Modular-Width: An Auxiliary Parameter
for Parameterized Parallel Complexity

Faisal N. Abu-Khzam®*, Shouwei Li?(*) Christine Markarian?®,
Friedhelm Meyer auf der Heide?, and Pavel Podlipyan?

! Department of Computer Science and Mathematics,
Lebanese American University, Beirut, Lebanon
2 Heinz Nixdorf Institute and Department of Computer Science,
Paderborn University, Paderborn, Germany
sli@mail.uni-paderborn.de
3 Department of Mathematical Sciences, Haigazian University, Beirut, Lebanon
4 School of Engineering and Information Technology,
Charles Darwin University, Darwin, Australia

Abstract. Many graph problems such as maximum cut, chromatic num-
ber, hamiltonian cycle, and edge dominating set are known to be fized-
parameter tractable (FPT) when parameterized by the treewidth of the
input graphs, but become W-hard with respect to the clique-width
parameter. Recently, Gajarsky et al. proposed a new parameter called
modular-width using the notion of modular decomposition of graphs.
They showed that the chromatic number problem and the partitioning
into paths problem, and hence hamiltonian path and hamiltonian cycle,
are FPT when parameterized by this parameter. In this paper, we study
modular-width in parameterized parallel complexity and show that the
weighted maximum clique problem and the maximum matching prob-
lem are fized-parameter parallel-tractable (FPPT) when parameterized
by this parameter.

1 Introduction

Parameterized complexity has become a mainstream framework of theoretical
computer science in the last two decades. The central idea of this theory is to
study the complexity of NP or even PSPACE-hard problems with respect to one
(or more) parameter(s) rather than restricting the analysis to the input size.
This has led to the development of the class of fized-parameter tractable (FPT)
problems. In short, a parameterized problem is FPT if it has a deterministic
algorithm with running time f(k) - n®®), where n is the input size, k is the
parameter, and f is an arbitrary computable function.

To further reduce the running time of fixed-parameter algorithms, paral-
lel computing is employed, and this is broadly known as parameterized paral-
lel complexity. To the best of our knowledge, there are three complexity classes

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901) and
the International Graduate School “Dynamic Intelligent Systems”.

© Springer International Publishing AG 2017

M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 139-150, 2017.
DOI: 10.1007/978-3-319-59605-1_13

140 F.N. Abu-Khzam et al.

defined in the literature with the aim of capturing parametrized analogues of the
class NC, known as PNC (parameterized analog of NC), introduced in [2], FPP
(fixed-parameter parallelizable), introduced in [6], and FPPT (fixed-parameter
parallel-tractable), introduced in [1], respectively. Let f(k), g(k), and h(k) be
arbitrary functions of the parameter k, and «, 8 be positive constants. (1) PNC
is the class of all parametrized problems solvable in time f(k) - (logn)"*) using
g(k) - nP parallel processors. (2) FPP is the class of all parametrized problems
solvable in time f(k) - (logn)® using g(k) - n” parallel processors. (3) FPPT is
the class of all parametrized problems solvable in time f(k) - (logn)® using n”
parallel processors. It is easy to observe that FPPT C FPP C PNC according
to the definition.

We also note here that FPP C FPPT, because a parallel algorithm with
runtime f(k)- (logn)® using g(k)-n” parallel processors can be simulated by one
with running time g(k) f(k) - (log n)® using n® parallel processors. The definition
of FPPT is, therefore, a simplified version of FPP, and it was introduced in [1]
to emphasize the need to have a polynomial number of processors. In fact, the
parameter k may be treated like another input variable (rather than a constant),
so a number of processors that varies as an arbitrary (super-polynomial) function
of k is not desired. Yet, from a theoretical standpoint, an FPP-algorithm may
give more information about the parametrized complexity of a problem than
FPPT, if we are interested in the maximum possible size of k (as a function
k(n) of n) so that the problem is in NC as long as k < k(n). For example, an
algorithm with running time O(k - log® n) using O (2% - n”) parallel processors
is an NC-algorithm for £ = O(logn). Expressing its performance in the FPPT
model O (k -2k log® n) using O(n?) processors would only yield the bound
k = O(loglogn). The results in this paper can be interpreted in either of these
models.

One of the most ubiquitous parameters studied in both sequential and par-
allel classes is treewidth, which roughly measures how tree-like a graph is. Algo-
rithms for problems on graphs of bounded treewidth are much more efficient
than their counterparts in general graphs (e.g. see [3,4]). A celebrated meta-
theorem of Courcelle and Di Tanni [8] states that any problem expressible in
monadic second-order logic is FPT when parameterized by the treewidth of the
input graphs. Similarly, Cesati et al. in [6] showed that all problems involving
MS (definable in monadic second-order logic with quantifications over vertex and
edge sets) or EMS properties (that involve counting or summing evaluations over
sets definable in monadic second-order logic) are FPP when restricted to graphs
of bounded treewidth. Moreover, Lagergren [17] presented an efficient parallel
algorithm for the tree decomposition problem for fixed treewidth. Hagerup et al.
[16] showed that the maximum network flow problem is in NC when parame-
terized by treewidth. Despite the fact that these results are noteworthy, one of
the main drawbacks of treewidth is that a large number of interesting instances
are excluded since graphs of small treewidth are necessarily sparse. The notion
of clique-width (as well as rank-width [20], boolean-width [5] and shrub-depth
[14]), which is stronger than treewidth, tries to address this problem by covering a

Modular-Width: An Auxiliary Parameter 141

larger family of graphs, including many dense graphs. However, the price for this
generality is exorbitant. Several natural problems such as maximum cut, chro-
matic number, hamiltonian cycle, and edge dominating set, which were shown
to be FPT for bounded treewidth, become W/[1]-hard when parameterized by
these measures [10-12].

Consequently, a parameter called modular-width, that covers a significantly
larger class of graphs has been introduced by Gajarsky et al. in [13] where it was
shown that several problems, such as the chromatic number and the partitioning
into paths, and hence hamiltonian path and hamiltonian cycle, which are W/[1]-
hard for both clique-width and shrub-depth, are FPT when parameterized by
modular-width.

In this paper, we extend the study of modular-width to parameterized parallel
complexity and show that the weighted maximum clique problem and the maxi-
mum matching problem are FPPT for bounded modular-width. Our algorithms
are based on the following ideas/techniques: we use an algebraic expression to
represent the input graph. Then, we construct the modular decomposition tree of
the input graph and a computation tree that corresponds to the maximal strong
modules in the maximal decomposition tree. For each node of the computation
tree, we compute an optimal solution by giving the optimal solutions for the
children of this node in the modular decomposition tree. The optimal solution
for each node can be obtained by integer linear programming. Then, we use a
bottom-up dynamic programming approach along with the modular decompo-
sition tree to obtain the global solution. In order to explore and evaluate the
tree efficiently, we use a parallel tree contraction technique due to Miller and
Reif [18].

2 Preliminaries

All graphs considered in this paper are simple, undirected and loopless. We
use the classical graph theoretic notations and definitions (e.g. see [15]). The
neighborhood of a vertex x in a graph G = (V, E) is denoted by N(z). Given a
subset of vertices X C V, G[X] denotes the subgraph induced by X.

Let M be a subset of vertices of a graph G, and x be a vertex of V' \ M. We
say that vertex x splits M (or is a splitter of M) if x has both a neighbor and a
non-neighbor in M. If x does not split M, then M is homogeneous with respect
to x.

is called a module if M

Definition 1. Given a graph G = (V,E), M C V
€ VA\M (ie. M C N(z) or

is homogeneous with respect to any vertex x
M N N(z)=10).

Let M and M’ be disjoint sets. We say that M and M’ are adjacent if any
vertex of M is adjacent to all the vertices in M’ and non-adjacent if the vertices
of M are non-adjacent to the vertices of M’. Thus, it is not hard to observe that
two disjoint modules are either adjacent or non-adjacent.

142 F.N. Abu-Khzam et al.

A module M is mazimal with respect to a set S of vertices if M C S and
there is no module M’ such that M C M’ C S. If the set S is not specified,
we assume that S = V. A module M is a strong module if it does not overlap
with any other module. Note that, one-vertex subsets and the empty set are
modules and are known as the trivial modules. A graph is called prime if all of
its modules are trivial.

Definition 2. Let P = {My,..., M}} be a partition of the vertex set of a graph
G = (V,E). If for all 4, 1 <14 < k, M; is a non-trivial module of G, then P is a
modular partition of G.

A non-trivial modular partition P = {Mj, ..., My} which only contains max-
imal strong modules is a maximal modular partition. Note that each undirected
graph has a unique maximal modular partition. If G (resp. G) is not connected
then its connected (resp. co-connected) components are the elements of the max-
imal modular partition.

Definition 3. For a modular partition P = {My,..., M} of a graph G =
(V, E), we associate a quotient graph G ,, whose vertices are in one-to-one cor-
respondence with the parts of P. Two vertices v; and v; of G/, are adjacent if
and only if the corresponding modules M; and M; are adjacent in G.

The inclusion tree of the strong modules of G, called the modular decom-
position tree, entirely represents the graph if the representative graph of each
strong module is attached to each of its nodes (see Fig. 1). It is easy to observe
that there are only three relations, M C M', M’ C M, or M N M’ = (), for any

(1234567891011]

891011

2 3 4[5 67 89 1011

U1 V2 Ve v8

(0) (©)

Fig.1l. (a) Shows the graph G; {{1},{2,3},{4},{5},{6,7},{9},{8,10,11}} is
a modular partition of G. The maximal modular partition of G is P =
{{1},{2,3,4},{5},{6,7},{8,9,10,11}} and () represents its quotient graph. (c) is the
modular decomposition tree of G. The maximal strong modules are in blue. The green
edges indicate that the root node is parallel, the red edges indicate that the root is
series, and the black edges indicate that the root is a prime graph. (Color figure online)

Modular-Width: An Auxiliary Parameter 143

two nodes M and M’ in the modular decomposition tree. The modular-width is
the maximum degree of the modular decomposition tree. An excellent feature
of modular decomposition is that it can be computed in (9(log2 n) time with
O(n + m) parallel processors [9], thus the modular-width stays also within the
same resource bounds.

Theorem 1 (Modular decomposition theorem [7]). For any graph G =
(V,E), one of the following three conditions is satisfied:

1. G is not connected;

2. G is not connected;

3. G and G are connected and the quotient graph G,p, where P is the mazimal
modular partition of G, is a prime graph.

Theorem 1 indicates that, the quotient graphs associated with the nodes of
the modular decomposition tree of the strong modules are of three types: an
independent set if G is not connected (the node is labeled parallel); a clique if
G is not connected (the node is labeled series); a prime graph otherwise.

Parallel tree contraction is a “bottom-up” technique for constructing parallel
algorithms on trees. There are two basic operations called rake and compress.
During each contraction, processors are assigned to leaves of the tree and perform
local modifications by removing these leaves, hence creating new leaves that are
processed at the next round. This operation is called rake. Clearly, removing
leaves is not sufficient for a tree that is thin and tall, like a linked list, which
would take a linear number of rounds to reduce the tree to a point. Thus, a
complementary operation called compress that reduces a chain of vertices, each
with a single child to a chain of half the length is introduced. Ideally, rake and
compress work on different parts of the tree simultaneously. During the run of
the algorithm, the rake operation tends to produce chains that are then reduced
by the compress operation. Thus, the whole tree can be evaluated in O(logn)
time using O(n) parallel processors.

3 Parallel Algorithms on Modular Decomposition

In this section, we show how modular-width can be used to derive efficient par-
allel algorithms for the weighted maximum clique problem and the maximum
matching problem. Our results imply that these two problems are FPPT.

The input to our algorithms is assumed to be a graph of modular-width
at most k, and we shall represent the input graph as an algebraic expression
consisting of the following operations:

1. G has only one vertex. This corresponds to a leaf node in the modular decom-
position tree.

2. G is a disjoint union of two graphs G; and G2 of modular-width at most k.
The disjoint union of G; and G2 defined as a graph with vertex set V3 U V5
and edge set F7 U E5. This corresponds to a parallel node in the modular
decomposition tree.

144 F.N. Abu-Khzam et al.

3. G is a complete join of two graphs G; and G2 of modular-width at most k.
The complete join of G; and G5 is defined as a graph with vertex set V3 UV,
and edge set By U Ey U {{u,v}:u € V; and v € V}. This corresponds to a
series node in the modular decomposition tree.

4. The substitution operation with respect to a graph G is the reverse of the
quotient operation and defined as replacing a vertex of G by G; = (V;, E;) of
modular-width at most k while preserving the neighborhood,

GI‘)Gi = (V\{x}uvw
(E\{(z,y) € E}YUE; U{(y,2) : (z,y) € E,z € V3})).

This is corresponding to the maximal modular partition of G, and G; is one
of the maximal strong module of G.

Throughout the rest of this paper, we may assume that a graph G = (V, E)
and the modular decomposition of G, of modular-width at most k, are already
given. Otherwise, we can apply the algorithm presented in [9] to obtain one.
Under this assumption, it is easy to note that the modular decomposition tree of
G can be constructed in constant time using O(n) parallel processors. Moreover,
the number of maximal strong modules in the decomposition tree of G is at most
n, which is equal to the cardinality of the maximal modular partition of G.

The central idea of our algorithm is a bottom-up dynamic programming
approach along the modular decomposition tree of the algebraic expression as
defined above. For each node of the modular decomposition tree, we compute a
record for the graph represented by the subtree of the modular decomposition
below that node. That is, given the optimal solutions for the children of each
node in the modular decomposition tree, we can compute an optimal solution
for the node itself. In order to explore the decomposition tree efficiently, we take
the parallel tree contraction technique due to Miller and Reif [18].

3.1 The Weighted Maximum Clique Problem

Let us consider the weighted maximum clique problem which is known to be
NP-complete for general graphs. Given a graph G = (V, E) and weights on each
vertex, is there a clique with maximum weight w?

Theorem 2. The weighted maximum clique problem parameterized by the
modular-width k can be solved in O(2F-logn) time using O(n) parallel processors.
Thus it is FPPT.

Proof. Clearly, graph G with bounded modular-width k£ can be represented by
the four operations mentioned above according to Theorem 1. We only need to
show that each operation can be done efficiently, and the whole decomposition
tree can be evaluated by the parallel tree contraction technique.

First, each leaf node in the modular decomposition tree is an isolated vertex,
which can be represented by the first operation of the algebraic expression. Thus,

Modular-Width: An Auxiliary Parameter 145

the maximum clique weight of each vertex is trivially its own weight. Obviously,
this can be done in constant time with a linear number of parallel processors.

Next, we consider other operations on combining two modules to form a
larger module:

— If G is the disjoint union of G; and Gs, then the maximum clique weight of
G would be:
w(G) = max{w(G1),w(G2)},

since the disjoint union operation corresponds to a parallel node, which
implies two modules are non-adjacent.
— If G is the complete join of G; and G5, then the maximum clique weight of
G would be:
w(G) = W(Gl) + (.«J(GQ),

since complete join corresponding to a series node, which implies any vertex
in 1 is adjacent to all the vertices in Go.

The last case is for G is a substitution of G; for 1 < i < k, which means G
is neither obtained by disjoint union operation nor complete join operation. In
other words, the quotient graph of G is prime, and the vertices are in one-to-one
correspondence with G; for 1 < ¢ < k. In this scenario, graph G can be treated
as a graph with at most k vertices, and the weight of each vertex is equal to
the maximum clique weight of the corresponding module G; for 1 < i < k.
Since each G; looks like a black box to the other G; in the maximal modular
decomposition of G for 1 < 4,5 < k and i # j, and there has no efficient
algorithm for the maximum weighted clique problem, we have no choice but
take a brute-force strategy to evaluate G if the maximum clique weight of each
G, for 1 < i < k are given, and this can be done in (’)(2’“) time.

Now we show how to parallelize the algorithm by the parallel tree contrac-
tion technique. We construct a computation tree corresponding to the modular
decomposition tree of G, such that each tree node corresponds to a maximal
strong module of size at most k£ and has at most k& children. Suppose v is an
internal node in the computation tree, we call v is half-evaluated when all but
one of its children has been evaluated. With the parallel tree contraction tech-
nique, it can be compressed later. Suppose the unevaluated child is vy and its
maximum clique weight is w’, the maximum clique weight of v without v; eval-
uated to a, and the maximum clique weight among evaluated children v, ..., vg
of v is b, a and b are known values. Then the maximum clique weight of v is

w = max{a,w’ + b}.

During each contraction progress, we can take the above function recursively
and have
" = max{ec,w + d},

where ¢ and d are two known values for next round, then

W = max{max{b+ c,d},w’ + (a +¢)}.

146 F.N. Abu-Khzam et al.

Thus, the running time is O(2* - logn) using O(n) parallel processors, because
O(2%) time is required to compute a maximum weight clique for a prime graph
with at most k vertices, the parallel tree contraction takes O(logn) time using a
linear number of parallel processors, and half-evaluating a node requires O(log k)
time. (I

3.2 The Maximum Matching Problem

A matching in a graph is a set of edges such that no two edges share a common
vertex. We now consider the maximum matching problem which seeks a matching
of maximum size (i.e., the largest number of edges). The existence of an NC
algorithm for this problem has been open for several decades, even if the graph
is planar. By considering the modular-width as the parameter, we prove the
following:

Theorem 3. The mazimum matching problem parameterized by the modular-
width k can be solved in O(2% -logn) time using O(n) parallel processors. There-
fore the problem is FPPT.

Proof. We follow the same strategy as Theorem 2 and evaluate different opera-
tions on combining modules. Let ni, ny denote the number of vertices and w1, usg
denote the number of unmatched vertices of graphs G; and G5. We use the pair
<n;,u;> to track the maximum matching of graph Gj;.
First, each leaf node i in the modular decomposition tree is an isolated vertex,
thus
n; =1 and u; = 1.

Next, we consider various operations on combining two modules to form a
larger module:

— If G is the disjoint union of G; and G, the values of G would be:
n=mn1+ne and u = uy + us,

since disjoint union corresponds to a parallel node, which implies there is no
edge between G and Gs.

— If G is the complete join of G; and G, the values of G would depend on
the values of n1,n9,u; and us. We have to consider different cases for this
scenario. In fact, no matter for which cases,

n=mni+ny

always valid, we only need to consider .
1. If uy > no, then the unmatched vertices in Gy are more than the vertices
of GG, then the values of G would be:

U= U3 — N,

because we could match all vertices of G2 through the edges between
unmatched vertices in GG; and all vertices of Gs.

Modular-Width: An Auxiliary Parameter 147

2. Symmetrically, if us > nq, the values of G would be:
U= Uy —nj.

3. The last case comes to u; < no and us < nqp. In this circumstances, we
are able to match almost all vertices in G; and Gs, and only have one
unmatched vertex left over if there is an odd number of vertices in G, the
values of G would be

u=mn1+ns (mod2).

Without loss of generality, suppose u; — us > 2, we can further match
the uy unmatched vertices in G5 by the additional edges of complete join
operation. After that, all vertices in G5 are matched, and only uy — ug >
2 vertices left in Gy still unmatched. Suppose x,y are two unmatched
vertices in G1; we know that z,y are also adjacent to all vertices in Gs
because of the complete join operation, and all vertices of G5 are matched.
Then there must be at least one edge (a,b) in the matching of Gs, such
that t —a—b—y is an augmenting path and the matching can be extended
by 1. Thus the number of unmatched vertices in G only depends on the
parity of u; 4+ wug, which is equal to the parity of ni + ns.
Thus for the complete join of G; and Ga, we have

n =mnj + na,

and
u = max{u; — na,uz —ny,n1 +n2 (mod 2)}.

Obviously, this can be done in a constant time given the values of G; and Gs.
Finally, we consider the case where G is a prime graph, which is obtained by
the substitution operation on modules G4y, ..., Gg. As claimed in the proof of
Theorem 2, G can be treated as a prime graph with at most k vertices, and
each vertex corresponding to a module G; for 1 <4 < k in this case.

It is well-known that the maximum matching problem can be formulated
as integer linear programming. Once again, let u; denote the number of
unmatched vertices in G;, F denotes the edge set among G1,...,Gj, and
e;,; denote the number of matched edges between G; and G, for 1 <14,j < k.
Then finding a maximum matching in G is equivalent to solving the following
problem:

Maximize Z € + Z e ¢ subject to
(i,J)EE {
2e;; + Z ei;<mnifori=1,...,k
(i,5)€EE

(ni —u;)

Cii < gt fori =1,k

€, € [l,k] for 1 <i,5 <k.

148 F.N. Abu-Khzam et al.

For each prime graph, we can compute the matching by taking the maximum
of our objective function at every feasible solution. This can be done in O(2*)
time since the graph has a bounded modular-width k.

Now, we show how to parallelize the algorithm using the parallel tree con-
traction technique.

Let nq,...,n; denote the number of vertices and uq, ..., us denote the num-
ber of unmatched vertices in Gy, ...,Gg. Suppose ni,...,n; and us, ..., u are
known, but u; is not. Then the number of unmatched vertices of the graph G
can be represented as a function u of u; of the form max{p,u; — ¢} for a proper
choice of constants p and ¢, such that p = u(n; (mod 2)) and ¢ =ny — u(nq).

As argued in the complete join operation of two graphs, u; must have the
same parity as ni. For any x of the same parity as n; between 2 and nq, it is
clear that u(x —2) < u(x) < u(x —2)+2. We will show that u(uy) is a piecewise
linear function, consisting of a constant portion for low values of u; followed by
a portion with slope 1 for high values of u; in Lemma 1. Thus u(u1) has the
form max{p, u; — q}. We choose p = u(n; (mod 2)) so the formula is correct at
the low end. For the high end, we choose ¢ = ny — u(nq).

We now use the parallel tree contraction technique. Composing functions of
the form u(z) = max{p,z — q} leaves another function of the same form which
can be computed in constant time. Therefore, the tree contraction can be done
in O(logn) time with O(n) parallel processors. O

Lemma 1. If x has the same parity as n1 and also 4 < x < ny, then it cannot
satisfy: u(z) = u(x — 2) = u(x — 4) + 2.

Proof. Let M’ be the matching used to calculate u(z—4) and M be the matching
used to calculate u(x). Then we have

ny=2%|M|+ (z—4) =2 |M|+ x;

thus,
| M| = [M| +2;

It follows that M’ contains at least two edges between vertices in Gy.

Let M" be the matching M’ without an edge e between two of the vertices
in Gy, then M"” will be a matching used to calculate u(x — 2). If we choose
u; = x — 2, both matchings M and M” have the same cardinality and both
are also maximum. Let G’ be the resultant graph from taking the symmetric
difference of M and M"';i.e. (M —M")J(M" —M). Every connected component
of G’ must be either an even cycle whose edges alternate between M and M"
or an even length path whose edges alternate between M and M’ with distinct
endpoints. Now add the edge e that is in M’ \ M”| its connected component
must be an odd path. If there is another matched edge ¢ between two of the
vertices in Gy, and ¢’ is not in the same connected component, then we can take
the edges from M in the component of ¢’, add them to the rest of M’, and have
a larger matching for the case u; = z — 2. Alternatively, if there does not exist
a matching edge between vertices in G, that is also in a different component

Modular-Width: An Auxiliary Parameter 149

from e, we can still modify the matching to obtain a larger one when u; = x — 2.
Let ¢’ be another edge from M’ that is contained in G7. Any vertex outside of
(G1 that is adjacent to the vertices of e is also adjacent to the vertices of e/. We
can add an edge between one of these vertices and a vertex of ¢’ so that an even
cycle is created. We use this even cycle to take a different set of edges. This new
set has the property that it no longer includes edge €¢’. We have found a larger
matching for the case u; = = — 2, contradicting our assumption. In both cases,
u(x — 2) = u(z) + 2 follows from our premises. O

4 Concluding Remarks and Future Work

In this paper, we showed that the weighted maximum clique problem and the
maximum matching problem are FPPT when parameterized by modular-width.
It would be interesting to find out whether other problems are FPPT when
parameterized by this parameter. It was shown that the maximum network flow
problem is FPPT with respect to treewidth as parameter [16]. We know that
the maximum network flow problem is not easier than the maximum matching
problem from a parallel complexity standpoint, being P-Complete. However, we
believe that the maximum network flow problem would also fall in FPPT when
parameterized by modular-width. Moreover, it was shown that the chromatic
number, hamiltonian cycle, maximum cut, and edge dominating set problems
are FPT when parameterized by treewidth but become W/1]-hard when parame-
terized by clique-width. Also, when parameterized by modular-width, chromatic
number and hamiltonian cycle are FPT, while the other two are still open. We
conjecture that the chromatic number problem parameterized by modular-width
is not FPPT, mainly because Miyano [19] showed that most of the lexicographi-
cally first maximal subgraph problems are still P-complete even if the instances
are restricted to graphs with bounded degree three.

References

1. Abu-Khzam, F.N., Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.:
On the parameterized parallel complexity and the vertex cover problem. In: Chan,
T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 477-488.
Springer, Cham (2016). doi:10.1007/978-3-319-48749-6_35

2. Bodlaender, H., Downey, R., Fellows, M.: Applications of parameterized complexity
to problems of parallel and distributed computation (1994, unpublished extended
abstract)

3. Bodlaender, H.L.: Treewidth: characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1-14. Springer, Heidelberg
(2006). doi:10.1007/11917496_1

4. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255-269 (2008)

5. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoret.
Comput. Sci. 412(39), 5187-5204 (2011)

http://dx.doi.org/10.1007/978-3-319-48749-6_35
http://dx.doi.org/10.1007/11917496_1

150

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

F.N. Abu-Khzam et al.

Cesati, M., Di Ianni, M.: Parameterized parallel complexity. In: Pritchard, D.,
Reeve, J. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 892-896. Springer, Heidelberg
(1998). doi:10.1007/BFb0057945

Chein, M., Habib, M., Maurer, M.-C.: Partitive hypergraphs. Discret. Math. 37(1),
35-50 (1981)

. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs. Inf. Comput. 85(1), 12-75 (1990)

Dahlhaus, E.: Efficient parallel modular decomposition (extended abstract). In:
Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 290-302. Springer, Heidelberg
(1995). doi:10.1007/3-540-60618-1_83

Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the
price of generality. In: Proceedings of the Twentieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 825-834. Society for Industrial and Applied
Mathematics (2009)

Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower
bounds for problems parameterized by clique-width. In: Proceedings of the Twenty-
First Annual ACM-STAM Symposium on Discrete Algorithms, pp. 493-502. Society
for Industrial and Applied Mathematics (2010)

Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941-1956 (2010)

Gajarsky, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163-176.
Springer, Cham (2013). doi:10.1007/978-3-319-03898-8_15

Ganian, R., Hlinény, P., Nesetfil, J., Obdrzalek, J., Ossona de Mendez, P.,
Ramadurai, R.: When trees grow low: shrubs and fast MSO;. In: Rovan, B.,
Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 419-430.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2_38

Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41-59 (2010)

Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multitermi-
nal flow networks and computing flows in networks of small treewidth. J. Comput.
Syst. Sci. 57(3), 366-375 (1998)

Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J.
Algorithms 20(1), 20-44 (1996)

Miller, G.L., Reif, J.H.: Parallel tree contraction-part I: fundamentals (1989)
Miyano, S.: The lexicographically first maximal subgraph problems:
P-completeness and NC algorithms. Math. Syst. Theory 22(1), 47-73 (1989)
Oum, S.-I.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79-100
(2005)

http://dx.doi.org/10.1007/BFb0057945
http://dx.doi.org/10.1007/3-540-60618-1_83
http://dx.doi.org/10.1007/978-3-319-03898-8_15
http://dx.doi.org/10.1007/978-3-642-32589-2_38

	Modular-Width: An Auxiliary Parameter for Parameterized Parallel Complexity
	1 Introduction
	2 Preliminaries
	3 Parallel Algorithms on Modular Decomposition
	3.1 The Weighted Maximum Clique Problem
	3.2 The Maximum Matching Problem

	4 Concluding Remarks and Future Work
	References

