
Designing and Implementing Algorithms
for the Closest String Problem

Shota Yuasa1, Zhi-Zhong Chen1(B), Bin Ma2, and Lusheng Wang3

1 Division of Information System Design, Tokyo Denki University,
Hatoyama, Saitama 350-0394, Japan

zzchen@mail.dendai.ac.jp
2 School of Computer Science, University of Waterloo,

200 University Ave. W, Waterloo, ON N2L3G1, Canada
binma@uwaterloo.ca

3 Department of Computer Science, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong SAR

cswangl@cityu.edu.hk

Abstract. Given a set of n strings of length L and a radius d, the clos-
est string problem (CSP for short) asks for a string tsol that is within a
Hamming distance of d to each of the given strings. It is known that
the problem is NP-hard and its optimization version admits a poly-
nomial time approximation scheme (PTAS). A number of parameter-
ized algorithms have been then developed to solve the problem when
d is small. Among them, the relatively new ones have not been imple-
mented before and their performance in practice was unknown. In this
study, we implement all of them by careful engineering. For those that
have been implemented before, our implementation is much faster. For
some of those that have not been implemented before, our experimental
results show that there exist huge gaps between their theoretical and
practical performances. We also design a new parameterized algorithm
for the binary case of CSP. The algorithm is deterministic and runs in
O
(
nL + n2d · 6.16d

)
time, while the previously best deterministic algo-

rithm runs in O
(
nL + nd3 · 6.731d

)
time.

1 Introduction

An instance of the closest string problem (CSP for short) is a pair (S, d), where S
is a set of strings of the same length L over an alphabet Σ and d is a nonnegative
integer. The objective is to find a string tsol of length L such that d(tsol, s) ≤ d
for every s ∈ S. The problem is fundamental and has been extensively studied
in a variety of applications in bioinformatics, such as finding signals in DNA or
protein family, and modif finding. Unfortunately, it is NP-hard [4,7].

Although CSP is NP-hard in general, we can still solve CSP exactly in rea-
sonable amount of time via parameterized algorithms when d is small. Indeed,
Gramm, Niedermeier and Rossmanith [5] designed the first parameterized algo-
rithm that runs in O(nL + nd · dd) time. Ma and Sun [8] present an algo-
rithm whose time complexity is O(nL + nd · (16|Σ|)d). Chen and Wang [2]
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 79–90, 2017.
DOI: 10.1007/978-3-319-59605-1 8



80 S. Yuasa et al.

improve the time complexity to O(nL + nd · 8d) for binary strings and to
O(nL + nd · (

√
2|Σ| + 4

√
8(

√
2 + 1)(1 +

√|Σ| − 1) − 2
√

2)d) for arbitrary alpha-
bets Σ. Chen, Ma, and Wang [1] further improved the time complexity to
O(nL+nd3 ·6.731d) for binary strings and to O(nL+nd·(1.612(|Σ|+β2+β−2))d)

for arbitrary alphabets, where β = α2+1−2α−1+α−2 with α = 3

√√|Σ| − 1 + 1.
In theory, this algorithm has the best time complexity among all known deter-
ministic parameterized algorithms for CSP when |Σ| is small (such as binary
strings and DNA strings). Chen, Ma, and Wang [3] designed a randomized algo-
rithm that runs in O∗(9.81d) and O∗(40.1d) expected time for DNA and protein
strings, respectively. In particular, for binary strings, their randomized algo-
rithm runs in O(nL+n

√
d ·5d) expected time. Hence, in theory, the randomized

algorithms in [3] look faster than the deterministic algorithms in [1,2].
All the aforementioned algorithms for CSP have been rigorously analyzed

and hence their theoretical performance is known. On the other hand, there is
another type of algorithms for CSP which solve the problem exactly but their
theoretical performance has never been rigorously analyzed. For convenience, we
refer to algorithms of this type as heuristic algorithms. Among heuristic algo-
rithms, TraverString [11] and qPMS9 [9] are known to have the best performance
in practice. Indeed, they are much faster than Provable, which is obtained by
implementing the algorithm for CSP in [2].

Ideally, we want to find an algorithm for CSP which not only has a good theo-
retical time-bound but also can be implemented into a program which runs faster
than the other known algorithms for CSP (including the best-known heuristic
algorithms, namely, TraverString [11] and qPMS9 [9]). To find such an algorithm,
one way is to implement the known algorithms (by careful engineering) which
have good theoretical time-bounds. Unfortunately, the recent algorithms in [1,3]
for CSP had not been implemented previously and hence their performance in
practice was previously unknown. Moreover, although the algorithm for CSP
in [2] has the best theoretical time-bound for large alphabets (such as protein
strings), its simple implementation done in [2] only yields a program that is
much slower than the best-known heuristic algorithms for CSP.

So, in this paper, we re-implement the algorithm for CSP in [2] by careful
engineering. For convenience, we refer to this algorithm as the 2-string algorithm
as in [1]. We also carefully implement the 3-string algorithm in [1] and the two
best randomized algorithms (namely, NonRedundantGuess and LargeAlphabet)
in [3], because they have good theoretical time-bounds. Our experimental results
show that NonRedundantGuess and LargeAlphabet are actually much slower than
the deterministic algorithms, although their theoretical time-bounds look better.
Of special interest is that for large alphabets (such as protein strings), our care-
ful implementation of the 2-string algorithm is much faster than all the other
algorithms including TraverString and qPMS9. Hence, for large alphabets, the
2-string algorithm is an ideal algorithm because it not only has the best-known
theoretical time-bound but also can be implemented into a program that out-
performs all the other known programs for CSP in practice.
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We also design and implement a new algorithm for the binary case of CSP.
The new algorithm runs in O(nL + n2d · 6.16d) time and is hence faster than
the previously best deterministic algorithm (namely, the 3-string algorithm).
It is worth pointing out that although the best-known randomized algorithm
(namely, NonRedundantGuess) for the binary case runs in O(nL + n

√
d · 5d)

expected time, its running time is random and it may fail to find a solution
even if one exists. Hence, one cannot say that NonRedundantGuess is better
than our new deterministic algorithm. Indeed, as aforementioned, it turns out
that NonRedundantGuess is actually very slow in practice. Another drawback of
randomized algorithms is that they cannot be used to enumerate all solutions.
In real applications of CSP, we actually need to enumerate all solutions rather
than finding a single one. We can claim that all the deterministic algorithms can
be used for this purpose with their time bounds remaining intact.

Nishimura and Simjour [10] designed an algorithm for (implicitly) enumerat-
ing all solutions of a given instance (S, d). For binary strings, their algorithm runs
in time O

(
nL + nd · ((n + 1)(d + 1))�log(1−δ/2) ε�5d(1+ε+δ)

)
for any 0 < δ ≤ 0.75

and 0 ≤ ε ≤ 1, and they claim that their time-bound is asymptotically bet-
ter than O(nL + nd3 · 6.731d) which is achieved by the 3-string algorithm. In
order for their claim to hold, ε + δ < log5 6.731 − 1 and 5d ≥ (n + 1)γ(d + 1)ρ,
where γ and ρ are the minimum values of the functions

log(1−δ/2) ε

log5 6.731−1−ε−δ and
(log(1−δ/2) ε)−2

log5 6.731−1−ε−δ under the condition ε + δ < log5 6.731 − 1, respectively. Since
γ ≥ 1795 and ρ ≥ 1765, their claim holds only when 5d ≥ (n + 1)1795(d + 1)1765

(i.e., the parameter d is very large). In other words, their claim is false when
5d < (n+1)1795(d+1)1765 (i.e., the parameter d is not very large, which is often
the case for a fixed-parameter algorithm to be meaningful).

2 Notations

Throughout this paper, Σ denotes a fixed alphabet and a string always means
one over Σ. For a string s, |s| denotes the length of s. For each i ∈ {1, 2, . . . , |s|},
s[i] denotes the letter of s at its i-th position. A position set of a string s is a
subset of {1, 2, . . . , |s|}. For two strings s and t of the same length, d(s, t) denotes
their Hamming distance.

Two strings s and t of the same length L agree (respectively, differ) at a
position i ∈ {1, 2, . . . , L} if s[i] = t[i] (respectively, s[i] �= t[i]). The position set
where s and t agree (respectively, differ) is the set of all positions i ∈ {1, 2, . . . , L}
where s and t agree (respectively, differ). The proofs in the paper frequently
use the position sets where a few strings are the same as or different from each
other. The following special notations will be very useful. For two or more strings
s1, . . . , sh of the same length, {s1 ≡ s2 ≡ · · · ≡ sh} denotes the position set
where si and sj agree for all pairs (i, j) with 1 ≤ i < j ≤ h, while {s1 �≡ s2 �≡
· · · �≡ sh} denotes the position set where si and sj differ for all pairs (i, j) with
1 ≤ i < j ≤ h. Moreover, for a sequence s1, . . . , sh, t1, . . . , tk of strings of the
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same length with h ≥ 2 and k ≥ 1, {s1 ≡ s2 ≡ · · · ≡ sh �≡ t1 �≡ t2 �≡ · · · �≡ tk}
denotes {s1 ≡ s2 ≡ · · · ≡ sh} ∩ {sh �≡ t1 �≡ t2 �≡ · · · �≡ tk}.

Another useful concept is that of a partial string, which is a string whose
letters are only known at its certain positions. If s is a string of length L and
P is a position set of s, then s|P denotes the partial string of length L such
that s|P [i] = s[i] for each position i ∈ P but s|P [j] is unknown for each position
j ∈ {1, 2, . . . , L} \ P . Let t be another string of length L. For a subset P of
{1, 2, . . . , L}, the distance between s|P and t|P is |{i ∈ P | s[i] �= t[i]}| and is
denoted by d(s|P , t|P ). For two disjoint position sets P and Q of s, s|P + t|Q
denotes the partial string r|P∪Q such that r|P∪Q[i] =

{
s[i], if i ∈ P ;
t[i], if i ∈ Q.

.

At last, when an algorithm exhaustively tries all possibilities to find the right
choice, we say that the algorithm guesses the right choice.

3 A New Algorithm for the Binary Case

A sequence (x1, . . . , xk) of nonnegative integers is superdecreasing if for all 1 ≤
i ≤ k − 1, xi ≥ ∑k

j=i+1 xj . For a nonnegative integer x and a positive integer
k, let Sk(x) denote the set of all superdecreasing sequences (x1, . . . , xk) of k

nonnegative integers with
∑k

i=1 xi = x.

Lemma 1. Let k be a positive integer, and x and X be two nonnegative integers.
Consider the function fX that maps each (x1, . . . , xk) ∈ Sk(x) to

∏k
i=1

(
X+xi

xi

)
.

Then, fX reaches its maximum value when x1 = 	x
2 
.

Lemma 2. Let k, x, X, and fX be as in Lemma 1. Then,

∑

(x1,...,xk)∈Sk(x)

fX(x1, . . . , xk) ≤
(

X + 	x
2 


	x
2 


)(
X + �x

2 �
�x
2 �

)
· 2x ·

(
4
3

)k

.

Theorem 1. The algorithm in Fig. 1 is correct and runs in O∗ (
6.16d

)
time.

Proof. The algorithm is a simple modification of the 2-string algorithm in [2] (see
Fig. 2). The only difference between the two is the way of guessing tsol|A1 . In
more details, the 2-string algorithm guesses tsol|A1 by guessing {tsol �≡ s0} ∩ A1

and further obtaining tsol[p] by flipping s0[p] for each p ∈ {tsol �≡ s0} ∩ A1. So,
the algorithm is clearly correct.

We next analyze the time complexity. Fix an i with 2 ≤ i ≤ log d. For each
1 ≤ j ≤ i−1, let λj = d(si|Ai

, tsol|Ai
). Since d(si, tsol) ≤ d and λ ≤ λ1, we have

λ +
i−1∑

j=2

λj + |Ai| − δi +
log d∑

j=i+1

δj ≤ d. (1)

Moreover, since d(s0, s1) is maximized over all pairs of strings in S, d(si, s0) +
d(si, s1) ≤ 2d(s0, s1) = 2|A1|. Summing up the contribution of the positions in
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Input: An instance S, d of the binary case of CSP.
Output: A solution to S, d if one exists, or NULL otherwise.

1. Select a pair of strings from S whose Hamming distance is maximized over
all pairs of strings in S. Without loss of generality, assume that (s0, s1) is
such a pair.

2. Let P = A1 = {s0 s1}.
3. Guess sh ∈ S (by trying every string in S) such that d(sh|P , tsol|P ) is

minimized over all strings in S, where tsol is a fixed (unknown) solution
to S, d . Let λ = d(sh|P , tsol|P ).

4. Guess tsol|P (by trying all choices of λ positions in P and flipping the
letters of sh in the λ chosen positions). Let t = tsol|P + s0|{1,2,...,|s0|}\P
and b = d − d(s0|P , t|P ).

5. For i = 2, 3, . . . , log d (in this order), perform the following steps:
5.1. If every string in S is within a Hamming distance at most d from t,

then output t and halt.
5.2. Find a string in S whose Hamming distance from t is at least d + 1.

Without loss of generality, assume that si is such a string. Let Ai =
{s0 ≡ s1 ≡ · · · ≡ si−1 si}.

5.3. Let = d(t, si) − d and R = {si t} \ P .
5.4. If min{b, |R|}, then return NULL.
5.5. Guess δi = d(t|Ai , tsol|Ai) (by trying all integers in { + 1, . . . , b}).
5.6. Guess tsol|Ai and modify t accordingly (by trying all choices of δi

positions in R and flipping the letters of t in the chosen δi positions).
5.7. Update b = min{b − δi, δi − } and P = P ∪ R.

6. Return NULL.

Fig. 1. The new algorithm for the binary case

Input: An instance , d, t, P, b of ECSP.
Output: A solution to , d, t, P, b if one exists, or NULL otherwise.

1. If there is no s ∈ S with d(t, s) > d, then output t and halt.
2. If d = b, then find a string s ∈ S such that d(t, s) is maximized over all

strings in S; otherwise, find an arbitrary string s ∈ S such that d(t, s) > d.
3. Let = d(t, s) − d and R = {s t} \ P .
4. If min{b, |R|}, then return NULL.
5. Guess tsol|R by performing the following steps, where tsol is a fixed (un-

known) solution to , d, t, P, b .
5.1 Guess two sets X and Y such that Y ⊆ X ⊆ R, ≤ |X| ≤ b, and

|Y | ≤ |X| − .
5.2 For each i ∈ Y , guess a letter zi different from both s[i] and t[i]. Let

the partial string ŝ|Y be such that ŝ|Y [i] = zi for all i ∈ Y .
5.3 Let tsol|R = ŝ|Y + s|X\Y + t|R\X .

6. Let t = tsol|R + t|{1,2,...,|t|}\R and b = min{b − |X|, |X| − − |Y |}. (Com-
ment: d(t, t ) = |X|.)

7. Solve s}, d, t , P ∪ R, b recursively.
8. Return NULL.

Fig. 2. The 2-string algorithm given in [2]
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each Aj (1 ≤ j ≤ i) towards d(si, s0) + d(si, s1), we have |A1| +
∑i−1

j=2 2|δj −
λj | + 2|Ai| ≤ d(si, s0) + d(si, s1) ≤ 2|A1|. Thus,

i−1∑

j=2

(δj − λj) + |Ai| ≤
i−1∑

j=2

|δj − λj | + |Ai| ≤ |A1|
2

. (2)

Adding up Eqs. 1 and 2, we have λ+
∑i−1

j=2 δj +2|Ai|−δi +
∑log d

j=i+1 δj ≤ |A1|
2 +d.

Let d′ =
∑log d

j=2 δj . Then, λ + 2|Ai| − 2δi + d′ ≤ |A1|
2 + d. So, |Ai| ≤ |A1|

4 +
d
2 − d′

2 − λ
2 + δi. Since |A1| + 2d′ = d(s0, tsol) + d(s1, tsol) ≤ 2d, we now have

|A1| ≤ 2(d − d′) and hence |Ai| ≤ d − d′ − λ
2 + δi.

Let X = d−d′ − λ
2 and k = log d. By Lemma 2, the exponential factor in the

time complexity of the algorithm is bounded from above by

(|A1|
λ

) ∑

(δ2,...,δk)∈Sk−1(d′)

k∏

i=2

(
X + δi

δi

)

≤
(|A1|

λ

)(
X + 	d′

2 

	d′

2 

)(

X + �d′
2 �

�d′
2 �

)
· 2d′ ·

(
4
3

)k−1

≤ d ·
(

2(d − d′)
λ

)(
X + 	d′

2 

	d′

2 

)(

X + �d′
2 �

�d′
2 �

)
· 2d′

≤ d ·
(

2(d − d′)
λ

)(
d − λ

2 − �d′
2 �

	d′
2 


)(
d − λ

2 − 	d′
2 


�d′
2 �

)
· 2d′

.

Now, using Stirling’s formula, the exponential factor in the time complexity of
the algorithm is bounded from above by

(2(d − d′))2(d−d′)

λλ · (2(d − d′) − λ)2(d−d′)−λ
·

⎛

⎜⎜
⎝

(
d − λ

2 − d′
2

)d− λ
2 − d′

2

(
d′
2

) d′
2 · (

d − λ
2 − d′)d− λ

2 −d′

⎞

⎟⎟
⎠

2

· 2d′
.

Let a = λ
d and b = d′

d . Then, the above bound becomes cd, where

c =
(2(1 − b))2(1−b)

aa · (2(1 − b) − a)2(1−b)−a
·
⎛

⎝
(
1 − a

2 − b
2

)1− a
2 − b

2

(
b
2

) b
2 · (

1 − a
2 − b

)1− a
2 −b

⎞

⎠

2

· 2b

=
22−b(1 − b)2(1−b)(2 − a − b)2−a−b

aabb(2 − a − 2b)2(2−a−2b)

Note that a + b ≤ 1 for λ + d′ ≤ d(s0, tsol) ≤ d. So, by numerical calculation,
one can verify that c ≤ 6.16 no matter what a and b are (as long as a + b ≤ 1).
Thus, the time complexity of the algorithm is O∗ (

6.16d
)
.
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4 Previous Algorithms

A number of parameterized algorithms whose time complexity has been rigor-
ously analyzed have not been implemented. One objective of this paper is to
implement the recent algorithms and see their performance in practice. We only
sketch the 2-string algorithm for CSP below.

The 2-String Algorithm has actually been implemented in [2]. However, as
demonstrated in [11], the implementation in [2] yields a program (called Prov-
able) which runs much slower than TraverString. In this paper, we give a different
implementation of the 2-string algorithm.

The algorithm is actually designed for a more general problem, called the
extended closest string problem (ECSP for short). An instance of ECSP is a
quintuple (S, d, t, P, b), where S is a set of strings of the same length L, t is a
string of length L, d is a positive integer, P is a subset of {1, 2, . . . , L}, and b is
a nonnegative integer. The objective is to find a string tsol of length L such that
tsol|P = t|P , d(tsol, t) ≤ b, and ∀s ∈ S, d(tsol, s) ≤ d. Intuitively speaking, we
want to transform t into a solution tsol by modifying ≤ b positions of t outside P .

To solve a given instance (S, d) of CSP, it suffices to solve the instance (S \
{t}, d, t, ∅, d) of ECSP, where t is an arbitrary string in S. The algorithm for
ECSP is detailed in Fig. 2.

5 Implementing the Algorithms

Because each step of NonRedundantGuess and LargeAlphabet is very simple, their
implementation is rather straightforward. So, we only describe the main ideas
used in our implementation of the deterministic algorithms below.

Basically, each of the deterministic algorithms maintains a string t, a set P
of fixed positions of t, and a bound b, and tries to transform t into a solution by
selecting and modifying at most b unfixed positions (i.e., positions outside P ) of
t. It is possible that there is no way to transform t into a solution by modifying
at most b unfixed positions of t. We want to efficiently decide if this is really the
case. The next lemma can be used for this purpose.

Lemma 3 [11]. Let u, v, and w be three strings of the same length K. Then,
there is a string tsol of length K such that d(tsol, u) ≤ du, d(tsol, v) ≤ dv, and
d(tsol, w) ≤ dw if and only if the following conditions hold:

1. du ≥ 0, dv ≥ 0, and dw ≥ 0.
2. d(u, v) ≤ du + dv, d(u,w) ≤ du + dw, and d(v, w) ≤ dv + dw.
3. du+dv+dw ≥ |{u ≡ v �≡ w}|+|{u ≡ w �≡ v}|+|{v ≡ w �≡ u}|+2|{u �≡ v �≡ w}|.

As an example, we explain how to use Lemma 3 to prune a search tree for
the 2-string algorithm. Consider a call of the algorithm on input 〈S, d, t, P, b〉.
For convenience, let Q = {1, . . . , L} \ P and K = L − |P |. For each u ∈ S, let
du = d − d(t|P , u|P ). Recall that t has been obtained by modifying the fixed
positions of some ũ ∈ S. Hence, b = dũ. What the algorithm needs to do is to
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transform t|Q into a string tsol of length K such that d(tsol, u|Q) ≤ du for all
u ∈ S. To decide if such a transformation exists, we want to check if Conditions 1
through 3 in Lemma 3 hold for every triple {u, v, w} of strings in S. However,
there are Ω(|S|3) such triples and hence it is time-consuming and wasteful to
do the checking for all of them. So, in our implementation, we only check those
triples (u, v, w) such that u = ũ, v is the string s selected in Step 2 of the
algorithm, and w ∈ S \ {u, v}. If the checking fails for at least one such triple,
Lemma 3 ensures that t cannot be transformed into a solution by selecting and
modifying at most b unfixed positions of t.

5.1 Enumerating Subsets of Unfixed Positions

In Step 5 of the 2-string algorithm, we need to decide which unfixed positions of
t should be selected and further how to modify them. The other deterministic
algorithms have the same issue. We only explain how to deal with this issue for
the 2-string algorithm below; the same can be done for the other algorithms.

In Step 5, we need to enumerate all subsets X of R with 
 ≤ |X| ≤ b.
Then, for each enumerated X, we need to enumerate all subsets Y of X with
|Y | ≤ |X| − 
. Furthermore, for each enumerated Y , we need to enumerate
all valid ways of modifying the positions of t in Y . Roughly speaking, in the
implementation of the 2-string algorithm done in [2], only after enumerating X
and Y , we start to enumerate all valid ways of modifying the positions of t in
Y . So, in the implementation in [2], every possible combination of X and Y will
be enumerated because only after modifying one or more positions of t in X, we
can decide if it is unnecessary to make a certain recursive call on the modified
t (i.e., if it is possible to prune a certain branch of the search tree). This seems
to be the main reason whey the implementation in [2] yields a slow program
for CSP.

To get over the above-mentioned drawback of the implementation in [2], our
idea is to enumerate the elements of X and Y one by one and at the same time
enumerate all possible ways of modifying each position in Y . In more details, we
scan the positions in R one by one (in any order). When scanning a p ∈ R, we
need to make two choices depending on whether to include p in X or not. If we
decide to exclude p from X, then we proceed to the next position in R. Otherwise,
we need to make two choices depending on whether to include p in Y or not. If
we decide to exclude p from Y , then we modify t by changing t[p] to s[p] and then
use Lemma 3 to check if the modified t can be further transformed into a solution
by modifying at most b − 1 positions outside P ∪ {p}. If the checking yields a
“no” answer, then we can quit scanning the remaining positions in R and hence
prune a certain branch of the search tree at an early stage. Similarly, if we decide
to include p in Y , then we need to make |Σ| − 2 choices depending on to which
letter we should change t[p]. For each of the choices, after modifying position p
of t, we use Lemma 3 to check if the modified t can be further transformed into
a solution by modifying at most b − 1 positions outside P ∪ {p}. If the checking
yields a “no” answer, then we can quit scanning the remaining positions in R
and hence prune a certain branch of the search tree at an early stage.
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5. Let p1, p2, . . . , pq be the positions in R. Initialize X = ∅ and Y =
∅. For i = 1, 2, . . . , q (in this order), guess tsol[pi] by performing
Steps 5.1 through 5.3:
5.1 If |X| + q − i + 1 = , then add pi to X, set tsol[pi] = s[pi], and

proceed to the next i (without performing Steps 5.2 and 5.3).
5.2 If |X| + q − i + 1 , perform the following steps:

5.2.1 Guess whether pi ∈ X or not.
5.2.2 If the guess is pi ∈ X, then add pi to X and perform

Steps 5.2.2.1 through 5.2.2.4:
5.2.2.1 If |X| + q − i − |Y | = , then set tsol[pi] = s[pi] and

proceed to the next i (without performing Steps 5.2.2.2
through 5.2.2.4 and 5.3).

5.2.2.2 Guess whether pi ∈ Y or not.
5.2.2.3 If the guess is pi Y , then set tsol[pi] = s[pi]; other-

wise, add pi to Y and guess tsol[pi] from Σ \{t[pi], s[pi]}.
5.2.2.4 Proceed to the next i (without performing Step 5.3).

5.3 Set tsol[pi] = t[pi].

Fig. 3. Modifying Step 5 of the 2-string algorithm in Figure 2

More formally, we modify Step 5 in the 2-string algorithm as shown in Fig. 3.
A crucial but missing detail in the modified Step 5 is that before we decide to
set tsol[pi] to be a certain letter a �= t[pi] in Step 5.1, 5.2.2.1, or 5.2.2.3, we
actually use Lemma 3 to check if setting tsol[pi] = a can lead to a solution as
follows. First, we obtain a string u from t by changing t[pi] to a and changing
t[pj ] to tsol[pj ] for all j ∈ {1, 2, . . . , i − 1}. We then compute du = b − d(t, u), set
v = s, and compute dv = d − d(v|P∪{p1,...,pi}, u|P∪{p1,...,pi}). For all w ∈ S, we
further compute dw = d − d(w|P∪{p1,...,pi}, u|P∪{p1,...,pi}) and now check if u, v,
w, du, dv, and dw altogether satisfy Conditions 1 through 3 in Lemma3. If this
checking fails for at least one w, then we can conclude that setting tsol[pi] = a
cannot lead to a solution, and hence we can quit setting tsol[pi] = a (i.e., can
prune a certain branch of the search tree).

5.2 Sorting the Input Strings

Again, we explain the idea by using the 2-string algorithm as an example. The
idea also applies to the other deterministic algorithms. As mentioned in the above
(immediately before Sect. 5.1), when we apply Lemma 3, we only check those
triples (u, v, w) such that u is the input string from which the current t has been
obtained, v is the string selected in Step 2 of the algorithm, and w ∈ S \ {u, v}.
So, there are |S| − 2 choices for w and we can try the choices in any order. As
one can expect, different orders lead to different speeds. In our implementation,
we try the choices for w in descending order of the Hamming distance of w from
t. Intuitively speaking, this order seems to enable us to find out that t cannot
be transformed into a solution at an earlier stage than other orders.
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5.3 On Implementing the Algorithm in Sect. 3

In Step 3 of our new algorithm, we need to guess an input string sh such that
d(sh|P , tsol|P ) is minimized over all input strings, where tsol is a fixed solution.
To guess sh, a simple way is to try all input strings (in any order). When trying
a particular sh, we use Lemma 4 to cut unnecessary branches of the search tree.

Lemma 4. Let P be as in Step 2 of the algorithm. Further let tsol and sh be as
in Step 3 of the algorithm. Then, for every sj ∈ S, d(sh|D, tsol|D) ≤ |D|

2 , where
D = {sh|P �≡ sj |P }.

To use Lemma 4, we first compute mj = d(sh|P ,sj |P )
2 for each sj ∈ S in Step 3.

Later in Step 4, we scan the positions in P one by one (in any order). When
scanning a position p ∈ P , we need to make two recursive calls – one of them
corresponds to flipping the letter of sh at position p while the other corresponds
to keeping the letter of sh at position p intact. Before making each of the calls,
we decrease mj by 1 for all sj ∈ S such that the letter of sh at position p has
become different from sj [p] after scanning p; if mj becomes negative for some
sj ∈ S, then we know that it is unnecessary to make the recursive call. In this
way, we are able to cut certain unnecessary branches of the search tree.

6 Results and Discussion

We have implemented the new algorithm in Sect. 3 and the previously known
algorithms reviewed in Sect. 4. As the result, we have obtained a program (writ-
ten in C) for each of the algorithms. We not only compare these programs against
each other but also include TraverString and qPMS9 in the comparison. We do
not compare with the algorithm in [6], because its code is not available. The
machine on which we ran the programs is an Intel Core i7-975 (3.33GHz, 6MB
Cache, 6GB RAM in 64bit mode) Linux PC.

As in previous studies, we generate random instances of CSP as input to
the programs. In the generation of instances, we fix L = 600 and n = 20 but
varies d and |Σ|. As usual, the choices for |Σ| we employ in our test are 2 (binary
strings), 4 (DNA strings), and 20 (protein strings). Choosing d is less obvious.
Clearly, the larger d is, the longer the programs run. To distinguish the programs
from each other in terms of speed, we consider the following five ranges of d:
(1) 10 ≤ d ≤ 15, (2) 28 ≤ d ≤ 33, (3) 80 ≤ d ≤ 85, (4) 82 ≤ d ≤ 87,
and (5) d ∈ {89, 92, 95, 98, 101}. The choice of these ranges is based on the
expectation that some of the programs can be slow even if d is small, while the
others can show their significant difference in running time only if d is modest
or even large.

Since some of the programs can be very slow for certain d, we set a time limit
of 5 hours on each run of each program in our test. For each setting of parameters
(e.g., (L, n, |Σ|, d) = (600, 20, 4, 15)), we generate five instances, pass them to the
programs, and require each program to find all solutions for each instance. We
will summarize our experimental results in several tables. If a program solves all
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Table 1. Comparison of the programs for |Σ| = 4, 20, 2

of the five instances within the time limit, we calculate the average running time
and show it as is in a table; otherwise, we put a TL symbol in the corresponding
cell of the table, where TL stands for “time limit”.

Table 1 shows the comparison of the programs for DNA, protein, or binary
strings. As seen from the table, NonRedundantGuess and LargeGuess are slower
than the other algorithms even though NonRedundantGuess and LargeGuess
have better theoretical time-bounds. In the table, New means our new algorithm
in Sect. 3. We exclude the experimental results for NonRedundantGuess and
LargeGuess from the table, because both failed to solve a single instance within
the time limit. As seen from the table, our new algorithm in Sect. 3 is much
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faster than NonRedundantGuess and LargeGuess, but is much slower than the
other deterministic algorithms. The reason why the new algorithm runs slower
seems to be that the pruning inequalities in Lemma3 are much less effective in
cutting unnecessary branches of a search tree for our new algorithm.

Based on our above experimental results, we conclude that the 2-string and
the 3-string algorithms have little difference in running time and they are the sta-
blest algorithms among the tested algorithms. In particular, for large alphabets
(such as protein strings), the 2-string algorithm is an ideal algorithm because
it not only has the best-known theoretical time-bound but also can be imple-
mented into a program that outperforms the other known programs for CSP in
practice.
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