration is not used
is limited. Figure 11 shows that the 20% benefit observed is persistent across
objects with a variety of sizes.

This approach is then the one that has to be applied whenever two layers of
decryption have to be removed. It is also important to note that the throughput
that can be obtained in the application of two decryptions (a few GB/s) is orders
of magnitude greater than the bandwidth available for the network connections
between a client and the Swift provider. This confirms the applicability of over-
encryption in this scenario.

6 Related Work

The design of encryption techniques for data stored in the cloud is a large
research area, with a considerable variety of topics and proposals. A signifi-
cant amount of work has been dedicated to the design of techniques that sup-
port the efficient search and retrieval of encrypted data (e.g., [18]). Techniques
have been designed that let the data be available only to users with specific
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properties (e.g., ABE [4,12]). Another important line of research focuses on pro-
tecting access privacy (e.g., [9,10,17]). In this paper, we focus the analysis on
over-encryption, on the approaches for existing cloud storage frameworks, and
on proposals for the sharing of large client-encrypted objects (instead of struc-
tured data).

Over-encryption has been proposed to effectively and efficiently enforce policy
updates over encrypted outsourced data [7,8]. This solution considers the pres-
ence of a single data owner, and it has been extended to consider multiple users
owning (and willing to share) data [6]. This approach differs from the solution
we proposed as it relies on Diffie-Hellman, while our approach is based on the
definition of symmetric and asymmetric KEKs. Also, these proposals consider
a generic resource management scenario, with no specific connection to existing
cloud frameworks. Over-encryption has also been considered in [3] in conjunction
with a novel approach called Mix&Slice. In this context, over-encryption does
not involve a whole resource but only a fragment of it.

Several proposals have contributed to the design of solutions for the pro-
tection of outsourced data with reference to current cloud frameworks. In [2],
OpenStack security issues are extensively analyzed. The confidentiality of objects
stored in Swift is considered as a significant aspect, but no specific technical
solution is presented. A subsequent work by the same authors [1] describes an
approach for the encryption of objects in Swift. In [14] another approach for
server-side encryption is presented, with the goal of protecting “data at rest”
(i.e., an approach for making the object representation on storage devices pro-
tected against physical accesses). In these approaches, keys are never seen by
clients and they do not consider the support for container acls. Then, they do
not have to look at the management of the encryption policy and its evolution.

A number of proposals have considered the application of encryption on the
client-side. In [20], a service is presented that maps a file system to an encrypted
representation on Amazon S3. The proposal does not support the sharing of files
among distinct users and acls are not considered. In [13], an architecture for
sharing encrypted objects outsourced to a cloud provider is presented. Revoca-
tion is considered as important and difficult and the proposed solution enforces
it by limiting access to encryption keys for revoked users. In [21], an exten-
sive architecture for the management of a cloud-based data sharing system is
proposed. Resources are protected with keys that are consistent with the pol-
icy and significant attention is paid to revocation. The approach used is based
on proxy re-encryption and lazy re-encryption. Proxy re-encryption relies on
expensive cryptographic techniques that allow a server to convert a representa-
tion of a resource encrypted with a key to one associated with a different key,
without letting the server executing the transformation be able to access the
plaintext of the resource. Proxy re-encryption supports expressive encryption
schemes, which allow attribute-based selection. Over-encryption uses standard
symmetric encryption, which does not support those features but exhibits bet-
ter performance. Lazy re-encryption shares some features with our opportunistic
over-encryption approach, as it saves on re-encryptions by applying them only
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after an access request is made to the object, but the motivation is different.
The advantage of lazy re-encryption is due to the ability to avoid re-encryptions
for resources that are not accessed between a number of policy updates. The
same benefit is also valid in our opportunistic approach, but in those scenarios
our on-the-fly approach can be preferable.

The OpenStack Swift community is making a significant effort toward the
introduction of object encryption in Swift [15]. The support is offered for the
server side, aiming at protecting data at rest. We are monitoring this develop-
ment and are confident that our solution can be easily adapted to leverage their
implementation, extending it with our over-encryption techniques.

7 Conclusions

The design of techniques able to enforce confidentiality of outsourced data has
the potential to greatly accelerate the rate of adoption of cloud storage, leading
it to become the standard approach for the management of any kind of data.
Local storage and traditional file systems would then only play the role of a
cache that speeds up access to data, but persistence would be guaranteed by
cloud providers. The realization of this vision requires to integrate the security
techniques developed by the research community with existing cloud solutions.

The work presented in this paper goes in this direction and shows that this
integration has to consider several aspects. Our proposal offers then a contribu-
tion for the most used open-source cloud storage solution, but the approaches
that have been considered for Swift have a clear immediate application also to
other domains.
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Abstract. The cloud pricing model leaves cloud consumers vulnerable to
Economic Denial of Sustainability (EDoS) attacks. In this type of attacks, an
adversary first identifies web resources with high levels of cloud resource
consumption, and then uses a botnet of compromised hosts to make fraudulent
requests to these costly web resources. The attacker’s goal is to disrupt the
economical sustainability of the victim by inflicting cost through fraudulent
consumption of billable cloud resources.
In this paper, we propose two different Markov-based models to profile the

behavior of legitimate users in terms of their resource consumption and to detect
malicious sources engaged in fraudulent use of cloud resources. Our experi-
mental evaluation results demonstrate the effectiveness of the proposed attri-
bution methodology for identifying malicious sources participating in EDoS
attacks.

Keywords: Economic Denial of Sustainability � EDoS detection � Markov
chain � Hidden semi Markov model

1 Introduction

As a new paradigm, cloud computing is reshaping the entire information technology
industry. Cloud service providers enable their consumers to access shared computing
resources in a flexible way without the need for upfront investment on infrastructure,
platform, and software. Although the adoption of cloud computing has experienced
significant growth in recent years, some concerns regarding the unique features of
cloud computing environments have hindered its broader adoption. Security and pri-
vacy concerns in particular are frequently ranked as one of the top reasons why some
organizations are reluctant to adopt cloud computing [5, 26, 27].

The understanding and mitigation of security and privacy risks of the public cloud
computing model has been an active area of research in recent years. The research
efforts, however, have been primarily focused on protecting the confidentiality and
integrity of sensitive data processed in public cloud environments as well as ensuring
the continuous availability of cloud services for their intended users [23]. Very little
attention has been paid to security threats targeting the cost model of consumers
running their services on the public cloud [11].

Services running on public clouds are vulnerable to fraudulent resource con-
sumption attacks aiming at increasing the financial burden of the victim service.
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This is enabled by exploiting the utility-based pricing model of the cloud where
consumers are charged for the actual consumption of computing resources such as CPU
cycles, RAM, bandwidth, and storage [14].

An adversary can conveniently rent a botnet [24] consisting of thousands of bot
machines to incur artificial cost to a victim service. The target of the attack will have to
pay for the cost of fraudulent resource consumption resulted from requests made by bot
clients. By keeping the rate of fraudulent requests made by individual bots low to
mimic the behavior of legitimate users, and intelligently focusing on requests that are
most costly in terms of resource consumption, an attacker can sustain the attack over an
extended period of time and maximize the effectiveness of the attack.

In practice, any device with an Internet connection is capable of launching an EDoS
attack. The attacker can simply instrument the device to send HTTP GET requests to
the victim service at the highest rate possible. This is basically the method used in
application layer DDoS attacks where the attacker’s goal is to render a targeted service
unavailable to its intended users by overwhelming victim’s resources. However, this
will very quickly result in a significant deviation from the request rate of normal users
and this artifact can be used for detecting and blocking the offending source [6, 15, 30].

In this paper, we focus on an adversarial scenario in which the attacker’s goal is to
increase the financial burden of the victim. This attack is also refereed to as Fraudulent
Resource Consumption (FRC) attack by some researchers in the literature [11, 14]. In a
recent empirical study, Wang et al. [29] show how practical EDoS attacks can be
launched by abusing popular third-party services provided by companies such as
Google, Facebook, etc.

In this paper, we assume that the attacker is intelligent in the sense that she makes
requests that are resource-intensive resulting in higher costs for the victim. To be
effective, an EDoS attack needs to be stealthy and remain undetected for an extended
period of time (e.g., weeks or months). To this end, not only that malicious requests
must not cause any noticeable degradation of service quality, but also the quantity of
requests made by malicious sources should not be significantly different from those of
legitimate users. Although high-rate DDoS attacks with the intention of overwhelming
resources of a victim hosted on a public cloud can increase the resource consumption
cost for the victim, in our threat model we assume that targets are properly protected
against such attacks and we instead only focus on addressing low-rate and stealth EDoS
attacks.

As malicious clients participating in a stealth EDoS attack make requests in a
similar rate as legitimate users, this type of attacks can be challenging to detect and
mitigate. In this paper, we present a method for detecting stealth EDoS attackers by
directly assigning a cost to each user request in proportion to the resources consumed to
serve that request.

The proposed methodology is based on statistical anomaly detection. First, we
process web server logs to identify the sequence of requests made by each individual
user over a predefined period of time. Next, according to the amount of resources
consumed to serve each request, a relative cost value is assigned to each request. The
result is a dataset consisting of a sequence of request costs for each of the legitimate
users in the processed web access logs. The sequence of request costs for each user is
considered as a random or stochastic process and this data is used to construct two
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different Markov-based models to capture the behavior of users in terms of the cost
they incur to a service over time. We use sequence of request costs collected for normal
users as training data to estimate the model parameters. Once the parameters are
estimated, at the detection phase, the abnormality of a newly observed sequence of
request costs is tested against the trained model to identify malicious sources partici-
pating in an EDoS attack.

We use real-world web access logs of about a month from an academic website to
experimentally evaluate the effectiveness of the proposed method. Experimental results
are presented for the two Markov-based detection methods that we propose, a simple
Markov chain model, and a more complex Hidden semi-Markov Model (HsMM). The
experimental results show that our proposed detection methods are very effective in
differentiating normal users and malicious users participating in EDoS attacks. While
most of previously proposed methods require a malicious source to make significantly
more requests than legitimate users to be effective, our proposed attribution method-
ology can successfully detect malicious sources that try to remain undetected by
making only a few resource-intensive requests.

The remainder of this paper is structured as follows. We begin with a discussion on
the exploitation of the cloud pricing model that motivates this work. Related work is
discussed in Sect. 3. Section 4 presents a brief background on Markov chains and
HsMM as well as our proposed Markov-based methods for identifying malicious
sources participating in EDoS attacks. The details of experiments designed to validate
the proposed methodology and their results are presented in Sect. 5. Finally, discussion
and conclusion remarks are presented in Sects. 6 and 7, respectively.

2 Exploitation of the Utility-Based Pricing Model

The cloud computing technology provides many attractive benefits such as avoiding
the need for upfront spendings on computing infrastructure, improved manageability,
security, and elasticity to businesses of various sizes. While the flexibility of the
“pay-as-you-go” pricing model adopted by cloud service providers can be beneficial to
cloud consumers, it leaves them vulnerable to financial risks imposed by EDoS attacks
[11, 14].

To launch an EDoS attack, all an attacker needs to do is to simply send seemingly
legitimate requests to a victim service to make it consume cloud resources for which
the victim will have to pay for the cost. If the attacker is able to enforce significant
fraudulent resource consumption over an extended period of time, the economical
sustainability of the victim service could be threatened.

In an EDoS attack, the attack target can be a website or web applications hosted on
a third party public cloud and we assume that attack targets predominantly serve public
content accessible to all Internet users.

Unlike Distributed Denial of Service (DDoS) attacks, an EDoS attack is not meant
to cause availability issues or noticeable degradation of service quality for the users of a
target service. To be effective, an EDoS attack needs to be stealthy and remain
undetected over an extended period of time (e.g., weeks or months). To remain
undetected, a wise attacker will want to keep the rate of fraudulent requests low to
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blend them into the noise of legitimate requests, while trying to focus on requests
resulting in high levels of cloud resource consumption to achieve the objective of the
attack.

As documented in recent studies, DDoS-for-hire services can be readily located and
rented on underground black markets [4, 16, 17]. These abusive services are often
supported by botnets consisting of tens of thousands of compromised hosts and offer
both network layer and application layer attacks [28]. With the availability of
DDoS-for-hire services, an attacker does not need to be capable of building a sup-
porting attack infrastructure.

The potential impact of an EDoS attack can be best quantified by examining a
hypothetical attack on a service hosted on a real public cloud service provider. In the
sequel, we consider a hypothetical attack on a victim service hosted on Amazon’s
Elastic Compute Cloud (EC2) platform. Although cloud consumers are billed for
various cloud resources including computing, network, and storage resources, for
simplicity, this work only focuses on data transferred from the cloud environment to
the Internet to serve received requests. Table 1 shows the cost of outgoing data transfer
for Amazon’s EC2 platform [3].

According to the HTTP Archive [2], which regularly measures the Alexa top
10,000 websites [1], the average page size was 2,225 KB for the homepage of the top
10,000 websites visited in January 2016. However, many websites host a number of
much larger web resources such as videos or large compressed files that an attacker can
focus on to maximize the cost of resource consumption for a victim operating on a
public cloud. For the purpose of our hypothetical EDoS attack, we assume the average
size of web resources requested by malicious bots participating in the attack to be
100 MB.

At the rate of only 100 requests per month which is too low to raise any red flags, a
single bot would consume about 10 GB of outgoing bandwidth and the monthly bill
will increase by . Sending requests with the same characteristics as the single bot
scenario from 1000 bots will approximately cost the victim $900 per month. The
inflicted cost grows linearly by increasing the request rate, requesting larger files, or
employing more malicious bots. For instance, by locating and requesting files that are
1 GB in size, the fraudulent resource consumption cost of the previous EDoS attack
scenario will escalate to about $9000 per month. As seen from the hypothetical attack
scenarios, the resource consumption cost accumulated over time can impose an
important financial burden to public cloud consumers, especially small businesses.

Table 1. Amazon EC2 outgoing data transfer pricing as of February 2016.

Traffic volume Cost

First 1 GB /month $0.00 Per GB
Up to 10 TB/month $0.09 Per GB
Next 40 TB/month $0.085 Per GB
Next 100 TB/month $0.07 Per GB
Next 350 TB/month $0.05 Per GB
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As individual bots show no trace of excessive request rates, most of existing detection
schemes that look for a large number of requests in a short period of time [15, 22] will
not succeed at detecting the described hypothetical attack.

It is worth noting that leasing a botnet to carry out an EDoS attack will be a cost
factor that an attacker would need to take into consideration. However, due to the fact
that only a very small fraction of resources available to a compromised host are actually
required to make a few requests at a very low rate, the cost of accessing a botnet can be
significantly reduced for an attacker by renting nondedicated botnets shared with other
cybercriminals using the bots for various purposes. According to Huang et al. [10],
using the pay-per-install marketplace, an attacker can gain access to 1000 compromised
machines for as low as $10.

3 Related Work

So far there are only a few studies in the literature directly concerning the issue of
EDoS attacks.

Khor and Nakao [18] propose a mitigation mechanism based on cryptographic
puzzles to dissuade clients from submitting fraudulent requests. The basic idea of their
proposed scheme called self-verifying Proof of Work (sPoW) is to require clients to
present a proof of work before a protected service commits its resources to serve
clients’ requests. When a client first requests a resource, it receives a “crypto-puzzle”
from sPoW that mediates all communications between clients and the protected service.
The puzzle contains encrypted information necessary to reach the intended service such
as the IP address and port number as well as a partial encryption key with k bits
concealed. The client will have to spend its resources to discover the encryption key by
brute forcing the k concealed bits so that it can decrypt the information necessary to
contact the requested service.

However, sPoW or any other solution based on the “crypto-puzzle” approach [21]
are more relevant when malicious sources are sending requests at a high rate to a target
service. In an intelligent and stealth EDoS attack, malicious clients can afford to solve
the puzzles to submit only a few well-crafted, resource intensive requests and succeed
at adding financial burden to a victim service protected by sPoW.

Sqalli et al. propose a mitigation scheme called EDoS-Shield to address the issue of
EDoS attacks in cloud environments [25]. The main idea of EDoS-Shield is to detect
whether an incoming request is initiated by a legitimate user or by an automated source.
EDoS-Shield depends on CAPTCHA tests to verify the source of requests. The pro-
posed architecture consists of virtual firewalls (VF) and verifier nodes (V-Nodes) that
are deployed as virtual machines in the cloud. The V-Nodes are responsible for veri-
fication of request sources, and VF nodes are implemented to decide if incoming
packets should be forwarded or dropped based on the verification results received from
the V-nodes. One weakness of the EDoS-Shield mitigation scheme has to do with the
cost of additional cloud resources required for deploying the verifier nodes and the
virtual firewalls. But, more importantly, this approach requires all users to be verified
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and research studies suggest that CAPTCHA tests could be annoying for some users
and even a certain portion of legitimate users may not be able to solve them [7].
In addition, some existing CAPTCHA tests have been shown to be vulnerable to
automated attacks [8], and recently inexpensive CAPTCHA solving services backed by
crowd sourced human labor can be used to effectively defeat the protection purpose of
CAPTCHA tests [20].

In [12] the authors use a number of statistical self-similarity metrics including
Zipf’s law, and Spearman’s Footrule distance to detect the occurrence of FRC attacks.
The proposed detection mechanism only looks at the aggregate pattern of user requests
and does not deal with identification of individual malicious sources participating in an
attack. In contrast, our proposed method is concerned with identification of malicious
sources exhibiting a similar behavior as legitimate users in terms of request rates, but
focusing on resource-intensive requests to maximize the cost for the victim service.

Idziorek and Tannian propose a method that attempts to model the behavior of
individual users based on the number of requests per session generated by each user
over a fixed period of time [11]. A pause of 900 or more seconds between consecutive
requests from the same user is used as the criterion to group user requests into web
sessions. The premise is that malicious users generating sessions with a random
number of requests would be sufficiently different from the profile of normal users, so
that an entropy-based detection method could be used to identify malicious sources.
This method is based on the assumption of malicious users making more requests/web
sessions than legitimate users. However, as mentioned earlier, an intelligent attacker
does not necessarily need to make malicious sources to send more requests than
legitimate users to succeed. By focusing on web resources that are expensive in terms
of resource consumption, malicious sources with similar request rates as legitimate
users can be still effective.

In [13], the authors propose a methodology for identifying malicious sources trying
to inflate the utility bill of a victim by making fraudulent requests. The proposed
methodology combines four different usage metrics including the number of sessions,
the number of requests, and the average number of requests per session. For the last
usage metric, the overall request frequency distribution of documents hosted on a
website is computed, and the requests made by individual users are compared against
this distribution. To evaluate a user, a probability score is calculated for each of the four
metrics and then an overall average probability is computed. The more deviation
observed from the normal usage, the higher would be the probability score and the
more likely the user would be a malicious client. Again, this model is heavily influ-
enced by the quantity of requests made by individual users, and it will not be effective
for detecting malicious users making a small number of high cost requests. As we will
show in Sect. 5, our proposed method is able to detect both malicious sources making
an anomalous number of random requests, as well as more subtle malicious sources
with a request rate similar to that of legitimate users but focusing on requests that are
more costly for the victim.
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4 The Proposed Markov-Based Models for Detecting Sources
Participating in an EDoS Attack

In this study, our goal is to build an anomaly detection system to identify malicious
sources participating in EDoS attacks. In this section we introduce our proposed
detection methodology and describe our formulation of detecting malicious sources
participating in an EDoS attack using two different Markov-based models.

Most web requests are for HTML documents that are meant to be rendered, and
displayed by a user browser. These requests are typically followed shortly by several
subsequent HTTP GET requests to fetch objects such as images, scripts, and CSS files
embedded in the main requested document. The requests can also be for downloading
objects such as binary files over HTTP. Web servers can be configured to log the
details of all user requests including the IP address of the requesting host, the requested
document, the type of request (GET, POST, etc.), and the size of data transferred to
serve the request. Although all the HTTP request types cause resource consumption on
the server side, to simplify our experimentations, we only focus on HTTP GET
requests in our work.

Proportional to the amount of data transferred to serve a request, a relative cost
value can be calculated and assigned to each request. Based on the data size of various
requests, one can decide on a small number of buckets to represent different cost values
to be associated with user requests. We will see an example of this in Sect. 5 where we
use cost values from 1 to 5 for requests in our dataset.

Using collected web server logs, requests made by each individual user during a
specific period of time can be identified and mapped to request cost values. The result
would be a sequence of request cost values for each user. We assume that individual
users (both legitimate and malicious) can be uniquely identified by their IP addresses.
Using browser fingerprinting techniques [9] can be a potential solution for cases where
some users can not be reliably identified by their IP addresses.

The sequence of request costs from individual users during a specific period of time
can be considered as a discrete-time stochastic process and a Markov-based model can
be used to describe the behavior of users in terms of the cost they incur to a service over
time. A much simpler approach to distinguish between legitimate and malicious users
would be to calculate the sum of request costs per user over a predefined period of time
and apply a threshold value to identify users exceeding the threshold as malicious.
However, as we will show in Sect. 5, such a naive approach will result in high false
positive rates where legitimate users are incorrectly identified as malicious.

We use requests made by legitimate users to estimate the parameters of the Markov
model and then use the trained model to compute the likelihood of new request cost
sequences generated by users. The request cost sequences generated by malicious users
would be different from legitimate users and this will result in much smaller likelihood
values than those of legitimate users. As we will show in Sect. 5, using the right
threshold likelihood value, legitimate users and malicious users can be effectively
distinguished.

In this paper, we propose and evaluate the detection performance for two different
Markov-based models. The first one is a simple Markov chain model in which the
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observed request costs are considered as the states of the Markov chain. We also
evaluate a HsMM which has more complexity and computational cost but can out-
perform the simple Markov chain model for detecting low rate attacks focusing on high
cost requests. In our HsMM, the request cost values are the observable outputs and the
hidden states represent different levels of resource consumption by users. The models
that we propose and evaluate are both discrete-time and the discrete points in time
correspond to user requests as recorded in the web access logs. In the subsequent
subsections, we give a brief background on the theory of Markov chains and HsMM
and briefly discuss the process of learning model parameters using training data.

4.1 Markov Chain Model

A Markov chain models the state of a system with a random variable taking states from
a finite state space as the time passes. Given the current state of a Markov chain
denoted as st, the state of the chain at time t + 1 will only depend on st. In a stationary
Markov chain, the state transition probabilities are assumed to be constant and inde-
pendent of time. Consider a Markov chain model with M states denoted as S = {s1, s2,
…, sM }. A Markov chain model can then be specified by its parameters as k = ({pm},
{amn}) where:

– pm � Pr[s1 = m] is the initial state probability distribution. st denotes the state taken
by the model at time t and m 2 S. The sum of initial state probabilities adds up to 1
(Rmpm = 1).

– amn � Pr[st = n|st−1 = m] is the state transition probability for m, n 2 S, satisfying
Rnamn = 1.

Given the model parameters, the probability of a particular sequence of states s1, s2,
…, sT to be taken by the model is computed as follows:

Pðs1; s2; . . .sTÞ ¼ ps1
XT

t¼2

ast�1st

The initial state probability distribution and the state transition probability matrix
can be readily learned from historical observations of the system states. These two
model parameters can be learned using the formulas below [19]:

amn ¼ Nmn

Nm

pm ¼ Nm

N

where:

– Nmn is the number of observed direct transitions from state m to state n.
– Nm is the number of observations where the Markov chain is in state m.
– N is the total number of observations.
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In our context, we process web access logs to compute the sequence of request
costs for normal users and then use this data to learn the parameters of a Markov chain
model representing the resource consumption behavior of normal users. At the
detection phase, newly observed sequences of request costs are analyzed to compute
the likelihood of those sequences being supported by the trained Markov chain model.
The resource consumption behavior of users participating in EDoS attacks would be
different from that of normal users and the requests from these users are therefore
expected to receive low likelihood of support when analyzed by the trained model.

4.2 Hidden Semi-Markov Model

A hidden Markov model (HMM) is a Markov model in which the states of the system
being modeled are not directly observable (hidden). HsMM extends the traditional
HMM by allowing states to have variable durations [31]. The duration of a state
represents the number of observations made while in that state. Consider a HsMM with
M states denoted as S = {s1, s2,…, sM }. A HsMM can be specified by its parameters as
k = ({pm}, {amn}, {bm(k)}, {pm(d)}) where:

– pm � Pr[s1 = m] is the initial state probability distribution. st denotes the state taken
by the model at time t and m 2 S. The sum of initial state probabilities adds up to 1
(Rmpm = 1).

– amn � Pr[st = n|st−1 = m] is the state transition probability for m, n 2 S, satisfying
Rnamn = 1.

– bm(k) � Pr[ot = k|st = m], for m 2 S, k 2 {1, …, K} is the state output distribution.
The observable output at t is denoted by ot and k is the index into the observable
output set with cardinality K. The output distribution satisfies Rkbm(k) = 1.

– pm(d) � Pr[st = d|st = m] is the state residual time distribution, for m 2 S, d 2 1,…,
D. D represents the maximum interval between any consecutive state transitions and
the residual time distribution satisfies Rd pm(d) = 1.

Then, if at time t, the pair process (st , st) takes on the value (m, d), where d >= 1,
the semi-markov chain will remain in state m until time t + d − 1 and will transit to the
next state at time t + d. The states themselves are not directly observable. The
observables are a sequence of observations O = (o1, …, oT). The notation oba represents
the observation sequence from time a to time b and conditional independence of
observed outputs is assumed so that bmðobaÞ ¼ Pb

t¼abmðotÞ The model parameters are
initially estimated and are then updated as new observations ot are collected. This
process is known as parameter reestimation and it can be done by following the
forward and backward algorithm proposed by Yu and Kobayashi [32]. The forward and
backward variables are defined as follows:

atðm; dÞ � Pr ot1; ðst; stÞ ¼ ðm; dÞ kj� �

btðm; dÞ � Pr oTtþ 1; ðst; stÞ ¼ ðm; dÞ kj� �
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which can be recursively computed by forward and backward algorithms. Next, the
three following joint probabilities are defined that can be expressed and computed in
terms of the model parameters and the forward and backward variables defined above.
These probabilities are used to readily derive the reestimation formulas to update the
model parameters after collecting new observation sequences.

1tðm; nÞ � Pr½oT1 ; st�1 ¼ m; st ¼ n kj �
gtðm; nÞ � Pr½oT1 ; st�1 6¼ m; st ¼ m; st ¼ d kj �

ctðmÞ � Pr½oT1 ; st ¼ m; kj �

Now, using the joint probabilities defined above, the model parameters can be
reestimated by the following formulas:

p̂m ¼ c1ðmÞ=
XM

m¼1

c1ðmÞ

âmn ¼
XT

t¼1

1tðm; nÞ=
XT

t¼1

XM

n¼1

1tðm; nÞ

b̂mðkÞ ¼
X

t:ot¼k

ctðmÞ=
X

k

X

t:ot¼k

ctðmÞ

p̂mðdÞ ¼
XT

t¼1

gtðm; dÞ=
XT

t¼1

XD

d¼1

gtðm; dÞ

The model parameters are reestimated for each observation and after processing all
observation sequences, the trained model can be used to compute the likelihood of a
new observation sequence by the following formula:

Pr½oT1 kj � ¼
X

m

X

d

Pr½oT1 ; ðsT ; sTÞ ¼ ðm; dÞ k�j

¼
X

m

X

d

aTðm; dÞ

For our HsMM, the request cost values are the observable outputs and the hidden
states represent different levels of resource consumption by users. In our implemented
model, we use 5 hidden states where the model is always initialized in the first state.
Also, in our model a transition can only happen from a lower state to a higher state.

Similar to the Markov chain model, we use requests made by legitimate users to
estimate the parameters of the HsMM and then use the trained model to compute the
likelihood of new request cost sequences generated by users. The request cost
sequences generated by malicious users would be different from legitimate users and
this will result in much lower likelihood values than those of legitimate users. As we
will show in the next section, using the right threshold likelihood value, legitimate
users and malicious users can be effectively distinguished.

382 M. Karami and S. Chen



5 Experimental Evaluation

We conduct experiments to evaluate the effectiveness of the proposed method for
detecting malicious sources engaged in fraudulent use of cloud resources. This section
provides a description of our experiments and presents the obtained results.

5.1 Dataset Description

Our experiments are based on request logs from a university department’s public web
server collected over 32 days from Nov 8, 2015 to Dec 9, 2015. We use the rules below
to filter out requests that are irrelevant for our purpose:

– Requests that are not HTTP GET.
– HTTP GET requests with a response code other than 200 (OK).
– Requests with a user agent string indicating access from a non-user entity (e.g.,

Googlebot, wget, etc.).
– Request sources making requests using 10 or more different user agent strings. This

is to remove aggregate request sources such as NAT boxes or web proxies making
requests on behalf of their clients. About 90% of all request sources in the dataset
only use a single user agent string.

– The access logs are split into two 16-day periods. We only include requests from
users making at least 3 requests in one of the 16-day periods.

A request for an HTML document and the subsequent requests for fetching objects
embedded in the same HTML document are combined and treated as a single request.
Table 2 presents a summary of the normal dataset used for training and testing the
proposed methodology.

To generate the normal training dataset, requests in the first half of the logs are
grouped based on the request source, and then, proportional to the amount of data
transferred to serve the requests, they are mapped to relative cost values. The same
process is applied to the requests in the second period of the logs to generate the test
dataset representing users with normal resource usage behavior. Based on our observa-
tion of the user requests in the dataset, we choose to use the values from 1 to 5 to represent
the relative cost of user requests. Thus, the final dataset is a sequence of request costs
ranging from 1 to 5 in value for each user. Table 3 summarizes the mapping from the
request size to relative cost values and the distribution of requests in terms of their cost
values in our dataset.

Table 2. Summary of the normal experimental dataset.

Metric Train dataset Normal test dataset

Number of days 16 16
Total number of unique users 4,933 5,252
Total number of requests 36,466 36,474
Avg number of requests per user 7.39 6.94
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Although in our experiments we use an observation window of 16 days to profile
the behavior of normal users and the same observation period is used for detection of
malicious users, the proposed methodology is only sensitive to the resource usage
pattern of users and is not restricted to a specific observation period.

5.2 Attack Scenarios

To conduct an EDoS attack, an attacker needs to specify the behavior of individual bots
by defining the request rate and the requested resources in term of their resource
consumption cost. By varying these two parameters, various attack strategies that an
attacker is likely to adopt can be constructed and the effectiveness of the proposed
detection methodology can be evaluated for those attack strategies. We first consider
attack strategies where the attacker focuses on making requests that result in high levels
of resource consumption. For these attack strategies we assume that the attacker has a
prior knowledge about the rate of requests made by legitimate users, and uses this
knowledge to avoid suspicions by making requests with similar rates as legitimate
users.

In sequel, we briefly describe a number of various attack scenarios that we use to
generate synthetic malicious request sequences to evaluate the performance of the
proposed attribution methodology. These attack scenarios are ordered in a decreasing
order of attack effectiveness from the attacker’s perspective. For the attack scenarios
listed below the number of requests made by individual malicious sources is normally
distributed with parameters µ = 7 and r = 2 which means the number of requests made
by malicious users are not significantly different from those of legitimate users. The
lengths of malicious request sequences drawn for this normal distribution is shared by
all of the attack scenarios.

– Scenario 1 (S1): All malicious requests have a cost of 5.
– Scenario 2 (S2): All malicious requests have a cost of 4 or 5.
– Scenario 3 (S3): The request cost is 5 for 75% of malicious requests. The cost for

the remaining 25% of requests is uniformly distributed between 1 and 4.
– Scenario 4 (S4): 75% of malicious requests have a cost of 4 or 5. The cost for the

remaining 25% of requests is uniformly distributed between 1 and 3.
– Scenario 5 (S5): The request cost is 5 for 50% of malicious requests. The cost for

the remaining 50% of requests is uniformly distributed between 1 and 4.
– Scenario 6 (S6): 50% of malicious requests have a cost of 4 or 5. The cost for the

remaining 50% of requests is uniformly distributed between 1 and 3.

Table 3. Mapping of request sizes to relative cost values.

Request size Relative cost Percentage of requests

< 500 KB 1 86.7
� 500 KB and < 5 MB 2 11.4
� 5 MB and < 50 MB 3 1.9
� 50 MB and < 500 MB 4 0.1
� 500 MB 5 5.4e−03
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5.3 Experimental Results

For each attack scenario, we generate a dataset of malicious requests according to the
description of that attack scenario. Each test dataset consists of generated malicious
request sequences, combined with the request sequences from the normal test dataset.
The normal test dataset is the same for all attack scenarios. Also, in our experiments,
each test dataset contains the same number of normal and malicious sources (5,252).
False Positive Rate (FPR), and False Negative Rate (FNR) are the metrics used for
performance evaluation of the proposed attribution methodology under various attack
scenarios. These metrics are briefly described in the following:

– FPR: The percentage of request sequences generated by legitimate users classified
as malicious. Keeping the FPR under a low threshold is very important. Otherwise,
legitimate users will be denied access to the protected service.

– FNR: The percentage of malicious request sequences generated by sources par-
ticipating in an EDoS attack scenario not detected by the proposed method. Unlike
an Intrusion Detection System (IDS) where it is very crucial not to miss any
intrusions, because a single missed intrusion can result in system compromise, in
our context, missed malicious sequences would only cause some billable fraudulent
resource consumption.

For each attack scenario, the trained model is used for computing the log likelihood
for all request sequences in the test dataset of that attack scenario. In general, the
request sequences from legitimate users which are similar to the data used for training
the model are expected to receive higher log likelihood values. On the other hand,
malicious request sequences representing a resource consumption behavior dissimilar
to that of legitimate users are expected to be assigned lower log likelihood values. Once
the log likelihoods are computed for all request sequences, the detection performance
can be evaluated for different threshold values.

Table 4 shows experimental detection results for the attack scenarios based on the
strategy of focusing on high cost requests using the simple Markov chain model.
Table 5 shows the results for the same attack scenarios using the HsMM. The results
are presented for several different threshold values to demonstrate the trade-off between
higher false positive rates and lower false negative rates and vice versa. For each
threshold value, the resulting FPR and the FNR for each of the six attack scenarios are
presented. As shown, both models can achieve low FPRs for reasonable FNRs. The
HsMM however consistently outperforms the simple Markov chain model for the same
FPR value.

For instance for a FPR of 0.67%, the FNR is 0.00% for the first attack scenario
when the HsMM is used. This means that for a small FPR, all sources generating
malicious requests according to the description of the first attack scenario (S1) are
successfully detected. In comparison, the simple Markov chain Model produces a FNR
of 7.24% for the attack scenario and the same FPR. In our experiments, the last attack
scenario (S6) is the most challenging to detect as it is more similar to requests from
legitimate users. But even for this attack scenario, for a FPR of 0.51%, still close to
70% of malicious request sequences are successfully detected using the HsMM.
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It should be noted that the undetected malicious sequences are usually comprised of
fewer requests compared to the successfully detected malicious sequences. For
instance, when applying a threshold value of –25 for the attack scenario S5 using the
HsMM, about 10% of malicious users are not identified as malicious. The average
number of requests for these undetected malicious users is 3.98 versus 7.23 for the
detected malicious users. This implies that the undetected malicious request sequences
are less effective in terms of fraudulent resource consumption and the more effective
malicious request sequences that are more aggressive in nature run higher risk of
detection.

In our experiments, the FPRs are resulted by legitimate users in the test dataset
generating significantly more requests than the other legitimate users. For instance,
when applying a threshold value of −25 for the HsMM, 35 legitimate users out of 5252
users are incorrectly identified as malicious. On average, each of these 35 users gen-
erates 72 requests. In comparison, the overall average number of requests for all
legitimate users is only 7. Longer request sequences result in lower log likelihood
values and therefore legitimate users generating a large number of requests contribute
to some undesirable false positives. Sometimes a given website may have legitimate
users that use the website in unusual ways. If unusual request patterns are expected
from specific users, false positives can be avoided by ignoring requests from these
known users. In our experiments, the legitimate users with an abnormally large number
of requests are incorrectly identified as malicious.

Table 4. Experimental results for the Markov chain model for the attack strategy of focusing on
high cost requests.

Threshold FPR (%) Attack scenario FNR (%)
S1 S2 S3 S4 S5 S6

−20 2.32 0.00 2.55 0.97 5.79 5.14 13.58
−25 1.35 0.00 6.32 2.30 10.68 8.87 22.51
−30 0.91 0.00 7.81 3.77 14.58 13.40 31.51
−35 0.67 7.24 16.85 11.23 25.08 22.37 43.01
−40 0.46 7.24 21.63 13.08 31.70 28.64 52.36
−45 0.29 16.28 28.66 22.43 42.25 37.93 63.06

Table 5. Experimental results for the HsMM for the attack strategy of focusing on high cost
requests.

Threshold FPR (%) Attack scenario FNR (%)
S1 S2 S3 S4 S5 S6

−15 2.32 0.00 0.00 0.44 1.64 2.76 7.52
−20 1.26 0.00 2.57 2.02 5.62 6.84 15.69
−25 0.67 0.00 2.57 3.56 8.95 10.68 23.67
−30 0.51 7.24 9.04 10.95 16.70 20.13 33.80
−35 0.36 7.24 11.18 15.19 23.38 28.87 45.35
−40 0.21 16.28 18.55 23.59 33.45 38.42 57.60
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Comparison with the naive detection approach: as mentioned previously, a naive
detection approach based solely on the cumulative sum of request costs will suffer high
positive rates. As a concrete example, to achieve a FNR of 0.00% for the S1 attack
scenario, the naive approach will need to identify all users with a cumulative sum of
request costs of 15 or more as malicious. This however will result in a very high FPR of
9.96% making this approach inapplicable in practice. In contrast, as shown in Tables 4
and 5, using the proposed attribution methodology, for the S1 attack scenario all
malicious users can be successfully detected with FPRs less than 1%.

As evidenced by the obtained experimental results, attacks based on the strategy of
focusing on requests with high resource consumption costs can not go undetected. The
alternative for an attacker would be to attempt making requests with a similar distri-
bution of request costs as legitimate users, but in larger quantities to increase the
amount of fraudulently consumed resources.

Tables 6 and 7 show experimental detection results for the attack strategy where the
attacker focuses on making larger numbers of requests that have the same distribution
of request costs as legitimate users. FNRs are reported for various number of requests
per source and the same threshold and FPRs as the previous experiments. As expected,

Table 6. Experimental results for the Markov chain model for the attack strategy of focusing on
high number of requests.

Threshold FPR (%) Number of requests per source FNR
(%)
50 60 70 80 90 100

−20 2.32 3.77 0.72 0.00 0.00 0.00 0.00
−25 1.35 17.02 3.41 0.32 0.00 0.00 0.00
−30 0.91 42.19 14.38 3.24 0.32 0.02 0.00
−35 0.67 67.82 34.22 12.20 2.65 0.30 0.02
−40 0.46 86.27 59.12 29.86 10.45 2.21 0.49
−45 0.29 95.00 79.38 51.71 25.46 8.85 2.70

Table 7. Experimental results for the HsMM for the attack strategy of focusing on high number
of requests.

Threshold FPR (%) Number of requests per source FNR (%)
50 60 70 80 90 100

−15 2.32 6.51 2.11 0.76 0.15 0.02 0.00
−20 1.26 23.42 10.66 3.27 0.74 0.23 0.06
−25 0.67 49.58 20.91 9.69 4.23 1.52 0.74
−30 0.51 82.77 51.79 25.32 10.62 4.09 2.04
−35 0.36 94.94 79.59 54.72 24.68 12.32 6.78
−40 0.21 98.19 92.90 79.99 53.98 27.88 13.23
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malicious users are more likely to be detected when making higher number of requests.
For instance, when malicious clients are making 70 requests, for a FPR of 0.67%, more
than 90% of malicious sources are successfully detected by the HsMM. For the
experiments involving long sequences of malicious requests, the performance of the
two models are comparable and none of them consistently outperforms the other model
for the same FPR value. However, when the number of requests per source is 80 or
more, the simple Markov chain model seems to produce lower FNRs.

It should be noted that from the standpoint of an EDoS attacker, regular requests
not causing high levels of resource consumption are not very helpful and this attack
strategy only makes sense when malicious sources are able to make a significant
number of regular requests and manage to remain undetected.

6 Discussion

The proposed EDoS attribution methodology directly considers the cost of user
requests as the metric to model the behavior of individual users. This makes it very
challenging for malicious users involved in an EDoS attack to be effective in terms of
fraudulent consumption of billable cloud resources and at the same time managing to
remain undetected. As demonstrated experimentally, malicious users exhibiting
anomalous resource consumption behavior can be quickly identified and prevented
after making only a small number of suspicious requests. An attacker can attempt to
optimize the requests made by individual participating bots by learning and mimicking
the request pattern of top legitimate users in terms of higher usage footprint. However,
it is unlikely for an attacker to be able to access historical data on requests of legitimate
users or intercept communications to collect such data to optimize the behavior of
participating bots. Even assuming the lack of such restrictions, applying such optimized
request patterns can still significantly limit the effectiveness of the participating bots.
An attacker can try to compensate for the limited utility of individual bots by
employing a much larger botnet. However, larger botnets could be very difficult to
locate, rent and operate and may not be practical in practice.

The proposed EDoS attribution methodology only relies on resource usage foot-
print of users for detecting malicious sources. For future work, we plan to incorporate
other aspects of user behavior to further improve detection of malicious sources par-
ticipating in EDoS attacks. For instance, the popularity of requested documents can be
computed for each request cost bucket, and this can be considered when computing the
likelihood of observed request sequences. In general, attackers are not expected to
know the distribution of document popularity on victim websites. Focusing on requests
involving documents with the highest resource consumption can result in deviation
from the normal document popularity distribution and this additional metric can help to
improve the detection performance.
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7 Conclusion

The consumers of public cloud services are charged for computing resources that they
use. This pricing model exposes the cloud consumers to EDoS attacks where the
adversary seeks to increase the financial burden of the victim service by making
fraudulent requests that result in high consumption of billable resources.

We have presented a Markov-based anomaly detection scheme to profile the
behavior of legitimate users in terms of their resource consumption. To detect users
participating in an EDoS attack, the likelihood of request sequences generated by
individual clients during a specific period of time is computed by the trained model.
Users with likelihood values smaller than a threshold are identified as malicious. The
effectiveness of the proposed attribution methodology for identifying malicious sources
engaged in fraudulent use of cloud resources has been demonstrated using experimental
evaluations for various attack scenarios. While most of previously proposed methods
are only effective when malicious sources make significantly more requests than
legitimate users, our proposed method is able to detect both malicious sources making
an anomalous number of random requests, as well as more subtle malicious sources
with a request rate similar to that of legitimate users but focusing on requests that are
more costly for the victim.
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Abstract. Data confidentiality and availability are of primary concern
in data storage. Dispersal storage schemes achieve these two security
properties by transforming the data into multiple codewords and dis-
persing them across multiple storage servers. Existing schemes achieve
confidentiality and availability by various cryptographic and coding algo-
rithms, but only under the assumption that an adversary cannot obtain
more than a certain number of codewords. Meanwhile existing schemes
are designed for storing archives. In this paper, we propose a novel dis-
persal storage scheme based on the learning with errors problem, known
as storage with errors (SWE). SWE can resist even more powerful adver-
saries. Besides, SWE favorably supports dynamic data operations that
are both efficient and secure, which is more practical for cloud stor-
age. Furthermore, SWE achieves security at relatively low computational
overhead, but the same storage cost compared with the state of the art.
We also develop a prototype to validate and evaluate SWE. Analysis
and experiments show that with proper configurations, SWE outper-
forms existing schemes in encoding/decoding speed.

Keywords: Dispersal storage · Data confidentiality · Data availability ·
Dynamic data operations · The learning with errors problem

1 Introduction

Data is wealth for both individuals and companies. Guaranteeing data confiden-
tiality and availability are of primary concern in data storage [1–3]. Because of
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vulnerabilities in storage software, unreliability of disk drives and so on, stor-
ing data in users’ personal computers cannot absolutely guarantee data confi-
dentiality and availability [4]. Thus more and more users resort to cloud stor-
age. However, cloud storage still cannot absolutely guarantee confidentiality and
availability [5]. Amazon S3 suffered seven-hour downtime in 2008 [6]. Facebook
leaked users’ contact information in 2013 [7]. iCloud leaked users’ private infor-
mation in 2014 [8]. All similar incidents lead users to focus on designing storage
systems which can provide data confidentiality and availability [3]. Dispersal
storage schemes are techniques to guarantee these two security properties.

Existing dispersal storage schemes are (k, n) threshold schemes, where k is the
threshold [3]. In these schemes, data is transformed into n related codewords.
Then the codewords are stored in separate storage servers, which belong to
different administrative and physical domains. Meanwhile, storage servers can
belong to either the same service provider or (more favorably) different providers,
respectively. Even if (n − k) out of the n codewords are corrupted or completely
unavailable, the data can still be recovered. With fewer than k out of the n
codewords, no information of the data can be obtained.

In POTSHARDS [9], Shamir’s secret sharing algorithm [10] is used as the
dispersal scheme. Shamir’s algorithm [10] achieves information-theoretical secu-
rity. However, the storage overhead of Shamir’s algorithm is n times of the data,
and the encoding time linearly grows with n × k [3]. Compared with Shamir’s
algorithm, Rabin’s IDA [11] improves encoding/decoding speed, and saves stor-
age overhead. However, data confidentiality of Rabin’s IDA is far less. SSMS [12]
provides a computationally secure dispersal scheme. As far as we know, AONT-
RS [3] is the best scheme that achieves balance between confidentiality and data
processing performance. Meanwhile, data integrity of AONT-RS is protected.

Existing schemes [3,10–12] achieves a different level of data confidentiality
with different performance and storage overhead. However, existing schemes still
suffer several problems. First, existing schemes achieve data confidentiality under
the assumption that an adversary cannot obtain more than (k − 1) out of the
n codewords. However, this assumption is unsuitable for some dispersal storage
scenarios, such as a user setting one login password for all storage servers, public
cloud storage, etc. In those scenarios, an adversary can easily obtain k out of the
n codewords and then recover users’ data. Second, existing schemes [3,10,12] are
designed for storing archives or static data. In these schemes, while executing
dynamic operations, users are required to download and decode corresponding
codewords, which is inefficient. However, data is frequently updated by users,
especially in cloud storage [13,14]. Thus, existing schemes may be unsuitable for
many storage scenarios.

In this paper, we propose a novel computationally secure dispersal storage
scheme based on the learning with errors (LWE) problem [15], called storage with
errors (SWE). To the best of our knowledge, SWE is the first work that applies
LWE into dispersal storage schemes. The key idea of SWE is reforming LWE to
meet the requirements of dispersal storage. Then we set the secret information
in LWE to be the stored data. After the data is processed, we can utilize k
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out of the n codewords to recover the data, which guarantees data availability.
The hardness of LWE guarantees data confidentiality. Meanwhile, the number
theoretic transform is applied to optimize arithmetic operations in SWE.

The merits of SWE are three-fold: (i) Analysis shows that under our assump-
tions, SWE with the same storage as the state of the art, achieves higher con-
fidentiality than existing schemes. In SWE, even though an adversary obtains
all the codewords, it still cannot recover the data. (ii) As SWE has the additive
homomorphic property and each column of the codeword is independent of oth-
ers, SWE favorably supports efficient and secure dynamic data operations (i.e.,
modifying, deleting, and appending). (iii) With proper configurations, SWE
outperforms the state of the art in encoding/decoding speed.

The rest of this paper is organized as follows. Technical background is intro-
duced in Sect. 2. We then present preliminaries in Sect. 3. We detail design and
analysis of SWE in Sects. 4 and 5, respectively. Experiments and evaluations are
shown in Sect. 6. Section 7 presents the conclusion.

2 Technical Background

2.1 Dispersal Algorithms

In (k, n) threshold dispersal storage schemes, n−k
n represents the fault-tolerance

ability (i.e., even though any (n − k) out of the n codewords are corrupted
or completely unavailable, the data can still be recovered). The key part of
dispersal schemes shown in Fig. 1 is also called the dispersal algorithm (DA).
Here, G is the dispersal or generator matrix, which is an n × k integer matrix.
G is public. d is the data vector with k elements. c is the codeword vector with
n elements, and c = G×d. Elements of d or c are integers. Each element of c is
stored in a different storage server. Thus even if (n − k) storage servers are out
of service, d can still be reconstructed. Because of the distributed property of

Fig. 1. The key part of dispersal schemes. Fig. 2. An example of generating
data matrix from original data.
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storage servers, dispersal storage schemes can survive from non-security-related
events (e.g., power failure, water damage).

The dispersal matrix G should satisfy that any k rows of G can constitute
an invertible matrix. Thus we can reconstruct d from any k intact codewords.
When reconstructing d, if the i-th codeword is chosen, the i-th row of G should
be chosen. Let c′ be the vector which has k codewords, G′ be the corresponding
k × k sub-matrix of G. Then the invertible matrix of G′ multiplies c′ yield d.

2.2 The Learning with Errors (LWE) Problem

The learning with errors (LWE) problem is a generalization of the famous “learn-
ing parity with noise” problem to larger modulus. The most attractive feature
of LWE is the connection of worst-to-average-case [15–18]. LWE has two forms
[15]: search-LWE and decision-LWE. We apply search-LWE in SWE.

Definition 1. (search-LWE[15]). Let n, k ≥ 1 be integers, q be an integer
and q = q(k) ≥ 2, χ be a distribution which can be Gaussian-like distribution or
uniform distribution on Zq, and x ∈ Zk

q be the secret information. We donate by
Lk

x,χ the probability distribution on Zn×k
q ×Zn

q obtained by choosing A ∈ Zn×k
q

uniformly at random, choosing the “noise” or errors vector e ∈ Zn
q according

to χn, and returning (A,Ax + e) = (A, c) ∈ Zn×k
q × Zn

q . search-LWE is the
problem of recovering x from (A, c) ∈ Zn×k

q × Zn
q sampled according to Lk

x,χ.

Döttling et al. [16] give the first work that applies uniform error-distribution
(i.e., error-distribution is U [−r, r]) to LWE. This work proves that instances of
LWE with uniform errors are as hard as lattice problems. Furthermore, the result
of [16] shows that the matrix-version of LWE (i.e., A ∈ Zn×k

q , X ∈ Zk×l
q , and

E ∈ U [−r, r]n×l) is also hard.

2.3 Related Work

Next, we introduce some dispersal storage schemes that are most related to our
work, which are summarized in Table 1.

Shamir’s algorithm [10] can guarantee information-theoretic security of data.
However, the storage overhead of Shamir’s algorithm is n times of the data.
Besides, encoding/decoding speed of Shamir’s algorithm is slow. Compared with
Shamir’s algorithm, SWE improves data processing performance, and reduces
storage overhead.

In Rabin’s IDA [11], the non-systematic erasure code (e.g., the dispersal
matrix is the Vandermonde matrix [19]) is applied to disperse data to achieve
availability. Rabin’s IDA saves time and reduces storage overhead to n/k times
of the data. However, data confidentiality of Rabin’s IDA is far less and would be
unacceptable in many storage scenarios [3]. Compared with Rabin’s IDA, SWE
achieves higher confidentiality.

In SSMS [12], a symmetric cryptographic algorithm is applied to encrypt
data. Then the ciphertext is dispersed using a erasure code. The key used in the
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Table 1. Comparison with existing schemes. “IS” represents information-theoretical
security. “CS” represents computational security. “b” represents data size.

Schemes Security Techniques Storage

Shamir’s algorithm [10] IS Shamir’s secret sharing nb

Rabin’s IDA [11] IS Non-systematic erasure code nb
k

SSMS [12] CS Encryption algorithms &
non-systematic erasure codes

nb
k

AONT-RS [3] CS AONT & systematic
Reed-Solomon code

nb
k

SWE CS LWE nb
k

cryptographic algorithm is dispersed using Shamir’s algorithm. Bessani et al. [20]
apply the idea of SSMS to propose the first cloud-of-clouds storage application.

AONT-RS [3] is the backbone dispersal algorithm of a well-known stor-
age company, Cleversafe. In AONT-RS, a variant of All-Or-Nothing Transform
(AONT) is applied to achieve confidentiality. Meanwhile, the systematic Reed-
Solomon code (RS) [19] (i.e., the first k rows of the dispersal matrix compose a
k × k identity matrix) is applied to achieve availability. Besides, an extra word,
“canary”, which has a known and fixed value, is applied to check integrity of
the data when it is decoded. SSMS, Rabin’s IDA, and AONT-RS have approxi-
mate the same storage overhead. Compared with AONT-RS, SWE with proper
configurations is faster than AONT-RS in encoding/decoding speed.

Furthermore existing schemes [3,10–12] guarantee data confidentiality under
the assumption that an adversary cannot obtain more than (k − 1) out of n
codewords. However, SWE can guarantee data confidentiality even though an
adversary obtains all the codewords. Besides, SWE favorably supports efficient
and secure dynamic data operations, which is more practical in cloud storage.

3 Preliminaries

3.1 Notation

– Zq: The mathematic structure of group. q is a prime.
– x ← Y: x is independently, randomly, and uniformly chosen from the distri-

bution or set Y.
– A: The dispersal matrix of SWE which is an n×k integer matrix. Ai,j ← Zq.
– D: The data matrix which represents the data to be stored. D is a k × l

integer matrix. D ∈ Zk×l
q .

– f(s, r): The pseudorandom function whose inputs are s and r. Each outputs
of f(s, r) is independently, randomly, and uniformly chosen from the uniform
distribution U [−r, r].

– E: The error matrix of SWE. which is just like the matrix E in LWE. E is
generated by using f(s, r) and thus Ei,j ← U [−r, r].
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Fig. 3. The system model of SWE.

– C: The codewords matrix which is the result of (A × D + E) mod q.
– qx: The prime which is the smallest prime bigger than 2x. For examples,

q2048 = 22048 + 981, q1024 = 21024 + 643, q768 = 2768 + 183, and so on.

3.2 System Model and Design Goals

Figure 3 shows the system model of SWE. There are three entities in SWE: user,
local server, and storage server.

– User: An entity that applies SWE to store data. A user can be a person, a
proxy, a storage gateway and so on.

– Local server: Each user has its own local server and stores s, r, q, n, k, l, A,
and so on in it. Among these, only s should be securely stored. Users calculate
C, recover D, execute dynamic operations and so on local servers.

– Storage server: An entity which provides storage and computing service. All
codewords C are stored in storage servers. Different storage servers belong to
different administrative and physical domains. Storage servers can belong to
either the same service provider or different providers, respectively.

We assume that storage servers are honest but curious. Thus, storage servers
should honestly execute the operations which are authorized by users. However,
storage servers may pry into users’ data. Meanwhile, an adversary can obtain
all the codewords, but it cannot obtain s which is kept secret by users.

Existing schemes guarantee data confidentiality under the assumptions that
an adversary cannot obtain more than (k − 1) out of the n codewords, and stor-
age servers will not pry into users’ data. However, in practical storage scenarios,
data may be stored in public clouds. A user may set one login password for all
storage servers. Moreover, storage vendors may collude to pry into users’ data.
In those scenarios, obtaining more than (k − 1) out of the n codewords is feasible
for an adversary. As long as an adversary obtains k out of the n codewords, it
can recover users’ data. Hence, our assumptions are more practical than those
of existing schemes.

Based on the above assumptions, we design SWE with the following goals.

– Data confidentiality: SWE can guarantee that even if an adversary obtains
all the codewords, it still cannot recover users’ data.

– Data availability: SWE can guarantee that even if any (n − k) out of the n
codewords are corrupted or unavailable, the data can still be reconstructed.
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– Efficient and secure dynamic data operations: While executing dynamic data
operations, users are not required to download or decode codewords. An
adversary cannot recover users’ data from dynamic operations.

– Efficient data processing: With proper configurations, SWE outperforms the
state of the art in encoding/decoding speed.

4 A New Dispersal Scheme: SWE

Existing schemes [3,10–12] achieve confidentiality under the assumption that an
adversary cannot obtain more than (k − 1) out of the n codewords. Some schemes
achieve high confidentiality but require too many storage and computational
costs. Although some schemes reduce storage and improve encoding/decoding
speed, these schemes achieve relatively weak confidentiality. Meanwhile, existing
schemes are designed for archives storage, which is inefficient in dynamic opera-
tions. Meanwhile, trivial applying those schemes in dynamic data operations also
leak users’ data information. To deal with these limitations, we propose a novel
dispersal storage scheme, SWE. SWE can achieve higher confidentiality, avail-
ability, and fast encoding/decoding speed. Meanwhile, SWE favorably supports
efficient and secure dynamic data operations.

4.1 The Basic Scheme

Technical highlights: In order to build a secure and efficient dispersal stor-
age scheme, we reform LWE and make it meet the requirements of dispersal
storage. We use the matrix-version of LWE (i.e., A ∈ Zn×k

q , X ∈ Zk×l
q , and

E ∈ U [−r, r]n×l) [16] to construct SWE. We consider X in LWE to be the data
matrix D, A to be the dispersal matrix, and the result of (A × D + E) mod q
to be the codewords C. Because of the hardness of LWE, it is difficult for an
adversary to recover D by obtaining A, C, r, and q. As A is an n × k matrix
and n > k, we can use any k rows of C to recover D and thus SWE achieves
availability. We also use uniform errors (i.e., Ei,j ← U [−r, r]), small dimension
A, exponential r and q, and the number theoretic transform and its inverse to
build the secure and efficient scheme.

We do not simply use erasure codes and a stream cypher to generate E to
build a computationally secure dispersal scheme. Because such trivial method
requires that Ei,j is no shorter than (A × D)i,j . Obviously, the bit size log r of
Ei,j in LWE is shorter than the bit size log q of (A×D)i,j , which saves the time
of generating E.

SWE consists of three phases: (i) setup, (ii) computing the codewords, called
encoding, and (iii) recovering the data, called decoding.

4.1.1 Setup
During setup, proper parameters of SWE should be chosen. Then, the dispersal
matrix A, the data matrix D, and the error matrix E are generated.
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Table 2. Examples of parameters in LWE and SWE.

Schemes k q r

LWE 200 235 215

SWE 10 q768 �√q768�

Choose parameters: As A ∈ Zn×k
q and E ∈ U [−r, r]n×l is generated by using

f(s, r), parameters n, k, q, r, and s should be chosen. Arbitrarily setting parame-
ters of SWE will lead to an insecure dispersal scheme. Directly applying common
parameters of LWE into SWE may not be able to achieve data availability or
efficient encoding/decoding. Thus, when users choose parameters of SWE, both
security and performance should be taken into consideration.

n−k
n represents the fault-tolerance ability. Larger n−k

n means higher availabil-
ity and more storage overhead. For SWE, the storage overhead of C is n

k times
of that of D. However, higher fault-tolerance also means that an adversary needs
to compromise fewer storage servers to recover users’ data, which leads to rela-
tively weaker security. Therefore users should set n−k

n according to the demand
of availability and security.

Common instances of LWE such as LWE shown in Table 2 cannot satisfy
that any k rows of A can constitute an invertible matrix. Therefore, we cannot
use any k out of the n codewords to reconstruct the data and thus SWE cannot
guarantee data availability. However, if q is a large integer, randomly generating
A can meet the demand of the dispersal matrix. Besides, in order to compute
multiplicative inverse numbers in decoding, users should set q to be a prime too.
Thus, q should be a large prime in SWE.

Meanwhile, r and s also affect the security of SWE. If r and s are too small,
an adversary can easily recover E by brute force attacks, and then recover the
data. Hence the probability of successful guessing r and s should be negligible.
In SWE, r = �√q�. s is a random string, whose length is longer than 256 bits.

Directly increasing q and r of common instances of LWE can develop secure
dispersal schemes, but these schemes are inefficient and thus impractical. Such
inefficient schemes cannot be applied to performance-sensitive large data storage
scenarios. For the sake of security and high-performance, we should set n and k
to be small integers such as the example shown in Table 2.

After proper parameters are chosen, A, D, and E are generated as follows.
Generate A: Ai,j ← Zq. In SWE, as the smallest q is q768, any k rows of

A can constitute an invertible matrix.

Theorem 1. If q is a large prime, A ∈ Zn×k
q and n > k, then any k rows of A

constitute an invertible matrix.

Proof. We calculate the invertibility probability of a k × k sub-matrix of A ∈
Zn×k

q . Specifically, the first vector of A can be any nonzero vector, of which there
are qk − 1 (i.e., qk − q0) choices. The second vector can be chosen from qk − q1,
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etc. Hence, the number of ways to choose vectors of A is

(qk − q0)(qk − q1)...(qk − qn−1) =
n∏

i=1

(qk − qi−1).

So, the probability that any k × k sub-matrix of A is invertible is
∏n

i=1(q
k − qi−1)

qnk
=

n∏

i=1

(1 − qi−1−k) < 1 − 1
q
.

As q is a large prime, the invertibility probability is extremely close to 1.
Therefore, we always suppose that any k rows of A constitute an invertible
matrix. �	

Generate D: D ∈ Zk×l
q is generated from the original data. Because of q = qx,

each element of D is transformed from corresponding x bits of the data. For
example, if q = q1024, Di,j is transformed from corresponding 1024 bits of the
original data. Users generate the first column of D, then the second column and
so on. Figure 2 illustrates an example of generating D. If the last column of
D has fewer than k elements, the remaining elements can be filled with 0. For
the sake of confidentiality, if the entropy of Di,j is too low, users can add some
random bits in Di,j .

Generate E: In order to build an efficient scheme, we apply uniform errors
rather than Gaussian errors in SWE. E is generated by using f(s, r) and thus
Ei,j ← U [−r, r]. For the sake of confidentiality, when encoding different data
matrices, users should apply f(·) to generate new errors matrices. The same
inputs of f(·) can generate the same E.

In practical, A, n, k, q, and r can be public. E should be kept secret. However,
users do not need to securely store E in their local servers. As E is generated
by using f(s, r), only s should be kept secret. In practical, if a user does not
want to securely store s, the user can assign a unique identifier to each of its
data files, called file-id. Then the user chooses a strong password. Subsequently
the user combines the password and the file-id of corresponding D as inputs of
a pseudorandom function. The output of the pseudorandom function is s. Thus
even if the user stores many files, the user only needs to remember the password.

In many storage scenarios (e.g., cloud storage), securing storage of encryption
keys (e.g., s in SWE) is not a notoriously difficult problem. In these scenarios, we
do not want to keep secret of data for a very long lifetimes or periods of decades
(actually, we intend to design a storage system for dynamic data). Thus, an
adversary cannot recover users’ data by waiting for cryptanalysis techniques to
catch up the encryption algorithm. Meanwhile, storing s or encryption keys in
a user’s local server also saves the storage overhead compared with AONT-RS
and SSMS.
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Fig. 4. An example of encoding in
SWE.

Fig. 5. An example of decoding in
SWE.

4.1.2 Encoding
After A, D, and E are generated, encoding is calculating (A × D + E) mod q
to get the codewords C. Figure 4 shows an example of encoding, where n = 5,
k = 3. Specifically, Ci,j = (

∑k−1
x=0 Ai,x × Dx,j + Ei,j) mod q.

As Ai,j and Di,j are all large integers, the complexity of conventional multi-
plication is O(m2), where m = max{|Ai,j |, |Di,j |}/w (| · | represents the length
of · and w is the data bus width). The number theoretic transform can reduce
the complexity to O(m log m). So, when implementing SWE, we use the number
theoretic transform and its inverse to optimize encoding/decoding speed.

After generating C, users should store C in distributed storage servers based
on their storage strategies. For example, if n = 4, k = 3, and l = 5, a user stores
the four rows of C in Amazon S3, Windows Azure, Cleversafe, and Oceanstore,
respectively. Even if one of the cloud storage is out of service, the user can
recover D using the remaining codewords. SWE can also be used to protect data
avoiding suffering vendor lock-in [21]. Furthermore, users can take full advantage
of physically distributed storage servers to achieve better service (e.g., achieving
codewords from nearer storage servers reduces downloading time).

4.1.3 Decoding
As any k rows of A can constitute an invertible matrix, we can recover the data
D using any k intact out of the n codewords. Decoding is recovering D using k
intact out of the n codewords of C, the corresponding sub-matrix of A, and the
corresponding sub-matrix of E. Figure 5 shows an example of decoding, where
n = 5 and k = 3. A user downloads C0,0, C1,0, and C4,0 from storage servers.
The user generates E0,0, E1,0, and E4,0 by using f(s, r). Then, the user solves
the following liner congruential equations with single modulus q to recover D.

⎧
⎪⎨

⎪⎩

(A0,0D0,0 + A0,1D1,0 + A0,2D2,0 + E0,0) mod q = C0,0

(A1,0D0,0 + A1,1D1,0 + A1,2D2,0 + E1,0) mod q = C1,0

(A4,0D0,0 + A4,1D1,0 + A4,2D2,0 + E4,0) mod q = C4,0

.
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Table 3. The procedure of modifying data in SWE.

If the user applies the Gaussian elimination to solve the above equations, it
can recover D, but this method is inefficient. In SWE, we store the invertible
sub-matrix of A corresponding to commonly used codewords in local servers,
Â. Let C̃ be the codewords, Ẽ be the corresponding sub-matrix of E. Thus,
decoding is calculating Di,j = (

∑k−1
x=0 Âi,x × (C̃x,j − Ẽi,j)) mod q.

Integrity checking: In AONT-RS, an extra word of data, “canary”, which has
a fixed value, allows users check the integrity of the data when it is decoded. In
SWE, users do not need to add such a fixed value word. In SWE, users only need
to retrieve (k + 1) codewords and execute two times of decoding using different
k codewords. If the two decoding results are the same, the data is intact and
thus we check the integrity of the data.

4.2 Support for Dynamic Operations

So far, we assume that users’ data is static. However, data is frequently updated
by users especially in cloud storage scenarios [13,14]. Therefore, the investiga-
tions on dynamic data operations are also of paramount importance.

When a user changes a file, we suppose the user changes the file-id to a new
one. Then the user combines the new file-id and its password as s′. Then the user
utilizes f(s′, r) generating e′. If the entropy of the data in dynamic operations
is low, for the sake of confidentiality, the user can add some random bits in it.
Then the user execute corresponding dynamic operations.

Modifying: Suppose that a user wants to modify Di,j to Di,j + m. The user
only needs to modify the (j + 1)-th column of C. Let dj be the (j + 1)-th
column of D, cj be the (j + 1)-th column of C, and ej be the (j + 1)-th column
of E. Table 3 illustrates the operations. Specifically, (i) The user generates the
new vector d′

j in which the (i + 1)-th element is m and other elements are 0.
(ii) The user utilizes f(s′, r) to generate the error vector e′

j. (iii) The user
calculates c′

j = (A×d′
j +(e′

j −ej)) mod q. (iv) The user stores elements of c′
j to

corresponding storage servers and authorizes storage vendors to do the addition
operation. (v) Storage vendors compute c̃j = (c′

j + cj) mod q.
As an adversary cannot reconstruct e′

j − ej, it cannot recover D or d′
j from

c′
j and c̃j . When decoding, the user can recover Di,j + m with A, e′

j, and c̃j .
Subtraction and multiplication can use the same way mentioned above.
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Deleting: This operation can be divided into two groups: (i) Deleting a whole
column of D. As each column of the codewords C is independent of others, users
only need to delete the column of C corresponding to the column of the deleted
data. (ii) Deleting some elements of D in a column. Users apply the modifying
operation by setting deleted numbers to corresponding positions.

Appending: When users want to append data to D, they do not need to change
the codewords of D. They should generate the new data matrix D′ which is
transformed from the appending data. Then they generate the new error matrix
E′ using f(·), and then they encode D′ to get the corresponding codewords C′.
At last, users store C′ to corresponding storage servers.

In a word, SWE favorably supports efficient and secure dynamic data oper-
ations. The reasons are as follows. (i) As SWE has the additive homomorphic
property, the addition of C equals the addition of D. Therefore, users are not
required to download or decode C while executing dynamic data operations. (ii)
Each column of C is independent of others. Therefore, users only need to change
the columns of C corresponding to the changed columns of D. (iii) If C′ is the
codeword generated in dynamic operations and C is the original codewords, an
adversary cannot recover users’ data from C′ or C due to the hardness of LWE.

5 Scheme Analysis

In this section, we analyze SWE and comparable schemes form confidential-
ity, availability, and performance. As SSMS [12] does not specify a dispersal or
encryption algorithm, we do not include it for the comparison.

5.1 Confidentiality

In SWE, we assume that different storage servers belong to different administra-
tive and physical domains. Storage servers are honest but curious. An adversary
can obtain all n codewords, except for s. We consider the attacking scenario that
an adversary possesses some codewords and wants to verify whether the data
that it encodes matches some predetermined value. Furthermore, if an adversary
can verify that one element of D matches, then the adversary can be assured that
the rest matches. Although this scenario is generous, many realistic attacking
scenarios can be reduced to this one [3].

Shamir’s algorithm [10]: If an adversary obtains k codewords, it can recover
the data by solving the k liner equations. If an adversary obtains fewer than k
codewords, it cannot discover any information of the data. Suppose that d is
the data whose length is w bits. Each codewords is no shorter than w bits. If an
adversary obtains (k − 1) codewords, it has to enumerate 2w times to generate
the k-th codewords. Every possible value of d is equal. Thus, Shamir’s algorithm
achieves information theoretic security.

Rabin’s IDA [11]: In this dispersal scheme, the data is dispersed by the non-
systematic Reed-Solomon code. Specifically, c = G × d, where G is the Vander-
monde matrix and is public. Hence, there is no randomness in the codewords.
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Even if an adversary obtains one element of c, it can find some information of
d by verifying that a codeword has a predetermined value.

AONT-RS [3]: The variant of AONT (i.e., the AONT utilizes AES-256 as
“generator” and SHA-256 as “hash function”) is applied in AONT-RS to guar-
antee data confidentiality. If an adversary obtains k codewords, it can compute
the hash of encrypted data, h. Since the last element of the AONT package is
key⊕h, the adversary can recover the encryption key by computing key⊕h⊕h.
Then the data can be recovered. If an adversary obtains fewer than k codewords,
in order to find some information of the data, it has to enumerate 2256 times.

SWE: We analyze the confidentiality of SWE by using the brute force attack
and the Arora-Ge algorithm [22].

(i) Scenario 1: An adversary knows f(·) (i.e., the function of generating errors
e). We utilize the brute force attack to analyze the confidentiality of SWE.
If an adversary obtains k codewords, it has to figure out s to recover the
data d. Let z be the length of s. Hence, the adversary has to enumerate
2z times to recover d. In SWE, s is longer than 256 bits. If an adversary
obtains fewer than k codewords, it cannot find any information of d. For
example, an adversary obtains (k − 1) codewords. In order to recover d, it
has to enumerate at least 2z+q768 times.

(ii) Scenario 2: An adversary does not know f(·). As different users can utilize
different pseudorandom generators to implement f(·) as long as ei,j ←
U [−r, r], f(·) can be kept secret. Therefore, this storage scenario is common
in practical. In this scenario, we utilize both the brute force attack and the
Arora-Ge algorithm [22] to analyze the confidentiality of SWE.

(ii-A) The brute force attack: We consider this attack in two cases. The first
case is to enumerate e to recover d for an adversary obtaining k code-
words. In SWE, an adversary has to enumerate (2r + 1)n times. If an
adversary obtains fewer than k codewords, it cannot discover any infor-
mation of d. There is another exhaustive search method [23] for solving
d, however, the method needs more than 2k codewords to transform
the LWE instances to norm form of LWE. In the second case, the
entropy of errors e is determined by s and the total complexity of
brute force attack is 2z times, where z is the length of s. Compared
with the above two cases, we set the r is enough large to make that
the complexity of brute force attack is at least 2z. In our scheme, the
smallest r is �√q768�, which satisfies the requirement.

(ii-B) The Arora-Ge algorithm: The idea of Arora-Ge [22] is generating a non-
linear errors-free system of equations from LWE samples. We adapt
the results of Arora-Ge from LWE with Gaussian errors to LWE with
uniform errors. If an adversary has the computational power as the
Arora-Ge algorithm, the time of recovering the data is kO(r). However
this method needs O(k2r+1) codewords.

Theorem 2. Assume that r > 0, (A,Ad + e) = (A, c) ∈ Zn×k
q × Zn

q , and
the uniform distribution of errors is U [−r, r], then the time complexity of the
Arora-Ge algorithm is kO(r).



A Secure and Fast Dispersal Storage Scheme Based on LWE 405

Proof. The polynomial generated in the Arora-Ge can be P (x) = X
∏r

i=1(X− i).
Assume that q > (2r + 1)n and 1 ≤ n ≤ (

k+1
2

)
, and generate f1, ..., fn, where

fl = P (cl − ∑k
j=1 xjAj,l). fH

1 , ..., fH
n are linearly independent with probability

larger than 1 − (2r+1)n
q according to Schwartz-Zippel-Demillo-Lipton Lemma

[22]. P (·) is monomials polynomial and has degree DAG ≤ 2r+1. Then the time
complexity of Arora-Ge algorithm is kO(DAG) = kO(r). �	

There are other algorithms which can assess concrete hardness of LWE such
as BKW and other algorithms developed from BKW [23]. However, these algo-
rithms are designed for standard instances of LWE with large k and relatively
small q such as the example shown in Table 2. Contrary to LWE, SWE has rel-
atively small k and large q. Meanwhile, BKW work in the assumption that an
adversary can query oracle polynomial times. However, in dispersal storage sce-
narios, an adversary can obtain at most n codewords. Thus BKW is unsuitable
for assessing the confidentiality of SWE.

From the above analysis, we can see that SWE achieves higher confidentiality
than existing schemes under our assumptions. Although SWE has small k and
exponential q, it still can guarantee data confidentiality. Furthermore, q and r
are important to the confidentiality of SWE. When selecting parameters of SWE,
we should set q to be large integers.

5.2 Availability

SWE and many existing schemes, such as Shamir’s algorithm [10], Rabin’s IDA
[11], AONT-RS [3], etc., can guarantee data availability even though (n−k) out
of the n codewords are corrupted or completely unavailable. Therefore, larger
n−k

n means higher availability. However, larger n−k
n also means more storage

overhead and relatively lower security (i.e., an adversary needs to compromise
fewer storage servers to reconstruct the data).

With the same data availability, the storage overhead of SWE is the same
as the state of the art. For example, the data is 10 MB, k = 3, and n = 5. For
Shamir’s algorithm, as each codewords has the same length as the original data,
the storage overhead is 5 × 10 = 50 MB. For SWE, Rabin’s IDA, and AONT-
RS, Ci,j has the same length as Di,j . Thus SWE, Rabin’s IDA, and AONT-RS
require approximately the same storage overhead, 5

3 × 10 ≈ 16.7 MB.

5.3 Performance

We suppose that the data D is 4 KB, k = 6, and n = 12. As multiplication is
the most time consuming operation, we use the number of multiplications as the
metric for comparing various algorithms.

Shamir’s algorithm: To apply Shamir’s algorithm, we divide D into
4096 bytes, d0, ..., d4095. Each of the 12 slices, S0, ..., S11, is composed of 4096
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bytes, si,0, ..., si,4095. si,j is a function of dj and rj,x. Specifically,

si,j = dj ⊗
5∑

x=1

(i + 1)x × rj,x,

where rj,x is a random byte. The arithmetic is over Galois Field, GF (28). The
number of multiplications is 12 × 5 × 4096 = 245760.

Rabin’s IDA: With Rabin’s IDA, we append 2 bytes to D, and divide it into
6 × 683 bytes, d0,0, ..., d5,682. Subsequently, we calculate the 12 × 683 codewords
using the non-systematic Reed-Solomon coding. Specifically,

ci,j =
5∑

x=0

(i + 1)x × dx,j .

The arithmetic is over GF (28). Therefore, the number of multiplications is 12×
6 × 683 = 49176.

AONT-RS: With AONT-RS, we utilize AES-256 as “generator” and SHA-
256 as “hash function” in its AONT phase. We use the systematic (6, 12)
Reed-Solomon code over GF (28) in its RS phase. We divide D into 256 128-
bit elements, d0, ..., d255. Then we add 128-bit “canary”, d256. We choose key
to be 256 random bits and compute ci = di ⊕ E(key, i + 1). Next, we calculate
h = H(c0, ..., c256). Subsequently, we set c257 = h ⊕ key. As with the RS phase,
we add 2 bytes and then divide the 4146 bytes into 6 × 691 bytes slices, which
are also the first 6 × 691 codewords. Subsequently we calculate the last 6 × 691
codewords over GF (28). AES-256 calls 14 times of the rounds function. Each
rounds function of AES-256 equals six times of exclusive-or. We consider each
rounds function of AES-256 to be six times of multiplication. The rounds func-
tion of SHA-256 has 64 iterations, and each input calls one time of the rounds
function [24]. We consider each iteration in the rounds function of SHA-256 to
be one time of multiplication. Thus the number of multiplications in AONT
phase is 14 × 257 × 6 + 64 × 257 = 38036. The number of multiplications in RS
phase is 6 × 6 × 691 = 24876. The number of multiplications in AONT-RS is
38036 + 24876 = 62913.

SWE: With SWE, when k = 6 and n = 12, the corresponding q = q1024. Thus
the arithmetic is over GF (q1024). We append 4096 bits to D, and divide it into
6 × 6 1024-bit elements, d0,0, ..., d5,5. Next, we calculate 12 × 6 codewords

ci,j =
5∑

x=0

ai,x × dx,j + ei,j ,

where ai,j ← Zq. Suppose that SWE is implemented on a 64-bit machine. We
use the number theoretic transform (NTT) and its inverse (INTT) to optimize
the multiplication. Specifically,

ai,x × dx,j = INTT(NTT(âi,x) � NTT(d̂x,j)),
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where � donates point-wise multiplication, âi,x is the polynomial corresponding
to ai,x, and d̂i,x is the polynomial corresponding to di,x. The length of NTT or
INTT is m = 1025 ÷ 64 ≈ 17. We consider NTT and INTT to be m log10 m
times of multiplication. Thus the number of multiplications is 12 × 6 × 6 × (3 ×
17 log10 17 + 17) ≈ 34454.

From the above analysis, we can see that with those parameters, SWE out-
performs Rabin’s IDA, AONT-RS, and Shamir’s algorithm. Shamir’s algorithm
is the slowest scheme among the four schemes. Although AONT-RS employs
the systematic Reed-Solomon code [3] to eliminate the need to encode the first
6 × 691 codewords, the AONT phase is time consuming. The experiment results
in the following section also demonstrate the above analysis.

6 Experiments and Evaluations

In order to validate SWE and obtain optimal parameters for SWE, we build
the prototype of SWE. The experiments are conducted on a 64-bit machine
with an Intel (R) Core (TM) i7-4790 processor (4 cores) at 3.6 GHZ with 4 GB
RAM. We use Ubuntu 14.04 LTS as the operating system. We use NTL-9.3.0
and GMP-5.1.3 [25] as the tools for the number theory. We build the prototype
of AONT-RS using OpenSSL-1.0.2f and Jerasure-1.2 [26]. SWE, AONT-RS, and
Shamir’s algorithm are implemented using C language and a single thread. The
following experiment results are averaged from 50 experiments.

6.1 Performance Tuning

If we implement SWE with parameters only satisfying the hardness of LWE,
data confidentiality can be guaranteed, but encoding/decoding speed may be
slow. Therefore, in order to validate SWE and choose optimal parameters for
SWE, we build the prototype of SWE and do the following experiments.

Fig. 6. Encoding speed of SWE varying
with k and qx.

Fig. 7. Comparison data processing
performance of SWE before and after
optimizing parameters, where k/n =
3/5.



408 L. Yang et al.

Fig. 8. Comparison of encoding/decoding speed, where (a)–(c) are for encoding and
(d) is for decoding.

In this experiment, A ∈ Zk×k
q , q = qx, q changes from q512 to q4096, and

r = �√q�. Figure 6 illustrates encoding speed of SWE varying with k and qx.
The results show that: (i) When 3 ≤ k ≤ 6, the optimal q is q1024 (i.e., achieves
fastest speed). (ii) When 6 < k ≤ 30, the optimal q is q768.

After performance tuning, we do the experiment of comparison data process-
ing performance of SWE, where k/n = 3/5 and r = �√q�. Before tuning SWE,
q = q2048. After tuning SWE, when 3 ≤ k ≤ 6, q = q1024, and when 6 < k ≤ 18,
q = q768. Figure 7 illustrates the results. The results show that: (i) k and n
affect performance heavily. In practical, we should use smaller k and n, while
SWE with such parameters should guarantee availability and confidentiality. (ii)
q also affects performance heavily. With proper k and corresponding q, we can
build a more efficient dispersal scheme. (iii) When encoding speed is high, the
corresponding decoding speed is relatively high.

In a word, when implementing SWE, we should tune parameters to achieve
better data processing performance. Meanwhile, SWE with such parameters
should satisfy data confidentiality and availability.

6.2 Comparison on Encoding and Decoding

In this section, we evaluate performance of SWE and comparable schemes.
Rabin’s IDA [11] cannot guarantee data confidentiality. SSMS [12] does not
specify a dispersal or encryption algorithm. Therefore, we do not compare SWE
with Rabin’s IDA or SSMS. Shamir’s algorithm [10] achieves availability and
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high confidentiality. As far as we know, AONT-RS [3] is the best scheme that
achieves balance between confidentiality and data processing performance. Thus,
we compare SWE with Shamir’s algorithm and AONT-RS in encoding/decoding
speed. In AONT-RS, AES-256 and SHA-256 are applied in its AONT phase.

Encoding: We measure the encoding speed of SWE, Shamir’s algorithm and
AONT-RS. For SWE, r = �√q�, when 3 ≤ k ≤ 6, q = q1024, and when 6 < k ≤
30, q = q768. Figure 8 (a), (b) and (c) exhibit the encoding comparison results,
where k/n = 1/2, k/n = 2/3, and k/n = 5/6, respectively. The results show
that: (i) When 6 ≤ n ≤ 30 and k/n = 1/2, SWE outperforms AONT-RS in
encoding speed. (ii) When 6 ≤ n ≤ 18 and k/n = 2/3, the encoding speed of
SWE is faster than that of AONT-RS. (iii) When 6 ≤ n ≤ 12 and k/n = 5/6,
SWE performs better than AONT-RS in encoding speed. (iv) Among all the
experiments, SWE outperforms Shamir’s algorithm in encoding speed.

Decoding: We also measure the decoding speed of SWE, Shamir’s algorithm,
and AONT-RS. In this experiment, the parameters of SWE are the same as
the parameters used in the encoding speed comparison. As the decoding speed
of SWE or Shamir’s algorithm depends on k (i.e., solve k equations), we only
mention k in Fig. 8 (d). The results in Fig. 8 (d) show that: (i) As k and n grow,
the decoding speed of SWE reduces heavily. The smaller is k, the higher is the
decoding speed of SWE. (ii) When k ≤ 15, the decoding speed of SWE is faster
than that of AONT-RS. (iii) Among all the experiments, SWE outperforms
Shamir’s algorithm in decoding speed. (iv) As the systematic Reed-Solomon code
is applied to disperse data in AONT-RS, if the codewords are obtained from the
first k rows, decoding only involves the AONT phase. Thus, decoding speed of
AONT-RS mentioned in Fig. 8 (d) is the best result. For AONT-RS, if there are
some codewords which are not obtained from the first k rows, decoding involves
both the AONT and Reed-Solomon decoding operations. Hence decoding speed
of AONT-RS will be slower than the results mentioned in Fig. 8 (d), and as k
and n grow, decoding speed of AONT-RS will reduce heavily.

Resch and Plank [3] suggest that in practical storage scenarios, n should
always be smaller than 16. From the experiment results, we can see that with
common configuration (i.e., n ≤ 16), SWE outperforms AONT-RS and Shamir’s
algorithm in encoding/decoding speed.

Large k and n (e.g., k = 200, n = 240) lead to slow encoding/decoding
speed. However, SWE with such a configuration is resistant to attacks from a
quantum computer, which is capable of solving the generalized discrete Fourier
transform problems [27]. When k and n are large, we can also use many well-
established algorithms [28] to optimize matrices operations and thus improve
encoding/decoding speed of SWE. However, such algorithms [28] are not efficient
for AONT-RS, as the time consuming phase of AONT-RS is the AONT phase. In
a word, when setting configurations for SWE, we should make trade-offs between
data processing performance, confidentiality, and availability.
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7 Conclusion

In this paper, we have proposed a secure and fast dispersal storage scheme,
known as SWE. By applying the reformed LWE to SWE, even if an adversary
obtains all the codewords, SWE can still guarantee data confidentiality. Theoret-
ical analysis shows that under our assumptions, SWE achieves higher confiden-
tiality than existing schemes, but still at the same storage cost with the state of
the art. Furthermore, SWE favorably supports secure and efficient dynamic data
operations, where users are not required to download or decode corresponding
codewords, and no data information is leaked. Analysis and experiment results
also show that with proper configurations, SWE outperforms the state of the art
in encoding/decoding speed.

Based on our work, the hardness of LWE with small k, exponential q, and
uniform errors can be further investigated. We hope an efficient reduction from
the standard LWE to such variant of LWE can be given. Furthermore, efficient
and secure dynamic data integrity auditing can be investigated based on SWE.
These further investigations will allow us to build a securer and more efficient
dispersal storage scheme.
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Abstract. Proof-of-Ownership (PoW) can be an effective deduplication
technique to reduce storage requirements, by providing cloud storage
servers the capability to guarantee that clients only upload and down-
load files that they are in possession of. In this paper, we propose an
attribute symmetric encryption PoW scheme (ase-PoW) for hierarchi-
cal environments such as corporations, in which (1) the external cloud
service provider is honest-but-curious and (2) there is a flexible access
control in place to ensure only users with the right privilege can access
sensitive files. This is, to the best of our knowledge, the first such scheme
and it is built upon the ce-PoW scheme of González-Manzano and Orfila
(2015). ase-PoW outperforms ce-PoW in thaact it does not suffer from
content-guessing attacks, it reduces client storage needs and computa-
tional workload.

Keywords: Deduplication technique · Proof of Ownership · Symmetric
encryption · Access control

1 Introduction

Cloud storage services are increasingly popular with both individual and orga-
nizational users1. This is, perhaps, unsurprising due to the wide range of cloud
storage solutions offering significant or unlimited amount of storage to individual
users and organizations such as educational institutions [1,2]. Cloud storage has
also attracted the attention of researchers [3] such as forensics [4–6], security and
privacy [7–9], in addition to designing efficient and effective storage solutions.
For example, deduplication techniques have been the subject of recent research
focus due to their potential in significant reduction of cloud storage requirements.
1 http://www.computerweekly.com/opinion/Time-to-outsource-data-storage and

http://www.lima.co.uk/blog/3-reasons-why-businesses-choose-to-outsource-their-
data-storage/; last accessed 10 May 2016.
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Specifically, the deployment of deduplication techniques allows cloud servers to
store only a single copy of the uploaded data together with the list of owners,
thus, significantly reducing the storage requirements [10].

There are two main security challenges faced in deploying deduplication tech-
niques in a hierarchical context, namely file access control and data leakage pre-
vention. In the former, it is critical to ensure that only authorized users are
granted access to the file. Let us consider a naive deduplication scheme, where a
client sends a file identifier to the cloud and if it is already stored, then the server
assumes that the client owns the file. However, this allows an attacker (including
another malicious client) who only knows a file identifier but does not have the
file to gain access to the file (e.g. by “colluding” with the file owner such as
compromising the device of the file owner using malware). Proof of Ownership
(PoW) scheme has been shown to be a viable solution against such an attack.
PoW schemes, first introduced by Halevi et al. [11], guarantee that clients are
in possession of the uploaded files, by presenting a proof of file ownership that
can only be established when the file is available to the clients. Under a secu-
rity parameter, a PoW is assumed to be secure even when an adversary knows
part of the file [12]. Several PoW schemes extending the work of Halevi et al.
have been proposed in the literature. For example, Di Pietro et al. [12] propose
the s-PoW scheme designed to enhance client-side efficiency, Blasco et al. [13]
present the bf-PoW scheme designed to achieve flexibility and scalability, and
González-Manzano et al. [14] propose the ce-PoW scheme designed to deal with
honest-but-curious servers and to achieve efficiency. In a hierarchical deploy-
ment, deduplication also needs to ensure that users have rights to access the
data and a number of proposals have been presented in this regard [15–21]. Such
requirement is also referred to as authorized deduplication [19]. However, exist-
ing proposals generally impose a significant burden on the cloud server or do not
necessarily ensure that users own the file.

In the data leakage prevention scenario, given that data storage is outsourced,
cloud servers are assumed to be honest-but-curious. Such servers honestly exe-
cute the proposed scheme but they may attempt to learn the stored content. To
mitigate such threats, previous attempts have focused on encrypting the files.
We observe that current solutions generally use symmetric encryption, due to
the need to ensure that the result of the encryption of a same file remains the
same in order to allow deduplication. The most common approach is to apply
the Convergent Encryption (CE) scheme [16], where files are encrypted using
their content as a key [22]. However, CE suffers from a number of limitations
including content guessing attacks (i.e. malicious clients are able to discover the
plaintext content) [14,16]. There is no known PoW solution that provides both
file access control and data leakage prevention. This is the gap that this paper
seeks to contribute to.

We present the Attribute Symmetric Encryption Proof of Ownership scheme
(hereafter referred to as ase-PoW), which extends the ce-PoW scheme presented
in [14]. Specifically, we include a lightweight access control procedure that does
not impose any burden on the cloud server and our proposed scheme is designed
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to withstand content guessing attacks. To ensure that the scheme can be deployed
in a hierarchical application, access control is achieved through encryption where
the keys are linked to user attributes. Thus, only users with a given attribute
(say belonging to a particular department, e.g. human resources) can access (and
further deduplicate) the corresponding file (e.g. employees’ contracts). We then
demonstrate that ase-PoW outperforms ce-PoW, in terms of both storage and
client efficiency.

The structure of the paper is as follows. Section 2 reviews the ce-PoW scheme.
Section 3 describes the proposed scheme ase-PoW. We demonstrate the security
and utility of the proposed scheme in Sects. 4 and 5. Related work is discussed
in Sect. 6. Finally, Sect. 7 concludes the paper and outlines future research direc-
tions.

2 Revisiting the ce-PoW Scheme

The ce-PoW scheme [14] is an efficient PoW scheme designed for an environment
involving honest-but-curious servers. In the scheme, files are encrypted using
Convergent Encryption (CE) where the encryption key is the file itself, and
proof of ownership is achieved by requesting from clients some CE-encrypted
chunks. Specifically, let H1 : {0, 1}∗ → {0, 1}n and H2 : {0, 1}B → {0, 1}l

cryptographic hash functions, where B and l represent the chunk size and the
token size respectively; and n is a positive integer. There are two phases in the
ce-PoW scheme, namely:

– Initialization: The client sends the file size to the server, which responds
with the number of chunks the file should be split into. Then, the client
convergently encrypts each chunk, computes H2 over each encrypted chunk
and finally, computes H1 over the resulting hashes obtaining hc. Both hc and
the encrypted chunks are then sent to the server. The server will compute hc

from the received encrypted chunks and verify whether the computed result
is the same as the received data to avoid poisoning attacks. If the verification
returns true, then the server creates an array storing three structures, namely:
one structure to store the list of owners, one structure to maintain a list of
challenges, and another one to store the responses to the challenges.

– Challenge: The server receives a hc value. If hc entry is not found, then
the server requests the client to upload the file size; thus, reverting to the
initialization phase. If an entry for hc exists, then the server loads in memory
the first unused challenge together with the corresponding responses, prior to
sending the challenge to the “claiming” client. The client then computes the
response token for each of the J chunk indices and sends the array of response
tokens to the server. Subsequently, the server checks whether the received
tokens match the stored tokens. If the check returns true, then the server
labels the PoW as successful and assigns the file to the client. Otherwise, the
client is considered to have failed the PoW.
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This scheme is proven to be secure under the bounded leakage setting, in
which a limited portion of a file may be leaked (i.e. 64 MB) but the file owner is
able to prove the possession of such a file in a secure manner [11].

However, the ce-PoW scheme suffers from two main weaknesses.

1. Due to the use of convergent encryption, the scheme is vulnerable to the
inherent content-guessing attacks.

2. Due to the need to store decryption keys (i.e. chunk hashes) on the client
devices in order to decrypt downloaded files, the number of keys stored by
any client corresponds to the file size for files smaller than 64 MB and 5% of
the file size for files larger than 64 MB. This is an unrealistic requirement,
particularly for client devices such as smart phones.

3 Attribute Symmetric Encryption Proof of Ownership
Scheme

In this section, we present an overview of the system, the threat model and the
goals of the proposed scheme, prior to describing the scheme.

3.1 System Overview

To explain how ase-PoW can be implemented in practice, let us consider the
following use case.

Use Case . A University consists of Departments (Di) divided into Groups (Gi),
which work in different Projects (Pi). Members of a given Gi may work in differ-
ent Pi. In addition, each Pi has a Gi who is the designated leader. Users involved
in Di, Gi and Pi have their own attributes and thus, they have corresponding
keys.

For simplicity, we now assume that there are two departments, D1 and D2

(Fig. 1). The former is composed by G1 and G2, which manage a pair of projects,
P1 and P2. G1 and G2 are leaders of P1 and P2 respectively. In D2, there is only
one group, G3, which is the leader of P3. Moreover, G1 takes part in P2 and G2

is involved in P3.
In terms of managing files f1 and f2 of P3, there are two main steps, namely:

encryption and deduplication. For encryption, let us assume that f1 needs to be
accessible only to users involved in P3 whereas f2 can only be accessed by G2

members working on P3. Thus, f1 is symmetrically encrypted with KP3 while f2
is also symmetrically encrypted with Kf2 which is created encrypting KG2 with
KP3 .

For deduplication, we will now focus our discussion on f1. At first, one of
the users involved in P3 uploads f1 after encryption, together with its digest
hc (recall Sect. 2). It must be noted that hc is used by the server to identify f1
in subsequent uploads. Then, the server prepares three data structures, namely
one to store the list of owners, another to keep a list of challenges, and the third
for their expected responses. Thus, at the time other client tries to upload f1,
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Fig. 1. An example use case

the server requests a set of challenges. If such challenges are provided as per
specification, it is assumed that f1 is owned by this client and the client will be
added to the list of owners.

3.2 Entities

In ase-PoW, three entities are identified. First, the client is the entity that holds
the file to be deduplicated. Each client is a user of a hierarchical organizations,
i.e. a corporation, that belongs to one or more of its areas, i.e. departments. He
performs the PoW to the storage server, which is in charge of keeping all files.
For each file, the server manages data structures that contain the identities of
clients which are allowed to access to the file and the challenges to be satisfied
in the PoW, as it will be explained later. Apart from the client and the server
an Attribute Certificate Service (ACS) is introduced. It is responsible for
managing which users belong to each department over time. As such, ACS grants
or revokes the permission to access to confidential files, once a user joins or leaves
an area.

3.3 Threat Model

The adversary is assumed to be an attacker who attempts to download a file he
does not possess, via the following means:

– Content-guessing attack where attackers intercept interchanged PoW
challenges and try to guess their content.

– Collusion attack in which the legitimate file owner colludes with a malicious
client (an adversary C̃) leaking part of the file content. In [14], a PoW scheme
works on the assumption that the exchange of information is not interactively
performed along the PoW challenge, in addition to the assumption that 64 MB
is sufficiently large to discourage collusion [11].
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3.4 Goals

A total of six goals are considered in this proposal. The first three goals focus
on security, namely: goals one and two capture the scenario where an adver-
sary seeking to download a file he does not own, and the third goal deals with
access control. The remaining set of goals capture the performance requirements,
namely: minimizing bandwidth, memory consumption and storage space. Specif-
ically, the goals of this proposal are as follows:

Security: an adversary C̃, who does not possess a complete file f , has a negli-
gible advantage in succeeding in a PoW given a security parameter κ.

Collusion resistance: an adversary C̃, who does not possess a complete file f ,
must exchange a minimum amount Smin of information with the legitimate
owner of f to be successful in the PoW. According to Halevi et al. [11] Smin

is set to 64 MB.
Simple fine-grained access control: the encryption, apart from providing

confidentiality, should allow the management of access control without involv-
ing the cloud server in the access control management process and without
requiring the involvement of additional tasks for the client and the server.
Besides, it should be as fine-grained as possible, thus allowing the specifica-
tion of different encryption policies.

Bandwidth efficiency: the number of exchanged bytes between client and
server along a PoW execution should be minimized.

Server space efficiency: in a PoW, the server should load in memory a small
piece of information independent of the input file size.

Client space efficiency: regardless of the use of cryptography, clients have to
store as few keys as possible. In addition, the number of stored keys should
be independent of file sizes.

3.5 The Proposed Scheme

The scheme builds on the scheme presented in [14], and the key differences are
the use of symmetric encryption on the chunks and the enforcement of access
control.

To carry out cryptographic computations, ase-PoW leverages on the hierar-
chical structure of organizations as well as the existence of ACS. In particular,
belonging to each organizational unit (say Department or Group) or working
on a given Project implies that each user holds an attribute. Each attribute is
linked to a key provided by ACS. Thus, when a user requests the attestation of
attributes, ACS verifies such attributes and provides keys accordingly.

In this scheme, there are two phases – see Fig. 2. In the Initialization phase,
the client firstly requests keys to ACS and symmetric keys are delivered when
the client possesses the right attributes. Then, the client requests the upload of
a file sending the digest of the encrypted file hc to the server. Once the server
verifies the file is not already stored (hc not stored), the client sends the file size
and the server provides the amount of chunks the file should be split into. The
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Fig. 2. ase-PoW description.

client symmetrically encrypts each file chunk applying keys provided by ACS
(Algorithm 1). In case multiple keys are at stake, each chunk is symmetrically
encrypted with a key (KS). Such key is formed by a recursive encryption of the
set of keys that are found in the path from fi to the highest group of corporate
members that need access to it. Thus, let a and b the levels in which fi and
the said group are located, respectively. The encryption key is then formed by
KS = EKa

(...(EKb−1(Kb))). Note that if a = b, then no recursive encryption is
needed since the file is already accessible to the smallest group of members. After
encryption, each encrypted chunk of file f is denoted as EKS

f [i]. In last place,
the encrypted file is sent to the server which initializes an array A where hc

is the lookup key - A[hc].ENC contains encrypted file chunks, A[hc].CH stores
10,000 challenges (with J random positions each), A[hc].RES keeps the expected
response tokens that correspond to the challenges and A[hc].AL contains a list
of identifiers of clients who own f (Algorithm 2).

In the Challenge phase, when a stored file is requested because hc sent by
the client matches with the one stored in the server, the client encrypts requested
file chunks and performs a digest H2 over it until complete the requested chal-
lenge (Algorithm 3). As aforementioned, the encryption may involve creating KS

recursively. Finally, the PoW will be passed or not according to the verification
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Algorithm 1. First client upload at client side
Input: Number of chunks N , a file f and encryption key(s) Kj in the
encryption order {1;...;j}
Output: Hash hc of the symmetrically encrypted file chunks; and symmetric
encrypted chunks EKj f [i] or EKj (...(EK1f [i]))
for i ← 0 to N − 1 do

token[i] ← [H2(EKN f [i]) or H2(EKj (...(EK1f [i])))];
end
hc ← H1(token);
return hc and EKj f [i] or EKj (...(EK1f [i]));

Algorithm 2. First client upload in ase-PoW. Server side (analogous to
ce-PoW [14] except for the encryption procedure)
Input: Encrypted chunks ENC[i] = EKS f [i] and hc uploaded by client C.
Output: The entry A[hc]
for i ← 0 to N − 1 do

Compute array token from received ENC[i]
token[i] ← H2(ENC[i]);

end
hc ← H1(token);
if ¬Match(hc, H1(token)) then

return ⊥;
end
Store 10,000 random challenges CH with J indexes each
for x ← 0 to 9999 do

for y ← 0 to J − 1 do
pos[y] ← PRF (seed); CH[x, y] ← pos[y]; RES[x, y] ← token[pos[y]];

end

end
A[hc].ENC ← ENC; A[hc].CH ← CH; A[hc].RES ← RES; A[hc].AL ←
{id(C)};
return A[hc];

the server performs comparing the received responses (res) with the stored ones
(A[hc].RES) (Algorithm 4).

4 Security Analysis

We now demonstrate that the ase-PoW scheme achieves the first three goals
described in Sect. 3.4, and the remaining goals will be addressed in Sect. 5.

4.1 Security

The security analysis of ase-PoW is based on ce-PoW [14] and builds on the
earlier proofs of Di Pietro et al. [12] and Blasco et al. [13]. The adversary is
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Algorithm 3. Challenge phase at client side
Input: A file f , an array pos of J indexes and encryption key(s) Kj in the
encryption order {1,...,j}
Output: An array res of J response tokens
for i ← 0 to J − 1 do

res[i] ← [H2(EKj f [i]) or H2(EKj (...(EK1f [i])))];
end
return res;

Algorithm 4. Challenge phase in ase-PoW. Server side. (Analogous to
ce-PoW [14])
Input: hc of a file f ; two arrays pos and res of J indexes and client response
tokens, respectively
Output: The outcome of the challenge
for i ← 0 to J − 1 do

if ¬Match(res[i], A[hc].RES[∗, i])) then
return ⊥;

end

end
A[hc].AL ← A[hc].AL

⋃{id(C)};
return �;

challenged on J independent chunk positions where the probability of success is:

P (succ) = P (toki)
J = (p + 0.5l(1 − p))J , (1)

where p is the probability that a malicious client C̃ knows part of the file; thus,
able to perform a collusion or a content guessing attack.
From Eq. 1, a lowerbound for J is derived which ensures P (succ) ≤ 2κ, where κ
is the security parameter, as

J ≥ κ ln 2

(1 − p)(1 − (0.5l))
(2)

In this regard, the first goal of ase-PoW, security, is satisfied when Eq. 2
holds under parameter κ. Moreover, the second requirement, collusion resis-
tance involves ensuring that a legitimate client C does not exchange Smin bytes
with a malicious client C̃ to allow the malicious client to run a successful PoW
for an unknown file. Considering that chunks are managed, there are F

B tokens
in a file f of size F of chunks of size B, the token length l can be set as:

l ≥ Smin
B

F
(3)

The third security goal, simple access control, is also achieved. Access control is
enforced by the fact that the ownership of attributes becomes a key to access
files. Just an ACS is introduced to deliver keys once attributes are attested and
it does not have any active role in the deduplication process. In addition, fine
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grained access control is achieved due to the use of recursive encryptions. They
can be compared with the encryption of files with attributes (keys) concatenated
with AND operators, meaning that different encryption policies can be applied.

Apart from the previous issues, ase-PoW tackles the content-guessing attack.
In contrast to [12,13] which do not apply encryption and to [14] which applies
CE, a symmetric encryption scheme is applied herein. It ensures encrypted
chunks are independent of files entropy, thus preventing this attack. Indeed,
even if files were obtained by attackers they could not be decrypted.

4.2 Complexity

We now evaluate the complexity of ase-PoW with that of Di Pietro et al. [12],
Blasco et al. [13] and González-Manzano et al. [14]. In particular, the evaluations
(see Table 1) focus on client and server computation and I/O, server memory
usage, bandwidth, and number of used keys (if required).

We remark that ase-PoW complexity differs from ce-PoW in a critical aspect,
namely: the number of keys managed by the client. Particularly, in ase-PoW,
client computation involves a symmetric encryption scheme based on a chosen
number of recursive encryptions (nre) in relation to owned attributes. As a result,
the client only needs to manage up to nre keys, regardless of the number of files
under deduplication. In ce-PoW, the client needs to store all chunk hashes of
every file deduplicated, as these hashes are the file-specific decryption key. This
may be up to 5% the file size, e.g. 50 MB for 1 GB files. Thus, ase-PoW reduces
the storage space needed in the client to allow deduplication.

The comparisons between ase-PoW and s-PoW and bf-PoW are similar to
those with ce-PoW. It is clear that client and server computations involve less
complexity in s-PoW and bf-PoW than in the other schemes, since there is
no encryption involved. The bandwidth requirement is also noticeably lower
in s-PoW and bf-PoW, as in ase-PoW and ce-PoW J tokens are sent to the
server. However, neither s-Pow nor bf-PoW protect against honest-but-curious
servers. Thus, striking a balance between security and efficiency is expected. The
remaining set of features can be considered similar among all studied schemes.

5 Performance Evaluation

We now present the findings of our evaluations, based on the settings described
in [14]. Specifically, ase-PoW is evaluated against bf-PoW [13] and ce-PoW [14].
We did not evaluate our proposal against s-PoW [12] because it has been shown
that ce-PoW outperforms s-PoW.

All schemes were implemented in C++ using OpenSSL as a cryptographic
library. AES in counter mode and SHA-1 are the two main operations. As in
[14], H1 and H2 are based on SHA-1 being H2 applied over encrypted chunks
extending the length of the hash to l through the use of the stream cipher RC4.

To ensure a fair evaluation, we used the parameters defined in [13,14], namely:
the security parameter is set to κ = 66; Smin = 64 MB, the size of tokens (l) is
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Table 1. Complexity comparative summary. Applied symbols are taken from Sect. 4

s-PoW [12] bf-PoW [13] ce-PoW ase-PoW [14]

Client

computation

O(F ) · hash O(F ) · hash O(B) · CE · hash ·
hash

O(B) · Sym. · nre · hash

Client I/O O(F ) O(F ) O(F ) O(F )

Server init

computation

O(F ) · hash O(F ) · hash O(B) · hash · hash O(B) · hash

Server regular

computation

O(n · κ) · PRF O

(
l·κ·(log1/pf )

pf

)
·

hash

O(n · l · κ) · PRNG O(n · l · κ) · PRNG

Server init I/O O(F ) O(F ) O(F ) O(F )

Server regular I/O O(n · κ) O(0) O(0) O(0)

Server memory

usage

O(n · κ) O

(
log(1/pf )

l

)
O(n · l · κ) O(n · l · κ)

Bandwidth O(κ) O

(
l·κ
pf

)
O(l · κ) O(l · κ)

# stored keys – – up to 5% file size | att |

Table 2. Chunk sizes (B) in bytes, computed from the file size, the token size and
Smin

l(B) File size (MB)

4 8 16 32 64 128 256 512 1024 2048

16 16 16 16 16 16 32 64 128 256 512

64 64 64 64 64 64 128 256 512 1024 2048

256 256 256 256 256 256 512 1024 2048 4096 8192

1024 1024 1024 1024 1024 1024 2048 4096 8192 16384 32768

set to {16, 64, 256,1024} bytes, the probability (p) that an adversary knows a
chunk of a file is set to {0.3; 0.5; 0.75; 0.95} and that key size is 256B. According
to these values and Eq. 2, the number of requested challenges (J) corresponds
to {65, 91, 182, 914}. Similarly, considering the said values of l, Smin and the
input file size, the size of chunks (B) is according to Eq. 3 – see Table 2.

The experiments were performed on a AMD Athlon(tm) II x2 220 processor
with 4 GB of RAM. Input files were randomly generated and their sizes ranged
from 4 MB to 2 GB doubling the size at each step.

The client side computation is studied in the following section. Server side
computation of ase-PoW is similar to that of ce-PoW since the server tasks
remain unaltered. Then, server side computation in ase-PoW (and ce-PoW) is
comparable with that of bf-PoW (see [14]).

On the client side, the most relevant issue to consider is the time taken (in
clock cycles units) to compute challenges. First of all, the time taken to create
the chunk encryption key were computed, resulting in 12262 clock cycles when
there were 7 keys (6 recursive encryptions) and 18743 clock cycles when there
were 11 keys (10 recursive encryptions). These values are considered negligible
relative to the remaining part of the scheme. Then, to present a worst case
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Fig. 3. Client response creation clock cycles for J = {65,91,182,914} challenges and 11
keys.

analysis, the computation of challenges considering 11 keys was studied. Results
are depicted in Fig. 3. We concluded that:

– The time remains constant regardless of the number of requested challenges,
namely for J = 65 and J = 91. As expected, the time increases when more
challenges are computed, specially for J = 914.

– The time also remains constant regardless of the file and chunk size when
l < 64B. In case of higher l, e.g. l = 1024 B, the time increases between files
of 512 MB and 2 GB but it is just particularly noticeable for J = 914, and to
a lesser extent for J = 182.

Figure 4 describes the evaluation findings of bf-PoW, ce-PoW and ase-PoW
when there were 11 keys, and it is clear that bf-PoW has the best performance.
This is because in bf-PoW, a token is computed for each J chunk index through a
hash function. However, performance of bf-PoW is comparable with ase-PoW for
l = 1024 b and bf-PoW does not protect against honest-but-curious servers. On
the other hand, ase-PoW outperforms ce-Pow in all cases. In ce-PoW, a hash per
encrypted chunk is computed which increases the computation time. By contrast,
ase-PoW symmetrically encrypts chunks and though the chunk encryption key
may involve several recursive encryptions, findings demonstrate that the time to
compute this key is negligible in comparison with the rest of the process.

6 Related Work

Deduplication, such as PoW schemes, has been the subject of research focus
[11–14,23]. For example, the PoW schemes in [15,17,24–27] are designed to work
with honest-but-curious servers. Due to the use of CE in many existing PoW
schemes such as [16,17,22,25,26], these schemes are not secure against content
analysis attacks as previously discussed [16]. A number of proposals to avoid
such pitfalls has also been proposed in recent years. For example, in [27], files are
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Fig. 4. Client response creation clock cycles for J = {65,91,182,914} challenges and 11
keys.

asymmetrically encrypted and decryption keys are interchanged among clients.
The proposed approach in [24] involves an identity provider designed to prevent
sybil attacks, and an indexing server to prevent data leakage.

The significant amount of data managed by cloud servers necessitates the
implementation of access control solutions, as this will allow servers the capabil-
ity to determine whether a requesting client has the appropriate access rights.
Attribute based encryption (ABE) is one commonly used method to achieve fine
grained access control in the cloud [28–31], where files are encrypted under a
set of attributes and decrypted by a key with the right attribute policy [28].
However, deduplication is not considered in these works which is unsurprisingly
since ABE is a non-deterministic encryption scheme and therefore, cannot be
applied to this context.

Table 3 compares the proposed ase-PoW scheme and other similar dedupli-
cation and access control schemes, based on the use of a PoW scheme, secu-
rity against honest-but-curious servers, involvement of third parties, theoretical
security analysis, search of bandwidth, server and client side space efficiency,
and empirical performance analysis.
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Table 3. Comparative summary

Proposals PoW

scheme

Honest-

but-

curious

servers

Third parties Theoretical

security

analysis

Bandwidth

efficiency

Server

space

efficiency

Client

space

efficiency

Empirical

analysis

[15]
√

Not

specified

Public

keys used

Intermediator – – – – –

[16] – Metadata

manager,

additional

server

– – – –
√

[17,21]
√∗ Message-

lock

encrypt

Key server –
√

– –
√

[19]
√∗ Convergent

encryption

Private – – – – –

[20] – Convergent

encryption

Multiple

servers

– – – –
√

[18] – Convergent

encryption

Distributed

key server

– – – –
√

[32]
√

– Auditor
√

– – – –

ase-PoW
√

Symmetric

encryption

Attribute

certification

server

√ √ √ √ √

*: mentioned but not applied

It is clear that access control and deduplication require additional entities
and additional management tasks. In [16], for example, a metadata manager
enforces key management and handles deduplication. In [17,21], there exists a
key server per group of clients which is in charge of key management and helps
in the deduplication process. In [20], the Dekey scheme shares encryption keys
among clients via distributed key servers. The SecDep scheme in [18] involves
multiple key servers, which are also tasked with deduplication. In [32], an auditor
verifies the integrity of data in the cloud.

There are only a small number of proposals using a PoW scheme while man-
aging deduplication and access control [15,17,19,21]. Although [15,17,21] men-
tion the use of PoW, no concrete details are provided. In [19], an intermediator
becomes the PoW verifier.

Shin et al. [32] appears to be the only work that provides a security analysis
and no other studies examine server and client space efficiency. With the excep-
tion of [15], key storage is externalized to additional servers, relieving clients from
the burden of managing and storing keys. Bandwidth efficiency is considered only
in [17,21], and just some schemes do an empirical analysis [16–18,20,21].

In summary, it is clear that achieving both effective and secure PoW and
access control management for deduplication in the presence of honest-but-
curious servers is an understudied topic.
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7 Conclusion

Cloud storage is a trend that is unlikely to go away anytime soon, and one
of the key challenges is to reduce storage requirements. Deduplication schemes
are a viable solution, and in this paper, we present the Attribute Symmetric
Encryption Proof of Ownership (ase-PoW) scheme. The scheme is based on
recursively and symmetrically encrypting file chunks to prove the possession of
files. We demonstrate the security of the scheme, as well as the utility of the
scheme using empirical analysis. Specifically, we show that ase-PoW is efficient
and has better performance compared with similar schemes in the literature
(e.g. outperforms ce-PoW, and ase-PoW has the benefit of having a constant
computation time for file types when l < 64 B).

Future work includes enhancing access control expressiveness, and combining
deduplication and Proof of Works [33] and Remote Data Possession Checking [34]
in an environment with untrusted cloud servers. Moreover, simple fine-grained
access control is achieved in this work but the development of a more complex
access control management scheme, e.g. [30], is the following step.
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Abstract. Compromised websites that redirect users to malicious web-
sites are often used by attackers to distribute malware. These attackers
compromise popular websites and integrate them into a drive-by down-
load attack scheme to lure unsuspecting users to malicious websites. An
incident response organization such as a CSIRT contributes to prevent-
ing the spread of malware infection by analyzing compromised websites
reported by users and sending abuse reports with detected URLs to web-
masters. However, these abuse reports with only URLs are not sufficient
to clean up the websites; therefore, webmasters cannot respond appro-
priately to such reports. In addition, it is difficult to analyze malicious
websites across different client environments, i.e., a CSIRT and a web-
master, because these websites change behavior depending on the client
environment. To expedite compromised website clean-up, it is important
to provide fine-grained information such as the precise position of com-
promised web content, malicious URL relations, and the target range of
client environments. In this paper, we propose a method of constructing
a redirection graph with context, such as which web content redirects to
which malicious websites. Our system with the proposed method ana-
lyzes a website in a multi-client environment to identify which client
environment is exposed to threats. We evaluated our system using crawl-
ing datasets of approximately 2,000 compromised websites. As a result,
our system successfully identified compromised web content and mali-
cious URL relations, and the amount of web content and the number of
URLs to be analyzed were sufficient for incident responders by 0.8% and
15.0%, respectively. Furthermore, it can also identify the target range
of client environments in 30.4% of websites and a vulnerability that has
been used in malicious websites by leveraging target information. This
fine-grained information identified with our system would dramatically
make the daily work of incident responders more efficient.
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1 Introduction

Attackers redirect many unsuspecting users to malicious websites by compro-
mising popular websites and integrating them into a drive-by download attack
scheme. One security vendor reported that approximately 67% of malicious web-
sites originated from compromised websites [1]. For example, Darkleech attacks
exploiting vulnerable Apache modules had successfully compromised a large
amount of websites; over 40,000 domains and IP addresses by May 2013, includ-
ing 15,000 that month alone [2]. This means that even attentive users will be
exposed to drive-by malware infections if high-reputation websites are compro-
mised. An incident response organization such as a CSIRT (Computer Security
Incident Response Team) contributes to preventing the spread of malware infec-
tion by patrolling the Web and warning users. As part of the patrol, the organi-
zation re-analyzes compromised websites reported by users, identifies evidence
of malicious websites, and shares this information [3]. This shared information is
important for cleaning up compromised websites by reporting abuse to webmas-
ters. Abuse reporting has been conducted as a national project and as a security
service that contributes to cleaning up compromised websites by re-analyzing
URLs shared from various security vendors [4] and security products [5]. How-
ever, attackers build a redirection chain to evade analysis as well as to dynam-
ically and selectively inflict malware on targeted users [6,7]. On compromised
websites, attackers can prevent any disclosure of malicious content by injecting
only redirection code that leads to malicious websites, not exploit code or mal-
ware. This redirection chain also allows attackers to use cloaking techniques to
launch drive-by downloads depending on the user’s client environment and makes
it difficult to analyze [8,9]. Therefore, to mitigate these anti-analysis techniques
and expedite the clean-up of compromised websites, it is important to identify
the evidence and impact of compromise. Identifying evidence that a website has
been compromised, such as the precise position of compromised web content
and malicious URL relations in a redirection chain, contributes to shortening
the incident response time and increasing clean-up rates. Identifying the impact
of a compromised website, such as the target range of client environments and
information of vulnerability abused in malicious websites, contributes to short-
ening the re-analysis time in addition to accelerating security updates to users of
the targeted client environments. Li et al. reported that it is important to give
more detailed diagnostic information, such as injected content, to webmasters
because they lack sufficient expertise to clean up their websites [5]. They also
found that the most challenging incident type relates to redirect attacks where
websites become cloaked gateways.

To identify the evidence and impact of compromise, we propose a method
of constructing a redirection graph by tracing redirection chains and JavaScript
executions on websites. After extracting a malicious path, which is a redirection
path to a malicious URL, our method identifies the web content that is the ori-
gin of the redirection, i.e., compromised web content, by traversing backwards
along the malicious path. Our system with the proposed method accesses a web-
site using a multi-client environment to identify targeted client environments.
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This environment detects the differences of redirected URLs using these mul-
tiple analysis results while minimizing the number of environment profiles by
designing them on the basis of known vulnerability information. To the best
our knowledge, our system is the first tool for website forensics that can auto-
matically identify the evidence and impact of compromise on the basis of useful
forensic artifacts, e.g., packet capture data or website data. Specifically, this
system can reveal which from web content does a redirection originate, which
URLs are associated with attacks, and which client environment is exposed
to threats. This fine-grained information would provide practical directions to
CSIRTs/security vendors for prompt incident response and expedite compro-
mised website clean-up.

In summary, we make the following contributions.

– Our system successfully identified the precise position of compromised web
content and malicious URL relations. As a result, the amount of web content
and the number of URLs to be analyzed were sufficient for incident responders
by 0.8% and 15.0%, respectively.

– We show that our system can automatically identify client-dependent redirec-
tions and the target range of client environments in 30.4% of websites. Using
target range information, we can also identify a vulnerability that has been
used in malicious websites.

The rest of this paper is structured as follows. In Sect. 2, we provide an
overview of compromised website response and explain problems in conventional
methods. We introduce our proposed method for addressing the challenges in
Sect. 3. In Sect. 4, we explain an experiment conducted to evaluate our method
and discuss case studies on our findings in Sect. 5. We discuss the limitations of
our method in Sect. 6 and review related work in Sect. 7. We conclude the paper
in Sect. 8.

2 Overview of Compromised Website Response

Most of the techniques used by attackers on compromised websites are injections
of redirection code to malicious URLs rather than of exploit code or malware.
Therefore, identifying web content that is the origin of redirection (redirection
origin) is important in the analysis of compromised websites. However, attackers
use various anti-analysis techniques to evade a defender’s analysis and detection.
In this section, we explain web compromise and anti-analysis techniques. We
also provide an overview of compromised website response by CSIRTs/security
vendors and explain problems in conventional methods.

2.1 Web Compromise Technique

Attackers use redirect code injections using HTML tags or JavaScript to com-
promise websites.
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HTML-Based Compromise. HTML-based compromises inject the redirec-
tion code of the iframe and script tags. These HTML tags are mainly injected
into unusual positions in the Document Object Model (DOM) tree such as out-
side an html tag or body tag. In the case of an iframe tag, many redirections
occur without a user being aware by injecting the tag in an invisible state on the
browser. A script tag is also used in combination with the following JavaScript-
based compromise. However, since these tags are directly written in an HTML
file, it is easy to analyze them and find the redirection origin.

JavaScript-Based Compromise. JavaScript-based compromises execute
code that dynamically generates the above-mentioned HTML tags (iframe and
script tags) using document.write, innerHTML, and appendChild (DOM API
code). A location object that redirects to a different URL is also injected,
but the user is aware of the automatic redirection because it explicitly switches
the browser frame to a different URL. Therefore, it is rare to use a location
object as a first step. JavaScript-based compromises can target various web con-
tent, e.g., that enclosed by a script tag and that of a URL that is loaded by a
script tag. The DOM API code and code separation make it difficult to analyze
JavaScript. In addition, attackers utilize obfuscation techniques, as described in
the next section, on JavaScript to conceal the redirection origin.

2.2 Anti-analysis Technique

In most cases, attackers leverage various existing web techniques, such as code
obfuscation, redirection chains, and browser fingerprinting, to protect their own
malicious content against the inspections of CSIRTs/security vendors.

Code Obfuscation. Code obfuscation is generally used for code protection
and code minimization. For example, obfuscated JavaScript is de-obfuscated
by string manipulation functions, and this de-obfuscated string is executed as
JavaScript code by functions such as eval, setInterval, and setTimeout. Mali-
cious websites try to prevent analysis by using complicated obfuscation tech-
niques combined with compression techniques1, cryptographic techniques, and
browser-specific functions.

Redirection Chain. Drive-by download attacks redirect users of a landing
website (landing URL) to malicious websites (exploit URL) via multiple web-
sites (redirection URL). When a client accesses an exploit URL, an attack code
that exploits the vulnerabilities of the web browser and/or its plugins is exe-
cuted and forces the client to download and install malware from a website
(malware distribution URL) [6]. This redirection chain is composed of HTTP
3XX in addition to HTML tags and JavaScript. Attackers abuse compromised
popular websites and web search results as landing URLs to lure unsuspecting
1 D. Edwards, “/packer/,” http://dean.edwards.name/packer/.

http://dean.edwards.name/packer/
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users by constructing an inter-domain redirection chain to malicious URLs [10].
Therefore, they only have to inject redirection code rather than exploit code or
malware for website compromises and can prevent any disclosure of malicious
content. Moreover, multiple redirection stages contribute to reducing the opera-
tion cost of attacks since compromised websites under a chain can be integrated
into a different malware campaign by changing only the redirection URLs.

Browser Fingerprint. Browser fingerprinting, which is a method of profil-
ing the environment of a client, i.e., browser and browser plugin, is generally
used for user tracking and distributing web content according to the environ-
ment. Attackers leverage browser fingerprinting to target clients by redirecting
an exploitable user to a malicious URL on the basis of the client’s fingerprint.
This technique, called “cloaking,” is also abused for circumventing the detection
of CSIRTs/security vendors by redirecting them to a benign URL [8].

2.3 Problems in Conventional Methods for Compromised
Website Response

An incident response organization, such as a CSIRT, constantly patrols whether
websites that are under their own organization and hosting services have been
compromised, i.e., the active crawls in Fig. 1 1 – 3 . Such organization also re-
analyzes compromised websites that are reported by general public users and
sends abuse reports with the detected URL to webmasters after confirming the
reproducibility of attacks, i.e., the reactive crawls in Fig. 1 1©– 5© [3]. However,
in many cases, an abuse report with only URLs generated in this way is not suf-
ficient to clean up compromised websites; therefore, webmasters cannot respond
appropriately to the report with just URLs. Moreover, malicious websites cannot
always be detected due to cloaking. Therefore, to create detailed abuse reports
and increase clean-up rates, the following information is required.

– Redirection origin: Identifying a fine-grained redirection origin as evidence
that a website has been compromised, such as which web content redirects
to which malicious website, is important for webmasters when cleaning up
compromised web content precisely. Thus, we must handle complicated obfus-
cations and redirection chains.

– Targeted client environments: Identifying targeted client environments
as the impact of a compromised website, such as which versions of browsers

Fig. 1. Overview of compromised website response
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and/or plugins are redirected to malicious websites, is beneficial for confirming
the reproducibility of attacks. In addition, we can also accelerate security
updates by warning users of the targeted client environments. Thus, we must
mitigate cloaking techniques.

However, conventional methods are not sufficient for identifying the infor-
mation stated above. Methods of detecting website compromises that compare
original web content to compromised web content have been proposed [11,12].
Moreover, TripWire [13], widely known as a compromise detection tool, can
detect file operations, such as modification and deletion, by monitoring files on
a web server. However, these methods have limitations in terms of operation; for
example, they require the original files and can detect only compromised web
content on one’s own web server.

Methods for constructing a redirection graph, in which the nodes repre-
sent accessed URLs and directed edges represent redirection methods, by using
a Referer header or a Location header [14] and by leveraging some heuris-
tics/features in addition to HTTP headers [15] have been proposed. However, in
many cases, the Referer header is not set. Additionally, these methods cannot
connect tricky links such as a redirection with an inconsistent Referer header.
This semantic gap in the Referer header occurs when the redirection results
from an external JavaScript.

Fig. 2. Semantic gap between Referer header and JavaScript redirection

We now give more details on the semantic gap in a redirection graph using the
website in Fig. 2. In this website, a web browser loads JavaScript of URL B by
using a script tag in URL A accessed first. Next, the DOM API code in URL B
is executed. In this case, an iframe tag that points to URL C is inserted into
the HTML of URL A. As a result, an HTTP request to URL C is generated
with the Referer header of URL A. The Referer header indicates the base
URL, i.e., URL A, of the web content that is rendered on the web browser,
not the external JavaScript URL, i.e., URL B, that contains the redirection
code. This semantic gap occurs due to the general behavior of web browsers
and is frequently observed on legitimate websites. However, this gap results in
a logically incorrect redirection graph without some edges, for example, an edge
from URL B to URL C is not connected, which we call a semantic gap edge. In
other words, when URL D is a malicious URL, a conventional redirection graph
cannot identify the document.write statement in URL B as a redirection origin
due to a semantic gap even if traversing backwards along the path from URL D
to URL A.
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3 Proposed Method and System

To identify the redirection origin, we propose a method of constructing a redi-
rection graph with context, such as which content redirects to which malicious
websites, by tracing the redirection and JavaScript execution processes. The
combination of a redirection graph and a JavaScript execution graph, which we
call a “redirection call graph” (RCG), can bridge semantic gap edges and con-
tribute to identifying the precise position of redirection origins. We implemented
a system with our method, as shown in Fig. 3. Our system accesses a website
using a multi-client environment to identify targeted client environments while
constructing RCGs. It detects the differences of accessed URLs among multiple
analysis results while minimizing the number of environment profiles by design-
ing them on the basis of known vulnerability information. We detail each system
component in the following subsections.

3.1 Identifying Redirection Origin as Evidence of Compromise

Our method of identifying redirection origins is composed of a monitoring
behavior phase, constructing RCG phase, identifying malicious node phase, and
extracting compromised content phase ( 1© in Fig. 3).

Monitoring Behavior. Our system accesses websites and collects redirection
and JavaScript execution traces by monitoring behaviors during the process
of interpreting fetched web content. We explain the behavioral information as
follows.

– HTTP transaction: An HTTP response with the status code 3XX is cap-
tured in HTTP transactions for tracing HTTP redirections. When an HTTP
server responds to this status code, the HTTP request URL, URL in the
Location header, and HTTP status code are recorded as a redirection source
URL, redirection destination URL, and redirection method, respectively.

– HTML parsing: Our system monitors HTML tags, e.g., iframe, frame,
script, meta, object, embed, and applet, that redirect to a different URL

Fig. 3. System overview
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during HTML parsing to trace redirections with HTML tags. When these
HTML tags are parsed, the URL that contains the HTML tag, URL to which
the HTML tag points, and HTML tag name are recorded as a redirection
source URL, redirection destination URL, and redirection method, respec-
tively.

– JavaScript API hooking: Our system monitors executed JavaScript code
and JavaScript function calls, e.g., eval(), setInterval(), setTimeout(),
function calls of window, location, element, node, and document objects,
to construct a JavaScript execution graph and connects semantic gap edges.
Then, to trace redirections with JavaScript, the JavaScript URL, URL to
which the JavaScript points, and JavaScript function name are recorded as a
redirection source URL, redirection destination URL, and redirection method,
respectively.

Constructing Redirection Call Graph. This phase constructs a RCG based
on recorded trace information. As a result, a directed graph with the following
nodes and edges, such as in Fig. 4 on the left, is structured.

Fig. 4. Comparison of graphs constructed with proposed and conventional methods

– Redirection node and edge: A redirection node represents an accessed
URL. A redirection edge represents a redirection method and connects redi-
rection nodes. To construct these nodes and edges, we use information
obtained from HTTP transaction and HTML parsing in the previous phase.

– JavaScript execution node and edge: A JavaScript execution node rep-
resents code executed by the JavaScript interpreter. We can identify which
code is executed by tracing these code executions. This node is managed by
the hash value of the code. Figure 4 shows that a redirection graph contains
the hash values of JavaScript execution nodes (JS 1, JS 2, and JS 3 in this
case). A JavaScript execution edge represents a JavaScript execution method
and connects JavaScript execution nodes, for example, browser rendering,
JavaScript events, eval, setInterval, and setTimeout. In addition, this
edge contains redirection methods to different URLs to identify JavaScript
redirections, e.g., location.replace().

– Semantic gap edge: Our method associates an HTML tag generated by
JavaScript with the JavaScript URL to bridge a semantic gap edge. When a
redirection occurs via the parsing of an HTML tag, e.g., an iframe tag and a
script tag, the source URL is identified from not only the base URL but also
the associated JavaScript URL if the HTML tag is generated by JavaScript.
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We explain a semantic gap edge using Fig. 2. When document.write is
executed in URL B, a pair of URL B and the iframe tag generated by
document.write is saved. Next, when the iframe tag inserted in URL A is
parsed, URL B is uniquely identified from the pair information. Finally, when
the redirection of the iframe tag occurs, an edge from URL B to URL C is
connected. Then, the redirection method of the edge is set to the DOM API
function and HTML tag name, “document.write(iframe).”

Figure 4 depicts a comparison of Fig. 2 between a RCG and a conventional
redirection graph. Our method can identify an obfuscation process from JS 1 to
JS 2 by eval and connect an edge from URL B to URL C by document.write.
This information is necessary for incident responders to conduct efficient and
effective website forensics, but conventional methods cannot identify it.

Identifying Malicious Node. This phase identifies malicious nodes in the
RCG constructed in the previous phase using a blacklist of known malicious
URLs. These known malicious URLs can be obtained from detection results by
using conventional techniques such as a high-interaction honeyclient and anti-
virus. In addition to matching exact malicious URLs, we detected suspicious
URLs of the same domain name and the same number of path hierarchies or
the same number of domain name hierarchies and the same path compared with
the malicious URLs. This suspicious URL detection helps minimize the effects
of URLs using random strings. This phase also extracts malicious paths from
identified malicious nodes to the node of the landing URL.

Extracting Compromised Content. A redirection origin is extracted by
traversing backwards along a malicious path, which is identified in the previous
phase, from the leaf URL to the origin URL. We explain the extraction method
in Fig. 4. If the redirection path from URL A to URL D is classified as mali-
cious, e.g., JS 3 contains the exploit code, the script tag that points to URL B
in URL A is extracted as a redirection origin. A redirection origin contains the
origin/leaf URLs and the redirection method/destination URL. Moreover, to
identify the precise position of redirection origins, this phase extracts DOM
information, such as the DOM tree structure, in the case of an HTML-based
compromise. In the case of a JavaScript-based compromise, the JavaScript exe-
cution information is extracted such as executed code.

It is important to note that redirection origin of the landing URL is not
always compromised web content. For example, if JS 1 in Fig. 4 is compromised
web content, the script tag in URL A described above is a false positive. There-
fore, this phase minimizes false positives by following a malicious path from
the landing URL to the URL with a domain that is different from the source
URL after traversing backwards. This means that we consider web content that
generates such inter-domain edge as a redirection origin because the domain
of compromised websites is different from that of malicious websites [6]. Specifi-
cally, JS 1 in URL B is detected as a redirection origin by the difference between
URL B’s domain and URL C’s domain.
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Table 1. Matrix of CVEs and Flash Player
versions

2013-
0634

2013-
5329

2014-
0497

2014-
0502

2014-
0515

2014-
0556

2014-
0569

2014-
8440

2014-
8439

2015-
0310

2015-
0311

2015-
0313

2015-
0336

2015-
0359

10.1.102.64
11

11.2.202.233
11.5.502.149
11.2.202.270
11.7.700.169
11.7.700.225
11.7.700.252
11.7.700.257
11.2.202.332
12.0.0.44

11.2.202.336
11.7.700.269
11.2.202.341
13.0.0.206
14.0.0.125
14.0.0.179
14.0.0.176
13.0.0.244
15.0.0.152
13.0.0.250
15.0.0.189
11.2.202.423
15.0.0.239
13.0.0.260
11.2.202.438
16.0.0.287
11.2.202.440
13.0.0.264
16.0.0.305
17.0.0.134

Fig. 5. Aggregation of
duplicated CVEs and plugin
versions

Table 2. Number of plugin
versions

JRE PDF Flash

Exploit kits from

2014–2015

14 1 31

Exploit kits from

2011–2013

37 23 32

Official installer 193 103 251

3.2 Identifying Targeted Client Environment as Impact
of Compromise

To identify targeted client environments, our system analyzes a website in a
multi-client environment that increases the possibility of changing the behavior
of a website by browser fingerprinting, such as boundary testing. The analysis
environment is composed of a composing client phase and a matching results
phase ( 2© in Fig. 3).

Composing Client. This phase decides on a client environment from a matrix
of vulnerabilities and its affected client environments. Our method can decrease
the number of client environments by aggregating the environment’s duplica-
tions. If we can predict potential targeted vulnerabilities in websites, the number
can be further decreased by filtering out the corresponding columns of the matrix
(Fig. 5). For example, we show a matrix of the matching of known vulnerability
information obtained from CVE Details2 and affected versions of Adobe Flash
Player in Table 1. We further decreased the elements of the matrix by utilizing
the vulnerability information of exploit kits from 2014–2015 obtained from con-
tagio3. In Table 1, the versions of Adobe Flash Player were aggregated from 251
to 31. Note that oldest version is selected from aggregated versions.

2 CVE Details, http://www.cvedetails.com/.
3 contagio, http://contagiodata.blogspot.jp/2014/12/exploit-kits-2014.html.

http://www.cvedetails.com/
http://contagiodata.blogspot.jp/2014/12/exploit-kits-2014.html
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Matching Results. Our system compares crawl results of various environments
and detects differences of accessed URLs among the results, i.e., it investigates
whether each crawl result contains malicious URLs. From the matching results,
we can identify which client environment is redirected to a malicious URL.

3.3 Implementation

To monitor fine-grained processes of HTML parsing and JavaScript execution
and to configure various client environments, we need to be able to hook browser
processes and modify the environment profiles. Therefore, we used a browser
emulator, HtmlUnit4, in our system and implemented the monitoring and con-
figuration functions into it. In this paper, we focused on plugins, Java Runtime
Environment (JRE), Adobe Reader (PDF), and Adobe Flash Player (Flash),
for a multi-client environment because many recent exploit kits check for the
presence of vulnerable versions of several plugins [7,9]. Therefore, we collected
vulnerability information on these plugins from CVE Details and contagio. The
numbers of aggregated versions of JRE, PDF, and Flash are listed in Table 2.
The rows of Table 2 represent the number of plugins on the basis of vulnerability
information of exploit kits from 2014–2015, exploit kits from 2011–2013, and the
number of official installers we found manually. Table 2 shows that our method
can dramatically reduce the number of environment profiles by utilizing known
vulnerability information. It is important to note that our system can change
environment profiles on the basis of not only plugins but also operating systems
or browsers in the same way.

4 Experiment and Evaluation

We evaluated the effectiveness and performance of our system using the HTTP
communication data of 2,058 compromised websites that were preliminarily
detected during a four-year period (2011–2015). Although we can run our sys-
tem to reveal malicious content and the functions of websites on the live Inter-
net, online crawlings, especially with our multi-client environment, place a load
on web servers and make it easy to detect inspections by server-side cloaking.
Therefore, it is appropriate for utilizing our system in a local environment while
leveraging forensic artifacts that have been already detected. In this experiment,
we first investigated the impact of semantic gaps to evaluate the effectiveness
of an RCG. More precisely, we evaluated whether a RCG can precisely connect
more links than a conventional redirection graph. Next, we analyzed redirection
origins extracted from malicious paths and investigated the statistical trend
regarding website compromises. Finally, we evaluated whether our system can
identify targeted client environments and the target range.

4 Gargoyle Software Inc., http://htmlunit.sourceforge.net/.

http://htmlunit.sourceforge.net/
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Fig. 6. Experimental environment

4.1 Experimental Environment

The experimental environment for our system was composed of a high-interaction
honeyclient, a replay proxy, and our system, as shown in Fig. 6.

High-Interaction Honeyclient. We used the HTTP communication data
of websites that were preliminary detected drive-by download attacks by a
high-interaction honeyclient [16]. Exploit URLs and malware distribution URLs
detected by the honeyclient were also used as a blacklist in the identifying mali-
cious node phase.

Replay Proxy. A replay proxy responds to a HTTP request with web content
on the basis of a URL using HTTP communication data. Thus, due to the
dynamic nature of modern websites, some HTTP requests may not match any
of the original data. This occurs when a URL using time-dependent or random
parameters is included in the data. To compensate for dynamically generated
URLs, we used an approximate matching approach, which was inspired from a
method [17], during replay. This approach measures the similarity between a
requested URL and URLs with the same domain and the same file path but
different parameters in the HTTP communication data. To compute a similarity
score, this approach calculates a Jaccard index of the set of parameter names.
Finally, the proxy responds to a HTTP request with web content on the basis of
a URL that has a score that is higher than a threshold. The threshold was set
to a high score, e.g., 0.9, to prevent false positives, and no false positives were
observed in this experiment. Note that the purpose of this study is to identify the
evidence and impact of compromise, and not to propose a traffic replay method.

Our System. Our system, which is the extended HtmlUnit described in
Sect. 3.3, analyzes web content and stores the results through accesses to the
replay proxy. Then, to further reduce the analysis time, we used our multi-
client environment for only websites that tried to use browser fingerprinting.
Browser fingerprinting can be detected by monitoring the use of the name and
version strings of the client environment in JavaScript function arguments and
object properties. Therefore, we preliminarily detected browser fingerprinting by
analyzing a website once. The results of preliminary crawls were also used for
analyzing a website that does not use browser fingerprinting.
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We obtained the experimental results presented in this section by using two
servers, both running Ubuntu 12.01. Our replay proxy replayed the HTTP com-
munication data on one server (2.93 GHz processor and 24 GB of RAM), and
our system evaluated web content on the other server (3.16 GHz processor and
4 GB of RAM).

4.2 Evaluation of Redirection Call Graph and Redirection Origin

Constructing Redirection Graph. We evaluated how many nodes (URLs)
can be connected with the proposed method compared with conventional meth-
ods. We computed the differences between the number of nodes on malicious
paths identified by the proposed method (PRO) and the conventional meth-
ods. As the conventional methods, we implemented originally the referer-based
method (REF) [14] and the heuristic-based method (HEU) [15]. As a result, the
number of nodes identified by only PRO was 1,068 and 367 compared with REF
and HEU, respectively. We found through manual inspection that these nodes
were false negatives of the conventional methods caused by a redirection without
a Referer header or with a semantic gap. The semantic gap edge was included
in 16.6% of websites. In addition, the numbers of nodes identified by only the
conventional methods were 0 and 9 compared with REF and HEU, respectively.
However, these nodes were false positives (noise URLs) caused by linking a likely
edge with the rule “Domain-in-URL” of HEU. We show in detail the differences
of redirection graphs between the proposed method and the conventional meth-
ods in Appendix. These results show that the proposed method can accurately
construct a redirection graph, and identify malicious redirection chains, but the
conventional methods cannot.

In this evaluation, we found several redirection graphs without a malicious
path. Therefore, we measured the analysis capabilities of our system by calcu-
lating its reachability to malicious URLs that the high-interaction honeyclient
detected. As a result, our system identified malicious paths from 1,479 (71.9%)
websites among the 2,058 websites. We give more details on the websites that
could not reach malicious URLs in the next subsection, i.e., these websites cor-
respond to unknown or false negatives.

Redirection Graph Without Malicious Path. We manually analyzed the
causes of the incomplete redirection graphs that did not contain malicious URLs.
Table 3 shows a breakdown of redirection graphs without a malicious path. The
most common sophisticated browser fingerprinting in this breakdown changed
behavior on the basis of the presence of a specific property of JavaScript or secu-
rity vendor products. JavaScript properties exist in only Internet Explorer, e.g.,
window.sidebar, and is abused as an indirect browser fingerprint by attackers.
Many methods of such browser fingerprinting are proposed and also known to
affect the behavior of not only a browser emulator but also a real browser [18].
Attackers can also maliciously access a file system and check the presence of
security vendor products through Internet Explorer by abusing an information
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Table 3. Breakdown of redirection graph without malicious path

Category #graph Reason Handling

Sophisticated browser
fingerprinting

231 Anti-virus detection and
browser-specific JavaScript
property

Analyze it with a real
browser

URLs with random
strings and/or
domains with DGA

165 Lack of approximate
matching and suspicious
URL detection ability

Improve accuracy of
algorithm

Emulator evasion 122 Defect of DOM
implementation in HtmlUnit

Fix it

Time-dependent
redirection

57 Past crawl data Analyze it
immediately after
detection

VBScript 4 Unsupported in HtmlUnit Analyze it with real
browser

disclosure vulnerability, i.e., CVE-2013-7331. Our browser emulator could not
be redirected to malicious URLs because it did not execute the environment-
specific code and exploit code. The emulator evasion in Table 3 was caused by
a defect of DOM implementation in HtmlUnit. However, we can mitigate the
evasion by improving the behavior emulation since a redirection graph could
be accurately constructed by fixing this defect. The other causes were lack of
approximate matching and suspicious URL detection ability, time-dependent
redirections, and use of VBScript.

Extracting Compromised Web Content. To investigate the statistical trend
regarding compromised web content and compromise methods, we analyzed redi-
rection origins extracted from malicious paths. Compromise methods were 43%
HTML-based compromises, 9% JavaScript-based compromises, and 47% DOM
API code injections. Almost all HTML-based compromises injected automatic
redirections to different URLs using script and iframe tags. The DOM API
code also injected 98% iframe tags and 2% script tags. These injected HTML
tags were written in strange positions such as outside the html tag or body tag

Fig. 7. Identification of target range of Flash Player version
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Table 4. Analysis of client-dependent redirection with browser fingerprinting

Detected:
Suspicious:Unknown

#crawls Description

1:0:1 359 Client-dependent redirection with browser
fingerprinting

0:1:1 117 Client-dependent redirection with browser
fingerprinting

1:1:1 149 Client-dependent redirection with browser
fingerprinting

0:0:1 209 Emulator evasion, time-dependent redirection, etc.
(see Table 3)

1:1:0 226 Malicious websites with DGA-domain and/or
random path

0:1:0 91 Malicious websites with DGA-domain and/or
random path

1:0:0 370 Simple malicious websites

(5%) with in a small area (width < 15, height < 15 or area < 30; 20%) or outside
the display (72%).

We also investigated redirection paths from compromised web content. As a
result, the semantic gap edge was included in 33% of redirection paths, which
made it difficult to analyze it. We will give two case studies of these semantic
gap edges in Sect. 5.1.

4.3 Evaluation of Targeted Client Environments

We evaluated whether our system can identify which client environment is redi-
rected to a malicious URL. The client environments emulated each plugin, as
shown in Table 2, on the basis of the observation period of the websites and the
browser fingerprint acquired by the websites. The crawl results per each environ-
ment were categorized into three groups: detected crawls that contain malicious
URLs, suspicious crawls that contain suspicious URLs, and unknown crawls
that contain neither. As a result of comparing crawl results per each website, we
identified client-dependent redirections that contained detected and/or suspi-
cious crawl results at the same time as unknown crawl results from 625 (30.4%)
of the websites (Table 4). These websites changed the destination URL depend-
ing on the difference among the plugin versions. We plot these detected and/or
suspicious crawl results in Fig. 7, in which the horizontal axis indicates versions
of Flash (left is from exploit kits from 2011–2013, and right is from exploit kits
from 2014–2015) and the vertical axis indicates crawl results on the order of the
time scale. Figure 7 shows that some of the results were widely detected, and the
others were detected by only specific versions. We found through manual inspec-
tion that these results were derived from the exploit kit periods of 2011–2013
and 2014–2015. This means that client environments based on information of
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Fig. 8. Malicious path that contains obfuscated semantic gap edge

exploit kits from 2011–2013 were not redirected to malicious websites observed
from 2014–2015 and vice versa. These results show that it is important to change
a client environment for analysis depending on that attack trend of that time.
Furthermore, as a result of analyzing websites of the same detection pattern, we
found that these websites used the same browser fingerprinting code and redi-
rection code. Using these multiple analysis results, we can categorize malicious
infrastructures, such as vulnerabilities (see Sect. 5.2).

4.4 Performance Overhead

We evaluated the total time and the average time of analyzing 2,058 websites
with our system. The results indicated that the time costs were 685,773 s and
333 s, respectively. Since 90% of benign website crawlings done by the high-
interaction honeyclient that detected compromised websites used in this exper-
iment finished within 154 s [16], the analysis time of our system took approxi-
mately twice as long. The performance of our system, however, clearly depends
on the number of environment profiles. The analysis time per one environment
was only 12 s on average. Therefore, our system is appropriate for frequent re-
analysis of websites because the browser emulator does not require the rendering
time of a website and the execution time of exploit code. In addition, since the
browser emulator can be more easily deployable and parallelized compared with
a high-interaction honeyclient that individually requires a real browser whenever
the environment is changed, performance can be further improved.

5 Case Studies

We manually analyzed redirection origins, redirection paths, and client-
dependent redirection code. Among these manual inspections, we now describe
notable samples.

5.1 Redirection Call Graph with Semantic Gap

Obfuscated Semantic Gap Edge. We depict an example of malicious paths
that contained dynamically generated code and a semantic gap in Fig. 8. The
semantic gap was caused by DOM API code (JS 5) in obfuscated code (JS 4)
injected by compromising. The conventional methods could not completely iden-
tify these malicious paths because the link to the URL of DOMAIN5 could not
be connected due to the semantic gap and the destination URL of DOMAIN6
is concealed in the obfuscated code, i.e., JS 4.

Multiple Compromised Web Content. We show an example of a part of
RCGs constructed from crawl results, which contain two or more differences in
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Fig. 9. Malicious path that contains multiple semantic gap edges

Table 5. PDF version range detected by website analysis in multi-client environment

4.0.57.0.07.1.07.1.18.0.08.1.08.1.18.1.28.1.38.1.48.2.08.2.49.0.09.1.09.1.19.3.09.3.19.3.39.4.09.4.110.0.010.0.310.1.1

� � � � � � � � � � � � � �

the number of identified URLs between PRO and REF/HEU in Sect. 4.2 (Fig. 9).
Compromised web content in Fig. 9 was injected into multiple files such as an
HTML file of the landing URL and JavaScript files referred from the landing
URL. The conventional methods could not identify URLs of these JavaScript files
because DOM API code were injected into all files and semantic gaps occurred on
all of them. In other words, this means that JavaScript files remain compromised
even if we deleted only the iframe tag of the landing URL identified by the
conventional methods.

5.2 Client-Dependent Redirection with Browser Fingerprinting

The JS 6 contained in the redirection path of Fig. 8 changed the destination URL
by executing the following browser fingerprinting code that gets the version of
PDF plugin.

pdf_ver = PluginDetect.getVersion("AdobeReader");
pdf_ver = pdf_ver.split(",");
if ((pdf_ver[0] == 8 && pdf_ver[1] <= 2) || (pdf_ver[0] == 9 && pdf_ver[1] <= 3)) {

document.write("<iframe width=10 height=10 src=’http://DOMAIN6.br/98765.pdf’></iframe>");
}

We analyzed the above code using our system that emulated 23 individual ver-
sions of a PDF based on Table 2 because the code was observed in 2012. As a
result, the versions shown in Table 5 reached malicious URLs and the behavior
was along the condition of the above branch code. In addition, these code features
and characteristic lexical features of URLs suggest that these malicious paths were
built using RedKit, which is known to exploit a PDF’s vulnerability (CVE-2010-
0188) [19]. CVE-2010-0188 exists in Adobe Reader/Acrobat 8.X before 8.2.1 and
9.X before 9.3.1, and the above code has also been implemented to redirect to the
URL of DOMAIN6 when a PDF version that has the vulnerability is used.

6 Discussion

Browser Emulator Limitations. The analysis of malicious websites with
a browser emulator, such as our system, is known to have some limitations.
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For example, a browser emulator is known not to be able to execute attack code
that exploits the vulnerabilities of a web browser and/or its plugins. Our sys-
tem also cannot execute exploit code as described in Sect. 4.2. In other words,
our method cannot construct a complete redirection graph including a mal-
ware distribution URL because a malware distribution URL is accessed due to
exploit code execution. Similarly, improving behavior emulation is challenging in
browser fingerprinting and the diversity of browser implementations. The redi-
rection graphs without malicious paths in Sect. 4.2 were also one of the factors
preventing the construction of graphs. We admit all these issues can affect the
performance of our system. However, these issues are not specific to our system
and affect in some degree all real browsers and browser emulators. More impor-
tantly, our system could identify the evidence and impact of 71.9% of compro-
mised websites under the limitations. To maximize the disclosure of malicious
content and detect it, we must combine our system with other techniques, which
we discuss in Sect. 7.

Evaluation of Compromised Content. In this study, we did not conduct a
user study on how the evidence and impact information identified by our sys-
tem can contribute to remedying compromised websites and preventing malware
infections because we evaluated our system using past crawl data in our exper-
iments. As future work, we will perform a user study on how much and how
long this identified information can increase the response rate and the reduces
response time required for clean-up done by webmasters, such as in an existing
user study [5].

Instead of a user study on webmasters, we calculated the content reduction
rate (CRR) and the URL reduction rate (URR) to evaluate how our system can
contribute to the work of incident responders. The CRR is how much web content
on compromised websites would not be analyzed by extracting compromised web
content using our method. The URR is how many URLs our method can filter
out by extracting malicious redirection paths from the entire redirection graph
of each crawling. These rates were obtained with the following formulas.

CRR = 1 − 1
n

n∑

k=1

(
#of bytes of compromised contentk

#of bytes of original contentk

)
,

URR = 1 − 1
n

n∑

k=1

(
#of access URLs in pathk

#of access URLs in crawlk

)

As a result, our method could reduce 99.2% of bytes on the basis of the
value in a Content-Length header (16,568 bytes on average). Furthermore, the
URR was 85.0% (23 URLs on average), i.e., the amount of web content and
the number of URLs to be analyzed were sufficient for incident responders by
0.8% and 15.0%, respectively. The results show that our method can identify
malicious websites both at a content-level and a URL-level. However, web content
dynamically injected, for example, from database and a .htaccess file cannot be
accurately identified. Although we must cooperate with webmasters to remove
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the root cause of compromise in the case of dynamic compromises, our method
can still provide practical directions for prompt incident response.

Accuracy of Vulnerability Database. Our system chose a client environment
for emulation on the basis of known vulnerability information. The vulnerability
information in Table 1 showed a correlation that old versions have old vulnerabil-
ities and new versions have new vulnerabilities but non-consecutively, e.g., CVE-
2014-0497 exists in Adobe Flash Player before 11.7.700.261, but 11.7.700.225 is
not checked in Table 1. We can infer that these are derived from the omission of
information or untested plugin versions. Therefore, it is important to note that
our analysis method using a multi-client environment cannot identify completely
the target range of client environments on malicious websites. However, the tar-
get range clearly depends on the implementation of malicious websites, and even
our method can get enough beneficial information, as described in Sect. 5.2.

7 Related Work

Detecting Compromised Websites. The methods of detecting website com-
promises are generally used for comparing original and compromised web con-
tent. For example, a comparison method [11] using HTML files as original con-
tent and a comparison method [12] using well known libraries and frameworks
of JavaScript as original content have been proposed. Moreover, TripWire [13]
can notify webmasters of changes on websites by e-mail when file operations are
detected on a web server on which TripWire is installed. However, these methods
have limitations in terms of method application. For example, original content is
necessary for compromise detection, and these methods can detect only compro-
mised web content on the web server under control. These limitations prevent
websites using external content such as third-party libraries and advertisements
from performing effectively. However, using these methods with compromised
web content identified by our method can contribute to finding more malicious
websites and detoxifying them.

Detecting Malicious Websites. Over the past few years, many researchers
have proposed methods of detecting drive-by downloads. A high-interaction hon-
eyclient [16,20] crawls websites with a vulnerable real browser and detects mal-
ware downloads by monitoring unintended processes and file system accesses,
whereas a low-interaction honeyclient [21,22] crawls websites with a browser
emulator and detects malicious behaviors by signature matching and machine
learning. Many learning-based detection methods of malicious websites have also
been proposed and leveraged features from HTML, JavaScript, URL, and social-
reputation [23–25]. However, these methods cannot identify which web content
is the redirection origin of a malicious path. In comparison, we can extract mali-
cious paths more effectively using these research results because all methods can
detect malicious websites with high accuracy.
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Detecting Malicious Redirection. Many methods of detecting a redirection
graph on malicious websites rather than for detecting exploit code and mal-
ware have also been proposed [15,26–28]. Graph-based methods [26,27] using
the behavioral information of web browsers construct a redirection graph on
the basis of redirection information collected from a number of honeyclients
or a user’s clients. These methods detect malicious websites by leveraging co-
occurring URLs in graphs and a diverse dataset of graphs. Others [15,28] focus
on HTTP redirections and executable file downloads on a network and apply
a classifier to detect malicious redirection paths. However, these methods fail
to construct a redirection graph of many malicious websites (see Sect. 4.2 and
AppendixA) because of the coarse-grained redirection information. These meth-
ods can also identify malicious URLs but cannot identify malicious content as
well as stated in the previous subsection.

8 Conclusion

To identify the evidence and impact of compromise, we proposed a method of
constructing a fine-grained redirection graph. Our system with the proposed
method analyzes a website in a multi-client environment while minimizing the
number of environment profiles. The evidence and impact information includes
which from web content does redirection originate, which URLs are associated
with the attacks, and which client environment is exposed to threats. Our evalua-
tion with compromised website data obtained during a four-year period showed
that our system can successfully identify the precise position of compromised
web content, malicious URL relations, and targeted client environments. We
also showed that it can effectively identify an exploit kit and a vulnerability that
has been used in malicious websites by leveraging the information. We believe
that our system can contribute to improving the daily work of CSIRTs/security
vendors and expediting compromised website clean-up done by webmasters.

A Appendix: Difference Between Proposed Graph
and Conventional Graph

We show redirection graph examples constructed with the referer-based
method [14], the heuristic-based method [15], and the proposed method in
Figs. 10, 11, and 12, respectively. Figure 10 depicts a graph smaller than the other
graphs because a redirection without a Referer header was caused by a function
of the location object. In this case, the referer-based method cannot connect
the any of the following redirections. The heuristic-based method can connect all
redirections. However, semantic gaps between Referer headers and JavaScript
redirections occur. As a result, we cannot identify precise redirection origins,
e.g., the web content of URL “http://DOMAIN10/gzcr?t=[a-zA-Z0-9]{118},”
due to the gaps. Our method can connect all redirections and precisely identify
all of their redirection origins.

http://www.domain10.com/gzcr?t=[a-zA-Z0-9]{118}
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Abstract. Nowadays aggregated web browsing histories of individ-
ual users have been collected and extensively used by Internet service
providers as well as third-party researchers, due to their great value to
data mining for in-depth understanding of important phenomena, such
as suspicious behavior detection. While providing tremendous benefits,
the release of private users’ data to the public will pose a considerable
threat to users’ privacy. Sharing web browsing data with privacy preser-
vation has so far received very limited research attention. In this paper,
we investigate the problem of real-time privacy-preserving web browsing
monitoring, and propose SecWeb, an online aggregated web browsing
behavior monitoring scheme over infinite time with theoretical privacy
guarantee. Specifically, we propose an adaptive sampling mechanism and
an adaptive budget allocation mechanism to better allocate appropriate
privacy budget to sampling points within any successive w time stamps.
In addition, we propose a dynamic grouping mechanism that groups web
pages with small visits together and adds Laplace noise to each group
instead of single web page to eliminate the effects of perturbation error
for the web pages. We prove that SecWeb satisfies w-event differential
privacy and the experimental results on a real-world dataset show that
SecWeb outperforms the state-of-the-art approaches.

Keywords: Web browsing · Privacy preservation · Real-time data pub-
lishing · Differential privacy · w-event privacy

1 Introduction

The Internet plays a more and more important role in people’s daily life as the
explosive growth of mobile devices. People can obtain their interested informa-
tion by browsing various websites, while their browsing behaviors which can be
characterized by browsing histories are also recorded by the host servers simul-
taneously. The servers may publish the browsing histories1 to the public since
1 In this paper, we interchangeably use “web browsing histories” and “web browsing

data” throughout the paper without confusion.
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Fig. 1. An example of web browsing behaviors

Table 1. Statistics of web browsing behaviors

News Games Sports Science

T1 0 0 1 1

T2 0 0 3 0

T3 2 0 0 0

T4 0 1 0 1

these data is of great value for companies or third-party researchers in many
data mining applications to analyze the browsing behavior of users. It is also
strategic significance for understanding the users’ habits in order to improve
the user experience and websites performance, such as recommending web pages
to users based on their browsing behavior, finding the current hot news, and
watching the network traffic to detect anomaly [5].

However, there is always a risk in releasing this kind of private and sensitive
data to the public. Studies have indicated that a user’s web browsing history
(i.e., a sequence of visited websites) can be regarded as a fingerprint which can
be used to uniquely identify or track the user [21]. The AOL data release [4] is a
representative privacy incident where a newspaper journalist quickly identified
a user by the released anonymized search logs and consequently the sensitive
information of this user was disclosed. This and other related findings indicate
that the released private data must be carefully processed to protect the privacy
of individuals [25].

Generally speaking, different people behave different web browsing patterns.
Thus, people’s sensitive information can be easily figured out by exploiting users’
browsing histories. Even the identification information is hidden from the public,
it is still possible to discover the browsing histories of users. For example, Fig. 1
illustrates the browsing behaviors of three people, e.g., Baron starts his browsing
session at time stamp T2, visiting a sports news page, then he moves to a local
news page and his session ends after browsing a web page about games. Table 1
shows the number of visits to each type of web page without any identification
information. With background information, the adversary knows that Baron
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starts to browse the web page at time stamp T2. Then the adversary can easily
obtain two browsing traces for Baron, i.e., sports → news → games or sports →
news → science, from the released data. Suppose the adversary already knows
that Baron is interested in playing games from the side channel information, e.g.,
the public tweet from Twitter. Then he can infer that sports → news → games
is more likely to be the true browsing trace of Baron. Therefore, it is important
and necessary to process the web browsing data before publishing so that the
released data is not only useful but also privacy-preserved.

The technique of differential privacy (DP) [9] can ensure privacy protection
for statistic data publishing with vigorous guarantee theoretically. Now it has
become an appealing privacy model. In particular, DP does not need to make
any assumption about the adversary’s background information. That is, even
the adversary has obtained a user’s background information, it cannot derive
any additional information about the user based on his/her published data.

Almost all of the existing differentially private protocols investigated either
event-level privacy on infinite streams [6,7,11] or user-level privacy on finite
streams [12,13]. The authors in [18] successfully bridged the gap between the
user-level and the event-level over streams using the w-event ε-differential pri-
vacy model (i.e., w-event privacy) to make a good trade-off between the privacy
and the utility, and thus it can protect any sequence of events existing within
any time stamp window of length w.

In this paper, we investigate the real-time web browsing data publishing
problem with privacy protection, e.g., securing the number of visits to different
web pages at each time stamp. [12] took the first step to share web browsing data
with differential privacy, which focused on real-time web browsing data release
over a pre-specified finite time stamps. However, the continuous publication of
web browsing data (called data streaming) may further reveal sensitive infor-
mation of users, which motivates the research on privacy preserving real-time
web browsing data publishing over infinite time. The w-event privacy model
well suits for the infinite stream case, and it can provide a full protection of any
user’s browsing traces (e.g., a sequence of visited web pages) over any sequence
of continuous time stamps of length w. We summarize the main contributions
of this paper as follows.

– We design a novel privacy preserving scheme, called SecWeb, for real-time web
browsing data publishing with strong privacy guarantee. We design a dynamic
grouping mechanism which groups all web pages with a small number of visits,
and Laplace noise is inserted to every group other than a single web page to
eliminate the effects of perturbation error on web pages.

– We propose adaptive sampling and budget allocation schemes to better allo-
cate appropriate budget of privacy to the sampling points within any sequence
of continuous time stamps of length w. We further propose a pre-sampling
mechanism to reduce the high query sensitivity and integrate it with SecWeb
seamlessly.

– We theoretically prove that SecWeb satisfies the notion of w-event
ε-differential privacy. SecWeb is evaluated with a real-world dataset,
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and compare it with the state-of-the-art approaches. The results demonstrate
that SecWeb outperforms the previous approaches and improves the utility or
accuracy of real-time web browsing data publishing with a vigorous privacy
guarantee.

The remaining parts of this paper are organized as the following sections.
Section 2 introduces some preliminary knowledge, describes the problem formu-
lation and briefly discuss the related works. We present SecWeb and analyze
its privacy in Sect. 3. We evaluate the performance of SecWeb with extensive
experiments in Sect. 4 and finally conclude the paper in Sect. 5.

2 Backgroud

2.1 Preliminaries and Problem Statement

In this section, we introduce some preliminary knowledge of differential privacy
and w-event privacy, and present the problem to be studied in this paper.

Differential Privacy. Differential privacy has become a de-facto standard
privacy model for statistics analysis with provable privacy guarantee. Intu-
itively, a mechanism satisfies differential privacy if its outputs are approximately
unchanged even if a record in the dataset is removed, so that an adversary infers
no more information about the record from the mechanism outputs.

Definition 1 (Differential Privacy [9]). A privacy mechanism M gives ε-
differential privacy, where ε > 0, if for any datasets D and D′ differing on at
most one record, and for all sets S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′) ∈ S], (1)

where ε is the privacy budget representing the privacy level the mechanism pro-
vides. Generally speaking, a smaller ε guarantees a stronger privacy level.

Definition 2 (l1-norm Sensitivity [10]). For any function f : D → Rd, the
l1-norm sensitivity of f w.r.t. D is

Δ(f) = max
D,D′∈D

||f(D) − f(D′)||1 (2)

for all D, D′ differing on at most one record.

Laplace mechanism is commonly used to realize ε-differential privacy, which
adds noise drawn from a Laplace distribution into the datasets to be published.

Theorem 1 (Laplace Mechanism [10]). For any function f : D → Rd, the
Laplace Mechanism M for any dataset D ∈ D

M(D) = f(D) + 〈Lap(Δ(f)/ε)〉d (3)

satisfies ε-differential privacy, where the noise Lap(Δ(f)/ε) is drawn from a
Laplace distribution with mean zero and scale Δ(f)/ε.
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Intuitively, the noise is large if sensitivity Δ(f) is big or the budget ε is small.

w-Event Privacy. The notion of w-event ε-differential privacy (i.e., w-event
privacy) was first proposed in [18]. This new privacy model can give provable
privacy assurance for any sequence of events within successive time stamps of
length w.

Before giving the formal definition of w-event privacy, we first introduce some
necessary notions. Two data sets Di,D

′
i at time stamp i are neighboring if they

have at most one different row. At time stamp t, we define the stream prefix of
an infinite series S = (D1,D2, ...) as St = (D1,D2, ...,Dt).

Definition 3 (w-neighboring [18]). w is a positive integer, we say that St, S
′
t

are w-neighboring, if

1. For every St[i], S′
t[i] such that i ∈ [t] and St[i] �= S′

t[i], it holds that St[i], S′
t[i]

are neighboring, and
2. For every St[i1], St[i2], S′

t[i1], S′
t[i2] with i1 < i2, St[i1] �= S′

t[i1] and St[i2] �=
S′

t[i2], it holds that i2 − i1 + 1 ≤ w.

Simply put, if St, S′
t are w-neighboring, their elements are pairwise the same

or neighboring, and the time interval of any two neighboring datasets will not
exceed w time stamps.

Definition 4 (w-Event Privacy [18]). A mechanism M satisfies w-event ε-
differential privacy, if for all sets S ⊆ Range(M) and all w-neighboring stream
prefixes St, S′

t and all t, it holds that

Pr[M(St) ∈ S] ≤ exp(ε) · Pr[M(S′
t) ∈ S]. (4)

A mechanism satisfying w-event privacy will protect the sensitive information
that may be disclosed from a sequence of some length w.

Theorem 2 ([18]). Let M be a mechanism that takes stream prefix St as input,
where St[i] = Di ∈ D, and outputs s = (s1,..., st) ∈ Range(M). Suppose M can
be decomposed into t mechanisms M1, ...,Mt such that Mi(Di) = si, each Mi

generates independent randomness and achieves εi-differential privacy. Then, M
satisfies w-event privacy if

∀i ∈ [t],
i∑

k=i−w+1

εk ≤ ε. (5)

This theorem enables us to view ε as the total available privacy budget in
any sliding window of size w, and appropriately allocate portions of it across the
time stamps.
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Problem Statement. In this paper, we consider the application of continually
publishing web browsing histories to the public in real-time manner and aim
to realize w-event privacy for real-time web browsing data publishing. Here, a
browsing history is defined as a sequence of web pages browsed at consecutive
and discrete time stamps. A host server collects and records users’ browsing
data, and generates a database D as time goes. The objective is to continually
make the data statistics calculated on D public in a real-time manner with the
guarantee of w-event privacy. To achieve this goal, the host server will not release
the real value of statistics, but apply a well-designed privacy protection scheme
to publish a sanitised version of the original statistics.

The server gathers the users’ browsing logs throughout the time, and at
time stamp i obtains a two-dimensional database/matrix Di, where the columns
correspond to the web pages and the rows correspond to the users. Di[m][n] is
set to 1 if the user m has visited the web page n at time stamp i(during time
stamp i − 1 and i), and 0 otherwise. Note that each row of Di may contains
several 1 s since a user may visit more than one web page for a period of time
in reality. The server then publishes the statistics of the visits for each page at
time stamps i. Here, we define the statistic of the visits for each web page as a
query function Q on Di, Q(Di) = Xi = (x1

i , x
2
i , · · · , xd

i ), where d denotes the
total number of pages and xj

i denotes the number of visits of page j. Since each
user can visit several web pages for each time stamp, the sensitivity Δ(Q) may
be large and consequently leads to a huge injected noise.

Instead of directly releasing xj
i with high privacy leakage, the server publishes

a sanitized version of xj
i , denoted by rj

i . At time stamp i, based on the statis-
tics Xi, we denote its corresponding sanitized version by Ri = (r1i , r2i , · · · , rd

i ).
Therefore, the goal of this paper is to design a privacy protection mechanism to
generate and publish the sanitized version Ri in real-time and guarantee that
the subsequent releases R = {R1, R2, ..., Ri, ...} is satisfying w-event privacy.

Here, we briefly explain several important notions to be used throughout the
paper.

Utility. The utility of the published data measures how valid the data is used
for subsequent analysis or mining tasks. In this paper, we evaluate the utility
with the following metrics: Mean Absolute Error (MAE), Mean Relative Error
(MRE), and Top-K mining precision.

Sampling Point and Non-Sampling Point. A sampling point is a selected time
stamp where the raw statistic is queried and perturbed. The statistic at a non-
sampling point will not be queried but instead will be approximated by the
perturbed data at last sampling point.

2.2 Related Work

In [4,21], it has been shown that there exist severe privacy risks when users’
data is released, and many privacy-assured data publishing schemes have been
designed accordingly.



460 Q. Wang et al.

To publish search logs or web browsing data, many schemes were proposed
to achieve k-anonymity [2,16]. However, it was shown in [15] that the existing
solutions always assume the attackers have no background knowledge, and this
is not true in practice. In comparison, the notion of differential privacy proposed
in [9] can ensure much stronger privacy guarantee, where a user’s privacy can
be well protected even if the attackers have obtained the others’ information in
the database. Following the differential privacy model, [10] proposed the first
differentially private scheme called Laplace mechanism. On top of that, many
schemes have been presented for achieving differentially private data publishing
in the past years.

In [8,20,24], several mechanisms were proposed for the release of statistical
data computed based on the static database. Until recently, researchers began
to consider releasing time series data. One direction is to study the off-line
data release [1,23] while the other direction is to investigate the real-time data
publishing [7,11]. The key difference between these two direction is that the
solutions for the off-line data release deal with the whole time series data at
one time, but the solutions for the real-time data publishing deal with the data
streamingly.

In [7,11], the authors proposed differentially private solutions for continual
counting queries over time series data, and the techniques can be used for real-
time monitoring. Their limitation is that only event-level privacy guarantee is
provided. That is, only one’s presence at a single time stamp is fully protected
over the whole data stream.

In [12,13,18], the proposed solutions considered differentially private release
of real-time time series. Different from [7,11,13] established a new framework
called FAST. FAST consists of sampling and filtering operations with the appeal-
ing property of providing user-level privacy. That is, the presence of a user over
the whole time series is protected. But FAST has the limitation of pre-assigning
the maximum times of publications, so it is only suitable for finite-time data
publishing. To fill the gap between event-level privacy and user-level privacy,
Kellaris et al. [18] proposed w-event ε-differential privacy, and it can protect
any sequence of events existing in any continuous time stamps of length w over
infinite time. Due to its nice property, in this paper we use it to protect users’
web browsing traces within any window of w continuous time stamps.

Fan and Xiong [12] took the first step towards sharing web browsing data
with differential privacy. They proposed two algorithms based on FAST. The
first algorithm slightly changes FAST to the web browsing scenario, which is
called univariate Kalman filter (U-KF). The second algorithm, called multi-
variate Kalman filter (M-KF), establishes a multivariate model and utilizes the
Markov property of web browsing behavior. M-KF uses Markov chain to improve
accuracy of the prediction step in Kalman filter and have a more accurate result
than U-KF. However, the Markov model must be learned by an appropriate
training set in advance and the multiple steps of matrix operations in M-KF
extremely reduce its efficiency, which is especially vital for a real-time algorithm.

Competitors. We identify three competitors. The first is an application of LPA
[10] on w-event privacy, which is also called UNIFORM in [18]. UNIFORM
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assigns ε
w to every time stamp, where ε is the total budget. And then UNIFORM

straightforwardly applies LPA at each time stamp. Obviously, the budget for each
time stamp will be very small if w is large, which leads to a very bad utility.

The last two competitors are U-KF and M-KF. Since U-KF and M-KF are not
w-event private, we slightly change them to satisfy w-event privacy according
to [18] and name the new schemes as U-KFw and M-KFw. To be precise, we
make an instantiation of the two methods which consist of sub mechanisms,
each operating on a disjoint w time stamps. In order to guarantee that the total
budget allocated in any w successive time stamps is less than ε, for each sub
mechanism, we allocate budget ε/2 to satisfy w-event privacy.

3 SecWeb: Real-Time Web Browsing Data Publishing
with Privacy Preservation

In this section, we present our SecWeb design to achieve real-time web brows-
ing data publishing with privacy preservation. In order to realize this purpose,
we propose a framework for SecWeb, as shown in Fig. 2, which is mainly com-
posed of five components: adaptive sampling, dynamic grouping, adaptive budget
allocation, grouping based perturbation, filtering and pre-sampling.

Fig. 2. The framework of SecWeb

Specifically, the adaptive sampling component can adjust the sampling rate
based on dynamic data, and it enables SecWeb to perturb statistics at selected
sampling time stamps while approximating the non-sampled statistics with per-
turbed statistics at the last sampling time stamp. The adaptive budget allocation
component can dynamically allocate appropriate budget for each sampling page
according to the changing trend of each web page. For the sampling pages at
each time stamp, the dynamic grouping component can group sampling pages
with similar features together, and the group based perturbation component can
inject Laplace noise to the groups other than individual web pages with the
allocated budget to reduce the perturbation error to each web page. Moreover,
following FAST, the filtering component is used to further enhance the utility
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of published sanitized data. Finally, the server publishes the sanitized data after
filtering and chooses the new sampling interval for the sampling pages using the
adaptive sampling component. After presenting SecWeb, we further propose a
pre-sampling method to reduce the high query sensitivity, and this method can
be integrating with SecWeb seamlessly.

3.1 Adaptive Sampling

Every noisy data release comes at the cost of budget consumption while the
entire budget ε is a constant. Thus, publishing noisy data at every time stamp
will introduce large magnitude of noise when the window size w is large. An
efficient way to overcome this problem is to use a sampling mechanism which
queries and perturbs statistics at selected time stamps and approximates the
non-sampled statistics with perturbed sampled statistics. Consequently, non-
sampled statistics can be approximated without any budget allocation, and more
budget can be allocated to sampling points within any successive w time stamps
given a fixed ε.

Figure 3 shows the general idea of the adaptive sampling mechanism. The blue
line with markers represents the raw data series, the red line denotes the released
data and the dashed green lines denote the sampling points. Note that here we
inject Laplace noise at each sampling point with value of zero for simplicity.
As shown in Fig. 3, the adaptive sampling mechanism only samples three points
through time stamp 1 to 10, since the raw series change gently and the non-
sampled statistics could be roughly approximated. The sampling rate increases
when the raw data changes dramatically through time stamp 10 to 20 in order
to avoid large error introduced by approximation.

Fig. 3. An illustration of adaptive sampling (Color figure online)

In this paper, we consider both the data dynamics and the remaining bud-
get to design an adaptive sampling mechanism. Specifically, the proportional-
integral-derivative (PID) control is utilized to characterize the dynamic data. At
the next time stamp, we then choose the next sampling interval for every page
with the PID error and the remaining budget. In comparison to FAST [13], here
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a new feedback error measure is used to compute the PID error. This is because
FAST’s feedback error can be too sensitive to data dynamics, and the adaptive
sampling performance would be affected when we have small data values.

Let kn and kn−1 be the current and the last sampling points, respectively.
For page j, we have the feedback error :

Ej
kn

= |rj
kn

− rj
kn−1

|.
It is actually the error of the released data values between the current and the
last sampling points. The PID error δj for statistics on the jth column of Dkn

(i.e., page j) is computed as

δj = KpE
j
kn

+ Ki

∑n
o=n−π−1 Ej

ko

π
+ Kd

Ej
kn

kn − kn−1
, (6)

where Kp, Ki, and Kd denote the standard PID scale factors, which respectively
represents the proportional gain, the integral gain and the derivative gain. The
first term KpE

j
kn

is the proportional error standing for the present error; the

second term Ki

∑n
o=n−π−1 Ej

ko

π is the integral error standing for the accumulation
of past errors, and π is how many recent errors are taken for the integral error;

the third term Kd
Ej

kn

kn−kn−1
denotes the derivative error used to predict the future

error. In our experiments, for the PID controller we choose π = 3, Kp = 0.9,
Ki = 0.1, and Kd = 0.

It may seem that we should choose a small sampling interval if the data
rapidly changes. However, this is not always the case. When we have a very
small remaining budget, sampling and perturbing statistics at the next time
stamp may incur quite high perturbation error. So, a better choice is to adopt
a relatively large sampling interval, then the previously-allocated budget can be
used again, and it will approximate the statistics at the next time stamp with
the previous publication. We have the new sampling interval

I = max{1, Il + θ(1 − (
δj

λr
)2)}, (7)

where I and Il respectively denotes the next and the last sampling intervals of
page j. In our settings, λr = 1/εr is chosen to measure the scale of Laplace noise.
Here εr denotes the remaining budget at the next time stamp, and θ denotes a
pre-defined scale factor used to adjust the sampling interval. In our experiments,
we set θ = 10. In particular, the relative value of PID error δj and the scale of
Laplace noise λr are used to determine the increase or decrease of the sampling
interval. In fact, we increase the sampling interval when δj < λr and decrease it
when δj > λr.

3.2 Dynamic Grouping

Intuitively, directly injecting Laplace noise to each statistic is the simple and
straightforward way to achieve differential privacy. However, this is not true.
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For the web pages with small statistics, their utilities will be severely affected
when the privacy level is satisfied, especially when the limited privacy budget
should be allocated to multiple time stamps. Even a small noise may cause large
relative error when the statistics of sampling pages are small.

Fan et al. [14] proposed a grouping mechanism to solve this kind of problems.
The main idea is to aggregate the statistics of similar regions together and inject
noise to each aggregated group, and then average the noisy count to each group
member. Note that the proposed grouping mechanism in [14] is based on the
assumption that the statistics of regions which are close in space have similar
changing trend, and the grouping process is performed offline at one time. This
assumption however does not hold for real-time web browsing data publishing
since the statistics of web pages behave high dynamics and should not be grouped
offline at one time.

Inspired by the grouping mechanism in [14], in this paper, we propose a
dynamic grouping mechanism that aggregates the web pages with small statistics
dynamically based on their real-time changing trend. The main idea is that web
pages with small statistics can be grouped together if their statistics are close
and the changing trends of statistics are similar.

To realize this objective, we use the released statistics at previous sampling
points to predict the statistic at current sampling point as well as characterize the
changing trends of statistics. Let (rj

ki−κ
, rj

ki−κ+1
, · · · , rj

ki−1
) denote the released

statistics at previous κ sampling points, and x̄j
ki

denote the predicted statistic
at sampling point ki for page j. We let x̄j

ki
=

∑i−1
o=i−κ rj

ko
/κ, and adopt Pearson

Correlation Coefficient [22], the most commonly used measure of correlation in
statistics, to measure the similarity of changing trend of statistics. Finally, pages
with small statistics and high similarity are grouped together.

The pseudocode of the dynamic grouping mechanism is formally presented
in Algorithm 1. Note that at each time stamp, dynamic grouping only considers
the set of pages that need to be sampled, denoted by Ψ . Let Gki

denote the
group strategy at time stamp ki. First, the mechanism predicts the statistic at
ki for each sampling page in Ψ . Let τ1 denotes the noise resistance threshold that
reflects whether the statistics of pages have sufficient capacity to resist noise. If
x̄j

ki
≥ τ1, the page itself can be a group; otherwise, the page is encouraged to

be grouped with other pages. Thus, in lines 2–7, the mechanism filters out the
pages that can resist noise individually which do not need to be grouped with
other pages together. These found pages are put into the group strategy Gki

where each of them is an individual group.
Lines 8–20 describes how to group web pages with small statistics together.

Generally speaking, two pages i and j can be grouped together if they have
small error between x̄i

ki
and x̄j

ki
, and also they have sufficient similarity of the

changing trend. The similarity of two pages i and j at time stamp ki can be
calculated by the Pearson Correlation Coefficient of Ri

k and Rj
k. Let τ2 denote

the similarity threshold that decides whether two pages have similar changing
trends of statistics. Thus, when the similarity of two pages is no less than τ2,
the two pages have sufficient similarity. Let τ3 denote the error threshold that
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Algorithm 1. Dynamic Grouping
Input: Ψ : the collection of sampling pages;

Rj
k = (rj

ki−κ
, rj

ki−κ+1
, · · · , rj

ki−1
): the released statistics at previous κ sampling

points for a sampling page j.
Output: Group strategy Gki .
1: Calculate x̄j

ki
=
∑i−1

o=i−κ rj
ko

/κ for each page j in Ψ
2: for each page in Ψ , say j do
3: if x̄j

ki
> τ1 then

4: Let the page j itself as a group and add it to Gki

5: Remove page j from Ψ
6: end if
7: end for
8: Sort Ψ in increasing order according to x̄j

ki

9: while Ψ �= ∅ do
10: Initialize a empty group g with the first page in Ψ
11: Let o = 2
12: while o < Ψ.length, x̄o

ki
− x̄1

ki
< τ2 and the sum of x̄j

ki
in g < τ1 do

13: pc ← calculate Pearson Correlation Coefficient between page o and page 1
14: if pc > τ3 then
15: Add page o to g
16: end if
17: o = o + 1
18: end while
19: Remove the pages in g from Ψ and add g to Gki

20: end while
21: Return grouping strategy Gki

decides whether two pages are close or not in terms of predicted statistics. Thus,
when the error is less than τ3 and the similarity is larger than τ2, two pages are
encouraged to be grouped together.

In line 8, the dynamic grouping mechanism first sorts the remaining web
pages in Ψ in increasing order according to x̄j

ki
. In lines 9–20, the mechanism

repeatedly forms groups by putting the pages in Ψ with small error and high
similarity to the first page in Ψ , and puts the formed groups into the group
strategy Gki

. The process terminates until there is no page in Ψ . Note that when
forming a group, the grouping process checks the remaining pages one by one
in Ψ and put qualified pages into a group. However, if the sum of predicted
statistics of all pages put in the group is larger than τ1, which means the group
has sufficient capacity to resist noise, no more page need to be added to this
group and a new grouping process can start.

3.3 Adaptive Budget Allocation

To achieve w-event differential privacy, we should make sure that the budget
sum of any successive w time stamps is at most ε. Here, we propose an adaptive
budget allocation mechanism based on the trend of data change to adaptively
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Algorithm 2. Adaptive Budget Allocation
Input: Privacy budget ε, new sampling interval I, allocated budget for each time

stamp (ε1, ..., εi−1), and the maximum allocated budget at each sampling point
εmax. Note that εk = 0 if time stamp k is not a sampling point.

Output: Budget allocation εi for the sampling time stamp i
1: Compute the remaining budget εr = ε −∑i−1

k=i−w+1 εk

2: Compute the portion p = min(φ · ln(I + 1), pmax)
3: Compute the allocated budget εi = min(p · εr, εmax)

allocate appropriate budget at each sampling point. In our design, based on
the data change trend, we adjust the length of the sampling interval. In fact,
when data changes rapidly (slowly) the new sampling interval is small (large).
Thus, for the small sampling interval, we could infer that the data is changing
rapidly, so we have more sampling points within a time window of length w.
Then, we determine to put a small portion of the remaining budget to the next
sampling point. In this case, more available budget can be given to the (potential)
successive sampling points. When we have a large the sampling interval, we could
infer that the data is changing slowly, so we only have fewer sampling points
within the time window of length w. So, we determine to put a large portion of
the remaining budget to the next sampling point.

To achieve our goal, we propose to use the natural logarithm to link p (the
portion of the remaining budget) and I. So, we define p = φ · ln(I + 1), where
the scale factor φ ranges in (0,1]. Because I has the minimum value 1, to avoid
the case that p = 0 we use ln(I + 1) other than ln I.

Algorithm 2 formally presents the adaptive budget allocation mechanism.
First, we compute the remaining budget εr in [i − w + 1, i]. Here εr equals to ε
minus the budget sum allocated in [i−w+1, i−1]. Then we compute the portion
p to determine how much budget will be used for the current sampling point i. It
is worth noting that p ≤ pmax is set to avoid the case that we leave to the next
sampling point too few budget. Finally, we compute the budget allocated to the
current time stamp as εi = min(p · εr, εmax), where εmax is the upperbound for
the budget allocated at each sampling point. The introduction of εmax is due
to the fact that the utility enhancement is small when the allocated budget is
larger than εmax, say εmax = 0.2 when ε = 1.

3.4 Group-Based Perturbation and Filtering

At each time stamp, we apply Laplace mechanism to inject Laplace noise to
statistics at sampling pages to provide differential privacy guarantee. For each
non-sampling page, the publication is approximated by its last release. Here,
Laplace mechanism is applied to every group other than every page. Then we
compute the average of the perturbed statistic to each page. To guarantee that
the total budget assigned to every page at any successive w time stamps is less
than ε, the budget assigned to a group is the smallest budget assigned to pages
in the group.
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Assume we have a group g of ϕ pages. Thus, g contains ϕ columns of Di and
g ⊆ Di. We use f(g) to denote the statistic function that accumulates all 1’s in
g. We use λ(g) to denote the scale of Laplace noise injected to f(g). The Laplace
mechanism is applied to group g, and we have

M(g) = f(g) + Lap(λ(g))

=
ϕ∑

j=1

∑
g[j] + Lap(Δ(f)/min(εg[j])), (8)

where g[j] is the jth column of g and Δ(f) is decided by the database.
Then the perturbed statistic for each column/page at group g is calculated

as the average of M(g). That is,

M(g[j]) = M(g)/ϕ, ∀j = 1, · · · , ϕ. (9)

However, we would not release M(g[j]) directly and further apply the Kalman
filtering mechanism of FAST algorithm [13] to improve the utility of released
statistics. The detail of the mechanism can be found in [13].

3.5 Pre-sampling to Reduce Sensitivity

We use dynamic grouping to diminish the perturbation error on small statistics,
which greatly improves the data utility of pages with small counts. However, the
high query sensitivity will still bring a huge injected noise, which may also have
a bad influence on the utility of released data.

In [17], the authors proposed a sampling method to generate a small portion
of the original database, which is used to calculate the grouping strategy. Inspired
by their work, we consider whether we can further reduce the injected noise by
cutting down the sensitivity Δ(Q) through a pre-sampling method.

Here, we propose a concise and effective pre-sampling method to generate
the representative database D′

i at each sampling point i. Specifically, at each
sampling point i, our method gets a new database D′

i by randomly sampling
m 1s in each row in Di(if there are only n < m 1s in a row, preserve them
all), and setting the remaining to 0. Consequently, there are at most m 1s in
each row after pre-sampling, i.e., each user can visits at most m web pages per
time stamp and the sensitivity Δ(Q(D′

i)) = m. We then use D′
i to replace the

original database Di, and the remaining procedures are just the same as the
original SecWeb. The only difference is, for each group g, only Lap(m/min(εg))
of noise is needed to be injected, where m can be a user-defined parameter. Note
that the pre-sampling method also cause a biased estimate error since D′

i is a
selected portion of Di. The error is heavily data-dependent which can not be
rigorously analyzed, and consequently we cannot give a certain value of m to get
the optimal performance without knowing the data distribution. Intuitively, the
value of m should be close to the average counts of each page in the database,
we will test the effectiveness of pre-sampling over different values of m in our
experiments.



468 Q. Wang et al.

3.6 Privacy Analysis

Theorem 3. SecWeb satisfies w-event ε-differential privacy.

Proof. According to Axiom 2.1.1 in [19], post-processing the sanitized data main-
tains privacy as long as the post-processing algorithm does not use the sensitive
information directly. In SecWeb, group-based perturbation is the only component
processing the raw data directly, while other components process the sanitized
data. Thus, we will first show that the group-based perturbation component
achieves w-event ε-differential privacy, then it is easy to prove that SecWeb can
achieve the same privacy guarantee.

Based on G, Di is separated to n disjoint groups {g1, g2,. . . , gn}, and every
group contains some columns of Di. Without any loss of generality, we consider
g1, and suppose g1 consists of ϕ1 columns. Based on Eq. 8, we have

M(g1) = f(g1) + Lap(λ(g1))

=
ϕ1∑

j=1

∑
g1[j] + Lap(Δ(f)/min(εg1)).

Here, g1[j] denotes g1’s j-th column.
Based on Theorem 1, M(g1) achieves min(εg1)-differential privacy. Based on

Axiom 2.1.1 in [19], M(g1[j]) (∀j = 1, · · · , ϕ) also achieves min(εg1)-differential
privacy. Analogously, every group runs Laplace mechanism independently on a
column/page in group gk satisfying min(εgk

)-differential privacy. We use ε̂k and
εk to respectively denote the budget used for perturbation and the allocated
budget (generated by the adaptive budget allocation component) for a page at
time stamp k, then we have ε̂k ≤ εk.

Based on Theorem 2, to show that the perturbation component for a page
achieves w-event ε-differential privacy, we should show that for each t and i ∈ [t],∑i

k=i−w+1 ε̂k ≤ ε will hold. Because our adaptive budget allocation component
guarantees that

∑i
k=i−w+1 εk ≤ ε for any w successive time stamps, and ε̂k ≤ εk,

then we have
∑i

k=i−w+1 ε̂k ≤ ε. Hence, the perturbation component on each
group achieves w-event ε-differential privacy. Hence, SecWeb can also achieve
the same privacy guarantee.

Theorem 4. SecWeb with pre-sampling(SecWeb-S for short) satisfies w-event
ε-differential privacy.

Proof. The only differences between SecWeb-S and SecWeb are the procedure
of pre-sampling and the noise injected in group-based perturbation. Consider a
possible D′

i derived from pre-sampling Di, each row in D′
i contains at most m 1s.

Therefore, the sensitivity of the query f on D′
i in proof Sect. 3.6 is Δ(f(D′

i)) = m.
Recall that, for each group g we inject noise Lap(m/min(εg)), where min(εg)
is the minimum budget in g, thus we can derive that the pre-sampling and
group-based perturbation in SecWeb-S satisfies min(εg)-differential privacy. Sim-
ilar to proof Sect. 3.6, we can then conclude that SecWeb-S satisfies w-event
ε-differential privacy.
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4 Performance Evaluation

In this section, we used a real-world web dataset, WorldCup [3], as a source
of the input stream to evaluate the performance of SecWeb. The entire dataset
contains 1,352,804,107 web server logs collected by the FIFA 1998 World Cup
Web site between April 30, 1998 and July 26, 1998. These logs are the requests
made to 89,997 different URLs and each log consists of a client ID, a requested
URL, a time stamp, etc. We randomly choose 1,500 URLs as the test set, create
a stream from the set and publish the data per hour, which has a total of 1000
time stamps. The query sensitivity defined in Sect. 2.1 is 30, and the average
count of each page per time stamp is 17.9.

We compare our schemes SecWeb and SecWeb-S with three competitors as
introduced in Sect. 2.2, UNIFORM, U-KFw and M-KFw, where the latter are
the first two schemes proposed for web browsing monitoring with differential
privacy [12]. All the mechanisms are fine-tuned and implemented in Python.
We conduct all the experiments on a machine with Intel Core i5 CPU 2.9 GHz
and 12 GB RAM, running Windows 10. We set φ = 0.2 for the adaptive budget
allocation, and let τ1 = 50, τ2 = 0.5 and τ3 = 25 for dynamic grouping.

We use Mean Absolute Error (MAE) and Mean Relative Error (MRE) as the
utility metrics to evaluate the performance of the five mechanisms.

For any web page, let x = {x1, ..., xn} denote the raw time series and r =
{r1, ..., rn} denote the sanitized time series. The MAE and MRE for this page
are

MAE(x, r) =
1
n

n∑

i=1

|ri − xi| (10)

MRE(x, r) =
1
n

n∑

i=1

|ri − xi|
max(γ, xi)

(11)

For the bound γ, we set its value to 0.1% of
∑n

i=1 xi to mitigate the effect of
excessively small results. In experiments, we first calculate the MAE and MRE
for each page and then figure out the average of all pages as the final results.

(a) MAE (b) MRE

Fig. 4. Utility comparison when m changes (w = 120, ε = 1)
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Fig. 5. Utility comparison when ε changes (w = 120)

Fig. 6. Utility comparison when w changes (ε = 1)

Varying parameter m. Figure 4 illustrates the different performances of
SecWeb-S when changing the value of m. As we can see, the pre-sampling method
can improve the data utility by reducing the query sensitivity, and SecWeb-
S achieves the best performance in both MAE and MRE when m = 20. This
results also verify our intuition that the value of m should be close to the average
count of each page per time stamp(the average count is 17.9 in our dataset). We
set m = 20 for SecWeb-S in the rest of our experiments.

Utility vs. Privacy. Figure 5 shows the relationship between data utility and
privacy budget ε. As we can see, the MAE and MRE of all five mechanisms
decrease when ε increases. This is because that lager ε requires smaller noise
to preserve privacy, which results in a better utility. UNIFORM has the worst
performance since it uniformly allocates the budget and simply adopts LPA at
each time stamp. U-KFw performs much better compared to UNIFORM, since
the posteriori estimate on each web page produced by Kalman Filter extremely
improves the utility. While the improved method M-KFw performs better than
U-KFw due to its adoption of fisrt-order Markov chain utilizing user pattern to
improve utility. SecWeb and SecWeb-S have the best performance compared to
other algorithms, and SecWeb-S performs a little better. The reason is that the
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well designed dynamic grouping strategy significantly improves the capacity of
resisting Laplace noise for pages with small statistics by grouping them together,
and the adaptive sampling mechanism also helps avoiding unnecessary noise. The
pre-sampling method in SecWeb-S also helps reducing the injected noise.

Utility vs. w. Figure 6 shows the comparison of different utility metrics between
the five schemes when window size w varies from 40 to 240. We can also observe
that SecWeb and SecWeb-S outperforms other algorithms when w changes. The
MAE and MRE of M-KFw and U-KFw increase when w becomes large. The
reason is that the budget allocated to each time stamp becomes less when w
increases since both of them allocate budget uniformly, which results in larger
error. The MAE and MRE of our two schemes are much smaller than that of
M-KFw and U-KFw and are robust to w changes, which is because that SecWeb
takes the remaining budget into consideration to adaptively allocate budget on
sampling points to reduce the error.

Effects of Dynamic Grouping. We evaluate the performance of our group-
ing method. Specifically, we calculate the average statistics of each page and
pick out the half part of pages with smallest statistics being the test set to see
the performance of dynamic grouping. Figure 7 shows the comparison of MAE
and MRE between the five schemes on the pages with small statistics. We can
observe that SecWeb achieves a much better utility on both MAE and MRE. The
reason is that the grouping mechanism in SecWeb groups these pages together
dynamically, injects noise to the whole group and averages the counts, which can
extremely reduce the perturbation error compared to the schemes that inject
noise to each page individually. Note that SecWeb-S also achieves a much better
utility, but not always as good as SecWeb. That is because the pages that we
select have small counts, where the selected portion of the original database pro-
duced by pre-sampling mechanism cannot represent them well since these pages
have a less times to be selected than the pages with larger statistics.

(a) MAE (b) MRE

Fig. 7. Utility comparison on pages with small statistics(w = 120, ε = 1)

Running Time. Table 2 shows the comparison of time complexity of the five
mechanisms. We can see that U-KFw and UNIFORM are the fastest mechanisms
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Table 2. Comparison of running time

UNIFORM U-KFw M-KFw SecWeb SecWeb-S

Time complexity O(d) O(d) O(d3) O(d2) O(d2)

Running time (d = 1500) 0.4× 10−5 s 0.4× 10−5 s 1.2 s 0.4× 10−2 s 0.45× 10−2 s

with time complexity O(d), while M-KFw is the slowest mechanism with time
complexity O(d3), where d is the number of pages. SecWeb and SecWeb-S with
the time complexity of O(d2) are slower than U-KFw but much faster than M-
KFw. Note that although U-KFw and UNIFORM are the most fast schemes,
they have the worst utility as seen from Figs. 5 and 6. Although the MAE and
MRE of M-KFw are close to that of SecWeb, SecWeb is much faster than M-KFw.
Note that SecWeb-S is a little bit slower than SecWeb since it has a pre-sampling
procedure. Overall, SecWeb and SecWeb-S achieve a well tradeoff between time
efficiency and utility.

5 Conclusions

In this paper, we proposed SecWeb to enable continually publishing aggregated
web browsing data for real-time monitoring purposes with w-event privacy guar-
antee. SecWeb is designed with five integrated components: adaptive sampling,
adaptive budget allocation, dynamic grouping, group-based perturbation and fil-
tering. We proved that SecWeb satisfies w-event ε-differential privacy. We fur-
ther proposed a pre-sampling method to reduce the high query sensitivity and
integrated it with SecWeb seamlessly (SecWeb-S). Extensive experiments on
real-world dataset showed that SecWeb-S outperforms the existing methods and
improves the utility of the released data with strong privacy guarantee.
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Abstract. Gender is one of the essential characteristics of personal iden-
tity but is often misused by online impostors for malicious purposes.
However, men and women differ in their natural aiming movements of a
hand held object in two-dimensional space due to anthropometric, biome-
chanical, and perceptual-motor control differences between the genders.
Exploiting these natural gender differences, this paper proposes a nat-
uralistic approach for gender classification based on mouse biometrics.
Although some previous research has been done on gender classification
using behavioral biometrics, most of them focuses on keystroke dynamics
and, more importantly, none of them provides a comprehensive guideline
for which metrics (features) of movements are actually relevant to gender
classification. In this paper, we present a method for choosing metrics
based on empirical evidence of natural difference in the genders. In par-
ticular, we develop a novel gender classification model and evaluate the
model’s accuracy based on the data collected from a group of 94 users.
Temporal, spatial, and accuracy metrics are recorded from kinematic
and spatial analyses of 256 mouse movements performed by each user.
A mouse signature for each user is created using least-squares regression
weights determined by the influence movement target parameters (size
of the target, horizontal and vertical distances moved). The efficacy of
our model is validated through the use of binary logistic regressions.

1 Introduction

The popularity of online social networks, online forums, and various online dating
sites has significantly increased the visibility of online users’ personal informa-
tion. However, these online sites also allow a great deal of anonymity in the
sense that a user’s identity is tied to the user’s account but not personally to the
user. This anonymity has been exploited by impostors, such as sexual predators,
who lie about their gender or age for malicious purposes, while a victim user
has little way of verifying that the provided information is valid. To date, very
little has been done to address this problem of fake online personal identity. A
strict registration policy, such as providing legal documents, is just not feasible
for regulating this problem.
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Fig. 1. Illustration of the major anatomical measurements relevant to using a computer
mouse from a seated position. Graph of gender differences in upper limb length (data
taken from Anthropometric Reference Data for Children and Adults: Unites States,
2007–2010; U.S. Department of Health and Human Services) [1].

One promising alternative involves the use of physical or behavioral biomet-
rics, such as keystroke dynamics or mouse dynamics, to enhance user authenti-
cation. These biometrics are non-invasive and can be used actively as a confir-
mation step or passively through continuous re-authentication to determine the
demographic characteristics of a user. However, previous soft biometric systems
tend to take a very data driven approach based on simple aggregate measures
(e.g., averages) of behavioral metrics. In this paper, we present a new natu-
ralistic approach to using behavioral biometrics for verifying an online user’s
demographics. We will illustrate the advantages of this approach by applying
mouse biometrics to discriminate a user’s gender. Our approach takes advantage
of intra-user variability in mouse movements, and has the potential to overcome
generalizability issues when using mouse biometrics for user verification.

The proposed approach is mainly based on two important assumptions
regarding naturally occurring mouse movements: (1) Gender differences natu-
rally exist when performing two-dimensional aiming movements of a hand held
device. The support for this assumption comes from a variety of basic and applied
research domains, which include occupational health, physical therapy, public
health, ergonomics, human anatomy, and perceptual-motor control theory. (2)
The gender differences alluded to in the first assumption can be further elabo-
rated by tracking the changes to naturally occurring mouse movements that are
imposed by different target parameters. These target parameters are defined by
the horizontal and vertical distances between the start and endpoint target loca-
tions, and by the size of the endpoint target. All three task parameters are known
to affect aiming movements [11,25,28] while recent research in perceptual-motor
control has highlighted that gender can also mediate these effects [4,23,24].

As a result of these two assumptions, this approach incorporates a much
wider array of mouse movement metrics than those used in previous security
applications of mouse biometrics. Consequently, the data analysis of these met-
rics required a different statistical approach from that used in traditional inves-
tigations of mouse biometrics. Twenty one different mouse movement metrics
(temporal, spatial, and accuracy) were extracted from the movements recorded,
and then each metric was expressed as a vector of four variables. The four vari-
ables correspond to the intercept and three unstandardized regression coefficients
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that are obtained from a multiple regression equation formulated to predict each
metric using the three target parameters (vertical distance, horizontal distance,
and target size). Binary logistic regressions were then employed to predict each
participant’s gender using an optimal subset of the multiple regression coeffi-
cients.

The proposed model was validated with mouse movement data collected from
94 participants (45 male and 49 female) who each performed 256 movement
trials. Our user data collection has been filed and approved by the Institutional
Review Board (IRB) to ensure participants are treated ethically. The model’s
accuracy was tested on both labeled and unlabeled data. The labeled data is
used as a verification step to test our method’s ability to accurately fit the
model to the real data and identify a user that has uncommon mouse movement
characteristics as an outlier, while the unlabeled data is used to test the ability
to accurately classify a user who has not yet been sighted before. Based on the
evaluation results in both labeled and unlabeled data, an analysis of the outliers’
impact was further performed to test the impacts that outliers, i.e., those users
with mouse movement characteristics greatly different from the average, would
have on the model. The achieved maximum accuracy is 89.4% for the full labeled
data set and 100% after removing outliers, while 72.4% for the unlabeled data
set and 75.9% after removing outliers.

The remainder of the paper is structured as follows. Section 2 describes the
logic behind the naturalistic approach, along with a summary of related work.
Section 3 details the methodology used to collect data, filter data, and extract the
metrics from the data to be used for gender classification. Section 4 presents the
two analysis steps used in building the statistical models for predicting the gender
of each participant. Section 5 reports the results of testing the statistical models.
Section 6 reviews the findings and limitation of the study, as well as describing
future directions for this naturalistic approach. Finally, Sect. 7 summarizes the
paper.

2 Background

In this section, we first highlight the gender difference in anthropometrics, includ-
ing its induced differences in movement behaviors and grip postures. We then
present the background of using behavioral biometrics for user authentication.

2.1 Gender Difference in Anthropometrics

Men and women clearly differ in their physical dimensions as described by
anthropometric data recorded in many countries for the purposes of monitoring
public health and designing ergonomically sound work environments. Figure 1
illustrates the important anthropometric attributes of an individual working
with a typical computer system. Maneuvering a computer mouse across a 2-
Dimensional work space requires the complex coordination of the upper and
lower arms in combination with the wrist and fingers. As shown in Fig. 1, the
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anthropometric data for the upper arm length (reported by the United States
Health Department [1]) reveals large consistent gender differences in the phys-
ical dimensions of a key limb component for moving a mouse on a table top.
Physical differences like these arguably underlie many of the movement and grip
differences that will be described in the remainder of this section [17].

Moving a computer mouse is classified as an aiming movement by researchers
in the field of motor behavior, and aiming movements are generally composed of
consistent temporal and spatial characteristics. An aiming movement typically
includes a ballistic component (single phase of acceleration followed by decel-
eration) that corresponds to the main movement of the hand into the general
area of the target location. The ballistic component is followed by a sequence of
sub-movements (multiple phases of acceleration and deceleration) that consist
of small spatial corrections of the hand to reach the final target destination [20].
The field of motor behavior suggests that men and women differ in their aiming
movements with men tending to move faster than women and with less accuracy
[4,6,9,23,27]. It was also reported that the location of the target in relation to the
hand being used affected the accuracy of movements made by men, but showed
no significant effect on women’s movements [23]. These results not only highlight
gender differences in movement behavior again, but also stress the importance
of incorporating target parameter effects when investigating these gender differ-
ences. Here the target parameters include target size, horizontal distance, and
vertical distance.

Fig. 2. Anatomical terms for motions of upper limb, wrist, and joints.
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Research in physical therapy that has examined the effects of mouse use on
wrist and arm pain in computer users has shown gender differences in hand and
arm postures when performing movements with a mouse. A study on the finger
postures of mouse users showed that men more frequently had a finger posture,
in which the finger used for mouse clicking had a lifted finger posture where the
middle portion of the finger was not in contact with the mouse [18]. Male par-
ticipants in this study were also more likely to show an extended finger posture
with a flexion angle of less than 15◦ when gripping the mouse (refer to Fig. 2
for an illustration of relevant movement terms). These different grip postures
may not only affect mouse movement characteristics, but also influence mouse
button presses that can also be an important component of mouse biometrics.
Johnson et al. [16] found that women exerted more relative force on the mouse
when gripping it, while Wahlstrom et al. [30] reported that women exerted more
force on the mouse button while pressing it. Johnson and colleagues also revealed
different wrist postures between men and women when moving the mouse with
women showing higher wrist extensions, larger ulnar deviations (refer to Fig. 2),
a larger range of motion in the wrist, and higher wrist velocities. A similar study
by Yang and Cho [32] reported larger elbow flexion angles in men as well as
different ulnar deviations, but in this study it was the men who exhibited the
larger ulnar deviation angles. All of these different grip postures have the poten-
tial to affect mouse movement characteristics, including mouse button presses
that can also be an important component of mouse biometrics. The results of
these studies suggest that mouse biometrics should not only consider movement
characteristics of aiming movements, but also consider movement characteristics
unique to the physical manipulation of gripping a computer mouse.

2.2 Behavioral Biometrics

The use of biometrics is an attractive option for user authentication since it
is inherently based on “who you are,” and unlike other conventional methods
cannot be lost, forgotten, or stolen. A large variety of user characteristics are
used in biometric identification with some involving physiological recording, such
as iris scanning, fingerprint scanning, facial recognition, and pulse recording
[22]1; and some involving behavioral recording, such as keystroke and mouse
dynamics [26,31]. The behavioral biometric systems, however, have the distinct
advantage of not requiring specialized hardware to record the user behaviors.
Research interest in behavioral biometrics started in the 1990s with the study
of keystroke dynamics [19] that eventually led to research involving keystroke
dynamics combined with mouse dynamics [2].

Behavioral biometrics have been used in the past to predict the gender of a
user, but these studies have primarily focused on keystroke dynamics. Fairhurst
and Da Costa-Abreu [10] conducted a study using a multiclassifier system on the
GREYC-keystroke database [12], and achieved an accuracy for gender prediction

1 It records the response at the palm of the hand while sending a low voltage electrical
current through the body from the other palm.
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of 95%. Giot et al. [13] conducted a similar study using fixed-text input for
gender prediction and reported an accuracy of 91%. They also reported that
traditional keystroke authentication systems had an accuracy increase of 20%
when combined with the user’s gender prediction model. These studies achieve
impressive accuracy for gender classification, but further research is required
to determine if these results can be generalized to different sets of keyboard
data that are not fixed, as well as to different types of keyboard interfaces.
In addition, authentication systems based on keyboard dynamics may not be
suited to new graphical password interfaces (see Biddle et al. for a survey of
these interfaces [5]).

Mouse dynamics have been employed as a means of reauthentication to dis-
criminate the identities of web browser users [21]. Ahmed et al. [3] used neural
networks to learn a user’s mouse dynamics in a specific environment while per-
forming continuous identity authentication. Hamdy and Traore [14] combined
mouse dynamics with cognitive measures of visual search capability and short
term memory to create a static user verification system. These studies highlight
the utility of using mouse biometrics in user re-authentication; however their
findings are limited to identity authentication and have not been generalized to
other purposes. To the best of our knowledge, no previous studies have reported
the use of mouse biometrics to classify users’ gender.

3 Methodology

This section describes the apparatus and method used for data collection. The
data analysis procedures used to calculate and evaluate movement metrics are
also described in this section.

3.1 Data Collection

There are 94 participants (45 men and 49 women) aged between 17 and 48 years
participated in this study. The participants consist of students, faculty, and staff
who were all experienced computer mouse users. The male and female partici-
pants did not differ statistically with respect to prior computer use experience
or age.

All participants were seated in a static non-reclining chair in front of a com-
puter monitor with the right hand resting comfortably on the same mouse and
table surface used by all participants. Participants were instructed to find a seat-
ing location and arm posture in which moving the mouse would feel the most
natural to them. They were requested to maintain this posture while conducting
all experiment trials.

Raw mouse movement data were collected using an application implemented
with the processing programing language. The same home (starting point) target
was used on all trials and was displayed within an application window. Once a
participant positioned the cursor on the home target and clicked the mouse
button, this target was hidden and a new endpoint target was displayed. The
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screen position of the mouse was recorded at a rate of approximately 100 Hz
with each data point consisting of a timestamp, the x screen coordinate, the y
screen coordinate, and a tag that identified what type of a movement event was
recorded. The movement events consisted of a standard movement event (mouse
stationary or in motion without the left button being depressed), a target click
event (left mouse button depressed while the mouse cursor is located inside
the target area), a click event (left mouse button depressed while the cursor is
outside of the target area), and a new target event (a new target displayed and
the location and size of the target are recorded, instead of the mouse location).

Fig. 3. Illustration of screen target positions for movements of mouse cursor. Home
target located in center of window. All endpoint target positions are displayed in this
diagram. (Color figure online)

The display window consisted of a rectangular frame (1680 px× 1050 px)
displayed on a 45× 30 cm computer monitor. As Figure 3 shows, the home
target consisted of a blue 30 px radius circle located in the center of the display
window. All endpoint targets were displayed as red circles and consisted of one
of two possible target sizes (30 px or 60 px radius) located at one of 16 possible
locations. The endpoint target locations varied in their direction of approach
and in their distance from the starting target position.

Each participant was instructed to move the mouse cursor from the home
target to the endpoint target. Once the participants had located the cursor in
the home target circle, they were requested to click the mouse button to start
the trial. The participants were instructed to only pick up the mouse when read-
justing the starting position of their hands on the table, during which they were
moving the screen cursor back to the home target. Each participant conducted
a sequence of 32 practice trials that consisted of all 32 possible combinations
of target size, target distance, and angle of approach as describe above. After
successfully completing the practice trials, each participant then performed four
blocks of 64 movement trials with each block of trials consisting of a random
sequence of two trials for each combination of the 16 target locations and 2 tar-
get sizes. The participants were allowed to take a short rest after completing
each block of movement trials.
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3.2 Movement Metrics

The profiles of distance and velocity were extracted from the raw data of each
movement trial. These profiles were used to calculate ten temporal metrics that
distinguish aiming movements and button presses. The spatial trace of each
movement was smoothed, and then six spatial metrics were calculated to high-
light differences in the trajectory of each movement. Five accuracy metrics were
also calculated for each mouse movement. Following the naturalistic approach,
the choices of these metrics were guided by previous empirical research on gen-
der differences in aiming movements that have used the same or similar metrics
[4,6,9,15,23,24,27]. For example, researchers have reported that men are quicker
at perceiving object location, faster in their movements, rely less on visual guid-
ance of the ballistic omponent of the movement, perform less visual corrections
towards the endpoint of the movement, and are less accurate when they reach
the endpoint of the movement. Some additional metrics were calculated, because
prior empirical research would imply gender differences are possible for these
mouse metrics even if they were not reported in the actual studies. For example,
males and females differ in their grip postures of the mouse and positioning of
the finger over the mouse button [16,18,32], implying that gender differences
could exist for metrics influenced by these grip postures.

3.2.1 Profiles
The distance profile was calculated from the Euclidean distance traveled between
consecutive movement events, and smoothed using a Kolmogorov-Zurbenko (KZ)
filter. The KZ filter belongs to the low pass filter class, and is a series of k
iterations of a moving average filter with a window size of m, where m is a
positive odd integer. In other words, the KZ filter repeatedly runs a moving
average filter with the initial input being the original data and the result of the
previous run of the moving averages as the subsequent inputs. With this in mind,
the first iteration of a KZ filter over a process X(t) can be defined as:

KZm,k=1 [X(t)] =
2(m−1)/2∑

s=−2(m−1)/2

X(t + s)
1
m

,

the second iteration as:

KZm,k=2 [X(t)] =
2(m−1)/2∑

s=−2(m−1)/2

KZm,k=1 [X(t + s)]
1
m

,

and so on. In this study, we set m to 11 and k to 3, respectively. The value
of m = 11 was chosen such that the window over which the data is averaged
would correspond to 100 ms or more. Thus, the window can cover a period of
time with an intentional movement since smaller ones are likely to be just jitters.
The value 11 was chosen, instead of 10, because the value of m needs to be odd.
The value k = 3 was chosen because 3 was the smallest value that produced a
smooth curve.
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The velocity profile was then calculated from sets of pairs (t,vt), where vt

is the average velocity in pixels per millisecond (px/ms) over the time interval
between t and the time at which the previous data point was recorded.

Fig. 4. Example of a velocity profile with various temporal metrics illustrated.

Aiming movements generally produce velocity profiles that are composed of
one large peak (peak velocity) called the ballistic component that is followed
by zero or more smaller peaks that reflect sub-movements used to position the
cursor over the final target position (refer to Fig. 4). The velocity profile was used
to calculate some of the 10 temporal features of the mouse dynamics recorded
from each participant.

3.2.2 Temporal Movement and Button Press Metrics
– Reaction time (RT): the time interval from the moment the endpoint target

appears on the screen until the participant initiates a movement towards it.
The onset of the movement was determined to begin at the point when move-
ment velocity exceeded 7% of the peak velocity for the ballistic component
(refer to Fig. 4). Various methods were tested for determining the beginning
point of movements, including measuring the slope of the velocity profile, pix-
els moved during consecutive time steps, and the percentage of peak velocity
exceeded. All methods were tested using a visual inspection of a randomly
selected group of trials and a set of known edge cases. Through this testing,
we found that using the percentage of peak velocity exceeded with a value of
7% was the most effective solution.

– Peak velocity (PV): the maximum velocity value found for the ballistic com-
ponent of the movement (refer to Fig. 4).

– Time to peak velocity (TPV): the time interval from the beginning of the
movement until the peak velocity was reached (refer to Fig. 4).
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– Duration of ballistic component (DB): the time interval from the beginning
of the movement until the first local minima on the velocity profile following
the peak velocity (refer to Fig. 4).

– Shape of the velocity profile (SV): a measure of the symmetry of the ballistic
component, which is calculated by dividing the time to the peak velocity by
the duration of the ballistic component (refer to Fig. 4).

– Proportion of the ballistic component (PB): the proportion of the movement
time taken up by the ballistic component, which is calculated by dividing the
ballistic component duration by the movement time (refer to Fig. 4).

– Number of movement corrections (NC): the total number of observed local
maxima in the velocity profile after the ballistic component has been com-
pleted (refer to Fig. 4).

– Time to click (TC): the time interval between the arrival at the endpoint of
the movement and the pressing of the mouse button.

– Hold time (HT): the amount of time the user held the mouse button down
after the endpoint of the movement was reached.

– Movement time (MT): the time interval from the beginning of the movement
until the endpoint of the movement.

Fig. 5. Example of a mouse trajectory to illustrate differences between three movement
change metrics with task axis drawn in a dashed line.

3.2.3 Spatial Movement Metrics
These metrics are calculated from the spatial trajectory traveled by the mouse
cursor for reaching the endpoint of the movement.

– Path length (PL): the total distance traveled by the mouse cursor during the
trial. It is calculated as follows:

T∑

t=1

Δdt

where T is the total number of the trial, and Δdt represents the distance
traveled between time t and time t − 1.
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– Path length to best path ratio (PLR): the value of the path length divided
by the length of the shortest path between the start and endpoints of the
movement.

– Task axis crossings (TXC): the number of times that the movement path
crossed the task axis. The task axis is defined as a straight line between the
home target and the endpoint target (refer to Fig. 5).

– Movement direction changes (MDC): the number of times the movement
changed direction perpendicular to the task axis (refer to Fig. 5).

– Orthogonal movement changes (OMC): the number of times the movement
changed direction parallel to the task axis (refer to Fig. 5).

– Movement variability (MV): the standard deviation of the distance of the
movement path to the task axis. This metric measures the spatial consistency
of the movement path.

3.2.4 Movement Accuracy Metrics
These metrics represent how closely a participant came to clicking the center of
the endpoint target.

– Absolute error (AE): absolute error corresponds to the Euclidean distance
between the endpoint of the movement and the center of the endpoint target.

– Horizontal error (HE): the difference in the horizontal (x) coordinates
between the endpoint of the movement and the center of the endpoint tar-
get. Negative errors reflect undershooting the target location whereas positive
errors reflect overshooting the target location.

– Vertical error (VE): the difference in the vertical (y) coordinates between the
endpoint of the movement and the center of the end position target. Negative
errors reflect undershooting the target location whereas positive errors reflect
overshooting the target location.

– Absolute horizontal error (AHE): the absolute value of the difference in the
horizontal coordinates between the endpoint of the movement and the center
of the endpoint target.

– Absolute vertical error (AVE): the absolute value of the difference in the
vertical coordinates between the endpoint of the movement and the center of
the endpoint target.

These defined errors are illustrated in Fig. 6, where an absolute error consists
of Euclidean distance between the end of a movement and the center of an
endpoint target. The horizontal error corresponds to the difference in the x
coordinates of the movement endpoint and the center of the endpoint target. The
vertical error corresponds to the difference in the y coordinates of the movement
endpoint and the center of the endpoint target. In both cases, a negative value
depicts undershooting and a positive value depicts overshooting.

3.3 Data Filtering

Before calculating the movement metrics for each participant as described above,
the movement data were filtered to remove invalid trials where mouse movements
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Fig. 6. Graphical depiction of movement accuracy metrics.

did not fall within the acceptable criteria for successful movement recording. The
trials in which mouse movements clearly left the designated screen window were
rejected, as well as the trials where the reaction times were less than 150 ms.
This value of 150 ms was chosen, because the lower end of human reaction time
is 100 ms. However, the method of determining the start of the movement is not
perfect and causes some false positives. The same visual testing for determining
the movement onset was used here, and we found that the value of 150 ms made
a good balance between the false positive ratio and the false negative ratio while
determining if the reaction time value was realistic. Only 4% of data points were
rejected for these reasons across those more than 24,000 trials recorded.

4 Model Design

The gender classification model results from a two-step procedure of statistical
analyses. The first step involves conducting least-squares multiple regressions
to determine the effects of target parameters (target size, horizontal distance,
and vertical distance) on movement metrics for each participant. The resulting
unstandardized regression coefficients provide a movement signature for each
participant, which will be used to distinguish the corresponding participant’s
gender. The second step involves conducting logistic regressions to select the
statistical model that most accurately classifies participants by gender.

4.1 Mouse Signatures

Traditional analyses of mouse biometrics usually rely on a single aggregate indi-
cator (e.g., average) for each metric. Unfortunately, previous studies have shown
that this approach may be ineffective. For example, in the study conducted by
Rohr [23], men were shown to have their accuracy reduced as a target was made
smaller and placed further away, whereas women were more consistent with their
accuracy. By simply taking the average accuracy, the gender difference would be
diminished or lost since the lower values counteract the higher values. Thus, it is
imperative to find a new way to produce features that capture not only the actual
values observed in the data, but also the amount of changes caused by the target
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parameters. Our approach involves a more detailed analysis that incorporates
the effects of target parameters on these mouse metrics. The effects of target
parameters on the mouse metrics were quantified by unstandardized regression
coefficients obtained from a multiple linear regression analysis with least squares
fitting conducted for each metric. Multiple regression analyses predict the scores
of a dependent variable y by fitting a straight line defined by a set of independent
variables {x1, x2, x3, ...} to a set of known data points (yi, x1,i, x2,i, ...) such that
it satisfies the equation:

yi = a + b1x1,i + b2x2,i + ... + bnxn,i + εi,

where a and bk are unknown constants that are estimated, and εi is the residual
defined as the vertical deviation of the known data to the estimated line. If the
estimated line is a perfect fit, all values of ε are zero.

The least squares fitting method estimates the values of a and bk by reducing
the squares of the residuals such that the following equation is minimized:

r∑

i=1

ε2i =
r∑

i=1

[yi − (a + β1x1,i + b2x2,i + ... + bnxn,i)]
2
.

Three target parameters were chosen as predictor variables for these mul-
tiple regressions: the size of the endpoint target, the vertical distance between
the home and endpoint targets, and the horizontal distance between the home
and endpoint targets. The target distance was measured in separate horizontal
and vertical components, because prior research suggests that these components
should be the most influential on aiming movements rather than more complex
combinations of the angle of approach and distance moved [29]. Absolute values
were used for the distances traversed because previous research also suggests that
the direction of movement (left vs. right and up vs. down) does not affect move-
ment metrics as much as whether it is just a vertical movement or a horizontal
movement [7,8]. Consequently, the size and sign of the regression coefficients for
the distance variables simply represent how much of an effect, moving vertically
or moving horizontally, had on the predictability of a metric.

For each metric recorded, three regression coefficients and the intercept value
were provided to highlight the effect of these target parameters on the metric. For
example, if the peak velocity (PV ) was used as the dependent variable, four val-
ues were provided for this metric (intercept value PVconst, regression coefficient
for horizontal distance moved PVhorz, regression coefficient for vertical distance
moved PVvert, and regression coefficient for target size PVsize). This results in
a metric vector for the peak velocity that specifies the following equation:

PV = PVconst + PVsize(size) + PVvertD(vertD) + PVhorzD(horzD).

It was expected that these regression variables would better reveal gender
differences in the metrics. This assumption is supported by 4-way ANOVAs
(gender × target size × distance × angle of approach) that were conducted for
each metric. The significant results of these ANOVAs are summarized in Table 1.
These results clearly show that many of the metrics revealed consistent target
parameter effects, and these effects could be mediated by gender.
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Table 1. Significant main effects and interactions found for 4-way ANOVAs (Gender
× Distance × Angle of approach × Target size) conducted for each metric.

Variable Significant effects

Reaction time Gender, Distance, Size, Angle, Distance × Angle,
Gender × Distance × Size × Angle

Movement time Distance, Size, Angle

Hold time Gender, Size, Angle

Time to peak V Distance, Size, Angle, Distance × Angle, Gender × Size
× Angle

Peak velocity Distance, Size, Angle, Distance × Angle

T ballistic comp Distance, Angle

Shape of velocity profile Distance, Angle, Distance × Angle

Ballistic prop Distance, Size, Angle, Gender × Size, Distance × Size,
Distance × Angle, Size × Angle

N of corrections Distance, Size, Angle, Distance × Size, Distance ×
Angle, Size × Angle

Time to press Size, Angle

Path length Distance, Size, Angle, Gender × Size, Distance ×
Angle, Gender × Size × Angle

Path L best ratio Distance, Size, Angle, Size × Angle

Axis crossings Distance, Angle, Distance × Angle

Direction changes Distance, Size, Angle

Orthog changes Distance, Size, Angle, Distance × Angle, Size × Angle

Movement var Distance, Angle, Distance × Gender, Distance × Angle,
Gender × Distance × Angle

Index of dIff Distance, Size, Angle, Distance × Size, Distance ×
Angle, Size × Angle, Distance × Size × Angle

Index of performance Distance, Size, Angle, Size × Angle

Horizontal error Size, Angle, Size × Angle, Gender × Distance × Angle

Vertical error Size, Angle, Size × Angle

Absolute error Distance, Size, Angle, Size × Angle

4.2 Gender Prediction Model

The second step in developing a gender prediction model involves with the input
of the metric variables obtained from each participant in a logistic regression
to predict the gender of a participant. The logistic regression is often used for
classification when dependent variables have binary values. The curve used in
this type of regression is an S shaped curve asymptotically tapered between 0
and 1 and is derived from the following linear relation:

logit(P ) = α + β1x1 + β2x2 + ...,
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where logit(P ) refers to the natural logarithm of the odds function defined as
follows:

logit(p) = ln(odds) = ln

(
P

1 − P

)
.

This function can then be substituted into the original linear relation and be
solved for P giving the formula:

P =
eα+β1x1+β2x2+...

1 + eα+β1x1+β2x2+...
,

where P is the probability that the dependent variable has the outcome coded
as 1 given the values of xi.

The values of constant α and coefficients βi are determined by maximizing
the conditional probability of the observed data, given the parameters used as
predictors. An initial model is constructed with arbitrary values for the coef-
ficients, and the conditional probability is evaluated. The coefficients are then
modified in order to increase this probability, and the procedure is repeated until
the model converges or a maximum number of iterations are reached. A max-
imum of 20 iterations were allowed to determine the values of the coefficients,
and the results lead to a threshold value of 0.5 (i.e., whose values above 0.5
were considered as male and whose values no larger than 0.5 were considered as
female).

5 Evaluation

The accuracy of the proposed approach for classifying a user’ gender was evalu-
ated on both labeled and unlabeled data. The labeled data consisted of the full
data set, while the unlabeled data test was performed with 70% of the partic-
ipants used as the training set and the remaining 30% of participants used as
the test set (Table 2).

Table 2. Accuracy of predicted results. Labeled set refers to the full data set used in
Sect. 4.1. Labeled 70% and unlabeled 30% refer to the training set and test set used in
Sect. 4.2, respectively.

Set Full set Outliers removed

Labeled Labeled 70% Unlabeled 30% Labeled Labeled 70% Unlabeled 30%

Male 91.1% 83.9% 57.1% 100% 100% 71.4%

Female 87.8 % 91.2% 86.7% 100% 100% 80.0%

Total 89.4% 87.7% 72.4% 100% 100% 75.9%
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5.1 Labeled Data Analysis

In this section, we verify how well a model may be fit the data and the accuracy
of such a model on users who have been sighted before. We also use this step to
identify any users with unusual characteristics as outliers. The logistic regression
model was tested on all 94 participants, but given the very large number of pre-
dictor variables (21 metrics × 4 metric features = 84 predictor variables) only
smaller sub-sets of predictor variables were actually tested. The first subset of
predictor variables was determined by testing each metric separately. The four
features of each metric were tested as a single group separate from the features
of the other metrics. The statistical significances (p < 0.05) of each metric’s
variables for predicting gender determined if these variables were included in
the first sub-set of predictor variables. The significant predictors included in this
subset were: {HTconst, PVhorz, PBsize, TCconst, TChorz, MDCconst, MDChorz,
MDCsize, AEconst}. To improve the overall accuracy of this model, additional
predictor variables were included while providing a moderate level of statisti-
cal significance (p < 0.1) in predicting gender when each metric was tested
separately. Two additional variables were included to this sub-set of predictor
variables: PBconst and PLRvert. The amount of explained variance in gender
classification using these two subsets of variables was 0.532 according to the
Nagelkerke pseudo r-squared measure, and the classification accuracy based on
this model was 75.5%.

The first subset of predictor variables was reduced from a total number of 84
to 9 by examining each metric’s predictive power one metric at a time. However,
a better subset of predictors may be possible if multiple metrics are included
in the initial logistic regression model. One way to reduce the number of tested
metrics is to only include those metrics that can characterize significant gender
effects from the previously conducted 4-way ANOVAs. These findings highlight
the metrics that show consistent gender differences or interactions of gender with
target parameters. We also included those metrics published by other researchers
with significant gender effects. The logistic regression model was tested again
with a new subset of predictors that included the four variables for each of these
metrics: {RT , HT , TPV , PB, PL, MV , AE, HE, TC, PV , AHE, AV E, V E}.
The 52 predictor variables in this subset were added to the original subset with
a stepwise method, and the following 10 new variables were revealed as signif-
icant predictors: {RTsize, RThorz, RTvert, TPVvert, MVconst, MVvert, MVhorz,
PVconst, PVvert, V Econst}. The amount of explained variance after the addition
of these variables to the final model was 0.676, and the resulting classification
accuracy was 89.4%.

We now test the effects that outliers had on the model. Five users were
identified as having scores that were more than two standard deviations away
from the mean. These are likely users with mouse movement characteristics that
do not entirely fit the average for their gender, since there can be an overlap
of physical characteristics between the two populations and such an overlap
affects the features being used. After the removal of these outliers, our model
can discriminate the gender of the remaining 89 participants with an accuracy of
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100%. It is difficult to uncover the actual causes for these outliers, and they can
occur for a variety of reasons including, but not limited to, distraction or injury.
In a real application, one would likely test for outliers at input time, and if an
outlier is detected, the user would be asked to re-do the input trials in the case
of a one time authentication. However, identifying the best methods to handle
outliers is beyond the scope of this paper.

5.2 Unlabeled Data Analysis

To evaluate the accuracy of our approach on unlabeled data, the movement data
from 65 randomly selected participants were used as the training set to create
the logistic regression model. And the model was then tested on the movement
data from the remaining 29 participants who comprised the test set. The same
variable selection procedure was followed with the unlabeled data as the one used
for the labeled data, except that substantially fewer participants were involved
in these selections.

The statistically significant predictors determined for subset one were:
HTconst, TChorz, MDCconst, MDCsize, MDChorz, AEconst, AHEconst,
AHEhorz, RTconst, PBsize, and V Evert. Six of these predictor variables were
consistent with the selections based on the full data set (labeled data). The fit of
this model was tested on the training set and accounted for 0.449 of the explained
variance in predicting gender with a correct classification of 76.9% of the partic-
ipants in the set. The second subset included the following predictor variables:
{PVconst, PVvert, PVhorz, MVvert, RTsize, RTvert, RThorz}. All seven variables
were included in the subset of the predictors obtained previously with the full
data set (labeled data). This overlap shows that this feature selection method
produces a set of features close to what is expected based on research in other
fields. On the other hand, what can be observed over the entire set may still
have sensitivity to the training set, which one should be careful of when fitting
the model. The fitness of this model with the combined subsets was tested on
the training set and accounted for 0.579 of the explained variance in predicting
gender. This final model was tested on the test set and was able to achieve a
gender classification accuracy of 72.4%. After removing the outliers identified
previously in the labeled data analysis, the test set was then classified with a
75.9% accuracy. These results suggest that outliers have a visible effect on the
classifier, but the negative impact is relatively small.

6 Discussion

Men and women differ naturally, both physically and psychologically. The devel-
opment of computer security tools can take advantage of these natural differences
by focusing authentication procedures on these differences. This study used the
naturalistic approach to successfully classify male and female participants by
measuring the temporal, spatial, and accuracy characteristics of their mouse
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movements while evaluating how these mouse metrics were affected by target
parameters.

The measurement of one such metric, movement accuracy, will be used to
exemplify this approach to the biometric analysis of mouse dynamics. Previous
research with aiming movements has revealed gender differences in the spatial
accuracy of these movements with women being on average more accurate than
men [4,23]. However, this gender difference is actually more complicated than
one suggested by simply comparing average errors, because target parameters
(target size, distance moved, and direction of movement) can also differentially
affect the movement accuracy of men and women [23]. In support of this premise,
our study also found complex interaction effects of gender and target parameters
on spatial error. Consequently, rather than just recording the mean accuracy of
each participant’s movements, a multiple regression analysis was conducted to
predict spatial error using target parameters (size, horizontal distance, vertical
distance) as predictor variables.

This novel approach to biometric analysis comes with some cost, because
there are now four variables representing each metric’s potential contribution to
the prediction model. Given the relatively large number of movement features
already required by our approach, a large number of predictor variables could be
introduced to discriminate the gender of a participant using logistic regressions.
Therefore, two criteria were followed to reduce the set of predictor variables
for testing: (1) each metric was tested individually and only those variables
that were significant predictors of gender in these tests were included in the first
subset of predictors, (2) all the metrics that produced significant ANOVA gender
effects and those with gender effects suggested in prior research were included
in a second subset. Our logistic regressions produced correct classification of a
participant’s gender at a rate of 89.4–100% for the labeled data and 72.4–75.9%
for the unlabeled data. These results are very promising given the limited range
of values provided for each target parameter in this study.

The optimal classification accuracy was achieved after removing outliers from
the labeled data set and from the training data set for the analysis of unlabeled
data. It is unclear why a few participants had such discrepant mouse metrics,
and further research is needed to rule out the possibility of introducing user
behavioral outliers into data collection and evaluation. However, their effects on
the unlabeled data were minor, indicating that they do not have a large impact
on classifying previously unseen users.

Once the recording accuracies of the movement metrics have been established,
the current procedure has very low computational overheads because it relies on
simple statistical models for computing predictor variables and gender classifi-
cation. A client machine can collect the raw movement data and then send it to
a server for feature extraction and prediction of gender with minimal overhead,
and relatively low latency for the client. Consequently, static and continuous
authentications are viable options with this approach. In fact, real-life mouse
movements that are not constrained to an experimental manipulation, as was
the case in the current study, should provide a larger range of target parameters
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and therefore better predictive accuracy. A larger, more diverse data set of par-
ticipants would also facilitate the testing of this approach, because the majority
of the participants in the current study were highly educated undergraduate
college students.

7 Future Work

A direct application of this method to be explored is the generalization of this
method across computer platforms with different hardware. One major advan-
tage of the naturalistic approach to biometric analysis is that predictive models
based on natural differences are assumed to have a universal, biological basis, and
therefore, should be more generalizable than traditional data driven approaches
to biometrics analysis. Accordingly, the gender classification model formulated
in the current paper should generalize to other populations of computer-users
(e.g., other countries, different education backgrounds), and also, be somewhat
independent of the computer-user environments where the mouse data are col-
lected (e.g., table height, table surface, type of mouse etc.). A comparison of
the classification success found in the current study for labeled and unlabeled
data provides some support for this assumption. When participants were clas-
sified using a model based on another group’s data (unlabeled data) there was
still a reasonable rate of classification success (72.4–75.9%) albeit with some
drop in performance from a completely labeled set of data (89.4–100%). Future
research could examine this generalization prediction using different computer
work stations and cross-cultural tests of classification success.

8 Conclusion

This paper proposes a naturalistic approach for gender classification of computer
users based solely on their mouse movements. The design rationale of our app-
roach lies in the observation that men and women differ naturally in how they
make mouse movements. We defined a series of temporal, spatial, and accuracy
metrics to quantify the mouse movement differences between male and female
users. In particular, we identified the metrics related to peak velocity, length of
the deceleration phase, target accuracy, finger posture, and reaction time are
relevant to gender classification. There were 94 volunteers participated in this
study, and a mouse signature was created for each participant. We evaluated the
efficacy of our approach for gender classification by conducting binary logistic
regression tests, and achieved promising results.
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Abstract. For digging individuals’ information from anonymous meta-
data, usually the first step is to identify the entities in metadata and
associate them with persons in the real world. If an entity in metadata
is uniquely re-identified, its host is possibly confronting a serious privacy
disclosure problem. In this paper, we study the privacy issue in VLBS
(Vehicular Location-Based Service) by investigating the re-identification
problem of vehicular location-based metadata in a VLBS server. We find
that the trajectories of vehicles are highly unique after studying 131
millions mobility traces of taxis in Shenzhen and 1.1 billions of taxis
in Shanghai. More specifically, with the help of the urban road maps,
four spatio-temporal points are sufficient to uniquely identify vehicles,
achieving an accuracy of 95.35%. This indicates that there is a high risk
of privacy leakage when VLBS applications are widely deployed.

Keywords: Privacy · VLBS · Re-identification · Uniqueness ·
Trajectory

1 Introduction

With the increasing popularity of the LBS (Location-Based Service) in our daily
life, massive applications are developed to help their users provide more personal-
ized user experience. For example, we could use an online map application to find
the restaurants nearby and their discount information, [1,2]. We can track our
lost phones by a security-based application. Those applications are making our
lives more convenient and comfortable based on GPS location-based queries. As
GPS queries are highly associated with human mobility traces, sometimes LBS
can bring serious threat to users’ privacy,[3–5]. According to the classification
by Shin [6], LBS-related privacy problems can be mainly divided into two types:
The first one is whether users’ private information (habits, location, etc.) can
be inferred from their LBS queries. For example, the specific location where a
driver always parks his/her car can be inferred with high certainty as his/her
home. The second one is whether a user can be uniquely identified by malicious
adversaries [7–9]. When an individual is identified, his/her precise locations for
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all LBS query time are exposed to adversaries. In this work, we limit our scope
to the second type, i.e., the user’s re-identification problem.

In an LBS system, LBS providers/servers are often regarded as non-
trustworthy components that perhaps leak users’ information to the third party
deliberately or unintentionally. To improve their reliability, the servers usually
anonymize the data to protect users’ privacy, [10–12]. Under such anonymous
protection, if an adversary hacks into an LBS server to get its trajectory meta-
data, he/she usually can only obtain an anonymous trajectory dataset, and can-
not infer an individual’s trace from the anonymous data. As a result, a completely
anonymous dataset is often presumed to be slightly sensitive when only several
non-anonymous records of a specific user could be exposed to adversaries, [13].
The objective of our work is to probe the possibly “hidden” privacy leakage
problem of user’s re-identification in LBS.

More specifically, we intently investigate the user’s re-identification problem
for a special type of LBS, Vehicular Location-Based Service (VLBS). The reasons
why we focus on VLBS are two-fold: Firstly, VLBS is becoming a promising
type of location-based services, since more and more vehicles are able to access
the Internet as mobile terminals, and then many LBS-related applications are
devised to serve vehicles. For example, a transportation monitor application
[14] collects real-time vehicle location information to predict road condition and
generate suggestions to drivers. Secondly, a significant feature of VLBS, i.e., the
mobility traces of vehicles are usually constrained by roads, draws us to figure
out whether road information could improve the risk of user’s re-identification.
To the best of our knowledge, few researches distinguished the privacy issue of
VLBS as an independent problem from the LBS privacy problem, [15–17].

In this paper, we utilize non-sensitive datasets to evaluate whether they can
still cause privacy leakage problems (user’s re-identification) in VLBS. To be
specific, we extract a few non-anonymous trajectories from two datasets of taxi
trajectory metadata, 131 millions mobility traces of taxis in Shenzhen and 1.1
billions of taxis in Shanghai, and compute the uniqueness of taxi trajectories.
Surprisingly, we find that four spatio-temporal points are sufficient to iden-
tify vehicles even when anonymous protection strategies are adopted, achieving
an accuracy of 95.35% for Shenzhen dataset and 96.75% for Shanghai dataset
respectively. Experiment results show that vehicles trajectory privacy is inclined
to be risky. We provide an intuitive explanation for this observation as follows:
Compared with diverse human trajectories, vehicle traces are mostly binded
by roads. The road information is possibly the underlying reason for user’s re-
identification only by four record points.

The rest of this paper is organized as follows: Sect. 2 introduces related work
in LBSs and VLBSs privacy fields. Section 3 gives the main results of this work.
In Sect. 4, we provide the analyzing procedure based on two real-life datasets.
Section 5 makes a discussion on what insights can be obtained from the experi-
mental results. Section 6 draws a conclusion and discusses about the future work.
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2 Related Work

One of the classic privacy protection mechanisms is the k-anonymous algorithm
[18–24]. In the model, a dataset must have k undistinguishable items on a specific
property, where k infers the least risks that we can suffer when information is
leaked. At the beginning, the algorithm was designed for databases like hospital
and school for user privacy protection. Later, researchers found that k-anonymity
can also work effectively in the LBS privacy protection.

To disclose the risk of user’s re-identification in anonymous dataset, Montjoye
et al. [25] studied the uniqueness of shopping mall metadata. The shopping mall
metadata has four fields: anonymous ID, time, location and money spent by
that customer. In their experiments, they applied different resolutions to all
fields except ID to simulate basic privacy protection methods. The conclusion is
that four purchase records are enough to uniquely re-identify 90% individuals.
This result is achieved with metadata that has three dimensions (purchase time,
shop, price). If an individual is re-identified, his/her mobility traces correspond-
ing to purchase behaviors can be inferred by adversaries. To explain this result,
an underlying reason is that the relatively high dimension of metadata could
expose individuals’ privacy with a high accuracy. Another similar work [26] stud-
ied the uniqueness of human traces associated with phone activities. They use
anonymous mobile phone dataset for their experiments. When people use their
phones (to make a call or send a message), the phone will communicate with the
nearest antenna and the whole activity is recorded by telecommunication com-
pany. There are three fields in their dataset: anonymous ID, the beginning time
and antenna used (location, one antenna covers a specific area). Similarly, they
applied different resolutions to the time and location fields. The result shows that
four phone activities are enough to uniquely identify 95% individuals. If an indi-
vidual is re-identified using the dataset, his/her mobility traces corresponding
to phone activities are exposed to adversaries. Compared to the shopping mall
metadata which has three dimensions, this work just use a two-dimension meta-
data. It is noteworthy that a user’s location information is indeed represented
by the coverage area of corresponding antenna. In other words, adversaries are
just aware of which antenna the individual has communicated with.

In our work, the taxi trajectory metadata are also of two dimensions, i.e.,
LBS query time and position on the road. Compared to the study in [26] where
there is intuitively a greater diversity in the two-dimension trajectory meta-
data associated with phone activities, the re-identification in our scenario seems
more difficult, then possibly leads to a less serious privacy problem. We aim at
examining this intuition in this paper.

3 Main Results

In LBS, application server stores records of users, including ID, time and location
information. We cannot infer one’s real identity by ID, since ID is anonymously
stored in the server. For example, when we use Google Maps [27] for navigation,
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Fig. 1. The uniqueness of traces with a specific number of known non-anonymous
spatial-temporal points. Given a 100 × 100 spatial resolution and 20 min temporal res-
olution, the uniqueness is up to 95.35% for Shenzhen taxis and 96.75% for Shanghai’s,
when the number comes to 4.

Google just uses our Google account as ID, so the application will never know
our identities or the plates of our cars. Although this basic mechanism protects
our privacy to some extent, the LBS servers are still considered unreliable.

In our attacker model, we assume that adversaries have full access to
LBS servers, and that adversaries conduct attacks by collecting several spatio-
temporal points of a user’s car, [25,26]. When these spatio-temporal points are
collected, adversaries use them to match with the database on servers. If an
unique match is found, adversaries can decide the identity of the user in the
database, and know the precise position of the car at any moment. Generally,
one spatio-temporal point is enough for re-identifying a target if its trajectory
is without an anonymous protection. In our experiments, we attempt to figure
out the risk of being re-identified with basic generalization protection meth-
ods. Generalization also helps to eliminate spatial and temporal error because
the adversaries cannot record spatio-temporal points without any error. It is
achieved by spatial and temporal resolution. The details will be explained in
Sect. 4 later.

In our experiments, we have 6 levels (20, 30, 60, 80, 120, 240 min) of temporal
resolutions and 11 levels (10×10, 20×20, . . . , 100×100 and 200×200 blocks) of
spatial resolutions. Besides, 1 ∼ 7 spatio-temporal points are randomly sampled
for our matching experiment respectively. The three mentioned parameters have
462 (6 × 11 × 7) combinations in all. For each combination, we obtain 150, 000
samples and for each sample we test its uniqueness. By this procedure, we can
compute the proportion that a taxi can be uniquely identified. Figure 1 illustrates
the uniqueness of traces when we set the temporal resolution to 20 min and
spatial resolution to 100×100 square blocks. We can observe that the uniqueness
grows rapidly as the number of known spatio-temporal points increases, and
its value approximates 100% rapidly when the number is larger than 4. What’s
more, the uniqueness of Shanghai’s grows slightly faster than that of Shenzhen’s.
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Fig. 2. The impacts of temporal and spatial resolutions on the uniqueness. (a) and
(b) show how different levels of temporal resolutions affect the uniqueness. (c) and (d)
show the effects of different spatial resolutions on the uniqueness. The notations U , TR,
SR, NoST stand for Uniqueness of traces, Temporal Resolution, Spatial Resolution,
Number of Spatio-Temporal points, respectively.

By now, we can state that 4 spatio-temporal points are sufficient to re-identify
a taxi’s trajectory.

In order to find out the effects of the temporal and spatial resolution on the
uniqueness of traces, we conduct experiments with different temporal and spatial
resolutions. The results are shown in Fig. 2. By these, we can conclude that the
uniqueness benefits from a larger number of spatio-temporal points, a shorter
temporal resolution, and a bigger spatial resolution (i.e., a smaller block size).
Furthermore, in Fig. 3, we plot the contour map according to the uniqueness of
traces extracted from two cities with the given known points 2, 4 and 6.

For each given number of spatio-temporal points, we plot the uniqueness of
two datasets in Figs. 4 and 5, corresponding to changing temporal and spatial
resolutions. When the number of spatio-temporal points equals to 1 (N = 1,
Figs. 4(c), 5(c)), the surface is nearly flat, which means that a single point is
insufficient to re-identify a taxi, whatever the temporal and spatial resolutions
are given. With the growing of N , the re-identified accuracy (uniqueness) is
increasing rapidly. When N equals to 4 (N = 4, Figs. 4(b), 5(b)), moderate
temporal and spatial resolutions can lead to a uniqueness over 90%. And the
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(a) N=2, Shanghai (b) N=4, Shanghai (c) N=6, Shanghai

(d) N=2, Shenzhen (e) N=4, Shenzhen (f) N=6, Shenzhen

Fig. 3. Contour map of uniqueness of traces of two cities.

uniqueness exceeds 90% for most temporal and spatial resolutions while N equals
to 7 (N = 7, Figs. 4(g), 5(g)).

In both datasets, the trajectories cover square areas with a side length of
200 km, spreading over two degrees in longitude and latitude. If the spatial reso-
lution is chosen to be 10 × 10, then we get 100 square blocks, with a 20-km side
length for each. Such a block is much too huge for estimation. The appropriate
and practical resolution is 100 × 100, which means that the side length of each
block becomes only 2 km.

4 Investigating Procedure

In the experiments, we generalize the spatial and temporal dimensions to simu-
late the basic privacy protection methods. Our experiments can be divided into
four steps: pre-processing, temporal generalization, spatial generalization and
uniqueness calculation. During pre-processing, datasets are processed to satisfy
the requirements of experiments. Temporal generalization applies a specific res-
olution to the time field. For adversaries, points within a resolution cannot be
distinguished. Similarly, spatial generalization applies a resolution to the loca-
tion field. After temporal and spatial generalization, the last step is to find
out the possibilities that one taxi can be re-identified uniquely by adversaries
given specific number of spatio-temporal points. When carrying out the exper-
iment, we test different temporal and spatial resolutions with different number
of spatio-temporal points.

The details of each step are shown in the following sections. We will give an
overview of our datasets at the end.
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(a) N=4

(b) N=1 (c) N=2 (d) N=3

(e) N=5 (f) N=6 (g) N=7

Fig. 4. The result of Shanghai’s Taxis.

4.1 Dataset Pre-processing

The two adopted datasets take about 60 GB disk storage in all. The data get
a lot of redundances and mistakes when taxi companies record and store them.
Before implementing the experiments, we have to do some pre-precessing work
to clean the datasets.
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(a) N=4

(b) N=1 (c) N=2 (d) N=3

(e) N=5 (f) N=6 (g) N=7

Fig. 5. The result of Shenzhen’s Taxis.

In the first step of pre-processing, redundant fields are removed. Besides
redundant data, logs can also have minor mistakes. The data contains broken
records, such as those with temporal disorder and spatial misplace.

Records in datasets are expected to be temporally well organized, but some of
them are chronological disordered. When such a temporal disorder takes place,
uncorrelated points may occur in the chronological sequences (as is shown in
Fig. 6(a)). All of the temporal uncorrelated points in the logs should be removed
in this stage. Another temporal disorder case is that all the point sequences are
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Fig. 6. Illustration of temporal disorder. In (a), on the road segment from B to E,
there are several points among ti and ti+5, and tk’s temporal tag doesn’t match the
surrounding points’ tags, which makes it a broken point. So tk should be removed
in the pre-precessing stage. In (b), t3 shifts ahead t2 (or t2 shifts behind t3). Two
solutions are used for solving this temporal error. One is removing t2 or t3, the other is
correcting t2’s or t3’s temporal tag. Both solutions need the average speed parameter
as a reference.

correlated with each other, but some of them are shifted (as Fig. 6(b) shows). In
general, GPS-measured time has a difference from GPS-received time, and the
records on logs may shift over one or two records. By scanning the sequences,
one point temporal disorder can be fixed easily. Given that one point temporal
disorder is already a low possibility event, we do not concern the high-order
points temporal disorder cases.

The last case is spatial displace. When taxis report their locations to the
server, they upload their longitude and latitude information, and the server
receives and stores this information into database. The whole process can not be
done perfectly. The bits representing the longitude and latitude may be changed
when the location information is being transmitted and stored, which leads to
spatial displace. Spatial displace makes one point from the sequences shift away
from others, as is shown in Fig. 7. After calculating the speed between points,
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Fig. 7. Illustration of spatial misplace. ti+3 has a deflection from the main road, which
can be tested by communication error between GPS devices and GPS servers. The
average speed is calculated for finding the deflection points. In the figure, vi+2,i+3 is
the average speed between ti+2 and ti+3, and so are vi+3,i+4 and vi+2,i+4. By compar-
ison, vi+2,i+3 and vi+3,i+4 are much more larger than vi+2,i+4. Frequently their values
exceeds taxis’ maximum speed. So we can consider ti+3 as an invalid point and remove
it from logs.

a point spatial displace can be distinguished if its speed to adjacent points is
extremely large. Spatial displaced points will be removed from the records.

In the end, some taxis have only a small number of records, so they are not
suitable for the experiments. These cars are simply removed from logs.

4.2 Temporal Generalization

Take Shenzhen taxis data as an example, whose timeline covers 9 days. In tem-
poral generalization step, different levels of temporal resolutions are tested in
our experiments. A specific temporal resolution tr will divide the whole time-
line (9 days, 12, 960 min) into 12,960/tr periods. In Fig. 8, the spatio-temporal
points are mapped to each interval according to their temporal tags. By doing
so, points nearby are classified to the same period. Thus, the adversaries can not
tell the temporal differences among the points within the same period.

Actually, two time-related concepts are involved in our attacker model, say,
the Adversary spying time (AST) and the Server recording time (SRT). AST is
the time that adversaries record when following a car, while SRT is the time that
the server records when a car starts a query to server. In fact, the adversary can
not obtain the query start time (QST) easily and the QST also has a numerical
difference from the AST. These two reasons make a unstable numerical differ-
ence between AST and SRT. In our experiments, we set temporal resolutions to
simulate the situations that AST has a shift from SRT.

In the experiments, we try 6 levels of temporal resolutions: 20, 30, 60, 80,
120, and 240 min.
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Fig. 8. Illustration of temporal generalization. The gray line is the trajectory of a car
in timeline from 10:00 to 12:00. In temporal generalization process, we set the temporal
resolution to half an hour, and the path is divided into 4 periods marked by different
colors. Points in the same period are considered undistinguishable. For example, A and
B, C and D are undistinguishable, while A and C, B and D are distinguishable. (Color
figure online)

4.3 Spatial Generalization

The Shenzhen and Shanghai taxis’ trajectories both cover an approximate square
area that spreads over 2◦ in longitude and 2◦ in latitude. In this stage, we use a
simple and direct way to generalize the spatial area. We draw lines with different
densities along the longitude and latitude lines and divide the entire mobility
spatial area into different blocks.

As shown in the Fig. 9, points in the same blocks are identical in their location
when exposed to adversaries. This method of division can simulate k-anonymous
algorithm to some extent, while pure k-anonymous division will create dynamic
districts as time goes by. With the source dataset, we can not locate the precise
position of all taxis at a specific time, which means that the pure k-anonymous
algorithm is impractical. In our experiments, different division densities are set
to replace different values of k’s in k-anonymous algorithm. The more blocks are
divided, the smaller each block is. We apply 11 different spatial resolutions in
the experiments (10 × 10, 20 × 20, . . . , 100 × 100, and 200 × 200).

4.4 Uniqueness Calculation

After pre-processing, temporal generalization and spatial generalization, we can
calculate the uniqueness of a taxi’s trajectory. Let Us denote the uniqueness of
a trace given several known spatio-temporal points. We also define uniqueness
indicator ε, which indicates the possibility that a trace can be identified with a
specific number of spatio-temporal points.

Us =
{

1 if a sample is unique,
0 otherwise.
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Fig. 9. Illustration of spatial generalization. The entire area is divided into 6×6 blocks
bounded by yellow and gray dotted lines. After the spatial generalization, A and B are
in different blocks, while C and D are in same block. So A and B are distinguishable,
C and D are undistinguishable. We say that the 6 × 6 spatial resolution cannot tell C
from D. When spatial resolution level is reduced to 3 × 3 (divided by yellow dotted
line), B is mingled with C and D. (Color figure online)

In Fig. 10, when the number of known spatio-temporal points is 2 (points B
and C here), the value of Us is 0 according to the above formula. If 3 points are
known (either A, B, C or B, C, D), then Us equals 1.

Now that we can calculate the value of Us given several spatio-temporal
points, the last problem to solve is how to get enough samples of several spatio-
temporal points. We use statistical approaches to sample from the taxis’ records
repeatedly, and match it with the entire dataset to calculate Us. With enough
samples, the uniqueness indicator ε can be inferred as in Eq. (1).

ε =
∑

s∈S Us

|S| × 100% (1)

In our experiments, we mainly have 3 variables (the temporal resolution TR,
the spatial resolution SR, and the number of known spatio-temporal points N).
Please refer to the detailed results of our experiment and the relations between
ε and the three variables can be found in Sect. 3.

Algorithm 1 gives the procedures of computing the uniqueness of users’ traces.

4.5 Datasets overview

We adopt two datasets, the overview of which is shown in Table 1. Table 2 gives
the main fields of the datasets. ID corresponds to taxi’s identity, which is the



508 Z. Xiao et al.

Fig. 10. Illustration of uniqueness judgement. The blue and red lines are trajectories
of two taxis with a timeline from 10:00 to 12:00, A and E turned out to be in period
10:00 to 10:30 (similarly, B and F in period from 10:30 to 11:00; C and G in period
from 11:00 to 11:30; D and H in period from 11:30 to 12:00). Given 2 spatio-temporal
points, B and C, we cannot identify the blue line trajectories. But if additional points,
A or D or both of them, are given, this trajectory can be uniquely identified. (Color
figure online)

Table 1. Overview of datasets

Index Date #Taxis #Records

Shenzhen 2011 04/18∼04/26 13798 130,551,644

Shanghai 2015 04/01∼04/10 13899 1,141,606,183

unique identification of taxis. Time is the time when the taxi reports its location
to LBS server. Longitude and Latitude denote the location of a taxi. In our
datesets, each taxi has plenty of records every day, and more records mean
that a taxi has more trajectory data. Figure 11 gives the probability density
distribution of the number of taxi trajectory records per day. We can see from
the figure that the probability density of Shanghai dataset is increasing with the
growing number of records while that of Shenzhen dataset is decreasing. Taxis in
Shanghai tend to have more trajectory records per day than those in Shenzhen.

Actually, a larger number of records do not mean more trajectory informa-
tion. For example, given the same number of trajectory records, those with larger
time-span may contain more information. Figure 12 gives the interval length dis-
tribution of two adjoined records. As we use taxi trajectory data from taxi
companies instead of private cars, and taxi companies often collect their taxis’
location diligently, more than 95% interval length is within one hour. The rest
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Algorithm 1. Computing Uniqueness of Traces
Input:

The entire original datasets, DSo.
Output:

A list with result tuples which contain parameters and the value of uniqueness,
R.

1: Clean the original dataset DSo with methods in pre-preprocess stage, get DS c.
2: Initialize R with an empty list.
3: Initialize Count with 150,000.
4: for each TR ∈ [20, 30, 60, 80, 120, 240] do
5: for each SR ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200] do
6: Divide the DS c with TR, SR, get DSd.
7: for each N ∈ [1, 2, 3, 4, 5, 6, 7] do
8: c = 0
9: m = 0

10: while c < Count do
11: Sample N spatio-temporal points Pn from DS c

12: if len(matched(Pn, DSd)) == 1 then
13: m += 1
14: end if
15: c += 1
16: end while
17: ε = m/Count
18: R.append((TR, SR, N , ε))
19: end for
20: end for
21: end for
22: return R

Table 2. Data sample from Shenzhen’s Taxicab

ID Time Longitude Latitude

B00T12 2011/04/18 00:00:18 113.984566 22.560133

B00T12 2011/04/18 00:01:14 113.994598 22.556467

... ... ... ...

B001B2 2011/04/20 00:01:55 113.881699 22.742943

B001B2 2011/04/20 00:02:55 113.880867 22.739964

... ... ... ...

B02S48 2011/04/23 19:54:42 114.262413 22.711182

B02S48 2011/04/23 19:55:22 114.261932 22.715206

B02S48 2011/04/23 19:56:39 114.261513 22.718210

... ... ... ...



510 Z. Xiao et al.

Fig. 11. Probability density function of the average number of a taxi trajectory records
per day.

Fig. 12. The distribution of interval length of two adjoined records.

of the length of intervals is decreasing progressively. For records that are col-
lected every ten seconds or less, the taxi location barely changes numerically
on longitude and latitude, which means a high redundance in our data. We can
vote one point on behalf of all the points within a specific threshold of time. For
example, if we set the threshold to be 20 min, then the mobilities in 20 min can
be summarized to one spatio-temporal point.
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5 Discussion

The experimental result shows that 95.35% of uniqueness can be achieved if
4 spatio-temporal points are exposed to adversaries. With the growing of the
number, the possibilities rapidly increase to 99%. Also, we find both spatial
and temporal generalization methods help to protect the trajectory privacy and
lower the possibilities of being re-identified. When the level of spatial and tem-
poral resolution increases, the information contained in the data goes vague and
the dataset becomes useless, which will end up with one spatio-temporal point
standing for all taxis and none can be identified. Our result shows four spatio-
temporal points are sufficient for re-identifying a taxi with a moderate level of
spatial and temporal resolution, which suggests that the data after this level
generalization be sufficiently useful for LBS providers.

If we focus on taxis that cannot be identified in our experiments, we find
that several spatio-temporal points from those taxis trajectory can still match
two or three taxis, which means those taxis’ identities can be decided by making
a choice from two or three entities. So adversaries can still identify those taxis
with several attempts. In our experiments, we utilize trajectory data from taxis
instead of private cars. Generally speaking, the trajectory of a taxi is less reg-
ular as compared to a private car. Under this observation, we can predict that
private cars have even more serious privacy problems than taxis. Thereby, we
can conclude that VLBS is confronted with a noteworthy privacy problem.

There may be a doubt that the vehicle quantity we have used in experiments
is too little to support our conclusion. Nowadays, the number of VLBS appli-
cations are growing rapidly, such as Here Maps, Google Maps, Foursquare, etc.
We assume that millions of vehicles are driven around in the city, only some of
which are distributed in various VLBSs applications. For a single application,
the number of vehicles that its server serves could be very small in the city.
Hence, our datasets are enough for most cases.

We provide several suggestions for drivers and VLBS providers to reduce the
risk of privacy leakage.

– Advice 1 : Use VLBS applications only when it is necessary. Most LBS-related
applications keep on uploading users’ location data under specific frequency
while running in backend. Most of drivers are familiar with the roads, but
they may still keep using the application unintentionally when driving. Some
of them may want to use the application for a second, for example, just in
order to find POIs (Place Of Interests) nearby, but fail to turn it down.

– Advice 2 : Do not reveal personal information to LBS-related applications.
For example, when you register Google Maps account, you are not supposed
to reveal unnecessary personal information.

– Advice 3 : In principle, using different accounts and different applications is
helpful for privacy protection.

Here are also several advices for the VLBS providers.

VLBS’s Advice 1 : Lower the information collection frequency if it dose not
harm basic services.
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VLBS’s Advice 2 : Adopt more advanced cryptographic algorithm and
store less sensitive information on the server.

With the efforts of both drivers and VLBS providers, users’ privacy can be
protected better.

6 Conclusion and Future Work

Based on investigating two real world datasets of taxi traces, we found that
with the help of urban road maps, four spatio-temporal points are sufficient to
uniquely identify vehicles, achieving an accuracy over 95%. Then, we can draw a
conclusion that in a VLBS environment, the privacy protect is a critical challenge
even though the queries are sparse.

People may have different concerns about their privacy when using LBS-
related applications. For our future work, we plan to provide customized privacy
strategies with different privacy levels. In detail, we would turn to machine learn-
ing methods to automatically learn users’ habits and preferences, which can aid
in adaptable choice among different privacy levels.
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Abstract. Determining if two functions taken from different compiled
binaries originate from the same function in the source code has many
applications to malware reverse engineering. Namely, this process allows
an analyst to filter large swaths of code, removing functions that have
been previously observed or those that originate in shared or trusted
libraries. However, this task is challenging due to the myriad fac-
tors that influence the translation between source code and assembly
instructions—the instruction stream created by a compiler is heavily
influenced by a number of factors including optimizations, target plat-
forms, and runtime constraints. In this paper, we seek to advance meth-
ods for reliably testing the equivalence of functions found in different
executables. By leveraging advances in deep learning and natural lan-
guage processing, we design and evaluate a novel algorithm, BinDNN,
that is resilient to variations in compiler, compiler optimization level,
and architecture. We show that BinDNN is effective both in isolation
or in conjunction with existing approaches. In the case of the latter,
we boost performance by 109% when combining BinDNN with BinDiff
to compare functions across architectures. This result—an improvement
of 32% for BinDNN and 185% for BinDiff—demonstrates the utility of
employing multiple orthogonal approaches to function matching.

Keywords: Reverse engineering · Malware · Deep learning

1 Introduction

Understanding the behavior and structure of malware is critical to developing
and improving our defenses against malicious code. However, the practitioners
tasked with this analysis rarely have access to the malware’s source code. As a
result, the binary has to be disassembled and manually reverse-engineered in a
time-consuming and expensive process. An important consideration, therefore,
is deciding how to prioritize the analyst’s limited resources. In other words,
the analyst must determine which parts of the malware deserve their initial
focus. Fortunately, malware authors commonly reuse code (e.g., libraries used for
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command and control) and thus a new piece of malware may significantly overlap
with previously examined binaries. If the investigator can identify functions that
have been analyzed before, they can leverage those existing results to increase
the speed and accuracy of the reverse engineering. Such identification is key to
reducing the cost of performing analysis.

The challenge in identifying these functions is that the same source code
may have multiple equivalent byte code representations. The reason for this dis-
crepancy is straightforward. When compiling the binary, high-level language
features—such as control flow operations while, for, if, case, etc.—must
be reduced and translated to the processor’s instruction set. This translation
depends on myriad factors including the choice of compiler, performance opti-
mizations, and target architecture. While some researchers have proposed using
control flow structure to match functions across binaries [3,6,9], such approaches
often make the simplifying assumption that functions come from the same com-
piler, architecture, and optimization level. Consequently, these methods are
insufficient for many practical scenarios.

The core of the challenge of identifying different compilations of the same
code in different environments (target platforms, optimization levels) is an exam-
ple of a variant recognition problem. More broadly, this is a common classification
problem in which some base artifact is perturbed into a class sample. Later, a
classifier uses an algorithm to identify the sample as belonging to the class.
Note that machine learning has been extremely successful at building classifiers.
For example, machine learning has been used to accurately detect malware and
network intrusion [15,18,21,24], identify objects in images [4,7,19], and a host
of other applications. In this paper, we build a machine learning classifier that
identifies function variants created by compilation. We use large collections of
sample functions executables to train a deep learning network. Later, the net-
work is used to compare pairs of functions for their equivalence—that they were
compiled from the same original source code.

In this paper, we introduce an orthogonal approach to function matching for
malware analysis. Our algorithm, BinDNN, leverages recent advances in deep
neural networks to build a model robust to changes in compiler or architec-
ture. At its core, BinDNN uses a Long Short-Term Memory (LSTM) neural
network to develop temporal relationships between assembly code instructions.
These relationships enable BinDNN to approximate mappings from the assem-
bly instructions back to the source code functions. Further, BinDNN incor-
porates a belief threshold that allows an analysis to dynamically adjust the
sensitivity of the model. In short, we make the following contributions.

– We design a novel approach, BinDNN, for prioritizing functions during mal-
ware analysis. Based on deep learning, our approach matches function repre-
sentations across different compilers, architectures, and optimizations.

– We evaluate BinDNN on a set of more than 70,000 binary function repre-
sentations compiled from 2,598 unique functions. We find BinDNN classifies
function matches with extremely high confidence, creating score distributions
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strongly weighted towards their respective classes, with median values of 0.99
for true matches and 0.0 for non-matches.

– Finally, we show that BinDNN compliments existing approaches. By using
BinDNN in conjunction with BinDiff, we boost the performance by 109%
when comparing functions across architectures and optimization level. This
represents an average improvement of 32% for BinDNN and 185% for BinDiff.

We begin by more formally defining the function recognition problem and build-
ing a classifier for it using a deep learning network.

2 Problem Definition

The fundamental challenge of our work is identifying whether two distinct
instruction sequences were compiled from the same source code. This proves
to be a formidable task as even a single function may have multiple equivalent
representations depending on the choice of compiler, the target architecture,
and other factors. To illustrate, let us examine the impact of one such factor,
optimization level.

Compiler optimizations are intended to make the code faster or more mem-
ory efficient. Consider the two instruction sequences in Fig. 1. Both sequences
were compiled from the same source code function (Fig. 2) with the same com-
piler (gcc), but with different optimization levels. The assembly on the left was
compiled with no optimizations (O0), whereas the assembly on the right was
compiled with optimization O2. The primary difference lies in how O2 elimi-
nates the need to set up the stack. First, lines 1 and 2 are removed. Next, at
lines 3 and 4 the O0 code grabs the “o” pointer argument using the base stack
pointer and compares it to 0 (to check for NULL). But in the O2 code we see it
transfers the “o” pointer argument to register eax and perform the test opera-
tion to set the flags register. Then, at line 6, the O0 code moves the “o” pointer
argument to the eax register, and the O2 code dereferences the “o” pointer argu-
ment and stores it back in the eax register. On line 7 we see the O0 code jumps

Fig. 1.
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Fig. 2. The source code for the assembly instructions seen in Figs. 1 and 3.

to line 10 to perform the same dereference the O2 code already performed while
the O2 code returns. If we took the jump on line 5, we see that O0 has to restore
the stack base pointer on line 11 whereas the O2 code does not as it never set
up the stack.

Even for our simple example function, optimization level had a significant
impact on the compiled assembly. We can quantify this impact, in general, by
using the edit distance between equivalent function representations. For example,
on a large sample set of binaries compiled under various optimization levels,
we calculated an average edit distance of 26.63 instructions.1 Given that the
average instruction length for a function was just over 50, these results mean
that approximately 53% of each function changed based on choice of optimization
level alone.

As mentioned previously, optimization level is just one factor affecting the
translation between source code and binary. Another factor, architecture, has
an even greater impact on the resulting binary. For example, the ARM-based
assembly in Fig. 3, does not share any instructions with the equivalent x86 from
Fig. 1. This, in combination with the factors discussed above, can make it extra-
ordinarily difficult to match functional equivalences across program binaries by
simple comparison.

Fig. 3. Assembly of ARM with optimization O0.

1 We paired functions representations from gcc -O0 against gcc O1, O2, and O3. See
Sect. 4.1 for a description of the data set.
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We identify the main difficulty in this problem to be determining if two
particular assembly instructions map back to the same source code function.
Specifically, the goal of our method will be to devise a model that is able to
classify a pair of instruction sequences as either a function match or non-match,
regardless of the input factors that cause these sequences to change. From this
classification, we can compare functions across binaries and look for previously
examined functions in scenarios akin to the ones above.

2.1 Previous Methods

BinDiff [26] is the current state-of-the-art tool for comparing binary files to find
similarities. BinDiff takes two input binaries, finds functions in the binaries, and
then performs graph isomorphism detection on pairs of functions from the two
binaries. This technique works well when two semantically equivalent binaries
have similar control flow graphs. However, when they have different control flow
graphs, such as when the binaries are compiled with different optimization levels,
this approach loses its effectiveness [8].

Several others have proposed related techniques for detecting similarities.
BinHunt [9] and BinSlayer [3] are two such examples. BinHunt uses graph isomor-
phism detection similar to BinDiff; however, BinHunt finds maximum subgraph
isomorphism while BinDiff utilizes a greedy method for performance. BinHunt’s
algorithm works best when the graphs generated from the binary files are similar.
Hence, they suggest using a different graph isomorphism technique when the dif-
ferences are large. BinSlayer creates a polynomial time algorithm for calculating
differences between two binaries by combining BinDiff’s algorithm with the Hun-
garian algorithm for bi-partite graph matching [3]. We choose not to use either
of these techniques in our analysis, as BinSlayer relies on BinDiff’s structural
comparison algorithm and shares many of the same weaknesses, and BinHunt
loses effectiveness when analyzing binaries that produce largely different graphs.

unstrip [13] uses system calls in the form of semantic-descriptors to identify
GNU C Library wrapper functions such as read and write in 32-bit binaries.
The purpose of this tool is to mitigate the effort that analysts must spend in
order to parse stripped binaries. The unstrip tool is used to label wrapper func-
tions for system calls in Linux binaries. Their matching system uses a database
of semantic descriptors and fingerprints to identify functions. While the identi-
fication of wrapper functions is important, our tool is more generalized and can
detect both wrapper functions and functions that do not contain system calls.

When looking at methods for function identification within binaries, we see
there has been some focus in using machine learning methods. Two of these
methods are ByteWeight [1] and experiments with RNNs [23]. ByteWeight uses
weighted prefix trees to classify the beginnings and ends of functions [1]. In [23],
Shin et al. train a Recurrent Neural Network to classify the beginnings and
ends of functions, and their method is able to outperform other methods [23].
However, it should be noted that finding function boundaries is related, but it
is a different problem than function matching.
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Finally, BLEX, created by Egele et al. is a tool for function matching that
introduces a new method called blanket execution. This method executes func-
tions in a controlled environment to analyze its behavior. This method performs
better than most other methods for cross compiler (or cross optimization level)
function identification, obtaining accuracy of 55%, and 64% when used as a
search engine [8]. However, BLEX does not currently consider target architecture
changes—something our method aims to consider.

3 Function Matching with Deep Learning

We propose BinDNN, a new approach to function matching inspired by recent
deep learning approaches for Natural Language Processing (NLP). BinDNN is
based on the following intuition: By representing assembly instructions as words,
and their orderings as sentences, we can equate function matching to the problem
of finding sentences with the same meaning. Framing function matching as an
NLP problem allows us to leverage a wealth of past research as the starting point
for our model.

In particular, BinDNN utilizes three types of neural network models: Convo-
lutional neural networks (CNN) [16], Long Short-Term Memory recurrent neural
networks (LSTM) [10,12,25], and regular fully connected feed-forward neural
networks (DNN). We layer these models to construct an architecture similar to
the design proposed by Sainath et al. for speech recognition [22]. This design
takes advantage of the LSTM, allowing BinDNN to infer the temporal rela-
tionships necessary for function matching. In addition, our approach employs
an embedding layer to make the model more effective at representing different
inputs which have similar meaning [5,17].

Approach Overview. BinDNN uses a three step process to find function
matches, as depicted in Fig. 4. Upon receiving binaries to analyze, BinDNN first
needs to find and represent the functions in assembly code. This involves leverag-
ing preexisting techniques for function boundary detection, and then performing
feature extraction to translate the assembly code functions representations into a
more appropriate format for the neural network. Next, we generate samples that
the neural network uses to learn the structure of a function match. Finally, we
can use the neural network to determine if the assembly code functions originate
from the same source code.

3.1 Binary to Feature Vector Translation

Identifying Function Boundaries. The first step of BinDNN begins the
process that translates the binaries into a classifiable object that the neural net-
work will be able to understand. This first requires finding the function bound-
aries in the input binaries. On an unstripped binary (one compiled with the
debug flag on) this process is trivial, however, as our method is designed to work
on unstripped binaries, we must have a method that can still find these function
boundaries. This is a difficult task for which has seen recent research [20,23].
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Identify Function 
Boundaries and Extract 

Features

Binary A

Create Comparison 
Samples

Classify with the Neural 
Network  
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Vectors

BinDNN

Binary B

Fig. 4. Method overview of BINDNN. BinDNN uses a three step process. In the
first step it has to find the function boundaries, so it can extract the features for
each function. Next, it uses these feature function representation to create comparison
samples before finally classifying these sample with a deep neural network.

However, IDA Pro [11] is still one of the best performing tools, and is commer-
cially available. We choose to use IDA for finding function boundaries.

After the system has function boundaries, it can start to convert the functions
from assembly to instruction sequences. In order for the comparison component
of BinDNN to be able to perform the comparison, we need a way to represent
the functions so our neural network is able to deduce discriminatory pieces from
the functions that exist cross compiler, architecture, and optimization level. We
designed our system to use an ordered set of the assembly instructions that make
up the function with their arguments removed. This highlights the temporal
relationship between the instructions, which the neural network is able to employ
to aid in classifying the functions.

Feature Extraction. Our approach is similar to what is seen in the taxonomy
of deep learning for natural language processing [5]. BinDNN uses a global
vocabulary of instructions that could appear in a function.

[aaa , aad , aam , aas , adc , ..., XTN , XTN2 , YIELD , ZIP1 , ZIP2]

[0, 1, 2, 3, 4, ..., 1940, 1941, 1942, 1943, 1944]

Specifically, it holds the instructions available for the architectures for which
this model will be (or has been) trained to handle. In our experiments, we trained
BinDNN to support binaries from two architectures, x 86 and arm. Therefore,
its global vocabulary contains the instruction sets for both architectures. Notably
for these two architectures, the model saw no shared assembly instructions, as
arm instructions were represented as uppercase and x86 were represented in



524 N. Lageman et al.

lowercase, e.g. BinDNN considers MOV and mov as separate instructions. Addi-
tionally, given architectures which share assembly instructions syntactically, it
would likely be beneficial to change them to be unique when storing them in the
vocabulary; in order to prevent confusion in the neural network.

3.2 Sample Creation

In BinDNN’s second step, it constructs the sample that is passed to the neural
network. A sample is the concatenation of two function representations, as seen
below.

[push , mov , ..., retn] + [BARRIER] + [push , mov , ..., retn]

A sample can represent a match (where both function representations belong
to the same source code function) and non-matches (the representations do not
belong to the same function). There are two types of samples we need to create,
training samples and testing samples. For both types of samples, it is must pair
instructions sequences with each other and insert the barrier index. However in
training, it must also contain the size discrepancy between the true match and
false match samples sets, so the network can train on a balanced dataset. During
classification, there is no such constraint.

A single sample that is provided to the neural network is the representations
of two functions concatenated on either side of a barrier index. The barrier
index is also stored in the global vocabulary like an assembly instruction. Each
sample represents a pair of function representations that are either a matching
pair (they represent two instruction sequences originating from the same source
code function) or non-matching (they originate for two separate source code
functions). We add the barrier index to provide an indicator that the neural
network can use to distinguish where one function representations ends and the
other begins. The index becomes the length of our global instruction dictionary.
Our current global vocabulary consists of 1945 total instructions, i.e. our barrier
index is 1945. Additionally, we do not create samples including functions that
are less than 5 instructions, or greater than 150 instructions.

Constructing the Training Dataset. Consider the construction of the sam-
ples used in the training the phase of our tool, we only cover the generation of
the training set because it is analogous to the generation of the test step. The
only difference is that the test set generation uses a smaller set of functions. Let
X be the set of functions in the training data, and k be a function in X. Then Xk

is the list of representations for function k. To construct a “true match” sample
for the training set, we find the indices of two representations, (i, j), such that
i �= j, from Xk and pair them together. This provides us with

(|Xi|
2

)
possible true

matches for function i. To construct the “false match” samples we need another
variable, X̄k, defined as follows.

X̄k := {x ∈ Xm|∀m ∈ X s.t. m �= k} (1)
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Then the false match sample can be constructed as the pairs between each i ∈ Xk

and ∀j ∈ X̄k. However, using this method directly creates an unmanageable total
of false samples causing the model to take far too long in the learning phase,
and creating an unbalance in the number of true and false comparison samples.
Specifically, the total number of true samples created is,

Number of true samples =
(|Xk|

2

)
(2)

and the number of false samples is,

Number of false samples =
|Xk|∑

i=0

|X̄k| (3)

for function k. With over 10,000 unique functions, this quickly balloons the
training set to an unmanageable size. To address this problem we used a cap, α,
when constructing the true matches, so that we create min(|Xk|, α) samples for
function k. Then we also create an approximately equal number of false match
samples.

3.3 Using the Neural Network

The third and final phase of our method is using the deep neural network to clas-
sify the samples. It is an 8 layer network, we describe the model’s architecture
in detail in AppendixA. The network takes a comparison structure as input,
and returns the confidence score indicating the likelihood that it is made of two
matching function representations. That is, they represent instruction sequences
compiled from the same source code function. BinDNN tests all of the compar-
ison structures created in the previous step for each function. It then returns a
list of all functions that could be matches, based on the threshold value, along
with there associated confidence scores.

Before we can use our tool, we have to train it on the large sample set we
constructed. With a network this size, this can take a substantial amount of
time. The model does not have to be retrained for the ability to classify new
functions that it has not previously seen. However, it does have to be retrained
when expanding the number of architectures it can classify across. In prepara-
tion for our experiments, we train the network using the dataset constructed
from Sect. 3.2. We train the network using 10 epochs, i.e. 10 pass through the
entire dataset. Our loss function uses binary cross-entropy following the imple-
mentation in theano.2 Following their notation the loss function is calculated
elementwise as,

Loss = −(t ∗ log(o) + (1 − t) ∗ log(1 − 0)) (4)

2 http://deeplearning.net/software/theano/library/tensor/nnet/nnet.html#tensor.
nnet.binary crossentropy.

http://deeplearning.net/software/theano/library/tensor/nnet/nnet.html#tensor.nnet.binary_crossentropy
http://deeplearning.net/software/theano/library/tensor/nnet/nnet.html#tensor.nnet.binary_crossentropy
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where t is the target value (the actual value), and o is the output value (the
predicted value). The optimization function is what the network is trying to
minimize during training. There are many optimization methods to approximate
the gradient descent, as purely calculating it is not efficient enough. We use an
optimization method called, “Adam” [14], which utilizes an adaptive learning
rate allowing it to naturally perform a form of step size annealing. After training
the network, BinDNN is ready for use.

When classifying, the network receives a set of samples for a particular func-
tion in a binary. Specifically, the set will hold the set of samples for that function
versus every other function in the other binary. The network generates a con-
fidence score for each of the samples indicating its belief that the two function
representations are instruction sequences from the same source code function.
BinDNN then compares these confidence scores to the threshold value that it
was given, and returns a list of the comparisons that scored higher than the
threshold. These represent the instruction sequences that the network believes
to be from the same source code function.

4 Evaluation and Discussion

Our evaluation focuses on determining how the system would perform in the real
world. We analyze the system’s ability to detect instruction sequences originating
from the same source code functions. This evaluation allows us to understand
how well the system can improve an analyst’s efficiency when analyzing malware.
We compare our system, BinDNN, to a state-of-the-art tool, BinDiff. We test
both system’s abilities to detect function matches across real binaries compiled
with different settings.

4.1 Data Set

We choose our dataset to represent real world programs. So, we used real pro-
grams that are often used on UNIX systems. Additionally, we want our results to
be easily compared to other previous works. Specifically, ByteWeight [1] and their
dataset of compiled programs. This dataset consists of the popular binutils,
findutils, and coreutils toolsets. Each toolset was compiled for both x86
and x86-64 with gcc (version 4.7.2) and icc (version 14.0.1) using optimization
levels ranging from -O0 (none) to -O3 for gcc. This dataset presented us with
2,064 binaries to include in our dataset.

However, this set of binaries only provides us with variations in compil-
ers and compiler optimizations levels. We also need to expand the dataset to
include binaries from multiple architectures, so we compiled multiple versions
and implementations of libc for Linux. In particular, we tested Embedded
GLIBC, eglibc, (version 2.19) and glibc (versions 2.22, 2.21, 2.20). We used
the eglibc implementation because it is the default implementation installed
on Ubuntu 14.04 LTS. Additionally, we also used 3 recent versions of GLIBC,
which is included on Fedora, OpenSuSe, CentOS, and later versions of Ubuntu.
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We trained BinDNN on this dataset in order to identify C library functions in
programs that were compiled statically and stripped. Each C library implemen-
tation was compiled with default CFLAGS and optimizations. Ideally, we would
have liked to extract C library implementations that came by default in popular
Linux distributions, however those libraries are already stripped of debugging
information and are unusable for training purposes.

We compiled the binaries with the debug flag so that the function names
would be included in the assembly code. This allowed us to establish ground
truth for our training experiments. However, during testing, both systems were
only provided with stripped binaries to make their decision on function matches.
Specifically, the systems were attempting to match functions from one stripped
binary to a second stripped binary3. Our analysis did not require matching
functions from the dynamically linked libraries. Specifically, we analyze the abil-
ity of our method in matching functions that were directly contained in the
source code. Our final dataset contained multiple instruction sequences for 12,993
unique functions.

4.2 Classifying Function Comparisons

In measuring the performance of BinDNN, we focus on two questions: (1) How
many function pairs were correctly identified (true positives) out of the total
number of identifiable pairs? (2) How many function pairs did the system identify
that do not originate from the same source code function (false positives)? Since
there will be such a large number of function comparisons, even in relatively
small binaries (e.g. 1,000,000 comparisons for 2 binaries with 1,000 functions
each), it is ever more important to correctly classify as many as possible. For
instance, in our neural network testing phase, we generated the results seen in
Table 1. This table represents the raw number of function comparisons the neural
network of BinDNN was able to classify from a set of functions not previously
disclosed to the system. We see that although it was able to correctly classify over
93% of the 2,166,126 function comparisons, it still ends up misclassifying 146,976
comparisons. This number of misclassifications severely reduces the ability of the
system to aid an analyst in reverse engineering. For instance, if we incorrectly say
that two functions are the same, the analyst may not see important information.
If we incorrectly say that the same two functions are different, then we waste
their time.

To better understand how we can improve these misclassifications, we analyze
the distribution of the confidence scores assigned to the comparisons by the
neural network. In Fig. 5, we see the distribution of confidence scores the network

3 This complicates the process of deciding when BinDiff has correctly or incorrectly
identified a function. Our process for making this decision required that we first pro-
vide BinDiff with unstripped binaries, where is would successfully match all functions
via name hashing, then save the effective address of the two functions it matched.
Using these effective addresses, we were then able to verify matches made by BinDiff
on the stripped binaries.
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Table 1. Confusion matrix for the LSTM.

Predicted NO Predicted YES

Actual NO 1097555 52393

Actual YES 94583 921595

Fig. 5. Score distribution by class. The score distribution is very highly weighted
for its respective class. This indicates that when the network correctly classifies a
function comparison, it does so with extremely high belief.

gives when provided with a true pair of matching instruction sequences and a
false pair. We see that confidence scores given to true pairs are extraordinarily
high, with a median of 0.99. Likewise, the score for the false pairs are very low,
with a median of 0.0. This indicates that if the network is given two instruction
sequences for the same source code function, and if it successfully identifies them
as a match, then it will do so with extremely high belief. This indication leads
us to believe that varying the threshold for detecting functions is an important
part of our system.

Configuring the Confidence Threshold. The confidence threshold (intro-
duced in Sect. 3.3) allows an analyst to adjust the sensitivity of BinDNN when
detecting function matches. This is useful in setting the number of acceptable
false matches that may occur when comparing the functions from two different
binaries. If the threshold is set too high, we may miss a large number of detectable
function matches, and if it is set too low, there may be too many false matches
for the results to be useful. We found that, for our system, the optimal thresh-
old value changes according to the compiler, compiler optimization level, and
architecture. Hence, the threshold value should remain as a tunable parameter
in BinDNN. To determine the optimal threshold values for our tests, we looked
at the relationship between this threshold and the average number of functions
identified for both true matches and false matches.

We studied this relationship for 3 configurations of the program binaries, as
seen in Figs. 6, 7, and 8. We see that with an increase in threshold, the number
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Fig. 6. Threshold analysis for compiler optimization level variations.
Although a threshold value of 0.94 gives us (on average) the best coverage of the
matchable functions, it still causes the system to incorrectly identify function matches
at over 2 times the rate of correct matches. There are some situations where this might
be acceptable, however, in our evaluation we chose a threshold that would provide
similar results to BinDiff.

of false matches decreases at a much higher rate than the true matches. We saw
indication of this in Fig. 5, as the median and mean of the network’s scores for
true matches was very close to 1. As such, it appears that when the network
correctly classifies a pair of instruction sequences as from the same source code
function, it does so with very high belief. This allows us to increase the threshold
to even out the true matches and false matches. Increasing the threshold does
reduce the total number of true matches found by BinDNN, but it greatly
increases the confidence for the matches it does find. In our tests, we choose to
use threshold values that will allow approximately one false match for every true
match, as this provides the most comparable results to BinDiff.

Test Environment. The machine we used to train, test, and ran the tool on
used Ubuntu 14.04. It has an Intel Xeon E5-2630 clocked at 2.30 GHz and 32 GB
of memory. We installed an EVGA GeForce GTX TITAN X graphic card to be
used by the network model into the computer. It has 12 GB of memory clocked
at 7010 MHz and has 3072 CUDA Cores clocked at 1127 MHz.

On this machine, when training the network we saw it average approximately
65000 s (18 h) per epoch. This means 10 epochs took a little over 1 week. When
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Fig. 7. Threshold analysis for architecture changes. We see the best correct
function matches coverage without unnecessarily increasing incorrect matches at a
threshold value of 0.92. This time we notice that also at this value the number of
incorrect matches starts to decrease at a significantly higher rate than the true matches.
Hence, we find we are able to hold a very low false positive rate at a high threshold.

actually using the network after it has been trained in the tool, we only have to
consider how long on average it takes to process 1 sample and how many control
function representations are in our control set. On average we saw each sample
take less than a second, and about 10 s for 2500 samples. This means if we were
analyzing two binaries with a 1,000 functions each, we would expect BinDNN
to complete its process in approximately an hour.

4.3 Resilience to Optimization Differences

We perform a case study to test the ability of both systems when matching
functions from binaries compiled with the same compiler, but different compiler
optimization levels. Specifically, we use binaries that were compiled with gcc on
x86 using optimization levels O2 and O3. In Fig. 9, we see the number of correct
and incorrect function matches for both BinDNN and BinDiff for the shortest
(by function count) 80 binaries in our test set. We chose the 80 shortest binaries
for the sake of presentations; generally the results were comparable across the
entire data set. The two systems have similar results, however, BinDiff generally
outperforms BinDNN in this test. We also see that both methods produce low
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Fig. 8. Threshold analysis for compiler and compiler optimization level
changes. This time again we see optimal coverage around 0.92, however, the aver-
age number of incorrect matches is still rather high. Although, this time there is a
substantial increase in the rate at which the incorrect matches start to fall off around
0.975.

false positive rates, and the union of their correct matches provides a significant
increase in correct matches. Specifically, we see an average increase of 45.7%
for BinDiff and 66.3% for BinDNN. This indicates that using the two methods
together creates an even more effective solution.

We can infer from the results, that although there is change in the assem-
bly code structure, it still has parts similar enough for BinDiff to successfully
match the functions. Although BinDNN could detect as many or more function
matches as BinDiff from these two binaries, it cannot do this without increasing
the number of false matches by a substantial amount. For instance, recall the
relationship between the threshold and true and false positive rates, in Fig. 6. We
see that a threshold value of 0.94 will match, on average, approximately 70% of
all possible function matches. However, it will also increase the number of false
positives by a substantial amount. Even so, there are situations in which this
would be acceptable practice. For instance, if an analyst was looking for shared
functions between two malware applications compiled with different optimiza-
tion levels, a number of false matches would still be acceptable, as that will still
be better for the analyst than manually comparing each function to each other.
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Fig. 9. Optimization level resilience comparison with BinDiff and BINDNN.
The two systems have comparable performance (with BinDiff generally performing
better) when matching functions from binaries compiled with the same compiler, but
different optimization levels, i.e. gcc -O2 and gcc -O3. The positive values are correct
functions matches; whereas, the negative values are incorrect function matches.

In our experiment, we chose a threshold value that provides the results most
comparable to BinDiff. In this case, that was 0.993.

4.4 Resilience to Architecture and Optimization Differences

We create another configuration of program binaries to determine the effective-
ness at which BinDNN and BinDiff are able to match functions from binaries
compiled for different architectures. The binaries we used in this experiment
were compiled with gcc -O0 for x86 and with gcc -O3 for arm. When deter-
mining the threshold BinDNN should use, we consult the relationship between
the threshold and the classification rates, as seen in Fig. 7. Notably, we could
choose a value close to 0.92 to obtain the most coverage of the entire binary
without unnecessarily increasing the false positives. However, in order to gener-
ate comparable results with BinDiff and across experiments, we again choose a
high threshold value. This time we use 0.991.

In Fig. 10, we see a comparison of the number of correct and incorrect func-
tion matches for BinDNN and BinDiff on the programs compiled across archi-
tectures. Again, we only show the results for the 80 shortest (by function count)
binaries for presentation reasons, and the results for the longer programs are
comparable. This time we see that BinDNN was still able to successfully match
a number of functions across the programs, whereas BinDiff does not perform
as well.

These results show the weakness of systems like BinDiff, which rely on graph
isomorphic methods. Since the structure of assembly code for the two programs is
substantially different, the control graphs end up being different, causing these
methods to fail. Even though BinDNN uses instruction sequences, and these
binaries use different instructions (as they are on different architectures), our
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Fig. 10. Architecture resilience comparison with BinDiff and BINDNN. When
matching functions from binaries compiled across architectures, BinDNN vastly out-
performs BinDiff. These binaries were compiled with different optimization levels (O0
and O3), and on two different architectures (arm and x86). The positive values are
correct functions matches; whereas, the negative values are incorrect function matches.

system can still find function matches. This is due to the nature of the deep neural
network. It was able to develop approximation functions during the training
phase that can map instruction sequences across architectures to the same source
code function. Additionally, by reducing the threshold, BinDNN can find more
true function matches at the cost of adding in additional false matches, as was
the case with the previous optimization level experiment. Additionally, we see
that the union of both method’s results increases BinDNN’s results by 26%
on average (and BinDiff’s by nearly 190%). However, this would also increase
BinDNN’s false positive rate by substantial amount. Hence, in this use case, it
is actually detrimental to combine the results of both methods, and is instead
better to only use BinDNN’s classifications.

4.5 Resilience to Compiler and Optimization Differences

We use a different configuration to analyze the ability of BinDNN and BinDiff to
detect function matches in program compiled with both a different compiler and
different compiler optimization levels. Specifically, we use programs compiled for
x86 with icc -O2 and gcc -O3. In Fig. 8, we see the relationship between the
threshold and classification rate. As with the multiple architecture experiment,
we see that BinDNN provides the best coverage around 0.92, without increasing
the number of false positives an excessive amount. However, there are still an
average of approximately 330 incorrectly matched functions with this threshold.
We see an increase in the rate at which the incorrect matches fall off as the
threshold value approaches and passes 0.98. Therefore, it is beneficial to select
a threshold value greater than 0.99, we find an appropriate value to be 0.997.

Figure 11 shows the comparison of function matches for BinDNN and Bin-
Diff. Once again, we only show the results for the shortest 80 functions to make
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Fig. 11. Compiler and compiler optimization level resilience comparison.
Both BinDNN and BinDiff struggle to keep their incorrect matches low when working
on programs compiled on icc -O2 and gcc -O3. However, we do see that BinDNN is
able to a number of function matches, whereas BinDiff cannot. The positive values are
correct functions matches, and the negative values are incorrect function matches.

presentation more clear. The results were comparable across the entire data set.
In this experiment, we see that both BinDNN and BinDiff struggle to maintain
a low number of incorrect matches. We see that generally BinDiff has a higher
true positive and false positive rate than BinDNN. However, we see that the
union of both method’s results provides an overall increase for both systems.
Once again indicating that an ensemble use between these or similar methods
may be effective.

4.6 Network Limitations

We can further improve the classification rate of the network—currently at
93%—by tuning the architecture, feature vectors, and hyperparameters. How-
ever, tuning alone is insufficient as some of the network’s inaccuracy is due to
missing information. For example, we currently remove the arguments for each
of the instructions when constructing the feature vectors. We do this because
our network represents functions as sequences of indices into a global vocabulary.
If we were to naively include each of the instructions along with their possible
arguments, the size of the vocabulary would quickly become intractably large.
While this makes our approach more tractable, it also reduces the fidelity of
the function representations passed to the network. We plan to explore this area
more in future work.

5 Conclusions

In this paper we proposed and evaluated BinDNN, a new method for determin-
ing if two assembly instruction sequences originate from the same source code.
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Our method allows an analyst to prioritize their limited resources by filtering
large swaths of code, removing functions that have been previously analyzed, and
locating functions present in other malicious programs. We overcome the chal-
lenges posed by differences in compiler, compiler optimization level, and target
architecture by framing the problem as natural language processing. This fram-
ing enables us to leverage deep learning as the foundation for resilient function
matching. Our evaluation shows BinDNN is more effective than current state-
of-the-art tools (e.g., BinDiff) when matching functions across binaries compiled
for different architectures.

BinDNN’s greatest strength is its ability to augment, not supplant, existing
approaches. Indeed, we show that when BinDNN is combined with BinDiff we
boost performance for both methods. For example, we saw an improvement of
46% over using BinDiff alone when comparing functions compiled at different
optimization levels. While such ensemble methods are effective, we must consider
the relative strengths and weaknesses of each method. Take the cross-architecture
results for example; combining BinDNN and BinDiff had little effect as BinDiff’s
false positive rate was too high.

As the demand for binary analysis rises so too will the need for triage tech-
niques. Put simply, there are more malicious binaries introduced every month
than analysts can reverse engineer. However, no technique is a panacea. BinDNN
represents an important step in addressing the limitations of previous approaches
and provides analysts with another tool in their fight against malware.
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A Network Architecture

We design what is essentially an 8 layer network. The first layer is an embedding
layer, this layer learns mappings for global vocabulary indexes into dense vectors.
This layer is especially important for our first goal, the ability to recognize
similar instructions that have different names. This layer allows the model to
more easily map instructions that appear to have similar meaning to real values
that are close.

Next, we pass the output from the embedding layer to two 1 dimensional
convolutional layers. The convolutional layers each use 64 kernels with filter size
3. These layers allows the model to learn small groups of instructions. This allows
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the model to classify not only on the exact sequence of instructions that makes
up the function representation, but also the sequence of meaningful instruction
subsequences. From the convolutional layers we downscale by a factor of 2 by
using Max Pooling.

Next, we use two long-short term memory (LSTM) layers with 70 cells each.
These layers are the heart of the model. They learn the temporal relationships
between instructions. By using LSTM layers, we are better able to overcome
the vanishing or exploding gradient problem associated with standard RNNs [2],
which in turn allows us to more easily learn long-term dependencies within the
functions.

Lastly, we incorporate dropout throughout the model to help it resist over-
fitting. Specifically, we include 25% dropout in-between the two convolutional
layers, and we include 50% dropout between the final two dense layers. The
model also uses a sigmoid activation function. We provide a diagram of the
network architecture in Fig. 12.

Fig. 12. Network architecture. We use an 8 layer deep learning model. It is primar-
ily built around the LSTM layers, which develop the temporal relationships between
instructions. The CNN layers vastly increase the stability of the model while also aid-
ing in preventing it from overfitting. The DNN layers at the end bring everything from
the previous layers together in a classification value stating if it was given matching
function representations
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Abstract. In the current operating systems (OS), the kernel has complete
access to and control over all system sources. However, there are many secure
vulnerabilities in kernel because it has the large code base and attack surfaces.
Thus, an attacker can attack sensitive applications running on OS by exploiting
kernel vulnerabilities. Unfortunately, there are various shortcomings for the
existing applications protection mechanisms, such as ignoring the integrity of
kernel code, relying on special compiler and et al. In this paper, we have
proposed a security-sensitive application (SSApp) protection mechanism called
TZ-SSAP on TrustZone enabled platforms. TZ-SSAP introduces four protection
modules altogether to provide a safe executable environment for SSApp during
the system is running. The first one is the SSApp protection module which takes
advantage of the existing page table mechanism to protect the integrity of code
executed by SSApp as well as the confidentiality and integrity of SSApp’s data.
The second is the security arrangement which prevents an attacker from com-
promising SSApp protection module by depriving the kernel authority of the
ROS (Rich OS). The third is the page table update verification module in TOS
(Trusted OS) which traps the update of page table in ROS and handles with it
based on the predefined security policies. The last one is the security policies
module which prevents an attacker from tampering the code and data of SSApp.
At the same time, it keeps the memory of SSApp from an attacker to guarantee
the confidentiality of critical data. We have evaluated our prototype on a sim-
ulation environment by using ARM FastModel and presented our implemen-
tation on a real development by using ARM CoreTile Express A9x4. Our
security analysis and experimental results show that TZ-SSAP can ensure the
SSApp execute as expected even if the kernel is compromised.

Keywords: Security-sensitive application � TZ-SSAP � TrustZone

1 Introduction

As is known to all, applications are managed by OS (operating system), which always
use large monolithic kernels that have complete access to and control over all system
resources, including memory management, process scheduling and communication,
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device management, file management and so on [1]. A large amount of security defense
systems are implemented based on the view that the OS is the trusted root.

However, there is no denying that there are many secure vulnerabilities [2–4] due to
the large attack surfaces existed in the current OS kernel. This leads to the result that
the application running on the OS is no longer safe since an attacker can exploit kernel
vulnerabilities to escalate privilege or execute a rootshell. For example, attacker can
tamper the kernel code or insert some malicious code through the data segment via
PTMA [5] attack which can modify the attribute of physical pages by modifying the
content in page table entry. Once the kernel is compromised, attacker can control the
kernel to compromise applications. For example, it can manipulate the return value of
system services to attack applications, which is named Iago attack [6]. Furthermore,
attackers can freely acquire all the sensitive information belonging to security-sensitive
applications by accessing main memory or intercepting the control or data flow of the
applications, which can be achieved by the address mapping manipulation attacks [7],
such as mapping overlap attack, double mapping attack, mapping reorder and mapping
release attack. Even worse, the kernel has become an equally attractive attacked target
in the recent years. It is in urgent need of protection mechanism to make
security-sensitive application remain safe even if the OS is compromised.

Previous research about application protection mechanism widely relies on
hypervisor [14, 15, 17, 18]. Most of them use extended page table to provide an
isolated environment for sensitive applications. When the application interacts with the
OS, hypervisor has to verify the legitimacy of the operation. However, they ignore the
integrity of kernel code. Despite the fact that Virtual Ghost [19] interposes a thin
hardware abstraction layer to intercept instruction of kernel which can prevent unau-
thorized code from executing, it still have drawbacks. For example, it depends on new
instruction set and compiler and all operating system software has to be compiled
again.

In this paper, we have proposed a secure framework named TZ-SSAP based on
hardware-assisted environment provided by TrustZone technology. It provides a strong
protection mechanism for security-sensitive applications (SSApps). Unlike previous
protection mechanisms which need to establish an external page table to protect sen-
sitive applications, our prototype does not modify the existing page table and our
design is suitable to the current commercial OSes. TZ-SSAP traps all updates of the
page table in the ROS (Rich OS). The result is that the ROS has no right to tamper the
page table limited to its write protection mechanism. And each update of page table all
follow those rules: Firstly, physical pages of code and static data in kernel space is
mapped read only; and the rest of data pages is mapped non-executable forever.
Second, the physical pages belonging to SSApp’s user space will never be mapped to
the normal applications, vice versa. In the end, kernel stack of SSApps will be mapped
read only when their state switches from running to other during process scheduling.

To summarize, we make the following contributions:

• We enforce our security policies based on the existing page table mechanism in the
current OSes without extending page table, which has little modification to the ROS.
Therefore, our prototype is suitable to the existing commercial OSes.
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• We secure the execution environment for SSApps. Our design framework ensure the
integrity of all the code and the kernel static data used by SSApp. In other words, the
SSApp will always remain safe even if the ROS is compromised or even crashed.
Furthermore, TZ-SSAP can guarantee the confidentiality of SSApp’s data because it
prevents malicious process from accessing the memory of SSApp.

• TZ-SSAP does not need to encrypt and hash any application pages which is accessed
when the ROS is running. And it also does not need to validate the legitimacy of the
parameter when it interacts with the ROS.

• TZ-SSAP is safer than previous work which relies on hypervisor. It has been
implemented in the hardware-assisted isolated environment, so it is enough safe to
defense these attacks from the malicious ROS.

In the next section, we introduce something about application and our experiment
platform. Section 3 gives our threat model and some assumptions of TZ-SSAP. Then
Sect. 4 describes the TZ-SSAP design while Sect. 5 presents its implementation mode.
Section 6 discusses the security and performance of TZ-SSAP. Finally, we also describe
the related works at present in Sect. 7 and give a conclusion in Sect. 8.

2 Background

2.1 Application Analysis

There is no doubt that applications are made up of codes and data, which is illustrated
in Fig. 1. The first one states the implementation of the functionality it absolutely needs
while the last one is the carrier of sensitive information and the direction of control
flow. Therefore, it can ensure the security of applications if we can guarantee the safe
of its codes and data.

Each application’s code consists of three parts: basic code written by developer, the
standard library code and the kernel code when it is in kernel mode. It is clear that the
basic code is private and the kernel code must be shared with other applications. As for
standard library code, it will be shared with other applications when compiled
dynamically, and will be private like basic code while compiled statically.

Protection MechanismSecurity-sensitive Application

Code
implementation of the functionality

Data
carrier of sensitive information and 
the direction of control flow

Integrity

Integrity and Confidentiality

Fig. 1. Application architecture
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For application’s data, it consists of two parts: the kernel data and the user data. The
kernel data contains the dynamic data in application’s kernel stack and the static data.
Meanwhile, the static data is initialized when the OS starts and shared with other
applications, such as the system call table and the exception vectors table. Despite the
fact that each process has unique kernel stack to store dynamic data produced by
application during the run time, the data in kernel stack still can be accessed by other
processes because all processes share the same kernel page tables. Moreover, the user
data belonging to application is private as the basic code of application since they are
stored in the user space which is separated from other applications normally by OS.

2.2 ARM TrustZone

ARM TrustZone [10, 11] technology is a set of security extensions first added to
ARMv6 processors. Its architecture is illustrated in Fig. 2. Based on hardware logic
present in AMBA bus fabric, peripherals and processors, it partitions the computing
platform into two execution domains: SW (the Secure World) and NW (the Normal
World) and partitions system resources into two parts: the non-secure resources and the
secure resources. The OS running in NW is named ROS while TOS is running in SW.
ROS can only access non-secure resources whereas TOS can see all resources. TZ-SSAP
uses this feature to manage the page table mechanism in ROS.

To control the context switch between the two worlds, a special processor mode,
known as the monitor mode, is added by TrustZone. The monitor mode resides in SW,
and maintains the processor state during the world switch. To trigger the entry to
monitor mode, ROS or TOS can execute a Secure Monitor Call (SMC) instruction.
Therefore, TZ-SSAP can switch between ROS and TOS through SMC instruction.
Monitor can acquire the current context of the domain through the Non-secure (NS) bit
from the Secure Configuration Register (SCR). That’s to say, monitor can access NW if

the Normal World the Secure World

Rich OS

Secure-
Sensitive

Apps

Trusted OS

General
Apps

Secure 
Services

ARM processor with TrustZone security extensions

Monitor

Non-secure Resources Secure Resources

Fig. 2. TrustZone architecture
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the NS bit is set. TZ-SSAP takes advantage of this to save the coprocessor CP15 of NW
when it acquires the context of data abort exception.

Our software is the OV [13], which is the first open source and free implementation
for ARM TrustZone. When the system is power on, it starts from BootROM security.
Once the TOS is running, it will establish security perimeter and perform key opera-
tions such as decrypting NW OS images. And before activating NW bootloader, keys,
media and other assets are fully protected.

3 Threat Model and Assumption

We briefly describe our threat model and assumption in this section. Our goal is to
protect SSApps by guaranteeing the integrity of SSApps’ code and data as well as the
confidentiality of SSApps’ data. We assume the SSApp has strong sense to protect its
derived data using encryption techniques, for example, it can encrypt the file contents
before writing to disk, and use existing secure I/O path schemes like [8, 9] to protect
I/O data which used by peripheral devices, such as the fingerprint reader and keyboard.
Thus, attacks against the SSApp itself are not in our consideration. We assume that
SSApp’s base code is bug-free, thus to say, it will be carefully designed and tested in
order to achieve high confidence in its own security.

Besides, we also assume that SSApp is static-compiled. In other words, SSApp will
not share the standard library code with other processes, which can avoid malicious
applications attacking it by tampering the standard library code. And the LKM
(Loadable Kernel Module) is outside the scope of the current work.

We assume that the hardware implements the TrustZone extensions, and can be
trusted with no Trojan-Horse circuits and no bus traffic interception and so on. Both
ROS and TOS have been loaded securely which is guaranteed by the trusted boot. The
worst thing of all is that it cannot guarantee the security of ROS during its run time
since the kernel in ROS is vulnerable because of those discovered vulnerabilities, such
as [5–7]. The attacker may use existing attack methods to damage SSApp, such as
PTMA attack, Iago attack and address mapping manipulation attacks.

Moreover, the security-sensitive feature varies with the user. In this paper, we
assume that the user has established a whitelist about SSApps that should be protected
by TZ-SSAP. To prevent attacker modifying the whitelist, the user uses the TOS to
encrypt and hash it in a relatively safe environment. And TOS will decrypt the whitelist
and check the hash whenever it starts.

4 TZ-SSAP Design

TZ-SSAP is implemented on TrustZone which provides a hardware-assisted isolation
environment. According to application analysis in background, we can know that
SSApp consists of code and data. In the following, we put forward the SSApp protection
module in accordance with the characteristics of SSApp’s code and data. Then we
present the security arrangement including page table update and process schedule in
ROS. Afterwards, we propose how TZ-SSAP traps all updates of the page table and the
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security policies mechanism that TZ-SSAP uses them to verify the operation of the
kernel in ROS. TZ-SSAP prototype as illustrated in Fig. 3.

4.1 SSApp Protection Module

Code Protection. SSApp is static-compiled according to assumption. Thus, it only
contain the private code and the kernel code. The private code will not be changed
since it has become an executable file through compiling and linking. However, it is
different for the kernel code. In Linux, administrator may load LKM due to some
special requirements. In that case, additional code will be injected into the kernel at run
time. For convenience, we do not take LKM into consideration. Therefore, the kernel
code will remain unchanged during the system operation as well as the private code.

In order to protect integrity of the code executed by SSApp, TZ-SSAP maps all
physical pages of code to read-only. Meanwhile, it must make sure that there won’t be
any writable map of them to prevent attacker tampering them. Those can be achieved
through the page table management mechanism, which defines the virtual to physical
address mapping and the access permissions of virtual memory in ROS. That’s to say,
TZ-SSAP modifies the access permissions of those physical pages so that they are
write-protected and traps all updates of page table to avoid writable mapping of them.

Data Protection. According to application analysis, the user data is private in the
whole operation period. Therefore, the integrity and confidentiality of the user data can
be guaranteed as long as TZ-SSAP prevents malicious process from accessing them. We
know that the memory can be accessed by OS only if it is mapped to the virtual address
space. Therefore, TZ-SSAP can keep the SSApp’s user data from attacker by preventing
double mapping the memory holding SSApp’s user data to general applications.

TZ-SSAP takes different measures to protect the integrity and security of SSApp’s
kernel data. For static data, TZ-SSAP protects it by mapping its physical pages to
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ROS
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General
Apps

MonitorPage Table Protection
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SSApp Protection Module
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Fig. 3. TZ-SSAP system architecture
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read-only as the kernel code. And for dynamic data in kernel stack, it cannot be
write-protected since it may be changed when SSApp’s process is running. Similarly, it
cannot prevent other process accessing them because they share the same kernel page
tables. For those reasons, TZ-SSAP makes the SSApp’s kernel stack to be
write-protected when the process’s state switches from running to other during process
scheduling. As a result, other process cannot tamper it via kernel page table, which can
ensure the integrity of SSApp’s control flow in kernel mode.

4.2 Security Arrangement

Page Table Protection. As mentioned above, both code protection and data protection
of SSApp are based on the page table management mechanism which is managed by the
kernel in OS. When a new process is created, kernel establishes a new set of page tables
for it. And after that, the kernel always keep updating it whenever process wants to
change its map, such as applying for new physical pages, releasing old physical pages
or modifying the attribute in page table entry. Unfortunately, because of the kernel
ability to manage page table management, attacker can make SSApp protection module
be out of control by attacking kernel through privilege escalation or PTMA attack.

To guarantee the security of SSApp protection module, we have to protect the page
table management mechanism. Moreover, page tables are also in the form of physical
pages in kernel. The updates of page table are normal memory writes which can be
controlled by memory access permissions like code protection. And as described in
background, TOS is capable of accessing the non-secure physical memory in NW. As a
result, we replace kernel with TZ-SSAP to control the update of page tables. This can be
achieved by modifying the access permissions of page tables to be read only in ROS.
Besides, a great part of TZ-SSAP is realized in SW. Details are as follows.

In order to deprive the kernel’s ability to update page tables, TZ-SSAP makes page
tables of every process read-only once the process is scheduled into the ROS at the first
time. Then TZ-SSAP intercepts the update of page tables through data abort whenever
the kernel attempts to modify them. At that point, TZ-SSAP acquires the intention of
kernel by decoding the instruction that generates the data abort exception in ROS.
Furthermore, TZ-SSAP verifies the legitimacy of the instruction on the basis of the
security policies. If it goes against any point of them, it will be rejected. On the
opposite, TZ-SSAP will write the value to the corresponding address in SW.

Process Schedule. Trapping the update of page tables is critical to TZ-SSAP. Since
TZ-SSAP completely makes page tables write-protected, the attacker can bypass TZ-
SSAP through one possible method which is forging the whole page tables of process.
In other words, attacker can forge a whole page table via rootkit and then set the base
physical address of it to TTBR0 (translation table base register 0) which stores the base
address of page table in ARM Linux. On this occasion, TZ-SSAP will lose the ability to
trap the update of fake page table since it not be write-protected by TZ-SSAP. As a
result, attacker can steal the sensitive information and tamper the critical data structure
or code of SSApp by double mapping SSApp’s physical page into fake page table.
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To prevent these attack, TZ-SSAP must make sure that the value in TTBR0 keep the
same with which transferred to TZ-SSAP at the first time. TZ-SSAP enforces this policy
by depriving the kernel from its own ability to set the value of TTBR0 during the
process scheduling. Once the kernel tries to schedule process, it must request TZ-SSAP
for changing the value in TTBR0. In that case, TZ-SSAP can use this opportunity to
verify the legitimacy of kernel operation in ROS.

4.3 Page Table Update Verification

TZ-SSAP gets the ability to update all page table of process running in the ROS since
the physical pages of page table are write-protected. In order to verify the legitimacy of
kernel operation, TZ-SSAP must get the content of the instruction that caused the fault.
Then, TZ-SSAP decodes this instruction and retrieve it on the basis of the data abort
exception context. Finally, TZ-SSAP takes action based on the result whether it goes
against security policies mechanism. Security policies mechanism is described in
Sect. 4.4 and implementation is described in Sect. 5.

4.4 Security Policies Mechanism

TZ-SSAP enforces the following policies for protecting the SSApp whenever the kernel
attempts to update page table or schedule process.

• Write-protection. The access permissions of all process’s page tables play an
important role in TZ-SSAP. Not only physical pages of code and static data in kernel
mode should be write-protected, but also all page tables should be non-writable in
ROS at run time. Any writable maps of write-protected pages or operations
changing the read only attribute of kernel space into writable should be prohibited.

• Double-mapping. It’s important to make sure that any physical page of SSApp does
not exist double-mapping to general applications. When the SSApp tries to map a
new physical page to its address space, TZ-SSAP must guarantee that it does not
exist virtual to physical mapping. In this way, we can easily keep security-sensitive
data from attacker, which ensures the integrity and confidentiality of those data.

• Executable attribute. In order to prevent attacker from inserting some malicious
code through its data area and then making it executable by attacks such as PTMA,
operations that change those non-executable attribute to executable should be
prohibited.

• Inherited attribute. It’s clear that child process which is created by parent process
belonging to SSApp is also security-sensitive, and the same with normal process.
Any protection mechanism for parent process is still suitable for its child process.

• Share property. All SSApps can share protected physical pages with each other.
However, it should be rejected between SSApps and general applications since it
may damage protection mechanism.

• Zero clearing. Whenever SSApp requests physical page frames from the ROS, it’s
necessary to verify that all virtual to physical mappings for this frames have been
removed. Afterwards, it cannot be neglected to clear the frame’s contents since
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malicious applications may have injected some threat thing. Moreover, TZ-SSAP
also zero out the physical frame’s contents when it’s no longer needed by SSApps.

5 Implementation

We have implemented TZ-SSAP on the ARM platform which supports TrustZone
hardware extensions. In order to facilitate debugging, we used Fastmodel to emulate
ARM Cotex-A15 in the beginning. Finally, we presented TZ-SSAP on a
TrustZone-enabled development board ARM CoreTile Express A9x4 [12]. Our soft-
ware experimental environment is Open Virtualization [13], which is the first open
source and free implementation for ARM TrustZone.

5.1 Foundation Work of TZ-SSAP

Splitting Section Mapping. According to Sect. 4, we learn that TZ-SSAP’s design
idea is mainly concentrated on write-protection method to deprive the kernel from its
ability to update the page tables. Only under such circumstance can TZ-SSAP prevent
malicious process from accessing the private physical pages of SSApp and tampering
the share content in kernel space via damaging the page table mechanism. Unfortu-
nately, the kernel space is mapped in section, which just use the first-level table and
each entry of it consists of 1 MB blocks of memory in ARM-Linux OS. However, the
user space is converted to small page mapping through the second-level table. In other
words, the first-level descriptors contains the pointers to a second-level table for a small
page, which consists of 4 KB blocks of memory, instead of the base address and
translation properties for a section. Meanwhile, the page tables allocated by kernel are
page-aligned small page, and the physical page of page tables must be mapped in
kernel space to prevent unauthorized tampering with the user. Therefore, if TZ-SSAP
makes the memory area where the page table information is stored read only through
translation properties in first-level table, the 1 MB blocks of memory mapped by the
entry will all become read-only. The trouble is that we cannot make sure the content
stored in the 1 MB blocks of memory are page table information since all small pages
are allocated dynamically. It may cause the system to crash if there are some dynamic
data.

That problems described above can be solved by either one of two ways. First, we
can aggregate the small page belonging to page tables of all process so that they are in a
1 MB blocks of memory. Only in this way can we make the 1 MB blocks of memory
read-only through first-level descriptors. Second, we can change the section map into
small page map in kernel space by modifying the kernel initialization code. In order to
facilitate subsequent operation, TZ-SSAP directly change the map mode into small page
and map the kernel code and static data to read only at the same time.

TZ-SSAP Interaction Between the ROS and TOS. In our implementation, TZ-SSAP
uses SMC instruction to switch between ROS and TOS and passes parameters through
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general-purpose register. Specific implementation details are as follows. When
switching from the ROS to TOS, TZ-SSAP uses ARM core register R0 to transfer the
variable corresponding to the SMC handler while register R1 transfers the parameters
that required by SMC handler. Examples as below.

The content CALL_TRUSTZONE_FAULT in register R0 indicates that TOS will
invoke the function corresponding to CALL_TRUSTZONE_FAULT after monitor mode
switch to SW. The content param in register R1 indicates the parameters that SMC
handler in TZ-SSAP requires. When the number of parameters is greater than one, we
can transfer the parameters via memory since TOS is able to access all physical
memory including the source in NW. In other words, TZ-SSAP in ROS declares a
parameter structure, and uses register R1 to transfer the physical base address of this
structure. TZ-SSAP in TOS can acquire those parameters through mapping these
physical address to its virtual address space.

The same goes with TOS switch to ROS when TZ-SSAP completed SMC handler.

Getting the Context of Data Abort Exception. It will generate a data abort exception
whenever the kernel of ROS tries to update the page tables since they are read only.
Next, the kernel saves the context of data abort exception and jumps to exception
handler which has been set in the exception vector table. As a result, it will execute
SMC instruction which has been added in the __do_kernel_fault() by TZ-SSAP
to enter to monitor mode. Then the monitor saves the context of the ROS and restores
the context of the TOS. Finally, TZ-SSAP invokes the SMC handler related to the
parameters transferred by the ROS.

The context of the ROS does not contain the coprocessor CP15 because most of the
CP15 register are banked in NW and SW. It’s necessary for TZ-SSAP to access the
coprocessor CP15 of NW. On one hand, TZ-SSAP has to get the value in TTBR0 of NW
to traverse the page table in ROS. On the other hand, TZ-SSAP has to set the value in
TTBR0 of NW due to it removes the ability to set TTBR0 from kernel in ROS to prevent
attacker from forging page tables. This can be achieved in monitor mode because
monitor can access the coprocessor CP15 of NW when the NS bit in SCR is set.
Pseudocode is as follows.

The procedures above proves that TZ-SSAP gets the context of ROS is the context
of SMC exception instead of the context of the data abort exception. Therefore, we
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must transfer them to the TOS in the form of parameter relating to SMC exception in
order to get the specific content of the instruction which generated the data abort.

In ARMv7, OS will invoke __dabt_svc assemble function when it generates
data abort in kernel mode. Moreover, the __dabt_svc calls the svc_entry
assemble function to save the context of data abort exception in stack in the form of
global structure pt_regs in kernel firstly. As a result, TZ-SSAP introduces a global
variable svc_dabt_sp to store the base address of the context in stack. TZ-SSAP in
TOS can acquire the context of data abort exception in ROS by mapping
svc_dabt_sp into its virtual address space. In order to get the instruction that has
generated the data abort exception, TZ-SSAP must get the address of the instruction.
Besides, the register LR is a special register which holds return link information.
However, in ARMv7 architecture, the LR register is banked in supervisor mode and
abort mode, which of them are named lr_svc and lr_abt. Despite the fact that the
monitor has saved both lr_svc and lr_abt, the value in lr_abt is no longer the
address to be restored since it has been used as a general register in abort mode after
kernel saved it in abort stack. To solve this problem, TZ-SSAP in ROS changes the
CPSR (the current program status register) mode field into abort mode through CPS
(change processor state) instruction and then recovers lr_abt from the stack in
__do_kernel_fault(). After doing it, TZ-SSAP changes the ROS mode into
supervisor and executes SMC instruction to enter monitor mode.

5.2 Security Policies Implementation

It’s obvious that our main work is to ensure page tables all write-protected and secure
update at the same time. In our implementation, we built an array named ns_phy to
store the information of physical pages in ROS, which is similar to physmap in
TZ-RKP [21]. Each entry of ns_phy corresponds to a 4 KB physical page of ROS.
The value of the entry is a 32 bits integrity that indicates the state of this physical page.
Besides, ns_phy is initialized to zero by TZ-SSAP at beginning.

TZ-SSAP divides the physical pages into four types by using a flag which is the bits
[1:0] in the value. The value format as illustrated in Fig. 4.

– 0b00: Unmapped. The physical page is unmapped. The extended value is invalid.
– 0b01: Normal. The physical page is mapped by general applications and the

extended value represents how many virtual page mappings the physical page has.

FlagExtended value

31 2 1 0

Value

Fig. 4. Value format
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– 0b10: Protected. The physical page is mapped by SSApps or used by the code or
static data of kernel. The extended value is the same with 0b01.

– 0b11: Page table. The physical page is mapped as the page table of each process. In
this case, the front 20 bits of extended value marks the base address of its first-level
page table.

Process Schedule. To prevent attacker from forging the whole page table, TZ-SSAP
must guarantee that the value wrote to TTBR0 is authorized during process schedule in
ROS. And when the security-sensitive process is scheduled to go out, in other words, its
state is switched from running to other, TZ-SSAP must map the kernel stack of SSApp
read only to avoid being tampered by malicious process.

In TOS, TZ-SSAP establishes a read-black tree structure process_info to store
critical information of running process in ROS.

Variable process_task represents the base address of the data structure
task_struct in ROS, which is the process descriptor in Linux system. Variable
process_ttbr0 represents the base address of the process’s first-level page table in
ROS. There are four small pages as the first-level page table for each process owing to
the size of each process virtual address space is four Gigabytes. What counts is the four
physical pages of first-level page tables are continuous. It’s capable of TZ-SSAP in TOS
to get the physical address of the process’s first-level page tables in ROS according to
the base address and size of each page. As pages are aligned, TZ-SSAP uses the last bit
of process_ttbr0 as flag to indicate whether the process is security-sensitive.
Variable process_thread represents the virtual base address of the process’s
thread_union, which contains the process’s kernel stack in ROS.

In ROS, the kernel will invoke switch_mm() function to complete the switch of
process’s address space by writing the physical base address of the first-level page
table, belonging to the process to be executed, into TTBR0. The MMU (memory
management unit) will convert the virtual address to physical address according to the
value in TTBR0. To prevent attacker from forging the page table, TZ-SSAP inserts SMC
instruction during the process is scheduled in ROS. Namely, TZ-SSAP updates TTBR0
of NW instead of the kernel in ROS. When kernel invokes switch_mm() function, it
will execute the SMC instruction and then the processor will switch to SW.

TZ-SSAP: Security-Sensitive Application Protection 549



Algorithm 1 is the SMC handler in TZ-SSAP when the process is scheduled by
kernel in ROS. The process_task_pre is represented the process whose state will
be non-running while the process_task_n will be scheduled to run in ROS.

Page Table Update. In ARM Linux, a data abort exception will be generated if the OS
tries to access memory that it has no right to access it. As a result, the kernel will
generate a data abort exception when it attempts to update page tables which is
write-protected. To solve this exception, the kernel in ROS will call the corresponding
exception handling function named do_page_fault(). The last function to be
executed is __do_kernel_fault() because the virtual address that caused the
data abort exception are in kernel space. In order to update the page table, TZ-SSAP
inserts SMC instruction in the __do_kernel_fault() function of ROS. When the
processor switches to TZ-SSAP through SMC instruction, it will invoke the SMC
handler.
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Algorithm 2 is the SMC handler in TZ-SSAP when kernel tries to update page table
in ROS. The phy_base_addr is the base physical address of pt_regs which stores
the context of data abort exception in ROS. When kernel tries to unmap a physical
page, TZ-SSAP must change the value in ns_phy array to maintain consistency.

5.3 Performance Enhancement

One method that can improve performance is locality principle. During the process
running, it may generate data abort exception successional because of page fault
interrupt. Under this circumstances, it will always update page table entry located in
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one physical page. So TZ-SSAP can apply a variable fault_addr_latest to
record the latest address which generated the data abort exception and mark its attribute
to indicate the address belongs to the second-level page table in ROS or not. When the
data abort exception is generated again next time, TZ-SSAP will compare the
fault_addr_latest with the content in DFAR (the Data Fault Address Register).
It will reduce some operations to get the content in ns_phy array if the
fault_addr_latest and the value in DFAR are in the same physical page.

6 Evaluation

TZ-SSAP provides a safe execution environment for SSApp to ensure it executes as
expected even if the kernel is compromised. It achieves that by protecting the integrity
of SSApp’s control flow and data flow. During runtime, TZ-SSAP keeps the SSApp’s
memory from attacker through inserting SMC instruction and depriving the kernel of
ROS from its own ability to set TTBR0 and update page table in NW. In that case, TZ-
SSAP can enforce our security policies mechanism whenever it traps SMC exception
from the kernel. As a result, TZ-SSAP can prevent the attacker from tampering the code
executed by SSApp and stealing critical information of SSApp.

TZ-SSAP can keep SSApp from the PTMA attack because the update of page tables
must obey the security policies. For example, when the attacker attempts to change the
read only attribute into writable in page table entry via PTMA attack, TZ-SSAP will
intercept and verify it on the basis of security policies. It’s clear that it will be rejected
due to write protection in security policies, and the same with executable attribute in
page table entry. As a result, TZ-SSAP can prevent attacker from tampering kernel code
directly because of write protection. Besides, TZ-SSAP also prevent attacker from
executing unauthorized code which is inserted into kernel space through malicious
process’s data segment since it is non-executable.

TZ-SSAP can defense the Iago attack. There is no doubt that TZ-SSAP can prevent
attacker from modifying the kernel code and the static data in kernel as well as the data
in kernel stack of the SSApps. If the attacker tries to tamper those, it will generate a data
abort exception. According to our implementation, TZ-SSAP will handle with this
exception. At the beginning of the SMC hander in TZ-SSAP, it will verify whether the
address generated the data abort exception belongs to the address range of current
process’s page table in ROS. TZ-SSAP will refuse to modify the content in the fault
address if the operation is unauthorized.

What’s more, TZ-SSAP can keep SSApp from the address mapping manipulation
attacks. When SSApp requests physical page frames from ROS, TZ-SSAP will verify
that there is not any virtual to physical mapping for this physical pages and zero out the
content of this physical page. In additional, when general applications attempt to map
new physical page, TZ-SSAP guarantees that the new physical page has not been
mapped by SSApp or used as page table. Moreover, TZ-SSAP zeroes the physical
page’s content when changes its attribute as non-protected page.

To evaluate the security of TZ-SSAP, we built a malicious LKM that attempts to
attack the TEST application which is designed as SSApp in our platform. The LKM
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tries to directly tamper the code and static data in kernel space, such as sys_-
call_table. Also, LKM takes advantage of its privilege to write a fake value into
TTBR0. Moreover, it also tries to double map the protected physical page into its virtual
space. Firstly, we can get the base address of physical page in TEST through traversing
its page table. Then, we change the source code of LKM to map the physical page to its
virtual address. Our experimental results show that TZ-SSAP can prevent those attacks
effectively.

And for performance evaluation, we define the consuming time in ROS from
invoking the SMC instruction to backing from SW. Details as Table 1.

According to Table 1, traversing page tables costs the most time. But it only take
6.7% for SSApps whose executed time is only one minute. This percentage will be
smaller and smaller as the executed time increases. Therefore, TZ-SSAP will not cause
too much time loss for SSApps.

7 Related Work

In recent years, there are several systems attempt to protect security-sensitive appli-
cation code and data. We divide them into two classes in term of the way used to
protect applications. One is the whole application protection which regards all the
application code and data as a whole. The other is the split application protection
achieved by protecting the critical part of the application instead of the whole.

7.1 Whole Application Protection

InkTag [14] is a virtualization-based architecture that uses a trusted hypervisor to
isolate the HAP (high-assurance process) from OS which is achieved by the EPT
(extended page tables). InkTag uses two separate EPT: the trusted EPT is installed for
HAP execution while the untrusted EPT is used for OS and other applications. HAP
updates the trusted EPT through hypercall. InkTag can defend again Iago attacks
because of its paraverification to ease verifying of OS. Also it protects the confiden-
tiality of secure page via encryption technology and detects corruption of the secure
page through digital signing. However, it cannot keep the encrypted pages from
reading and modifying by OS as well as Overshadow [15, 16] system which also need
complex encryption and decryption technologies to protect the whole application
execution. In addition, Overshadow cannot prevent the address mapping manipulation
attacks.

Table 1. Consuming time

Operations Switching
time

Traversing page
tables

Update page
table

Find page table
entry

Consuming
time

8us 257ms 345us 754us
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Sego [17] is similar with InkTag for the EPT. But it is faster than InkTag since it
does not need encryption technology. All secure data stays in plain text which is
protected by hardware memory protection to ensure OS cannot access them. AppShield
[7] is a hypervisor-based approach that reliably safeguards code, data and execution
integrity of a critical application. It consists of two parts: a transit module in kernel
space mediating control flow between the CAP (critical application) and OS, and a
trusted shim in user space assisting the data flows between CAP and shared buffer. It
can defense the address mapping manipulation attacks since the hypervisor and shim
code jointly to protect the address space of CAP when OS updates the page tables.
What is worse is that both of them cannot guarantee the integrity of kernel code.

7.2 Split Application Protection

SeCage [18] retrofits commodity hardware virtualization extensions to support efficient
isolation of sensitive code manipulating critical secrets from the remaining code. It
decomposes the applications into two parts. One is the secret compartment which
contains a set of secrets defined by user as well as its corresponding code. Another is
the main compartment that deals with the rest of the application logic. Firstly, it uses an
analysis framework CI to discover potential functions related to secrets statically. And
then it combines the mprotect and debug exception together to dynamic analysis
with different workloads. Once the analysis result comes to a fixed point, SeCage
decomposes the application to secret and main compartments on the basis of them. It
also use the extended page tables to guarantee two compartments isolation. Despite the
fact that SeCage can keep applications from many attacks, such as PTMA attack and
the address mapping manipulation attacks, there are still some weaknesses. The closure
related to secrets may be not complete since designers cannot be exhaustive of all
possible input about applications. Besides, it also cannot guarantee the effectiveness of
non-secret data accessed by secret functions due to no protection against them.

Virtual Ghost [19] is different with the above systems. It protects secret data and
code with the ghost memory instead of EPT. The ghost memory is achieved by adding
a compiler-based virtual machine (VM) between OS and hardware. All system software
is compiled to the virtual instruction set based on the LLVM compiler intermediate
representation [20]. Therefore, Virtual Ghost can prevent OS accessing the ghost
memory since those virtual instruction set are implemented by VM and need to be
validity verification, which can defense the address mapping manipulation attacks and
prevent repurposing existing instruction sequences because of its control flow integrity
enforcement. However, it depends on the virtual instruction set and compiler which are
not always practical for current infrastructures.

8 Conclusion

In this paper, we have presents TZ-SSAP, which provides a safe execution environment
for security-sensitive applications in the face of the OS may be compromised because
of the kernel vulnerability. TZ-SSAP is implemented based on the hardware-assisted
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isolated environment TrustZone. The general OS is installed in NW while TZ-SSAP is
mainly located in SW. TZ-SSAP takes advantage of the page table mechanism instead of
the extended page tables. TZ-SSAP makes SSApp perform as expected since it can
guarantee the integrity of both the code and its control flow during run time. In
addition, it also guarantee the confidentiality of SSApps’ data through preventing
attacker from double mapping the SSApp’s physical page, which leads to keep the
security-sensitive information of SSApps from attacker.

In future work, we can add safeguard to protect the code of standard library and
LKM in TZ-SSAP. For example, we can verify the integrity of the library file or LKM
module before it is loaded into memory, and make them write-protected once they are
authorized and loaded into physical page.
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Abstract. SQLite database is an important source of evidence in foren-
sic investigations. Write-Ahead Logging (WAL) was introduced to ensure
data integrity and improve performance in SQLite databases. However,
few attentions have been paid to utilizing it for forensic purposes, par-
ticularly in deleted record recovery. Without using WAL, prior recov-
ery methods have been ineffective. This paper addresses techniques for
SQLite forensic analysis based on WAL. Specifically, based on the storage
mechanisms of SQLite and the structure of the WAL, both the original
SQLite database and WAL are first constructed by extracting and ana-
lyzing all valid pages. SQLite history versions are then produced by using
two reconstructed files above. Deleted records can then be recovered and
tampered behaviors can be detected by comparing different versions of
the reconstructed history file. Experimental results show that the pro-
posed method can reconstruct history versions, recover deleted records
and detect tampered behaviors effectively.

Keywords: Digital forensics · SQLite · Reconstruction · History
versions · Recovery · Tamper detect

1 Introduction

SQLite is an open source, embedded relational database. Originally released in
2000, it was designed to provide a convenient means for applications to manage
data. In addition to it’s widely used in embedded devices, various communication
applications and mobile Apps use SQLite (e.g., SMS, Contacts, Call History,
E-mail Client, and third-party apps). It is estimated that several millions devices
currently use this standard [1].

It is not surprising that the data stored in the SQLite database has grown
from simple contacts lists ten years ago to several gigabytes of potentially sensi-
tive and personally identifiable information (PII) today. Thus, forensic analysis
of SQLite database has become essential and critical to investigating authori-
ties, where recovery of deleted records is the most common task. Specifically, it
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is very common to extract deleted records from the unallocated space (e.g., free
space and free block) of database files during an investigation.

Flash memory capacity has increased considerably. To improve the perfor-
mance of the SQLite database, a new WAL (Write-ahead Log) option is used
in place of a rollback journal when SQLite is operating in WAL mode. This
was made available in version 3.7.0 and later [2–5]. While some operations (e.g.,
insert, delete, update, etc.) are performed, original content is retained in the
database file. The changes append to a separate WAL. Before a commit condi-
tion (i.e., checkpoint [3–5]) occurs, all operations are not committed immediately
and the changes are not made to the actual data in the database. Therefore, it is
difficult to recover recently deleted records from the database file until a check-
point is made.

Our current work gives a detailed illustration of the procedure to reconstruct
SQLite history versions through the original database file and WAL. The pro-
posed method features two main utilities through the analysis of reconstructed
history versions. The first is to restore deleted records, and the second is to
detect tampered behaviors. Both are achieved by comparing different versions
of the history file.

The remainder of this paper is outlined as follows: Sect. 2 introduces the
background information concerning SQLite database and WAL. The methods to
reconstruct SQLite history versions are given in Sect. 3. Section 4 evaluates the
experiment and demonstrates the utility of our proposed method using two case
studies. Sections 5 and 6 discusses some practical issues and related work. The
paper ends with the discussion of the future work and conclusions in Sect. 7.

2 Background

SQLite is a SQL database engine widely used in embedded devices. It is espe-
cially popular in the applications of mobile devices where it is the de facto
database to manage user data. This database utilizes either a rollback journal or
a WAL to ensure the atomic operations. The behavior of the synchronous WAL
and database is called checkpoint, which is automatically executed by SQLite.
This section describes SQLite database features associated WAL and checkpoint
mechanisms.

2.1 SQLite Database

Structure of SQLite. Typically, each SQLite database consists of fixed-size
pages. These can be either table B-tree page, index B-tree page, free page or
overflow page. The page size is defined in the first 100 bytes of the database file.
All pages are of the same size and are comprised of multi-byte fields. The most
significant fields are magic header string(aka file signature), text encoding, para-
meters of Btree structures, and incremental-vacuum settings. These important
fields are stored in big-endian format as shown in Fig. 1.
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Magic header string is used to effectively identify SQLite database files. Every
valid SQLite database file begins with the following 16 bytes (in hex): 53 51 4c
69 74 65 20 66 6f 72 6d 61 74 20 33 00. This byte sequence corresponds to the
UTF-8 string “SQLite format 3\0” including the null terminator character at
the end.

Fig. 1. Main fields of SQLite database file header

For database in auto-vacuum mode or incremental-vacuum mode, there is
another significant page called pointer bitmap page. Pointer bitmap pages are
extra pages inserted into the database to make operations of auto-vacuum and
incremental-vacuum more efficient. The decision to use pointer bitmap page
depends on a non-zero largest root B-tree page value. This is located at byte
offset 52 in the database header.

SQLite Master Table. The SQLite master table (or SQLite temp master
table in the case of a TEMP database) is a system table that contains infor-
mation about all tables, views, indexes, and triggers in the database. It stores
the complete database schema [6]. The structure of the SQLite master table can
be created using the following SQL statement: CREATE TABLE sqlite master
(type TEXT, name TEXT, tbl name TEXT, rootpage INTEGER, sql TEXT),
the value of each filed is described in Table 1.

Table 1. SQLite master fields

No Field Value

1 type Table, index, trigger or view

2 name Table name for a table

3 tbl name Same to second filed (for table or view), or related to table
name (for index or trigger)

4 rootpage 0 (for trigger or view), or rootpage number (for table or index)

5 SQL Creating sentence for specific type of objects

B-tree Structure. SQLite databases are stored in segments, called pages. A
SQLite database is composed of multiple B-trees, with each B-tree occupying a
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minimum of one page. One B-tree is needed for each table and index. These are
referred to as table B-trees and index B-trees. Each table or index in a SQLite
database has a rootpage which defines the location of its first page. The root
pages for all indexes and tables are kept in the SQLite master table [6].

key data key datakey data

Root Page

key data key datakey data

Internal Page

key data key datakey data

Internal Page

key data key datakey data

Internal Page

100 data

101 data

105 data

106 data

Leaf Page

107 data

108 data

115 data

121 data

Leaf Page

122 data

130 data

146 data

147 data

Leaf Page

Fig. 2. Table B-tree structure of SQLite database (Owens, 2010)

A B-tree page is either an internal page or a leaf page. In the case of a table
B-tree as shown in Fig. 2 (Owens, 2010), a leaf page contains keys and each key
has associated data. An internal page contains K keys together with K pointers
to child B-tree pages. A pointer in an internal B-tree page is just the 31-bit
integer page number of the child page. Whereas for index B-tree, its structure
is almost identical with table B-tree. The most obvious difference is that the
internal pages contain not only keys but also index records. Furthermore, an
internal page contains K keys together with K+1 pointers to child B-tree pages.

In an internal B-tree page, pointers and keys logically alternate. All keys
within the same page are unique and are logically organized in ascending order
from left to right. The ordering is logical, not physical. The actual location of
keys within the page is arbitrary. For any key X, pointers to the left of X refer
to B-tree pages on which all keys are less than or equal to X. Pointers to the
right of X refer to pages where all keys are greater than X. Taking Fig. 2 as an
example, the first data in the first internal page have referred to a leaf page, all
keys in this leaf page are less than or equal to 106.

Within an internal B-tree page, each key and pointer to its immediate left
are grouped into a structure called a cell [4]. The cell is the basic element to
organize data within a B-tree page. The right-most pointer is held separately.
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A leaf B-tree page has no pointers. It however, uses the cell structure to hold
keys for index B-trees or both keys and contents for table B-trees. Data is also
contained in the cell.

Cells are placed from bottom to top of the page. Since sizes are unfixed, the
offset of its first byte is also recorded. These offset values are placed from top
to bottom of a page. This bi-growing design makes it easy to add new record
without defragmentation.

2.2 Write-Ahead Log

Beginning in version 3.7.0, SQLite introduced the option of using WAL mode
to implement atomic commit and rollback. In this mode, the original content
is preserved in the database and changes are appended into a separate WAL.
A commit occurs when a special record indicating a commit is appended to
the WAL. Thus a commit can occur without writing to the original database.
This allows readers to work with unaltered original databases while changes are
simultaneously being committed into the WAL. Multiple transactions can be
appended to the end of a single WAL.

16

Fig. 3. WAL file structure

The logical structure of the WAL is provided in Fig. 3. It consists of a file
header and several frames. The number of frames can be ranged from 0 to a
lot, indicated in bold black box. Each frame is divided into a frame header and
frame data. When checkpoint (is) triggered, valid data stored in WAL would be
transformed into the database. WAL can be reused with new frames overwriting
prior frames after checkpoints. WAL always grows from the beginning to the end
of the sequence. The checksum and counter appended to each frame indicate that
whether the frame is effective or not.

WAL has a 32-byte length header which includes eight 32-bit big-endian
unsigned integers as shown in Table 2. Among them, the database page size
corresponds with that of the database. Salt-1 is a random number that increases
by 1 after a checkpoint. Salt-2 is a random number which is replaced by another
random number after a checkpoint.

Frames trail after WAL file headers. Each frame consists of 24-byte frame
header and frame data. Frame headers consist of six 32-bit big-endian unsigned
integers as shown in Table 3. Page Number indicates which page of the database
is recorded here. Salt-1 & 2 may match or differ to the corresponding value in
the file header, and determine whether data in this frame is effective or not.
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Table 2. WAL file header structure

Offset Size Description

0 4 Magic number: 0x377f0682 or 0x377f0683

4 4 Format version: Currently 3110100

8 4 Page size: Default size is 1024 bytes

12 4 Checkpoint number

16 4 Salt-1: Random integer incremented with each checkpoint

20 4 Salt-2: A different random number for each checkpoint

24 4 Checksum-1: First part of a checksum on the first 24 bytes of header

28 4 Checksum-2: Second part of the checksum on the first 24 bytes of
header

Table 3. WAL frame header structure

Offset Size Description

0 4 Page number: Logical page number from database file

4 4 File size: For commit records, the size of the database files in pages
after the commit. For all other records, zero

8 4 Salt-1: Copied from the WAL header

12 4 Salt-2: Copied from the WAL header

16 4 Checksum-1: Cumulative checksum up through and including this
page

20 4 Checksum-2: Second half of the cumulative checksum

2.3 Checkpoint Mechanism

Similar to several mainstream databases (e.g., SQL Server, MySQL, Oracle, etc.),
SQLite supports atomic transaction commit when reading and writing records.
Transactions define boundaries around a group of SQL commands such that they
either all successfully execute together or not at all.

By default, SQLite does a checkpoint automatically when the WAL reaches
a threshold size of one thousand pages or more in size, or when the last database
connection on a database file close. That is to say, the occurrence of a checkpoint
means to transfer all the transactions that are appended in the WAL back into
the original database.

With the use of checkpoints in WAL, all committed atomic transactions are
appended into the WAL and will not be transformed into the database immedi-
ately. The transactions submitted at different times constitute different operation
states. Taking each committed atomic transaction as granularity, several histroy
versions can be achieved from WAL.
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3 Methodology

In this section, a method is proposed to reconstruct SQLite history versions
from Android devices. Figure 4 shows the framework for our reconstruction
approach. The method consists of four main parts: Reconstructing SQLite
database, extracting correspond WAL, combining original SQLite database with
corresponding WAL to recreate SQLite history versions and forensic analysis for
deleted record recovery and tamper detection.

Reconstructe 
SQLite file

Extract 
correspond 
WAL file

SQLite 
history 

versions

Records
recovery

Tamper 
detection

Fig. 4. Framework of reconstruct approach

3.1 Reconstructing SQLite Database

Pre-processing. Pre-Processing is intended to extract the real master table
from phone image. Based on the storage mechanism of SQLite, only the tables
and indexes have actual storage space. Thus, these information are the main
consideration when analyzing SQLite master table. In addition to SQL fields,
other fields are also the focus of our consideration. Prior to this, we define a can-
didate set for the SQLite master table. Considering various Android devices are
designed according to the Goggle’s official source code. There is a slight discrep-
ancy between different mobile phones. We obtained the master table structure
from Android source code as the initial candidate set [7]. For those customized
mobile phones, we need to adjust candidate sets on an individual basis. Using
short message databases as an example, Fig. 5 shows a typical master table
structures.

Fig. 5. Example of master table structure
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Algorithm 1. Extracting and Analyzing Master Pages Algorithm
Input: image file, candidate master table records
Output: result1 = {offset, sql, field type order}
1: /*default page size is 1024bytes*/
2: for block ∈ image file do
3: page[ ] ← block
4: end for
5: if page[0] = 0x0D or page[0 − 15] = magic number then
6: /*recognize B-tree pages*/
7: if data block ∈ table name from candidate master table then
8: while i < total records in each page do
9: extract all fields within pages and store in database

10: i + +
11: end while
12: end if
13: end if
14: offset ← offset + page size
15: for extracted page ∈ image file do
16: extract sql and analysis field type order f1
17: end for
18: return result1

Several steps are necessary to retrieve a true master table. First, a phone’s
image and candidate master table are taken as an input. Second, the image is
then traversed to recognize all pages belonging to a true master table. Third,
pages are analyzed to extract all SQL statements and field types of tables and
indexes. The simplified algorithm is presented in Algorithm 1.

Among them, set result1 contains three fields, which are used to describe
the internal information of a master page. Each field is explained as follows:

(offset , sql, field type order)

where:

– offset is the address of a specific page belonging to a master table;
– sql is the creating sentence for specific types of objects;
– field type order is a string which contains all filed types within a specific page;

Extracting and Analyzing Pages. For a given phone image and a real master
table, we can get all the B-tree pages that belong to the specified database. This
stage of the algorithm is shown in Algorithm 2.

In the extracting phase, the purpose is to acquire pages that match the given
conditions. These conditions are used to determine whether a page belongs to a
specified table. As described in Algorithm 2, two main match conditions are used:
The first is to confirm the basic structure of the database pages (e.g., if we locate
a data page when traversing the image, it must begin with 0x0D. Additionally,
cell sums should not exceed the page size defined in first 100 bytes of the database
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Algorithm 2. Extracting All Pages Algorithm
Input: result1, image file
Output: result2 = {offset, table name, row head, row tail}
1: /*default page size is 1024 bytes*/
2: if page[0] = 0x0D or page[0] = 0x05 or page[0] = 0x0A or page[0] = 0x02 then
3: /* recognize four type of pages*/
4: if the fix offset value conform to page structure then
5: for each page locate one record and acquire field type order f2
6: end if
7: end if
8: if f1 page ∈ f2 then
9: offset, table name, row head, row tail

10: end if
11: offset ← offset + page size
12: return result2

file). The second match condition is to compare field types extracted above with
pages use d for analysis from the image.

Among them, set result2 contains four fields, which are used to describe the
internal information of a page. Each field is explained as follows:

(offset , table name, row head, row tail)

where:

– offset is the address of a specific page within the image file;
– table name is the page belonging to;
– row head is the minimum value of the row id within a specific page;
– row tail is the maximum value of the row id within a specific page;

Due to the fact that the field types only have three values in SQLite database
tables, this causes more pages to be located than previously expected which
hinders analysis. This is addressed in the processing phase by using B-trees.
B-tree assists in maintaining unique keys which are sorted in order for sequential
traversing. Besides, taking into account the allocation mechanism of Ext file
system and the use of WAL, we can make further filter out of extracted pages.
The processing algorithm is presented in pseudo-code shown in Algorithm 3.

Among them, the set result3 contains three fields, which are used to describe
additional information on the page. Each field is described as follows:

(validate list, root page list, offset list)

where:

– offset is the address of pages extracted in Algorithm 2;
– validate list is the list to mark valid pages;
– root page list is the list to mark root page;
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Algorithm 3. Processing Extracted Pages Algorithm
Input: result2, image file
Output: result3 = {offset, validate list, root page list}
1: for table name ∈ result2 do
2: get row head list, row tail list and offset list by table name
3: for row head value ∈ row head list do
4: if value = 1 then
5: result3 ← offset, validate = 1
6: id ← the first id when value = 1
7: end if
8: end for
9: end for

10: for row head value ∈ row head list do
11: i = 0
12: if i < id then
13: result3 ← offset, validate = 0
14: end if
15: if i > id then
16: if value = 1 then
17: break
18: else
19: compare two adjacent row head values
20: end if
21: if row head[i] = row head[i − 1] then
22: result3 ← offset, validate = 1, rootpagelist = 1
23: else
24: result3 ← offset, validate = 0, rootpagelist = 0
25: end if
26: end if
27: end for
28: return result3

Reorganizing Pages. After completing the previous two steps, we now have
a series of valid table pages with the range of records and index pages with leaf
order and key order. With this information, the size of a database file and the
logical number of each page can be easily determined.

When analyzing extracted pages, we found that some tables within the data-
base were empty. This was previously unconsidered during extraction and analy-
sis. We filled empty table pages to reorganize the file. The main reorganization
steps are described commonly as follows:

– Comparing rootpage number from master table pages and leaf order from
interior pages (include tables and indexes) to obtain the most right leaf num-
ber. This is also the total page number of the database file.

– Creating an empty file which contains the total number of pages. Each known
page is duplicated in at a corresponding location in the new file. Remaining
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pages will be filled with empty data pages or index pages according to the
master table.

– Inserting pointer map pages if they exist.

3.2 Extracting WAL File

Recovering WAL is based on the data blocks reorganize method. A data block
represents a data frame as previously described. A frame is considered valid if
and only if the following conditions are true [4]: First, the salt-1 and salt-2 values
in the frame-header match salt values in the wal-header. Second, the checksum
values in the final 8 bytes of the frame-header exactly match the checksum
computed consecutively on the first 24 bytes of the WAL header and the first 8
bytes and the content of all frames up to and including the current frame. The
main recovery steps are described as follows:

– Finding the WAL file header by magic bytes, saving all the 4-byte random
value in a given set.

– Traversing the set, searching for a random value which belongs to the current
WAL file using the field type characteristics of a specific table. For example,
an SMS table. Pointer map pages are inserted if they exist.

– Finding the each frame of the WAL file. Locating and saving the offsets of the
4-byte random value in frames which matches the value previously mentioned.

– Reorganizing the frames by the constant size of data frame, which belongs to
the current WAL file.

3.3 Reconstructing SQLite History Versions

Previous studies on the reconstruction of the SQLite history versions mainly
discussed in [22,23]. They proposed a recovery method using YAFFS2 metadata.
However, this method cannot be applied to newer devices with extensive use of
ext4 file system.

Our method for reconstructing the SQLite history versions is closely related
to the methods proposed in Sects. 3.1 and 3.2. As mentioned above, we have
reconstructed the SQLite database and its corresponding WAL. Each frame
header shows the page number of its related database file and whether the trans-
action was committed. The details can be seen in Sect. 3.

The occurrence of a transaction operation may affect multiple data pages.
Each operation is not immediately written back to the database. Thus, we aim to
locate which frame blocks contain commit markers. By individually considering
each marker we can obtain a number of history versions of SQLite database.

4 Experiment and Evaluation

The following experimentation tests the method proposed in Sect. 3. All exper-
iments were conducted on Android smartphones with WAL. SMS is one of the
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most common applications that have adopted SQLite for storage and manage-
ment of data. Furthermore, it also has a substantial amount of important user
information which is of interest for forensic investigations [8]. In this paper,
we attempt to recover deleted SMS messages as a case study for the proposed
method.

The first stage of the experiment involved conducting a series of predefined
activities on the device. This stage is divided into two experimental scenarios, in
the first scenario, some activities are conducted as follows: restore the phone to
the factory settings, add 150 records, delete 50 records and update 10 records.
Similar to the first scenario, the second is just different in that the number of
records used in add and delete operations are 250 and 100, respectively.

4.1 Collection of Data Image

There are two main methods to obtain data image: physical method and logical
method [9,10]. In this paper, we focus on user data partition for acquiring data.

Rooting mobile devices for the purpose of data acquisition is often discussed
in literature. While we believe it should generally be avoided [11], we have
decided to root this device for expediency of data collection. We utilized the
dd tool to acquire storage images for analysis:

– Put the mobile device in developer mode and connect it with the computer.
– Establish TCP communication between the device and computer using the
adbforward command.

– View the partition information using the adbcatpartitions command.
– Copy and transfer the image from the device to computer using the dd and
nc commands [12].

In order to support dd and nc commands, the BusyBox [13] tool is required.
It can be installed on the system partition to protect the integrity of the data
partition. As a result, the image of data partition can be obtained bit-by-bit
that is important for the next step in our investigation.

4.2 Reconstruction of SQLite History Versions

The aim of the experiments is to test the proposed method for reconstructing the
history versions of SQLite database. Prior to this point, we have to reconstruct
SQLite database and corresponded WAL, and evaluate the effectiveness of the
two reconstructed files.

A common method in the literature to compare whether two files are identi-
cal is through their hash values [14]. The two original files are acquired from the
image file using dd tool and their hash values are calculated separately (Only
calculate the effective part for WAL). Then, these two files are reconstructed
with the method described in Sect. 3. The hash values of these files are subse-
quently calculated by comparing the original files with reconstructed files, we
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Table 4. The comparison results of SQLite and WAL

Case Num Original valid file Reconstructed file Compared result

1 554f7e0b621c4b9c2c1d8df7d3faf5d4(SQLite)
√

0cfdfcf0252254760a01620154b9036e(WAL)
√

2 c03ca026d59987f97a79af90747b7c47(SQLite)
√

a076bb47b198b2b932c966c8f2bf51cf(WAL)
√

(a) Case I (b) Case II

Fig. 6. The result of reconstruct history files in two cases

can determine whether the experimental result was effective or not. The com-
parison results of the two files are displayed in Table 4. It can be observed that
two files are reconstructed correctly.

In our research, we found the factors that affected the result of the exper-
iments is checkpoint mechanism. We will discuss two situations according to
whether the checkpoint is triggered.

The experimental results of the reconstructed history versions are displayed
in Fig. 6. For the sake of simplicity, we named file based on the incremental
version number. Situation I indicate that the checkpoint is not triggered, in
contrast, situation II means the checkpoint is triggered. As a result, 28 history
versions and 6 history versions are found respectively from the situation I and
situation II. In situation II, a part of the records in WAL were transformed into
database and are marked as invalid pages, and we reconstructed those as valid
history versions.

4.3 Case Studies Using Reconstructed Files

As some common database operations (e.g., insert, delete, update, etc.) occurred
in WAL and are transferred back into the database file when checkpoint condi-
tions is reached. History version files contain valuable evidences, especially on
operation of deleted and updated records. Through the comparison of different
history version files, we can discern each operation about a database. Two case
studies are discussed below.
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Evaluation Criterion. The precision rate (define as Eq. (1)) and recall rate
(define as Eq. (2)) are adopted as the criterions to evaluate the proposed method,
and the F-value (define as Eq. (3)) is used to evaluate the quality of the recovery
approach. In the below equations, the A refers t o the number of recovered records
belonging to the SMS database; the B refers to the number of records that do
not belong to the SMS database; and the C refers to the number of records which
belong to the SMS database but were not recovered from the image file.

Precision(P ) =
A

A + B
. (1)

Recall(R) =
A

A + C
. (2)

F − value =
2 ∗ P ∗ R

P + R
. (3)

Case I: Recovering Deleted Records. Each history version file records one or
more transaction operations. We can recover deleted records easily by comparing
two different version files. As shown in Table 5, we recovered all deleted records in
situation I and approximately 75% in situation II. The value of precision, recall,
and F-value indicates that the proposed method can recover recently deleted
records effectively

Table 5. The result of delete operation

No Image size
(KB)

Total
records

Deleted
records

Recover
records

Precision Recall F-value

1 3251200 150 50 50 1 1 1

2 3251200 250 100 76 1 0.76 0.86

To confirm the effectiveness of our approach, we compare it to results of
similarly proposed schemes in [18]. Since the compared recovery method restores
records from the SQLite database file, the file of SMS database was first retrieved
from two images. The result is described in Fig. 7. In situation I, there are no
records being restored by Sangjun’s method. Moreover, 17 records were restored
from situation II. The P is 1, the R is 0.068, and the F-value is 0.127. It is clear
that our proposed method has an improvement over the precision rate, recall
rate and F-value.

Case II: Detecting Tampered Behaviors. Consider a scenario where a sus-
pect commits a crime. Incriminating evidence was transmitted somehow, perhaps
via SMS. To avoid incarceration the criminal attempts to destroy all electronic
evidence. Fortunately, we can recover deleted records to retrieve evidence if the
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(a) Situations I (b) Situations II

Fig. 7. The result of recover deleted records in two situations

suspect simply delete SMS messages using built-in SMS deletion functionality.
Knowing this, the suspect may simply tamper with the content of evidence and
do not delete records. In this case, traditional recovery method will not work
effectively. However, we can detect these tamper behaviors by comparing two
different version files.

The compared results of tamper operation are shown in Table 6. As we can
see, these results are similar to those when recovering deleted records in case
I. For all 10 tampered records, we can detect 10 records in situation I and 8
records in situation II. The value of precision, recall and F-value indicate that
the proposed method can detect tampered behaviors effectively.

Table 6. The result of tamper operation

No Image size
(KB)

Total
records

Tamper
records

Detect
records

Precision Recall F-value

1 3251200 150 10 10 1 1 1

2 3251200 250 10 8 1 0.8 0.89

5 Discussion

In this section, we discuss some practice issues and considerations related to our
method to reconstruct original SQLite database and WAL.

For expediency in the collection of data for this research, we decided to gain
root privileges and utilize the dd tool to acquire storage images for analysis.
In practical cases, however, the physical acquisition method is recommended to
ensure data integrity.

If the metadata of the file system allows normal to access, we may be able to
retrieve the directory structure of the file system and extract two files directly
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through existing tools [15,16]. In the case that a file system is damaged, the
above method will not work well (e.g., system crash, human factors, etc.). In
this case, we need to reconstruct SQLite database and WAL from the whole
physical image as Sect. 3 has described.

When we extracting and analyzing pages to reconstruct the SQLite database
file, there are a number of pages to filter out which do not belong to the current
database. Through further analysis, we found that this is due in part to frequent
deletion of the databases during several different cases studies. We also verified
that the restore factory settings created the same problem. These results also
prove that the restore factory settings do not erase all data, we are still able to
recover some potential evidence from the image file.

6 Related Work

Although there are previous works on the recovery of SQLite records and history
versions, substantial research on forensic analysis of SQLite based on WAL is
limited. This section will review the existing researches on the analysis of SQLite.

The earliest research of database records recovery can trace back to 1983.
Haerder [17] suggested a method that restored the deleted records using the
transaction file. This method can be applied to traditional database on the PC
when the information of deleted records is included in the transaction file.

Sangjeon [18] explained the management mechanism of the SQLite database
when records were deleted. Sangjeon later proposed a method to recover deleted
records from free blocks. However, the approach can only restore the deleted
records from unallocated space within the page.

A year later, Lamine [19] presented a new tool to recover deleted records
from SQLite databases based on a low-level analysis. In order to perform further
shrink of the candidate page sets, they used pointer map page [4] to keep only
pages that are part of a table B-tree and pages in overflow chains.

Other publications deal with the recovery of deleted records, which are not in
the database file itself, but in the unallocated disk space. Pereira [20] researched
the forensic analysis of SQLite databases of Mozilla Firefox. In contrast to other
applications, no expired data remain in the Firefox database file. Therefore
Pereira proposed a carving method for single records.

Shu, Zheng, and Xu [21] presented a new recovery method for Firefox history
records based on the SQLite WAL file. An effective algorithm was proposed to
reconstruct the whole data frame in WAL file from the unallocated space based
on its structure, and the history records are extracted from the data frames
according to the content of the records.

Xu, Yang, Wu, et al. [22,23] proposed a method to recover files, reconstruct
the file system, and their previous history versions (Taking the SQLite database
as a case study) using YAFFS2 metadata. However, since ext4 file system is
widely used in android phones and Linux systems, this method cannot be applied
to newer devices.
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Generally, most of these works focus on recovering deleted records from the
database file or carving single records from unallocated disk space. This paper
details the reconstruction of SQLite history versions using the original database
and WAL, and analyses two case studies using reconstructed history versions.

7 Conclusion

SQLite database is widely used to store messages, call history, browser history
and much more, both on desktop computers as well as mobile devices. Therefore,
it has tremendous forensic potential data and drawn more attention to digital
forensic investigators and analysts.

When a SQLite database is in WAL mode, these potential forensic data will
first present in WAL, and then be written to the database periodically. That is,
WAL is also the source of evidence that we should study.

In this paper, we first reconstructed the original SQLite database and WAL.
Then a method based on the original database and WAL to reconstruct SQLite
history versions was proposed. The experimental results show that the proposed
method can reconstruct history versions correctly.

Based on reconstructed files, we also demonstrated the utility of our pro-
posed method. Our proposed method is capable of recovering deleted records
and detecting tampered behaviors. It is evident that our method can recover
recently deleted records and detect tampered behaviors effectively.

The widely use of large capacity flash memory provides us several opportuni-
ties and challenges. Large capacity will store more useful information. However
much more effort is required to recover data and perform forensic analysis. Our
future research will look at creating tools to ease forensic analysis on large capac-
ity data storage.
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Abstract. Current intrusion detection approaches based on control flow
integrity (CFI) can detect the majority of control flow hijacking attacks,
but few of them take into account the impact of environment on CFI,
so there may exist false alarms. In this paper, we have investigated sys-
tematically the impact of environment on branch transfer from time,
space and mechanisms of Linux operating system. Moreover, we have
presented finite state automata (FSA) to describe difference patterns
caused by these environmental factors, and have exploited FSA-Stack
model to detect these impacts. Finally, for some common applications
(gzip, grep, tesseract, bzip2 etc.), we have leveraged a dynamic binary
instrumentation tool Pin to record direct and indirect branch transfers
produced by them and the shared libraries they depend on. The experi-
mental results demonstrate that impact of environment on branch trans-
fer exists universally and normally among usual applications, and the
difference patterns of impacts can be beneficial to understand and miti-
gate the false alarms of CFI.

Keywords: Intrusion detection · Control flow integrity · Environmental
factors · Finite state automata · Dynamic binary instrumentation

1 Introduction

Software (Program) behavior is a sequence of states or state transitions, which
can be described by the low-level machine code or the high-level program state-
ments, functions and system calls. Generally, software behavior is used in intru-
sion detection [1], but, it is dependent on the running environment and may be
prone to be bypassed by attackers. Many existing intrusion detection techniques
rely on monitoring the sequence of system calls a program invoked [1,2], or the
arguments of system calls [3], or both [4] to detect malicious behaviors. However,
if the attacker does not use the monitored system calls to achieve his goal, this
kind of detection can be bypassed easily. For example, code-reuse attack [5,6]
leverages existing code to form malicious gadgets, instead of using existing func-
tions or system calls to achieve the attack.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 575–593, 2017.

DOI: 10.1007/978-3-319-59608-2 32



576 J. Fu et al.

In order to counter this kind of low-level control flow hijacking attack, con-
trol flow integrity (CFI) [7,8] is proposed, which marks the valid targets of
indirect control flow transfers with unique identifiers(IDs), and then inserts ID-
checks before each indirect branch transfers. CFIMon [9], CFIGuard [10] and
ROPecker [11] collect all possible indirect transfers or potential gadgets, then
leverage Branch Trace Store (BTS) or Last Branch Record (LBR) [12] to cap-
ture control flow transfers when the program is running. Not only the shellcode
but also some environmental factors will affect the control flow. For instance,
in Linux, the Global Offset Table and LD PRELOAD environment variable will
have an impact on branch transfer.

According to Zhong [13], software behavior not only depends upon the pro-
gram itself, but also depends on the running environment, including time, event,
space, shared libraries, OS kernel, device driver, Hypervisor, garbage collector,
compiler and so on. In this paper, we study the impact of environment on branch
transfer of software from time, space and mechanisms of Linux operating system.
In the meantime, we have confirmed these impacts based on a dynamic binary
instrumentation tool Pin, and analyzed how these factors affect a program’s
branch transfer. Finally, we have used finite state automata (FSA) to describe
difference patterns of branch transfers resulted from these environmental factors.
These FSAs can be used to mitigate false alarms in CFIMon and ROPecker, and
to distinguish what factors will cause the difference. In general, these FSAs are
helpful to detect and counter shellcode.

In summary, this paper makes the following contributions:

– We have investigated systematically impacts of environment on branch trans-
fers from time, space and mechanisms in Linux systems, and have discovered
interested observations to understand the false alarms of CFI.

– We have presented a model of Finite State Automata(FSA) to capture these
impacts, and have exploited FSA-Stack model to detect these impacts.

– We have designed the convinced experiment to validate impact patterns of
different environmental factors, and its results are beneficial to reduce the
false alarms of CFI.

The rest of this paper is structured as follows. Section 2 summarizes and
discusses related work on intrusion detection based on control flow integrity.
Section 3 analyzes environmental factors affecting branch transfer in detail.
Section 4 introduces our approach which leverages a dynamic binary instrumen-
tation tool Pin to record all branch transfers. Meanwhile, we give all FSAs that
describe the difference patterns of branch transfers caused by environmental fac-
tors. Section 5 outlines the experimental results. Section 6 makes some concluding
remarks and discusses the limitations of our work.

2 Related Work

Software behavior integrity detection has a long history, from the detection based
on audit data and log information [14,15] to the detection based on system
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call [1–4,17,18], now it has been extended to control flow integrity detection.
The purpose of the extension is to detect attacks that try to divert the program’s
control flow.

Some of these proposals mark the valid targets of indirect branch transfers
with unique identifiers (IDs), and then inserts ID-checks into the program before
each indirect branch transfer [7,8,20–23]. For example, Abadi et al. [7,8] intro-
duced the term CFI and they suggested using a single identifier for all indirect
branch transfers. Bin-CFI [21] used two IDs for all indirect branch transfers,
one for ret and indirect jump instructions, another for indirect call instructions.
And all indirect branches are instrumented by means of a jump to a CFI vali-
dation routine. But it does not validate the integrity of addresses in the global
offset table (GOT), this leaves it be vulnerable to the so-called GOT overwriting
attacks. CCFIR [20] implemented a 3-IDs approach, which extended the 2-IDs
approach by further separating returns to sensitive and non-sensitive functions.
In CCFIR, all targets for indirect branches are collected and randomly allocated
on a so-called springboard section, and indirect branches are only allowed to
use control flow targets contained in the springboard section. However, memory
disclosure can reveal the content of the entire springboard section, which can be
leveraged by attackers. DynCFI [23] used a dynamic code optimization tool to
enforce CFI detection, which has the same problem with Bin-CFI, as it does not
validate the integrity of GOT.

Others often leverages available hardware support for branch recording in
commercial processors to collect the sets of control transfers when the program is
running, and then compare them with the valid targets collected beforehand [9–
11,24]. For instance, CFIMon [9] made use of static analysis and online training
to get all valid targets of indirect branch transfers. It leverages BTS mechanism
supported by hardware to collect in-flight control transfers and once the BTS
buffer is nearly full, a monitor process will start to compare them with the valid
targets to decide whether there exists an attack. But the variance of environ-
ment variable may cause some indirect jump instructions have different target
addresses, which will produce false alarms. Similar CFI polices are also enforced
by ROPecker [11]. It collects all potential gadgets beforehand, then leverages
LBR mechanism to record all source addresses and target addresses of branches
to decide whether there are gadgets. However, it does not take into account the
signal mechanism in Linux. Due to the signal handler is in the process address
space, ROPecker also will record the branch transfer when it is running, but
these records are not in the potential gadgets database gained beforehand.

All these work mentioned above does not take into account environment may
have an impact on the control flow integrity. Although Zhao et al. [25] introduced
many factors (memory state, operating system kernel, system time etc.) would
affect the control flow, but they did not analyze why these factors have impacts
on the control flow, and what branch transfers may be affected. In this paper,
we introduce some factors that will affect the control flow, and analyze why they
have impacts on control flow, and construct branch patterns produced by these
factors. There is little work related to environment, we list them in Table 1.
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Table 1. Researches related to environment

Approach Description

Giffin et al. [19] Take configuration files, command-line parameters, and
environment variables into intrusion detection

Mytkowicz et al. [16] Introduce UNIX environment size and link order have an
effect on performance analysis

Zhao et al. [25] Introduce many factors (memory state, operating system
kernel, system time et al.) will affect the program’s control
flow

This paper Introduces environmental factors that will impact on the
control flow from a fine-grained perspective (branch
transfers), and analyzes why they have impacts on the
control flow, and gets difference patterns produced by
these factors

3 Impact of Environment on Branch Transfer

Ideally, with the same input, the control flow of a program will be the same
too. However, the experimental results show that even with a simple program,
its control flow may be different in different environments. The difference is the
number of branch transfers is nearly the same, but branch transfers are different
greatly. In this section, we give definitions related to control flow and factors
impacting on branch transfers.

Definition 1. A basic block is a sequence of consecutive instructions, without
any branches except at end of the sequence. For an arbitrary basic block b,
b = i1,i2,......,ik, if instruction ij is executed at step n, then instruction ij+1

must be executed at step n + 1(1 ≤ j< k).

Definition 2. Branch transfer can be represented as I =<From, To>, where
From is the address of the last branch instruction in a basic block. To is the
address of the first instruction in consecutive basic block.

Definition 3. Control flow transfer depends on the branch instructions in the
program. A program’s control flow can be represented as: S0

I0−→ S1
I1−→

S2...
Ik−→ Sk...

In−→ Sn. Where Ik is a branch instruction, whose address is From
in I defined in Definition 2, the targets of the branch instruction is To, Sk is the
state of the program. Due to environment will affect the control flow, there is
Si × E → Sj , E is the environmental factor.

3.1 Impact of Time

System time will affect the behavior of programs. For example, the dynamic
linker will invoke rdtsc (Read Time Stamp Counter) to decide whether to
jump. The experimental result shows that the number of a branch transfer
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will change. This branch transfer is located in function HP TIMING DIFF INIT
in dl start final(), and it is a direct branch transfer. This branch transfer is
the 13th line in HP TIMING DIFF INIT shown in Listing 1. When the time differ-
ence between t2 and t1 is less than the threshold dl hp timing overhead,
this branch transfer will take happen.

Listing 1. HP TIMING DIFF INIT

1 /* Use two ‘rdtsc’ instructions in a row to find out how long it takes. */
2 #define HP_TIMING_DIFF_INIT() \
3 do { \
4 if (GLRO(dl_hp_timing_overhead) == 0) \
5 { \
6 int __cnt = 5; \
7 GLRO(dl_hp_timing_overhead) = ~0ull; \
8 do \
9 { \

10 hp_timing_t __t1, __t2; \
11 HP_TIMING_NOW (__t1); \ // Gets the current time
12 HP_TIMING_NOW (__t2); \ // Gets the current time
13 if (__t2 - __t1 < GLRO(dl_hp_timing_overhead)) \
14 GLRO(dl_hp_timing_overhead) = __t2 - __t1; \
15 } \
16 while (--__cnt > 0); \
17 } \
18 } while (0)

3.2 Impact of Space

Branch transfer is closely related to the program’s memory layout. In Linux, a
program’s memory layout is illustrated in Fig. 1, the stack area includes the com-
mand line, environment variables and the context of function calls, dynamically
allocated memory area is located in the heap. For example, when the program
allocates memory using malloc or new, the reserved area is protected and not
allowed to access. The stack area has a great impact on the branch transfer,
which we will introduce in detail later.

Address Space Layout Randomization (ASLR). In Linux, addresses of
stack, heap, and shared libraries are randomized using ASLR [26]. In the 32-
bit operating system, the 4–23 bit of the stack base address is randomized, the
12–27 bit of the heap and shared libraries base addresses are randomized. As we
know, local variables are located in stack, so the address of the local variables
may be not the same every time as the program is loaded. However, In some
applications, many branches are conducted in accordance with the last 8-bit or
12-bit addresses of local variables, which will cause the targets of the branch
transfers become different.
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Fig. 1. A process’s virtual memory
layout in Linux

Fig. 2. Initial stack of a process

Environment Variables and Command Lines. The operating system must
know something about the running environment before the program starts to
run. Such as environment variables and arguments of the process, the operating
system will save related information into the stack.

Assume the environment variables and the command-line are as the left side
of Fig. 2, and the value of register Esp is 0xbf801ffc, then after the program
is loaded, the content of the stack is shown as the right side in Fig. 2. Now
Esp points to the count of the arguments, and the next are pointers linking to
arguments and environment variables. Auxiliary Vector saves some auxiliary
information needed by the dynamic linker, for instance, AT ENTRY and AT BASE
respectively represents the entry address of the executable and the loaded address
of the dynamic linker.

When the CPU processes memory-related operations (mainly located in
shared libraries), it will check whether the address is memory boundary align-
ment. For example, In the 32-bit operating system, the processor will check
whether the address is 4 byte boundary alignment, there will be different oper-
ations for different alignment. As shown in Listing 2, in function strrchr(), it
will check whether the address of the string is 4 byte boundary alignment (testl
$3,%esi), if it is, then executes it in sequence, otherwise jumps to L(19).

Listing 2. strrchr function

1 ENTRY (strrchr)
2 ......
3 testl 0x3, %esi /* correctly aligned ? */
4 jz L(19) /* yes => begin loop */
5 movb (%esi), %dl
6 ......
7 L(19):movl (%esi), %edx /* get word (= 4 bytes) */
8 movl 0xfefefeff, %edi
9 addl %edx, %edi
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It shows that the memory address boundary alignment has a significant
impact on branch transfer. Usually, the memory address boundary alignment
are impacted by the length of environment variables and command-line.

3.3 Mechanisms in Linux

There are many mechanisms in Linux, such as signals, the management of shared
libraries, Global Offset Table (GOT), and all of them will have impacts on branch
transfers. In this section, we will introduce these impacts in detail.

Searching for Shared Libraries. Linux uses a called SO-NAME (retaining
only the shared library’s major version number) naming mechanism to record
shared library dependencies, meanwhile a symbolic link is created in each shared
library’s directory which has the same name with its “SO-NAME”. And the
directories of shared libraries a program depends on are saved in the section of
dynamic.

In Linux, there is a procedure called ldconfig, which is responsible for cre-
ating, deleting, and updating the symbolic linking, and then collecting these
symbolic linking into a file called /etc/ld.so.cache, which has a special struc-
ture. And the dynamic linker will directly search for shared libraries from this
file. When a new application installs shared libraries into the system, ldconfig
is invoked automatically to update the content of /etc/ld.so.cache, thus, the
branch transfers that the dynamic linker searches for the shared libraries will
change too.

Signal in Linux. Signal is an asynchronous communication mechanism in
Linux, which notifies the process what event occurs. When a process P2 sends a
signal to a process P1, the kernel will receive this signal, and put it into the sig-
nal queue of P1. When the process P1 traps into the kernel, the kernel will check
its signal queue and invoke the signal handler according to the corresponding
signal number.

Global Offset Table (GOT). In Linux, cross-module access is achieved
according to Procedure Linkage Table (PLT) and GOT. The former contains
a series of jump entries, and the latter contains the absolute addresses of library
functions. For dynamic linking programs, there are many function calls between
modules, ELF makes use of an approach named Lazy Binding to accelerate the
speed of the dynamic linking.

As shown in Fig. 3(a), when the program first invokes printf(), it will jump
to printf@plt to execute instruction jmp *0x804a000, which links to the address
of the instruction push 0x0, 0 is the reference index in the relocation table
.rel.plt for symbol printf, then it will invoke function dl runtime resolve
to achieve symbol resolution and relocation, and then patch the address of
printf into GOT. When the program calls printf function again, its procedure
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is shown as Fig. 3(b), also it will jump to printf@plt to execute instruction jmp
*0x804a000, but now the pointer *0x804a000 points to the address of printf,
it will call printf directly. In this procedure, the number of branch transfers
this time is two times less than the first time. Also this mechanism leaves it be
vulnerable to so-called GOT-overwriting attacks.

Fig. 3. Process of calling shared library function in Linux

Configuration of Environment Variables. In Linux, many environment
variables can be used by attackers, such as attackers can leverage LD PRELOAD
to load shared libraries that they defined. The file specified in LD PRELOAD will
be loaded before the dynamic linker searches for shared libraries in accordance
with fixed rules. And as a result of the existence of global symbol mechanism,
global symbols specified in the shared libraries through LD PRELOAD will cover
the same global symbols specified in the normal shared libraries, which makes it
easy to modify the functions in standard libraries. Meanwhile attackers also can
modify the configuration file /etc/ld.so.preload to load the target files.

4 Software Behavior Analysis

We have recorded all direct and indirect branch transfers in the program and
shared libraries it depends on based on the dynamic binary instrumentation
tool Pin [27] on x86 32-bit version of Ubuntu 12.04, and compared the difference
between the branches to get the behavior patterns caused by factors mentioned
above, these patterns are described using Finite State Automata.

4.1 Environment and Branch Transfer

In Sect. 3, we have introduced many environmental factors that will impact on
branch transfers. In this section, we will introduce how these factors affect the
direct and indirect branch transfers of the program and the shared libraries, the
results are shown in Table 2.
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Table 2. Impact of environmental factors on branch behavior

Factor Item Shared library Program

Direct branch Indirect branch Direct branch Indirect branch

Time Time Y

Space ASLR Y Y

Environment

variable length

Y Y

Command line

length

Y Y Y

Mechanims of

Linux

GOT Y Y Y Y

Searching for

shared libraries

Y

Linux singal Y Y Y Y

LD PRELOAD Y Y

Same Input for Same Program. All factors mentioned in Sect. 3 will affect
the direct branch transfers in shared libraries even with the same input. These
direct branches mainly belong to jump instructions and call instructions in the
same function. There is an observation in these differences of branches: just the
last bits of the source address (relative address) are different, and the target
address is the same. Moreover, the indirect instructions affected mainly are ret
instructions and jmp instructions in the same function, but the difference is the
source address is the same, the target addresses are different. The branch transfer
of the program itself is all the same when the input is the same. When the input
is the same but the length of the directory that the input file is located in are
different, the branch transfer of the program itself will be different on direct
branches, and there is no impact on indirect branches in program itself.

Different Inputs for Same Program. When the inputs are different, there
will be a great differences on branch transfers, especially for direct branches
in shared libraries. We do not take into account the impact on direct branch
transfers when the inputs are different, also because the most majority of attacks
just leverage indirect branches to achieve their goals.

The difference on indirect branches are mainly indirect call instructions and
fast system call instructions, that is to say different inputs will lead to different
function calls and system calls.

4.2 Representation of Differences

We use the dynamic binary instrumentation tool Pin to record all branch trans-
fers, and then compare them using the tool diff in Linux. For example, we run
the program graphicsmagic to convert the format of a picture two times, and
get the branch transfers in libc.so, the difference is shown in Fig. 4. These two
hexadecimal number are the source and target addresses respectively, the num-
ber in the last column is the version number of the shared library, the differences
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Fig. 4. Comparison of branch record

are shown in the dotted box, where ‘!’ denotes they are different, ‘-’ denotes these
branch transfers should be deleted.

Definition 4 (Concepts of FSA). Difference pattern can be described as
a sequence of addresses <addr0, (∗), addr1, ..., (∗), addrn>, where addrk is the
source address, 0 < k < n, addr0 and addrn can be the source or the target
address, (∗) represents there may be other source addresses that do not equal to
addri+1 between addri and addri+1. For instance, the sequence of <0x12bd56,
0x13a278> represents that the difference pattern is the source address of a
branch is 0x12bd56, and the next branch’s source address is 0x13a278.

Definition 5. Finite State Automata (FSA) includes five parts (Σ, S, S0,
T , F ), and the meaning of each part is as follows:

1. Σ is the input symbol set. In this paper, it is the set of source and target
addresses.

2. S is the state set. In this paper, it is a set of number from 0 to n.
3. S0 is the initial state.
4. T is the state transition function, which gives the subsequent state according

to the state in S and the symbol in Σ.
5. F is the accepted state.

Representation of Difference Patterns Using FSA. We leverage FSA to
describe the impact of environment on branch transfers. The test programs are
shown in Table 3, which were run on an Intel Core i7 processor with 32-bit
Ubuntu 12.04 system.

Input is the same. When the input is the same, the differences are mainly
located in the shared library libc.so. In this section, we mainly discuss differences
produced by libc.so for programs in Table 3.
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Table 3. Test programs

Application Size Experiment

gzip 806 KB Compress multiple files

grep 153.7 KB Search regular expression in multiple files

bzip2 30.2 KB Compress multiple files

bubblesort 7.3 KB Sort different inputs

cat 46.8 KB Connect two files

diff 112.3 KB Compare two files

tesseract 236.9 KB Recognize multiple license plates

graphicsmagic 5.4 MB Connect two pictures, convert pictures into different forms

bunzip2 30.2 KB Uncompress multiple files

hmmer 617.2 KB Search sequence databases for homologs of protein sequence

The difference pattern of indirect branch transfers is the sequence started
with a source address 0x12bd56 and ended with a source address 0x13a278 or
0x13a288. It can be described as the FSA in Fig. 5(a), where 0 is the started
state, state 2 is the accepted state, ‘||’ represents or operation.

Fig. 5. Difference patterns produced by libc.so

The difference patterns of direct branch transfers in libc.so are shown as
Fig. 5(b) and (c). In Fig. 5(b), all addresses are source addresses. In Fig. 5(c)
all addresses are source addresses except address 0x12bd53. When the source
address of a branch is 0x84f64, and the source address of the next branch is
0x84fbb, there is a need to decide whether the target address of another branch is
0x12bd53, if it is, then the difference patterns is <0x84f64, 0x84ffb>, otherwise,
the difference pattern is <0x84f74>.
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Same input but different length of command-line. Although the input
is the same, the different length of the input file name will have an impact
on branch transfer too. Since the program itself has variability, this section
also discusses the difference patterns produced by shared library libc.so. The
difference patterns of indirect branch transfers are shown in Fig. 6(a), (b). We
can find the differences are mainly the return address of i686 get pc thunk bx
and i686 get pc thunk dx. The difference patterns of direct branch transfers
are shown in Fig. 6(c), (d), (e) and (f), & means and operation.

Linux signals. The difference pattern caused by Linux signals is described as
Fig. 7. The procedure of the OS to execute the signal handler will produce branch
transfers between targets 0x414 and source address 0x427.

Procedure of searching for shared libraries. When there are other shared
libraries installed, the procedure of searching for shared libraries will have an
impact on branch transfers, and these difference patterns can be described as
Fig. 8 and all addresses are source addresses.

In order to accelerate the speed of pattern matching, for these FSAs, we
allocate a 1-bit flag for every state except for the accepted state to distinguish
the source address and target address. If flag equals 0, it is the source address,
otherwise, it is the target address.

As we can see, different environmental factors will generate different FSAs,
and space has the most significant impact compared with other factors. For
most difference patterns caused by space, its feature is that they just go through
from the initial state to the accepted state straightly, and the difference pattern
caused by signal, when it arrives the state before the accepted state, it may goes
back to the former state, this is because there may be more than one signal at
a time.

4.3 Getting Rid of Environment Impact

In order to get rid of the impact of environment on branch transfer, we allocate
a stack for every state except for the initial state. Each stack records the row
number of the branch transfers before meeting the accepted state. As shown in
Fig. 9, the left is the FSA, the right is the difference pattern.

Assume the row numbers of branch transfers are shown in Fig. 9. The contents
of stack 1, 2, 3 are (12513, 12514, 12515, 12516, 12517), (12518, 12519) and
(12520) respectively. When it meets the accepted state, outputs these contents
to a file until all branch transfers have been recorded, then we can delete these
branch transfers according to the row number.

The time overhead of getting rid of environment impact depends on the
number of states and state transitions a FSA have. The space overhead will be
O(M ∗ N), where M is the number of states in the FSA and N is the average
number of transitions for every state. If we use Bloom filter, the time overhead
can be a constant.
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Fig. 6. Difference patterns caused by the different length of command-line

Fig. 7. Difference pattern caused by Linux signals
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Fig. 8. Difference patterns caused by the procedure of searching shared libraries

Fig. 9. FSA-Stack model

5 Experimental Result

In this section, we will introduce how environment impacts on branch transfers
through our experiments.

5.1 Comparing the Number of Branches

Same Input. For programs in Table 3, we have run them 50 times to get the
difference between branch numbers. We have discovered that except tesseract
and graohicsmagic, the difference of branch number in other programs is very
small, which is no more than 3. The difference of branch number in tesseract
is no more than 300, and in grahicsmagic is less than 80. This is because space
has a greater impact on tesseract and grahicsmagic, which will be discussed in
Sect. 5.3.

Same Input but Different Length of Input File Name. For programs in
Table 3, we change the length of the input file’s name (close ASLR) and then
observe the difference of the branch number. We can find that for most programs,
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the difference of branch number is mainly located in direct branches produced
by shared libraries. The number of direct branches of program itself will increase
as the length of the input file’s name increases in gzip and graphicsmagic. And
we can get that the number of indirect branches for program itself is always the
same.

Different Inputs. For programs gzip, bzip2, grep, and tesseract, we change
their input (types of input file include doc, pdf, txt, ppt, and tif) to observe their
branch number. We get that the difference of branch number is great when inputs
are different. These differences are mainly located in direct branch transfers of
the program itself.

5.2 Impact of Time

We have tested the impact of time on branch transfer for programs in Table 3. As
described in Sect. 3, the impact of time on branch transfer is focused on branch
transfer <0x00004e80, 0x00004e86>. Table 4 records the number this branch
occurs, we can find this branch occurs no more than four times. There are 4
occurrences of this branch for 38 out of 50 runs in gzip. And it is related to the
CPU, the faster the CPU runs, the more this branch transfer number is.

Table 4. The number of branch transfer <0x00004e80, 0x00004e86>

Application Number Total

4 3 2 1

gzip 38 8 3 1 50

grep 39 10 1 0 50

bzip2 37 9 4 0 50

bubblesort 38 10 2 0 50

cat 38 8 2 2 50

diff 38 6 5 1 50

tesseract 33 13 4 0 50

graphicsmagic 41 8 1 0 50

bunzip2 38 7 5 0 50

hmmer 38 10 2 0 50

5.3 Impact of Space

User Input. For programs in Table 3, we find that as the input is the same, only
the control flow of gzip, tesseract, and graphicsmagic are different(excluding the
impact of time), and these differences are located in shared library. Functions
that these differences are located in are shown in Table 5.
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Table 5. Impact of input on software behavior

Application Function name Library

gzip strlen sse2 bsf libc.so

tesseract strrchr ia32

strlen sse2 bsf

memcpy sse3 rep

graphicsmagic strlen sse2 bsf

strrchr sse2 bsf

memcpy sse3 rep

As shown, when the input is the same, the differences of branch transfers
are located in functions related to string operation in shared library libc.so.
For string handling functions, in order to accelerate the processing speed, the
address of the string will be checked to determine whether it is 4-byte boundary
alignment or 16-byte boundary alignment (Streaming SIMD Extension (SSE)
instruction). These differences cover direct call branches, direct jump branches,
ret branches, and indirect jump branches.

From experimental result, we find that these differences are caused by the
ALSR for stack, which leads to the temporary variables’ 16-byte boundary align-
ment change. In order to determine the impact of ASLR on software behavior,
we close ASLR mechanism in Linux, and run programs in Table 5, get that there
is no difference on branch transfer for all programs.

Meanwhile, we change the directory of the input file to observe the change
of the control flow. The experimental results show that when the length of the
input file’s directory is not changed, the control flow still is not different. But
if the length of the input file has been changed, the control flow will produce
great differences. This is because in Linux many operations are related to the
input, such as getting the length of the command-line, copying parameters of
the command line, and getting the name of the program.

Environment Variables. We change the length of the environment variables
(close ASLR) to observe its impact on branch transfer. We find that these func-
tions almost are the same with Table 5, and the reason is the same as user input.

5.4 Impact of Signal

In order to determine the impact of signals on software behavior, we add a
signal SIGINT into the program bubblesort. When it receives ^C, the signal will
be triggered. We have found that when there is a signal, the number of branch
transfers will be more than without signal. The pattern is (0x414, ..., 0x427), the
control flow will be transferred to the signal handler, and then return to 0x427
to continue the normal control flow. Due to the signal handler is located in user
space, so we can record its branch transfers using Pin.
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5.5 Impact of Searching for Shared Libraries

When we install r-base on the testing system, it will install other shared libraries
into the system, we compare the contents of /etc/ld.so.cache, and find its con-
tents are modified, the difference of the content is shown in Fig. 10.

Fig. 10. Difference of /etc/ld.so.cache

In Fig. 10, many other shared libraries are written into /etc/ld.so.cache.
For example, 101a102 represents that now there is a new symbolic linking
libpcrecpp.so.0 → libpcrecpp.so.0.0.0 in the file, and ‘a’ means add.

6 Discussion and Conclusion

Software behavior is affected by environmental factors, especially for branch
transfers. In this paper, we study the impact of environment on branch transfer
of software from time, space (memory boundary alignment) and mechanisms of
the Linux operating system (the procedure of searching for shared libraries, sig-
nals, GOT/PLT, and the configuration of the environment variable LD PRELOAD).
At the same time, we leverage Finite State Automata (FSA) to describe the dif-
ference patterns of branch transfers caused by environmental factors. These dif-
ference patterns can be used to control flow integrity detection that the testing
and validation code is independent on the program to mitigate the false alarms.
Meanwhile they can be used to CIMB [28] to reduce the impact of environmental
factors on computation integrity measurement.

In future work, we will focus on attacks caused by these environmental factors
as these factors are ignored by CFI.

Also, there are some limitations in our work. For instance, we just investigate
environmental factors from time, space and mechanisms in Linux, there may be
some other factors, such as compiler optimization and the upgrade of operating
systems. And we do not investigate the impact of environment on the branch
transfer of kernel code.
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Abstract. A recent report has shown that there are more than 5,000 malicious
applications created for Android devices each day. This creates a need for
researchers to develop effective and efficient malware classification and detec-
tion approaches. To address this need, we introduce DroidClassifier: a sys-
tematic framework for classifying network traffic generated by mobile malware.
Our approach utilizes network traffic analysis to construct multiple models in an
automated fashion using a supervised method over a set of labeled malware
network traffic (the training dataset). Each model is built by extracting common
identifiers from multiple HTTP header fields. Adaptive thresholds are designed
to capture the disparate characteristics of different malware families. Clustering
is then used to improve the classification efficiency. Finally, we aggregate the
multiple models to construct a holistic model to conduct cluster-level malware
classification. We then perform a comprehensive evaluation of DroidClassifier
by using 706 malware samples as the training set and 657 malware samples and
5,215 benign apps as the testing set. Collectively, these malicious and benign
apps generate 17,949 network flows. The results show that DroidClassifier
successfully identifies over 90% of different families of malware with more than
90% accuracy with accessible computational cost. Thus, DroidClassifier can
facilitate network management in a large network, and enable unobtrusive
detection of mobile malware. By focusing on analyzing network behaviors, we
expect DroidClassifier to work with reasonable accuracy for other mobile
platforms such as iOS and Windows Mobile as well.

Keywords: Mobile security � Android malware detection � Malware
classification � HTTP network traffic

1 Introduction

Android is currently the most popular smart-mobile device operating system in the
world, holding about 80% of world-wide market share. Due to their popularity and
platform openness, Android devices, unfortunately, have also been subjected to a
marked increase in the number of malware and vulnerability exploits targeting them.
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According to a recent study from F-Secure Labs, there are at least 275 new families (or
new variants of known families) of malware that currently target Android [8]. On the
contrary, only one new threat family on iOS was reported.

As smart-mobile devices gradually become the preferred end-hosts for accessing
the Internet, network traffic of mobile apps has been utilized to identify mobile
applications to facilitate network management tasks [33]. However, the methods of
identifying benign mobile applications fall short when dealing with mobile malware,
due to the unique traffic characteristics of malicious applications. From our observation,
malicious attacks by mobile malware often involve network connectivity. Network
connection has been utilized to launch attack activities or steal sensitive personal
information. As a result, studying network traffic going into or coming out of Android
devices can yield unique insights about the attack origination and patterns.

In this paper, we present DroidClassifier, a systematic framework for classifying
and detecting malicious network traffic produced by Android malicious apps. Our work
attempts to aggregate additional application traffic header information (e.g., method,
user agent, referrer, cookies and protocol) to derive at more meaningful and accurate
malware analysis results. As such, DroidClassifier has been designed and constructed
to consider multiple dimensions of malicious traffic information to establish malicious
network patterns. First, it uses the traffic information to create clusters of applications.
It then analyzes these application clusters (i) to identify whether the apps in each cluster
are malicious or benign and (ii) to classify which family the malicious apps belong to.

DroidClassifier is designed to be efficient and lightweight, and it can be integrated
into network IDS/IPS to perform mobile malware classification and detection in a large
network. We evaluate DroidClassifier using more than six thousand Android benign
apps and malware samples; each with the corresponding collected network traffic. In
total, these malicious and benign apps generate 17,949 traffic flows. We then use
DroidClassifier to identify the malicious portions of the network traffic, and to extract
the multi-field contents of the HTTP headers generated by the mobile malware to build
extensive and concrete identifiers for classifying different types of mobile malware. Our
results show that DroidClassifier can accurately classify malicious traffic and distin-
guish malicious traffic from benign traffic using HTTP header information. Experi-
ments indicate that our framework can achieve more than 90% classification rate and
detection accuracy while it is also more efficient than a state-of-the-art malware clas-
sification and detection approach [2].

In summary, the contributions of our work are mainly two-fold. First, we develop
DroidClassifier, which considers multiple dimensions of mobile traffic information from
different families of mobile malware to establish distinguishable malicious patterns.
Second, we design a novel weighted score-based metric for malware classification, and
we further optimize the performance of our classifier using a novel combination of
supervised learning (score-based classification) and unsupervised learning (malware
clustering). The clustering step makes our detection phase more efficient than prior
efforts, since the subsequent malware classification can be performed over clustered
malware requests instead of individual requests from malware samples.

The rest of this paper is organized as follows. Section 2 explains why we consider
multidimensional network information to build our framework. Section 3 provides
overview of prior work related to the proposed DroidClassifier. Section 4 discusses the
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approach used in the design of DroidClassifier, and the tuning of important parameters
in the system. DroidClassifier is evaluated in Sect. 5. Section 6 discusses limitations
and future work, followed by the conclusion in Sect. 7.

2 Motivation

A recent report indicates that close to 5,000 Android malicious apps are created each
day [6]. The majority of these apps also use various forms of obfuscation to avoid
detection by security analysts. However, a recent report by Symantec indicates that
Android malware authors tend to improve upon existing malware instead of creating
new ones. In fact, the study finds that more than three quarters of all Android malware
reported during the first three months of 2014 can be categorized into just 10 families
[26]. As such, while malware samples belonging to a family appear to be different in
terms of source code and program structures due to obfuscation, they tend to exhibit
similar runtime behaviors.

This observation motivates the adoption of network traffic analysis to detect mal-
ware [2, 5, 20, 31]. The initial approach is to match requested URIs or hostnames with
known malicious URIs or hostnames. However, as malware authors increase malware
complexities (e.g., making subtle changes to the behaviors or using multiple servers as
destinations to send sensitive information), the results produced by hostname analysis
tend to be inaccurate.

To overcome these subtle changes made by malware authors to avoid detection,
Aresu et al. [2] apply clustering as part of network traffic analysis to determine malware
families. Once these clusters have been identified, they extract features from these
clusters and use the extracted information to detect malware [2]. Their experimental
results indicate that their approach can yield 60% to 100% malware detection rate. The
main benefit of this approach is that it handles these subtle changing malware behaviors
as part of training by clustering the malware traffic. However, the detection is done by
analyzing each request to identify network signatures and then matching signatures.
This can be inefficient when dealing with a large traffic amount. In addition, as these
changes attempted by malware authors occur frequently, the training process may also
need to be performed frequently. As will be shown in Sect. 5, this training process,
which includes clustering, can be very costly.

We see an opportunity to deal with these changes effectively while streamlining the
classification and detection process to make it more efficient than the approach intro-
duced by Aresu et al. [2]. Our proposed approach, DroidClassifier, relies on two
important insights. First, most newly created malware belongs to previously known
families. Second, clustering, as shown by Aresu et al., can effectively deal with subtle
changes made by malware authors to avoid detection. We construct DroidClassifier to
exploit previously known information about a malware sample and the family it
belongs to. This information can be easily obtained from existing security reports as
well as malware classifications provided by various malware research archives
including Android Malware Genome Project [36]. Our approach uses this information
to perform training by analyzing traffic generated by malware samples belonging to the
same family to extract most relevant features.
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To deal with variations within a malware family and to improve testing efficiency,
we perform clustering of the testing traffic data and compare features of each resulting
cluster to those of each family as part of classification and detection process. Note that
the purpose of our clustering mechanism is different from the clustering mechanism
used by Aresu et al. [2], in which they apply clustering to extract useful malware
signatures. Our approach does not rely on the clustering mechanism to extract malware
traffic features. Instead, we apply clustering in the detection phase to improve the
detection efficiency by classifying and detecting malware at the cluster granularity
instead of at each individual request granularity, resulting in much less classification
and detection efforts. By relying on previously known and precise classification
information, we only extract the most relevant features from each family. This allows
us to use fewer features than the prior approach [2]. As will be shown in Sect. 5,
DroidClassifier is both effective and efficient in malware classification and detection.

3 Related Work

Network Traffic Analysis has been used to monitor runtime behaviors by exercising
targeted applications to observe app activities and collect relevant data to help with
analysis of runtime behaviors [9, 15, 22, 28, 35]. Information can be gathered at ISP
level or by employing proxy servers and emulators. Our approach also collects network
traffic by executing apps in device emulators. The collected traffic information can be
analyzed for leakage of sensitive information [7, 10], used for classification based on
network behaviors [20], or exploited to automatically detect malware [3, 5, 31].

Supervised and unsupervised learning approaches are then used to help with
detecting [14, 30, 34] and classifying desktop malware [17, 20] based on collected
network traffic. Recently, there have been several efforts that use network traffic
analysis and machine learning to detect mobile malware. Shabtai et al. [25] present a
Host-based Android machine learning malware detection system to target the repack-
aging attacks. They conclude that deviations of some benign behaviors can be regarded
as malicious ones. Narudin et al. [18] come up with a TCP/HTTP based malware
detection system. They extracted basic information, (e.g. IP address), content based,
time based and connection based features to build the detection system. Their approach
can only determine if an app is malicious or not, and they cannot classify malware to
different families.

FIRMA [21] is a tool that clusters unlabeled malware samples according to network
traces. It produces network signatures for each malware family for detection. Anshul
et al. [3] propose a malware detection system using network traffic. They extract
statistical features of malware traffic, and select decision trees as a classifier to build
their system. Their system can only judge whether an app is malicious or not. Our
system, however, can identify the family of malware.

Aresu et al. [2] create malware clusters using traffic and extract signatures from
clusters to detect malware. Our work is different from their approach in that we extract
malware patterns from existing families by analyzing HTTP traffic and determining
scores to help with malware classification and detection. To make our system more
efficient, we then form clusters of testing traffics to reduce the number of test cases
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(each cluster is a test case) that must be evaluated. This allows our approach to be more
efficient than the prior effort that analyzes each testing traffic trace.

4 Introducing DroidClassifier

Our proposed system, DroidClassifier, is designed to achieve two objectives: (i) to
distinguish between benign and malicious traffic; and (ii) to automatically classify
malware into families based on HTTP traffic information. To accomplish these
objectivesthe system employs three major components: training module, clustering
module, and malware classification and detection module.

The training module has three major functions: feature extraction, malware data-
base construction, and family threshold decision based on scores. After extracting
features from a collection of HTTP network traffic of malicious apps inside the training
set, the module produces a database of network patterns per family and the zscore
threshold that can be used to evaluate the maliciousness of the network traffic from
malware samples and classify them into corresponding malware families. To address
subtle behavioral changes among malware samples and to improve detection efficiency,
the clustering module is followed to collect a set of network traffic and gather similar
HTTP traffic into the same group so as to classify network traffic as groups.

Finally, the malware classification and detection module computes the scores and
the corresponding zscore based on HTTP traffic information of a particular traffic cluster.
If this absolute value of zscore is less than the threshold of one family, our system
classifies the HTTP traffic into the malware family. It then evaluates whether the HTTP
traffic requests are from a certain malware family or from benign apps, the strategy of
which is similar to that of the classification module. Our Training and Scoring
mechanisms provide a quantitative measurement for malware classification and
detection. Next, we describe the training, traffic clustering, malware classification, and
malware detection process in details.

4.1 Model Training

The training process requires four steps as shown in Fig. 1. The first step is collecting
network traffic information of applications that can be used for training, classification,
and detection. With respect to training, the network traffic data set that we focus on is
collected from malicious apps. The second step is extracting relevant features that can
be used for training and testing. The third step is building malware database. Lastly, we
compute the scores that can be used for classification and detection. Next, we describe
each of these steps in turn.

Network 
Traffic Files 

Feature 
Extraction 

Malware 
Database 

Score 
Calculation 

Fig. 1. Steps taken by DroidClassifier to perform training
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Collecting Network Traffic. To collect network traffic, we locate malware samples
that have already been classified into families. We use the real-world malware samples
provided by Android Malware Genome Project [36] and Drebin [4] project, which
classify 1,363 malware samples, making a total of 2,689 HTTP requests, into 10
families. We randomly choose 706 samples to build the training model, and the
remaining 657 samples as malware evaluation set. We also use 5,215 benign apps,
generating 15,260 HTTP requests, to evaluate the detection phase. These benign apps
are from the Google Play store.

The first step of traffic collection is installing samples belonging to a family into an
Android device or a device emulator (as used in this study). We use 50% of malware
samples for training; i.e., 30% for database building and 20% for threshold calculation.
We also use 20% of benign apps for threshold calculation.

To exercise these samples, we useMonkey to randomly generate event sequences to
run each of these samples for 5 min to generate network traffic. We choose this
duration because a prior work by Chen et al. [5] shows that most malware would
generate malicious traffic in the first 5 min.

In the third step, we use Wireshark or tcpdump, a network protocol analyzer, to
collect the network traffic information. In the last step, we generate the network traffic
traces as PCAP files. After we have collected the network traffic information from a
family of malware, we repeat the process for the next family. It is worth noting that our
dataset contains several repackaged Android malware samples. Though most of the
traffic patterns generated by repackaged malware apps and carrier apps are similar, we
find that these repackaged malware samples do generate malicious traffic. Furthermore,
our samples also generate some common ad-library traffic, and the traffic can also bring
noise to our training phase. In our implementation, we establish a “white-list” request
library containing requests sending to benign URLs and common ad-libraries. We filter
out white-listed requests and use only the remaining potential malicious traffic to train
the model and perform the detection.

Extracting Features for Model Building. We limit our investigation to HTTP traffic
because it is a commonly used protocol for network communication. There are four
types of HTTP message headers: General Header, Request Header, Response Header
and Entity Header. Collectively, these four types of header result in 80 header fields
[27]. However, we also observe that fewer than 12 fields are regularly used in the
generated traffic. We manually analyze these header fields and choose five of them as
our features. Note that we do not rank them. If more useful headers can be obtained
from a different dataset, we may need to retrain the system.

Also note that we utilize these features differently from the prior work [20]. In the
training phase, we make use of multiple fields, and come up with a new weighted
score-based mechanism to classify HTTP traffic. Perdisci et al. [20], on the other hand,
use clustering to generate malware signatures. In our approach, clustering is used as an
optimization to reduce the complexity of the detection/classification phase. As such,
our approach can be regarded as a combination of both supervised and unsupervised
learning.
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By using different fields of HTTP traffic information, we, in effect, increase the
dimension of our training and testing datasets. If one of these fields is inadequate in
determining malware family, e.g., malware authors deliberately tamper one or more
fields to avoid analysis, other fields can often be used to help determine malware
family, leading to better clustering/classification results. Next, we discuss the rationale
of selecting these features and the relative importance of them.

• Host can be effective in detecting and classifying certain types of malware with
clear and relatively stabilized hostname fields in their HTTP traffic. Based on our
observation, most of the malware families generate HTTP traffic with only a small
number of disparate host fields.

• Referrer identifies the origination of a request. This information can introduce
privacy concerns as IMEI, SDK version and device model, device brand can be sent
through this field as demonstrated by DroidKungFu and FakeInstaller families.

• Request-URI can also leak sensitive information. We observe that Gappusin family
can use this field to leak device information, such as IMEI, IMSI, and OS Version.

• User-Agent contains a text sequence containing information such as device man-
ufacturer, version, plugins, and toolbars installed on the browser. We observe that
malware can use this field to send information to the Command & Control (C&C)
server.

• Content-Type can be unique for some malware families. For example, Opfake has a
unique “multipart/form-data; boundary=AaB03x” Content-Type field, which can
also be included to elevate the successful rate of malware detection.

Request-URI and Referrer are the two most important features because they contain
rich contextual information. Host and User-Agent serve as additional discernible fea-
tures to identify certain types of malware. Content-Type is the least important in terms
of identifiable capability; however, we also observe that this feature is capable of
recognizing some specific families of malware.

Although dedicated adversaries can dynamically tamper these fields to evade the
detection, such adaptive behaviors may incur additional operational costs, which we
suspect is the reason why the level of adaptation is low, according to our experiments.
We defer the investigation of malware’s adaptive behaviors to future work. In addition,
employing multiple hosts can possibly evade our detection at a cost of higher main-
tenance expenses. In our current dataset, we have seen that some families use multiple

Table 1. Features extracted

Field name Description

Host This field specifies the Internet host and port number of the resource
Referer This field contains URL of a page from which HTTP request originated
Request-URI The URI from the request source
User-Agent This field contains information about the user agent originating the request
Content-Type This field indicates the media type of the entity-body sent to the recipient
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hosts to receive information and we are still able to detect and classify them by using
multiple network features.

We also notice that these malware samples utilize C&C servers to receive leaked
information and control malicious actions. In our data set, many C&C servers are still
fully or partially functional. For fully functional servers, we observe their responses.
We notice that these responses are mainly simple acknowledgments (e.g., “200 OK”).
For the partially functional servers, we can still observe information sent by malware
sample to these servers.

Building Malware Database. Once we have identified relevant features, we extract
values for each field in each request. As an example, to build a database for the
DroidKungFu malware family, we search all traffic trace files (PCAPs) of the all
samples belonging to this family (100 samples in this case), extract all values or
common longest substring patterns, in the case of Request-URI fields, of the five
relevant features, put them into lists with no duplicated values, and build a map
between each key and its values.

Scoring of Malware Traffic Requests. In the training process, we assign scores to
malware traffic requests to compute the classification/detection threshold, which we
termed as training zscore computation. We need to calculate the malware zscore range for
each malware family. We use traffic from 20% of malware samples belonging to each
family for training zscore computation. For each malware family, we assign a weight to
each HTTP field to quantify different contributions of each field according to the
number of patterns the field entails, since the number of patterns of a field indicates the
uncertainty of extracted patterns. For example, the field with a single pattern is deemed
as a unique field, thus it is considered to be a field with high contributions. In contrast,
the field with a number of patterns would be weighted lower. As such, we compute the
total number of patterns of each field from the malware databases to determine the
weight. The following formula illustrates the weight computation for each field: wi =
1 � 100, where wi stands for the weight for ith field, and ti is the number of patterns
for the ith field for each family in malware databases. For instance, there are 30 patterns
for field User-Agent of one malware family in malware databases, so the weight of
User-Agent is 1

30 � 100.
In terms of the Request URI field, we use a different strategy because this filed

usually contains a long string. We use the Levenshtein distance [16] to calculate the
similarity between the testing URI and each pattern. Levenshtein distance measures the
minimum number of substitutions required to change one string into the other. After
comparing with each pattern, we choose the greatest similarity as a target value, for
example, if the similarity value is 0.76, the weight will be 0.76 � 100 or 76 for the
URI field. The score can be calculated using the following equation: Score ¼
1
N

PN
i¼1 wi � mi; where wi is weight for ith field, and mi indicates whether there is a

pattern in the database that matches the field value. If there is, mi is 1, otherwise, it is 0.
Note that mi is always 1 for the URI field.
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After obtaining all the field values and calculating the summation of these values,
we then divide it by the total number of fields (i.e., 5 in this case). The result is the
original score of this HTTP request.

Then we need to calculate the malware zscore range for each family. we calculate the
average score and standard derivation of those original scores which are mentioned
above. Next, we calculate the absolute value of the zscore, which represents the distance
between the original score (x) and the mean score ðxÞ divided by the standard deviation
(s) for each request: zscorej j ¼ x�x

s
�� ��.

Once we get the range of absolute value of zscore from all malware training requests
of each family, it is used to determine the threshold for classification and detection. We
will illustrate the threshold decision process in the following section. Algorithm 1
outlines the steps of calculating original scores from PCAP files. Note that in the testing
process, the same zscore computation is conducted to evaluate the scores of the testing
traffic requests, which we termed as testing zscore computation to avoid confusion.

4.2 Malware Clustering During Testing

We automatically apply clustering analysis to all of our testing requests. We use
hierarchical clustering [24], which can build either a top-down or bottom-up tree to
determine malware clusters. The advantage of hierarchical clustering is that it is flexible
on the proximity measure, and is able to visualize the clustering results using den-
drogram that can be used to choose the optimal number of clusters.
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In our framework, we use the single-linkage [24] clustering, which is an agglom-
erative or bottom-up approach. According to Perdisci et al. [20], singlelinkage hier-
archical clustering has the best performance compared to X-means [19] and
complete-linkage [12] hierarchical clustering.

Feature Extraction for Clustering. First, we need to compute distance measures to
represent similarities among HTTP requests. We extract features from URLs and define
a distance between two requests according to an algorithm proposed in [20], except that
we reduce the number of features to make our algorithm much more efficient. In the
end, we extract three types of features to perform clustering: domain name and port
number, path to the file, and Jaccard’s distance [11] between parameter keys. As an
example, consider the following request:

http://www.example.com:80/path/to/myfile.html?key1=value1&key2=value2

The field, www.example.com:80, represents the first feature. The field,/path/to/
myfile.html, represents the second feature. The field, key1=value1&key2=value2,
represents the parameters, each is a key-value pair, of this request. To compute the third
feature, we calculate the Jaccard’s distance [11] between the keys. We do not use the
parameter values here because these values can be very long, and the comparison
between a large number of long strings will consume a large amount of time.

Note that in work by Perdisci et al. [20], they also use the same three features with
an addition of the fourth with is the concatenation of parameter values to calculate the
similarity of requests for desktop applications. According to [2], the length of URL is
larger for the Android malware than the desktop malware, and from our tests, we find
the time to calculate the similarity using the fourth feature is much longer than with just
three features. We also find that we can get comparable clustering accuracy with just
using the three features. As such, we exclude the fourth feature to make our system
more efficient but without sacrificing accuracy. In Sect. 5, we show that our system is
as effective as using four features [2], but is also significantly faster.

Recall that we extract five HTTP features (see Table 1) to perform training. Since
these features are strings, we use the Levenshtein Distance [16] between two strings to
measure their similarity. For parameter keys, Jaccard’s distance [11] is applied to
measure the similarity. Suppose the number of HTTP requests is N, we can get three
N � N matrices based on three clustering feature sets. We calculate the average value
of the three matrices, and regard this average matrix as the similarity matrix used by the
clustering algorithm.

After the clustering, we calculate the average of the |zscore| of each cluster. We
consider requests from the same cluster as one group and use the average value to
classify this cluster.

4.3 Malware Classification

We use the remaining 50% of malware samples in each family as the testing set. In
order to determine the threshold for classification, we include traffic from 20% benign
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apps and 20% malware samples. We use the same method as depicted in the previous
section to calculate the original score of each benign request. However, when we
calculate the zscore range of benign apps, we use the mean score ðxÞ and standard
derivation(s) of the 20% malware family we have in previous sections

ði:e: zscorej j ¼ x�xðmalwareÞ
sðmalwareÞ

���
���Þ. Then we use the malware zscore range and benign zscore

range to determine the threshold for each malware family in an adaptive manner.
For instance, in the BaseBridge family, the absolute range of zscore varies from 1.0

to 1.3 using malicious traffic from 20% malware samples. Meanwhile, this value ranges
from 1.5 to 10 for the 20% benign apps using the BaseBridge database. As a result, we
can then set the threshold to be 1.4, which is computed by (1.3 + 1.5)/2. For the testing
traffic, if the absolute value of zscore derived by testing zscore computation is less than
the threshold, the app will be classified into this BaseBridge family.

4.4 Malware Detection

This detection process is very similar to the clustering process. However, the testing set
has been expanded to include traffic from both malicious apps and 5,215 benign apps.
The detection phase proceeds like the classification phase. We use BaseBridge family
as an example. After extracting each HTTP request from PCAP files, we calculate the
score based on BaseBridge training database, similar to classification phase, if the
traffic’s absolute value of zscore is greater than the BaseBridge threshold, we believe this
traffic comes from BaseBridge family, and the traffic request is classified as malicious.
Otherwise, the traffic does not belong to the BaseBridge family. In the end, if the traffic
request is not assigned to any malware families, this request is deemed as benign.

Next, we illustrate how to calculate the detection accuracy for each malware family
through an example using the BaseBridge family. If a request is from a BaseBridge
family app, and it is also identified as belonging to it, then this is true positive (TP).
Otherwise, it is false negative (FN). If the request is not from BaseBridge family app,
but it is identified as belonging to it, then it is false positive (FP); otherwise, it is true
negative (TN). We then calculate the detection accuracy (Detection Accuracy
¼ TPþ TN

TPþTNþFNþFP) and malware detection rate (Malware Detection Rate

¼ SUMðTPÞ
SUMðFNÞþ SUMðTPÞ) of each family.

5 Evaluation

We evaluate the malware classification performance of DroidClassifier. We use 30% of
the malware samples for database building, 20% of both malware and benign apps for
threshold calculation. We set up the testing set to use the remaining 50% of the
malware samples and 80% of benign apps. Specifically, we evaluate the following
performance aspects of DroidClassifier system.
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1. We evaluate classification effectiveness of DroidClassifier to classify malicious apps
into different families of malware. We present the performance in terms of detection
accuracy, TPR (True Positive Rate), TNR (True Negative Rate) and F-Measure.
Our evaluation experiments with using different numbers of clusters to determine
which one yields the most accurate classification result.

2. We evaluate the malware detection effectiveness of DroidClassifier using only
malware samples as the training and testing sets. We only focus on how well
DroidClassifier correctly detects malware. The detection performance is represented
by detection accuracy.

3. We evaluate the influence of clustering on malware detection effectiveness by
comparing the detection rates between the best case in DroidClassifier when the
number of cluster is 1000, and DroidClassifier without clustering process.

4. We compare our classification effectiveness with results of other approaches. We
also compare the efficiency of DroidClassifier with a similar clustering system [2].

Our dataset consists of 1,363 malicious apps, and our benign apps are downloaded
from multiple popular app markets by app crawler. Each app downloaded from app
market is sent to VirusTotal for initial screening. The app is added to our normal app
set only if the test result is benign. Eventually, we get a normal app set of 5,215
samples belonging to 24 families. A large amount of traffic data are collected by an
automatic mobile traffic collection system, similar to the system described in [5], in
order to evaluate the classification/detection performance of DroidClassifier. In the end,
we get 500.4 MB of network traffic data generated by malware samples in total, out of
which we extract 18.1 MB of malicious behavior traffic for training purpose. In a
similar manner, we collect 2.15 GB of data generated by normal apps for model
training and testing.

5.1 Malware Classification Effectiveness Across Different Cluster
Numbers

In our experiment, we perform an evaluation to investigate the sensitivity of our
approach to the number of clusters. Therefore, we strategically adjust the number of
clusters to find the optimal number that is used to classify malware in the testing data.
To do so, we evaluate 13 different numbers of clusters for the whole dataset, ranging
from 200 to 7000 clusters. Table 5 shows the classification results using 13 different
numbers of clusters. When we increase the number of clusters from 200 to 1000, the
detection accuracy also improves from 46.95% to 94.66%, respectively. However,
using more than 1000 clusters does not improve accuracy. As such, using 1000 clusters
is optimal for our dataset. In this setting but without using DroidKungfu and Gappusin,
the two families previously known to be hard to detect and classify [4], DroidClassifier
achieves TPR of 92.39% and TNR of 94.80%, respectively. With these two families,
our TPR and TNR still yield 89.90% and 87.60%, respectively (Table 2).
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5.2 Detection Effectiveness Per Family

Next, we further decompose our analysis to determine the effectiveness of
DroidClassifier by evaluating our effectiveness metrics per malware family. As shown
in Table 3, in six out of ten families, our system can achieve more than 90% in
F-Measure, meaning that it can accurately classify malicious family as it detects more
true positives and true negatives than false positives and false negatives. As the table
reports, our system yields accurate classification results in BaseBridge, FakeDoc,
FakeInstaller, FakeRun, MobileTx, Opfake, and Plankton. Specifically, FakeDoc and

Table 2. Classification result with different number of clusters (TPR = TP/(TP + FN); TNR =
TN/(TN + FP); F measure = 2 * (TPR * TNR)/(TPR + TNR))

Number of clusters TPR TNR Detection accuracy F measure

200 73.90% 46.59% 46.95% 57.15%
400 60.70% 66.45% 66.34% 63.44%
600 60.70% 66.61% 66.52% 63.52%
800 70.24% 91.39% 91.12% 79.43%
1000 92.39% 94.80% 94.66% 93.58%
1200 90.70% 94.45% 94.30% 92.54%
1400 90.76% 94.42% 94.28% 92.55%
2000 90.76% 93.79% 93.64% 92.25%
3000 89.08% 93.15% 93.01% 91.07%
4000 89.08% 93.11% 92.97% 91.05%
5000 89.08% 93.06% 92.92% 91.03%
6000 88.75% 92.45% 92.30% 90.56%
7000 88.12% 93.02% 92.79% 90.50%

Table 3. Malware classification performance with 1000 clusters

Family name TP FN TN FP TPR
(%)

TNR
(%)

Detection accuracy
(%)

F measure
(%)

BaseBridge 351 104 11994 44 77.14 99.63 98.82 86.96
DroidKungFu 286 74 7306 4827 79.44 60.22 60.77 68.51
FakeDoc 229 1 12263 0 99.57 100.00 99.99 99.78
FakeInstaller 73 1 11968 451 98.65 96.37 96.38 97.50
FakeRun 70 6 11890 527 92.11 95.76 95.73 93.90
Gappusin 66 16 7170 5241 80.49 57.77 57.92 67.26
Iconosys 17 4 8465 4007 80.95 67.87 67.89 73.84
MobileTx 227 1 12265 0 99.56 100.00 99.99 99.78
Opfake 93 4 12396 0 95.88 100.00 99.97 97.89
Plankton 1025 51 11279 138 95.26 98.79 98.49 96.99
AVG results 89.90 87.64 87.60 88.76
AVG results w/o DroidKungFu &
Gappusin

92.39 94.80 94.66 93.58
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MobileTx shows above 99% in F-measure, which means it almost detect everything
correctly in these two families. However, DroidKungFu, Gappusin and Iconosys shows
less than 80% F-measure.

Discussion. Our system cannot accurately classify these three families (i.e. Droid-
KungFu, Gappusin and Iconosys) due to two main reasons. First, the amounts of the
network traffic for these families are too small. For example, we only have 38 appli-
cations in Iconosys family and among these, only 19 applications produce network
traffic information. We plan to extend the traffic collection time to address this issue in
future works.

Second, the malware samples in DroidKungFu and Gappusin families produce a
large amount of traffic information that shares similar patterns with that of other
families. This leads to ambiguity. We also cross-reference our results with those
reported by Drebin [4]. Their results also confirm our observation as their approach can
only achieve less than 50% detection accuracy, which is even lower than that achieved
by our system. This is the main reason why we report our result in Table 5 by
excluding DroidKungFu and Gappusin.

5.3 Comparing Detection Effectiveness of Clustering Versus
Non-clustering

In Table 4, we report the detection results when clustering is not performed (i.e., we
configure our system to have a cluster for each request). As shown in the table, the
detection accuracy without clustering are significantly worse than those with clustering
for DroidKungFu and Gappusin. In DroidKungFu family, the detection accuracy

Table 4. Classification performance without clustering procedure

Family name TP FN TN FP TPR
(%)

TNR
(%)

Detection
accuracy
(%)

F measure
(%)

BaseBridge 437 18 12038 0 96.04 100.00 99.86 97.98
DroidKungFu 286 74 2195 9938 79.44 18.09 19.86 29.47
FakeDoc 229 1 12263 0 99.57 100.00 99.99 99.78
FakeInstaller 73 1 12419 0 98.65 100.00 99.99 99.32
FakeRun 75 1 11876 541 98.68 95.64 95.66 97.14
Gappusin 66 16 2914 9497 80.49 23.48 23.85 36.35
Iconosys 20 1 11304 1168 95.24 90.64 90.64 92.88
MobileTx 227 1 12265 0 99.56 100.00 99.99 99.78
Opfake 84 13 12396 0 86.60 100.00 99.90 92.82
Plankton 1049 27 11302 115 97.49 98.99 98.86 98.24
AVG results 93.18 82.68 82.86 87.62
AVG results w/o
DroidKung Fu &
Gappusin

96.48 98.16 98.11 97.31
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decreases from 60.77% to 19.86% by eliminating clustering procedure. In Gappusin
family, the detection accuracy decreases from 57.92% to 23.85%. However, after
removing these two families, it shows better average detection accuracy than
DroidClassifier with clustering procedure. The detection accuracy of the Iconosys
family increases from 67.89% to 90.64% by removing the clustering procedure.

Discussion. Upon further investigation of the network traffic information, we uncover
that the network traffic generated by many benign applications and that of the Iconosys
family are very similar. As such, many benign network traffic flows are included with
malicious traffic flows as part of the clustering process. However, the overall detection
rate including two worst cases (i.e. AVG results in Tables 3 and 4) shows that
DroidClassifier with clustering is more accurate than DroidClassifier without cluster-
ing. In addition, the clustering mechanism enables the cluster-level classification,
which classifies malware as a group, while the mechanism without clustering classifies
malware individually. This makes DroidClassifier with clustering much more efficient
than the mechanism without clustering, in terms of system processing time.

5.4 Comparing Performance with Other Mobile Malware Detectors

In this section, we compare our detection results with other malware detection approa-
ches, including Drebin, PermissionClassifier, Aresu et al. [2], and Afonso et al. [1].

– Drebin [4] is an approach that detects malware by combining static analysis of
permissions and APIs with machine learning. It utilizes Support Vector Machine
(SVM) algorithm to classify malware data set.

– PermissionClassifier, on the other hand, uses only permission as the features to
perform malware detection. During the implementation, we use the same malicious
applications used to evaluate Drebin. Then we use Apktool [29] to find the per-
missions called by each application. We randomly separate the data set as training
and testing set. SVM classification approach is employed to perform malware
classification.

– Aresu et al. [2] extract malware signatures by clustering HTTP traffic, and they use
these signatures to detect malware. We implement their clustering method, and
compare the result with that produced by our system.

– Afonso et al. [1] develop a machine learning system that detects Android malicious
apps by using the dynamic information from system calls and Android API func-
tions. They employ a different dynamic way to detect malware and also use Android
Malware Genome Project [36] as the dataset.

Table 5 reports the results of our evaluation. Drebin uses more features than Per-
missionClassifier, including API calls and network addresses. As a result, Drebin
outperforms PermissionClassifier in detection accuracy. We also compare the results of
our system against those of 10 existing anti-virus scanners [4]: AntiVir, AVG, Bit-
Defender, ClamAV, ESET, F-Secure, Kaspersky, McAfee, Panda, Sophos. We report
the minimum, maximum, and average detection rate of these 10 virus scanner in
columns 5 to 7 (AV1 – AV10).
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The most time consuming part of the hierarchical clustering is the calculation of the
similarity matrix. Aresu et al. [2] use one more feature, the aggregation of values in
Request-URI field, to build their clustering system. We implement their method and
evaluate the time to compute the similarity matrix. We then compare their time con-
sumption for matrix computation of each malware family with that of DroidClassifier
and report the result in Table 6. For BaseBridge, DroidKungFu, FakeDoc and Gap-
pusin, our approach incurs 60% to 100% less time than their approach while yielding
over 94% detection rate. For other families, the time is about the same. This is due to
the fact that those families do not generate traffic with Request-URI field.

Drebin and PermissionClassifier are the state-of-the-art malware detection system
with high detection accuracy. Our approach is dynamic-analysis based approach. In the
literature, as far as we know, there is a lack of comparative work using dynamic
analysis on a large malware dataset to evaluate malware detection accuracy. Therefore,
though Drebin and PermissionClassifier use static analysis features, we compare with
them in terms of malware detection rate to prove the detection accuracy of
DroidClassifier. As our proposed classifier is networktraffic based classifier, the main
advantage of our classifier is that we can deploy our system on gateway routers instead
on end user devices.

Work by Aresu et al. uses clustering to extract signatures to detect malware. We
have emphasized the difference between our work and Aresu before. In terms of
comparison, we compare the detection rate and time cost with them. Our work can
achieve over 90% detection rate. Even though the purpose of our clustering is different,

Table 5. Detection rates of DroidClassfier and ten anti-virus scanners

Method Droid
classifier

Permission
classifier

Drebin Aresu
et al.

Afonso
et al.

AV1 – AV10
Min Max Avg.

Full
dataset

94.33% 89.30% 93.90% 60–
100%

96.82% 3.99% 96.41% 61.25%

Table 6. Time comparison of matrix calculation (Experiments run on Apple MacBook Pro with
2.8 GHz Intel Core i7 and 16G memory)

Family name Number of requests DroidClassifier (seconds) Aresu et al. (seconds)

Plankton 1075 361 361
BaseBridge 454 37 10230
DroidKungFu 359 86 3520
FakeDoc 229 9 820
Opfake 96 8 8
FakeInstaller 73 9 9
FakeRun 75 10 10
Gappusin 81 11 264
MobileTx 227 61 61
Iconosys 20 9 9
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we can still compare the clustering efficiency. For BaseBridge, DroidKungFu, FakeDoc
and Gappusin, our approach, in terms of clustering time, is more efficient than their
approach by 60% to 100%.

Work by Afonso et al. [1] can achieve the average detection accuracy of 96.82%.
So far, the preliminary investigation of detection effectiveness already indicates that our
system can achieve nearly the same accuracy. Unlike their approach, our system can
also classify samples into different families, which is important, as repackaging is a
common form to develop malware. Their approach still requires that a malware sample
executes completely. In the case that it does not (e.g., interrupted connection with a
C&C server or premature termination due to detection of malware analysis environ-
ments), their system cannot perform detection. However, our network traffic-based
system can handle partial execution as long as the malware attempts to send sensitive
information. The presence of our system is also harder to detect as it captures the traffic
on the router side, preventing certain malware samples from prematurely terminating
execution to avoid analysis.

6 Limitations and Future Work

In this paper, we use HTTP header information to help classify and detect malware.
However, our current implementation does not handle encrypted requests through
HTTPS protocol. To handle such type of requests in the future, we may need to work
closely with runtime systems to capture information prior to encryption, or use
on-device software such as Haystack [23] to decrypt HTTPs traffic.

Our system also expects a sufficient number of requests in the training set. As
shown in families such as Iconosys, insufficient data used during training can cause the
system to incorrectly classify malware and benign samples. Furthermore, to generate
network traffic information, our approach, similar to work by Afonso et al. [1], relies on
Monkey to generate sufficient traffic. However, events triggered by Monkey tool are
random, and therefore, may not replicate realworld events especially in the case that
complex event sequences are needed to trigger malicious behaviors. In such scenarios,
malicious network traffic may not be generated. Creating complex event sequences is
still a major research challenge in the area of testing GUI- and event-based applica-
tions. To address this issue in the future, we plan to use more sophisticated event
sequence generation approaches to including GUI ripping and symbolic or concolic
execution [13]. We will also evaluate the minimum number of traffic requests that are
required to induce good classification performance in future works.

Currently, our framework can only detect new samples from known families if they
happen to share previously modeled behaviors. For sample requests from totally
unknown malware samples, our framework can put all these similar requests into a
cluster. This can help analysts to isolate these samples and simplify the manual analysis
process. We also plan to extract other features beyond application-layer header
information. For example, we may want to focus on the packet’s payload that may
contain more interesting information such as C&C instructions and sensitive data. We
can also combine the network traffic information with other unique features including
permission and program structures such as data-flow and control-flow information.
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Similar to existing approaches, our approach can still fail against determined
adversaries who try to avoid our classification approach. For example, an adversary can
develop advanced techniques to dynamically change their features without affecting
their malicious behaviors. Currently, machine-learning based detection systems suffer
from this problem [32]. We need to consider how adversaries may adapt to our clas-
sifiers and develop better mobile malware classification and detection strategies.

We are in the process of collecting newer malware samples to further evaluate our
system. We anticipate that newer malware samples may utilize more complex inter-
actions with C&C servers. In this case, we expect more meaningful network behaviors
that our system can exploit to detect and classify these emerging malware samples.

Lastly, our system is lightweight because it can be installed on the router to
automatically detect malicious apps. The system is efficient because our approach
classifies and detects malware at the cluster granularity instead of at each individual
request granularity, resulting in much less classification and detection efforts. As future
work, we will experiment with deployments of DroidClassifier in a real-world setting.

7 Conclusion

In this paper, we introduce DroidClassifier, a malware classification and detection
approach that utilizes multidimensional application-layer data from network traffic
information. An integrated clustering and classification framework is developed to take
into account disparate and unique characteristics of different mobile malware families.
Our study includes over 1,300 malware samples and 5,000 benign apps. We find that
DroidClassifier successfully identifies over 90% of different families of malware with
94.33% accuracy on average. Meanwhile, it is also more efficient than state-of-the-art
approaches to perform Android malware classification and detection based on network
traffic. We envision DroidClassifier to be applied in network management to control
mobile malware infections in a large network.
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Abstract. Ransomware is a class of malware that aim at preventing vic-
tims from accessing valuable data, typically via data encryption or device
locking, and ask for a payment to release the target. In the past year,
instances of ransomware attacks have been spotted on mobile devices
too. However, despite their relatively low infection rate, we noticed that
the techniques used by mobile ransomware are quite sophisticated, and
different from those used by ransomware against traditional computers.

Through an in-depth analysis of about 100 samples of currently active
ransomware apps, we concluded that most of them pass undetected by
state-of-the-art tools, which are unable to recognize the abuse of benign
features for malicious purposes. The main reason is that such tools rely
on an inadequate and incomplete set of features. The most notable exam-
ples are the abuse of reflection and device-administration APIs, appear-
ing in modern ransomware to evade analysis and detection, and to ele-
vate their privileges (e.g., to lock or wipe the device). Moreover, current
solutions introduce several false positives in the näıve way they detect
cryptographic-APIs abuse, flagging goodware apps as ransomware merely
because they rely on cryptographic libraries. Last but not least, the per-
formance overhead of current approaches is unacceptable for appstore-
scale workloads.

In this work, we tackle the aforementioned limitations and propose
GreatEatlon, a next-generation mobile ransomware detector. We foresee
GreatEatlon deployed on the appstore side, as a preventive countermea-
sure. At its core, GreatEatlon uses static program-analysis techniques to
“resolve” reflection-based, anti-analysis attempts, to recognize abuses of
the device administration API, and extract accurate data-flow informa-
tion required to detect truly malicious uses of cryptographic APIs. Given
the significant resources utilized by GreatEatlon, we prepend to its core
a fast pre-filter that quickly discards obvious goodware, in order to avoid
wasting computer cycles.

We tested GreatEatlon on thousands of samples of goodware, generic
malware and ransomware applications, and showed that it surpasses cur-
rent approaches both in speed and detection capabilities, while keeping
the false negative rate below 1.3%.
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1 Introduction

Nowadays there are approximately 1.9 billion smartphone and tablet users world-
wide [1], using 3.7 billion devices, a number that is expected to grow to 6.75
billion by 2021 [2]. This widespread diffusion of mobile devices makes the attack
surface substantial and the tendency to store sensitive data on mobile devices
makes them an attractive target for malware authors.

According to GData [3], in the first half of 2015 more than 1 million infections
on Android devices occurred, which means 6,100 newly infected devices every
day, a 25% increase since 2014. Out of these infections, a few more than a half
are financially motivated. More specifically, in 2015 the most dangerous threats
were ransomware, whose number of families doubled in only one year and infected
nearly 100,000 distinct users, a five-fold increase since 2014 [4].

Even though there are tools [5] that aim at post-infection recovery, they are
effective only against some (known) ransomware families. Moreover, the state-of-
the-art approach [6] is imprecise since it is only partially able to recognize certain
feature of modern mobile ransomware. HelDroid works by analyzing three main
characteristics that belongs to a ransomware, composed by a text, encryption,
and locking analyzer. In this paper, we propose how to enhance HelDroid to
overcome the limitations that we noticed after about one year of operation on
modern ransomware families. More in detail, we modified the static taint analy-
sis tool, on which the encryption detector is based. For instance, preventing
decryption flows from being erroneously considered as malicious, lowering the
number of false positives. Furthermore, we identified a different set of sources
and sinks that allows the detector to identify encryption flows independently
of the particular folder that contains the target files and augmented HelDroid
for detecting the abuse of admin APIs, which are used by modern ransomware
to urge victims to effectively lock the device. In addition to that, we propose a
heuristic to statically resolve the method invoked via the most common reflection
patterns, even in the presence of lightweight method name obfuscation. Finally,
we implemented a pre-filter that aims to reduce the overhead of HelDroid by
recognizing goodware.

We tested the resulting system, named GreatEatlon, on thousands of sam-
ples including ransomware, generic malware and goodware, using HelDroid as a
benchmark.

In summary, the main contributions of this work are:

– a novel encryption-detection approach that can recognize, with good pre-
cision, malicious encryption flows, thanks to a generic set of sources and
sinks, and by taking into account the nature of the encryption operation
(i.e., encryption vs. decryption initiated by the user via UI);

– a static technique, to discover device administration APIs abuse, which is
widely used by modern ransomware families;

– a heuristic to detect the most common patterns used by malware to call
methods via reflection;

– a lightweight and fast pre-filter able to discard goodware from the analysis;
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2 Motivation

In this section, we introduce the problem in more detail, together with some
solutions proposed by other researchers along with their limitations, and finally
set the goals for this work.

2.1 Ransomware

A ransomware is a particular kind of malware which business model is to extort
money from the victims. In order to force the user to pay the ransom, ransomware
usually performs actions that limit the ability for the victim to use her device
such as screen locking, or encrypting personal files. Mobile ransomware repre-
sents a concrete threat that is increasing by about 14.8% per year [7]. Mobile
ransomware started with SimpleLocker [8], which is the first family of mobile
ransomware that encrypts user’s data with a unique key embedded in the binary
and subsequently ask for money. In 2015 a more advanced version of Simple-
Locker [9] appeared, instead of using a unique key able to decrypt and encrypt,
it uses a per-device key.

It is important to note that by default Android’s security model does not
allow applications to do all kinds of operations. In particular, there are many
APIs that are considered as potentially dangerous. In order to let an applica-
tion to use these APIs, Android requires that, at install time, the user explicitly
grants an application all the permissions it needs. Moreover, if an application
needs to use the so-called Device Administration APIs (Sect. 3.2), then an addi-
tional run-time permission grant dialog is shown to the user, listing the admin-
istration policies the application requires, together with a brief message about
the associated risk. Since the decision of whether to grant or deny these permis-
sions is made by the user, it is very important that she understands the danger
associated with the permission. Unfortunately, in [10] researchers have demon-
strated that 84% of the users either do not pay attention to the permissions
they grant or do not even know about the existence of them, and only 20% of
all participants demonstrated “awareness of permissions and reasonable rates
of understanding,” choosing at least 70% of right answers to the survey they
took. In fact, malware authors exploit this lack of attention to massively obtain
permissions and use them to perform malicious actions and to spread quickly.

2.2 State of the Art

Being mobile ransomware a recent problem there are currently two kinds of
tools available: commercial removal/cleanup utilities (e.g., Avast Ransomware
Removal [5]) and a research prototype that we prosecuted in [6], which offer a
more generic approach, mainly based on static analysis.

Ransomware removal/cleanup utilities are specific to each ransomware family,
thus it requires a certain effort keep them up to date with the development of
new families. Additionally, these utilities are mobile applications that, like any
Android app, are restricted by the security model of Android, hence they have
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limited functionalities. Therefore, their detection approach is not possible to
do anything more than signature checking [11]. Moreover, certain ransomware
families exploit high privileges (e.g., device admin API) to kill those processes
that are typically associated to common AVs.

The second approach HelDroid, proposes a feature-based detection mech-
anism using advanced static-analyses techniques directly on the bytecode
extracted from APK files. We envisioned HelDroid deployed on the app-store
side to scan submitted application’s code and resources in order to discover
whether they exhibit one or more characteristics that belong to a ransomware-
distinguishing feature set.

The quality of the outcome strongly depends both on the set of extracted fea-
tures and on the ability of HelDroid to extract them correctly. HelDroid recog-
nizes three main characterizing actions than can be used to distinguish ran-
somware from other kinds of malware or goodware. Namely, it detects whether
the app is (1) displaying threatening message, (2) locking the device, and (3)
encrypt personal files. Clearly, since HelDroid is based on static analysis, what
it actually detects is the presence of code dedicated to implement these features.
Such code may or may not be executed at runtime, depending on factors that
fall outside the scope of analysis of HelDroid.

After about one year of experience with running1 HelDroid on thousands of
mobile ransomware samples, taken from the VirusTotal daily feed, we concluded
that this set of features is good to characterize ransomware, it does not take into
account some new features introduced by the most recent families, such as the
ability to use highly privileged APIs. For this reason, we augmented the original
HelDroid it with new detectors, which will be explained in detail in the following
sections.

Moreover, we found that some of the features detectors were not precise
enough to detect all possible ways for a ransomware to perform a malicious
action. In particular, we refer to the encryption detector, which can easily be
circumvented by using the encryption API in a slight different way than the
expected one, and to the text detector, which does not take into account the
possibility to convey the threatening text through pictures instead of plain text.

2.3 Goals and Challenges

The goal of this work is to improve the ability of some detectors to correctly
identify those features that make ransomware distinguishable from other mal-
ware and goodware, providing at the same time new ones capable of finding
new characteristics. In this way, the updated system will be able to increase the
reliability of the outcomes.

The main challenge is to create a solution that is generic enough to be effec-
tive even with new samples.

1 http://ransom.mobi/scans.

http://ransom.mobi/scans
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3 Approach

In this section, we introduce, at a high level, the novel detectors, postponing the
implementation details to Sect. 4. Recall that the process unit of GreatEatlon is
the APK file. Therefore, the detectors described in the rest of this section are run
on each APK file—in addition to the detectors already present in HelDroid. Each
APK file contains three kinds of files: a manifest file (AndroidManifest.xml),
source code files, and resource files. We used Apktool [12] to decode APK files,
but the same information can be extracted in other ways.

As in HelDroid [6], the final output of GreatEatlon is a combination of the
detectors. However, the focus of this paper is not how the detectors are combined,
but rather on how we improved the original ones.

3.1 Encryption Detector

Ransomware encrypts personal files of a victim, which can be stored in any paths,
typically under the SD card tree. These paths can be retrieved (by the malware)
in several ways. Therefore, a path- or folder-dependent detection can easily be
circumvented. Our solution, instead, is based on the impossibility of the attacker
to know the location of the target files in advance. As a result, ransomware will
perform at least one folder/file-listing operation, mediated by the OS, to know
which files are within inside a specific folder. Therefore, we take advantage of a
static taint analysis to track all code flows originating in a “query” (a request
sent to the OS to get the list of files contained inside a folder) and ending in one
of the encryption-related APIs that Android offers to developers. The OS offers
only a few ways to perform such query: a couple of methods from the File class
and a low-level query that relies on the underlying shell. For this reason, if we
are able to detect that there is an information flow starting from one of these
methods and ending in a bulk file encryption, then we can reasonably assume
that relevant encryption-related operations are made to user’s files.

We minimize the chances of false positives by focusing only in those flows that
actually perform encryption (and not decryption) because the latter is harmless,
and can be performed by a wide variety of benign applications. To this end, we
implemented the notion of conditional flows. A conditional flow is considered
by the taint-analysis engine only if there exists at least one path between the
source(s) and the sink(s) that satisfies all the given conditions. In our proof-of-
concept prototype, we support conditions on function arguments because this is
the minimum requirement for implementing our detection logic, but the concept
can be extended further.

The ability for an encryption-related flow to either encrypt or decrypt
depends on the value with which the Cipher (i.e., the Java class responsible
for performing encryption and decryption) is initialized. Therefore, we are inter-
ested in defining conditions that based on this value. In particular, the init()
method (and all its overloads) currently supports only two values: ENCRYPT MODE
(i.e., 0x1) and DECRYPT MODE (i.e., 0x2). Given that these values are numeric
constants, and that both the compiler for the Dalvik virtual machine and
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the taint-analysis tool are able to perform constant propagation, we can
adopt static conditions to make sure that a given tainted flow is an encryp-
tion or decryption one. To satisfy such a condition, an instruction like
cipher.init(ENCRYPT MODE, ...) must be called before a sink is reached.

3.2 Device Administration APIs Misuse Detector

Android’s security model requires each application using Device Administration
APIs to declare a specific set of permissions and components in the manifest file.
Ransomware is obviously not exempted from doing so, allowing us discover the
misuse of these APIs. More specifically, an app that needs to use device-admin
policies must:

– Declare a class extending DeviceAdminReceiver, which is a component in
charge of receiving and processing specific broadcast messages sent by the
system whenever particular events happen (e.g., when the user grants or
revokes the privileges to the app).

– Declare a so-called policy meta-data XML file containing the list of all security
policies that the app wants to use.

– Associate the XML file with the Receiver through a <meta-data> XML
element.

Given these strict requirements, we created a detector that parses the
AndroidManifest file, looking for the declaration of the appropriate Receiver.
If found, and if the related meta-data contains dangerous policies (e.g., the abil-
ity to change the device unlock password and/or to remotely wipe the device),
then it proceeds to analyze the source code.

Whenever the manifest and policy meta-data file analyses are completed and
return a positive result, the detector processes the application source code. In
this phase, we are interested in discovering if there exists at least a call to one of
the potentially harmful methods of DevicePolicyManager, the main class that
implements the Device Administrator APIs. In particular, the methods of inter-
est are wipeData() and resetPassword(). To check whether the application
calls one of these methods, we inspect the CFG to perform reachability analysis.

Interestingly, in an effort to hinder abuse of such APIs for permanent screen
locking, the upcoming major release of Android (7.0, code-named “Nougat”)
eliminates [13] the possibility of creating device-admin policies to (program-
matically) change the pass-code (e.g., PIN, pattern) without user intervention.
This will certainly help in the future, but a short-time countermeasure—such as
the detector presented in this section—is still required until mass adoption of
Android Nougat.

3.3 Reflection Heuristic

Given the static nature of our analyses, all ransomware samples that make use
of reflection or other dynamic techniques would not be detected by HelDroid,
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causing the detector to produce a wrong outcome. Therefore, we implemented
a heuristic that resolves the most common reflective calls and includes them in
the CFG. For efficiency, this heuristic is invoked only if the statically built CFG
does not trigger any of the GreatEatlon detectors. In particular, GreatEatlon
perform a series of forward and backward analyses that recognize the usage of
reflection (i.e., method calls like method.invoke()) and reconstruct which are
the target class and method in case they are obfuscated.

Although far from being general and exhaustive, we our heuristic traces
back to the origin of the string that holds the method name, including string-
obfuscating transformations—if any (e.g., the original string is “lockNow” but
the malware author obfuscated it by inserting random chars in between each cou-
ple of chars). Since we noticed that the de-obfuscating process typically involves
only methods from the String class (such as replace or substring), our detec-
tor re-applies any method found along the backward path on the target string.
This method is clearly not generic, and can certainly be improved. However,
string de-obfuscation is a wide research topic, falling outside the scope of this
paper, which leverages such program-analysis techniques rather than proposing
new ones.

3.4 Text Detector

In its original form implemented in HelDroid [6], this component is responsible
for analyzing any ASCII string extracted from the sample (both statically and
dynamically), guessing the language, and determining whether the phrases form
a threatening message—typical of any ransomware scheme.

In GreatEatlon, we pre-pended a lightweight image-processing phase to this
component in order extract text from images, so to make the overall system
resilient to evasion (e.g., text rendered into images). In particular, we added an
image scanner that inspects all image files shipped in the application resource
directories and applies a set of transformations to optimize them for optical
character recognition (OCR).

The extracted text is then automatically corrected by a standard spell
checker, to remove the obvious errors that may occur during OCR. The result-
ing, corrected text is then processed with the original text analyzer of HelDroid,
which queries a classifier that returns a score indicating the amount of “threaten-
ing” sentiment found. If higher than an empirically determined threshold, then
the text is considered as threatening, indicating that the sample is likely to be
ransomware.

3.5 Lightweight Pre-filtering

To quickly decide whether an application is suspicious, and thus worth spending
computing resources to analyze it, we adopt a supervised-learning classification
approach. When tackling a classification task it is crucial to design features
that best discriminate between goodware and all the rest. A great amount of
research work has been done in the area, proposing several static and dynamic
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features that characterize malware vs. goodware [14–20]. However, if the goal is
malware detection, errors are very costly in either sense (i.e., false positives and
negatives).

Instead, we make use of (some of the) features identified by previous work
and relax some of these constraints by working on the dual problem (i.e., detect-
ing goodware). Since the pre-filtering is followed by the ransomware-detection
pipeline, the cost of a few benign samples mis-classified as suspicious is negligible,
because they will be eventually recognized as non ransomware. In other words,
we can allow a slight penalty in the pre-filter accuracy in favor of almost perfect
precision. We detail the choice of the classification algorithms and the features
that we selected in Sect. 4.4. Since we need this phase to be fast, features that
can be only extracted at runtime are unsuitable because the extraction would
be prohibitively time consuming. Therefore, we focus on features that can be
extracted efficiently by parsing the APK files. The output of this phase is a
binary decision: “goodware” or “suspicious”.

4 Implementation Details

In this section, we explain the technical details of GreatEatlon.

4.1 Encryption Detector

To implement our encryption detection approach, we extended FlowDroid [21]
(the state-of-art static taint-analysis tool for Android) to allow the taint-
propagation engine to track information flows through files (e.g., a function
writes to a file, another function reads such file, and passes the reference to
function). Note that FlowDroid can be configured to ignore flows that origi-
nate from the user interface, effectively eliminating many false positives due to
benign, user-initiate encryption. In particular, we modified FlowDroid to track
information flows between (1) InputStream (and related classes) linked to the
victim files and (2) Cipher objects in charge of encrypting them. Ransomware
usually reads the original file through a loop, placing the bytes read in one of
the parameters passed to the read() method, which is usually an array. Given
that this parameter is not tainted directly by the ransomware, but it is manipu-
lated internally by the InputStream, FlowDroid would not be able to detect this
information flow. Luckily, the component that is in charge of deciding whether a
particular instruction is involved in taint propagation (namely, one of the “taint
wrapper” classes) can be easily extended to override the default taint propaga-
tion rules. Hence, we created a custom TaintWrapper that taints the parameter
that will receive the file’s bytes if the underlying InputStream is tainted in turn.
In this way GreatEatlon is able to taint also the Cipher objects that receive the
same tainted parameter, and that will eventually perform the encryption.

Conditional Flows. We designed conditional flows to be as generic as possible,
in order to allow adding, removing and modifying conditions in a simple way
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in the future. In particular, we created a module that “injects” conditions in
FlowDroid by reading them from a text file formatted as follows:

NUMBER -> <CLASS: RET TYPE METHOD(PARAMS)>

where:

– NUMBER is the index for the condition.
– CLASS is the fully-qualified class name for the class that declares the method

on which we want to check the condition.
– RET TYPE is the method return type.
– METHOD is the method name.
– PARAMS is the (possibly empty) list of comma-separated method’s parameters.

The NUMBER token can take any non-negative integer value (typically a sequential
number starting from 0 or 1) and is not part of the method signature, but instead
it is used by GreatEatlon to decide whether the condition should be considered
as an alternative or standalone. In fact, it is possible to specify an alternative
condition (i.e., a condition composed by two or more sub-conditions that is valid
if at least one of the sub-conditions is valid) by using the same value for two
or more conditions. In other words, the parser evaluates all conditions with the
same index as logical disjunctions and conditions with different indexes as logical
conjunctions. Alternative conditions can be useful to specify requirements on a
method that has overloads or on multiple different methods.

The PARAMS token represents the list of actual parameters used in a method
call. Currently, the only allowed values are Java primitive types, that are numbers
(both integers and floating-point decimals), Boolean values, and characters, plus
null, and a custom type indicated by “ ”. This custom type is essentially a
“don’t care”, meaning that the i-th parameter can take any value (including
reference types).

Condition Verification. In general, we could check for condition satisfac-
tion either while performing the taint propagation, or after the taint analysis
is completed. These two approaches have different impacts on performance and
resource usage. The latter needs to store all the potential source-to-sink paths
resulting from the taint analysis to perform the subsequent check. This number
can explode if the sample is complex. Moreover, given that FlowDroid does not
return the full path, but just a summary (i.e., a path that typically contains
only the source, the sink and the intermediate nodes involved in branch deci-
sions), it would be necessary to manually reconstruct the full source-to-sink path
to check whether there are some nodes that satisfy the conditions. This implies
performing an additional control-flow graph analysis. In the worst case, all the
potential paths are reconstructed and visited twice: the first time to perform
the taint propagation, and the second time to check for conditions verification.
This solution, however, does not require any modification to the taint analysis
tool, so it might be helpful to implement the analysis this way if taint analysis
is performed by a proprietary or immutable tool.
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Instead, when conditions are checked while performing the taint analysis, the
control-flow graph is examined only once, by the taint-analysis tool, which would
also be in charge of verifying the conditions. This approach is undoubtedly faster
than the previous one, but it requires to modify the taint analysis tool source
code. Thanks to its open-source nature, we were able to extend InfoFlow, the
FlowDroid sub-component that computes the taint analysis, to perform it this
way, by modifying the objects that are responsible for taint tracking in order to
make them deal with conditions sets. In particular, for each node visited during
the taint propagation, we check whether it contributes in satisfying the condi-
tions set. This information is then stored inside the object responsible for con-
taining all data related to the taint, which is propagated to all children of a node
when the CFG is explored. We finally modified the TaintPropagationResults
class, which is responsible for adding paths to the set of results, to allow condi-
tions verification: In this way, whenever a sink node is reached, this component
adds the source-to-sink path to the set of results only if the associated condition
set has been verified by a previous node.

4.2 Device Administration APIs Misuse Detector

In order to detect misuses of the device-admin APIs, we created a component
that starts by analyzing the AndroidManifest. Subsequently, we take advan-
tage of FlowDroid for generating CFG and entry-points, because it is designed
to deal with this kind of applications and it can be configured to consider or
ignore specific callbacks that can be invoked during the application life-cycle.
For instance, two interesting entry-points are the onEnable() and onDisable()
methods from class DeviceAdminReceiver, which are called by the OS whenever
the user grants or revokes device administration rights to the application.

After these setup operations, the tool is ready to analyze the CFG. Since we
are interested only in knowing if some methods are called by the sample but not
in knowing the exact path, we can perform a simple reachability analysis, which
allows us to quickly discover such a method call, if it exists. In particular, we
decided to explore the CFG in a breadth-first fashion (BFS), because since the
step costs are uniform (i.e., we can assume that visiting a child node has a unitary
cost) it can provide the optimal solution, reaching the target node (if it exists)
by traversing as few edges as possible. Moreover, we avoid visiting the same node
twice. This serves both as an optimization (when a target node is present in the
CFG) and to avoid entering an infinite loop it the CFG is not acyclic. A never-
terminating analysis, for instance, could occur if a sample contains a suspicious
AndroidManifest, but it does not actually use any of the potentially dangerous
methods, which often happens with (usually benign) applications that require
more permissions than needed, or when the target nodes cannot be recognized
by the detector, which happens when the sample uses reflection or other kinds
of obfuscation.
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4.3 Reflection Heuristic

Thanks to manual analyses, we observed that many ransomware applications
exploit reflection to call device administration-related methods, which we can-
not detect through the above-described procedure. For this reason, we decided to
implement a heuristic to detect some common cases, in order to reduce the num-
ber of false negatives. In this step, we reuse the CFG generated in Section 4.2 to
perform a series of forward and backward analyses in order to discover whether
reflection is used and, if this is the case, to try to figure out which method
is executed. In particular, we perform a first forward analysis from the appli-
cation entry-points trying to reach a reflection call, that is an instruction like
method.invoke(...), where method is an object from class Method and rep-
resents a Java-callable method. If we find at least one instruction of this kind,
it means that the application dynamically calls a method. Unfortunately, this
information is not enough to prove that the sample is performing something
malicious because we do not know the invoked method yet. To obtain this addi-
tional information, we perform a backward analysis whose target is to reach the
method variable assignment, which usually involves hard-coded strings (because
the attacker already knows which is the method to call).

Unluckily we discovered that in a few cases this procedure is not enough
because in several samples the hard-coded method name was obfuscated, in
order to circumvent those AVs that perform strings analysis. In particular, we
observed that attackers manipulate these strings by adding some extra characters
to the method name, for instance by transforming the string “resetPassword” to
“resLetXPassVUwgXord”. Given that the string de-obfuscation is performed by
applying some transformations on the string, such as String.replace, we, in
turn, take advantage of reflection to apply the same modifications to the original
string to try to clean it.

4.4 Lightweight Pre-filtering

The design of the filter revolves around the design of the classification features,
the automatic feature-selection algorithm, and the choice of the classifier.

Feature Set. Our features can be extracted via simple static analysis. Although
some of them are inspired by previous work (e.g., [15,21]), we propose novel
features. In particular, features that capture the app behavior, package name
heuristics, file types and count, obfuscation, domain name “well-formedness”
and reachability, and commands executed through Runtime.exec(). To keep
the filter lightweight, the majority of our features are either binary (i.e., pres-
ence vs. absence) or numeric. The behavioral features (namely, Called APIs and
Lightweight Behavioral Features) express runtime behavior of an app, although
we match them statically, at the price of a few more false positives, which are
perfectly acceptable given the problem setting.
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Permission Features (Binary). Android applications are sandboxed within Linux
processes, plus an additional layer of permissions that regulate inter-process com-
munication. Permissions [22,23] are known to be abused by malware to escape
the sandbox. Indeed, previous research showed that permissions are distributed
differently among goodware vs. malware [19,24], and can certainly be used to
recognize goodware from “suspicious” applications.

Lightweight Behavioral Features (Binary, Novel). We developed simple reach-
ability heuristics that determine, statically (from the Smali code) whether the
application sends SMS at startup (i.e., onStartup), reads phone data at startup,
sends data when receiving an SMS, sends SMS to short numbers used in pre-
mium services, calls built in utilities (e.g., su, ls, grep, root, chmod), and so forth.
Clearly, these features alone are by no means complete nor perfect for malware
detection. However, combined with the others, they help in finding suspicious
samples.

Other Binary Features (Novel). We calculate some aggregated features from
package names, URLs and use of obfuscation. For example, one feature is whether
the package name is composed by only one part, whether the domain of the main
package name is valid, the presence of URLs whose domain does not match the
main package name, whether ProGuard has obfuscated the source code, and so
on. We designed this diverse but simple set of features by manually inspecting
several malicious and benign samples.

Numerical Features (Novel). We include numeric features such as the number of
files in an APK, its size, number of permissions, activities and services, the aver-
age class size, the total number of packages and the number of classes contained
only in the main package.

Feature Selection. We ended up with a collection of more than 220 attributes.
GreatEatlon automatically selects the first 120 most significant features by gain
ratio ranking [25]. The choice of gain ratio as information measure is driven
by the use of decision trees and random forests as suitable classifier models, as
explained in the next section.

Classifier Model and Training. We tested several classification techniques,
including decision trees (J48), random forests, support vector machine (SVM),
stochastic gradient descent (SGD), decision tables (DT), and rule learners (JRip,
FURIA, LAC, RIDOR). We found that the best trade off between time, accuracy
and precision is an ensemble classifier that performs majority voting [26] among
a J48 decision tree, a random forest and a decision table. Essentially, it chooses
the prediction on which most classifiers agree. A relevant aspect of our design
is that we incorporate a cost-sensitive wrapper around each classifier to make
false positives (non-goodware mis-classified as goodware) count more than false
negatives [27]. This is crucial to give more importance to precision. By empirical
tests, we found that the cost to assign to mis-classifications of such type in order
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to obtain reasonably high accuracy and very high precision ranges between 16
and 20 times the default mis-classification cost.

5 Experimental Evaluation

In this section, we present the experiments that we performed to evaluate
GreatEatlon as well as the dataset we used to test it.

5.1 Experiments

We conducted four experiments to evaluate the ability of GreatEatlon to detect
file-encrypting ransomware apps, and three experiments to evaluate the perfor-
mance of the pre-filter. More precisely, Experiment 1 evaluates the detection
precision between GreatEatlon and the state of the art on dataset of manu-
ally vetted ransomware apps known to encrypt files. Experiment 2 is similar
to Experiment 1, but on a larger dataset, containing potential file-encrypting
ransomware. Experiment 3 evaluates the number of false positives on a dataset
of benign apps and generic malware samples. Experiment 4 evaluates the qual-
ity of the image scanner. Experiment 5 and 6 evaluate the precision and speed
of the pre-filter, and Experiment 7 evaluates the impact of the pre-filter on a
large-scale scenario.

5.2 Dataset

We have built 5 distinct data sets to evaluate the various characteristics of
GreatEatlon:

– The Ransomware1 dataset, composed by 75 ransomware samples of which
5 were obtained from “Contagio Mobile” dataset [28] and the rest from Virus-
Total Intelligence [29]. We manually vetted these samples to ensure that they
actually try to surreptitiously encrypt files.

– The Ransomware2 dataset, composed by samples downloaded from Virus-
Total based on the AV labels. In particular, we queried the database for
samples with labels containing the most common ransomware family names,
or the generic ‘‘crypto’’ keyworkd, filtering out samples with less than 5
positive detections. We expect the dataset to contain both the kind of ran-
somware we want to analyze and other kinds of malware samples, due to the
intrinsic imperfection of AVs.

– The Malware dataset, composed by 153,982 malware samples, of which
147,145 obtained from the AndRadar project [30] and 6,837 from the Andro-
Total repository [31] (having at least 5 positive detections). This dataset
contain malware that we used to test precision and speed of the pre-filter.

– The ThreateningPicture dataset, which contains screenshots of threaten-
ing messages displayed by real ransomware samples, in English and Russian
language. In this dataset we included uncommon font faces with handwritten
style, so as to test the capabilities of the Tesseract OCR decoder.
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– The Generic dataset, composed by 1,239 goodware and generic malware
samples gathered both from the Google Play store and alternative markets.

– The AppScale dataset, taken from AndRadar, MalGenome, Contagio-
Minidump, and the top 1,000 APKs submitted to VirusTotal in between Dec
2014 and Jan 2015.

5.3 Experiment 1: GreatEatlon vs. State of the Art (Benchmark)

We compared the precision of the new encryption detectors of GreatEatlon
against those implemented in HelDroid using the Ransomware1 dataset. Hel-
Droid detected only 35 out of 75 ransomware samples, whereas GreatEatlon
detected 74 samples. GreatEatlon is able to detect more samples thanks to the
customized taint analysis engine. For instance, many samples create target file
paths by combining dynamically obtained strings (e.g., file names as a result
of a directory listing operation) with hard-coded ones (e.g., default directory
names), or by using only hard-coded names. HelDroid is not able to taint fully
hard-coded paths. Consequently, even if the malware composes the target path
using a mix of hard-coded and dynamically obtained paths, the resulting path
will not be tainted because the composition itself would cancel any existing taint.
Conversely, GreatEatlon can detect this data flow because the taint is generated
only when the application retrieves files in bulk, and not when it obtains a
reference to one particular folder.

The false negative was caused by the fact that MainActivity, which contain
flow sources, is placed as a public inner class of the device-admin class. Unfor-
tunately FlowDroid does not support nested classes, and therefore it is unable
to detect flow sources originating from them. Clearly, this is a simple technical
limitation of FlowDroid, by no means affecting the conceptual validity of our
approach.

5.4 Experiment 2: GreatEatlon vs. State of the Art

We found 11 positives out of 547 analyzed samples. However, only 54 of them
were positive to the text detector. If we consider only these 54 samples, we notice
that only 43 of them have the WRITE EXTERNAL STORAGE permission—to write on
the SD card (all the aforementioned 11 positives belong to this set). This means
that the remaining 504 samples are certainly not file-encrypting ransomware
apps. We manually analyzed 10 samples, randomly chosen among the remaining
32 samples confirming that they were true negatives.

5.5 Experiment 3: False Positive Rate

We analyzed the Generic dataset to test the false positives rate of GreatEatlon.
The results show that our improved detectors do not confuse generic malware
with ransomware.
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5.6 Experiment 4: Image Scanner Quality

We tested the image scanner on the ThreateningPicture dataset. GreatEatlon
was able to extract text and classify it as threatening from all the original pic-
tures (i.e., the ones with original font). Instead, if we consider only the images
we created by using uncommon font faces, the detector was able to correctly
extract the ones with simple symbols, but failed in recognizing the others (e.g.,
handwritten style). However, we consider thin, handwritten or other fonts of the
like more difficult to read for victims, too, hence our assumptions on the reading
and understanding ease for threatening text would be no longer satisfied.

Table 1. Precision, accuracy, and area under the ROC curve of different classifiers.

Classifier(s) Accuracy Precision AUC

J48 93.74% 99.4% 0.979

SGD 90.90% 98.9% 0.916

Decision table 91.83% 99.5% 0.986

Random forests 87.18% 99.6% 0.991

J48 + DT + RF 92.75% 99.6% 0.934

J49 + DT + SGD 93.75% 99.6% 0.956

SGD + DT + RF 91.29% 99.6% 0.941

5.7 Experiment 5: Pre-filtering Precision

We evaluated the pre-filter on Malware dataset using the standard 10-fold
cross-validation approach. We split the dataset in 10 random sub-samples (9 for
training, 1 for validation) and repeated this procedure using each sub-sample
exactly once per validation. Table 1 shows that the classification capabilities
of our pre-filter are very encouraging, especially considering that the training
dataset is not homogeneous (e.g., samples from diverse sources and time frames).
Notice that the filter alone should not be used as a malware detector! Since
our scope is ransomware detection, as opposed to generic malware detection,
misclassified innocuous applications would have been analyzed anyways. The
goal of our filter is to reduce their amount vastly, and quickly, as showed in the
next experiment.

5.8 Experiment 6: Pre-filtering Speed

As training is performed offline, we are interested in measuring the speed of the
actual classification. Each APK goes through unpacking, feature extraction, and
then the actual classification. Using the Malware dataset, we measured that
the actual classification has a negligible impact (milliseconds), and unpacking
takes 2.484 seconds on average (median 1.922, 3rd quantile 2.814). The feature-
extraction step is the core of the pre-filter. Thus, we measured the execution time
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Fig. 1. Pre-filter execution time.

while varying the total size of Smali classes, total Smali classes count, and total
files count, and APK size. We found out that time is mainly influenced by the
total size of the Smali classes. Therefore, we plot this dependency in Fig. 1. In
the worst cases encountered in our large dataset, the feature extraction takes less
than 1.5s. Even considering the unpacking, in less than 4 seconds our pre-filter
produces an answer.

5.9 Experiment 7: Impact of the Pre-filter on Large Scale Analysis

We measured the response time of HelDroid with and without the pre-filter on
50 distinct random splits of 1,000 samples each from the AppScale dataset.
Under this scenario, with the pre-filter we pay a small precision penalty but we
gain 1.5 to 2.0× on the overall processing time, on average.

6 Limitations

Despite the good performance, GreatEatlon has some limitations, which are
described in this section.

6.1 Native Code

GreatEatlon assumes that ransomware will use the Android APIs. Despite the
effectiveness of GreatEatlon on the majority of the samples that we analyzed,
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it is unable to deal with native machine code, which could be used by malware
authors to evade static analyses. Nevertheless, it is possible to discover if a certain
sample makes use of native code, or by inspecting the Smali code looking for
methods containing the native modifier. In this case, it would be appropriate
to use an external, dedicated tool to perform the consequent analysis. Therefore,
this limitation is not conceptual, but simply technical.

6.2 Conditional Flows

Conditional flows are evaluated while performing the taint analysis. Although
in this way we save time and resources, we cannot specify complex conditions,
such as conditions related to object fields, or on values known only at runtime.
Therefore, if a sample bases its decision of whether to encrypt or decrypt a file
on a value that is computed at runtime, GreatEatlon would not be able to detect
it. Unluckily, there is no easy solution to both solve this problem with pure static
analysis, because the only way to precisely know the value stored inside a certain
variable is to watch such variable at runtime.

6.3 Reflection Heuristic

In Sect. 3.3, we anticipated that we designed this heuristic to detect the most
common approaches used by ransomware samples. Malware authors could evade
it by encrypting strings or other hard-coded values and decrypt them at runtime,
as soon as the application needs them. In this scenario, the only way to retrieve
those values would be to decrypt them (which requires to know the encryption
key), to retrieve the memory dump from a dynamic analysis or to use dynamic
techniques such as Harvester (see Sect. 7). Generally, the ultimate solution would
be to use a fully dynamic-analysis approach, because it would allow to know
with certainty which is the exact signature of the methods that the sample calls,
despite of the calling technique.

6.4 Image Scanner

Our image scanner assumes that each threatening text unit is contained inside a
single picture. In the future, though, ransomware samples could split the threat-
ening text in multiple images, rendering them in a sort of grid at runtime and
composing the complete message in a sort of “mosaic picture,” or an animated
sequence. In this scenario, GreatEatlon would probably be not able to extract
an amount of text significant enough to trigger the text analyzer, specially if the
complete threatening message is split in a great number of “tiles”.

In order to allow the image scanner to extract meaningful text, we would
need to pre-process the layout and Java files to an additional component that
is capable of deciding whether a given APK contains such “mosaic” pictures, if
that is the case, to reconstruct the final picture. Whenever the resulting image
is reconstructed, it can be submitted to our image scanner, that would treat it
as a traditional picture and extract any text it contains.
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7 Related Work

Ransomware Detection. HelDroid represents the state of the art in the field of
static ransomware detection and is the ground on which GreatEatlon is based.
HelDroid mainly contributed with three techniques: the text analyzer, which is in
charge of deciding whether a given string should be considered as threatening or
not, the lock detector, which is able to detect active action made by ransomware
that are trying to lock the user out of his phone, and the encryption detector,
which is able to detect whether an application is trying to do an unsolicited
encryption operations. In particular, we improved the encryption detection sys-
tem and we added a lightweight pre-filter that is able to recognize goodwares,
and discard it from the analysis queue.

Runtime Values Extraction. Harvester [32] is a new system intended to dynami-
cally extract runtime values. Since it is based on a cyclical combination of slicing
and code execution, it can extract values regardless of any possible encryption,
obfuscation or other anti-analysis techniques applied to them. Given its extrac-
tion capabilities, we think that this tool could be integrated into GreatEatlon to
replace the heuristic we developed, in order to improve both the device admin-
istrator abuse and the encryption detectors as well as FlowDroid’s recall (as
demonstrated by paper authors, Harvester improved FlowDroid detection by
roughly three times).

8 Conclusions

Ransomware is a real threat for mobile devices and is expected to grow in the
next years. As a countermeasure against this threat, we propose an approach
for detecting encryption-capable apps based on a customized static taint analy-
sis tool, allowing it to accept or discard taint flows based on a set of static
conditions. We also designed and developed a new component to detect device
administration API abuse, a feature that is present in the newest ransomware
families as well as in other recent, non-ransomware malware families.

Our experiments show that GreatEatlon can identify more encryption-
capable apps than the state of the art, while maintaining a low false positive
rate. Moreover, the new device administration API abuse detector allow us to
identify modern ransomware families with better precision. In particular, in the
experiment relative to the pre-filter show that is possible to detect goodware
with around 99% accuracy.

We believe that merging these new components with the (already good) text
analyzer and lock detector of HelDroid can lead to improved and fast detection
of modern mobile ransomware families, making GreatEatlon the most advanced
mobile ransomware detection tools. If we could also include some external tools
such as Harvester or other runtime values extractor, then we would be able to
deal with obfuscated, encrypted or other kinds of evasive samples, too.

Finally, we provide a publicly accessible website, which allows other security
researchers or end users to submit their samples, to focus on prevention and
fight the mobile ransomware threat.
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Abstract. Smartphones carry a large quantity of sensitive information
to satisfy people’s various requirements, but the way of using information
is important to keep the security of users’ privacy. There are two kinds
of misuses of sensitive information for apps. On the one hand, careless
programmers may leak the data by accident. On the other hand, the
attackers develop malware to collect sensitive data intentionally. Many
researchers apply data flow analysis to detect data leakages of an app.
However, data flow analysis on Android platform is quite different from
the programs on desktop. Many researchers have solved some problems
of data flow analysis on Android platform, like Activity lifecycle, callback
methods, inter-component communication. We find that Fragment’s life-
cycle also has an effect on the data flow analysis of Android apps. Some
data will be leaked if we don’t take Fragment’s lifecycle into consider-
ation when performing data flow analysis in Android apps. So in this
paper, we propose an approach to model Fragment’s lifecycle and its
relationship with Activity’s lifecycle, then introduce a tool called Frag-
Droid based on FlowDroid [7]. We conduct some experiments to evaluate
the effectiveness of our tool and the results show that there are 8% of
apps in our data set using Fragment. In particular, for popular apps, the
result is 50.8%. We also evaluate the performance of using FragDroid to
analyze Android apps, the result shows the average overhead is 17%.

Keywords: Data flow · Fragment · Android · Program analysis

1 Introduction

With the progress of technology, smartphones have pervaded into all aspects of
human life, and have become an indispensable part of daily life. Compared with
the traditional PC devices, smartphones carry more user privacy data, such as
location information, contact information, fingerprint information, text message
records, which brings endless attacks against smartphones. The security protec-
tion of smartphones has become a problem which needs to be solved urgently.
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According to the recent report [1], in the current smartphone markets, Android
platform market share has been far more than the iOS platform. This means
protecting the privacy of Android users is very important.

On Android platform, there is a variety of malware. In the research of Jiang’s
team [2], they classify the malware based on behavior. In their malware classifi-
cation, there are many kinds of malware which collect users’ privacy information
and leak it out. Sometimes, privacy information is not leaked by malware inten-
tionally. Developers always use some third-party libraries to develop an Android
app conveniently, which is hard for developers to know the details of data flow in
the libraries. And when they pass privacy information to the library procedure,
information may be leaked. The library itself can also lead to information leakage.

To protect the privacy information, there is a kind of technology called taint
analysis, whose main task is to record the data flow relationship among some spe-
cific objects. In taint analysis, before propagating the data flow, some nodes called
sources (in data leakage, these are sensitive APIs which get information like GPS,
location, etc.) should be specified. During the data flow propagation, taint analy-
sis will check if the data flow reach nodes called sinks (APIs which send messages).
Through taint analysis, privacy information leakage which violate predefined rules
will be found. There are two approaches to perform taint analysis on Android plat-
form: dynamic analysis and static analysis. Some dynamic analysis techniques like
TaintDroid [3], Droidscope [4] have been proposed. These approaches all are suf-
fering from the code coverage problem, that is, when running an app, some code
may not be executed. Moreover, as mentioned in [5], malware can use the run-
time information to decide whether it is running on a monitor or not. Then, it can
decide whether to trigger malicious behaviors or not.

Static analysis is performed with scanning the apps instead of executing
programs, which avoids the problems mentioned above. However, it demands
to emulate the runtime state of an app approximately. Previous researchers
[6–11] have proposed some approaches to solve the problems in static analysis
on Android platform. Chex [6] is a static analysis system designed to solve the
component hijacking problems of Android apps. To handle the multiple entry
points, Chex conducts data flow analysis for code reachable from each entry
point, and then combines these results to find data flow between code splits.
FlowDroid [7,8] models the taint-analysis problem within the IFDS [12] frame-
work for inter-procedural distributive subset problems. FlowDroid generates a
dummy main method for each app to model the control flow transfers between
component lifecycle methods. FlowDroid also models the control flow of call-
back methods in a dummy main method. Amandroid [9] and IccTA [10] handle
the inter-component communication when performing data flow analysis. Aman-
Droid calculates all objects’ points to information, while IccTA handles the situ-
ation when Activity is not the target of ICC based on FlowDroid. EdgeMiner [11]
conducts a deep study of callback methods in Android system. EdgeMiner pro-
poses an automatic approach to extract callback methods and their correspond-
ing registration methods in Android system. FlowDroid can apply EdgeMiner’s
result to get more precise data flow information.
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The fragment introduced in Android 3.0(API level 11) is mainly to support
a more dynamic and flexible UI design for the large screen(such as tablet PC).
Because of the much larger screen of tablets’ compared with that of smartphones,
more space can be used to combine and exchange UI components. On account of
the Activity layout divided into fragments, you can modify its appearance and
keep the changes in return stack which is managed by Activity itself. Fragments
is part of the behavior or the user interface of Activity. We can use multiple
fragments combination in an Activity to build multiple pane UI, and reuse a
fragment in multiple Activities. We can put the fragment as a modular part of
the Activity, which has its own lifecycle and can receive their own input events.
Moreover, we can dynamically add, replace, and remove some fragments. None
of the previous researchers have described Fragment’s lifecycle has an effect on
data flow analysis. When performing data flow analysis, some data flow will be
missed without taking Fragment’s lifecycle into consideration, which will lead
to false negative when analyzing data leakage in apps. Moreover, malware can
also adopt Fragment’s lifecycle to evade the detection method based on data
flow and control flow analysis. Moreover, Fragment’s lifecycle is not independent
as it depends on Activity’s lifecycle. So we also model the interaction between
Activity and Fragment. Malware is out of the scope of this paper, so we don’t
discuss it in this paper.

To summarize, this paper makes the following contributions:

– We find that Fragment’s lifecycle has an effect on data flow analysis on
Android apps. And we do some research to reveal the relationship between
Fragment’s lifecycle and Activity’s lifecycle.

– We model all the Fragments’ and Activities’ lifecycle control flow transfers in
a control flow graph, then we make an extension on Flowdroid [7]. All of the
lifecycle methods are contained in a dummy main method. With using the
extended tool, we can perform information leakage detection without false
negative caused by Fragment’s lifecycle.

– We make an in-depth evaluation of the extended tool. The experiments’ result
include the statistics of the Fragment usage in Android apps and the runtime
performance after modeling the Fragment’s lifecycle.

2 Background and Motivation

2.1 Background

In Android, an application’s execution is driven by system events. When an
event occurs, Android system invokes the predefined method which implemented
by developers. Android adopts a component-based mechanism to simplify the
development of apps. There are four kinds of application components: Activity,
Service, Content Provider, Broadcast Receiver. Each app is composed of many
application components, and the components’ execution is controlled by system
according to events. When performing data flow analysis in Android apps, com-
ponents’ lifecycle must be taken into consideration. Previous researchers [7–10]
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have modeled the lifecycle of four main application components. But in 3.0,
Android introduces Fragment to support more dynamic and flexible UI designs
on large screens, such as tablets. In Android apps, Fragment is always included
in an Activity which has its own lifecycle, so does the Fragment. The lifecycle
of Fragment and its relationship with Activity’s lifecycle are described in Fig. 1.
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Fig. 1. Fragment lifecycle

As is depicted in Fig. 1, when a Fragment starts, onAttach(), onCreate(),
onCreateView(), onActivityCreated(), onStart() and onResume() will be invoked
by Android system one by one. When the app is paused, for example, Fragment’s
onPause() method will be invoked if the user presses the home button. When
the memory is low, Android system will recycle some memory, so the onStop()
method will be invoked. When the user navigates back to the app, Fragment’s
onStart() and onResume() method will be invoked to restore the Fragment.
When the user kills the app, onDestroyView(), onDestroy(), onDetach() will
be invoked. Moreover, the Fragment’s lifecycle depends on Activity’s lifecycle.
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Thus we can’t use Fragment alone. Activity’s lifecycle dominates Fragment’s
lifecycle. So the Activity starts and pauses before Fragment, while stops and
destroys after Fragment. Thus, Activity’s onCreate(), onStart(), onResume()
will be invoked before Fragment’s onCreate(), onStart() and onResume(). And
Activity’s onPause(), onStop(), onDestroy() will be invoked after Fragment’s
onPause(), onStop(), onDestroy().

2.2 Motivation

In this section, we demonstrate our motivation by introducing some code snip-
pets. As is depicted in Fig. 2, there is an Activity named “LifecycleActivity”
and a Fragment named “LifecycleFragment”. “LifecycleActivity” overrides two
lifecycle methods onCreate() and onPause(), “NativePhoneNumber” is a field
in this class. “LifecycleFragment” overrides three lifecycle methods onAttach(),
onResume() and onPause(). “LifecycleFragment” also has two fields named
“NativePhoneNumber” and “attachedActivity”. The first one stores string value,
while the second one stores the reference of Activity this Fragment attached
to. In “LifecycleActivity”, onCreate() method invokes replace() method to
attach a “LifecycleFragment” to this Activity. onPause() method invokes get-
Line1Number() and stores the phone number to field “NativePhoneNumber”. In
“LifecycleFragment”, onAttach() method stores attached Activity’s reference to
field “attachedActivity”. onResume() method passes the the field “NativePho-
neNumber” of “attachedActivity” to its field “NativePhoneNumber”. onPause()
method invokes sendTextMessage() and sends out the value stored in “Native-
PhoneNumber”.

FlowDroid models the application components’ lifecycle in a dummy main
method, but the Fragment’s lifecycle is not in this dummy main method. So
if we use FlowDroid [7] to detect data leakage in this app, it will report noth-
ing. FlowDroid has generated control flow graph before data flow analysis and
the Fragment’s lifecycle methods are not in this graph, so data flow will not
propagate out of these lifecycle methods. But actually, this app leaks the phone
number through sending text message. AmanDroid [9] also can’t detect this data
leakage, because it doesn’t consider Fragment’s lifecycle as well.

From Fig. 1, we know that when “LifecycleActivity” starts, the system
invokes onCreate() method, then the “LifecycleFragment” is attached to this
Activity. At the same time, Android system invokes the lifecycle method onAt-
tach() of “LifecycleFragment”. In this method, the reference of “LifecycleAc-
tivity” is passed to “attachedActivity”. When “LifecycleActivity” is activated,
the onResume() method of “LifecycleFragment” is invoked, so the string value
in “NativePhoneNumber” of “LifecycleFragment” is “default”. At this moment,
if user leaves “LifecycleActivity” Activity, the lifecycle method onPause() of
“LifecycleFragment” will be invoked. It sends the value of “NativePhoneNum-
ber” which is “default”. It means the information leakage has not happened so
far. Then the lifecycle method onPause() of “LifecycleActivity” will be invoked,
so the string value in “NativePhoneNumber” of “LifecycleActivity” will be
the phone number. When user navigates back to “LifecycleActivity”, lifecycle
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Fig. 2. Motivation example

method onResume() of “LifecycleFragment” will be invoked, and the value of
“NativePhoneNumber” in “LifecycleFragment” will be the phone number. If the
user leave “LifecycleActivity” again, the lifecycle method onPause() of “Lifecy-
cleFragment” will be invoked, and the phone number will be leaked through text
message this time.

From the description above, we can learn that this app gets phone number
through the lifecycle method onPause() of “LifecycleActivity”, and sends a text
message with the phone number in the lifecycle method onPause() of “Lifecycle-
Fragment”. During this process, the Activity’s state changes many times. Some
data flows will be lost if we don’t model the control flow transfers between lifecy-
cle methods when state changes, which will make malware evade detection with
some state-of-art static analysis tools like FlowDroid and Amandroid. Besides
control flow, some data dependencies between parameters of lifecycle methods
also need to be handled carefully. For example, in lifecycle method onAttach()
of “LifecycleFragment”, its parameter, which is passed by Android system, is
the Activity it attached to. When performing data flow analysis, we should take
this data dependence into consideration.
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2.3 Goals and Assumption

In this paper, we focus on Fragment’s lifecycle and its effects on data flow analy-
sis. We propose an approach to model Fragment’s lifecycle and implement a tool
named FragDroid. FragDroid is based on FlowDroid [7], so its data flow analysis
has the same limits as FlowDroid. It can’t deal with native code and decide the
target objects or methods for java reflection.

3 System Design

We demonstrate FragDroid’s work flow in Fig. 3. As is depicted in this figure,
FragDroid takes six steps to analyze an app. First of all, it parses the manifest
file and then the app’s entry points like Activity, Service will be obtained. Then,
FragDroid scans the Activity’s lifecycle methods to find Fragment registrations.
At the same time, FragDroid gets the Activity’s layout xml file. Next, FragDroid
parses the layout file to find the Fragment registration because Fragment can be
attached in layout file as well. And then, Fragment gets some Fragments, but
Fragment can also be declared in callback methods. So in the callback methods,
some Fragments can be attached to Activity dynamically. The work flow will
go back to step two unless no new fragments and callback methods can be
found. At last, FragDroid generates a dummy main method to model the control
flow transfer between the lifecycle methods of Fragment and Activity. A demo
of dummy main method’s control flow is shown in Fig. 4. After the dummy
main method has generated, FragDroid builds the call graph and perform taint
analysis just as FlowDroid does.

Parse manifest file

Parse method code

Parse layout file

Generate dummy 
main method

Build call graph

Perform data flow 
analysis

Apps

Find 
Fragment 

registra on

Fig. 3. System architecture

4 Implementation

4.1 Identify Fragments Which Attached to Activity

In order to model the Fragment’s lifecycle, we must find all Fragments what an
app’s Activities contain at first. In an Android application, Fragments can be
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LeakageAct La = new 
LeakageAct();

La.onCreate();

La.onPause();

La.onStart();

La.onRestart();

La.onDestroy();

La.onResume();

Lf.onA ach();

Lf.onCreate();

Lf.onCreateView();

Lf.onStart();

Lf.onResume();

Lf.onPause();

Lf.onStop();

Lf.onDestroy();

Lf.onDestroyView();

Lf.onDetach();

LeakageFrag Lf = new 
LeakageFrag();

La.onStop();

p

p Callbacks

p

p

p

Fig. 4. Dummy main method control flow

attached to an Activity through two approaches. Firstly, developers can attach
a Fragment to an Activity by declaring in the Activity’s layout file. This file is
an xml file, in which Fragment is declared by ‘fragment’ tag. For this kind of
registration, we can scan the Activity’s onCreate() method and get its layout file,
then the fragment can be identified. Secondly, developers can attach Fragment to
an Activity through some registration methods like FragmentTransaction.add()
or FragmentTransaction.replace(). It is more complex here to find this kind of
Fragment registration than in the first approach because these registration meth-
ods can be invoked during Activity’s lifecycle. Moreover, users can change the
Activity’s user interface dynamically through callback methods like onClickLis-
tener(). Fragment registration can also happen in these callback methods. In
order to find this kind of registration, we scan all lifecycle methods of the Activ-
ity implements. Then, we scan the Fragments’ lifecycle methods and callback
methods until no new Fragments’ lifecycle and callback methods can be found.

4.2 Deal with Data Flow Between Activity and Fragment

In an Android app, Activity and Fragment have not only control flow relation-
ships, but also some data flow dependencies. For example, as is shown in Fig. 2,
the parameter of lifecycle method onAttach() in LifecyceFragment is passed by
Android system. We need to handle this situation, otherwise some data flows will
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be lost. To solve this problem, we can modify the code of Fragment because we
just need to maintain the data flow relationship instead of running the app. We
create a new private field ‘attachedActivity’ in the class for Fragment’s onAt-
tach() and getActivity() method. When generating dummy main method, for
each Fragment, we pass the related Activity to Fragment’s onAttach() method.
And then, in onAttach() method, the passed Activity is stored in ‘attachedAc-
tivity’. To get the correct Activity, we rewrite the getActivity() method whose
return value is ‘attachedActivity’.

4.3 Create Dummy Main Method

After getting all Fragments each Activity contains, we need to generate a dummy
main method to model the control flow transfers between lifecycle methods of
Fragment and Activity. Figure 4 shows us the dummy main method’s control flow
when an Activity only contains one fragment. If an Activity contains multiple
Fragments, the situation will be more complex. We will describe how to solve
it in the next section. In order to create a dummy main method whose control
flow is like Fig. 4, we use a conditional jump instruction to model the control
flow transfer among lifecycle methods.

public static void dummyMainMethod()
{

int $i0 = 0; LifecycleActivity$r1; LifecycleFragment $r2;
label01: 

if $i0 == 1 goto label07;
$r1.<LifecycleActivity: void onCreate()>();

label02:
if $i0 == 2 goto label03;
$r2.<LifecycleFragment: void onAttach(Activity)>($r1);

label03:
if $i0 == 3 goto label04;
$r2.<LifecycleFragment: void onResume()>();

label04:
if $i0 == 4 goto label05;
$r2.<LifecycleFragment: void onPause()>();

label05:
$r1.<LifecycleActivity: void onPause()>();
if $i0 == 5 goto label03;

label07:
return;

}

Fig. 5. Dummy main method IR code of motivation sample

We use the motivation example to demonstrate the creation of the dummy
main method as is shown in Fig. 5. In this figure, at first, conditional value
‘i0’, Activity ‘r1’ and Fragment ‘r2’ is declared. In lable01, it creates a condi-
tional jump whose target is label07 because this Activity may not be executed.
If the condition is not met, ‘r1’ will invoke onCreate() method. In label02, the
fragment’s onAttach() method is invoked depending on the conditional jump.
Although we can get the Fragments which can be attached to an Activity,
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but we don’t know which Fragments are attached to the Activity at an exact
moment. We don’t implement the Activity’s onStart() and onResume() methods,
so in label03, Fragment’s onResume() is invoked. When the Activity is paused,
the Fragment’s onPause() method has been invoked before Activity’s onPause()
method. So in label04, Fragment’s onPause() is invoked. And in label05, Activ-
ity’s onPause() is invoked. The Activity’s state can be resumed, so in label05
there is a conditional jump going to label03. In label07 the app is terminated.

4.4 Handle One Activity Carried with Multiple Fragments

In the last section, we have described how to create a dummy main method when
an Activity only contains one Fragment. Actually, multiple Fragments can be
attached to an Activity. Sometimes it is required to modify the entire page, but
creating a new Activity is unnecessary. It can be efficient to use an Activity to
manage multiple Fragments. News application, for example, can use a fragment
to display article list on the left and another fragment to display the article
on the right. Therefore, users do not need to use an Activity to select articles
and use another Activity to read the article, but can choose articles within an
Activity. In this section, we will show how to deal with this situation. If multiple
Fragments are attached to an Activity, the lifecycle methods of Fragments are
invoked according to the order of attaching these Fragments. Take an Activity
with two fragments as an example, when the lifecycle methods of Fragments
are invoked, as is shown in Fig. 4, the first attached Fragment’s onAttach() to
onActivityCreated() will be invoked after Activity’s onCreate(). As there are two
Fragments, the second attached Fragment’s onAttach() to onActivityCreated()
will be invoked after the first Fragment’s. Fragments’ onStart(), onResume(),
onPause(), onStop() are also invoked in the Fragments’ attached order. And the
first Fragments’ onDestroyView(), onDestroy(), onDetach() has been invoked
before the second Fragment’s. However, as is described in Sect. 4.1, Fragments
in an Activity can be dynamically added or replaced by callback methods. Thus

a

b c

entry

exit

entry:
label 1:

if i == 1 goto label 2;
a();

label 2:
if i == 2 goto label 3;
b();

label 3:
if i == 3 goto label 4;
c();

label 4:
if i == 4 goto label 1;

exit:

Fig. 6. Control flow sequence of lifecycle methods when there are multiple fragments
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we can’t exactly know the order of how Fragments are added. In this paper, we
assume the Fragments are attached in any order.

We show this kind of control flow transfer in Fig. 6. In this Figure, we assume
there are three Fragments in an Activity. The vertexes labeled as a, b, c, have the
same lifecycle method like onResume() of each Fragment. For the process from
onAttach() to onActivityCreated(), we use an intermediate method to invoke
them one by one. To make the dummy main method generate the control flow
transfer as is shown in Fig. 6, we can generate the code shown in this figure.
In the code, we use a conditional jump statement to model the execution. The
lifecycle methods can be executed in any order by emulating different conditions.

5 Evaluation

5.1 Dataset and Experiment Setup

We collect 19342 apps from three popular Android markets (Baidu [17], Xiaomi
[18] and Anzhi [19]). In order to measure the amount of Fragments in the most
popular apps, we also select 887 apps from baidu market according to their
downloads. To test the efficiency of FragDroid, we develop some test apps based
on lifecycle methods of Fragment and Activity which override different lifecycle
methods.

We conduct experiments on a computer equipped with Intel(R) Core(TM)
i7-4770k CPU(3.5 GHz) and 16 GB of physical memory. The operation system
is Windows 7.

5.2 Summary of Fragment Usage in App

The experiment results of Fragment usage of apps in the two data sets mentioned
in the last section are shown in Figs. 7 and 8. In the first app data set, 1557 apps
in 19342 cases use Fragment. This means, for an ordinary app, the probability
of using Fragment is 8%. In the second app data set, 451 apps in 887 cases use
Fragment, the probability is 50.8%. We also give the statistic result for multiple
fragments can be attached to one activity in Fig. 9. According to these figures,
we conclude that the more popular the app is, the higher its possibility of using
Fragment is.

Figure 7 lists the distribution of the number of Fragments in the first app
data set. From the figure, we find that 45.8% of apps which use Fragment only
have one kind of Fragment, and Activities share the same user interface provided
by this Fragment. Most of apps (91.9%) have less than 10 kinds of Fragments.
Figure 8 shows the result of the second app data set, we can see that more kinds
of Fragments are contained in one app, 28.3% apps have more than 10 kinds of
Fragment classes.
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Fig. 7. Distribution of the number of fragments
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5.3 Data Leakage Results

The result of data leakage in the second app data set is shown in Fig. 10. This figure
contains the results of analyzing and do not analyzing Fragment. In this figure, we
find that when we don’t consider Fragment lifecycle, 47.4% of apps report more
than 150 source to-sink pairs. After Fragment’s lifecycle is modelled, 57.3% of apps
report more than 150 source-to sink pairs. The amount of source-to sink pairs has
an average increase of 18 in an app. In this experiment, we demonstrate that Frag-
ment’s lifecycle has an effect on the data leakage detection result.
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5.4 Runtime Performance

The runtime performance of FragDroid is shown in Figs. 11 and 12. The exper-
iment result of the first app data set is depicted in Fig. 11. As is shown in this
figure, when we do not analyze Fragment, 90% of the apps can be finished in
20 s and the average time is 12 s. After analyzing Fragment, 80% of the apps can
be finished in 20ṡ and the average time is 14 s. It means that after we modelled
the Fragment’s lifecycle, the average overhead is 17%. The experiment result for
popular app data set is shown in Fig. 12. After Fragment analysis, the overhead
is 114%. The run time of analysis is highly depended on the amount of Fragments
this app using.

6 Discussion

Current data flow analysis techniques on Android platform are not perfect. In
this paper, we focus on fragment’s lifecycle, and get a more complete control flow
which is the prerequisite for data flow analysis. We have no in-depth analysis
of native code and java reflection, so the data flow may be not precise enough.
In addition, there exists a large number of callback methods in Android system,
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which can be rewritten to add malicious behavior. Thus, we just consider the
control flow among callback methods. Actually, it is not complete, because these
callback methods may have data dependencies. For example, in AsyncTask, the
return value of doInBackground() is passed to onPostExecute() as the first para-
meter. But in our tool, we don’t consider this. Malware can hide sensitive data
flows through these dependencies. In the future, we can analyze the data depen-
dence between callback methods’ return values and parameters, and integrate
these into data flow analysis procedure.

7 Related Work

Previous researchers have proposed some approaches to solve problems in static
analysis on Android platform. We summarize the differences of existing static
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analysis tools in Fig. 13. CHEX [6], FlowDroid [7], AmanDroid [9] are three
tools which perform static data flow analysis on Android platform. CHEX [6]
is designed to detect the component hijacking problems in Android apps. When
performing data flow analysis, CHEX analyzes each program split which includes
code reachable from a single entry point at first. Cross split data flow are ana-
lyzed based on those system dependence graphs [24] which will be generated for
every program split. FlowDroid [7] is aimed at detecting data leakages in Android
apps. It models data flow analysis problem within the IFDS [25] framework for
inter-procedural distributive subset problems. It also models the Activity’s life-
cycle in a dummy main method. AmanDroid [9] is an Android data flow analysis
framework. It computes an inter-component data flow graph (IDFG) which con-
tains all objects points-to information in both flow and context-sensitive way.
IccTA [10] makes a more complete analysis on Android inter-component com-
munication. It can decide the implicit intents’ target, which can be Activity
or Service. EdgeMiner [11] focuses on Android’s callback. EdgeMiner designs
an automatic approach to find callback methods on Android platform. These
callback methods can be adopted to complement other data flow analysis tools
like FlowDroid. None of the tools above considers Fragment’s lifecycle, which
may lead to the overlook of some data flows. Thus, in this paper we model the
Fragment’s lifecycle.

Tool Goal Modeling fragment’s 
lifecycle

CHEX Component Hijacking No

IccTA Inter-component privacy leaks No

FlowDroid Data Leakages No

AmanDroid Compute IDFG No

EdgeMiner Callback Methods No

FragDroid Data Leakages Yes

Fig. 13. Comparison of different taint analysis tools

There are also some tools analyzing apps dynamically. TaintDroid [3] is one
of them to modify the Dalvik virtual machine. Every instruction is interpreted
by Dalvik, so TaintDroid can record the data flow relationship between objects.
DroidScope [4] is an emulation based Android malware analysis engine that can
be used to analyze Java and native components of Android Applications. It
performs taint analysis on native instruction and dalvik instruction, so it’s more
precise than TaintDroid. SMV-HUNTER [13] is a tool designed to identify apps
which is vulnerable to SSL/TLS Man-in-the-Middle attacks. AppAudit [14] is an
efficient program analysis tool that detects data leakages in mobile applications.
It combines static and dynamic analysis to overcome the shortcomings of each
individual analysis.
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Malware detection is an important topic in Android security research.
RiskRanker [15], TriggerMetric [28] and DroidRanger [16] are heuristic-based
malware detection tools. RiskRanker determines a malicious app according to
risk behavior is performing in the app. TriggerMetric captures the static depen-
dence relations between user inputs and sensitive operations providing criti-
cal system functions in programs. DroidRanger analyzes the permissions that
malware and benign apps apply, then it identifies the combination of permis-
sions which are frequently used in malware and rarely used by benign apps.
Drebin [21], DroidAPIMiner [26], DroidMiner [22], DroidSIFT [23] and DR-
Droid [27] identify malware based on machine learning algorithm. Drebin and
DroidAPIMiner extract permissions and security APIs an app using to con-
struct feature vector. DroidMiner uses control flow, while DroidSIFT uses data
dependence. DR-Droid proposed a new Android repackaged malware detection
technique based on code heterogeneity analysis, and the features in DR-Droid
are extracted from each dependence region to profile both benign and malicious
dependence region behaviors.

8 Conclusion

In this paper, we describe how Fragment’s lifecycle can influence the data flow
analysis result and propose an approach to model Fragment’s lifecycle. To model
the Fragment’s lifecycle and its relationship with Activity’s lifecycle, we design a
tool FragDroid to generate a dummy main method which can model the control
flow transfer between Fragment’s and Activity’s lifecycle methods. Our tool is
built based on FlowDroid [7]. We perform some experiments using apps crawled
from some alternative app markets. Experiments show that 8% of the selected
apps use Fragment, and for most popular apps, the probability is 50.8%. We also
evaluate our tool with the same data sets, the result shows the average overhead
is 17%.
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Abstract. While much effort has been made to detect and measure
the privacy leakage caused by the advertising (ad) libraries integrated in
mobile applications (i.e., apps), analytics libraries, which are also widely
used in mobile apps have not been systematically studied for their privacy
risks. Different from ad libraries, the main function of analytics libraries
is to collect users’ in-app actions. Hence, by design, analytics libraries
are more likely to leak users’ private information.

In this work, we study what information is collected by the analytics
libraries integrated in popular Android apps. We design and implement a
tool called “Alde”. Given an app, Alde employs both static analysis and
dynamic analysis to detect the data collected by analytics libraries. We
also study what private information can be leaked by the apps that use
the same analytics library. Moreover, we analyze apps’ privacy policies
to see whether app developers have notified the users that their in-app
action information is collected by analytics libraries. Finally, we select
8 widely used analytics libraries to study and apply our method on 300
apps downloaded from both Chinese app markets and Google play. Our
experimental results request the emerging need for better regulating the
use of analytics libraries in Android apps.

Keywords: Android · Analytics libraries · Privacy leakage

1 Introduction

According to the statistical result from AppBrain [6], the number of apps in
Google Play has reached 2.1 millions. The sheer number of apps that are in the
Google Play and the number of new ones added daily only show that the mobile
app ecosystem has become a gigantic marketplace that is still expanding. It is
thus becoming more and more difficult for app developers to make their apps
stand out. Hence, it is increasingly important for developers to understand their
users and make their apps better for the users.
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Collecting and analyzing the interactions between users and apps help devel-
opers to get insights about their users’ in-app actions1 and learn more about
their users’ behavior. With the analysis results, developers study the actions
their users have taken and understand how the users use their apps. They can
find out what problems their users are experiencing, and then work out solutions
to fix the problems. This process of collecting and analysis is very important to
developers for enhancing the users’ experience. Hence, almost every popular app
contains code snippets to collect and analyze users’ in-app actions. Some devel-
opers implement the collecting and analysis functions by themselves, while others
implement these functions with the help of some third-party libraries. We call a
third-party library that is used to collect and analyze the users’ in-app actions
as “analytics library”.

Analytics libraries are similar to ad libraries in some aspects. For example,
they both are integrated with the host app. Host app and the library share
privileges and resources. They have the same Linux file access control permis-
sions and Android permissions. Both analytics library and ad library require
some permissions that may not be needed by the host app. Therefore, analyt-
ics libraries may cause security and privacy issues similar to that caused by ad
libraries [12,15]. However, ad libraries do not require developers to do many
settings. Take AdMob’s banner Ads [1] as an example, developers only need
to add an ad view in their apps and set up the corresponding ad unit ID [2].
Then the ad library will automatically request ads and displays them in the
ad view. Developers do not care so much about the ads’ content. Though ad
libraries have provided some ad control APIs, many developers do not use them
[9,21]. In contrast, when developers use analytics libraries to collect users’ in-app
actions, developers need to invoke some tracking APIs provided by the analytics
libraries at locations they want [14]. For example, developers may invoke the
tracking APIs to collect user’s payment action after the user touches a payment
button. In other words, what information to collect is set by developers. The
more a developer wants to profile his users, the more tracking points he will set
in his app.

After collecting users’ in-app action data, analytics libraries send it to the
analytics companies, which analyze the data and present some results to devel-
opers. Now, curiosities are aroused on what private information is leaked to
analytics companies and to app developers through this data. This problem
is exacerbated because analytics libraries may collect unique device information
(IMEI, MAC, etc.) that can be used to link the information collected by different
apps together to get a more comprehensive record of users’ activities. However,
previous studies only concern the information protected by Android permissions
or information input by users (e.g., account number, password), therefore, they
cannot answer this question. As a first step in the direction of answering this
question, we explore the users’ in-app actions collected by the analytics libraries

1 “users’ in-app actions” means the users’ behaviors when they are using an app, such
as opening the app, browsing different pages in the app, pressing a button in the
app, etc.
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integrated in the popular apps. To fulfill this goal, we design and implement a
tool called “Alde” (Analytics libraries data explorer) which employs both static
analysis and dynamic analysis to discover the users’ in-app actions collected by
analytics libraries. In the static analysis process, Alde performs a backward trace
analysis based on the app’s smali codes [17]. This backward trace analysis aims to
find out what information is sent to these APIs. In the dynamic analysis process,
we hook the tracking APIs to explore what information is sent to these APIs at
the app’s running time. After obtaining the users’ in-app actions collected by
the analytics libraries, we manually review this data to determine what personal
information is leaked to the analytics companies. We also manually review the
popular apps’ privacy policies to check whether they notify the users about such
data collection. We select 8 widely used analytics libraries for study and apply
our method on 300 apps downloaded from both Wandoujia (a Chinese app mar-
ket) and Google Play. The experimental results show that (i) analytics libraries
can be exploited by malicious developers to collect users’ personal information
directly; (ii) some apps indeed leak users’ personal information to analytics com-
panies even though their genuine purposes of using analytics libraries are legal;
(iii) users will be deeply profiled if analytics companies link the information col-
lected from different apps, especially in China; (iv) developers seldom describe
the use of analytics libraries in their apps’ privacy policies even though they are
asked to do so. In a summary, we make the following contributions in this paper:

– To the best of our knowledge, our work is the first research focusing on under-
standing information leakage caused by the users’ in-app actions collected by
analytics libraries.

– We design and implement a tool named “Alde” that is used to discover the
users’ in-app actions collected by analytics libraries.

– We apply our method on 300 apps downloaded from both Wandoujia and
Google Play and reveal the data collected by the analytics libraries integrated
in these apps.

The remainder of this paper is organized as follows. Section 2 describes the
background of Android analytics libraries. Section 3 gives our system design
and implementation. Section 4 describes the dataset that we use in this study.
Experimental results and related work are given in Sects. 5 and 6, respectively.
Section 7 concludes our work.

2 Background

2.1 Analytics Libraries

Analytics libraries are important tools that mobile app developers commonly
employ in their apps. Through them, analytics companies provide mobile app
developers well analyzed data that shows how the users are using their apps.
To understand how an analytics library is embedded into an Android app,
next we provide a simplified structural overview of the mobile analytics library
through Fig. 1.
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Fig. 1. Structural overview of a mobile third-party analytics library

Take Umeng [26], the most popular analytics library in China, as an example.
In order to integrate this library into their apps and obtain the analysis results,
developers need to take the following steps:

1. Register an account at the analytics company and log in. Then, a developer
are required to set up the basic information (name, category, etc.) of the app
that he wants to track. After the setup for the app, the analytics company
will generate a unique AppKey. This AppKey will be utilized to track the
app.

2. Add the SDK provided by the analytics company into the app’s build path.
Then, edit the app’s AndroidManifest file and add the unique AppKey into
the app’s metadata. Moreover, the developer is required to add the permis-
sions required by the analytics library into the AndroidManifest file.

3. Initialize the analytics library. Commonly, a developer needs to invoke the
initialization method provided by the analytics library to initialize the library
when the app is launched.

4. Invoke the tracking APIs provided by the analytics library to collect users’
in-app action information. For example, with Umeng library, a developer
can invoke MobclickAgent.onResume() and MobclickAgent.onPause() in each
Activity’s onResume() and onPause() methods to collect each Activity’s start
time and end time. He can invoke MobclickAgent.onEvent(...) to collect the
users’ in-app actions of his interest. For instance, if the developer wants to
know how many users are interested in movies in a video app he developed,
he can invoke this method (triggered when users press the “movies” button)
and set the parameter eventID as “movies”. Developers can also set up the
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analytics library to automatically collect the run-time errors occurred in the
app.

5. Upload the app to Android app market(s). When users download and enjoy
this app, the analytics company will receive users’ in-app actions data, analyze
it and present the analysis results to the app’s developer through a web
interface.

The steps described above are the common procedures that developers need
to follow if they want to use analytics library. Although most analytics libraries
can be used successfully like this, different analytics libraries are different in
implementation details. Hence, the processes of integrating different analytics
libraries into the apps are not totally the same. Additionally, some new analytics
libraries (such as Appsee [7] and UXCam [27]) use a totally different method to
collect users’ in-app actions. They do not require developers to invoke tracking
APIs to collect users’ actions. Instead, they collect all the interactions between
users and apps as videos and show the videos to the developers directly. We do
not consider this kind of analytics library in this paper.

2.2 What Information Is Presented to the Developers

When users play with apps, their in-app actions data is collected by analytics
libraries and sent to the analytics servers. It is analyzed automatically in the
analytics servers, which presents the analysis results to developers (See Fig. 2).

Fig. 2. Snapshot of flurry analytics

In Table 1, we list the information that developers can see. Besides the basic
information shown in this list, analytics companies also present some statistical
information, such as User growth rate, User retention, User loyalty, Event con-
version rate, etc. This statistical information can be presented in different time
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Table 1. The information that developers obtain about their apps

Categories Details

Users Total users, New users, Returning users, Active users, Launch times,
Launch frequency, Duration of once use, Activity path, App versions

Terminals Devices, Resolutions, OS versions, Carriers, Area, Languages

Events Event IDs, Event labels, Event times, Event values

Errors Error summary, Error times, First appearance time, Last appearance
time

periods, by day, by week, by month, or by year, which helps developers learn
whether their apps are popular or not in a period, or whether the new functions
they added in the apps attract more users. Data presented to the developers is
the statistical analysis results based on all users. In principle, developers cannot
access the raw data of an individual user’s in-app actions.

3 System Design and Implementation

To understand what private information can be leaked by the analytics libraries
integrated with the popular apps, we develop “Alde”, a tool for this purpose.
Alde uses both static analysis and dynamic analysis to discover the values of
the tracking APIs’ parameters, which are the users’ in-app actions collected by
these tracking APIs. The overview of Alde is illustrated in Fig. 3.

Fig. 3. Overview of Alde
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3.1 Documentation Analysis

As we described in Sect. 2.1, developers need to invoke the tracking APIs pro-
vided by analytics libraries to collect users’ in-app actions. Hence, our first step
is to determine the tracking APIs provided by each analytics library. We obtain
this information by analyzing the development documentations provided by each
analytics library. However, some analytics libraries only give a brief description
of the tracking APIs in their development documentations. The complete class
names (including class package names) of the tracking APIs that are needed
in the following processes are not given. To address this problem, we download
some apps that contain these analytics libraries, decompile them with Apktool
[5], and find out the complete class names of the tracking APIs in the decompiled
codes.

3.2 Static Analysis

Some information collected by the tracking APIs is written in the app’s source
code, such as some buttons’ names. Static analysis aims to discover the users’
in-app actions defined in the app’s source code. Alde performs a static backward
trace analysis to find out the values of the tracking APIs’ parameters based on
the app’s smali code. As shown in Fig. 3, given an app, Alde carries out the
following analysis.

First, Alde decompiles the app into smali code files with Apktool. Second,
Alde finds out the corresponding smali codes of the tracking APIs and identifies
the registers that store the values of the tracking APIs’ parameters. For instance,
in Fig. 3, the second parameter of the onEvent method is the parameter that we
need to trace. The corresponding register that stores the value of this parameter
is v1. Third, Alde searches the smali code in the reverse order to find the value
of v1. Alde decides what value is assigned to v1 based on the syntax of Dalvik
bytecode [3]. If another register assigns its value to v1, that register will be traced
instead of v1. This trace process will not stop until Alde finds a constant value
is assigned to the traced register or Alde traces into a method that cannot be
analyzed by Alde. Last, the final constant value and the trace path are reported.
As shown in Fig. 3, the final constant value of v1 is “in RgstSex”.

The code snippet shown in Fig. 3 appeared in a fitness app. When users
go to Gender Setting page, this code snippet will run and collect this in-
app action.

3.3 Dynamic Analysis

Though the above static analysis can explore the in-app actions defined in app’s
source code, some information is generated at app’s running time, so it cannot
be captured by static analysis. Hence, Alde also performs a dynamic analysis on
the app.

In the dynamic analysis process, Alde runs the app for 5 min with the help
of AndroidViewClient [19]. Developed with python, AndroidViewClient is a test
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Fig. 4. Flowchart of the Alde’s dynamic app running. The “views” in this figure include
various elements in an Activity, such as buttons, text-areas, pictures, etc.

framework for Android apps and is more powerful than monkeyrunner [4]. We
write a python script based on AndroidViewClient to automatically run Android
apps. Given an app, Alde runs it according to the process described in Fig. 4.
At the same time, the tracking APIs are hooked by Alde with the help of Cydia
Substrate [22]. Cydia Substrate is an app running on rooted Android devices.
It provides an easy way to hook the other apps running on the same phone. We
develop an extension for Cydia Substrate to hook the tracking APIs. When the
app under analysis invokes a tracking API, the values of the API’s parameters
will be captured by Cydia Substrate and stored in the files located in the phone’s
external sdcard. When the app stops running, we pull these files from the phone.
Through this method, we get the users’ in-app actions that are collected by the
analytics libraries at the app’s running time.

For the apps that ask the users to register an account, we register the account
manually and then analyze it with Alde. After the entire analysis processes of
an app are finished, we merge the analysis results from both static analysis and
dynamic analysis to get the final analysis results (as shown in Fig. 5).

Fig. 5. Parts of the analysis result of app “YouCamMakeUp”. If the parameter’s type
is map, the value of the parameter is presented as “(key - value)”.
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4 Dataset

In this section, we describe the dataset that we use in this study.

4.1 Analytics Libraries

In this paper, we focus on 8 widely used analytics libraries, shown in Table 2. To
select these widely used analytics libraries, we search the Internet for analytics
libraries and also learn from previous studies [20]. After this, we get a list of
25 analytics libraries. Then, we search these analytics libraries’ class names in
the smali code that is decompiled from the apps we downloaded. If an analytics
library’s class names appear in an app, we consider that this app uses this library.
Finally, we select 8 most widely used analytics libraries in our app dataset (the
rest of the analytics libraries in the list are seldom used in our app dataset).
Four of them are mainly used by the apps in the Chinese app market and the
other four of them are mainly used by the apps in Google Play. In the rest of this
paper, we call them analytics libraries from Chinese app market and analytics
libraries from Google Play, respectively.

Table 2. Analytics libraries’ required permissions and optional permissions. “✔” means
required permission and “●” means optional permission.

Umeng Talking

data

Tencent

analytics

Baidu

analytics

Flurry Adjust Localytics Google

analytics

INTERNET ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

ACCESS WIFI STATE ✔ ✔ ✔ ✔ ●

ACCESS NETWORK STATE ✔ ✔ ✔ ✔ ● ✔

READ PHONE STATE ✔ ✔ ✔ ✔

WRITE EXTERNAL STORAGE ✔ ✔ ✔

WRITE SETTINGS ✔

GET TASKS ● ✔

READ EXTERNAL STORAGE ✔

MOUNT UNMOUNT FILESYSTEMS ✔

ACCESS FINE LOCATION ● ● ●

ACCESS COARSE LOCATION ● ●

BLUETOOTH ●

WAKE LOCK ✔

Table 2 also shows the permissions required by these 8 analytics libraries as
well as their optional permissions. Analytics libraries from Chinese app mar-
ket commonly require more permissions. This is because they need the device
information (IMEI, MAC, etc.) to generate the ID that is used to identify the
individual device. And they also need to know the network state and WIFI
state in order to adjust the interval of sending collected data to their servers.
They may also need to store some cache files in the external storage. Meanwhile,
analytics libraries from Google Play can do the similar things with the help of
Google Play Service which is not available in China. However, these permissions
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also give the analytics libraries from Chinese app market the abilities to collect
more information than they need.

4.2 Apps

We download 200 apps from a Chinese app market2 and 100 apps from Google
Play. All these apps are popular and free apps. As described in Sect. 3, our
method needs to know where the tracking APIs are invoked. If an app obfuscates
the tracking APIs it used, we cannot apply our method on it. Hence, we run an
API search (i.e., searching the tracking APIs’ names in apps’ smali code) to
filter out the apps we can analyze. If a tracking API provided by an analytics
library appears in an app’s main package, we consider this app uses this analytics
library and can be analyzed by our method. To understand how many apps are
missed by our method, we carry out another file search process to determine the
analytics libraries used by each app. In this file search process, we launch each
app on a device and determine what analytics libraries it uses based on the files
generated at the app’s running time. This is because different analytics libraries
will generate different files (such as database files, cache files, Shared prefs files)
at their running time. The generated files’ names are not influenced by code
obfuscation. We present the filtering result in Fig. 6.

Fig. 6. The number of popular apps containing each of the analytics libraries. “Diff”
means the apps on which these two kinds of search process generate different result.
“C FS” and “C AS” means file search result and API search result of apps from Chinese
app market. “G FS” and “G AS” means file search result and API search result of apps
from Google play.

2 We download Chinese apps from “Wandoujia” market. “Wandoujia” is a famous
Android app market in China.
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Figure 6 shows that our method can analyze most of the apps. We manu-
ally review the apps that obtain different results in these two kinds of search
processes. We find that the apps not found in API search but found in file search
indeed obfuscate the code of analytics libraries. More discussion on obfuscation
will be presented in Sect. 5.3. Meanwhile, since dynamic running cannot cover all
the code in an app, some apps do not generate the corresponding files at running
time even they contain the tracking APIs. For such apps, we only consider their
static analysis results in the following analysis. Finally, we select 81 popular apps
from Chinese app market and 50 popular apps from Google play to analyze.

5 Experimental Results and Discussions

5.1 Experimental Results

We analyze the selected popular apps with our proposed method and then review
the analysis results manually. Based on the information collected by the analytics
libraries, we classify the apps into three levels: App level, Activity level and User
level (See Table 3).

Table 3. The number of apps in each level of information collection

Umeng Talking

data

Tencent

analytics

Baidu

analytics

Flurry Adjust Localytics Google

analytics

App level 8 1 4 4 9 5 2 4

Activity level 33 8 3 14 14 6 3 10

User level 9 1 4 2 6 1 3 2

In Table 3, “App level” means the app only uses analytics libraries to collect
the information that reflects the running status of the whole app, such as what
Activities are visited by the users. “Activity level” means the app uses analytics
libraries to collect the running status of each Activity in an app, such as which
“view” in the Activity is pressed by the users. A “view” means an element in an
Activity, such as buttons, text-areas, pictures, etc. “User level” means the app
uses analytics libraries to collect the data generated by the users. For instance,
how long time a user spends on a song in a music app. Table 3 shows most apps
belong to the Activity level.

In order to detail the results we found in our analysis, we organize them as
the answers to the following four questions.

Q1: Do analytics libraries leak users’ personal information to app developers?

As the developers cannot get the raw data of the collected information, it is
hard for them to profile individual users. However, developers can exploit the
vulnerabilities in these analytics libraries to collect users’ private data directly.
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For example, Wo Mailbox is a mailbox app that helps users manage their
emails. It was developed by China Unicom and has more than 2.6 million active
users in February 2016 [13]. Our tool finds that this app automatically records
senders’ email addresses, recipients’ email addresses, email addresses of CCed
recipients, emails’ subjects and users’ IP addresses through the analytics library.

We also find the analytics libraries do not check the information collected
by the developers. They only perform some statistical analysis and present the
analysis results to the developers. This makes it possible for developers to col-
lect users’ sensitive information through these analytics libraries. To test and
verify this vulnerability, we developed two apps with Umeng and Talkingdata
[25], respectively. We may disguise these two apps as communication apps, so it
is reasonable for them to require READ CONTACTS permission. When users
open their contacts book with our apps, these apps read their contacts and
show to them. Besides, these apps secretly collect their contacts through ana-
lytics libraries by invoking MobclickAgent.onEvent(Context ctx, String eventId,
Map eventValue) for Umeng and TCAgent.onEvent(Context ctx, String eventId,
String eventValue) for Talkingdata. Both Umeng and Talkingdata successfully
collect users’ contact information and present them to us through the servers’
web interfaces (See Fig. 7 for the case of Umeng), although the tracking APIs
we invoked are designed to collect user’s in-app actions. Although we have not
found real-world apps that have the similar behaviors, this vulnerability could
be exploited for very stealthy information stealing.

Fig. 7. User’s contacts were successfully collected by Umeng

Q2: Do analytics libraries leak users’ personal information to analytics com-
panies?

Since analytics companies own the raw data of the collected information,
compared with the information leaked to the developers, information leaked to
the analytics companies is much more serious.
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For example, com.culiukeji.huanletao3 is a shopping app and com.tadu.
android is a reading app. These two apps ask users to select their gender before
using and collect user’s gender information via Umeng. Their developers intend
to understand the popularity of their apps in female or male users. They can get
the percentage of female users and male users from Umeng. However, Umeng
gets each app user’s gender information through this way. Since Umeng collects
the user’s device identifier (IMEI, MAC, etc.) at the same time, it gets to know
each device user’s gender directly. com.autohome.usedcar is a used car trade
app. It leaks user’s fine location to Umeng. Apps in Google play also have simi-
lar behaviors. Skype sends call ended time and message sent time to Flurry. Text
Free sends user’s fine location, the rough number of the user’s contacts and the
rough length of every message to Flurry and sends the device’s IMEI to Adjust.
The Weather Channel leaks user’s location to Localytics. Due to the space limit,
we do not list all the apps that have the similar behaviors here.

Besides, some analytics libraries collect users’ data secretly. Talkingdata is a
well-known analytics library in China. We find that this analytics library reads
the smartphone’s sensors data without any notice to users and not even to
developers. When developers invoke the tracking APIs provided by this analyt-
ics library to collect users’ in-app actions, this analytics library will read the
sensors’ data (including ambient temperature sensor, relative humidity sensor,
rotation vector sensor, pressure Sensor, light sensor and magnetic field sensor)
and send the data to the analytics server. The collected sensor data will not be
presented to the developers, and Talkingdata does not describe this behavior in
their development documentation. Hence, neither the developers nor the users
know about this. This is not a direct privacy risk, but this data indeed can be
used to infer users’ surrounding environment and sensitive information such as
user touchscreen input [24,28]. During the course of our paper writing, Talking-
data released a special version of its SDK for Google Play, which has removed
the code snippet for collecting sensor data.

Q3: What will analytics companies know about the users if they link the
information collected from different apps?

As we mentioned before, the privacy risk caused by analytics libraries is
exacerbated if analytics companies link the data collected from different apps
together to profile the users. Analytics companies can do this work easily because
they collect the device identifier together with the users’ in-app actions. They
know which apps are installed in the same device and used by the same user. The
more popular an analytics library is, the more information it can collect. Take
Umeng as an example, it is the most widely used analytics library in China. Apps
integrating Umeng cover almost all the app categories (See Table 4). As these
apps are popular apps, it is very possible that multiple of them are installed in
the same phone.

3 Some Chinese apps do not have corresponding English names, so we use their package
names instead.
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Table 4. App categories that Umeng collects data from

Category Number of apps Category Number of apps

Health & fitness 1 Lifestyle 4

Photography 1 Tools 6

Weather 3 Music & audio 3

Media & video 10 News & magazines 1

Entertainment 2 Books & reference 3

Personalization 2 Finance 1

Travel & local 1 Communication 4

Education 4 Shopping 4

We review the information that is collected through Umeng to see what
user’s personal information may be inferred by Umeng if the user installs these
apps. First, Umeng knows what apps that have integrated it are installed
in the same phone. According to the previous study [12], this app install
pattern will leak some user’s information to Umeng. If the app is devel-
oped for particular users, more information will be leaked to Umeng. For
example, com.xtuone.android.syllabus is developed for undergraduate students,
cn.haoyunbang is developed for pregnant woman and new mother, and so on.
Second, data sent to Umeng often has clear semantics. Umeng can learn user’s
gender and reading habits from a reading app; learn user’s location and approx-
imate income level from a used car trade app; learn user’s video watching habits
from a video app and learn user’s health condition from a health app, etc. If
Umeng analyzes and links all types of collected data, it can characterize the
users in various aspects.

Q4: Do users know their in-app actions are collected by third-party analytics
companies?

According to a previous study [16], 90% users care if apps share their personal
data with third parties and 45% users believe the apps should never share their
personal data with third parties without their explicit confirmation. This inspires
us to see whether users know their in-app actions are collected by third-party
analytics companies. Hence, we review these analytics libraries’ privacy policies
manually to discover what information they have claimed to collect. In these
analytics libraries’ privacy policies, we find that some analytics companies have
listed what information they will collect and ask the developers to show the use
of analytics libraries as well as the information collected by analytics libraries
in their apps’ privacy policies. However, after we review the privacy policies of
the apps we selected, we find only a handful of apps follow this rule. In the 81
apps from the Chinese app market, only two apps clearly describe the using of
third-party analytics services in their privacy policies, and only one of them gives
the name of the analytics library it uses. In the 50 apps from Google Play, only
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16 apps clearly describe the using of third-party analytics services and 4 apps
give the names of the analytics libraries they uses. Hence, we believe most users
do not know their in-app actions are collected by third-party analytics libraries.

5.2 Discussions

Our study shows the privacy risks stemmed from the analytics libraries. We
think it might be caused by the following reasons.

First, in today’s Android devices, users’ private information is not limited
to the information protected by Android permissions. Due to the lack of a clear
definition on what information is users’ personal information, developers might
have difficulty in deciding what information should not be collected. Second,
most developers disregard the end users’ privacy, which can be known from the
apps’ privacy policies. Only a few apps describe the use of analytics libraries in
their privacy policies. Third, some analytics companies do not provide privacy
policies specifically for mobile analytics, which makes mobile app developers
hard to understand the privacy risk caused by analytics libraries.

To protect users’ privacy in this situation, we think the first thing is to let
the users know what information is leaked through the analytics libraries in each
app. Then they can choose to use the app or use another similar app. We believe
that the app market should play the most important role. App markets can ask
the developers to write clear descriptions about the using of analytics libraries
and the information collected by analytics libraries in their apps’ privacy policies.
Our tool can be used by both users and app markets to explore the information
collected by analytics libraries.

5.3 Limitations

In the static analysis process, Alde uses the methods provided by Apktool to
decompile Android apps. Hence, we cannot analyze the apps that cannot be
decompiled by Apktool. In the dynamic analysis process, we cannot cover all
the execution paths. This is a common shortcoming of dynamic analysis. The
most important shortcoming of our approach is that we cannot analyze the apps
that obfuscate the tracking APIs they used. These limitations, however, may be
overcome by our approach in the future. We can compare all the APIs in an
app with the tracking APIs provided by each analytics library based on their
instructions and call graphs rather than their names. In this way, we can identify
which API is the tracking API even the API’s name is obfuscated. Then we can
use the obfuscated API name instead of the original API name in the following
analysis.

6 Related Work

Privacy and Mobile Advertising. There are many studies focusing on the
privacy issues associated with the advertising libraries in mobile apps. Grace et
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al. [15] studied potential privacy and security risks caused by in-app ad libraries.
They analyzed 100000 Android apps and found that most existing ad libraries
collected private information. Book et al. [9] studied how app developers used
the APIs through which a host app can send private information about the
users to ad server. They found that although most apps did not make use of
these privacy-related APIs, the number of apps that used these APIs is not
negligible. The information collected by these APIs can be simply identified by
the APIs’ names. They [10] also studied mobile ad targeting using simulated
user profiles and found that a large portion of mobile ads are targeted based on
app, location, time, and profiles built around actual users. Nath [21] studied what
targeting information was sent to ad networks by mobile apps and how effectively
the information was used by ad networks to target users. Demetriou et al. [12]
developed a tool called “Pluto” that can be used to analyze apps and discover
whether they leak targeted user data. They also studied what ad networks can
learn from the list of apps installed in a phone. Meng et al. [18] studied what
ad networks know about the user’s interest and demographic information. They
also studied whether the host apps could conversely use the targeted ads to infer
some of the user information collected by the ad network. Different from this
studies, our study focuses on the analytics libraries.

Privacy and Mobile Analytics Service. Han et al. [16] studied how real-
world users were tracked by the apps running on their Android smartphones.
They employed dynamic information flow tracking to monitor when sensitive
information was sent off the device. They recruited 20 volunteers to participate
in this study. They found advertising and analytics were embedded in 57% of the
apps and every participant in their study was tracked multiple times. However,
they only studied the information protected by Android permissions. Chen et al.
[11] studied the leakage of user’s sensitive information through the vulnerabilities
in mobile analytics services. They also studied how the ads served to users can be
influenced by modifying the user profiles generated by these analytics services.
Their experiments, conducted on Google Mobile Analytics and Flurry, validated
the information leakage problem they described. They focus on the user profiles
generated by analytics libraries and we focus on the tracking APIs.

Privacy and Mobile App’s Privacy Policy. Slavin et al. [23] proposed a
semi-automated framework to detect privacy policy violations in Android apps.
They constructed a policy terminology-API map that linked policy phrases to
API functions. Then they used this map to find the APIs and perform informa-
tion flow analysis. They analyzed 501 top Android apps and discovered 63 poten-
tial privacy policy violations. But, they did not consider the information collected
through tracking APIs. Yu et al. [29] developed a tool called “AutoPPG” that
can be used to automatically construct correct and readable descriptions about
the collection of user’s private information. AutoPPG is able to generate the
descriptions of third-party libraries used in apps; however, the information it
focuses on is limited to the information protected by Android permissions. Bale-
bako et al. [8] studied how app developers make decisions about privacy and
security. They interviewed 13 app developers to get information about privacy
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and security decision-making. And they test what they found with 228 app devel-
opers online. One important thing they found was that although third-party ads
and analytics services are pervasive, developers aren’t aware of the data collected
by these tools.

7 Conclusion

In this paper, we studied the information leakage caused by analytics libraries
that collect users’ in-app action information. We developed a tool named “Alde”
to explore the users’ in-app actions. Through experiments on 8 popular analytics
libraries and 300 apps downloaded from both Chinese app market and Google
play, we found that some apps leaked users personal information to analytics
libraries without notifying users. We also found that popular analytics companies
have the capability to characterize and profile users. In the future work, we plan
to improve our tool by making it more automated and more suitable for large-
scale analysis. Then we will make it an online service to help users and app
markets understand the information collected by analytics libraries.
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Abstract. Ring oscillator (RO) based physically unclonable function
(PUF) on FPGAs is popular for its nice properties and easy implemen-
tation. The conventional compensated measurement though proved to
be particularly effective in extracting entropy of manufacturing features,
only one bit entropy can be extracted from two ROs, which implies enor-
mous consumption of hardware resources. Motivated by this, we propose
an elegant and efficient method to extract at least 31 bits entropy from
two ROs by utilizing the fine control of programmable delay lines of
look up table (LUT), and denominate this new construction as Further
ROPUF. We will elaborate how to take advantage of the underlying
manufacturing variations of LUTs and display how deeper variations are
extracted by the second order difference calculation method. Addition-
ally, we reveal the consistency between the evaluation results on Xilinx
FPGAs and by simulations, and the responds’ low bit-error-rate of 1.85%
manifests the proposed FROPUF maintains considerable reliability.

Keywords: PUFs · Ring Oscillator · Entropy · FPGA

1 Introduction

With flourishing development of embedded devices in modern age, cryptographic
algorithms are easily implemented on FPGA for FPGA’s reconfigurable nature.
An indispensable premise for the security of cryptographic primitives is the com-
petence to securely generate, store and retrieve secret keys. In general, it rests
upon a protected memory which stores the private information reliably and
shields it completely from unauthorized parties. Whereas this requirement is non-
trivial to achieve in practice [1]. Recently, physically unclonable function (PUF)
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has attracted wider attention as a technique to provide physical roots of trust in
embedded systems [2–4]. Due to the submicron random variation during manu-
facturing, nominally identical logic circuit turns out to have individual physical
features. The main idea of PUF is to utilize these intrinsic random manufac-
turing features to extract a unique electronic fingerprint, therefore providing an
approach to issues such as cryptographic key generation [5], intellectual property
(IP) protection [6,7], device authentication [8–10] and trusted computing etc.

Up to now, a variety of electronic PUFs have been proposed, such as SRAM
PUF [11], Butterfly PUF [12], Glitch PUF [13], Flip-Flop PUF [14], Ring Oscil-
lator PUF [15] and so on. However, some of them are not suitable for FPGAs. In
the state of the art commercial FPGAs of Xilinx and Altera, the start-up values
of SRAM are reset to a certain value according to the manufacturer’s design,
which leads to the failure of deploying SRAM PUF on these FPGAs. Moreover,
many other PUF designs like Butterfly PUF and Arbiter PUF demand a careful
routing symmetry, which is also difficult to implement on FPGAs. Especially for
Butterfly PUF, even the fundamental element, a latch with a preset signal and
a clear signal, is not provided on Xilinx’s latest 6-series and 7-series FPGAs. RO
PUF which is first proposed by Suh and Devadas [15] has been widely used due
to its sensitivity to manufacturing variations, and particularly the hard-macro
design technique simplifies the implementation of identical ROs on FPGA. How-
ever, besides these advantages, Maiti [16] pointed out that some factors like the
systematic or correlated manufacturing variations and the regional environmen-
tal noise would degrade the uniqueness and reliability of RO PUF.

A lot of researches [15–21] have been done in order to strengthen the proper-
ties of RO PUF. In DAC 2007, Suh and Devadas [15] applied a post-processing
technique called 1-out-of -k masking and greatly enhanced the reliability of
the PUF’s response, but resulted in a relatively large resource overhead. In
J.Cryptol.2011, Maiti et al. [16] proposed a configurable RO technique to pro-
duce nearly 100% error-free PUF outputs over varying environmental condition
without post-processing. This technique is quite effective to resolve PUF relia-
bility issues on FPGAs. However, two configurable ROs generate only one bit
response in making a tradeoff between reliability and the length of response
sequence, and the calculation cost is relatively high.

To serve as a physical root of trust, it is vital for a PUF design to provide
sufficient entropy in its response. Nevertheless, the most commonly used fuzzy
extraction technics in PUFs always cause entropy loss [22,23]. As a result, the
amount of extractable entropy of a PUF becomes another essential evaluation
index. Given this, Habib et al. [24] proposed an FPGA PUF base on program-
mable LUT delays to acquire more entropy from two ROs. According to his
research, when the logically unrelated inputs of LUT vary from ‘000’ to ‘111’,
the RO’s frequency changes irregularly. While in CHES 2011 [25,26], it stated
that the loop delays of input ‘111’ were on average about 10 picoseconds larger
than the delay values of input ‘000’. Habib et al. pointed out this disagreement
is caused by employing different devices (in [24] is Spartan-3E, while in [25,26]
are Virtex-5 series). However, if the frequency varies regularly as the LUT inputs
change, the method used in [24] would be invalid.
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In this paper, by utilizing the fine adjustment of LUT’s propagation path
on FPGAs [25], we propose a comprehensive scheme to extract more available
manufacturing features and through a second order difference calculation way,
we are able to achieve at least 31-bit entropy from two ROs. Furthermore, this
difference calculation method can efficiently reduce the effect of the systematic
manufacturing variation and the regional environmental noise. To make it more
persuasive, the evaluation results obtained from our experiments and simulations
demonstrate that the proposed PUF construction possesses excellent reliability
and uniqueness under varied temperatures.

Although RO PUF is threatened by modeling attacks, a secure one-way hash
over the PUF’s outputs, so called a Controlled PUF [27], is an efficient solution.
The staple of this paper is how to extract more entropy from ROs, rather than
a secure access to the response of PUFs.

In summary, our contributions in this paper are as follows:

– We propose an elegant method to extract more subtle manufacturing varia-
tions by second order difference calculation, which can efficiently reduce the
impact of systematic variation and regional environmental noise to guarantee
the PUF’s reliability.

– We design a new construction named Further RO PUF (FROPUF), which
can extract at least 31-bit entropy from only two ROs on FPGAs.

– We conduct both simulation and practical experiments to demonstrate that
our new proposed PUF has a bit-error-rate of 1.85% at 27 ◦C and an average
inter-distance of 49.32%.

The rest of the paper is organized as follows. Section 2 presents preliminaries
for our paper. Section 3 describes our model for RO PUFs with fine control of
LUT’s inputs and proposes our new construction with second order difference
calculation. Section 4 evaluates the performance of our PUF from simulations
and practical experiments. Finally, we conclude this paper in Sect. 5.

2 Preliminaries

A typical example of RO based PUF is shown in Fig. 1. It consists of n identically
laid-out ROs, RO1 to ROn, with frequencies f1 to fn respectively. In general,
the challenge (i, j) is applied to the multiplexers to select a pair of ROs, ROi and
ROj (i �= j). Due to intrinsic manufacturing variations, fi and fj actually differs
from each other. Based on the compensated measurement proposed by Gassend
et al. [2], a response bit rij can be generated by the comparison expression as
follows:

rij =

{
1 if fi > fj ,

0 otherwise.
(1)
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Fig. 1. (a) A typical example of RO PUF. (b) A three-stage ring oscillator

2.1 Evaluation Scheme of RO PUF

The evaluation scheme of a PUF is usually divided into three basic aspects,
uniqueness, reliability and security [16].

– Uniqueness estimates how uniquely a PUF entity can be distinguished from
others according to its responses.

– Reliability evaluates how stable the responses are with environmental factors
(such as temperature, supply voltage) vary.

– Security is a PUF’s ability in preventing adversaries from predicting the PUFs
response.

Uniqueness can be measured by inter-distance. As defined in [28], when apply
a particular challenge to the PUF’s two different instances, the inter-distance is
the hamming distance (HD) between their current responses. We estimate the
uniqueness of a PUF base on the average inter-distance over a group of chips.
With two PUF instantiations, denoted as i and j (i �= j), both having a n-bit
response, Ri and Rj respectively, the average inter-distance μinter among k chips
is calculated as

μinter =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(Ri, Rj)
n

× 100% (2)

Reliability can be evaluated through intra-distance. It is the hamming dis-
tance between different evaluation values of the same response on the same PUF
instance. Due to environmental factors, such as temperature variation, supply
voltage fluctuation and circuit noise, PUF’s responses are not perfectly repro-
ducible. To evaluate the reliability of a PUF’s response, we achieve n-bit response
m+1 times from the PUF instance i at some environmental condition and select
the first n-bit response as the reference response Ri and the other responses as
Ri,j (1 ≤ j ≤ m). The average intra-distance μintra can be calculated as follows:
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μintra =
1
m

m∑
j=1

HD(Ri, Ri,j)
n

× 100% (3)

2.2 Systematic Variation

In J.Cryptol.2011, Maiti et al. [16] pointed out that the total delay in a RO loop
can be modeled as follows:

dLOOP = dAVG + dRAND + dSY ST (4)

where dAVG = the nominal delay which is the same for all the identical ROs;
dRAND = delay variation due to manufacturing variation; dSY ST = delay vari-
ation due to the systematic variation. Then the difference between two ROs, a
and b, can be calculated as follows:

ΔdLOOP = (dAVG + dRANDa
+ dSY STa

) − (dAVG + dRANDb
+ dSY STb

)
= ΔdRAND + ΔdSY ST (5)

According to formula (5), a single response bit rab of these two ROs is not
only decided by the random manufacturing variation, but also by the systematic
variation. Maiti et al. noted that the systematic manufacturing variation could
lead to a gradual change in the RO’s loop delay as a function of the physical
location, and its existence hazards RO PUF’s uniqueness. In [16] a solution is
given. Because two closely located ROs will have similar dSY ST in (4), their
dSY ST can be counteracted by difference calculation.

2.3 Programmable Delay Lines

LUT is the main programmable delay logic unit of FPGA, and the construc-
tion of a 3-input LUT is shown in Fig. 2. The LUT is composed of a set of
SRAM cells and a tree-like structure of multiplexers (MUXs). The former stores
the intended functionality and the latter enables selection of each individual
SRAM cell content. A LUT can be configured as an inverter, whose output (O)
is always an inversion of its first input (A1), and the inputs (A2 and A3) are
logically irrelevant with A1 and O. In CHES 2011, Majzoobi et al. [25] pro-
posed a novel technique to adjust the propagation path in minute increments
/decrements by using only a single LUT on reconfigurable FPGA platform. The
mechanism changes the propagation path inside the LUT by altering the logi-
cally irrelevant inputs. Although the inputs A2 and A3 have no influence on the
inverters logic, their values affect the signal propagation path from input A1 to
output O. Majzoobi et al. pointed that when A2A3 = 00 and A2A3 = 11, the
propagation path from A1 to O is the shortest and the longest respectively as
shown in Fig. 2. The latest Xilinx series products, Virtex-5,6,7 and Spartan 6,
adopt 6-input LUTs. Therefore, as the method proposed by Majzoobi, a pro-
grammable delay inverter can be implemented with at most 25 = 32 discrete
levels for controlling the propagation delay. For example, it is an example of this
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Fig. 2. Programmable delay lines using an LUT

Fig. 3. An example of this fine control for 5-stage ROs

fine control for 5-stage ROs and the LUTs are 6-input in Fig. 3. Five of these
inputs are configured as delay control.

Based on the multiple control of the LUT’s propagation delay, Habib
et al. [24] managed to extract more entropy from a pair of RO. According to
their experiment results, the frequency varies significantly with the LUT’s input
sequence and the frequency’s changing pattern is irregular. Based on this, Habib
et al. were able to extract more entropy by comparing two RO’s frequencies
under all configurations from ‘000’ to ‘111’ correspondingly. However, the exper-
iment results of Majzoobi et al. [25], demonstrates that the propagation delays
of input ‘11111’ are on average about 10 picoseconds larger than the correspond-
ing delays of input ‘00000’. Habib et al. explained that the reason might be the
Spartan 3E devices they used were based on 90 nm technology, while Majzoobi
et al. employed Virtex-5 devices which were 65 nm technology. Therefore, if the
frequency varies in a rough order depending on the LUT’s input sequence, the
result of the proposed method in [24] will lose efficiency on Virtex-5 devices.

3 Our Proposed Further ROPUF

Based on the propagation delay model proposed by Majzoobi et al. [25], we
present a model which is involved with the subtle manufacturing variation of
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different LUT’s inputs. Consider a RO l consisting of 6-input LUTs, its loop
delay can be modeled as follows:

dLOOP (l,j) = dAVG + dRAND(l,j) + dSY ST (l,j) (1 ≤ j ≤ 32) (6)

where dAVG is the nominal delay which is the same for all the identical ROs;
dRAND(l,j) represents the delay variation due to the random manufacturing vari-
ation when LUTs are driven by the jth input; dSY ST (l,j) denotes the delay vari-
ation due to the systematic variation. The variables dRAND(l,j) and dSY ST (l,j)

could be positive and negative. For a RO with different LUT inputs, inj1 and
inj2 , these two dSY ST (l,j1) and dSY ST (l,j2) are extremely close as shown in [16].
Therefore, in formula (6), the subscript of dSY ST (l,j1) and dSY ST (l,j2) can be
modified to dSY ST (l), where l is only related to the RO’s location. And formula
(6) will change into formula (7) as follows:

dLOOP (l,j) = dAVG + dRAND(l,j) + dSY ST (l) (1 ≤ j ≤ 32) (7)

Fig. 4. The histogram distribution of 1000 ROs’ frequencies

Moreover, when apply the same LUT input inj on a group of L ROs, L
variable values dRAND(1,j), dRAND(2,j), · · · ,dRAND(L,j) are acquired. According
to ReConFig 2008 [29] and HOST 2011 [30], these values are almost complying
with Gaussian distribution. Figure 4 shows the distribution of our experimental
data, and it also seems like a normal distribution. Therefore, we assume that
these L values are normally distributed. Apply this assumption to other LUT
input configurations and we can achieve 32 normal distributions as follows:

(dRAND(1,j), dRAND(2,j), · · ·, dRAND(L,j)) ∼ N(μj , σ
2
j ) (1 ≤ j ≤ 32) (8)

Which indicates the random variable dRAND(j) is a normal distribution with
mean μj and standard deviation σj .



682 Q. Zhang et al.

3.1 Second Order Difference Calculation

On the basis of the above description, for a group of L ROs, by varying the
LUT’s input from ‘00000’ to ‘11111’, we can obtain 32 ∗ L different dLOOP (l,j)

which are in the same form of formula (9). Then we generate responses by second
order difference calculation.

According to the above description, for a group of L ring oscillators, by
varying the LUT’s input from ‘00000’ to ‘11111’, we can get 32 ∗ L different
dLOOP (l,j) which has the similar form in formula (9). We propose an elegant
method to generate responses based on second order difference calculation.

dLOOP (l,j) = dAVG + dRAND(l,j) + dSY ST (l) (1 ≤ j ≤ 32, 1 ≤ l ≤ L) (9)

Our proposed method can be divided into two steps and here we present a
neat example to illustrate our method.

1. For a RO l, select dLOOP (l,j) and dLOOP (l,j+1), then calculate the difference
value ΔdLOOP (l,j), 1 ≤ j ≤ 31.

2. For two ROs l1 and l2, generate one bit rl1,l2,j (1 ≤ l1 �= l2 ≤ L, 1 ≤ j ≤ 31)
as follows.

rl1,l2,j =

{
1 if ΔdLOOP (l1,j) > ΔdLOOP (l2,j),

0 otherwise.
(10)

Through these two steps, we will get a 31-bit response from two of these L ROs,
thus 31*(L-1) bits can be extracted. Based on formula (9), ΔdLOOP (l,j) can be
calculated as follows:

ΔdLOOP (l,j) = dLOOP (l,j) − dLOOP (l,j+1)

= (dAV G + dRAND(l,j) + dSY ST (l)) − (dAV G + dRAND(l,j+1) + dSY ST (l))

= dRAND(l,j) − dRAND(l,j+1) (11)

Observing formula (11), we note that the systematic variation is neatly removed
by this first order difference calculation. According to the assumption condition
(8) that both dRAND(j) and dRAND(j+1) are normally distributed, we can get
the distribution of the random variable ΔdLOOP (j) as follows:

ΔdLOOP (j) ∼ N(μj − μj+1, σ
2
j + σ2

j+1 − 2 ∗ rj ∗ σ2
j ∗ σ2

j+1) (1 ≤ j ≤ 31) (12)

where rj is the correlation coefficient between these two random variables. Let
μLOOP (j) and σLOOP (j) represent μj − μj+1 and σ2

j + σ2
j+1 − 2 ∗ rj ∗ σ2

j ∗ σ2
j+1

respectively. Through the second step of second order difference calculation, we
can calculate the distribution of the random variable Rl1,l2,j as follows:

Rl1,l2,j ∼ N(0, 2 ∗ σ2
LOOP (j)) (1 ≤ j ≤ 31) (13)
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For the mean of Rl1,l2,j ’s distribution is zero, as the result of our second order
difference calculation method, probabilities for rl1,l2,j equals ‘0’ and ‘1’ are the
same. Theoretically, every response bit has 50% probability to be ‘0’ or ‘1’ and if
these 31 bits have no correlation, it can be stated that 31-bit entropy is extracted
from these two ROs.

In order to evaluate the randomness and entropy of responses, we will carry
out NIST test suits on the responses generated by FROPUF in Sect. 4.4.

3.2 Analysis of the Second Order Difference Calculation

The key point to extract more entropy from two ROs is to extract more manu-
facturing features whose magnitude may be close to that of noise. Therefore we
should suppress or eliminate the noise to the greatest extent.

In the conventional architecture of RO PUF, every RO has unique signal
propagation path. While in programmable delay line model, the fine control of
LUT’s logically irrelevant inputs leads to different propagation paths. Habib
et al. [24] have tried to extract more responses by utilizing this character.
However, these propagation paths have a rough order on Xilinx Virtex-5, 6,
7 series devices. In that case, although the direct comparison between the
corresponding delays of two ROs can acquire a 32-bit response sequence, the
correlation between these bits may give rise to a large amount of entropy loss.

In our proposed scheme, we take advantage of the similarity of adjacent
ROs’ systematic variations and effectively eliminate the influence of systematic
factors by the first order difference calculation between loop delays of the same
RO. Follow the second step, we obtain the second order difference as formula
(14) shows. This result is affected by the combination of two ROs’ manufacturing
features. As described in Sect. 3.1, the value of each response bit is decided by
the sign of formula (14).

(dLOOP (l,j) − dLOOP (l,j+1)) − (dLOOP (l+1,j) − dLOOP (l+1,j+1)) (14)

Rewrite formula (14) we get:

(dLOOP (l,j) − dLOOP (l+1,j)) − (dLOOP (l,j+1) − dLOOP (l+1,j+1)) (15)

Observing formula (15), you will see the most important difference between
Habib et al. and us is that we compare the relative magnitude of two ROs’
corresponding loop delays. And also because of this, our scheme is able to extract
more subtle manufacturing features.

Furthermore, the second order difference calculation method maintains the
primary idea presented by Gassend et al. [2] which alleviates the impact of
environmental fluctuations by comparing two ROs’ frequencies to generate one
bit response. To sum up, the second order difference calculation involves two
difference functions which reduce both influence of the systematic variation and
of the environmental fluctuations.
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3.3 Simulation of Second Order Difference Calculation

To prove the effectiveness and correctness of our proposed model through simu-
lation, some necessary parameters needs to be collected from experimental data
on FPGA. In order to reflect individual differences, manufacturing variation and
environmental change should be considered during simulation. Manufacturing
variation is generally divided into systematic variation and random variation.
Systematic variation is mainly affected by the ROs location on the wafer or
chip. There is a research pointing out that systematic variation dominates the
frequencies of ROs in one region are average larger than those in another region
[16]. On the contrary, random variation has no relationship with components’
spatial location. Therefore, we assume the parameters are as follows:

• Systematic delay dSY ST affected by spatial location: ∼ N(0,σ2
syst).

• Component delay dRAND affected by random variation: ∼ N(μj ,σ2
j ), where j

represents the jth input for LUTs.

According to the parameters defined above, the delay value for different LUT
inputs of different ROs can be generated by simulation, and we can also calculate
every response bit following Algorithm 1, where sampling y from a distribution
N(μ,σ2) is denoted as y ←− N(μ,σ2).

Algorithm 1. Simulation Algorithm of Second Order Difference Calcula-
tion
Settings: ·MAXNumRO is the number of ring oscillators.

·MAXNumIn is the number of different LUT’s inputs.
Output: rl,j , 0 ≤ l ≤ MAXNumRO − 1, 0 ≤ j ≤ MAXNumIn − 1

1: for l = 1 to MAXNumRO do
2: dSY ST (l) ← N(0,σ2

syst)
3: for j = 1 to MAXNumIn do
4: dRAND(l,j) ← N(μl,σ

2
l )

5: end for
6: end for
7: for l = 1 to MAXNumRO − 1 do
8: for j = 1 to MAXNumIn − 1 do
9: ΔLOOP (l,j)← (dAV G + dRAND(l,j) + dSY ST (l)) − (dAV G + dRAND(l,j+1) +

dSY ST (l))
10: ΔLOOP (l+1,j) ← (dAV G + dRAND(l+1,j) + dSY ST (l+1)) − (dAV G +

dRAND(l+1,j+1) + dSY ST (l+1))
11: if ΔLOOP (l,j) ≥ ΔLOOP (l+1,j) then
12: rl,j ← 1
13: else
14: rl,j ← 0
15: end if
16: end for
17: end for
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4 Evaluation

In this section, we present the evaluation result of our FROPUF on 15 Virtex-
5 XC5VLX110T-1FF1136 FPGAs, 10 Virtex-6 XC6VLX240T-1FF1156 FPGAs
and 5 Kintex-7 XC7K325T-2FFG900 FPGAs. On the basis of practical mea-
surements, we firstly acquire parameters for simulation. Then by comparing
experimental and simulative results, we reveal the consistency of our simulation
model and the practical architecture.

Fig. 5. The experimental evaluation system

Figure 5 shows our experimental evaluation system on Virtex-5 FPGA. A
50-MHz clock signal generated by an on-board oscillator and is applied to the
reference counter. In Fig. 5, we place 200 ring oscillators and each of them is
composed of 16 LUTs. 15 LUTs are instantiated as inverters with 5 configuration
inputs and the last one serves as an enable switch. All the 16 LUTs are deployed
in four adjacent slices, which means every RO occupies 4 slices of FPGA. Hard
Macro technique is adopted to guarantee identical layout of these 200 ROs. The
whole system is mainly controlled by the control module, which is responsible
for the inverters’ configuration inputs and control signals of multiplexer and
reference counter. In order to evaluate the responses generated by our FROPUF,
we utilize UART interface to transmit these responses to PC for analysis.

As high frequency makes RO instable, we select 15-stage RO whose frequency
is about 132 MHz. To demonstrate the validity of our design, the configuration
inputs for all LUTs are the same, i.e. the configuration input space is 25. In
our evaluation system, there are 200 ROs which consume 800 slices. The other
control module and the UART module have 213 and 126 slices separately.
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In normal environmental condition, we perform a basic experiment on delay
characteristics described in Sect. 3 and extract the parameter required by simu-
lation. The obtained parameters are shown in Table 1. Based on these parame-
ters and our simulation model, we can calculate the intra-distance and inter-
distance to evaluate the reliability and uniqueness of FROPUF.

Table 1. Parameters for simulation in normal environmental condition

Parameter Value

Standard deviation of systematic delay σdSY ST (%2) 3.5336

Standard deviation of component random variation σdRAND (%2) 4.7636

4.1 Reliability

Reliability is mainly evaluated by intra-distance and reflects how stably the PUF
can reproduce its responses. Figure 6 plots the evaluation results from simulation
and experimental results of our evaluation systems. The simulative average error
rate is around 1.25%. Steps to calculate the average intra-distance of practical
experiments are depicted as follows:

1. Let every two ROs generate 31-bit response 200 times and record as RESl,k,t.
Where 1 ≤ l ≤ 15 denotes the index of FPGA boards, 1 ≤ k ≤ 100 denotes the
index of RO pairs and 1 ≤ t ≤ 200 denotes the the number of measurement.

2. For every RO pair, obey formula (3) to calculate the intra-distance of its 200
responses.

3. Average all the RO pairs intra-distance.

Fig. 6. The intra-distance evaluation from practical experiments and simulations
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Fig. 7. The error bit ratio under different temperature conditions

The measurement is carried out at normal temperature (27 ◦C) on 15 Virtex-5
XC5VLX110T- 1FF1136 FPGAs. The experimental average error rate is around
1.85%, which is comparable to other RO PUF designs [5,18]. In addition, Fig. 6
indicates that the behavior of experimental error rate can be assessed by simu-
lation with high accuracy.

The change of temperature is a major disturbance for RO based PUF, there-
fore we conduct experiments under different temperatures to investigate the
FROPUF’s property. Figure 7 shows that as the temperature rising (up to about
70 ◦C), the intra-distance continues to increase until 6.98%, which is about the
half of 15% assumed in [31]. According to Figure 7, FROPUF achieves almost
the same error bit rate as the general ROPUF.

4.2 Uniqueness

Uniqueness is mainly evaluated by inter-distance and Fig. 8(a) is a histogram
of hamming distances between different PUF instances’ responses in practice.
Every instance consists of two ROs and produces a 31-bit response. We totally
deploy 1500 instances on 15 Virtex-5 FPGAs. The result shows that the average
inter-distance is about 49.32%, which indicates that FROPUF instances possess
enough uniqueness to be identified from each other. Figure 8(b) shows the result
of the same evaluation by simulation. Through Fig. 8(a) and (b), we conclude
that the simulation is able to evaluate the uniqueness of responses generated by
PUF instances.

4.3 The Randomness Evaluation

NIST test suites are carried out to evaluate the randomness of the responses gen-
erated by FROPUF. The length of the response generated by each instantiation
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Fig. 8. The inter-distance evaluation from practical experiments and simulations

is 31 bits and we get totally 46500 bits responses. For the limitation of the length
of response, we conduct 9 basic NIST tests and the result is shown in Table 2.
The Frequency test manifests that the response bit has nearly 50% to be ‘1’
and 50% to be ‘0’ and this practical result is similar to the theoretical analysis
in Sect. 3.1.

Table 2. The result of NIST for FROPUF’s responses

Statistical test P-value Proportion

Frequency 0.350485 10/10

Blockfrequency 0.911413 10/10

Cumulativesums(forward) 0.739918 10/10

Cumulativesums(backward) 0.035174 10/10

Runs 0.534146 10/10

Longestruns 0.628713 10/10

Rank 0.122325 10/10

FFT 0.523478 10/10

Serial(∇1) 0.712378 10/10

Serial(∇2) 0.328793 10/10

Linearcomplexity 0.189283 10/10

In Table 3, we list some designs extracting responses from ROs and make
comparisons of the variable Bits per Ring. The result shows that in our archi-
tecture, we can extract 16.5 bits entropy per ring, which is 7 times larger than
that of Habib et al. [24], and moreover it is 31 times larger than that of the
general RO PUF.
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Table 3. Comparison of the entropy extracted from two ROs

Our work General RO PUF Habib et al. [24] Maiti et al. [16]

Number of ring oscillators 2 2 130 512

Average independent
response bits

31 1 318 511

Bits per ring 16.5 0.5 2.44 ≈ 1

4.4 The Evaluation Result on Other FPGAs

The above reliability and uniqueness are tested on Xilinx Virtex-5 FPGAs. We
also conduct experiments on Xilinx Virtex-6 and Kintex-7 FPGAs. The results
show that the intra-distance and inter-distance is 1.68% and 49.12% on Virtex-6
FPGAs, and is 1.62% and 48.95% respectively on Kintex-7 FPGAs. Therefore,
our new proposed FROPUF is also available on these new fashioned FPGA
products.

5 Further Discussion

In Sect. 3, our proposed second order difference calculation just generates a 31-
bit response. However, follow Algorithm2, we can get a 496-bit response from
two ROs. Obviously, the Shanon entropy of this 496-bit response is less than
496 bits. On the observation of Sect. 3, a lower bound entropy of this 496-bit
response is 31 bits. Based on the model proposed in Sect. 3, we can calculate the
Shanon entropy of this 496-bit response as follows.

Based on the model proposed in Sect. 3, we have the formula (16) as fol-
lows because we assume no prior information about the response when only the
manufacturing variation is present.

Prob(ri = 1) = Prob(ri = 0) = 0.5 (1 ≤ i ≤ 496) (16)

However, because of the existence of correlations, if we know some bits’ value,
some other bits’ information leaks out. For example, if r1 and r2 are known, the
value of r32 distributes as follows.

Prob(r32 = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if r1 = 1 and r2 = 0,

0.5 if r1 = 1 and r2 = 1,

0.5 if r1 = 0 and r2 = 0,

0 if r1 = 0 and r2 = 1.

(17)

Figure 9 shows the correlation between these 496 bits response. Based on
formula (16) and Fig. 9, we can calculate the Shanon entropy of the 496-bit
response as follows. The 31 bits in the first row of Fig. 9 have 31 bits Shanon
entropy, and the 30 bits in second row have 15 bits Shanon entropy and so
on. We can acquire that the responses in the ith row have 1

2i−1 (32 − i) bits
Shanon entropy. As a result, the Shanon Entropy of this 496-bit response is∑31

i=1
1

2i−1 (32 − i) = 60 bits.
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Algorithm 2. Simulation Algorithm of Second Order Difference Calcula-
tion
Settings: · There are two ROs, A and B.

· Both A and B have 5-bit configuration inputs.
· According to 32 different inputs, there will be CounterAj and

CounterBj , 1 ≤ j ≤ 32
Output: · Response ri, 1 ≤ i ≤ 496

1: i ←− 0
2: for m = 1 to 32 do
3: for n = m+1 to 32 do
4: i ←− i + 1
5: ΔCounterA(m,n) ←− CounterAm - CounterAn

6: ΔCounterB(m,n) ←− CounterBm - CounterBn

7: if ΔCounterA(m,n) ≥ ΔCounterB(m,n) then
8: ri ← 1
9: else

10: ri ← 0
11: end if
12: end for
13: end for

Fig. 9. The Shanon Entropy of the 496-bit response

6 Conclusion

In this paper, we propose a new architecture called Further RO PUF, which takes
advantage of LUT’s fine control to achieve more random manufacturing varia-
tions. Through the second order difference calculation, we on one hand extract
more subtle features from RO pairs, and on the other hand, neatly reduce the
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influence of systematic variation and environmental fluctuation to strengthen
the reliability. The key point of FROPUF is that we can extract at least 31 bits
entropy from only two ROs and according to our analysis, the Shanon Entropy
of the response reaches 60 bits. By conducting simulation and practical experi-
ments, we found the intra-distance of FROPUF is only 1.85% at 27 ◦C and never
exceed 10% with drastic temperature changes, and the inter-distance is about
49.32%, which guarantees the uniqueness of different PUF instances.

References

1. Ruhrmair, U., Holcomb, D.E.: PUFs at a glance. In: Design, Automation and Test
in Europe Conference and Exhibition (DATE), pp. 1–6 (2014)

2. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 148–160 (2002)
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Abstract. True Random Number Generators (TRNGs) are essential
for cryptographic systems and communication security. According to the
published standards, sufficient entropy derived from the stochastic model
is required for TRNGs. Compared with the directly sampling jittery oscil-
lating signal, the coherent sampling is a more efficient entropy extraction
technique. In this paper, under the premise that the entropy per bit is
sufficient, we focus on how to extract the entropy as much as possi-
ble from the coherent sampling in order to enhance the throughput of
TRNGs. We provide a parameter adjustment method to maximize the
generated entropy rate, and this method is based on our proposed sto-
chastic model. According to the method, we design a TRNG architecture
and implement it in Field Programmable Gate Arrays (FPGAs). In the
experiment, the improved generation speed is up to 4Mbps, and the
output sequence is able to pass NIST SP 800-22 statistical tests with-
out postprocessing. Compared to the basic coherent sampling, the bit
generation rate is improved to 12 times.

Keywords: True Random Number Generators · Coherent sampling ·
FPGA · Stochastic model · Entropy extraction

1 Introduction

Random Number Generators (RNGs) play an important role in many crypto-
graphic applications, such as the session key generation in communications, dig-
ital signature generation and key exchange. The property of generated random
numbers determines the security of cryptographic systems. Generally speaking,
RNGs are separated into two categories: Pseudo Random Number Generators
(PRNGs) and True Random Number Generators (TRNGs). PRNGs extend the
seed to extremely long sequence by using deterministic algorithms, so the PRNG
security is based on the unpredictability of the seed. TRNGs collect random-
ness from physical phenomena such as temperature, noises, radiation, which are
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assumed to contain unpredictable random components. In addition, the TRNG
output usually serves for the seeds of PRNGs, so it is important to design secu-
rity TRNGs with sufficient entropy.

Entropy is used as the measurement of the unpredictability, and also quan-
tifies the true randomness of a TRNG output. The standards ISO 18031 [6] and
AIS 31 [7] recommend to use the entropy derived from stochastic model to assess
the security of a TRNG. Several works provided different modeling and entropy
calculation methods for different types of TRNGs. For example, the entropy of
oscillator-based TRNGs was calculated in [1,8,10], and Cherkaoui et al. [3] ana-
lyzed the behavior of self-timed ring (STR) and estimated the entropy of a STR
based TRNG.

In addition to the entropy, the speed (i.e., the generation rate) is another
important factor for a TRNG. Although the traditional method of sampling
jittery oscillating signals has been well studied in the aspect of entropy estimation
[1,10], the amount and the utilization rate of the randomness are both very low,
yielding that the bit generation speed is very slow. Hence, the improvements
either on refining the oscillator structure (such as [3,17]) or on improving the
probability of capturing jitter (such as [12,14]) have been presented in literature.

Coherent sampling is one of the improvement techniques, where an oscil-
lating signal is sampled by another with a similar frequency. The principle of
this method utilizes the tiny difference between the two close frequencies of
the signals to distinguish the jitter accumulation. In the traditional sampling,
the accumulation of jitter within one sampling interval is required to be large
than half or even one period of the sampled signal, thus the sampling inter-
val has to be significantly large to guarantee the sufficiency of entropy. While,
in coherent sampling, the required jitter accumulation is approximated to be
the period difference between the two signals, thus the accumulation time can
be much shortened to acquire a much higher generation speed. In general, the
sampling result is called beat signal, and its period is equal to an integer times
of the period of sampling signal. Actually, this integer times is random due to
the accumulation of jitter. Hence, an intuitive method is counting the number
edges of sampling signal within the period of beat signal, and using the Least
Significant Bit (LSB) as the outputted random bit.

The TRNG based on coherent sampling was first presented in [9], and the
random bit sequence was generated at a speed of up to 0.5 Mbps with good
statistical properties in Field Programmable Gate Arrays (FPGAs). For the
model of a Phase Locked Loop (PLL) based TRNG structure [4], Bernard et al.
[2] proposed a mathematical model using two oscillating signals with rationally
related frequencies, and then estimated the entropy per bit. An enhancement of
this type of a TRNG was presented in [16] which employed the mutual sampling
principle, and the improved speed up to 4 times compared to the basic coherent
sampling.

In this paper, on the premise that the entropy per bit is sufficient, we focus
on how to extract more entropy from the coherent sampling to enhance the
speed of TRNGs. Our key insight is that the counting edge number in the beat
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signal contains more entropy which is more than 1 bit in the basic [9] or 2 bits
in the enhanced [16]. Therefore, we provide a parameter adjustment method to
maximize the generated entropy rate, and this method is based on our proposed
stochastic model. According to the method, we design a TRNG architecture and
implement it in FPGAs. In the experiment, the improved generation speed is
up to 4 Mbps, and the output sequence is able to pass NIST SP 800-22 statistical
test suite [13]. Compared to the basic coherent sampling, the bit generation rate
is improved to 12 times.

In summary, we make the following contributions.

– We establish an equivalent model for coherent sampling from the aspect of
the bias of two frequencies rather than the ratio, thus the model has a wider
applicability.

– Based on the model, we propose a parameter adjustment method to maximize
the generated entropy rate, and design the TRNG architecture to acquire a
higher bit generation speed.

– We provide the simulation results to validate the correctness of the equivalent
model, and implement the TRNG architecture in Xilinx Virtex-5 FPGA. In
the experimental results, the generated bit sequence passes NIST SP800-22
statistical tests without postprocessing at a speed of 4 Mbps. The improve-
ment factor is 12 compared to the speed of the basic coherent sampling.

The rest of paper is organized as follows. In Sect. 2, we mainly establish an
equivalent model to evaluate entropy per bit. Next, we propose an architecture
of TRNGs, which is based on an improved method to extract more entropy in
Sect. 3. In Sect. 4, we give the simulation and implementation results to verify
the effectiveness of the architecture, and compare with other related work. We
conclude the paper in Sect. 5.

2 Equivalent Stochastic Model

In this section, we first introduce the principle of the traditional sampling and
the coherent sampling. Then, we propose an equivalent model to transfer the
coherent sampling process to the traditional sampling process. Finally, based
on the equivalent model, we evaluate the bit-rate entropy and give the required
condition to acquire sufficient entropy.

2.1 Principle of Traditional and Coherent Sampling Methods

The traditional sampling is defined that a stable slow clock signal (such as crystal
clock signal) samples an unstable fast oscillating signal to generate bit sequences
[1,10]. Relatively, the coherent sampling is defined that an oscillating signal Sro1

is sampled using a D flip-flop by another oscillating signal Sro2 with a similar
period of Sro1 [9]. The basic components of the coherent sampling are shown as
Fig. 1. The signal on the output of the D flip-flop is called a beat signal Sbeat

and it is a low-frequency signal depending on the period difference between Sro1
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and Sro2 . Figure 2 shows the principle of the basic coherent sampling. The period
of beat signal is always equal to an integer period number of Sro2 . Since the Sro1

and Sro2 are unstable due to the jitter, the number is random. Therefore, the
period number of Sro2 during the period of beat signal can be counted as the
random output.

DSro1

Sro2

Sbeat Cnt outRO1

RO2

Fig. 1. Basic components of the coherent sampling

Tro2 Tro2 Tro2

Tro1

∆

Tbeat

W1Tro1 Tro1
(1) (2) (k)

(k)(2)(1)

Fig. 2. Principle of the coherent sampling

2.2 Proposed Equivalent Model

Bernard et al. [2] proposed a mathematical model for the case of two oscillating
signals with rationally related frequencies. Their model is efficient for the signals
with known relationship (i.e., integer ratio ), e.g., for the signals generated from
two PLLs [4]. However, for two free-oscillating signals, the ratio could not be
exactly the ratio of two (small) integers, thus the model is not applicable for
this case. Therefore, we provide a more general model from the aspect of the
bias of two frequencies rather than the ratio, and we succeed in transferring the
coherent sampling process to the traditional sampling process, whose model and
entropy have been well studied in literature [1,8,10].

Definition. The important notations are shown in Fig. 2, where the periods T
(k)
ro1

and T
(k)
ro2 are the time intervals between two adjacent rising edges of signal Sro1

and Sro2 , respectively. In this paper, we assume that T
(k)
ro1 and T

(k)
ro2 are inde-

pendent and identically distributed (i.i.d.), and Tro1 and Tro2 are independent
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of each other. The time span between the rising edge of the signal Sbeat and
the previous rising edge of the signal Sro1 is denoted as Wi. The rising edge
number of signal Sro2 from time zero to ith Tbeat is denoted as Ni. Hence, Ni is
represented as Ni = min{k|Yk > Xk+i}, where Xk = T

(1)
ro1 + T

(2)
ro1 + · · · + T

(k)
ro1 ,

Yk = T
(1)
ro2 + T

(2)
ro2 + · · · + T

(k)
ro2 , meaning Ni is the first increasing k ensuring that

the signal Sro1 has more i rising edges than the signal Sro2 .
Then we denote Ri = Ni − Ni−1 as the rising edge number of signal Sro2

within the ith Tbeat, which is employed as the random output. Then we have

Ri = min{k|Yk > Xk+i} − min{k|Yk > Xk+i−1}

= min{k|
Ni−1+k∑

j=Ni−1+1

(T (j)
ro2

− T (j+i−1)
ro1

) + Wi−1 > T (Ni−1+k+i)
ro1

} (1)

Let {Δn} = {T
(1)
ro2 − T

(1)
ro1 , T

(2)
ro2 − T

(2)
ro1 , · · · T (Ni−1+1)

ro2 − T
(Ni−1+i)
ro1 , · · · T (Ni)

ro2 −
T

(Ni+i−1)
ro1 , T

(Ni+1)
ro2 − T

(Ni+i+1)
ro1 , · · · }, where {Δn} is a sequence of random vari-

able Δ. The mean and variance of Δ are denoted as μΔ and σ2
Δ, respectively. Let

{Sn} = {T
(N1+1)
ro1 , T

(N2+2)
ro1 , · · · T (Ni+i)

ro1 , · · · }, where {Sn} is a sequence of random
variable S. The mean and variance of S are denoted as μS and σ2

S , respectively.
Under the above assumptions about the two oscillating signals, we conclude

(1) Δn are i.i.d. and Δ is subject to the same distribution with Tro2 − Tro1 ;
(2) Sn are i.i.d. and S is subject to the same distribution with Tro1 ;
(3) Δ and S are mutually independent.

According to Eq. (1), Ri also means the number of Δ within the interval
S. We ignore the jitter of S because jitter accumulation rate of which is much
slower than Δ (i.e., σ2

Δ

μΔ
� σ2

S

μS
). The time span Wi corresponds to the waiting

time in paper [10]. Therefore, we can declare that the coherent sampling process
(called the coherent sampling model) is approximated to the following sampling
process (called the traditional sampling model) as Fig. 3.

– The half-periods of the unstable fast oscillating signal is Δ;
– The sampling period of the stable slow oscillating signal is μS(= μTro1

).

Next, we only consider the case of injecting independent Gaussian jitter to
both oscillating signals in order to obtain the distribution of various random
variables. Let us assume the two oscillating signals are derived from two Ring
Oscillators (ROs), and let μTro1

and μTro2
be the two ideal jitter-free periods.

Hence, the periods of two oscillating signals Tro1 and Tro2 are assumed to be
Gaussian distributions

Tro1 ∼ N(μTro1
, σ2

Tro1
), (2)

Tro2 ∼ N(μTro2
, σ2

Tro2
), (3)

where N(0, σ2) denotes a zero-mean normal distribution with standard variance
σ. The values σ2

Tro1
and σ2

Tro2
denote the variances of Tro1 and Tro2 , respectively.
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Fig. 3. The description of equivalence between two models

Assuming μTro2
> μTro1

without loss of generality, we express the distribution
of the variable Δ as

Δ ∼ N(μΔ, σ2
Δ), (4)

where μΔ = μTro2
− μTro1

, σΔ =
√

σ2
Tro1

+ σ2
Tro2

.

Remark. In order to simplify the model, we assume only independent random
jitter exists in oscillating signals. Just as [5,10], the correlated noise also exists
in oscillating signals. However, research and analysis based on correlated noise
behavior are too complex to model. It is noticed as long as the amount of indepen-
dent random jitter is enough, the generated bits entropy is sufficient. Therefore,
we do not consider the influence of correlated noise in our model.

2.3 Entropy Evaluation

Ma et al. [10] presented a stochastic model to evaluate the entropy of oscillator-
based TRNGs, and used the typical example that a stable slow clock signal
samples an unstable fast oscillating signal to generate random bits which is the
same as proposed equivalent model (traditional sampling model). Hence, the
traditional sampling model can be employed to calculate the bit-rate entropy.
We use the conclusion in this paper that in the worst case, when the standard
variance of the counting results σR is larger than 1, the bit-rate entropy is
sufficient. According to the conclusion from [15], we can express σR by

σR =
√

μTro1

μΔ
· σΔ

μΔ
. (5)

3 Proposed Architecture

In this section, based on the analysis in previous section, we first propose an
improved method for extracting more entropy. Then, we propose an achievable
circuit architecture for the implementation.
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3.1 Improved Method for Extracting More Entropy

Key insight. Through the results of [15] and our experimental results, we have
noticed that the standard variances of the counting result σR are significantly
larger than 1. While, the condition of sufficient entropy derived from the pro-
posed equivalent model is just σR ≥ 1, which suggests that more entropy is con-
tained in individual counting process, not only the LSB of the counting result
R. Hence, our method is designed to maximize the extracted entropy from the
counting process.

According to the principle of coherent sampling, the bit generation speed Fs

is expressed as
Fs = 1/(

μTro1

μΔ
· μTro2

). (6)

In order to enhance throughput under the status of sufficient entropy, our
aim is to increase Fs and meanwhile guarantee σ2

R ≥ 1. If σ2
R > 1, we can reduce

the sampling period μS in the above equivalent model. According to Eqs. (5)
and (6), when the value of σ2

R drops to 1, the value of Fs would be increased
to σ2

R times. Therefore, the bit generation speed can be increased up to σ2
R

times in theory. If we can further adjust the period difference μΔ to improve the
sensitivity to jitter accumulation, the bit generation speed would be improved
to more than σ2

R times.
Our approach for maximizing the extracted entropy is listed as the following

Steps.

1. Minimize the period difference between two oscillating signals for increasing
the sensitivity to jitter accumulation (i.e., reduce μΔ);

2. Use the signal Sbeat to generate the m-multiple-frequency signal S′
beat, where

m is the largest value to guarantee the variance of the counting numbers of
Tro2 is greater than 1.

3. Count the number of periods Tro2 during the half-period of S′
beat, and use the

LSB as the random bit.

It is observed that the approach also agrees with the proposed equivalent
model. In the approach, we reduce μΔ (i.e., the half-periods of the unstable fast
oscillating signal in equivalent model) and reduce μS (i.e., the sampling period
in equivalent model), so the efficiency of extracting entropy is improved. When
the period difference μΔ has been adjusted to an expected value in Step 1, we
obtain

σ2
R′ =

1
2m

· σ2
R (F ′

s = 2m · Fs), (7)

where σ2
R′ and F ′

s denote the variance of counting results and bit generation speed
based on the improved method, respectively. The values σ2

R and Fs denote the
variance of counting results and bit generation speed based on the basic coherent
sampling, respectively. It means that the bit generation speed is increased to 2 m
times when the variance of counting results is decreased to 2 m times.
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3.2 Circuit Architecture

Challenges. We have described the improved approach, but it do not involve
the implementation methods. In practice, there are two challenges.

– For Step 1, how to perform a fine-grained adjustment to minimize the period
difference between two oscillating signals.

– In Step 2, employing a PLL is common to generate multiple-frequency signal,
but such an analog device is too heavy for a lightweight TRNG design. How
to use the existing digital components to complete the same function of Step 2
is a challenging task, especially to dynamically adjust the frequency multiple.

Carry-Chain Primitive. In FPGAs, we employ the carry-chain primitives to
address the above implementation problems. In Xilinx FPGAs, the circuit as
shown in Fig. 4 represents the fast carry logic in a Slice. The carry chain consists
of a series of four MUXes and four XORs that connect to the other logic in the
Slice via dedicated routes to form more complex function [18]. If we set the port
“CI” or “CYINIT” as the input port and the port “CO” as the output port, the
signal is just propagated through the four MUXes (called single delay elements).
It is found that the delay of a single delay element in a carry chain is much
smaller than a Look Up Table (LUT).

Fig. 4. Carry-chain primitives

Due to the much smaller delay and the property of cascade connection, carry
chains in FPGAs have two primary uses to implement our approach:

– Finely adjusting to the period difference μΔ between the two oscillating sig-
nals;

– Leading out more delayed sampled signals with the smaller delay Δt of adja-
cent delayed sampled signals.

Architecture. By employing the carry chains, we propose the circuit architec-
ture to implement the improved method, as shown in Fig. 5, which consists of an
entropy source, a sampler circuit, a counter circuit and a bit generation circuit.
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S(m+1)
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Fig. 5. Proposed circuit architecture based on the improved method

The entropy source is composed of two independent and identically config-
ured ROs and a fast, tapped delay line. The frequency of two oscillating signals
is selected to be closest but not identical. One of the oscillating signals as the
sampled signal is propagated through the fast, tapped delay line to produce
m + 1 delayed sampled signals. The sampler unit uses another oscillating signal
to sample all the delayed sampled signals and produces m + 1 beat signals with
low-frequency. XORing the adjacent beat signals produces m XORed signals and
the lengths of these XORed signals lasting in high level are counted in counter
circuit. The bit generation circuit uses the XORed signals produced by counter
circuit to sample the LSB of the counting results, and then uses the random bit
clock signal Sclk which should has 2m periods during T

(i)
beat as the clock signal to

combine multiple-channel random bits. Next, we introduce various components
in details.

Entropy Source. Our ROs consist of a NAND gate, even inverters, some faster
delay elements and a multiplexer. The faster delay elements and the multiplexer
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are used to slightly alternate propagation delay of RO to adjust the period dif-
ference μΔ, in which we choose the smallest period difference μΔ for improving
the sensitivity to jitter accumulation. Then, the sampled signal in our architec-
ture is propagated through a fast, tapped line to generate more delayed sampled
signals.

Sampler Circuit. The sampler unit in our design uses the sampling signal
to sample all delayed sampled signals respectively and produces m beat signals
S
(i)
beat with period T

(i)
beat. The signal after XORing these signals can be treated as

the multiple-frequency signal, i.e., Sclk in the bit generation circuit.

Counter Circuit. In order to acquire the length of the delay between two
adjacent beat signals, the adjacent beat signals are XORed (i.e., S

(i)
xor = S

(i)
beat ⊕

S
(i+1)
beat ) as enable terminal of respective counter and the lengths of these XORed

signals lasting in high level are counted in counter unit. Only the two adjacent
beat signals rather than all beat signals are XORed because it can be easier to
ensure smaller impact caused by the difference of placement and routing.

An example of the counting process (without jitter) in the counter circuit is
illustrated in Fig. 6, when m = 3. The shaded part is counting process, and the
blank part denotes halting process. We can see that the counting results are all
sampled at the halting process where these results are stable.

out1 hal ng

out2

out3

Tbeat

Sclk

(1)

coun ng

Fig. 6. Wave diagrams for the counter circuit (m = 3)

Bit Generation Circuit. There are m channels counting results from counter
circuit (out1, out2, ...outm). In order to acquire the random bit, the following
measures are taken. At first, the bit generation unit uses all signals S

(i)
xor as clock

signal to sample corresponding LSB of outi to obtain m channels random bit.
The constant counting results are sampled through this way for acquiring more
accurate counting values. Then, we use the random bit clock signal Sclk as the
clock signal to combine the multiple-channel random bits.
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4 Simulation and Implementation

In this section, we simulate these processes using Matlab to verify the proposed
equivalent model and the improved method. Furthermore, we implement our
proposed method in FPGAs and use statistical tests to test the output quality
of the generator. Finally, we evaluate the speed of the implementation, and
provide a comparison with related work.

4.1 Simulation Results in Matlab

We first use Matlab simulation to validate that the coherent sampling model
is approximated to the traditional sampling model, where the environment is
assumed to be ideal as the above mentioned. In the simulation, the period of
sampled signal Tro1 is set to be a normal distribution N(5 × 10−9, 5 × 10−12),
i.e., μTro1

= 5000 ps (200MHz), σTro1
= 5 ps. And the period of sampling signal

Tro2 is set to be N(5.04 × 10−9, 5 × 10−12), i.e., μTro2
= 5040 ps, σTro2 = 5 ps.

Then the period difference Δ is set to be N(40 × 10−12, 5
√

2 × 10−12), i.e.,
μΔ = 40 ps, σΔ =

√
52 + 52 ps. Then, we simulate the following two sampling

processes to verify the correctness of the equivalent model.

– Process 1: Coherent sampling the sampled signal Sro1 using the sampling
signal Sro2 ;

– Process 2: Traditional sampling the period difference Δ with the interval of
μTro1

.
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Fig. 7. Histogram of the simulated Rcoh vs. Rtra

Figure 7 presents the results of counter based on the coherent sampling Rcoh

(the left), and which of the traditional sampling Rtra (the right). Obviously,
both of the distributions are normal, and the deviation of corresponding statistics
(including the expectation and variance) for these two distributions is negligible,
i.e., satisfying the same distribution, which agrees with our theoretical proof
mentioned above.
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In order to verify the relationship predicted by the theory (Eq. (7)), we cal-
culate the variances of counting results in term of the adjustable parameter
m using Matlab numerical calculation and plot the shape of σ2

R′ as a function
of m with simulation data (shown in Fig. 8). The variances of counting results
and the bit generation speeds for different m from 2 to 7 are listed in Table 1.
The μTro1

and μTro2
are set to be 5000 ps (200 MHz) and 5040 ps respectively.

The variables Tro1 and Tro2 are injected the same random jitter 10
√

2 ps, i.e.,
σTro1

= σTro1
≈ 14.1 ps. We can see that the expression of fitting curve is

σ2
R′ = 16.8355/m ≈ σ2

R/2 m, and the results indicate that the change of fitting
curve is coordinated with the change of Eq. (7).

Table 1. The variances and bit generation speeds for different m.

Basic m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

σ2
R′ 31.6131 8.0996 5.5265 4.1949 3.3225 2.8601 2.4413

Fs′ [Mbps] 1.587 6.347 9.520 12.695 15.870 19.041 22.216
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Fig. 8. The shape of σ2
R′ as a function of m

4.2 Implementation Results in FPGA

We implement the circuit on Xilinx Virtex-5 FPGA. The two ROs producing
oscillating signals consist of a single NAND gate, 8 inverters, 4 faster delay
elements and a multiplexer, where the single NAND gate, these inverters and the
multiplexer are implemented by LUTs, the faster delay elements are implemented
by a stage carry chain. In order to guarantee the period difference between the
two oscillating signals as small as possible, we should handle the placement
and routing manually and further adjust the two multiplexers. The frequency of
one RO producing sampled signal is about 146.22 MHz, The other RO producing
sampling signal is about 145.88 MHz. A fast, tapped delay line is implemented by
54-stages carry chains (54 ·4 = 216 single delay elements). We obtain μΔ � 16 ps
and T

(1)
beat � T

(2)
beat... � 0.34 MHz.
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An example of some key signals captured on oscilloscope is given in Fig. 9
with the case of m = 3. The upper signal is S

(1)
xor, the out1 is counting process

in high level of which. The middle signal is S
(2)
xor, similarly, the out2 is counting

process in high level of which. the bottom signal is the random bit clock signal
Sclk in bit generation unit.

Sxor

Sxor

Sclk

(2)

(1)

Fig. 9. Experimental S
(1)
xor, S

(2)
xor and Sclk signals example with m = 3.

We implement a TRNG that can manually select the number of delayed
sampled signal m. The parameter m can be set as 2, 3, 6 and 9 respectively. For
all cases, we test the quality of generator output with different m using both
the FIPS 140-2 [11] and NIST [13] statistical tests. For the NIST statistical test
suite, we use the software (version 2.1) with default significance level α = 0.01
and collect a set of 1000 consecutive sequences of 106 random bits for each case
of m.

Table 2. Statistical tests and output bit-rate results for different m.

Throughput Basic m = 2 m = 3 m = 6 m = 9

0.34 Mbps 1.36 Mbps 2.04 Mbps 4.08 Mbps 6.12 Mbps

FIPS 140-2 Pass Pass Pass Pass Pass

NIST Pass Pass Pass Pass Fail

Table 2 shows the results of both statistical tests and output bit-rate results
for different parameters m. We can see that all the cases successfully pass the
FIPS tests. However, the case for m = 9 does not pass the NIST test. Hence,
we draw the conclusion that a larger m implies a higher throughput, but also
a lower quality of the random bits due to the fact that the jitter accumulation
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Table 3. Results of the NIST test suite with m = 6 and m = 9.

Statistical test m = 6 m = 9

P-value Passing Rate P-value Passing Rate

Frequency 0.366918 990/1000 0.452173 994/1000

BlockFrequency 0.000136 983/1000 0.000000 941/1000

CumulativeSums 0.266235 990/1000 0.967382 991/1000

Runs 0.777265 991/1000 0.729870 989/1000

LongestRun 0.851383 986/1000 0.325206 9085/1000

Rank 0.858002 985/1000 0.368587 994/1000

FFT 0.861264 990/1000 0.426272 987/1000

NonOverlappingTemplate 0.329850 997/1000 0.522100 995/1000

OverlappingTemplate 0.534146 989/1000 0.969588 990/1000

Universal 0.699313 987/1000 0.189625 987/1000

ApproximateEntropy 0.000126 981/1000 0.000000 976/1000

RandomExcursions 0.739918 638/642 0.620056 612/615

RandomExcursionsVariant 0.785760 639/642 0.979761 610/615

Serial 0.380407 986/1000 0.695200 988/1000

LinearComplexity 0.363593 992/1000 0.645448 987/1000

Table 4. Comparison with related work.

Work Platform Resources Throughput

This work Virtex 5 109 Slices 4.08 Mbps

[9] SLAAC-1 V Not reported 0.5 Mbps

[16] Actel 14 tiles,1 PLL 2 Mbps

[3] Cyclone 3 > 511 LUTs 133 Mbps

Virtex 5 > 511 LUTs 100 Mbps

[17] Spartan 3E Not reported 0.25 Mbps

[14] Not reported Not reported 2.5 Mbps

[12] Spartan 6 67 Slices 14.3 Mbps

time is shortened. In addition, Table 3 shows the results of running the NIST
suite for cases m = 6 and m = 9, respectively. As the trade-off between the
security and speed, the output with the case m = 6 passes all of the tests, while
the BlockFrequency and the ApproximateEntropy are failed for m = 9.

The comparison with related work is summarized in Table 4. Our design
achieves higher throughput than all TRNGs based on coherent sampling [9,16].
As for other implementation, Our design achieves higher throughput than [14,
17]. However, the TRNG in [3] uses more than 511 LUTs. The generated data
of TRNG in [12] are compressed using XOR postprocessing. Our entropy source
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are a dual ROs which consumes 109 Slices. In addition, the circuit design can
adjust the period difference of two ROs and select various bit generation speeds
to serve different cryptographic applications.

5 Conclusion and Future Work

Under this premise of sufficient entropy, the throughput is an indispensable factor
for TRNG designs, such as for the application of session key generation in high-
speed communication systems. In this paper, we design and implement a coherent
sampling-based TRNG which can extract entropy as much as possible to enhance
the bit generation speed. We first provide a parameter adjustment method to
maximize the generated entropy rate, and this method is based on our proposed
stochastic model. According to the method, we design a TRNG architecture and
implement it in FPGAs. In the experiment, the improved generation speed is
up to 4 Mbps, and the output sequences pass NIST SP 800-22 statistical tests
successfully without postprocessing. Compared to the basic coherent sampling,
the bit generation rate is improved to 12 times. In future work, we will further
design the embedded module for the health test or online test of the TRNG.
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Abstract. Implementations of the SM4 algorithm, including different
hardware applications with limited resources, are vulnerable to Side-
Channel Attacks. This paper presents a countermeasure against such
attacks by adding a random “mask” to the input plaintext and protect
all variables through the whole encryption process. As is known to all,
the unique nonlinear step in each round of SM4 algorithm is the “S-
Box” and the previous works using lookup-table method to implement
the S-Box always incur large area and high power. Here we give the com-
pact design of masked S-Box using the normal basis in the composite
field (consisting of a Galois inversion and several affine transformations).
Then we compute the different masks diffused to all the steps in the
SM4 algorithm process. The proposed design results in ultra-low cost
of hardware and capability to resist first-order differential power analy-
sis (DPA), which is suitable for the resource constrained devices. The
synthesis result of masked S-Box shows that the area under the SMIC
0.13µm is only about 978-gates, 46.8% fewer than the other works. Fur-
ther, we apply the pipeline technique to our proposed “masked S-Box”,
thereby to the whole masked SM4 algorithm. The results of FPGA imple-
mentation present that our works have achieved an ultra-high speed with
frequency nearly 551MHz and the throughput over 70Gbps.

Keywords: SM4 · S-Box · Mask · Pipeline · Composite field

1 Introduction

With the rapid development of the computer science and internet technology in
the modern world, the information and data security have become more and more
important. Thus, preventing the significant information from attacking by any
other unauthorized parts is a challenging and essential task. There is no doubt
that the security of hardware is the basis for data transmission, especially in the
Wireless Local Area Network (WLAN). For this reason, plenty of methods about
hardware cryptography (e.g. hiding, masking, etc.) have been come up with to
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protect the sensitive data and applied in different domains, such as embedded
systems, wireless handsets and smart cards. In January 2006, the Office of State
Commercial Cipher Administration of China (OSCCA) announced a specific
encryption standard named SM4 block cipher, the purpose of which is to form
the Wireless LAN Authentication and Privacy Infrastructure (WAPI) standard
for our country [1]. Since then, there have been a large variety of researches
focusing on improving the performance and security of SM4. On the other hand,
some researchers try to seek the weakness of SM4 algorithm and do attacks
on the specific hardware implementations. For example, smart cards may be
vulnerable to first order side-channel attacks such as differential power analysis,
which takes advantages of the leakage of information to do the physical analysis
such as power consumption, electromagnetic radiation and so on, then to deduce
the real secret key of the algorithm.

Due to the potential attacks above, this paper proposes a countermeasure
against the first order side-channel attacks, applying the masking strategy to
the nonlinear S-Box as well as the data path in the SM4 algorithm based on
the composite field introduced by the previous work [2]. Compared to the other
method to achieve the masking, this protection saves 46.8% area for the whole
circuit. However, it incurs some other parts which slow down the encryption
process. Thus we make use of the pipeline technique to accelerate the calculation,
resulting in an ultra-high clock frequency up to 551 MHz and throughput over
70 Gbps for the masked SM4 algorithm.

The organization of this paper is as follows. In Sect. 2, we describe the SM4
block cipher and the algebraic description of S-Box very briefly. Section 3 shows
the detailed masking strategy for S-Box, including masking the inversion and
the affine transformation, and the reutilization of the masks. Section 4 presents
the implementation of the SM4 algorithm using the masked S-Box. Also, the
architecture of pipelined masked SM4 is designed and implemented in this part.
Then we state the low-cost results of area using masking strategy and the high
speed in pipeline scheme for SM4 in Sect. 5. At last, Sect. 6 concludes the paper.

2 Algebraic Description for S-Box

SM4 block cipher is a 32-round iterative algorithm with 128-bit input plaintext,
secret key and output ciphertext. The input plaintext is first divided into four
words and each word consists of 32 bits. Before encryption, the key for each round
(rki) will be generated through the key expansion arithmetic, which is nearly
identical with the encryption process, and the only difference between them is
the linear part—round shifting left. With the rki, a new word, i.e. Xi+4 will be
produced in the i-th round of the encryption process by doing XOR, nonlinear
substitution and round shifting left operations (Xi+4 = Xi ⊕ T (Xi+1 ⊕ Xi+2 ⊕
Xi+3⊕rki)(i = 0, ..., 31)), shown in Fig. 1. Finally, the order of the last four words
will be reversed to form the output ciphertext. The XOR and round shifting left
operations are linear with respect to the data block, so it provides “diffusion”;
While the S-Box is the only nonlinear step that provides “confusion”.
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Xi Xi+1 Xi+2 Xi+3

Xi+1 Xi+2 Xi+3 Xi+4

rki

Fig. 1. SM4 round arithmetic

The S-Box can be implemented using the lookup tables, which occupies the
majority of the cost in devices. In 2007, Liu et al. [3] gave the algebraic structure
for SM4 algorithm, comprising two substeps: (i) regarding the byte as an element
in the Galois Field GF (28), get its inversion in this field (Note that the zero byte
has no inversion, so it keeps unchanged); (ii) regarding the result of the inversion
as a vector of bits in GF (28), then multiply it by a given bit matrix and add
a constant row vector, that is the procedure of an affine transformation. The
inversion and affine transformation are shown below in Eq. (1):

S(X) = I(X · A + C) · A + C, (1)

where the input of S-Box (S) is a 8-bit row vector X = X7−0, and the cyclic
matrix A in the algebraic expression is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the row vector C is

C = C7−0 = [1, 1, 0, 1, 0, 0, 1, 1].

For SM4 in the specific Galois Field, a byte represents a polynomial where the
bits are coefficients of corresponding powers of x, and multiplication is modulo
the irreducible primitive polynomial:

f(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1.
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We could consider the root of this polynomial as θ, then f(θ) = 0 in GF (28).
Thus the bits of a byte could be related to the coefficients of powers of θ, e.g.,
3 = θ, 4 = θ + 1, 9 = θ2, etc. Therefore the bits make up a vector with respect to
what is known as polynomial basis. However, we can change the representation
of the polynomial basis in GF (28) to a different one, named normal basis in
composite field [4]. Instead of a vector of dimension 8 in GF (2), we regard a
byte as a vector of dimension 2 in GF (24), where each 4-bit element is in turn a
vector of dimension 2 in GF (22), and each 2-bit element is a vector of dimension
2 in GF (2). For each of these subfields, it has been introduced in details, referring
to [5].

3 Masking Strategy

To convert the standard polynomial representation to the composite field rep-
resentation, we need to choose the appropriate basis and build an isomorphic
matrix. For more detailed information, please refer to [4]. In this paper, we try to
add an additive mask to all the steps during the inversion, which will described
below.

3.1 Inversion Without Masking

Now we apply the following convention: upper-case bold symbols stand for ele-
ments in the main field (e.g. A ∈ GF (28)); upper-case italic symbols represent
elements in the subfield (e.g. A ∈ GF (24)); lower-case bold symbols are for the
sub-subfield (e.g. a ∈ GF (22)); and lower-case italic symbols are used for single
bits (e.g. a ∈ GF (2)).

To begin with, we don’t concern about the mask. So the inversion in
GF (28)/GF (24) (this expresses the representation of GF (28) as vectors in
GF (24) using a normal basis [Y16,Y]), where Y16 and Y are the roots of
Y2 + Y + N and N ∈ GF (24) is the norm (N = Y 16 · Y ), is given as [4]:

A = AhY16 + AlY(known), (2)

B = N ⊗ (Ah ⊕ Al)2 ⊕ Ah ⊗ Al, (3)

A−1 = (Al ⊗ B−1)Y16 + (Ah ⊗ B−1)Y(result). (4)

Here we make a agreement on the meaning of the operators above: ⊕ and ⊗
denote addition and multiplication in Galois Field, respectively. The expression
AhY16+AlY is an algebraic method using the normal basis to denote the vector
[Ah, Al] (i.e. [Ah, Al] = [A7−4,A3−0]). To achieve the inversion in GF (28), it
requires the inversion, addition, multiplication and the combined square-scaling
operation (N ⊗ A2) in the subfield GF (24). In the same way, the inversion in
GF (24)/GF (22) which uses a normal basis [X4,X], where the X4 and X are the
roots of X2 + X + n (and n ∈ GF (22) is the norm (n = X4 · X)), is given as:
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B = bhX4 + blX(known), (5)

c = n ⊗ (bh ⊕ bl)2 ⊕ bh ⊗ bl, (6)

B−1 = (bl ⊗ c−1)X4 + (bh ⊗ c−1)X(result). (7)

However, finding the inversion in the sub-subfield GF (22), using the normal
basis [w2,w], where w2 and w are the roots of w2 + w + 1 (and here we define
the norm as 1), is very easy. It is equivalent to the squaring operation, shown as
a bit swap:

c = chw2 + clw(known), (8)

c−1 = clw2 + chw(result). (9)

All the steps above are used to obtain the inversion in GF (28) without mask-
ing. In the following, we will detail the steps about how to mask the inversion.

3.2 Masking the Inversion

As is mentioned above, additive mask becomes our preference due to its resis-
tance to zero-value attacks. It has been analyzed in [2] that the statistical distri-
bution of masks is uniform over the field by adding a random mask. Therefore
the operands appear randomly, uncorrelated to either the input plaintext or the
secret key. Thus the data leaked from the side channel is independent of the
chosen input plaintext, might regarded as noise, and the key in this way will
be protected against first-order differential power attacks. To ensure the correct
process from the input mask to the output mask, we apply the masking strategy
as follows.

In GF (28), we express the masked byte with a tilde (i.e. Ã), and similarly
for the other masked variables. Now we use the mask (M) to mask the input
plaintext.

M = MhY16 + MlY; (10)

Ã = A ⊕ M = ÃhY16 + ÃlY (11)

Then let

B̃ = N ⊗ (Ãh ⊕ Ãl)2 ⊕ Ãh ⊗ Ãl ⊕ Ãh ⊗ Ml ⊕ Ãl ⊗ Mh ⊕ Mh ⊗ Ml, (12)

M2 = N ⊗ (Mh ⊕ Ml)2, (13)

Here the result B̃ is B above in Eq. (3) masked by M2 (i.e. B̃ = B⊕M2). Note
that the products in Eq. (12) must be added in turn to make all the intermediate
results uniformly distributed and masked, so that the information about the
original data will not be leaked out.

For the inversion in GF (24), say B̃ = b̃hX4 + b̃lX and M2 = mhX4 +mlX,
then let

c̃ = n ⊗ (b̃h ⊕ b̃l)2 ⊕ b̃h ⊗ b̃l ⊕ b̃h ⊗ ml ⊕ b̃l ⊗ mh ⊕ mh ⊗ ml, (14)

p = n ⊗ (mh ⊕ ml)2, (15)
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and c̃ is c above in Eq. (6), masked by p (say p = phw2 + plw, and let q =
p2 = n2 ⊗ (mh ⊕ ml) = plw2 + phw). Above we employ the convention of the
inversion as squaring in the sub-subfield GF (22), so

c̃−1 = (c ⊕ p)−1 = (c ⊕ p)2 = c2 ⊕ p2 = c−1 ⊕ q, (16)

Therefore c̃−1 (say c̃−1 = c̃lW
2 + c̃hW ) is c−1 above in Eq. (9) masked by

another mask q.
Now we introduce a new 4-bit mask S = shX4 + slX, and let

b̃
−1

h = sh ⊕ b−1
h = sh ⊕ (bl ⊗ c−1),

= sh ⊕ [(b̃l ⊕ ml) ⊗ (c̃−1 ⊕ q)],

= sh ⊕ b̃l ⊗ c̃−1 ⊕ b̃l ⊗ q ⊕ ml ⊗ c̃−1 ⊕ ml ⊗ q, (17)

b̃
−1

l = sl ⊕ b−1
l = sl ⊕ (bh ⊗ c−1)

= sl ⊕ [(b̃h ⊕ mh) ⊗ (c̃−1 ⊕ q)]

= sl ⊕ b̃h ⊗ c̃−1 ⊕ b̃h ⊗ q ⊕ mh ⊗ c̃−1 ⊕ mh ⊗ q, (18)

thus the result B̃
−1

= b̃
−1

h X4 + b̃
−1

l X is B−1 above in Eq. (7) masked by S.
Similarly, apply the output 8-bit mask T = ThY16 +TlY to the output A−1,

and let:

Ã
−1

h = Th ⊕ Ãl ⊗ B̃
−1 ⊕ Ãl ⊗ S ⊕ Ml ⊗ B̃

−1 ⊕ Ml ⊗ S, (19)

Ã
−1

l = Tl ⊕ Ãh ⊗ B̃
−1 ⊕ Ãh ⊗ S ⊕ Mh ⊗ B̃

−1 ⊕ Mh ⊗ S (20)

So the result Ã
−1

= Ã
−1

h Y16 + Ã
−1

l Y is the original inversion A−1 above in
Eq. (4) masked by the output mask T:

Ã
−1

= A−1 ⊕ T. (21)

3.3 Reutilization of Masks

Canright and Batina [2] shows the re-using of the masks to make the implemen-
tation more vulnerable to the higher-order differential side channel attacks and
save the cost of the same operations. Firstly, by replacing the mask q by ml or
mh, we can modify the expression as follows:

c̃−1 = (c̃lw2 + c̃hw) ⊕ mh ⊕ q (masked by mh), (22)

b̃
−1

h = m1h ⊕ b̃l ⊗ c̃−1 ⊕ b̃l ⊗ mh ⊕ ml ⊗ c̃−1 ⊕ ml ⊗ mh, (23)

c̃−1
2 = c̃−1 ⊕ (ml ⊕ mh) (masked by ml), (24)

b̃
−1

l = m1l ⊕ b̃h ⊗ c̃−1
2 ⊕ b̃h ⊗ ml ⊕ mh ⊗ c̃−1

2 ⊕ mh ⊗ ml, (25)

where the underlined products had already been calculated in Eq. (14), so here
we can re-use these results. Now the result B̃

−1
= b̃

−1

h X4 + b̃
−1

l X is B−1 above,
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but here masked by Mh = m1hX4+m1lX, which is the upper nibble of the input
mask M. In the same way, we get the updated masked A−1 in the following:

Ã−1
h = Th ⊕ Ãl ⊗ B̃−1 ⊕ Ãl ⊗ Mh ⊕ Ml ⊗ B̃−1 ⊕ Ml ⊗ Mh, (26)

B̃−1
2 = B̃−1 ⊕ Ml ⊕ Mh (masked by Ml), (27)

Ã−1
l = Tl ⊕ Ãh ⊗ B̃−1

2 ⊕ Ãh ⊗ Ml ⊕ Mh ⊗ B̃−1
2 ⊕ Mh ⊗ Ml, (28)

the underlined products are re-used and the output Ã
−1

is still A−1 above
masked by output mask T (which might be same with the input mask M or
not):

Ã−1 = A−1 ⊕ T. (29)
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Fig. 2. Architecture of masked S-Box: (a) Single cycle (without the red dash line); (b)
Pipeline (the red dash line is the pipeline registers) (Color figure online)

3.4 Mask Transformation

Equation (1) shows the algebraic expression of unmasked S-Box. Here we make
some changes to the mathematical relationship and deduce the correct mask
transformation from input to output, where the function I stands for inversion
process in GF (28) and the function Inv represents inversion process in the “tower
field”, i.e. GF (((22)2)2). Note the matrix δ is the isomorphic mapping from the
normal basis in composite field to the standard polynomial basis (and δ−1 is the
reversed mapping).
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S(X + M) = I[(X + M) · A + C] · A + C (30)

= AT · I[AT · (X + M) + CT ] + CT

= AT · I[(ATX + CT ) + ATM] + CT

= AT δ · Inv[δ−1(ATX + CT ) + δ−1ATM] + CT (31)

where AT is the transposition of A (also similar with CT ). Here we can learn
from Eq. (29) that Inv(Â+ M̂) = Inv(Â) + M̂ only if the output mask is equal
to the input mask: S = M (this is the conclusion in GF (((22)2)2). With this
assumption, Eq. (31) in GF (28) could be modified as follows:

S(X + M) = (31)

= AT · I(ATX + CT ) + CT + ATATM

= S(X) + ATATM (32)

If the input mask of S-Box is M, the Eq. (32) shows the correct output mask
of S-Box in GF (28), i.e. ATATM, which is the “confusion” of the mask. Until
now, we have achieved the masking process using the normal basis in composite
field. Figure 2 gives the complete hardware implementation of the masked S-Box,
depending on all the mathematical computing above.

4 Implementation of Masked SM4

In this section, we apply our “masked S-Box” to the encryption process and
illustrate the architecture of the SM4 round arithmetic in two different directions:
(i) use the iterative architecture and make all the steps of SM4 secure, the
purpose of which is to decrease the cost of the area; (ii) insert some registers
inside the S-Box appropriately to increase the clock frequency and improve the
throughput, which will be very useful in high-speed applications.

4.1 Iterative Architecture of Masked SM4

In Fig. 3. The rki is well prepared in RAM or it can be produced by the iterative
architecture presented in [4] before each round. Here the latter is our preference
and we just concentrate on the masked encryption. For instance, we choose a
32-bit mask M for our design. Before the first round of encryption, the mask is
produced and extended to 128 bits (e.g. {4{M}}), which is XORed to the input
128-bit plaintext to obtain the masked input X = (X0,X1,X2,X3) for the first
round. It is obvious that all the variables before the function “Masked S-Box”
are masked by M. As is shown above, the outputs of the “Masked S-Box” are
masked by ATATM. So we do the same round shifting left to ATATM, then add
the outputs together and XOR the X0 simultaneously. Thus the mask ATATM
is eliminated and the output X4 has been already masked by M, which is diffused
from X0. In this way, we redo the arithmetic for 32 rounds, then reverse the last
four words and finally XOR the output with {4{M}}, we can certainly get the
right result of ciphertext.
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Fig. 3. Architecture of masked SM4 round arithmetic using the single cycle “Masked
S-Box” (the underlined elements in this picture are masked variables and (·) in the
architecture shows the transient mask at that step. The red dash rectangle is the
round shifting left function) (Coloe figure online)

4.2 Pipelined Architecture of Masked SM4

For the pipeline scheme, we use the synchronous technique to adjust the structure
of the round arithmetic of SM4. However, one key problem is to balance the
pipeline stages. So we divide the round arithmetic into several periods to achieve
one round encryption in order to ensure the approximate executing time for
each part, which means to decrease the time of the critical-path. The registers
being inserted into the S-Box are shown as red dash line in Fig. 2. Although
the pipelined S-Box is well designed, the SM4 round arithmetic needs to be
seriously considered according to the linear parts execution. Here we present
the optimized architecture for pipelined masked SM4, given as Fig. 4. To keep
the variables of each period secure, we add the random mask to all the input
elements and transfer them to their corresponding buffers in each pipeline stage
(shown as the yellow registers in Fig. 4). In this way, all the elements in the
round encryption are securely masked and can be parallel implemented.
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Figure 4 is just one round encryption for the SM4 algorithm, which contains
five levels for the pipeline. As we expect, we implement 32 same structures and
finally do the reversion function. The right results are realized and it will be
shown in next section.
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Fig. 4. Pipelined round arithmetic of masked SM4 (the red dash rectangle is pipelined
masked S-Box described above in Fig. 2, similarly with the modules P1, P2 and P3)
(Color figure online)

5 Results

The proposed SM4 algorithm implemented in two different ways based on
“Masked S-Box” in composite field has been realized by Verilog HDL and simu-
lated in Modelsim software. All the input plaintexts have achieved correct output
ciphertexts.

Besides, the area reports of the masked S-Box under the SMIC 0.13µm in
the Synopsys Design Compiler indicate that the equivalent amount of gates is
978, at least 46.8% fewer than 1,840 in [6] (where the area has been divided
by 9.79, which is the area of one NAND2X1 cell under the SMIC 0.18µm). We
firmly believe that our compact masked S-Box has occupied the lowest area and
it certainly contributes to the low-cost iterative masked SM4 algorithm very
much.

In addition, comparing to the other designs, we implement it in different
FPGA boards and show the results in Table 1. Because of the large cost for
masking, our design has reached a very suitable and satisfying resource usage
and it is still much lower than some other works without anti-attack methods
(Table 2).

Furthermore, by employing the pipelined masked S-Box to the SM4 algo-
rithm, the pipeline SM4 round arithmetic shown in Fig. 4 achieve the ultra-high
clock frequency up to 551 MHz under Xilinx FPGAs, resulting in the ultra-
high throughput over 70 Gbps. To our knowledge, this is the highest speed and
throughput to date.
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Table 1. Resources comparison

Work FPGA devices Area Anti-attack

[4] Cyclone-II EP2C35F672C6 1657 LEs NO

[7] 3406 LEs NO

Ours 2255 LEs YES

[4] Stratix-II EP2S15F484C3 535 ALMs NO

[8] 1150 ALMs NO

[9] 1552 ALMs NO

Ours 1321 ALMs YES

Table 2. Performance comparison

Work Platform Frequency (MHz) Throughput (Gbps) Anti-attack

[10] Virtex-6 XC6VLX240T 253 0.253 NO

Virtex-5 XC5VLX110T 203 0.203

Virtex-4 XC4VLX100 211 0.211

Ours Virtex-6 XC6VLX240T 551 70.5 YES

Virtex-5 XC5VLX110T 462 59.1

Virtex-4 XC4VLX100 368 47.1

6 Conclusion

In this paper, the process to design a very compact “Masked S-Box” has been
described clearly using normal basis in composite field at first. Second, we
analyze the “diffusion” and “confusion” of the mask through the whole SM4
algorithm, and make sure every variable during encryption has been securely
masked. Third, we implement the masked S-Box in two architecture: iteration
and pipeline. Then we simulate all the designs and get the correctly inspir-
ing results. The synthesis results in different devices have been compared with
other works. As far as we know, our proposed work has reached the lowest
area of masked S-Box, which leads to the lowest cost for masked SM4 imple-
mentation. What’s more, the proposed pipelined S-Box has been implemented
to construct a pipelined masked SM4 architecture, which achieves the highest
speed to date. We believe this work has developed a good countermeasure to the
side-channel attacks and will be widely used in resource constrained devices and
speed demanded area in the future.
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Abstract. Despite the increased concerning about embedded system security,
the security assessment of commodity embedded devices is far from being
adequate. The lack of assessment is mainly due to the tedious, time-consuming,
and the very ad hoc reverse engineering procedure of the embedded device
firmware. To simplify this procedure, we argue that only a particular part of the
entire embedded device’s firmware, as we called vendor customized code,
should be thoroughly analyzed. Vendor customized code is usually developed to
deal with external inputs and is especially sensitive to attacks compared to other
parts of the system. Moreover, vendor customized code is often highly specific
and proprietary, which lacks security implementation guidelines. Therefore, the
security demands of analyzing this kind of code is urgent.
In this paper, we present empirical security analysis of vendor customized

code on commodity embedded devices. We first survey the feasibility and
limitations of state-of-the-art analysis tools. We focus on investigating typical
program analysis tools used for classical security assessment and check their
usability on conducting practical embedded devices’ firmware reverse engi-
neering. Then, we propose a methodology of vendor customized code analysis
corresponding to both the feature of embedded devices and the usability of
current analysis tools. It first locates the vendor customized code part of the
firmware through black-box testing and firmware unpacking, and focuses on
assessing typical aspects of common weakness of embedded devices in the
particularly featured code part.
Based on our analysis methodology, we assess five popular embedded

devices and find critical vulnerabilities. Our results show that: (a) the workload
of assessing embedded devices could be significantly reduced according to our
analysis methodology and only a small portion of programs on the device are
needed to be assessed; (b) the vendor customized code is often more error-prone
and thus vulnerable to attacks; (c) using existing tools to conduct automated
analysis for many embedded devices is still infeasible, and manual intervention
is essential to fulfil an effective assessment.
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1 Introduction

Embedded devices are nowadays widely deployed in not only industrial environment
but also in personal residences. While the embedded devices are becoming more and
more prevailing, their functionalities are becoming more sophisticated. Smart embed-
ded devices are used to perform home network routing, TV signal receiving and
decoding, real-time camera monitoring and security altering, etc. As a result, the code
base of current embedded device is much larger compared to previous one, and will
become even more complex with the evolvement of smart homes and related
Internet-connected devices

Security issues often compose severe threats to embedded devices and applications
being deployed. Unfortunately, many embedded devices are designed and implemented
without a clear and well-defined security goal. An observation is that the development
of embedded device tends to repeat the mistakes once occurred on developing desktop
computer systems. However, while manufacturers and researchers invest time and
money in testing and securing them, the status of security assessment for those
embedded devices is far from well-developed since the assessment tool is insufficient.
Since a profusion of embedded devices have been developed by various manufacturers
and been used in different environments. this inherent diversity makes the universality
of security analysis a very difficult goal to be achieved. Although a multitude of
research works have been proposed, less developed tool is universal to different
devices. Although a large portion of research works aim to develop novel and auto-
mated analysis techniques suitable for embedded device, to the best of our knowledge,
most of those techniques are only suitable for a small range of device models. Due to
the lack of proper tool, security assessment of embedded device is well-known as a
highly skilled procedure and requires expertise, which is still not systematic and
practical. Hence, to help developers testing the security of embedded devices, not only
should we transit the experience and best practice of security analysis for classical
computer systems to the analysis of embedded device, but also should we consider the
restriction of tools and formulate proper security assessment procedure that is practical
and universal.

To employ effective and in-depth analysis, manual effort is still essential. However,
since the manual analysis (e.g., reverse engineering of the firmware of the embedded
device) is often time-consuming, the scalability must be effectively controlled to make
such analysis feasible. An important aspect of reducing the amount of analyzing work
is to elaborately filter out unnecessary targets. Particularly, it is necessary to extract and
analyze only those executables related to possible attack surface of the embedded
device. Thus the problem is how to locate such executables. The vendor of the
embedded device often provides a firmware containing both operating system and the
applications. A common observation is that most of the code in the firmware is reused
(e.g., OS and standard libraries) and is publicly certificated, and it is often laborious and
unnecessary to verify every part of the firmware. Therefore, focusing on the code
related to high level operations of the device (e.g., network communication, user
interaction) is more likely to find potentially vulnerability.
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The target of this paper is to illustrate the security analysis methodology of vendor
customized code assessment. Vendor customized code (VCC) denotes to the code
fulfilling specific functionalities of the device. For instance, a wireless router may
contain particular code to fulfil the authentication of the user. That code usually per-
forms a proprietary authentication implemented by the vendor and is therefore not
publicly known. This kind of code is often not fully evaluated by professional security
analyst and is error-prone. Our security assessment thus focuses on such vendor cus-
tomized code trying to find security flaws. In detail, our security assessment focuses on
four typical aspects: protocol cryptographic misuse, identity authentication, firmware
integrity tampering, and incorrect patching of known vulnerability. This helps us
concentrate the analysis task and conduct practical operations.

To employ the assessment, we first summarize to what extend could the prevailing
commodity program analysis techniques and automated security assessment tools be
applied to existing embedded device systems. The issues of analysis of embedded
devices are concluded and we propose some solutions to address them practically. The
next goal is to find vendor customized code and analyze it. To this end, we present a
systematic security assessment procedure to help conduct firmware reverse engineering
and vendor customized code searching. We expect our proposed procedure to dispel
misconceptions and mystifications of embedded devices’ security assessment, and
further promote the analysis efficiency of typical embedded devices. Notice that our
assessment is not trying to answer questions like “are there any security flaws in the
device” or “are some functionalities of this device is secure”. Instead, our methodology
is to answer the questions that how a vendor feature is implemented, and whether the
implementation (vendor customized code) violates some expectations for the feature.

To evaluate the effectiveness of our methodology, we demonstrate the experimental
results using five embedded devices including two wireless routers, one smart camera,
one modem, and a smart CDN device. By adopting our methodology, vendor cus-
tomized code can be located accurately and the amount of code needed to analyze is
reduced significantly for each device. What’s more, the extraction of vendor cus-
tomized code allows us to employ in-depth security assessment, which reveals critical
security flaws among those devices that are not discovered before.

2 Issues of Firmware Analysis

In this section we briefly review the state-of-the-art tools and techniques proposed for
embedded devices’ firmware analysis, and discuss their deficiencies. Although many
classical security analysis techniques are applicable for embedded device’s code,
corresponding analysis tools may not, or at least not fully, adapted. We summarize
major issues of current analyses in the following.

2.1 Firmware Acquiring

Unlike commodity personal computer, the executable code of operating system and
applications of embedded device are not easily accessed. Obtaining firmware of the

724 M. Liu et al.



device is usually the most direct and the only way of analyzing target programs. To
obtain the firmware of a device, two aspects should be concerned: the updating process
of firmware, and the storage format of the device. Both of them are the frequently
utilized sources to help acquire complete or part of the firmware.

The most common way for users to update their embedded devices is to uploading
an firmware image provided by the vendor via a specific interface (an upgrade page for
web management in most routers, upgrade utilities for Apple Airport, HP Printer, etc.)
Thus analyst has the chance to intercept this process and extract the firmware image.
Although previous studies often utilize the accessed URL of the update process and use
crawler to download firmware packages from vendor’s website, especially for large
scale analysis [1], many devices often perform automatic and silent update checking to
upgrade firmware. For those upgrade routines in which firmware packages are not
direct accessible to users, manual analysis is still required to trace the upgrading agents
and network traffic (and obtain the firmware).

Another major source of firmware is the storage medium of devices. For most
embedded devices, softwares and configurations are stored in their local storage, such
as ROM and flash. Thus analysts can manually dump stored content for further
unpacking. This technique for device repairing and memory forensics has been widely
applied to firmware analysis [2] with the growing concern of embedded security. To
hamper firmware dumping, SoCs of some vendor may encrypt the firmware in ROM.
In this case, although advanced dumping methods such as half-blind attack [3] can be
applied, much manual intervention are required and sometimes the analyst may make
use of known vulnerability (e.g., memory corruption) to help dump data.

2.2 Firmware Unpacking

In most cases, the obtained firmware is a single image that requires to be separated into
different parts according to it’s original layout organization. State-of-the-art tools such
as Binwalk [4], FRAK [5], and BAT [6] provide functionalities for standard format
firmware unpacking. By scanning signatures of common file systems and file formats in
firmware images, individual files or a whole file system will be identified and extracted
automatically and recursively. If the header of a common file system is identified, it is
used as the identifier to split the image, and the cut out filesystem part is able to be
mounted on another normal Linux system. After that, files inside the image are
available to access.

In our practice, however, although those unpacking tools are sufficient for most
Linux based firmwares, which contains a common file system (squashfs, jffs2, etc.),
there are still many so-called monolithic firmware images of Real- Time Operating
System (RTOS), which are packed with proprietary formats. For those images, uni-
versal tools often fail to identify and unpack them.

Another situation is that the acquired firmware is only a raw image of storage dump
instead of a well formatted package, and there often does not exist the concept of file in
such image. In this case, manual effort on determining the entry point of the raw
bootloader becomes the last resort to recover possible system kernels and software
applications, even if it is very complicated and tedious.
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2.3 Code Debugging

Debugging code on embedded device is inconvenient and often impossible. A com-
mercial off-the-shelf embedded device is rarely enabled debugging functionality of its
main board. Comparing with a development board, a released device has no debugging
peripherals to monitor the running state of the CPU and memory. Meanwhile, a full
debugging solution including technique documents and debugger softwares is not
provided either. Thus, it is usually impossible to directly debug a device like what
developers do.

To implement the task of debugging, analysts utilize alternative measures. For
instance, when using GDB stub [7] to debug, the device should execute a piece of stub
code to build a remote debugging tunnel before booting. Then, the stub downloads and
executes the original firmware. Also, if the system of the device is an embedded Linux
System, analyst could attach debug server to specific running process and debug it. But
to implement those functionalities inevitably involves manual intervening. As the
vendors are not likely to provide the debugging privilege to normal user, analyst should
either insert such a stub before booting process or gain a root privilege of the devices,
which are both not easy to achieve.

2.4 Code Emulation

Emulation is a promising alternative way to achieve dynamic code analysis and inspect
any run-time information. State-of-the-art emulators support most architectures (MIPS,
ARM) that embedded devices are adopting. The overhead for emulation is also
acceptable (four times slower than the execution of native code according to [8]). But a
main restriction for emulation is that it often requires a full system emulation to execute
the code correctly. For an embedded system image, it is not emulated as easy as
desktop systems. Desktop operating system only requires few I/O devices (hard drive,
screen, etc.) to boot up. Those I/O devices work with a clear protocol to emulate. For a
embedded device, on the contrary, because neither peripherals details nor board support
package of a devices are easily known for an analyst, full or approximate system level
emulation is usually impossible.

Previous works [9] try to address this issue by utilizing process-level emulation or
run an ELF executable file in another emulated Linux environment. Unfortunately, this
technique is not always effective since a large portion of embedded software access
NVRAM to load/store the configurations, which is essential to the execution but hard
to be accurately emulated.

3 Vendor Customized Code Analysis

3.1 Target

As a complex combination of tightly connected softwares, an embedded system con-
sists of many parts and components such as bootloader, operating system, daemon
software, shared libraries, etc. Among them, most are auxiliary components. For
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example, DHCP daemon in a router, decompression libraries in bootloader are used to
be implemented using open-source code base or mature solution, which are vetted
beforehand and rarely have vulnerabilities. So, for a specific embedded device, we
should focus on those vendor features which are implemented by the vendor self, and
only specific for one or a series of device. The code to implement those features is often
the particular part of the system that accepts user’s input, which means the attack
surface is restricted to this part of code. We denote this part of code as the vendor
customized code. In a word, in the firmware of an embedded device, vendor cus-
tomized code indicates to those proprietary code which are implemented for some
vendor features.

In the following sections, we will demonstrate our security concern about vendor
features and our methodology to locate and assess vendor customized code. In detail,
we try to answer the following investigative questions of common functionalities
related:

– Q1: Is the protocol properly protecting private data transferring on the Internet?
Since the “Never roll your own cryptography” principle is not familiar to
non-expert developers, many home-brewed cryptographic procedures are used in an
embedded device. Meanwhile, due to the inherent complexity of cryptographic
libraries, cryptographic misuse becomes another critical problem [10]. Thus any
proprietary protocol should be assessed to find potential cryptographic flaws.

– Q2: Can the device properly authenticate a granted user accessing this device?
Nowadays many embedded devices utilize an HTTP management interface for user
to set up device configurations. Vendor may exclude unnecessary session modules,
which are commonly used in current web authentication application from the web
server program of the device. This introduces new authentication factors and
potentially causes various security problems. Another common problem in
embedded devices is that vendor may intentionally leave some backdoors to access
the device conveniently [11, 12]. This often tends to be a serious security threat and
leads to security breach to the device.

– Q3: Could the integrity of firmware in this device self be preserved?
Modification attacks against firmware [5] often inject malicious code into a device,
and the final user turns to be the specific victim. Since consumers are usually not
able to distinguish a refurbished device and will not know if the software in a device
has been modified, attacker could modify the original executables on the device
before it is sent to the end-user to fulfil the attack. Meanwhile, attacker could also
intercept the firmware update process of the device and inject malicious image if the
integrity checking is missing. For these reasons, we should consider whether the
device adopts a robust code integrity checking scheme to protect the system against
any unauthorized code’s execution.

– Q4: Have previous vulnerabilities been correctly patched?
Some failed patches [13, 14] for PC software or mobile software has been witnessed
in recent years. This would also happen to embedded devices, and thus additional
assessment on a patched code is still essential.
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3.2 Searching Vendor Customized Code

Black-Box Behavior Analysis. Part of vendor features are obvious such as video
capturing for a smart camera, while much more of those are hidden. For example,
automatic upgrading of a device may not be acknowledged by the users, but clues of
this behavior can be found in the network record.

It is what we concerned of to discover vendor features in this stage of analysis. In
one hand, we test any functionalities of target device, by feeding data normal or
abnormal and recording the response. In the other hand, during the blackbox analysis,
the network traffic is captured which reveal the corresponding host, port and protocol
for any network connection.

Executable Retrieving. In this section, we will show how we derive binary code,
which enable our white-box analysis for target devices.

We derive the code from two major sources, one is a running device, and the other
one is device firmware package for device upgrading or recovering.

We can obtain software code of a running device, if we can access the console of
this device. Possible methods are, utilizing previous vulnerability to get a shell,
manufacturing a malicious upgrading firmware package to get a backdoor, connecting
to the console of device via UART interface directly, etc. If any of those attempts
succeed, we can easily collect binary codes, executable files and runtime information.

The other method is to decompose the firmware package. file utility and binwalk [4]
are used to identify known format for file and data blob. If the steps above failed, which
usually happens to a monolithic operating system, we try to find the correct base
address of the image, and then get a more precise disassembly code.

Vendor Customized Code Locating. The final step of our searching is to locate some
code snippets which are responsible for the vendor features we concern about.

This step plays an important role on minimizing the range of code analysis by
restricting it into few small pieces.

In detail, two code locating schemes can be followed depending on whether we can
access to the running device, respectively. If we are able to access to the running
device, listening port/alive connection can be used to infer the responsible process. For
example, we can execute ‘lsof -i TCP:80 -n’ or ‘netstat-ln’ command to get the process
ID for the web server running in the devices. Although such utilities may not installed
in the devices, we can upload a static linked utility to the device, since we have root
privilege. Some devices adopt tailoring embedded Linux system, which have no
required utilities (‘nc’, ‘wget’, ‘chmod’, etc.), to upload a executable file directly. In
this case, we first copy an existing file which already have ‘X’ permission, and then
overwrite the copy by ‘echo’ arbitrary bytes into this copy. As far as we known, since
all the shell for Linux enable ‘cp’ and ‘echo’ command, this method is universal for all
devices which adopt Linux operating system. We are also able to obtain the corre-
sponding program binary by following the symbolic link, which is located at
‘/proc/PID/exe’. Any shared libraries which are loaded in the process can be also found
in ‘/proc/self/map files/’ or ‘/proc/self/maps’. To confirm whether a process is related to
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some features, we kill the running process, and observe whether the vendor features are
still working.

The other scheme is a static string analysis based. We perform keyword string
searching for every extracted executable from the whole firmware image. For a specific
feature, some critical keyword should be used by the code. For example, if the target
feature is a HTTP server running in the device, GET, POST, HTTP, Host can be a set of
keywords. If we find an executable contains specific keywords, we choose it as the
candidate executable for the following security assessment.

3.3 Security Assessment of Vendor Customized Code

Our assessment is to recovery any details of vendor customized code. As the analysis
scope has been minimized and restricted, coarse-grained manual static assessment is
feasible in an acceptable period of time, to understand the basic behavior for the VCC.
But there are also many pieces of code are complicated, and also not easy as well as
necessary to understand. For example, some encoding/decoding functions may be
significant for protocol analysis, which only contains encoding algorithm. We do not
have to be aware of the details of this implementation, but only need obtain some
output for some specific input. In this case, We try to debug, or emulate the piece of
code. Some executable files depend no peripherals, thus we run and debug it in an
QEMU emulated Linux system for the corresponding architecture. We also emulate
those routines by unicorn engine, if no unknown initialized global variables or I/O will
be accessed during the execution of those routines. We may also need to derive the
input for specific output. In this situation, we utilize angr to perform a dynamic
symbolic execution. To achieve this, we feeding the routine a symbolic input, and
explore the path satisfying the constraints for output data at exit point of the routine.

4 Experimental Evaluation

In this section, we investigate five commodity embedded devices in Chinese market
including two wireless routers, one modem, one smart Content Delivery Network
(CDN) device, and a smart camera. We first report our analyzing results of firmware
and vendor customized code of these devices. Then we discuss the security assessment
of vendor customized code focusing on the issues mentioned in Sect. 3.3, and report
the discovered vulnerabilities.

4.1 General Analysis

The five devices we choose to assess are:

– TP-LINK WR740nv5: a wireless router produced by TP-LINK, the world largest
WLAN device manufacturer.

– TOTOLINK A850R: a wireless router produced by TOTOLINK, a networking
equipment vendor in Korea.
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– HUAQIN HGU421: a fiber optic modem used by China Telecom, the major ISP in
China.

– Thunder Money Maker: a smart CDN device manufactured by Thunder Corporation.
– Yi Smart Webcam, a smart camera released by Xiaomi Inc., one of the leading

Chinese consuming electronics cooperations.

For each device, we test every functionality of it, try to observe how the device
behaves and record any network event as mentioned in Sect. 3.2. After that we figure
out some vendor features for each devices:

– Different from many other routers of TP-LINK that adopt embedded Linux system,
TP-LINK WR740nv5 is based on VxWorks, which is a prevailing RTOS. We find
that this device will check if a user uploaded firmware package is valid or not.

– As a tiny CDN node, Thunder Money Maker shares customer’s bandwidth to
Thunder CDN Network, and earns commission from Thunder Corporation
according to the amount of uploaded data. It will automatically download upgrade
package via HTTP protocol. Moreoover, we observed the device frequenly prompt
SSL request to the URL kjapi.peiluyou.com.

– TOTOLINK A850R is a Linux based wireless router. Common features for home
router are provided via an HTTP based interface. During our test, we found that no
cookie is used to authenticate web users (the response contains no ‘Set-Cookies’
header for a successful login request), which suggests that device uses an uncom-
mon way for authentication.

– Yi Smart Webcam allows users to bind their mobile phones to the camera, then the
real-time captured video can be watched in a corresponding app on user’s phone.
The format of video stream tansfered via Internet is unkonwn. Thus we guess the
data is encrypted or some-kind proessed. Also we notice that the device listens on a
strange TCP port, and response a magic string when a client connects to it.

– HUAQIN HGU421 allow users to login to configure the device via a WEB inter-
face. But only a low-privileged account is given to user.

4.2 Firmware Analysis

We first try to gain access to each device, as mentioned in Sect. 3.2. We find four of
them disclose an access terminal via different ways.

– For WR740 and HGU421, we direct access them via TTL.
– For A850R, a known PoC of remote command execution vulnerability is used.
– For Thunder, we replace the upgrading package during the auto-upgrading process,

and implant a backdoor.

We also scan for any known-formated blob for those device with firmware package
provided. The results are listed in Table 1.

After the primary analysis, we show that it is able to retrieve executable files (ELF
files) for four Linux based devices (from known format file system image, or download
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from a running device). The only device whose executables are not able to be extracted
is TPLINK WR740. To address, we utilize the memory dumping functionality provide
by UART console to directly retrieved the application code. Since no UART pin is
provided on the mainboard of WR740, we distinguish the corresponding pins of
AR9331 microcontroller according to its datasheet [15], and directly welded two
jumper wires to lead them out (as depicted in Fig. 1). Finally we conduct memory
dumping to obtain a raw image of the memory. After the dumping, we obtain the
memory image containing kernel and application.

We also decompress all compressed blob in the firmware package, list all the strings
appearing in those images using strings utility. Some strings such as “auto-booting…”,
“I’m booting now……”, and “Press Ctrl + C or Shift + C to stop auto-boot…” indicate
the existence of the bootloader. To determine the base address of the bootloader, we find
a piece of code of switch statement by searching the switching jump instruction (jr $v0).
Before swiching jump instruction, few instructions (sltiu $v0, $v1, 9; beqz $v0, default;
nop;..; li $v0, 0x8046FE70; addu $v0, $v1; lw $v0, 0($v0); jr $v0) reveals the virtual
address (0x8046FE70) and size (9) of the jump table. It’s also able to find the starts of
most case blocks, because case blocks are usually after the end (a jump instruction to the
end of swich statement) of another case block. Since all the case blocks should has a
corresponding pointer in the jump table, we can easily deduce the bootloader is loaded to
the address of 0x80400000. Once the base address is determined, this image can cor-
rectly disassembled and most of the binary code is readable.

4.3 Vendor Customized Code Searching

To locate the vendor customized code out of all the retrieved executable code, various
criteria are applied to five devices as mentioned in Sect. 3.2. In the following, we
demonstrate how we locate the corresponding vendor customized code for each vendor
feature, and show the amount of assessment is significantly reduced after it (Table 2).

– As TP-LINK WR740nv5 has a fully unknown formated firmware, we firstly found
the bootloader has a recovery functionality interacting with users on the serial port.
After loading the bootloader in IDA, some prompt strings such as Usage error,
please try %s-help lead us to the code for the recovery mode. During the analysis of
firmware recovering routines, we confirmed that the entire operating system com-
pressed in a special region of flash is also a piece of the firmware package.
Therefore, the decompressed operating system as well as applications were

Table 1. Firmware format and content analysis

Device Firmware format File carving result

Thunder Zip file None
WR740 Unknown Some zlib compress image
A850R Unknown A standard squashfs file system
WebCam Unknown A jffs2 file system
HGU421 – –
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obtained. Then, we tried to figure out whether the device is able to verify the
validity of an uploaded firmware package. We locate this feature by searching the
URL for upgrading page in the HTTP. This helped us pinpoint the logic of
upgrading and confirmed the missing of firmware integrity check.

– For Thunder, we focused on the implementation of its unique upload statistic
reporting functionality, which is directly related to user’s reward. We found a dcdn
client process is listening to one particular port (4693), and more than 10 different
IP addresses are connected to that port. We also found in this process a library
libdcdn client.so is loaded. Searching for meaningful names in symbol tables, five
potential relevant functions were located.

– For TOTOLINK A850R, we aimed to find executables related to user authentication.
We first statically disassembled every binary code file on the device to determine
which one is the web server. After the code reverse engineering, we identify the file
with name ‘boa’ as the device’s web server. Therefore, the following in-depth
analysis could concentrate on this executable.

– Our black-box analysis indicated that the Yi Smart Webcam encrypts the data before
sending it to the user’s mobile application. The very particular vendor feature we
concerned about is how the data is encrypted. The corresponding process was first
identified according to the network connection information. Then we obtained the
executable of the process and further searched for functions responsible for data

Fig. 1. Jumper Wires connect to UART pins of AR9331

Table 2. Vendor feature and size of customized code for each device.

Device Feature Unpacked firmware size Vendor customized
code

WR740 Firmware verification 2.4M (3868 functions) 83 functions
WR740 Packet forwarding 2.4M (3868 functions) 46 functions
Thunder Upload statistic

reporting
54.6M 3.9M shared library

A850R User authentication 29.1M 476K executable file
WebCam Video encryption 33.3M 272K executable file
HGU421 User authentication No firmware package

obtained
836K executable file
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encryption. We found symbols for AES encryption function in wolfSSL library
occurred in the executable. This helped us narrow the assessment scope of exe-
cutable code to only one function.

– As mentioned before, the HGU421 modem sets a restricted privilege to its normal
user. The assessment of this device is therefore trying to find how the device
authenticate an user. Similar to the feature locating of TOTOLINK A850R, we used
the URL for login page as the indicator to search every executable. We found the
executable uhttpd as the corresponding file, and we could focus on analyzing the
handler for requesting to that page in this executable.

4.4 Security Assessment

In this section, we will demonstrate our concrete secure assessment for each device.

Device Modification. Among the five devices we analyzed, we found TP-LINK
WR740nv5 and Thunder Money Maker fail to check the integrity of the code. We
detail the vulnerability and related attack as follows.

TP-LINK We manually analyzed the routine for firmware verification in TPLINK
and obtained the exact format of firmware. According to our analysis, an MD5
checksum is contained in the header of the firmware package, the uploaded package
will be accepted only if the checksum of remaining data corresponds to the one in the
header. So the attacker can easily modify the package to inject some malicious code
into the firmware and then repack it. We also emulated the MD5 hash function in the
unicorn engine [16], and the emulated code also executes correctly with correct result
returned. This means even if the checksum function is proprietary, the attacker can
simply reuse it to re-create a valid firmware package.

To demonstrate the effectiveness of the modification, we inject code into the
firmware’s packet forwarding routine to duplicate any packet to a specific host. This
malicious firmware leads the device to send the entire network traffic to a malicious
server, which proves the threat of the firmware modification attack.

Thunder. As the major functionality of this device, the file uploading and its corre-
sponding CDN protocol of Thunder Money Maker is very complex, and the com-
munication between account server and the device is encrypted by an unknown
encryption algorithm. However, we conduct a device firmware modification attack to
circumvent the encryption. We directly reverse engineer the ‘libdcdn client.so’ file,
which is responsible for D-CDN function in this device. By searching for meaningful
names in exported symbols, we can locate five potential relevant functions. After a
manual analysis, how each function returns statistical data (i.e., in return value,
arguments or global variables) is understood. Then we modify each function to report a
tampered statistical data, uploaded it to the server to replace the original one and check
whether the uploading speed shown in the mobile application is changed. Through this
testing we pinpoint the specific function for accounting. By maliciously adjusting the
upload speed of this function, we can cheat the server to earn much more money than
what we should deserve.
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Corrupted Authentication
A850R We extract the binary file of the web server, Boa, in the squashfs filesystem of
A850R. The handle for login request is located by searching login path
‘boafrm/formLogin’. The handle contains only 172 assembly instructions, so it’s easy
to recover its logic. Instead of keeping sessions for login users, Boa stores the user’s IP
into the management information base (MIB) as an item ‘LoginIP’. Different from
normal session management, this mechanism in web server has two problems:

1. Any clients behind a NAT box in LAN will share same address connecting to the
router, which means privilege will be leaked to the whole subnet if one user logins
to the HTTP interface.

2. An attacker in LAN may simply discover and gain the authorized IP address by
ARP spoofing.

We find that, request not from “loginIP” will also be allow to access the man-
agement interface, if correct username and password are provided in ‘Authentication’
header of HTTP request. There is another vulnerability in the routine to check
‘Authentication’ header which is shown in List 1.1. To check the validity of
‘Authentication’ header, the web server allocates two pairs of username and password
on the stack. One is filled with the actual user’s information, which is loaded from
MIB, while the other is left to be uninitialized. Then the server compares the user’s
input with these two pairs of information, authorizing the user if either of the infor-
mation is matched. Since both of the uninitialized stack strings may be empty, it is
possible for attacker to bypass the authentication with an empty username and
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password. What make things worse is that the CPU of A850R is a big-endian archi-
tecture. The most significant byte of a word is often zero, if the word is a small interger,
pointer to static array, or return address to some position to the code section. This
makes the success rate of the attack much higher, comparing with same attack against
little-endian architecture. To figure out the success rate of an attacker, we employ 10
malicious attempts, and all of them succeed.

To further derive how this issue has been introduced, we intended to also compare
an old version of the firmware for A850R. We found no old version firmware of
A850R on the Internet, so we take an old version of N301RT to compare. We find that
the authentication process is very similar to that of AR850, but the uninitialized
variables are initialized as SUPERUSER and SUPERPASS in MIB.

Thus, we can confirm that it is the incomplete patching procedure that causes this
issue.

HGU421 Our analysis of the uhttpd executable suggests a DoS vulnerability in this
device. The vendor implements the parser (shown in List 1.2) for HTTP header of basic
access authentication [17], which separates the username and password with a colon in
a base64-encoded HTTP header. After a call to strchr(header,’:’), the web server does
not check whether the return value is NULL or not (i.e., whether a colon exists). Then
the server uses the return value to separate the authentication info. As a consequence,
an attacker may send a crafted request to crash the web server.

Fig. 2. Xiaoyi key agreement
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Insecure Protocol
Yi Smart WebCam We search any file that contains keywords ‘encrypt’ in the jffs2
filesystem extracted from the firmware image. The executable binary named ‘remote’
has been noticed since it’s the only executable file containing AES related symbols
from WolfSSL. We confirm ‘remote’ is responsible for video capture and transfer,
because we also find symbols for video codec in this binary. Since this executable is
not large, we manual analyse it to recover the key agreement protocol (Fig. 2). Our
future analysis discovers at least two issues in Yi Smart Camera:

1. The vendor only encryption the first two blocks of each video stream using
AES-128 with ECB mode. It seems that to make the encrypt/decrypt faster on a tiny
embedded device as well as on a mobile device, the vendor abandons a standard
encrypt procedure. This allows a Man-In-The-Middle attack to decode most of the
video stream.

2. The key agreement of the video transmission protocol contains serious problem.
Since a secret key needs to be shared between the camera and mobile application,
the key is first generated by the vendor’s server and is transferred to both the mobile
application and the device after a binding operation. However, the camera launches
a special daemon service that listens to a TCP port (38888), and echoes this session
key if received arbitrary request. Then any attacker captured the encrypted stream
can also get the secret key via this TCP port. It seems that this port is used to debug,
but the vendor forgets to remove before releasing the device.

5 Related Work

5.1 Static Binary Code Analysis

Disassembler is required for most binary code analyses. Due to the complexity and
diversity of different instruction sets, many disassembly engines (udis86, diStorm3,
etc.) can only support i386/x86-64 architecture and is not feasible for embedded system
analysis. IDA is the state-of-the-art universal disassembler for most of processors.
Many previous cross-architecture works [18, 19] are based IDA’s disassembly result.
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However, to acquire a precise analysis result, the disassembling of IDA involves many
interactive processes, which requires the participation of expertise. Capstone is another
multi-platform, multi-architecture disassembly framework that supports ARM,
ARM64, MIPS etc. But some frequently used instruction sets such as MSP430, 8051
and AVR, are still not supported.

5.2 Dynamic Binary Code Analysis

To perform dynamic analysis, analyst may execute programs in a firmware with an
emulated environment. As common emulators contain no peripheral details, previous
works [20–22] try to fully or approximately emulate those peripherals. Those solutions
face different problems such as short of documentation or misbehavior of the emulated
code. Avatar [23] is another platform that is able to connect emulated code with
physical device to achieve a fully emulated environment, but until now it’s not publicly
released. For Linux-based firmware, although full system emulation is not possible, the
file system in the firmware can be mounted and programs could be emulated. Cui et al.
[9] run startup script in an alternative Linux system to emulate a running system.
Meanwhile, executing an emulated process in QEMU user mode is also an alternative
way. Those techniques are suitable for Linux based firmware in our practice. Even
though, missing MTD devcie in file system, User Defined Instructions in MIPS, or any
differences between emulated and real environment may also cause problems.

5.3 Heavyweight Program Analysis

Dynamic taint analysis and dynamic symbolic execution are prevalent dynamic anal-
ysis techniques for program analysis of desktop or mobile platform. However, most
tainting and symbolic execution engines aiming for x86, ARM or JVM cannot be
adapted to MIPS or other instruction sets used by embedded devices. Also, those
emulating based engines are limited by the restriction of emulators, which we have
mentioned before. The gap between concrete values needed by those engines and
incompleteness of emulation or debugging environment is still unbridgeable now.

Static taint analysis and symbolic execution benefit from the property of not relying
on runtime concrete value, and make significant uses in firmware analysis. Neverthe-
less, large scale taint analysis and symbolic execution encounters many issues such as
path explosion, low speed of constraint solvers, difficulties for pointer identification.
Project angr [24] fulfill the requirements that solving a combination of path and input
data from a start point to trigger some target, or collecting possible behaviors for further
manual analysis starting from a critical point. But its usage scenarios are very limited
because of the overhead.

5.4 Automatic Firmware Analysis

Many works have been done on automatic firmware analyzing. Some work are scalable
but perform no in-deepth analysis. A. Costin [1] scan in thousands of firmware images
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for specific artifacts with known problems. FIRMADYNE [25] run startup script of the
firmware filesystem, in a emulated Linux system with NVRAM shared-library replaced.
FIRMADYNE also find known by executing exploits from Metaspolit Framework.
There are some automatic techniques have been presented to discover unknown vul-
nerabilities. Firmalice [26] utilizes a symbolic model of authentication bypass flaws to
determine the required inputs to perform privileged operations. FIE [27] developed a
symbolic engine to find memory-safety bugs in MSP430 open-source softwares.

6 Conclusion

As the embedded devices are becoming more and more complex, state-of-the-art
security analysis techniques and tools are not adequate to address real-world analysis
tasks. In this paper we systematically study the limitation of embedded device ana-
lyzing tools and inefficiency of automatic analysis for embedded devices. We argue
that current techniques and tools are still not universal for automatic security assess-
ment, and currently we should still acknowledge the necessity of manual intervention
for an effective assessment. We then suggest a practical and comprehend security
assessment procedure that focuses on common weak points of embedded design and
implementation. Guide by this assessment procedure, we reveal critical security flaws
in five real-world devices.
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Abstract. Personal unmanned aerial vehicles (UAVs) have become
popular in recent years. While their extreme mobility enables exciting
new applications, they also raise security concerns. However, currently
we understand little about UAV’s vulnerabilities, feasible attacks, and
defense options. Toward securing UAVs, we analyzed two of the most
popular personal UAVs. We discovered a series of vulnerabilities, includ-
ing insecure communication channels and misuse of cryptography. By
exploiting these vulnerabilities, an attacker can eavesdrop on the data
acquired or transmitted by the aircraft, impersonate the aircraft to send
bogus data to the user’s mobile device, hijack the camera on the aircraft
or the aircraft itself, and prevent the aircraft from communicating with
the user’s mobile device.

Keywords: Unmanned aerial vehicles · Security vulnerabilities · DJI

1 Introduction

Personal UAVs have become popular in recent years. As they can fly to areas
where human access is infeasible, dangerous, expensive, or inconvenient, they
have many applications in photography, delivery, and wildlife protection. Unfor-
tunately, security has not been a priority for personal UAVs manufacturers. In
the current fast growing market for personal UAVs, manufacturers care more
about functions, cost, and applications. In the research community, there is
no comprehensive study on UAV’s vulnerabilities, feasible attacks, and defense
options. To make progress toward securing UAVs, we conducted an empirical
security analysis of the DJI series of quadcopters, which are among the most
popular personal UAVs.

A UAV consists of an aircraft, a hardware remote controller, a commodity
mobile device (e.g., an Android-powered device or iPhone) running a mobile app
for the UAV. In this paper, we examined two representative DJI UAVs: Phantom
2 Vision+ [3], Phantom 3 Professional [4].

2 Phantom 2

Phantom 2 Vision+ is a quadcopter consisting of an aircraft, remote controller,
and range extender. The aircraft has a WiFi module, video module, receiver,
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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NAZA V2 controller, gimbal, and camera. The aircraft communicates indepen-
dently with the remote controller and the mobile app DJI Vision, where the
remote controller controls the flight and the mobile app controls the camera.

2.1 Vulnerabilities

Phantom 2 Vision+ fails to provide secure networks, and its servers fail to
authenticate clients. Since neither of the WiFi APs in the UAV is encrypted,
any one can connect to them. Neither the users manual nor DJI Vision allows
the user to enable encryption on these networks. Any DJI Vision app can con-
nect to the UAV without authentication, after which the app can control the
camera, ground station etc. However, the TCP server created by ser2net [7] in
the WiFi module accepts at most one connection at any time. The UAV designer
might have intended to use this mechanism to protect the UAV owner, because
her app will likely connect to the UAV first after she powers on the UAV.

2.2 Hijack Aircraft Communication

The goal of this attack is to hijack the communication between the aircraft and
victim DJI Vision app. Since ser2net allows only one TCP connection at any
time, we must close the existing TCP connection between the WiFi module and
victim app before we could connect to the WiFi module. We achieved this by the
TCP reset attack [5,8]. The requiresite parameters for the attack (IPs, ports,
and sequence numbers) can be sniffed in the packets transmitted between the
app and the aircraft. After the TCP reset attack closed the existing connection
between the WiFi module and the victim app, we connected to the WiFi module.
This connection allowed us to prevent victim app from acquiring live video, to
exfiltrate photos and videos from aircraft, to control aircraft’s camera and hijack
aircraft (Sect. 2.4).

2.3 Attack on Video Module

By reverse engineering the video module, we found that it uses a modified version
of UDP-based data transfer (UDT) [6] for communicating with the app and
H.264 for video codec. Similar to the TCP reset attack described in Sect. 2.2, we
can sniffed the IPs, ports and sequence numbers of the UDT packets transmitted
from the aircraft to the app. Then we created our UDT packets using these
parameters and sent them to the victim app from our malicious device. Our
attack caused the following damages: we sent packets containing our bogus video
and verified that the app indeed was playing our video; after receiving some
crafted UDT packets for a while, DJI Vision crashed; we sent UDT packets to
DJI Vision as fast as we could and observed the communication between aircraft
and app was disabled.
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2.4 Ground Station

Ground station allows the user to create flight tasks via DJI Vision. After we
reverse engineered the protocol for controlling ground station. we were able to
hijack the aircraft by sending upload job, upload point, and joystick commands.
We were also able to exfiltrate existing job and waypoints on the aircraft. This
would be useful for forensic analysis or reconnaissance.

3 Phantom 3 Professional

In Phantom 3, the mobile device connects via a USB cable to the remote con-
troller, which connects to the aircraft via a DJI-proprietary wireless system. The
DJI Pilot app on the mobile device connects to the remote controller via Android
debug bridge (ADB) [1]. DJI Pilot creates a TCP server at the host 0.0.0.0 and
the port 22345. Once the remote controller powers on, it runs a TCP client to
connect to the server via ADB port forwarding.

3.1 Insecure Server

A vulnerability in the TCP server created by DJI Pilot is that it listens to
0.0.0.0, which the official Android security tips advise against [2], since this
allows any host that can address the mobile device (e.g., an attacker on the
same wireless LAN) to connect to this server. To fix this vulnerability, the server
should listen to localhost (or 127.0.0.1), because ADB forwards the remote
controller’s connection request from localhost. This way, the server will reject
any connection request that originates outside the mobile device.

3.2 Hijack Aircraft

The TCP server created by Pilot does not authenticate clients. However, it
accepts at most one connection at any time, so no other program can connect
to this server if the remote controller has already connected to it. The Pilot
developers might have intended to use this mechanism to protect the Pilot and
aircraft, but we found three attacks to circumvent it.

Win Race Against Remote Controller. As soon as Pilot starts, the remote
controller requests connection. However, we found that if our malware app also
requested connection repeatedly when Pilot started, our malware almost always
won the race against the remote controller, after which the remote controller
could never connect. Now that our malware impersonated the remote controller
(and transitively, the aircraft), it was able to send bogus data, such as fake photos
or videos, to Pilot, and Pilot could no longer communicate with the aircraft.
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Kill and Impersonate Pilot. If the remote controller is already connected to
Pilot’s TCP server when our malware starts, the malware must close the existing
connection. One way to achieve this is to push Pilot into the background and then
invoke the killBackgroundProcesses method in the ActivityManager class1. The
malware can send an attractive bogus notification to trick the user to click it. The
click brings the malware to the foreground and pushes Pilot to the background.
After killing Pilot, the malware creates a TCP server to impersonate Pilot to
communicate with the remote controller.

4 Conclusion

We studied the risks of UAVs and conducted an empirical analysis of three
popular DJI UAVs. We discovered a series of vulnerabilities, including insecure
communication channels and misuse of cryptography. We have demonstrated
that, by exploiting these vulnerabilities, an attacker can eavesdrop on the data
acquired or transmitted by the aircraft, impersonate the aircraft to send bogus
data to the user’s mobile device, hijack the camera on the aircraft or the aircraft
itself, and prevent the aircraft from communicating with the user’s mobile device.

5 Other Works and Responsible Disclosure

We also analysed DJI Matrice 100, DJI’s mobile and onboard SDKs, founding
that the steps of UAV activation and developer authorization are insecure.

We notified DJI of all the discovered vulnerabilities and verified attacks
between June and August of 2015. DJI was confident that they would be able
to fix the vulnerabilities by the time of this conference.
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Abstract. Application layer distributed denial of service (App-layer
DDoS) attacks are becoming a severe threat to the security of web
servers. In this paper, we model user browsing activity in order to detect
abnormal requests. User access patterns are analyzed to detect anomaly
at the session level. The likelihood of a browsing session is then calcu-
lated to distinguish abnormal behaviors from normal ones. We evaluate
our methods based on a real dataset collected from a commercial web-
site that suffered from actual DDoS attacks. The experimental results
validate the effectiveness of the proposed methods.

Keywords: DDoS attack · Browsing activity · User access pattern

1 Introduction

Application layer DDoS attacks attempt to disrupt legitimate users’ services by
exhausting the resources of the victims [1]. Since such attacks masquerade as
flash crowds (a large number of normal users access to a web server simultane-
ously) by generating legitimate traffic [2], conventional signature-based intrusion
detection systems (IDS) become ineffective to them. Moreover, compared with
the botnet-induced volumetric attacks that generate a significant amount of traf-
fic, low-volume DDoS attacks are even more pernicious and problematic from
a defensive standpoint since attacks generally consume less bandwidth and are
stealthier in nature [3].

The eventual criterion to distinguish illegitimate users from legitimate ones
is the intentions of visiting users [4], which could be well inferred from the
browsing activity. In this paper, we propose a Markov model to profile users’
browsing activity. The model well characterizes user’s access patterns in HTTP
sessions. Then the likelihood of a user’s browsing activity is calculated based on
the access patterns to detect abnormal sessions. The proposed method affiliates
the detection of stealthy DDoS attacks, thus reducing the false positive rate.
Finally, we evaluate the performance of the detection method based on a real
DDoS attack dataset collected from a busy e-commercial web server.
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2 Detection Schemes

In an HTTP session, the user browses the website by jumping from one web page
to another. We assume that in a single session the next page a user will browse
only depends on the current browsing page, and employ the Markov Chain Model
to describe user access patterns. The Markov property of user access patterns
has been validated in [5]. We further use a directed weighted graph to represent
the Markov Chain, where each node representing a main page and the weights
of the edge representing the transition probabilities from one page to another.
Formally, the transition probability from page i to page j is defined as

p(i|j) =
nij

∑N
j=1 nij

, (1)

where nij is the number of observations that page i is followed by page j
in a single session; N is the total number of pages. Denote a session as
{MP1,MP2, . . . ,MPn}, where n is the length of the session representing the
number of main pages. Then, the log likelihood of the session is defined as

lnL = ln p(MP1) +
n−1∑

i=1

ln p(MPi|MPi+1) (2)

where p(MP1) is the probability of page MP1, and p(MPi|MPi+1) is the tran-
sition probability from the ith to (i + 1)th page.

3 Experiments

We conduct the experiments based on real data collected from a commercial web
server. Table 1 lists a brief summary of the dataset.

Table 1. Summary of the dataset

Date Requests Users Max. RR1 Min. RR1 Suspected IPs

2015/12/29 30,933,159 30,242 283 20 845

2015/12/30 32,202,986 32,886 290 18 1023

2015/12/31 30,850,731 31,063 341 19 1139

Total 93,986,876 74,773 - - 1270
1 RR is the abbreviate of request rate with a time unit of second.

The website has a total of 8464 pages and 14036 objects. The access patterns
are closely related to the web structure, which exhibits hierarchical clusters.
The transition matrix of the top 80 most accessed pages are shown in Fig. 1.
These pages dominates 90% of the total requests. Then, we use the transition
matrix to calculate the likelihood of all sessions and the results versus the session
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Fig. 1. Transition matrix of web pages Fig. 2. Session likelihoods v.s. length

length are shown in Fig. 2. It is clearly shown that there are some outliers for
different session lengths. This demonstrates that our methods can distinguish
the abnormal sessions from the normal ones.

Testing and validation of a detection method is complicated due to the lack
of adequate datasets that clearly identify attack behaviors and legitimate human
users particularly flash crowd. Following we conducted statistical experiments to
evaluate the effectiveness of our method [6].

Denote nt as the number of requests received by the server in a time unit,
and the request rate is plotted versus the time in Fig. 3(a). It is observed that
the server suffered from periodic DDoS attacks which result in the comb-shape.
Figure 3(b) shows the request rate after filtering the attacking traffic based on
the detection results of the combined method. The comparison indicates that the
detection method is effective to reduce the burden of the server. In addition, it
is noticeable that the request rate varies periodically, suggesting that detection
methods should avoid the impacts of fluctuations raised by such periodicity.

(a) Original request rate (b) Filtered request rate

Fig. 3. The request rate versus the time
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Figure 4 compare the access frequency of pages. It is shown that the filtered
activity follows the Zipf distribution. Figure 5 presents the distribution of the
inter-request times between two consecutive accessed pages. It is shown that the
filtered data follows Pareto distribution.

Fig. 4. Page frequency distributions Fig. 5. Time interval distributions

4 Conclusion

We propose a new mechanism to detect application layer DDoS attacks. Based
on the access log at the sever end, we propose a Markov model to describe the
browsing activity of a user in an HTTP session. Then, the likelihood of a session
is calculated and the results are used to distinguish the attack behaviors from the
normal ones. We use a real dataset to evaluate the effectiveness of our method.
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Abstract. The OpenFlow protocol, as a fundamental element for Soft-
ware Defined Networking (SDN) architecture, only supports for packet
forwarding across switches in general networks. In this paper, the authors
propose Software-Defined Function (SDF) which entitles administrators
to manage the Internet of Things (IoT) devices and services through
abstraction of the underlying infrastructure. The authors further present
OpenFunction, a secure communications protocol stemmed from Open-
Flow, which enables the IoT devices to be upgraded or reprogrammed
remotely and securely. Finally, the authors implement a preliminary SDF
system and evaluate its performance. The experimental results demon-
strate that the SDF and OpenFunction can grant programmability, flex-
ibility, centralization and security to the IoT.

Keywords: OpenFunction · Security · IoT · Software Defined Function

1 Introduction

The recent burgeoning of the Internet of Things (IoT) has been attracting an
increasing number of researchers and experts with great attentions due to its sig-
nificant economic and social values [1]. However, in the wake of the incremental
number of the IoT devices, it is more and more difficult to manage and main-
tain so many devices efficiently [4,5]. In the meantime, as current IoT devices
become considerably intelligent and heterogeneous [6], people thus expect more
capabilities and features from these devices. According to [2], there is a ten-
dency that the IoT nodes will receive software updates more frequently due to
the growingly dynamic and changeful requirements and services from users and
enterprises. Thereupon, how to reprogram or update the remote IoT devices
securely and timely is another ongoing challenge.

In order to address the problems mentioned above, this paper proposes Soft-
ware Defined Function (SDF) that utilizes an SDF controller in the control layer,
via a function station situated in the physical infrastructure layer, to reprogram
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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the corresponding IoT end device through OpenFunction protocol derivated from
OpenFlow [3]. In particular, two specific security protocols of OpenFunction are
designed to assure the secure communication between an SDF controller and a
Function Station. Lastly, a demo system is realized and performance is evaluated
in the archetypal SDF system.

2 System Design Overview

In our proposed framework, it comprises three kinds of components:
SDF Controller, Function Station and IoT Device. The controller and the
function station are usually connected by the Internet or LAN, while the IoT
devices are often connected to the function station through short range wireless
or wire manners such as WiFi, Bluetooth, Zigbee, serial line and so on. Below is
the system design.

– IoT device. IoT devices in our framework are low-price and low-energy ones,
mainly responsible for collecting or sending data. They consist of various
smart entities, for example, temperature sensor, noise sensor, PM 2.5 sensor,
etc.

– Function station. A function station connects to IoT devices and a con-
troller simultaneously in the middle, responsible for upgrading or reprogram-
ming the IoT devices according to the instruction from the controller.

– SDF controller. An SDF controller plays a pivotal role in the SDF frame-
work, similar to the function of a human brain. Since it is able to remotely
upgrade or reprogram the functions in IoT devices via a function station, it
is unnecessary to deploy the controller near those IoT end devices.

– Protocol I: OpenFunction Authenticated Handshake. The primary
aim is to provide authentication between a controller and function stations.
In the first two steps, IDs and nonces are exchanged. Then the function station
and the controller negotiate a session key using the pre-distributed public key
with an SSL (Secure Socket Layer)-like procedure.

– Protocol II: OpenFunction Messaging. It is used to transmit the Open-
Function reprogramming messages. Messages are encrypted using the session
key; and its authenticity is guaranteed with a message authentication code.
After the above processes, the function station can reprogramme the IoT
device according to the message content. Figure 1 below shows the whole
process.

3 Evaluation and Implementation

A function station has stored beforehand a series of functions like a function
warehouse. After receiving the update instructions from the authenticated con-
troller, the function station will reprogramme the specified smart device through
Avrdude, a program used to burn a hexadecimal coding into a firmware. In
our experiment, one IoT device was originally preprogrammed as a tempera-
ture sensor, as shown in Fig. 3(a). After the experiment, its function has been
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Fig. 1. Process of OpenFunction.

(b) Experiment result on function station

(a) Experiment result on controller

Fig. 2. Implementing results of OpenFunction
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(b) Function after experiment(a) Function before experiment

Fig. 3. Reprogramming results of the IoT device (Arduino)

reprogrammed to a smoke sensor. Results of this experiment are illustrated in
Figs. 2(a) and 3(b). From the figures we can find that the function has been
changed. The average runtime for Protocol I is 35.01 ms, and for Protocol II is
31.33 ms. The overhead costs are acceptable.

4 Conclusion

In this paper, we have proposed and implemented SDF, a secure framework
for reprogramming IoT devices. Two protocols are designed to guarantee the
security during the reprogramming process. Test result indicates OpenFunction
can be used to support IoT devices, as well as obtaining flexibility and security.
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Abstract. In the context of data outsourcing more and more concerns
raise about the privacy of user’s data. One solution is to outsource the
data in encrypted form. Meanwhile obtaining a service based on machine
learning predictions on user data remains very important in real-life sit-
uations.

This paper presents ways to combine machine learning algorithms
and IPE in order to perform classification on encrypted data. The pro-
posed privacy preserving classification schemes allow to keep user’s data
encrypted but at the same time revealing to a server classification results
on this data. We study the performance of such classification schemes
and their information leakage.

Keywords: Functional encryption · Inner-product encryption · Classi-
fication · Linear classification

1 Introduction

With the generalization of data outsourcing, more and more concerns raise about
the privacy and the security of the outsourced data. In this context, machine
learning methods have to be conceived and deployed by keeping in mind and
assuring the user’s privacy.

In a privacy preserving data classification process, one has to be able to
extract knowledge (e.g. in the case of a classifier, deduct the class label of an
individual without compromising his private data) by assuring the protection of
the sensitive data and, if possible, by hiding data access patterns from which
useful properties could be inferred.

In this work we propose a privacy preserving classification algorithm based
on functional encryption, in particular the inner product encryption. The per-
formance of the classification algorithm is evaluated on the MNIST database [3].

An inner product encryption scheme is a functional encryption one that
enables the evaluation of inner products. In those public encryption schemes
vectors are encrypted and each secret key is associated with one vector.
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For example if cv is an encryption of the vector v and skw is a secret key asso-
ciated with the vector w, when one decrypts cv with skw he gets 〈v, w〉. Note
that secret keys are generated with the master secret key by the authority.

In the use case we focus in the paper, there is an entity called server that
has performed a training step of a linear classifier. Thus he has a set of linear
classification coefficients and he wants to keep them secret. There are many
users that have informations that they want to keep secret as well but they also
want to release classification results to the server (for example for obtaining a
service). We introduce a third party that both of the server and the users can
trust and we call it authority. His goal is in a first time to check that the server’s
coefficients are not dishonest and in a second time, to generate an instance of an
inner product encryption to perform the classification over the encrypted inputs.

2 Privacy Preserving Classification

A linear classification algorithm makes a decision on the membership of an input
data object, based on a linear combination of its features (characteristics). For
example, in an image classification algorithm the input object is an image and
the features can be image pixels. In a binary classification, the decision is made
as a function of a threshold overrun by the dot product between object features
and linear classifier coefficients.

In this work we propose a privacy preserving data classification method.
Input data is encrypted using an inner product encryption scheme. In the con-
text of ML algorithms, the inner product encryption can be seen as a linear
binary classifier. In order to perform a multi-class linear classification, we need
to compute several inner products on the same input data. Usually, linear classi-
fiers provide worse results when compared to other more elaborate classification
methods. At the same time, only a linear classifier is able to provide a prediction
for data encrypted using the inner product encryption.

In order to fill this gap we propose a combined classification method, in which
a linear classifier is applied to encrypted data and is followed by a more complex
classification algorithm (for example an ensemble method in our case but not
limited to). For each piece of input encrypted data, several inner products are
computed. These products are then used as input features for a second, more
elaborate, classifier. In this way, we are able to perform classification of encrypted
data with increased performance in terms of an evaluation metric (e.g. error
rate).

3 Performance

We use our implementation (in C++ using FLINT library [2]) of the functional
encryption for inner product scheme of Agrawal et al. [1] which provides full
security under the DDH assumption. We work in a group F

∗
p such that p is a

safe prime of approximatively 2048-bits.
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We try our construction with the MNIST database [3] which is a collection
of handwritten digit images (28 × 28 pixels with 256 levels of grey). So in this
use case, the classifier has 10 output classes (digits from 0 to 9).

The experiments were performed on a regular laptop computer with an Intel
Core i7-4650U CPU and 8 GB of RAM. A plaintext and a secret key have size
about one kB and a ciphertext has a size about 200 kB.

The algorithm to generate a secret key associated with a vector and the
encryption algorithm take less than a second to be computed. The decryption
algorithm takes about 23 s to be computed.

We get 14% of error rate with a single linear classifier, and 7% using a second
classifier after the first one which does not take significant time to perform.

4 Classification Security

We emphasize that the use case of a such construction can be unsecure even if
the cryptographic scheme is secure. An attacker gets a system of diophantine
equations. The easiness of solving it and the precision of the description of the
inputs increase the ability to compute which vector has been encrypted.

5 Conclusion and Future Work

In this work we have used an instantiation of an inner product encryption in
order to perform classification over encrypted data. The learning process is kept
secret as only linear classifiers coefficients are public. In the use-case we study, we
have a trusted authority, a server computing the classification and the users who
encrypt their data. Obtained execution times are reasonably small (a prediction
is made in approximatively 69 s without any parallelization) as well as the size of
the ciphertexts. We have studied a method to ensure that we cannot find original
image from the inner product values. In perspective, we consider to study more
deeply the leakage of inner product encryption schemes and to propose methods
to lower it.
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Users’ location data has become important contextual information that is
used by many popular geosocial applications (such as Facebook) to notify users
when a friend is within specified vicinity, to recommend like-minded users who
are within a given geographic proximity, or to deliver targeted ads. While service
providers want “noise-free” location data to enable value-added social features
or targeted ads, and need solutions that offer provable data security, users want
robust control during or after releasing location data. There are various cate-
gories of techniques in preserving location privacy [13], but many existing solu-
tions fall short in achieving the needs of robust and dynamic control from the
user and preserving high data granularity [1]. As an example, one type of solu-
tions focuses on masking users’ coordinates using spatial cloaking [6], anonymity
or obfuscation. These techniques typically require a trusted server that will see
all location data. Also, since data is not encrypted these solutions fail to protect
users’ private data in situations like security breaches or insider attacks, which
are more than just occasional incidents [11].

This paper investigates solutions that (i) meet the needs of users and ser-
vice providers discussed above, (ii) can benefit from the trend of computation
outsourcing to support resource constrained mobile devices, and (iii) offer mea-
surable security protection to users’ private data. Specifically, we investigate
a mix of spatial cloaking that offers flexible control of location masking, and
Homomorphic Encryption (HE) that provides the ability for service providers to
perform computations on encrypted location data without decryption [5]. Many
HE schemes base their security on the Learning-With-Errors (LWE) problems
that can be reduced to the average-case lattice-based cryptography problems,
such as Shortest Vector Problem (SVP) [12]. A quantum reduction from LWE to
standard SVP problem was constructed [12], which suggests that it is unlikely
that we can efficiently solve the LWE problem in polynomial time [8,10]. This
property offers promising post-quantum cryptographic assurance to users’ loca-
tion data. Regarding the encryption scheme, our prototype implementation used
the NLV2011 [9] Somewhat HE (SWHE) scheme. NLV2011 is a practical con-
struction of a well studied SWHE scheme—BV2011 [2]. An SWHE scheme sup-
ports a limited number of computations before the ciphertexts become too noisy
for decryption.

To compute proximity information securely, the common first attempt is
to construct homomorphic operations to evaluate a distance function, such as
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Euclidean distance. Due to the complexity of implementing the haversine func-
tion in HE schemes, our earlier attempt [7] focused on projecting the WGS84
coordinates onto the Cartesian coordinates, such as the Universal Transverse
Mercator coordinate system, and developing homomorphic functions to calcu-
late the Euclidean distance. However, the transformation between coordinate
systems introduce undesirable noise, which increases as two points become fur-
ther apart. Thus, this approach limits user’s ability to control the granularity
of location data. Also, given a point if we can calculate the extract distance
to another point, then we know the other point must be on circumference. By
triangulation technique, we can easily determine the location of a point. Hence,
this approach leads to serious privacy issues. Instead, we focus on the idea of
spatial cloaking, which dynamically compute an appropriate region that encloses
the two given points. The size of this region (or level of details) can be controlled
by the user. Due to space limitation, two approaches for homomorphic proximity
computation will be discussed below. Interested readers can refer to additional
papers1 [7].

Spatial Cloaking using User Preferences. Usually, spatial cloaking solutions mask
coordinates with multidimensional data access methods [4], such as Z-order or
Hilbert curve. These geohashing techniques reduce the dimensionality of coor-
dinate data while preserving locality of points. We used the Z-order curve to
geo-hash the two dimensional coordinates into an array of concatenated index-
ing keys. Each key represents the position of the point at a particular level of
detail. The indexing keys are represented in base 4, hence quad-key. Every time
we increase one level of detail, we divide each bounding box into four equal sub-
boxes, with each assigned a new quad-key appended to the existing quad-key
string, as illustrated. Essentially, in this representation the longer the common
prefix between the quad-keys of two points, the closer they are. Also, the longer
the indexing key provides a more precise reference to the original coordinates.

Given GPS coordinates in WGS84 encoding, we can compute quad-keys. As
an example, given the coordinates (43.584474, –77.675472) the quad-keys at level
5 is 03023. We transform the quad-keys into binary-keys, as 0011001011. Due
to space constraints, we only show the indexing keys at a limited level. The
maximum level of detail in the form of quad-key is 22 (or 44 level in binary-
keys), which corresponds to the exact GPS coordinates. Ideally, users will share
the complete quad-keys with a server and update it periodically, rather than
sending different versions of the masked keys to reduce communication overhead.
Users specify the privacy preferences as a list of prefix masks to control the
granularity of location data depending on the friendship with another user. By
applying different masks, the server can generate different masked areas for the
different requesters; hence achieving the level of privacy as desired by users.
However, because we can invert the binary-keys to coordinates, a trusted server
is required.

To avoid using a trusted server, we encrypt both the binary-keys and the
masks, and construct homomorphic operations to select an appropriate mask
1 http://cs.rit.edu/∼ph/research.

http://cs.rit.edu/~ph/research
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and apply it to the binary-keys. Using homomorphic encryption, users can share
periodic updates of their coordinates in full level of detail while preserving pri-
vacy. We encrypt each element in the binary-keys as a separate ciphertext. Hence,
the encryption of Alice’s binary-keys yields a vector of ciphertexts. This is com-
mon in many existing works [3] to simplify the prototype implementation. When
a user B or a third-party application requests another user A’s location, the
server performs coordinate-wise homomorphic multiplications using the appro-
priate masks, Enc(A)⊗Enc(MB) or Enc(A)⊗Enc(M#), yielding the encrypted
results that are sent back to the corresponding information requesters. In this
cases, since we only need homomorphic multiplications with depth one, no noise
reduction step is needed; hence this approach should be relatively efficient, as
shown in our results.

Computing Common Prefix of Two Geo-hashing Codes. With homomorphic
encryption we can achieve spatial cloaking with untrusted servers. Extending
from the simple masking operation, we explore the possibility of computing the
appropriate proximity information in the form of a common prefix (CP ), if given
Enc(A) and Enc(B). The server will apply the corresponding masks as defined in
user’s preference before computing the common prefix, because individual users’
privacy preferences have higher priority. To simplify the discussion, we assume
users are happy with using the location data in full level of detail to compute
the common prefix. The resulting encrypted common prefix can then be used to
compute a bounding box that contains the location of Alice and Bob. Since the
maximum distance between any two points in the bounding box is the length
of the diagonal, we know the upper bound of how far apart the two points are
without giving away their exact locations. In addition, we can use this property
to hide users’ mobility trajectories within an area; hence, this approach does not
only preserve the privacy of coordinates but also the mobility patterns of users.

To find the common prefix, we apply homomorphic operations to compute
a common prefix mask of two binary-keys. The logical way is to implement
a homomorphic equality operator which compares the encrypted vectors and
figures out the matching bits. However, because HE schemes are nondeterministic
due to the use of random noise in every encryption, different encryptions of the
same value generate ciphertexts that are different. It is difficult to implement
an equality operator that compares the ciphertexts. In literature, the equality
operator [3] for vectors X = (x1, ..., xn) and Y = (y1, ..., yn) is implemented
as arithmetic circuits, EQU(X,Y ) = ∧n

i=1(1 ⊕ xi ⊕ yi), where ∧ and ⊕ are
bitwise AND and XOR. However, this operation can only tell whether the two
vectors are identical but cannot dynamically compute the common prefix with
an appropriate level of detail. In this regard, this approach is similar to the work
on private proximity test [13].

In this paper, we construct a special arithmetic circuit to compute the com-
mon prefix. Given two encrypted binary vectors A and B, we first apply a
coordinate-wise XNOR, which returns encryption of 1, if the corresponding bit
values in the encrypted coordinates are the same, otherwise it will return encryp-
tion of 0. We then perform a prefix mask purification step in which bit value
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after the left most 0 is reset to 0. This process requires consecutive homomorphic
multiplications which increase the multiplicative depth. Due to the use of multi-
ple levels of homomorphic multiplications, the relinearization step is required to
reduce the size of the ciphertext. We study the characteristics of this algorithm
and compare it to other homomorphic operations, such as the equality operator
EQU [3]. We found that they share similar computation time profile because
they both rely on consecutive homomorphic multiplications.
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Abstract. REST NBI (REST Northbound API) is the mainstream NBI
implementation method of current SDN controllers, but none of them has
achieved authorization management, which leads to serious privilege abuse
problems. In this paper, we propose SDNGuardian, an API-grained permission
checking method based SDN REST NBI security defense system that achieves
API level REST NBI authorization and effectively solves the problem of priv-
ilege abuse. Comparing with current authorization enhanced SDN controllers,
our system is able to defend against attacks via REST NBIs within the same
permission group.

Keywords: SDN � Privilege abuse � Authorization � REST NBI � API-grained
permission checking

1 Introduction

REST NBI is not only easy to be implemented, but also introduces small overhead [1].
As a result, it is supported by all mainstream SDN controllers. However, REST NBI of
most mainstream controllers is implemented with the lack of encryption, authentication
and authorization management, which can lead to serious potential security problems.
By exploiting vulnerabilities of REST NBI, attackers can interact with core resources
of SDN network, and obtain the same level of control as the controller. All mainstream
controllers, like Floodlight [2], OpenDaylight [3], Ryu [4], Open Mul [5] and ONOS
[6], have not even implemented all basic REST NBI security mechanisms (encryption,
authentication and authorization management), and in particular, none of them supports
authorization. That is to say, any application is able to call REST NBI without
restrictions as long as it has access to the controller’s IP address and port. As a result,
SDN network is vulnerable to attacks launched via REST NBI by malicious applica-
tions, for example, flow hijacking attacks launched by tampering with flow tables via
REST NBI, information leakage attacks via querying type REST NBIs.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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Motivated by the lack of authorization management problem of REST NBI, we
present SDNGuardian, an API-grained REST NBI permission checking system that
prevents the privilege of REST NBI from being abused and achieves a more secure
SDN controller.

2 System Design

2.1 Overview

In this paper, we propose SDNGuardian, an API-grained REST NBI authorization
management system that overcomes the weaknesses of current permission based
authorization management systems. An overview of SDNGuardian architecture is
shown in Fig. 1.

SDNGuardian is composed of Authorization Manager, Policy Manager and the
database, and it is built as an extension of the controller. Our system plays the role of a
protection barrier between third-party applications and SDN networks, which checks
the legitimacy of every REST NBI call of third-party applications by executing
API-grained permission checking method. Third-party applications complete their
registrations, submit their permission manifest files and send their access requests of
REST NBI via Authorization Manager, while Policy Manager is the management
center of permission checking policies, via which administrators insert, delete and
update permission policies. The database stores all the registration information, per-
mission manifest information, permission checking policy information, REST NBI
information and all user information.

2.2 Authorization Manager

We divide Authorization Manager into three parts, including Permission Parse Engine,
Access Request Checking Engine and Interaction Engine, which are shown in Fig. 1.
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Fig. 1. SDNGuardian overview
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Authorization Manager is the mediation between third-party applications and the
controller. By adding Authorization Manager, third-party applications can no longer
directly interact with controllers and call REST NBI without restrictions. All appli-
cations must complete registrations and submit their permission manifest files before
requesting REST NBI, which ensures the legitimacy and safety of each REST NBI call.

A. Permission Parse Engine
Permission Parse Engine receives and parses the permission manifest file and
complete registration. In the permission manifest file, application developers
manifest the permissions they need to apply to correctly execute the application
and basic information of both applications and users. Permission Parse Engine
extracts the parameters of permission manifest file, and generates data structures of
applied permission set and basic information set. The engine checks the legitimacy
of user identification, and the result determines whether the application can be
registered and whether the applied permissions can be granted and inserted into the
database.

B. Access Request Checking Engine
Access Request Checking Engine is the core of Authorization Manager, whose
function is to execute the API-grained permission checking method and judge the
legitimacy of REST NBI access requests. When receiving a REST NBI call, the
engine executes the following steps: (1) queries permission manifest information of
the application in the database and checks whether the permission applied has been
granted by SDNGuardian (if yes, go to step (2), or stop); (2) executes API-grained
permission checking algorithm.

C. Interaction Engine
Interaction Engine performs actions according to the judgment of Access Request
Checking Engine. If the REST NBI call is allowed, the engine performs the action
applied and directly interacts with the controller, and returns the execution result to
the application.

2.3 Policy Manager

Policy Manager is made up of Policy Parse Engine and Policy Checking Engine, and it
plays the role of permission checking policy management center and provides the
administrators with an interface to insert, delete and update permission checking
policies.

A. Policy Parse Engine
Policy Parse Engine receives and parses the permission checking policy file and
generates formatted permission checking policies. In the permission checking
policy file, administrators regulate the permission checking scheme and manifest
the permission checking policies they want to execute in the SDN network. Policy
Parse Engine extracts the parameters of the file, and generates data structures of
permission checking policies.
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B. Policy Checking Engine
The function of Policy Checking Engine includes three parts: (1) judging the
legitimacy of permission checking policies; (2) judging the conflicts of policies;
(3) labeling priorities to the policies. When receiving the formatted permission
checking policies, the engine executes the policy checking algorithm (discussed in
detail in Sect. 5), the result of which tells the legitimacy of the policies and whether
they cause conflicts with the existing policies in the database. If the policies are
allowed to insert into the database, the engine labels priorities to the policies and
performs the action of insertion.

In conclusion, the working procedure of SDNGuardian is shown in Fig. 2. The left
part is the working procedure of Authorization Manager when a REST NBI access
request arrives, while the right part is that of Policy Manager when an administrator
inserts a permission checking policy.
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Abstract. In the context of side channel attacks (SCA), multiple pre-
processing methods proposed are used to improve the quality of mea-
surements and enhance the attack performance. Different from existing
preprocessing methods which accord to the spectral distribution of noise
or depend on some objective functions to search optimal linear trans-
form, we treat noise as an ensemble and separate it by discrete wavelet
transform and robust principal component analysis (RPCA) blindly. All
experiments show that the proposed method has a great impact on the
noise reduction of a typical hardware implementation of AES when com-
paring to some existing methods.

Keywords: Side channel attacks · Robust principal component analy-
sis · Wavelet transform · Denoising

1 Introduction

Noise in side channel attacks (SCA) has been a hot topic since the threat is
posed. Not only the multiple kinds of noise affect the analysis performance but
also can be difficult to deal with efficiently. Actually, measurements from the
device under target (DUT) are contaminated by different noise.

One solution to noise reduction is based on signal processing tools, including
but not limited to wavelet transform (WT) [6], empirical mode decomposition
(EMD) [4], least squares [3]. The majority of them consider that the leakage
concentrates on specific frequencies. However, the commonly used threshold for
filtering out interference frequencies limits the denoising efficiency. The other
one is the method related to linear transform. For example, a known technique
for dimension reduction, i.e., principal component analysis (PCA), is used to
preprocess raw measurements [5] in SCA. The biggest challenge of PCA is that
the principal components may not contain the most useful leakages, which results
that less confidential data can be retrieved eventually.

In this paper, we propose a novel denoising method that combine the discrete
wavelet transform and robust principal component analysis before performing
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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correlation power analysis (CPA). A comparison is made between the proposed
method and some existing methods on a typical hardware implementation of
AES. The proposed method outperforms other denoising methods significantly.

2 Background

2.1 Robust Principal Component Analysis

For a data matrix X ∈ �m×n composed of a low-rank matrix L and a sparse
matrix S, for the purpose of separation, the problem can be formulated by

min
L,S∈�m×n

rank(L) + λ‖ S ‖0
s.t. X = L + S, (1)

where rank(·) is the rank of a matrix, ‖ · ‖0 is the number of non-zero elements
in a matrix, λ represents the parameter to balance two object functions. The
problem can be solved by augmented Lagrange multiplier algorithm (ALM) for
guaranteeing good accuracy and convergence as suggested by [2].

3 Proposed Denoising Method

Since wavelet transform has the advantage of transforming a signal into such
a representation with only several sparse coefficients, we first transform a sin-
gle trace into the wavelet domain and construct a trajectory matrix on these
approximation coefficients. Then, reconstructed approximation coefficients are
obtained such as follows.

Separation. For a measurement l of length T, a Hankel matrix is constructed
by a window with width of N , such as

XN×K =

⎛
⎜⎜⎜⎜⎜⎝

l0 l1 l2 · · · lK−1

l1 l2 l3 · · · lK
l2 l3 l4 · · · lK + 1
...

...
...

. . .
...

lN−1 lN lN + 1 · · · lT−1

⎞
⎟⎟⎟⎟⎟⎠

, (2)

where K = T − N + 1.
Reconstruction. A new measurement y can be obtained by averaging along

cross-diagonals of the sparse matrix S, such as

yt =

⎧⎪⎨
⎪⎩

1
t+1

∑t+1
k=1 s∗

k,t−k+2 0 ≤ t ≤ N∗ − 1,
1
L∗

∑L∗

k=1 s∗
k,t−k+2 N∗ − 1 ≤ t ≤ K∗,

1
T−t

∑T−K∗+1
k=t−K∗+2 s∗

k,t−k+2 K∗ ≤ t ≤ T,

(3)

where s∗ is the element of S, and N∗ = min{N,K}, K∗ = max{N,K}. The
denoising method is summarized in Algorithm 1.
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Algorithm 1. RPCA based denoising (RPCA-D)
Input: l, N (l represent a single trace, N reprents the window width)
Output: y (represent the reconstructed approximation coefficients)
1: Transform l into the wavelet domain to obtain approximation coefficients APP
2: Construct a Hankel matrix XN×K on coefficients APP
3: Perform RPCA on X to obtain a sparse matrix S
4: Reconstruct y by averaging along cross-diagonals of the matrix S
5: return y

4 Experiment

In this section, a series of experiments on hardware implementation of AES are
performed, and the actual power traces are from the second stage of DPA Contest
[1]. CPA can be performed either in the wavelet domain after the proposed
denoising method or in the time domain by inverse wavelet transform after the
proposed one. Firstly, two analysis methods will be compared to some existing
methods, including unprocessed condition, wavelet transform from [6], empirical
mode decomposition from [4], trend removing from [3] and combination method
from [4], and corresponding attacks are named as Unprocessed-CPA, WT-CPA,
EMD-IIT-CPA, TR-CPA, EMD-IIT-TR-CPA. Success rate (SR) will be used
to evaluate the analysis efficiency proposed in [7], which is widely used in the
cryptographic implementation evaluation. The comparison result is shown in
Fig. 1. Secondly, the proposed analysis methods will be used to preprocess the
traces with different level of signal to noise ratio (SNR). It can interpret the
robustness of the proposed method in denoising. The result is shown in Fig. 2.
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Fig. 1. Success rate of CPA by using different denoising methods

The results showed that the proposed method improves the success rate of
CPA significantly both in the time domain and wavelet domain. Especially, even
in the condition of low SNR, the proposed method shows excellent denoising
performance.
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Fig. 2. Success rate of CPA in different level of SNR by using the proposed denoising
method

5 Conclusion

In this paper, we presented a novel denoising method that using robust prin-
cipal component analysis to separate approximation coefficients in the wavelet
domain. Different from the methods proposed in the open literatures, the pro-
posed denoising method has no restriction on the type of noise or the number
of power traces for parameters setting. The proposed method outperforms some
existing methods significantly and has great robustness ability in denoising.
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1 Introduction

The impact of a successfully performed intrusion can be very crucial. There exists
a lot of space which needs research in order to improve detection capabilities
of various types of intrusions. Therefore, many researchers and developers are
encouraged to design new methods and approaches for detection of known and
unknown (zero-day) network attacks. These facts are the most important reasons
why Anomaly Detection Systems (ADS) intended for intrusion detection arose.
Network ADS (further ADS) approaches attack detection by utilizing packets’
headers and communication behavior, not the content of the packets. Thus, basic
principles of ADS open possibilities of an attacker to evade ADS detection by
obfuscation techniques.

The goal of our work is to train the ADS detection engine to be aware of the
behavior of obfuscated attacks, and thus correctly predict other similar obfus-
cated attacks. The obfuscation techniques leveraged in our current research are
based on non-payload-based modifications of connection-oriented communica-
tions. Our work instantiates ADS features by Advanced Security Network Met-
rics (ASNM) [5], which are aimed at offline intrusion detection. In our previous
work, experiments showed interesting intrusion detection capabilities on CDX
2009 dataset. But the possibility of evading an intrusion detection employing
such features still exists, which is the subject of our current research.

2 Related Work

Although non-payload-based evasions of network attacks in the area of intrusion
detection were considered as an actual research subject of more than one and
a half decades ago [3,6,7], it revealed to be actual a few years ago as well [2].
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There exist several related works considering non-payload-based evasions of net-
work attacks for payload-based intrusion detection, however, there is a lack of
works performing investigations into non-payload-based network behavior anom-
aly detection and this kind of evasion.

3 Obfuscation Tool

We designed and implemented a tool for automatic exploitation of network ser-
vices which is able to perform various obfuscation techniques based on NetEm
utility and ifconfig Linux command. Execution of direct attacks (non-obfuscated
ones) is also supported by the tool as well as capturing network traffic.

The most suggested obfuscations are performed by tc utility and its exten-
sion NetEm [4], respectively. NetEm enables us to add latency of packets, loss of
packets, duplication of packets, reordering of packets and other outgoing traffic
characteristics of the selected network interface. The modification of MTU is per-
formed by the linux utility ifconfig. Table 1 presents instances of these techniques
and contains appropriate empirically recognized parameters.

4 Data Mining Experiments

All experiments were performed in Rapid Miner Studio [1] using a 5-fold cross
validation and conditional probability based Naive Bayes classifier.

Forward Feature Selection Experiment

For the purpose of finding the best subset of ASNM features [5], we performed
the forward feature selection (FFS) method. The experiment considered two class
prediction – the first for legitimate traffic and the second for intrusive traffic.

The experiment consisted of two executions of the FFS. The first took as
input just legitimate traffic and direct attack entries (denoted as FFS DL), and
represented the case where ADS was trained without knowledge about obfus-
cated attacks. The second execution took as input the whole dataset of network
traffic – consisting of legitimate traffic, direct attacks as well as obfuscated ones
(denoted as FFS DOL), and thus, represented the case where ADS was aware
of obfuscated attacks.

Binary Classification Experiment

A 5-fold cross validation was performed using direct attacks with legitimate
traffic considering FFS DOL features. The classifier achieved average recall of
99.35%, while it correctly predicted 98.71% of direct attacks. The classifier
trained on all direct attacks and legitimate traffic instances was then applied
in the prediction of the whole dataset (including obfuscated attacks) and it cor-
rectly predicted 71.25% of obfuscated attacks and 78.26% of all attacks respec-
tively. The achieved result proclaimed the existence of some successful obfusca-
tions of attacks which were predicted as legitimate traffic.
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Table 1. Experimental obfuscation techniques with parameters

Technique Instance ID

Spread out • Constant delay: 1 s (a)

packets in • Constant delay: 8 s (b)

time • Normal distribution of delay with 5 s mean 2.5 s standard
deviation (25% correlation)

(c)

Packets’ loss • 25% of packets (d)

Unreliable • 25% of packets damaged (e)

network • 35% of packets damaged (f)

channel
simulation

• 35% of packets damaged with 25% correlation (g)

Packets’
duplication

• 5% of packets (h)

Packets’ order
modification

• Reordering of 25% packets; reordered packets are sent
with 10ms delay and 50% correlation

(i)

• Reordering of 50% packets; reordered packets are sent
with 10ms delay and 50% correlation

(j)

Fragmentation • MTU 1000 (k)

• MTU 750 (l)

• MTU 500 (m)

• MTU 250 (n)

Combinations • Normal distribution delay (μ = 10ms, σ = 20ms) and
25% correlation; loss: 23% of packets; corrupt: 23% of
packets; reorder: 23% of packets

(o)

• Normal distribution delay (μ = 7750ms, σ = 150ms)
and 25% correlation; loss: 0.1% of packets; corrupt: 0.1% of
packets; duplication: 0.1% of packets; reorder: 0.1% of
packets

(p)

• Normal distribution delay (μ = 6800ms, σ = 150ms)
and 25% correlation; loss: 1% of packets; corrupt: 1% of
packets; duplication: 1% of packets; reorder 1% of packets

(q)

In the next part of the current binary classification experiment, we performed
5-fold cross validation of the whole dataset including obfuscated attacks. The
classifier achieved average recall of 99.63%, while it correctly predicted 99.37%
of all attacks. Therefore, we confirmed the assumption that a classifier trained
with knowledge about some obfuscated attacks is able to detect the same or
similar obfuscated attacks later.

Comparing the results of the current experiment reproduced with the FFS
DL feature set, we concluded that the model using FFS DL features had achieved
slightly better results in learning direct attacks and legitimate traffic character-
istics than the case of the first model (using DOL features), but on the other
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hand, it resulted in more misclassified cases of obfuscated attacks than the first
one (i.e. 155:138) as well as it achieved worse results in cross validation of the
whole dataset.

5 Summary of the Obfuscation Techniques

The results presented in the section originate from a binary classification exper-
iment in which the classifier is trained without obfuscated attack knowledge and
validated on the whole dataset. The obfuscations are considered successful if
they are predicted as legitimate traffic, and therefore the situation represents
the ADS evasion case. The most successful obfuscations use combinations of
more techniques (i.e. o, q, p), damaging of packets (i.e. f , e) and spreading out
packets in time with delays specified by normal distribution (i.e. c). From the
MTU modification techniques, (n) appear to be the most successful.

(Non) Exigency of a Network Normalizer
If we would assume existence of an optimal network normalizer for ADS which
would be able to completely eliminate the impact of proposed non-payload based
obfuscation techniques, then these obfuscation techniques would be useless. If
such optimal network normalizer would exists, then it would still be prone to
state holding and CPU overload attacks.

Contrary, if we would not assume network normalizer as part of ADS system,
then non-payload-based obfuscation techniques might be employed as training
data driven approximation of network normalizer, which would not be prone to
previously mentioned issues and attacks.
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Abstract. Aiming to counterstrike the spoofing attacks in face recognition
system, a non-intrusive face spoofing detection method based on guided filtering
and image quality analysis is proposed. Guided image filtering (GIF) is first
implemented for the enhancement of texture component of facial image, and
then the local texture features are extracted by calculating local binary patterns
(LBP). Meanwhile, the global facial image quality features are obtained from
image quality measures. With these features, the spoofing detection is accom-
plished by using support vector machine (SVM) classifier. Experiments results
indicate its effectiveness and it has great potential to be applied for the
authenticity verification in face recognition system.

Keywords: Face anti-spoofing � Guided filtering � Image quality

1 Introduction

As an important identity authentication means, biometric identification technologies
have been widely used in door control system, criminal investigation and security
inspection equipment. Among them, face recognition has attracted extensive attention
due to its high security, good stability and easy operation. However, with the devel-
opment of information technologies, images or videos containing a target’s face can be
easily acquired from social network. If they are abused by malicious attackers, it is
possible to launch spoofing attacks to face recognition systems [1].

Currently, the researches of face recognition are mainly concentrated on the
accurate discrimination of different individuals’ faces in complex scenes, while few
works have been done to the authenticity forensics of human faces. This situation leads
to the vulnerability of spoofing attacks, such as photo attacks, video attacks and mask
attacks.

To counterstrike image printing and video replaying attacks in face recognition
systems and improve the detection performance, a non-intrusive face spoofing
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detection method based on guided image filtering (GIF) [2] and image quality analysis
is proposed in this paper, the rationale and motivation are as follows:

– Guided image filtering has been successfully used in previous works for forgery
detection in small-size image. To a certain extent, many spoofing attacks can be
regarded as a type of image forgery or manipulation, and they can be effectively
detected by using guided image filtering.

– Guided image filtering can enhance the useful texture component of facial image,
and local binary patterns (LBP) operator [3] can extract more powerful texture
feature from an enhanced texture space, which has less redundancy information
compared with the original facial image.

– Spoofing faces in photo or video are recaptured by device, and they tend to be more
seriously distorted by reproduction process. Classical image quality assessments
have potential of analyzing the image quality, and their limitation of sensitivity can
be compensated by integrating them with texture features.

In summary, the contributions of this paper are:

(1) A face spoofing detection method based on hybrid features is proposed.
(2) A new feature space of texture enhancement for face spoofing detection is pro-

vided by guided image filtering.

2 The Proposed Method

Based on guided filter [2] and image quality assessment [7], a framework of the face
spoofing detection method is presented in Fig. 1. For an input frame (image), it is first
normalized to an image with a size of 64 � 64 to decrease the computation complexity
and avoid the influence of different size of the input frame. After that, local binary
pattern (LBP) features are obtained from the image after guided filtering, and image
quality features are calculated from the image and the counterpart after Gaussian
filtering. Finally, these features are fed to a support vector machine (SVM) classifier
[4], and the output score value describes whether there is a live person or a fake one in
front of the camera.

FR-IQA
(14 IQMs)

SVM
Classifier

Real

Spoof

Input Image 
or frame

Gaussian Filtering IQA features

Normalized 
image

Guided filter 
enhancement LBP features

Feature
combina on

Classifica on

Feature extrac on

Final 
decision

LBP

IQA

Fig. 1. Framework of the proposed face spoofing detection scheme
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Extraction of Guided Filtering Features. For the normalized facial image, guided
filter is implemented for the texture enhancement of R, G, B channels, respectively.
Then, LBP operator [3] with P = 8, R = 1 is used for calculating guided LBP facial
image. With a guided LBP facial image, a sliding window B with a size of 32 � 32 is
used to make a statistics of the LBP coding with the uniform mode. The sliding step is
s = 16. Thus, the dimension of the guided filtering features is 59 � 9 = 531.

Extraction of Image Quality Features. For the normalized facial image, it is first
transformed into a grayscale image G, and then a Gaussian low-pass filter (r = 0.5, size
3 � 3) is used for it. After that, the corresponding distorted image G′ is obtained. In
this way, full-reference image quality measures [7] can be calculated from G and G′.
Thus, 14 dimensions of image quality features is obtained.

3 Experimental Results and Analysis

Here, the performance of the methods in [5–8] are compared with that of the proposed
method using Replay-Attack database [9] and CASIA database [6]. The results are
shown in Table 1 and Fig. 2.

Table 1. Performance comparison using the frame based evaluation

Methods Replay-Attack database CASIA database
EER% HTER% Accuracy% EER% HTER% Accuracy%

MLBP [5] 0.33 1.08 98.21 20.89 20.67 87.91
DoG [6] 17.25 17.45 77.17 33.52 25.92 82.69
IQA [7] 24.50 29.06 77.48 25.36 25.91 83.57
LSP [8] 6.00 6.20 93.50 25.15 25.80 86.10
GIF + IQA 1.02 1.31 97.81 18.70 11.54 92.98
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As seen from Table 1 and Fig. 2, the results show that extracting LBP features after
guided filtering is able to achieve stable performance across two databases. It also can
be found that the fusion of the guided filtering features and image quality features can
remedy the weakness of a single kind of features. The average processing time for the
test set of the Replay-attack database and CASIA database is 27.80 ms per frame.

4 Conclusions

A face spoofing detection method based on guided filtering and image quality analysis
is proposed. The proposed non-intrusive method extracted useful texture features and
image quality features from a single facial image, it is fast response and does not
require any specific user cooperation. Thus, it can be applied to real-time detection
scene.
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