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Abstract. We show that the computational complexity of the maximum
edge biclique (MEB) problem in tree convex bipartite graphs depends
on the associated trees. That is, MEB is NP-complete for star convex
bipartite graphs, but polynomial time solvable for tree convex bipartite
graphs whose associated trees have a constant number of leaves. In partic-
ular, MEB is polynomial time solvable for triad convex bipartite graphs.
Moreover, we show that the same algorithm strategy may not work for
circular convex bipartite graphs, and triad convex bipartite graphs are
incomparable with respect to chordal bipartite graphs.
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1 Introduction

In the maximum edge biclique (MEB) problem, a bipartite graph G = (A,B,E)
and a positive integer k are given, the question is to decide whether there exist
two subsets R ⊆ A and S ⊆ B such that, |R| ∗ |S| ≥ k and (R,S) induces a com-
plete bipartite subgraph (biclique) in G. MEB was firstly introduced in [6] and
shown NP-complete for bipartite graphs in [27]. MEB has many applications in
molecular biology, web community discovery, manufacturing optimization, text
mining, and conjunctive clustering, see e.g. [1,11,26]. Polynomial time algorithms
for MEB in convex bipartite graphs and chordal bipartite graphs were developed
in [2,7,8,10,26]. An algorithm of MEB for random graphs was developed in [11].
The (in)approximability of MEB was also investigated in [3,9,12].

In a tree convex bipartite graph G = (A,B,E), there is an associated tree
T = (A,F ) such that, for each vertex b in B, its neighborhood NG(b) induces
a subtree on T . When the associated tree T is a star (a number of edges with
a common end) or a triad (three paths with a common end), the tree convex
bipartite graph is called star convex or triad convex, respectively. Tree convex
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bipartite graphs were introduced in [14] as a generalization of convex bipartite
graphs. In a convex bipartite graph, the associated tree is a path [13].

Many graph problems are still NP-complete for bipartite graphs, but
tractable for convex bipartite graphs, such as the minimum feedback vertex set
(FVS), the minimum dominating set, treewidth, hamiltonicity, etc. For tree con-
vex bipartite graphs, it turns out that the computational complexity of these
problems depends on the associated trees. For example, star convex bipartite
graphs were introduced in [14], triad convex bipartite graphs were introduced in
[16], and it was shown that FVS is still NP-complete for star convex bipartite
graphs [14,31], but tractable for triad convex bipartite graphs [16]. Similar results
for the minimum dominating set and its variants such as independent dominating
set or connected dominating sets, as well as for the treewidth and hamiltonicity,
were obtained in [5,20,22,24,28–30]. (In)approximability of the minimum domi-
nating set for star convex bipartite graphs was also obtained in [28].

Besides the above mentioned graph problems, when taken tree convex bipar-
tite graphs as hypertrees or tree convex set systems, similar results for the min-
imum set cover, the minimum hitting set and the maximum set packing were
obtained in [23]. The union-closed sets conjecture was shown to hold for tree
convex sets [21].

In this paper, we show that the computational complexity of the maximum
edge biclique (MEB) problem in tree convex bipartite graphs depends on the
associated trees. That is, MEB is NP-complete for star convex bipartite graphs,
but polynomial time solvable for tree convex bipartite graphs whose associated
trees have a constant number of leaves. In particular, MEB is polynomial time
solvable for triad convex bipartite graphs. Moreover, we show that the same algo-
rithm strategy may not work for circular convex bipartite graphs, and triad con-
vex bipartite graphs are incomparable with respect to chordal bipartite graphs.

This paper is structured as follows. After introducing necessary definitions
and facts in Sect. 2, the NP-completeness of MEB for star convex bipartite graph
classes is shown in Sect. 3, the tractability of MEB for tree convex bipartite
graphs whose associated trees have a constant number of leaves and for triad
convex bipartite graphs is shown in Sect. 4, the comparison between triad convex
bipartite graphs and chordal bipartite graphs is shown in Sect. 5 and finally are
concluding remarks in Sect. 6.

2 Preliminaries

A graph G = (V,E) has a vertex set V and an edge set E. We use V (G) to
denote the vertex set of G, and E(G) the edge set of G. Each edge e = (u, v)
has its two ends u and v in V , and these two ends u and v are adjacent. The
neighborhood of a vertex x, denoted by NG(x), is the set of all adjacent vertices
to x. For a graph G = (V,E) and a subset U ⊆ V , we use G[U ] to denote the
induced subgraph (U, {(u, v) ∈ E|u ∈ U, v ∈ U}). In a complete graph, every
two vertices are adjacent. A clique in a graph is an induced complete subgraph.

A bipartite graph G = (A,B,E) has a bipartition A ∪ B = V with no
adjacent vertices in A (B, respectively). For a bipartite graph G = (A,B,E)
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and two subset R ⊆ A and S ⊆ B, we use G[R,S] to denote the induced
bipartite subgraph (R,S, {(u, v) ∈ E|u ∈ R, v ∈ S}). In a complete bipar-
tite graph G = (A,B,E), every vertex in A is adjacent to every vertex in B.
A biclique in a bipartite graph is an induced complete bipartite subgraph.

A path is a vertex sequence with every two consecutive vertices adjacent.
A cycle is a path where the first vertex is equal to the last vertex in the path.
A graph is connected if every two vertices are connected by a path. A tree is
a connected cycle-less graph. Two special kinds of trees are stars and triads.
A star is a set of edges with a common end called its center. A triad is three
paths with a common end also called its center.

Given a cycle, a chord is an edge whose two endpoints are not consecutive
on the cycle. In a chordal bipartite graph, every cycle of length at least six has a
chord. It is known that all convex bipartite graphs are chordal bipartite graphs,
and all chordal bipartite graphs are tree convex bipartite graphs [4,15]. In a
circular convex bipartite graph G = (A,B,E), there is an associated circular
ordering on A such that, for each vertex b in B, its neighborhood NG(b) induces
an arc or interval on A under the circular ordering [17,19,25].

3 Hardness

In this section, MEB is shown NP-complete for star convex bipartite graphs.

Theorem 1. MEB is NP-complete for star convex bipartite graphs.

Proof. The proof in [27], showing NP-completeness of MEB in bipartite graphs,
made a reduction from CLIQUE to MEB and produced a bipartite graph which is
already a star convex bipartite graph. For completeness, we repeat the reduction
here and check the star convexity of the produced bipartite graph.

Given an instance (G, k) of CLIQUE, we can assume that G = (V,E) and,
without loss of generality, k = 1

2 |V |. An instance (G′, k′) of MEB is constructed
by G′ = (A,B,E′), A = V , B = E ∪ W , |W | = 1

2k
2 − k, k′ = k3 − 3

2k
2, and

E′ = {(v, e)|v ∈ V, e ∈ E, v �∈ e} ∪ {(v, w)|v ∈ V,w ∈ W}.

The correctness of this reduction was shown in [27]. To see that G′ is a star
convex bipartite graph with an associated star T on B, note that each vertex w
in W is adjacent to every vertex in A, thus we can take any w in W as the center
of T and make all vertices in B \ {w} the leaves of T . The proof is finished. �	

Since star convex bipartite graphs is a subclass of tree convex bipartite
graphs, MEB is also NP-complete for tree convex bipartite graphs. Another
subclass of bipartite graphs is the so-called perfect elimination bipartite graphs,
which is incomparable with respect to tree convex bipartite graphs by the results
in [18]. We note that NP-completeness of MEB for perfect elimination bipartite
graphs or for the so-called comb convex bipartite graphs [29] is still unknown.



50 H. Chen and T. Liu

4 Tractability

In this section, MEB is shown polynomial time solvable for tree convex bipartite
graphs whose associated trees are given and have a bounded number of leaves. In
particular, MEB is polynomial time solvable for triad convex bipartite graphs.

To this end, we first show a structural property of optimal solutions of MEB
for tree convex bipartite graphs. Recall that a solution of an instance (G, k) of
MEB is a pair of sets (R,S), such that R ⊆ A, S ⊆ B, |R| ∗ |S| ≥ k, and G[R,S]
is a biclique, where G[R,S] is the subgraph of G induced by (R,S). We call a
solution (R,S) to be optimal, if |R| ∗ |S| is maximized among all the solutions.

Lemma 1. If (R,S) is an optimal solution to an instance (G, k) of MEB and
G = (A,B,E) is a tree convex bipartite graph, with an associated tree T =
(A,F ), then R is a vertex set of a subtree in T , that is, V (T [R]) = R.

Proof. Recall that R ⊆ A and S ⊆ B. For any two vertices x, y in R, there is a
unique path Pxy in T connecting x and y. For every w in S, NG(w) induces a
subtree T [NG(w)] in T , which contains both x and y. So any vertex z in Pxy is
also in NG(w) for all w in S, and (R ∪ {z}, S) is also a solution to (G, k). If z
is not in R, then |R ∪ {z}| ∗ |S| > |R| ∗ |S|, a contradiction to the optimality of
(R,S). Thus, R is already a vertex set of a subtree in T .

The proof is finished. �	
Lemma 2. In a tree with bounded number of leaves, the number of subtrees is
bounded by a polynomial.

Proof. The number of leaves in a subtree will never exceeds the number of leaves
in the tree. A subtree is uniquely determined by listing all its leaves. Indeed, a
subtree is just the union of all pairs shortest paths between its leaves. If a tree
with n vertices has L = O(1) leaves, then the number of its subtrees is at most
O(nL) = nO(1). The proof is finished. �	
Theorem 2. MEB is polynomial time solvable in tree convex bipartite graphs
whose associated trees are given and have a constant number of leaves.

Proof. A polynomial time algorithm based on enumeration is as follows.

Input: (G, k), where G = (A,B,E) is a tree convex bipartite graph with an
associated tree T on A. The number of leaves of T is a constant L.

Output: Yes, if there is (R,S) such that G[R,S] is a biclique and |R| ∗ |S| ≥ k;
No, otherwise.

Algorithm:

1. Enumerate all subtrees of T ;
2. For each subtree with vertex set R, let SR = {w ∈ B|R ⊆ NG(w)}.
3. Record (R,SR) with the maximum |R| ∗ |SR|.
4. Return Yes, if |R| ∗ |SR| ≥ k; No, otherwise.
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To enumerate all subtrees of T , we first enumerate and record all pairs short-
est paths of T in O(n3) time, where n is the input size, in any standard way.
Note that for a tree T , the shortest path Pxy between two vertices x and y in T
is also the unique path connecting x and y in T . Then we enumerate all subsets
A′ of size at most L of A in O(nL) time, where L is the number of leaves of T .
For each subset A′ of A, we compute the union of all shortest paths Pxy in T
for all pairs x and y in A′ in O(nL2) time, since we have O(L2) paths and each
path has length O(n). This union is a subtree T ′ of T , and any subtree T ′ of T
is obtained in this way by putting all leaves of T ′ into A′.

For each subtree T ′ with vertex set R, we can find the set SR and compute
|R| ∗ |SR| in O(n2) time. So the total running time is O(nL+2).

The correctness of this algorithm is guaranteed by Lemmas 1 and 2. The
proof is finished. �	
Theorem 3. MEB is O(n5) time solvable in triad convex bipartite graphs.

Proof. By Lemma2 and the fact that all triads have three leaves. �	
The number of subtrees in a star with n vertices is O(2n), and this seems to

be a reason for the hardness of MEB for star convex bipartite graphs. We guess
that MEB is also hard for comb convex bipartite graphs by the same reason,
that is, an exponential number of subtrees.

We note that Lemma 1 does not hold for circular convex bipartite graphs.
We construct a circular convex bipartite graph G by G = (A,B,E), where
A = {a1, a2, a3, a4}, B = {b1, b2, b3}, E = {(ai, bj)|1 ≤ i ≤ 4, 1 ≤ j ≤ 3} \
{(a1, b3), (a3, b1)}, and the associated circular ordering on A is T , as shown in
Fig. 1. The maximum biclique in G is induced by R = {a2, a4} and S = B, but
R does not induce an interval in T . Due to this break down of the connectedness
of the optimal solutions of MEB for circular convex bipartite graphs, the above
enumeration algorithm does not work for circular convex bipartite graphs. We
note that it is still unknown whether MEB is polynomial time solvable for circular
convex bipartite graphs.

Fig. 1. A circular convex bipartite graph G whose optimal solution does not induce an
interval in T .
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5 Comparison

In this section, we show that triad convex bipartite graphs are incomparable
with respect to chordal bipartite graphs.

Lemma 3. There is a triad convex bipartite graph which is not a chordal convex
bipartite graph.

Proof. Let G = (A,B,E) with A = {a0, a1, a2, a3}, B = {b1, b2, b3} and E =
{(bi, a0), (ai, bi), (ai, bi−1 mod 3)|1 ≤ i ≤ 3}. That is, the graph G is a cycle
C = a1b1a2b2a3b3a1 plus a star with center a0 and leaves b1, b2, b3, as shown in
Fig. 2.

Apparently, G is not a chordal bipartite graph, since G has a cycle C of
length 6 but without a chordal. We can easily check that G is a triad convex
bipartite graph, with the associated triad T , where V (T ) = {a0, a1, a2, a3} and
E(T ) = {(a0, a1), (a0, a2), (a0, a3)}, respectively. The proof is finished. �	

Fig. 2. A triad convex bipartite graph G which is not a chordal bipartite graph.

We note that this graph G is used to separate tree convex bipartite graphs
from chordal bipartite graphs in [18]. Actually, G separates triad convex bipartite
graphs and star convex bipartite graphs from chordal bipartite graphs, as shown
above.

Lemma 4. There is a chordal convex bipartite graph which is not a triad convex
bipartite graph.

Proof. Let G = (A,B,E) with A = {a0, . . . , a4}, B = {u1, . . . , u4, w1, . . . , w4}
and E = {(wi, ai), (ai, ui), (ui, a0)|1 ≤ i ≤ 4}. That is, the graph G is four paths
Pi = wiaiuia0 (1 ≤ i ≤ 4) with a common end a0, as shown in Fig. 3.

Apparently, G is a chordal bipartite graph, since G contains no cycle at all.
To show that G is not a triad convex bipartite graph, by symmetry of G, it is
enough to show that none of w1, a1, u1, a0 is the center of the associated triad T .
Indeed, if w1 is the center of T , sinceNG(a0) = {u1, u2, u3, u4}, then u1, u2, u3, u4

must be grouped into a subpath P in T . Since NG(ai) = {wi, ui} for 2 ≤ i ≤ 4,
each of w2, w3, w4 must be consecutive to the path P , but this is impossible,
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Fig. 3. A chordal bipartite graph G which is not a triad convex bipartite graph.

since P only has two ends. If a1 is the center of T , since NG(ui) = {ai, a0} for
2 ≤ i ≤ 4, then each of a2, a3, a4 must be consecutive to a0 in T , but this is
impossible, since a0 has at most two neighbors in T . If u1 is the center of T ,
then by Pigeonhole Principle, two of w1, u2, u3, u4 must be on a subpath of T ,
but this is impossible, since NG(a1) = {w1, u1} and NG(a0) = {u1, u2, u3, u4},
any two of w1, u2, u3, u4 must be consecutive to u1 simultaneously and thus can
not be on a subpath of T . If a0 is the center of T , then by Pigeonhole Principle
again, two of a1, a2, a3, a4 must be on a subpath of T , but this is impossible,
since NG(ui) = {ai, a0} for 1 ≤ i ≤ 4, each of a1, a2, a3, a4 must be consecutive
to a0 in T . The proof is finished. �	

6 Conclusions

We have shown that MEB is NP-complete for star convex bipartite graphs,
but polynomial time solvable for tree convex bipartite graphs whose associated
trees have a constant number of leaves. In particular, MEB is O(n3) polynomial
time solvable for triad convex bipartite graphs. We also have show that the
enumeration algorithm may not work for circular convex bipartite graphs, and
triad convex bipartite graphs are incomparable with respect to chordal bipartite
graphs.

We list some open problems. First, it is unknown that whether MEB is NP-
complete for comb convex bipartite graphs. Second, it is unknown that whether
MEB is tractable for circular convex bipartite graphs. Third, it is unknown that
whether the O(n5) time bound of MEB for triad convex bipartite graphs can be
lowered to O(n(log n)k) or O(n2(log n)k).

Acknowledgments. We thank the unknown reviewers whose comments are helpful
to improve our presentations.
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