
A Constant Amortized Time Algorithm
for Generating Left-Child Sequences

in Lexicographic Order

Kung-Jui Pai1, Jou-Ming Chang2(B), and Ro-Yu Wu3

1 Department of Industrial Engineering and Management,
Ming Chi University of Technology, New Taipei City, Taiwan

poter@mail.mcut.edu.tw
2 Institute of Information and Decision Sciences,

National Taipei University of Business, Taipei, Taiwan
spade@ntub.edu.tw

3 Department of Industrial Management,
Lunghwa University of Science and Technology, Taoyuan, Taiwan

eric@mail.lhu.edu.tw

Abstract. Wu et al. (Theoret. Comput. Sci. 556:25–33, 2014) recently
introduced a new type of sequences, called left-child sequences (LC-
sequences for short), for representing binary trees. They pointed out
that such sequences have a natural interpretation from the view point of
data structure and gave a characterization of them. Based on this char-
acterization, Pai et al. (International conference on combinatorial opti-
mization and applications. Springer, Cham, pp. 505–518, 2016) showed
that there is an easily implementing algorithm that uses generate-and-
test approach to filter all LC-sequences of binary trees with n internal
nodes in lexicographic order, while in general this algorithm is not effi-
cient at all. In this paper, we design two novel rotations that allow us to
drastically alter the shape of binary trees (and thus their corresponding
LC-sequences). As an application, these operations can be employed to
generate all LC-sequences in lexicographic order. Accordingly, we present
a more efficient algorithm associated with the new types of rotations for
generating all LC-sequences and show that it takes only constant amor-
tized running cost.

Keywords: Constant amortized time algorithm · Binary trees · Left-
child sequences · Lexicographic order · Generation algorithms · Amor-
tized cost

1 Introduction

Binary trees are one of the most fundamental data structures in computer sci-
ence and have been widely studied over half a century. Usually, binary trees are
encoded by using integer sequences and many types of integer sequences have
been introduced (e.g., see [9,11] for surveys). For convenience, hereafter the terms
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 221–232, 2017.
DOI: 10.1007/978-3-319-59605-1 20

222 K.-J. Pai et al.

of binary trees and their corresponding sequences are often used interchangeably.
Due to many practical applications in computer science, such as combinato-
rial object search or algorithm performance analysis, exhaustively generating
all binary tree sequences is an important issue in research topic. Generation
algorithms customarily produce sequences in a specific ordering, such as lexico-
graphic order [16,22,23] or Gray-code order [14,17]. For algorithmic efficiency, in
general, sequences generated in lexicographic order is demanded to run in con-
stant amortized time [2,3,18]. By contrast, sequences generated in Gray-code
order is in need of taking a constant time for each generation (e.g., the so-called
loopless algorithms proposed by Ehrlich [4]). For more references of binary tree
sequences generation, we refer to [10,13–16,19,20].

Recently, Wu et al. [20] proposed a loopless algorithm associated with the
usual tree rotations (i.e., left rotation and right rotation for AVL-trees) to
generate four types of binary tree sequences simultaneously. In particular, the
generation includes two new types of sequences called left-child sequences (LC-
sequences for short) and their mirror images called right-child sequences (RC-
sequences for short), as defined later in Sect. 2. It is well-known that the prac-
tice in implementing binary trees usually adopted the so-called structure-pointer
representation so that the spaces of nodes in a tree are dynamically allocated
by structured memory and children of nodes are accessed via pointers. Wu
et al. [20] thereby claimed that LC- and RC-sequences are inspired by such
a natural structure representation. Moreover, they gave characterizations of the
two types of sequences (see Theorem 1). However, both LC- and RC-sequences
generated in [20] are not in lexicographic order or Gray-code order. In fact,
the difference between two successive LC-sequences (resp., RC-sequences) in the
generated list is either one or two digits.

Later on, based on the characterization of LC-sequences provided in [20], Pai
et al. [12] showed that there is an algorithm using generate-and-test approach
that allows developers to easily implement for generating all LC-sequences of
binary trees with n internal nodes in lexicographic order (see Procedure Lex-Gen-
Tree in Sect. 3), while this algorithm is quite not efficient. Indeed, the purpose
of [12] is to develop efficient ranking algorithm (i.e., a function that determines
the rank of a given sequence in the generated list) and unranking algorithm
(i.e., a function that produces the sequence corresponding to a given rank) of
LC-sequences in lexicographic order. As expected, their ranking and unranking
algorithms can be run in amortized cost of O(n) time and space. Since the
difference between two consecutive LC-sequences in the lexicographic order may
vary widely, it means that the shapes of corresponding binary trees are possibly
changed drastically. To adapt to this unavoidable situation, in this paper we
design two massive rotations which can deal with a great variety of changes to
assist our generation. As a result, we develop an algorithm called Refined-Lex-
Gen-Tree that associates with these tree rotations to generate all LC-sequences in
lexicographic order. Moreover, we show that this algorithm is more efficient and
has constant amortized running cost. By symmetry, generation of RC-sequences
can be developed by a similar way.

A CAT Algorithm for Generating Left-Child Sequences 223

The rest of this paper is organized as follows. In Sect. 2, we formally give the
definitions of LC- and RC-sequences, and introduces a coding trees structure for
representing all LC-sequences in lexicographic order. In Sect. 3, we define two
new types of rotations for binary trees, and then propose a constant amortized-
time algorithm associated with these rotations for generating all LC-sequences
in lexicographic order. Finally, concluding remarks are given in the last section.

2 Preliminaries

An extended binary tree is a rooted and ordered tree such that every internal
node has exactly two children called the left child and the right child [9]. Let T be
an extended binary tree with n internal nodes numbered from 1 to n in inorder
(i.e., visit recursively the left subtree, the root and then the right subtree of T).
Henceforth, we shall not distinguish the terms between a node and its inorder
number. For a node i ∈ T , the subtree rooted at i is denoted by Ti. Also, the sub-
tree rooted at the left child (resp., right child) of i is called the left subtree (resp.,
right subtree) of i and is denoted by Li (resp., Ri). The left arm (resp., right
arm) of T is the path from the root to its leftmost leaf (resp., rightmost leaf).

2.1 Left-Child Sequences

Recently, Wu et al. [20] introduced new types of sequences called left-child
sequence (LC-sequence for short) and right-child sequence (RC-sequence for
short) to represent binary trees. Given a binary T with n internal nodes
labeled by 1, 2, . . . , n in inorder, the LC-sequence of T , denoted by �(T) =
(�[1], �[2], . . . , �[n]), is an integer sequence so that the term �[i], 1 � i � n,
is defined as follows:

�[i] =

{
0 if the left child of i is a leaf;
j if j is the left child of i in T.

(1)

Similarly, r(T) = (r[1], r[2], . . . , r[n]) denotes the RC-sequence of T , where we
use the right child instead of the left child in Eq. (1) to define the term r[i]. For
instance, the LC-sequence and RC-sequence of the binary tree T shown in Fig. 1
are �(T) = (0, 1, 0, 3, 0, 2, 0, 0, 7) and r(T) = (0, 4, 0, 5, 0, 9, 8, 0, 0), respectively.

Wu et al. [20] showed that the two types of binary tree sequences can trans-
form to each other in linear time. Moreover, they characterized the two types of
sequences as follows.

Theorem 1 (Wu et al. [20]). Let c = (c1, c2, . . . , cn) be an integer sequence.
Then,

(a) c is the LC-sequence of a binary tree T with n internal nodes if and only if
the following conditions are fulfilled for all i ∈ {1, 2, . . . , n}: (1) 0 � ci < i
and (2) cj = 0 or cj > ci for all ci < j < i.

(b) c is the RC-sequence of a binary tree T with n internal nodes if and only if
the following conditions are fulfilled for all i ∈ {1, 2, . . . , n}: (1) ci > i or
ci = 0 and (2) cj = 0 or cj < ci for all i < j < ci.

224 K.-J. Pai et al.

1 7

8

92

3

4

5

6

Fig. 1. A binary tree T with LC-sequence �(T) = (0, 1, 0, 3, 0, 2, 0, 0, 7) and RC-
sequence r(T) = (0, 4, 0, 5, 0, 9, 8, 0, 0).

2.2 Coding Tree Structure

Let Tn be the set of binary trees with n internal nodes. It is well-known that
|Tn| = 1

n+1

(
2n
n

)
(i.e., the Catalan number). To depict all binary tree sequences,

a systematic way by using coding trees was suggested in [10]. For a rooted tree,
a path from the root to a leaf is called a full path. A coding tree Tn is a rooted
tree consisting of n levels of nodes such that every node is associated with a label
and the labels along a full path in Tn represent the sequence of a binary tree
with n internal nodes. Figure 2 demonstrates the coding tree T5 for representing
LC-sequences, where each node xi in a full path (x1, x2, . . . , xn) is labeled by
�[i]. For notational convenience, we also write �(xi) = �[i] when we provide the
full path (x1, x2, . . . , xn) corresponding to a binary tree T .

For instance, in T5, labels in the left arm represent the right-skewed tree with
LC-sequence (0, 0, 0, 0, 0), and labels in the right arm represent the left-skewed
tree with LC-sequence (0, 1, 2, 3, 4). Hereafter, we consider a specific coding tree
Tn in which all LC-sequences of binary trees are emerged from left to right in
lexicographic order.

1

1 00

0

0

0 31 2 3 1 20 0

2

3 0 3

2

0 3

1 2 430 40 1 40 1 2 40 430 40 1 430 40 1 40 2 430 40 2 40 40430

0
0
0
0
1

0
0
0
0
0

0
0
0
0
2

0
0
0
0
3

0
0
0
0
4

0
0
0
1
0

0
0
0
1
4

0
0
0
2
0

0
0
0
2
1

0
0
0
2
4

0
0
0
3
0

0
0
0
3
1

0
0
0
3
2

0
0
0
3
4

0
0
1
0
0

0
0
1
0
3

0
0
1
0
4

0
0
1
3
0

0
0
1
3
4

0
0
2
0
0

0
0
2
0
1

0
0
2
0
3

0
0
2
0
4

0
0
2
1
0

0
0
2
1
4

0
0
2
3
0

0
0
2
3
1

0
0
2
3
4

0
1
0
0
0

0
1
0
0
2

0
1
0
0
3

0
1
0
0
4

0
1
0
2
0

0
1
0
2
4

0
1
0
3
0

0
1
0
3
2

0
1
0
3
4

0
1
2
0
0

0
1
2
0
3

0
1
2
0
4

0
1
2
3
0

0
1
2
3
4

Fig. 2. A coding tree T4 for representing LC-sequences and LD-sequences.

A CAT Algorithm for Generating Left-Child Sequences 225

3 Generating LC-sequences in Lexicographic Order

Based on the characterization of LC-sequences described in Theorem 1, Pai et al.
[12] showed that there is an easy implementing algorithm (see Fig. 3) to generate
all LC-sequences of binary trees with n internal nodes in lexicographic order. In
this algorithm, the outer loop specifies the range of condition (a.1) in Theorem1,
and the if · · · then statement in the inner loop is the testing of condition (a.2)
in Theorem 1. Initially, we set �[1] = 0, and then perform a procedure call Lex-
Gen-Tree(2) to start the generation.

Fig. 3. An procedure for generating LC-sequences in lexicographic order.

The above algorithm uses generate-and-test approach for filtering out all
non-valid LC-sequences. Although the algorithm is correct, in general it is not
efficient at all. For instance, we reveal some non-efficient evidences as follows.
Suppose that c = (c1, c2, . . . , cn) is a non-valid LC-sequence satisfying cj �= 0
and cj � ci for some integers i ∈ {3, 4, . . . , n} and ci < j < i. By Theorem 1,
all subsequent sequences (c1, . . . , ci−1, c

′
i, ci+1, . . . , cn) for c′

i ∈ {ci + 1, . . . , i − 2}
are also non-valid. However, Lex-Gen-Tree does not detect this aspect and it
performs the sequence generation and testing continuously.

A rotation is a simple operation that reconstructs a binary tree into another
tree with the same number of nodes and preserves its inorder to be unchanged.
In what follows, we design two new types of rotations for binary trees, where one
is adjustable and the other is non-adjustable. Then, we present a more efficient
algorithm, called Refined-Lex-Gen-Tree, that associates with these rotations for
generating all LC-sequences in lexicographic order. Particularly, both rotations
in a binary tree T are performed at node n (i.e., the parent of the rightmost leaf
in T). Also, we imagine that T is the right subtree of a dummy node numbered
by 0. The first one is called the flip-on-site rotation, denoted by fos(k), which
is an operation that flips the node n and its k immediate descendants in the
left arm of the subtree Tn. Note that this operation is adjustable because the

226 K.-J. Pai et al.

number of all flipped nodes is dependent on k. In fact, the degenerate case of
this operation when k = 1 is the usual right rotation (for AVL trees) at node n
in T . See Fig. 4(a) for an illustration.

xk n

n
xk xk−1

x1Tk

Tk−1

T1

fos(k)

0

p

q

T0

x1

x2

T0

T1

T0xk

Tk Tk−1

0
p

q

(a)

00
p

Tm

xm xm−1

xk

n
n

x1

T1

p

q

x1

x2

T0T1

q
ftt()

T2

T2

xm

Tm(b)

Fig. 4. (a) A flip-on-site rotation fos(k); (b) A flip-to-top rotation ftt().

The second operation is called the flip-to-top rotation, denoted by ftt(),
which is an operation that flips the node n and its all descendants in the left
arm of Tn, and then moves this flipped list to the position between the root 0
and its right child. See Fig. 4(b) for an illustration. In general, the two types of
rotations consist of a sequence of usual right rotations except for the last move
of the flipped list in ftt().

Initially, the improved algorithm, called Refined-Lex-Gen-Tree, generates the
first tree (i.e., the right-skewed tree with n internal nodes), and then repeatedly
call a procedure Next-Tree() to generate all subsequent trees by using rotations
defined above until a certain condition (i.e., carry � n, as explained later in the
list of algorithm) is fulfilled. In each generation, a boolean variable flip to top
can determine which of fos(k) and ftt() is the current operation. To preserve
the inorder of binary trees to be unchanged after a rotation, we need the following
three arrays �[0..n], r[0..n] and p[0..n], where the first two are used for LC- and
RC-sequences, and the last one is used for storing the parent information of

A CAT Algorithm for Generating Left-Child Sequences 227

nodes. For each usual right rotation in the flipped list, the node where the
rotation acts on is indicated by the variable “this”, and its parent and left child
are indicated by variables “prev” and “next”, respectively. The detail of the
refined algorithm is as shown in Fig. 5.

Algorithm 1: Refined-Lex-Gen-Tree

begin
for i ← 0 to n do // Generate the first tree.

[i] ← 0; r[i] ← i+ 1; p[i] ← i − 1;
r[n] ← 0;
Print([1], [2], . . . , [n]); // Print the first tree sequence;
carry ← 2;
while carry � n do // Generate the next tree sequence

Next-Tree();

Procedure Next-Tree()

1 begin
2 this ← n; prev ← p[this]; next ← [this];
3 if [n] = 0 then flip to top ← true;
4 else if r[[n]] = 0 then flip to top ← false;
5 else
6 repeat // Flip a sequence of nodes.
7 r[next] ← this; p[this] ← next; [this] ← 0;
8 p[next] ← 0; this ← next; next ← [this];
9 until [this] = this − 1;

10 if [this] = 0 then flip to top ← true;
11 else flip to top ← false;

12 if flip to top then // Perform a flip-to-top rotation.
13 r[prev] ← 0; [this] ← r[0]; p[r[0]] ← this;
14 r[0] ← this; p[this] ← 0;

15 else // Perform a usual right rotation.
16 [this] ← r[next]; p[r[next]] ← this; r[next] ← this;
17 p[this] ← next; r[prev] ← next; p[next] ← prev;

18 Print([1], [2], . . . , [n]); // Print the current tree sequence;
19 if [carry] = carry − 1 then carry ← carry+ 1;

Fig. 5. A refined algorithm for generating LC-sequences in lexicographic order.

In the above algorithm, we use a global variable carry to control the gener-
ation in progress. Since the last tree in the generated list is the left-skewed tree
satisfying �[i] = i − 1 for all 1 � i � n, it is the errand of carry for completing
this setting. Since �[1] = 0 is never changed, we set carry = 2 at the beginning.
Once the setting in the current position is accomplished, carry is increased by
one and goes ahead to the next position (see Line 19). The algorithm terminates
when the condition carry = n + 1 is achieved.

In Next-Tree(), the variable flip to top determines which type of rotations
will be invoked. The decision is relied on the following rules:

228 K.-J. Pai et al.

(R1) if �[n] = 0, call ftt(); (Lines 13–14)
(R2) if �[n] �= 0 and r[�[n]] �= 0, call fos(1); (Lines 16–17)
(R3) if �[n] �= 0 and r[�[n]] = 0, flip a sequence of nodes by using usual right

rotations until a rotation is performed at a node satisfying �[this] �= this−1;
(Lines 6–9)

Note that, for our Next-Tree() procedure, all flipped nodes triggered by the rule
(R3) indeed have no right child because these nodes in the sequence meet with
the condition �[this] = this− 1. After flipping the list of nodes in (R3), there are
two statuses of the node where the last rotation acted on (i.e., the node indicated
by the variable “this”). Accordingly, two kinds of subsequent processes are as
follows:

(R4) if �[this] = 0, call ftt(); (Lines 13–14)
(R5) if �[this] �= 0, call fos(1); (Lines 16–17)

Actually, a flip-on-site rotation fos(k) is an operation integrated with rules (R3)
and (R5) for flipping the node n and partial descendants with k − 1 nodes in
the prefix segment of the left arm of Tn, as shown in Fig. 4(a). By contrast, a
flip-to-top rotation ftt() is an operation integrated with rules (R3) and (R4)
for flipping the node n and all descendants in the left arm of Tn, and then
moving the flipped list to the top of the tree, as shown in Fig. 4(b). Obviously,
fos(k) operation requires O(k) time, and the complexity of ftt() operation
is dependent on the length of the left arm of Tn. Since a usual right rotation
requires only constant time, the complexity of each operation is indeed equal to
the number of different digits between two consecutive LC-sequences, i.e., before
operating and after operating.

We now at a position to show that the above rules can correctly generate the
next sequence in lexicographic order by using the two types of rotations.

Lemma 1. Let T be a binary tree and suppose that �(T) = (�[1], �[2], . . . , �[n])
satisfies the condition of (R1). If T̃ is the binary tree obtained from T by taking
a ftt() rotation at the node n, then �(T̃) is the immediately succeeding sequence
of �(T) in lexicographic order.

Proof. Let p be the right child of the root (i.e., the dummy node 0) in T .
Since the node n has no left child, after performing ftt(), the whole sequence
�(T) keeps unchanged except the last position. In fact, the difference between
�(T) and �(T̃) only occurs at �[n], which is changed from 0 to p. We suppose
to the contrary that the immediately succeeding sequence of �(T) is �(T ′) =
(�[1], �[2], . . . , �[n] = i) where 0 < i < p and T ′ is the corresponding binary
tree. Since every number in an LC-sequence can appear at most once except the
number 0, it implies that �[j] �= i for 1 � i � n − 1, and thus �(T) does not
contain i as an element. Moreover, since i < p, it follows that i must be the right
child of some node in the subtree Lp of T . Let q be the least ancestor of i in
T for which some node k ∈ Lp takes q as its left child (i.e., �[k] = q). Clearly,

A CAT Algorithm for Generating Left-Child Sequences 229

q < i < k < p. For T ′, since i is the left child of n, it implies k ∈ Ri and q /∈ Ri.
However, this contradicts the fact that �[k] = q remains unchanged in T ′ because
k �= n. �

Lemma 2. Let T be a binary tree and suppose that �(T) = (�[1], �[2], . . . , �[n])
satisfies the condition of (R2). If T̃ is the binary tree obtained from T by taking
a usual right rotation at the node n, then �(T̃) is the immediately succeeding
sequence of �(T) in lexicographic order.

Proof. Suppose that x is the left child of n and let y be the right chile of x in
T , i.e., �[n] = x and r[�[n]] = y. Clearly, after performing fos(1), the sequence
�(T) keeps unchanged except the last position �[n], which is changed from x to
y. Suppose to the contrary that the immediately succeeding sequence of �(T) is
�(T ′) = (�[1], �[2], . . . , �[n] = i) where x < i < y and T ′ is the corresponding
binary tree. Since x < i < y and �[j] �= i for 1 � i � n − 1, i must be the right
child of some node in the subtree Ly of T . Let q be the least ancestor of i in
T for which some node k ∈ Ly takes q as its left child (i.e., �[k] = q). Clearly,
q < i < k < y. For T ′, since i is the left child of n, it implies k ∈ Ri and q /∈ Ri.
However, this contradicts the fact that �[k] = q remains unchanged in T ′ because
k �= n. �

Lemma 3. Suppose that T and T̃ are two binary trees generated by the proce-
dure Next-Tree() such that T̃ is obtained from T . Then, �(T̃) is the immediately
succeeding sequence of �(T) in lexicographic order.

Proof. By Lemmas 1 and 2, we have proved the correctness of generation pro-
duced by rotations without a flipped list of nodes, i.e., the status meets with
the condition of (R1) or (R2). In general, to show the correctness when the
current status meets with the condition of (R3), we may imagine that nodes
in the flipped list are contracted to form a single node and it is indicated by
the variable “this”. This is due to the fact that every node in the flipped list
contains no right child. As a result, the rule (R4) is in keeping with the rule
(R1) if we treat the variable “this” as n. Also, we note that if the current status
meets with the condition of (R5), it guarantees r[�[this]] �= 0. Otherwise, we
have �[this] = this − 1 and the loop (Lines 6–9) goes ahead to the next round.
Similarly, if we treat the variable “this” as n, the rule (R5) is again in keeping
with the rule (R2). Therefore, using arguments similar to Lemmas 1 and 2, we
can prove the correctness if the status meets with the condition of (R4) or (R5),
and thus the lemma follows. �

Theorem 2. The algorithm Refined-Lex-Gen-Tree can correctly generates all
LC-sequences of binary trees with n internal nodes in lexicographic order. In
particular, each generation requires only constant amortized time with no more
than 2.

Proof. The correctness of the algorithm Refined-Lex-Gen-Tree directly follows
from Lemma 3. We now give the complexity analysis as follows. Recall that we

230 K.-J. Pai et al.

use Tn to denote the set of binary trees with n internal nodes. Let ECn be
the expected cost of generating an LC-sequences of length n in Refined-Lex-
Gen-Tree. In [10], Lucas et al. showed that several coding trees for representing
binary tree sequences are isomorphic. Actually, a coding tree for representing a
certain type of binary tree sequences may come from an old one by changing
the sequence representation and rearranging sequence order. Thus, the number
of nodes in each level of the coding tree does not be changed, i.e., a Catalan
number |Tk| for k ∈ {1 . . . n}. Let Nk be the number of pairs of two consecutive
LC-sequences of length n with k different digits in the lexicographic order. It is
easy to observe that for each k ∈ {1 . . . n − 1},

Nk = |Tn−k+1| − |Tn−k|.
Since |T1| = 1, the total complexity of generating all LC-sequences of length
n is
n−1∑
k=1

kNk =
(|Tn| − |Tn−1|

)
+ 2

(|Tn−1| − |Tn−2|
)

+ 3
(|Tn−2| − |Tn−3|

)
+ · · ·

+(n − 2)
(|T3| − |T2|

)
+ (n − 1)

(|T2| − |T1|
)

= Sn − n,

where Sn denote the sum of the first n Catalan numbers [1]. In fact, it has been
pointed out in [24] that Sn < |Tn+1|. Thus, we have

ECn =

n−1∑
k=1

kNk

|Tn| =
|Tn| + Sn−1 − n

|Tn| <
2|Tn| − n

|Tn| < 2.

In particular, the expected cost ECn = 4
3 when n tends to infinite. This com-

pletes the proof. �

4 Concluding Remarks

In this paper, we propose a constant amortized-time algorithm for generating
all LC-sequences of binary trees with n internal nodes in lexicographic order. It
is especially interested that the proposed algorithm is associated with two new
types of rotations called flip-on-site and flip-to-top. As we know that a rotation
can be viewed as a transformation that changes the shape of a binary tree and
usually preserves some desired property, such as keeping the inorder unchanged
or adjusting to be a balanced tree, this leads to that tree transformation has
many applications [5–8]. Thus, the design of efficient way for tree transformation
is an important issue. However, up to now there are many discussions related
to the usual rotations, and only a few attention has been focused on the design
of massive rotations (e.g., see [21] as an instance). Since both flip-on-site and
flip-to-top are massive rotations, we expect to find more applications that can
be dealt with by these rotations in the near future.

A CAT Algorithm for Generating Left-Child Sequences 231

Acknowledgments. This research was partially supported by MOST grants MOST
105-2221-E-131-027 (Kung-Jui Pai), 104-2221-E-141-002-MY3 (Jou-Ming Chang) and
104-2221-E-262-005 (Ro-Yu Wu) from the Ministry of Science and Technology, Taiwan.

References

1. Adamchuk, A.: A014138. The On-Line Encyclopedia of Integer Sequences (2006).
http://oeis.org/A014138

2. Boyer, J.M.: Simple constant amortized time generation of fixed length numeric
partitions. J. Algorithms 54, 31–39 (2005)

3. Effler, S., Ruskey, F.: A CAT algorithm for generating permutations with a fixed
number of inversions. Inform. Process. Lett. 86, 107–112 (2003)

4. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and
other combinatorial configurations. J. ACM 20, 500–513 (1973)

5. Gibbons, A., Sant, P.: Rotation sequences and edge-colouring of binary tree pairs.
Theor. Comput. Sci. 326, 409–418 (2004)

6. Guibas, L., Hershberger, J., Suri, S.: Morphing simple polygons. Discret. Comput.
Geometry 24, 1–34 (2000)

7. Hershberger, J., Suri, S.: Morphing binary trees. In: Proceedings of the ACM-SIAM
Sixth Annual Symposium on Discrete Algorithms (SODA), pp. 396–404 (1995)

8. Kensler, A.: Tree rotations for improving bounding volume hierarchies. In: IEEE
Symposium on Interactive Ray Tracing, pp. 73–76. IEEE Computer Society, Wash-
ington (2008)

9. Knuth, D.E.: The Art of Computer Programming. Fascicle 4A - Generating All
Trees, vol. 4. Addison-Wesley, Boston (2005)

10. Lucas, J.M., van Baronaigien, D.R., Ruskey, F.: On rotations and the generation
of binary trees. J. Algorithms 15, 343–366 (1993)

11. Mäkinen, E.: A survey on binary tree codings. Comput. J. 34, 438–443 (1991)
12. Pai, K.-J., Wu, R.-Y., Chang, J.-M., Chang, S.-C.: Amortized efficiency of ranking

and unranking left-child sequences in lexicographic order. In: Chan, T.H., Li, M.,
Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 505–518. Springer, Cham
(2016). doi:10.1007/978-3-319-48749-6 37

13. Pallo, J.: Enumerating, ranking and unranking binary trees. Comput. J. 29, 171–
175 (1986)

14. Proskurowski, A., Ruskey, F.: Binary tree Gray codes. J. Algorithms 6, 225–238
(1985)

15. van Baronaigien, D.R.: A loopless algorithm for generating binary tree sequences.
Inform. Process. Lett. 39, 189–194 (1991)

16. Ruskey, F., Hu, T.C.: Generating binary trees lexicographically. SIAM J. Comput.
6, 745–758 (1977)

17. Savage, C.D.: A survey of combinatorial Gray codes. SIAM Rev. 39, 605–629 (1997)
18. Sawada, J.: Generating bracelets in constant amortized time. SIAM Comput. 31,

259–268 (2001)
19. Vajnovszki, V.: On the loopless generation of binary tree sequences. Inform.

Process. Lett. 68, 113–117 (1998)
20. Wu, R.-Y., Chang, J.-M., Chan, H.-C., Pai, K.-J.: A loopless algorithm for gener-

ating multiple binary tree sequences simultaneously. Theoret. Comput. Sci. 556,
25–33 (2014)

http://oeis.org/A014138
http://dx.doi.org/10.1007/978-3-319-48749-6_37

232 K.-J. Pai et al.

21. Wu, R.-Y., Chang, J.-M., Wang, Y.-L.: A linear time algorithm for binary tree
sequences transformation using left-arm and right-arm rotations. Theoret. Com-
put. Sci. 355, 303–314 (2006)

22. Zaks, S.: Lexicographic generation of ordered trees. Theoret. Comput. Sci. 10,
63–82 (1980)

23. Zaks, S., Richards, D.: Generating trees and other combinatorial objects lexico-
graphically. SIAM J. Comput. 8, 73–81 (1979)

24. Zumkeller, R.: A014138. The On-Line Encyclopedia of Integer Sequences (2010).
http://oeis.org/A014138

http://oeis.org/A014138

	A Constant Amortized Time Algorithm for Generating Left-Child Sequences in Lexicographic Order
	1 Introduction
	2 Preliminaries
	2.1 Left-Child Sequences
	2.2 Coding Tree Structure

	3 Generating LC-sequences in Lexicographic Order
	4 Concluding Remarks
	References

