
Mingyu Xiao
Frances Rosamond (Eds.)

 123

LN
CS

 1
03

36

11th International Workshop, FAW 2017
Chengdu, China, June 23–25, 2017
Proceedings

Frontiers
in Algorithmics

Lecture Notes in Computer Science 10336

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mingyu Xiao • Frances Rosamond (Eds.)

Frontiers
in Algorithmics
11th International Workshop, FAW 2017
Chengdu, China, June 23–25, 2017
Proceedings

123

Editors
Mingyu Xiao
University of Electronic Science
and Technology of China

Chengdu
China

Frances Rosamond
University of Bergen
Bergen
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-59604-4 ISBN 978-3-319-59605-1 (eBook)
DOI 10.1007/978-3-319-59605-1

Library of Congress Control Number: 2017941503

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1012-2373

Preface

This volume contains the papers presented at FAW 2017: the 11th International
Frontiers of Algorithmics Workshop, held during June 23–25, 2017, in Chengdu,
China. The workshop brings together researchers working on all aspects of theoretical
computer science and algorithms.

FAW 2017 was the 11th conference in the series. The previous ten meetings were
held during August 1–3, 2007, in Lanzhou, June 19–21, 2008, in Changsha, June
20–23, 2009, in Hefei, August 11–13, 2010, in Wuhan, May 28–31, 2011, in Jinhua,
May 14–16, 2012, in Beijing, June 26–28, 2013, in Dalian, June 28–30, 2014, in
Zhangjiajie, July 3–5, 2017, in Guilin, and June 30–July 2, in Qingdao. FAW is already
playing an important regional and international role, promising to become a focused
forum on current research trends on algorithms seen throughout China and other parts
of Asia.

In all, 61 submissions were received from 18 countries and regions: Canada, China,
Colombia, France, Germany, Greece, Hong Kong, India, Israel, Japan, Korea, Lebanon,
Macao, Malaysia, Norway, Poland, Taiwan, and USA. The FAW 2017 Program
Committee selected 24 papers for presentation at the conference. In addition, we had
three plenary speakers: John Hopcroft (Cornell University, USA), Michael R. Fellows
(University of Bergen, Norway), and Matthew Katz (Ben-Gurion University of The
Negev, Israel). We express our sincere thanks to them for their contributions to the
conference and proceedings.

We would like to thank the Program Committee members and external reviewers for
their hard work in reviewing and selecting papers. We are also very grateful to all the
authors who submitted their work to FAW 2017.

Finally, we wish to thank the editors at Springer and the local organizer, University
of Electronic Science and Technology of China, for their support and hard work in the
preparation of this conference.

June 2017 Mingyu Xiao
Frances Rosamond

Organization

Program Co-chairs

Frances A. Rosamond University of Bergen, Norway
Mingyu Xiao University of Electronic Science and Technology of China,

China

Program Committee

Leizhen Cai The Chinese University of Hong Kong, SAR China
Jianer Chen Texas A&M University, USA
Yijia Chen Fudan University, China
Zhi-Zhong Chen Tokyo Denki University, Japan
Wenqiang Dai University of Electronic Science and Technology of China
Fei Deng University of California, Davis, USA
Qilong Feng Central South University, China
Henning Fernau University of Trier, Germany
Rudolf Fleischer German University of Technology in Oman
Yuxi Fu Shanghai Jiao Tong University, China
Takuro Fukunaga National Institute of Informatics, Japan
Jiong Guo Shandong University, China
Kun He Huazhong University of Science and Technology, China
Giuseppe F. Italiano University of Rome, Italy
Ragesh Jaiswal Indian Institute of Technology Delhi, India
Eun Jung Kim University of Paris Dauphine, France
Christian Komusiewicz Friedrich Schiller University Jena, Germany
Michael Lampis Université Paris Dauphine, France
Van Bang Le University of Rostock, Germany
Minming Li City University of Hong Kong, SAR China
Guohui Lin University of Alberta, Canada
Chunmei Liu Howard University, USA
Kazuhisa Makino Kyoto University, Japan
Sheung-Hung Poon Brunei Technological University, Brunei
Md Saidur Rahman Bangladesh University of Engineering and Technology
Frances A. Rosamond University of Bergen, Norway
Hao Wang Norwegian University of Science and Technology,

Norway
Jianxin Wang Central South University, China
Gerhard J. Woeginger Eindhoven University of Technology, The Netherlands
Jigang Wu Guangdong University of Technology, China
Mingyu Xiao University of Electronic Science and Technology of China
Ke Xu Beihang University, China

Yinfeng Xu Xi’an Jiaotong University, China
Boting Yang University of Regina, Canada
Guang Yang Chinese Academy of Sciences, China
Guochuan Zhang Zhejiang University, China
Jialin Zhang Chinese Academy of Sciences, China
Shengyu Zhang The Chinese University of Hong Kong, SAR China
Binhai Zhu Montana State University, USA
Daming Zhu Shandong University, China

Organizing Committee

Mingyu Xiao University of Electronic Science and Technology of China
Wenqiang Dai University of Electronic Science and Technology of China
Shaowei Kou University of Electronic Science and Technology of China
Yuqing Wang University of Electronic Science and Technology of China
Jianan Zhang University of Electronic Science and Technology of China

Additional Reviewers

Ali, Mohsen
Brauße, Franz
Casel, Katrin
Chau, Vincent
Chen, Zhihuai
Chini, Peter
Dong, Xiaoju
Epstein, Leah
Gao, Xiaofeng
Gentner, Michael
Han, Xin
Hartline, Jason

Huang, Mingzhang
Istrate, Gabriel
Kuinke, Philipp
Li, Fagen
Li, Minming
Mnich, Matthias
Nishat, Rahnuma Islam
Paulusma, Daniel
Poon, Sheung-Hung
Rushdi, Muhammad
Shen, Weiran
Sikora, Florian

Stege, Ulrike
Wang, Jingbo
Wang, Jiongbo
Wu, Chao
Xu, Yao
Yang, Feidiao
Yang, Qizhe
Ye, Deshi
Zhang, Chihao
Zhang, Jia
Zheng, Feifeng

VIII Organization

Contents

On the Complexity of Minimizing the Total Calibration Cost 1
Eric Angel, Evripidis Bampis, Vincent Chau, and Vassilis Zissimopoulos

On the Fixed-Parameter Tractability of Some Matching Problems
Under the Color-Spanning Model . 13

Sergey Bereg, Feifei Ma, Wencheng Wang, Jian Zhang, and Binhai Zhu

The Complexity of Finding (Approximate Sized) Distance-d Dominating
Set in Tournaments . 22

Arindam Biswas, Varunkumar Jayapaul, Venkatesh Raman,
and Srinivasa Rao Satti

On Computational Aspects of Greedy Partitioning of Graphs 34
Piotr Borowiecki

Maximum Edge Bicliques in Tree Convex Bipartite Graphs 47
Hao Chen and Tian Liu

Complete Submodularity Characterization in the Comparative Independent
Cascade Model . 56

Wei Chen and Hanrui Zhang

A Risk–Reward Model for On-line Financial Leasing Problem
with an Interest Rate . 68

Xiaoli Chen and Weijun Xu

Designing and Implementing Algorithms for the Closest String Problem 79
Shota Yuasa, Zhi-Zhong Chen, Bin Ma, and Lusheng Wang

The Broken-Triangle Property with Adjoint Values 91
Jian Gao, Rong Chen, Minghao Yin, and Hui Li

Online Knapsack Problem Under Concave Functions. 103
Xin Han, Ning Ma, Kazuhisa Makino, and He Chen

Fluctuated Fitting Under the ‘1-metric . 115
Kai Jin

Optimal Partitioning Which Maximizes the Weighted Sum of Products 127
Kai Jin

http://dx.doi.org/10.1007/978-3-319-59605-1_1
http://dx.doi.org/10.1007/978-3-319-59605-1_2
http://dx.doi.org/10.1007/978-3-319-59605-1_2
http://dx.doi.org/10.1007/978-3-319-59605-1_3
http://dx.doi.org/10.1007/978-3-319-59605-1_3
http://dx.doi.org/10.1007/978-3-319-59605-1_4
http://dx.doi.org/10.1007/978-3-319-59605-1_5
http://dx.doi.org/10.1007/978-3-319-59605-1_6
http://dx.doi.org/10.1007/978-3-319-59605-1_6
http://dx.doi.org/10.1007/978-3-319-59605-1_7
http://dx.doi.org/10.1007/978-3-319-59605-1_7
http://dx.doi.org/10.1007/978-3-319-59605-1_8
http://dx.doi.org/10.1007/978-3-319-59605-1_9
http://dx.doi.org/10.1007/978-3-319-59605-1_10
http://dx.doi.org/10.1007/978-3-319-59605-1_11
http://dx.doi.org/10.1007/978-3-319-59605-1_11
http://dx.doi.org/10.1007/978-3-319-59605-1_12

Modular-Width: An Auxiliary Parameter for Parameterized
Parallel Complexity . 139

Faisal N. Abu-Khzam, Shouwei Li, Christine Markarian,
Friedhelm Meyer auf der Heide, and Pavel Podlipyan

Online Strategies for Evacuating from a Convex Region in the Plane 151
Songhua Li and Yinfeng Xu

A Further Analysis of the Dynamic Dominant Resource
Fairness Mechanism . 163

Weidong Li, Xi Liu, Xiaolu Zhang, and Xuejie Zhang

A 42k Kernel for the Complementary Maximal Strip Recovery Problem 175
Wenjun Li, Haiyan Liu, Jianxin Wang, Lingyun Xiang, and Yongjie Yang

On-line Scheduling with a Monotonous Subsequence Constraint 187
Kelin Luo, Yinfeng Xu, Huili Zhang, and Wei Luo

A 1.4-Approximation Algorithm for Two-Sided Scaffold Filling 196
Jingjing Ma, Haitao Jiang, Daming Zhu, and Shu Zhang

FPT Algorithms for FVS Parameterized by Split and Cluster Vertex
Deletion Sets and Other Parameters . 209

Diptapriyo Majumdar and Venkatesh Raman

A Constant Amortized Time Algorithm for Generating Left-Child
Sequences in Lexicographic Order. 221

Kung-Jui Pai, Jou-Ming Chang, and Ro-Yu Wu

Geodetic Contraction Games on Trees . 233
Yue-Li Wang

On Approximation Algorithms for Two-Stage Scheduling Problems 241
Guangwei Wu, Jianer Chen, and Jianxin Wang

A New Lower Bound for Positive Zero Forcing . 254
Boting Yang

Phase Transition for Maximum Not-All-Equal Satisfiability 267
Junping Zhou, Shuli Hu, Tingting Zou, and Minghao Yin

Author Index . 281

X Contents

http://dx.doi.org/10.1007/978-3-319-59605-1_13
http://dx.doi.org/10.1007/978-3-319-59605-1_13
http://dx.doi.org/10.1007/978-3-319-59605-1_14
http://dx.doi.org/10.1007/978-3-319-59605-1_15
http://dx.doi.org/10.1007/978-3-319-59605-1_15
http://dx.doi.org/10.1007/978-3-319-59605-1_16
http://dx.doi.org/10.1007/978-3-319-59605-1_17
http://dx.doi.org/10.1007/978-3-319-59605-1_18
http://dx.doi.org/10.1007/978-3-319-59605-1_19
http://dx.doi.org/10.1007/978-3-319-59605-1_19
http://dx.doi.org/10.1007/978-3-319-59605-1_20
http://dx.doi.org/10.1007/978-3-319-59605-1_20
http://dx.doi.org/10.1007/978-3-319-59605-1_21
http://dx.doi.org/10.1007/978-3-319-59605-1_22
http://dx.doi.org/10.1007/978-3-319-59605-1_23
http://dx.doi.org/10.1007/978-3-319-59605-1_24

On the Complexity of Minimizing the Total
Calibration Cost

Eric Angel1, Evripidis Bampis2, Vincent Chau3(B),
and Vassilis Zissimopoulos4

1 IBISC, Université d’Évry Val d’Essonne, Évry, France
angel@ibisc.fr

2 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, Paris, France
Evripidis.Bampis@lip6.fr

3 Shenzhen Institutes of Advanced Technology, Academy of Sciences,
Shenzhen, China

vincentchau@siat.ac.cn
4 Department of Informatics and Telecommunications,

National and Kapodistrian University of Athens, Athens, Greece
vassilis@di.uoa.gr

Abstract. Bender et al. (SPAA 2013) proposed a theoretical framework
for testing in contexts where safety mistakes must be avoided. Testing
in such a context is made by machines that need to be often calibrated.
Since calibrations have non negligible cost, it is important to study poli-
cies minimizing the calibration cost while performing all the necessary
tests. We focus on the single-machine setting and we study the com-
plexity status of different variants of the problem. First, we extend the
model by considering that the jobs have arbitrary processing times and
that the preemption of jobs is allowed. For this case, we propose an opti-
mal polynomial time algorithm. Then, we study the case where there is
many types of calibrations with different lengths and costs. We prove
that the problem becomes NP-hard for arbitrary processing times even
when the preemption of the jobs is allowed. Finally, we focus on the
case of unit-time jobs and we show that a more general problem, where
the recalibration of the machine is not instantaneous, can be solved in
polynomial time.

1 Introduction

The scheduling problem of minimizing the number of calibrations has been
recently introduced by Bender et al. in [2]. It is motivated by the Integrated
Stockpile Evaluation (ISE) program [1] at Sandia National Laboratories for test-
ing in contexts where safety mistakes may have serious consequences. Formally,

This work has been supported by the ALGONOW project of the THALES pro-
gram and the Special Account for Research Grants of National and Kapodistrian
University of Athens, by NSFC (Nos. 61433012, U1435215), and by Shenzhen basic
research grant JCYJ20160229195940462.

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 1–12, 2017.
DOI: 10.1007/978-3-319-59605-1 1

2 E. Angel et al.

the problem can be stated as follows: we are given a set J of n jobs (tests),
where each job j is characterized by its release date rj , its deadline dj and its
processing time pj . We are also given a (resp. a set of) testing machine(s) that
must be calibrated on a regular basis. The calibration of a machine has a unit
cost and it is instantaneous, i.e., a machine can be calibrated between the exe-
cution of two jobs that are processed in consecutive time-units. A machine stays
calibrated for T time-units and a job can only be processed during an interval
where the machine is calibrated. The goal is to find a feasible schedule perform-
ing all the tests (jobs) between their release dates and deadlines and minimizing
the number of calibrations. Using the classical three-field notation in scheduling
[4], the problem can be denoted as P | rj , dj , T | (# calibrations). Bender et al.
[2] studied the case of unit-time jobs. They considered both the single-machine
and multiple-machine problems. For the single-machine case, they showed that
there is a polynomial-time algorithm, called the Lazy Binning algorithm that
solves the problem optimally. For the multiple-machine case, they proposed
a 2-approximation algorithm. However, the complexity status of the multiple-
machine case with unit-time jobs remained open. Bender et al. [2] stated, “As a
next step we hope to generalize our model to capture more aspects of the actual
ISE problem. For example, machines may not be identical, and calibrations may
require machine time. Moreover, some jobs may not have unit size”.

Fineman and Sheridan [3] studied a first generalization of the problem by
considering that the jobs have arbitrary processing times. They considered the
multiple-machine case where the execution of a job is not allowed to be inter-
rupted once it has been started. Since the feasibility problem is NP-hard, they
considered a resource-augmentation [5] version of the problem. They were able
to relate this version with the classical machine-minimization problem [8] in the
following way: suppose there is an s-speed α-approximation algorithm for the
machine-minimization problem, then there is an O(α)-machine s-speed O(α)-
approximation for the resource-augmentation version of the problem of mini-
mizing the number of calibrations.

In this paper, we focus on the single-machine case without resource augmen-
tation and we study the complexity status of different variants of the problem.
In Sect. 2, we study the problem when the jobs may have arbitrary processing
times and the preemption of the jobs is allowed: the processing of any job may be
interrupted and resumed at a later time. We denote this variant of the problem as
1 | rj , dj , pmtn, T | (# calibrations). Clearly, by using the optimal algorithm of
Bender et al. for unit-time jobs, we can directly obtain a pseudopolynomial-time
algorithm by just replacing every job by a set of unit-time jobs with cardinality
equal to the processing time of the job. We propose a polynomial time algorithm
for this variant of the problem. Then, in Sect. 3, we study the case of scheduling
a set of jobs when K different types of calibrations are available. Each calibra-
tion type is associated with a length Ti and a cost fi. The objective is to find a
feasible schedule minimizing the total calibration cost. We show that the prob-
lem, denoted as 1 | rj , dj , pmtn, {T1, . . . , TK} | cost(calibrations) for arbitrary
processing times is NP-hard, even when the preemption of the jobs is allowed.

On the Complexity of Minimizing the Total Calibration Cost 3

Given the NP-hardness of the problem for arbitrary processing times, in
Sect. 4, we study the case of unit-time jobs. We propose a polynomial time
algorithm based on dynamic programming. We present the algorithm for a
more general setting where each calibration takes λ units of time during which
the machine cannot be used. We denote this variant as 1 | rj , dj , pj = 1,
λ + {T1, . . . , TK} | cost(calibrations).

2 Arbitrary Processing Times and Preemption

We suppose here that the jobs have arbitrary processing times and that the
preemption of the jobs is allowed. An obvious approach in order to obtain an
optimal preemptive schedule is to divide each job j into pj unit-time jobs with
the same release date and deadline as job j and then apply the Lazy Binning
(LB) algorithm of [2] that optimally solves the problem for instances with unit-
time jobs. However, this idea leads to a pseudopolynomial-time algorithm. Here,
we propose a more efficient way for solving the problem. Our method is based
on the idea of Lazy Binning. Before introducing our algorithm, we briefly recall
LB: at each iteration, a time t is fixed and the (remaining) jobs are scheduled,
starting at time t+1 using the Earliest Deadline First (edf) policy1. If a feasible
schedule exists (for the remaining jobs), t is updated to t+1, otherwise the next
calibration is set to start at time t which is called the current latest-starting-
time of the calibration. Then, the jobs that are scheduled during this calibration
interval are removed and this process is iterated after updating t to t+T , where
T is the calibration length. The polynomiality of the algorithm for unit-time
jobs comes from the observation that the starting time of any calibration is at a
distance of no more than n time-units before any deadline. In our case however,
i.e. when the jobs have arbitrary processing times, a calibration may start at a
distance of at most P =

∑n
j=1 pj time-units before any deadline.

Definition 1. Let Ψ :=
⋃

i{di − P, di − P + 1, . . . , di} where P =
∑n

j=1 pj.

Proposition 1. There exists an optimal solution in which each calibration
starts at a time in Ψ .

Proof. Let σ be an optimal solution in which there is at least one calibration
that does not start at a time in Ψ . We show how to transform the schedule σ
into another optimal schedule that satisfies the statement of the proposition.

Let ci′ be the first calibration of σ that starts at time t′ /∈ Ψ . Let ci′ , . . . , ci

be the maximum set of consecutive calibrations such that when a calibration
finishes another starts immediately. We denote by ci+1 the next calibration that
is not adjacent to calibration ci. We can push the set of calibrations ci′ , . . . , ci

to the right (we delay the calibrations) until:

1 An edf policy is a schedule in which at any time, the job with the smallest deadline
among the available jobs is scheduled first.

4 E. Angel et al.

ci

a1 a2 a3

ci +1 ci ci+1

t

ci

a1 a2a3

ci +1 ci ci+1

t

Fig. 1. Illustration of Proposition 1. The first schedule is an optimal schedule. The
second one is obtained after pushing the continuous block of calibrations ci′ , . . . , ci to
the right.

– either we reach the next calibration ci+1,
– or ci′ starts at a time in Ψ (Fig. 1).

Note that this transformation is always possible. Indeed, since ci′ starts at a
time that is in a distance more than P from a deadline, it is always possible to
push the scheduled jobs to the right. In particular, if there are no jobs scheduled
when calibration ci′ starts, then there are no modifications for the execution of
jobs. Otherwise, there is at least one job scheduled when calibration ci′ starts.
Let a1, . . . , ae be the continuous block of jobs. Since the starting time of job
a1 is at a distance (to the left hand side) more than P from a deadline, then
all these jobs can be pushed to the right by one unit. This transformation is
possible because no job of this block finishes at its deadline. Note that after this
modification, jobs can be assigned to another calibration.

We can repeat the above transformation until we get a schedule satisfying
the statement of the proposition. ��

For jobs with arbitrary processing times when the preemption of the jobs is
allowed, we propose the following algorithm whose idea is based on the Lazy
Binning algorithm: we first compute the current latest-starting-time of the cali-
bration such that no job misses its deadline (this avoids to consider every time in
Ψ). This calibration time depends on some deadline dk. At each iteration, among
the remaining jobs, we compute for every deadline the sum of the processing
times of all these jobs (or of their remaining parts) having a smaller than or
equal deadline and we subtract it from the current deadline. The current latest-
starting-time of the calibration is obtained by choosing the smallest computed
value. Once the calibration starting time is set, we schedule the remaining jobs
in the edf order until reaching dk and we continue to schedule the available jobs
until the calibration interval finishes. In the next step, we update the processing
time of the jobs that have been processed. We repeat this computation until
there is no processing time left. A formal description of the algorithm, that we
call the Preemptive Lazy Binning (PLB) algorithm, is given below (Algorithm1).

On the Complexity of Minimizing the Total Calibration Cost 5

Algorithm 1. Preemptive Lazy Binning (PLB)
1: Jobs in J are sorted in non-decreasing order of deadline
2: while J �= ∅ do
3: t ← maxi∈J di, k ← 0
4: for i ∈ J do
5: if t > di −∑j≤i,j∈J pj then
6: t ← di −∑j≤i,j∈J pj

7: k ← i
8: end if
9: end for

10: u ← t +
⌈

dk−t
T

⌉
× T

11: Calibrate the machine at time t, t + T, t + 2T, . . . , u − T
12: Schedule jobs {j ≤ k | j ∈ J } from t to dk by applying the edf policy and

remove them from J .
13: Schedule fragment of jobs from k + 1, . . . , n in [dk, u) in edf order
14: Let qj for j = k + 1, . . . , n be the processed quantity in [dk, u)
15: //Update processing time of jobs
16: for i = k + 1, . . . , n do
17: pi ← pi − qi
18: if pi = 0 then
19: J ← J \ i
20: end if
21: end for
22: end while

We can prove the optimality of this algorithm using a similar analysis as the
one for the Lazy Binning algorithm in [2].

Proposition 2. The schedule returned by Algorithm PLB is a feasible schedule
in which the starting time of each calibration is maximum.

Proof. The condition in line 5 in Algorithm PLB ensures that we always obtain
a feasible schedule. In fact, we compute the latest-starting-time at each step and
this time is exactly the latest time of the first calibration.

By fixing a deadline di, we know that jobs that have a deadline earlier than di

have to be scheduled before di, while the other jobs are scheduled after di. When
we update t for every deadline di in the algorithm, we assume that there is no idle
time between di − ∑

j≤i,j∈J pj and di. Note that if di − ∑
j≤i,j∈J pj < 0, then

the schedule is not feasible. For the sake of contradiction, suppose that a feasible
schedule exists in which some calibration is not started at a time computed by
the algorithm. We will show that the starting time of this calibration is not
maximum. Denote this time by t′. Since, the starting time of the calibration
is not one of di − ∑

j≤i,j∈J pj ∀i, then there is at least one unit of idle time
between the starting time of the calibration and some deadline di. Hence, it is
possible to delay all calibrations starting at t′ or after, as well as the execution
of the jobs inside these calibrations by keeping the edf order. This can be done
in a similar way as in the proof of Proposition 1. ��

6 E. Angel et al.

Proposition 3. Algorithm PLB is optimal.

Proof. It is sufficient to prove that Algorithm PLB returns the same schedule as
Lazy Binning after splitting all jobs to unit-time jobs. We denote respectively
PLB and LB the schedules returned by these algorithms.

Let t′ be the first time at which the two schedules differ. The jobs executed
before t′ are the same in both schedules since the jobs are scheduled in the edf
order. Given that the schedules are the same before t′, the remaining jobs are
the same after t′. Two cases may occur:

– a job is scheduled in [t′, t′ + 1) in PLB but not in LB. This means that
the machine is not calibrated at this time slot in the schedule produced by
LB. Since the calibrations are the same before t′ in both schedules, then a
calibration starting at t′ is necessary in PLB. Thanks to Proposition 2, we
have a contradiction to the fact that we were looking for the latest-starting-
time of the calibration.

– a job is scheduled in [t′, t′ +1) in LB but not in PLB. This means that there
does not exist a feasible schedule starting at t′ + 1 with the remaining jobs.
Hence, PLB is not feasible. This case cannot happen thanks to Proposition 2.

��
Proposition 4. Algorithm PLB has a time complexity in O(n2).

Proof. We first sort jobs in the non-decreasing order of their deadlines in
O(n log n) time. At each step, we compute the first latest-starting-time of the
calibration in O(n) time. Then the scheduling of jobs in the edf order takes O(n)
time. We need also to update the processing times of the jobs whose execution
has been started. This can be done in O(n) time. At each step, we schedule at
least one job. Hence, there are at most n steps. ��

3 Arbitrary Processing Times, Preemption and Many
Calibration Types

In this section, we consider a generalization of the model of Bender et al. in
which there are more than one types of calibration. Every calibration type is
associated with a length Ti and a cost fi. We are also given a set of jobs, each
one characterized by its processing time pj , its release time rj and its deadline
dj . Each job can be scheduled only when the machine is calibrated regardless
of the calibration type. Our objective is to find a feasible preemptive schedule
minimizing the total calibration cost. We prove that the problem is NP-hard.

Proposition 5. The problem of minimizing the calibration cost is NP-hard for
jobs with arbitrary processing times and many types of calibration, even when
the preemption is allowed.

In order to prove the NP-hardness, we use a reduction from the Unbounded
Subset Sum problem (which is NP-hard) [6,7]. In an instance of the

On the Complexity of Minimizing the Total Calibration Cost 7

Unbounded Subset Sum problem, we are given a set of n items where each
item j is associated to a value κj . We are also given a value V . We aim to find a
subset of the items that sums to V under the assumption that an item may be
used more than once.

Proof. Let Π be the preemptive scheduling problem of minimizing the total
calibration cost for a set of n jobs that have arbitrary processing times in the
presence of a set of K calibration types.

Given an instance of the Unbounded Subset Sum problem, we construct
an instance of problem Π as follows. For each item j, create a calibration length
Tj = κj and of cost fj = κj . Moreover, we create n jobs with positive arbitrary
processing times such that

∑
i pi = V with ri = 0 and di = V ∀i.

We claim that the instance of the Unbounded Subset Sum problem is
feasible if and only if there is a feasible schedule for problem Π of cost V .

Assume that the instance of the Unbounded Subset Sum problem is fea-
sible. Therefore, there exists a subset of items C ′ such that

∑
j∈C′ κj = V . Note

that the same item may appear several times. Then we can schedule all jobs,
and calibrate the machine according to the items in C ′ in any arbitrary order.
Since the calibrations allow all the jobs to be scheduled in [0, V), then we get a
feasible schedule of cost V for Π.

For the opposite direction of our claim, assume that there is a feasible sched-
ule for problem Π of cost V . Let C be the set of calibrations that have been used
in the schedule. Then

∑
j∈C Tj = V . Therefore, the items which correspond to

the calibrations in C form a feasible solution for the Unbounded Subset Sum
problem. ��

4 Unit-Time Jobs, Many Calibration Types
and Activation Length

Since the problem is NP-hard when many calibration types are considered even
in the case where the calibrations are instantaneous, we focus in this section on
the case where the jobs have unit processing times. We also assume that there
is an activation length, that we denote by λ. This means that in this section,
the calibrations are no more instantaneous, but each of them takes λ units of
time during which no job can be processed. For feasibility reasons, we allow to
recalibrate the machine at any time point, even when it is already calibrated. To
see this, consider the instance given in Fig. 2. The machine has to be calibrated
at time 0 and requires λ = 3 units of time for being available for the execution of
jobs. At time 3 the machine is ready to execute job 1 and it remains calibrated
for T = 4 time units. If we do not have the possibility to recalibrate an already
calibrated machine then the earliest time at which we can start calibrating the
machine is at time 7. This would lead to the impossibility of executing job 2.
However, a recalibration at time 4 would lead to a feasible schedule.

It is easy to see that the introduction of the activation length into the model
makes necessary the extension of the set of “important” dates that we have used

8 E. Angel et al.

0

1 2

1 2

1 2 3 4 5 6 7 8 9 10

λ = 3
T = 4

Fig. 2. An infeasible instance if we do not have the possibility to recalibrate at any
time. We have a single machine, two unit-time jobs and a single type of calibration
of length T = 4. The activation length, i.e. the time that is required in order for the
calibration to be effective is λ = 3. Job 1 is released at time 3 and its deadline is 4.
Job 2 is released at time 7 and its deadline is 8.

in Sect. 2 (Definition 1). Indeed, jobs can be scheduled at a distance bigger than
n from a release date or a deadline. However, as we prove below, it is still possible
to define a polynomial-size time-set.

In the worst case, we have to calibrate n times and schedule n jobs. Thus the
calibration can start at a time at most n(λ + 1) time units before a deadline.
Note that it is not necessary to consider every date in [di − n(λ + 1), di] for a
fixed i. In the sequel, we suppose without loss of generality that jobs are sorted
in non-decreasing order of their deadline, d1 ≤ d2 ≤ . . . ≤ dn.

Definition 2. Let Θ :=
⋃

i{di − jλ − h, j = 0, . . . , n, h = 0, . . . , n}.
Proposition 6. There exists an optimal solution in which each calibration
starts at a time in Θ.

Proof. We show how to transform an optimal schedule into another schedule
satisfying the statement of the proposition without increasing the total calibra-
tion cost. Let cj be the last calibration that does not start at a date in Θ. We
can shift this calibration to the right until:

– one job of this calibration finishes at its deadline and hence, it is no more
possible to push this calibration to the right anymore. This means that there
is no idle time between the starting time of this calibration and this deadline.
Thus the starting time of this calibration is in Θ.

– the current calibration meets another calibration. In this case, we continue to
shift the current calibration to the right while this is possible. Perhaps, there
will be an overlap between calibration intervals, but as we said before, we
allow to recalibrate the machine at any time. If we cannot shift to the right
anymore, either a job ends at its deadline (and we are in the first case), or
there is no idle time between the current calibration and the next one. Since
there is at most n jobs and the next calibration starts at a time di −jλ−h for
some i, j, h, then the current calibration starts at a time di−(j+1)λ−(h+h′)
where h′ is the number of jobs scheduled in the current calibration with
h′ + h ≤ n and j ≤ n − 1. ��

On the Complexity of Minimizing the Total Calibration Cost 9

Moreover the set of starting times of jobs has also to be extended by consid-
ering the activation length λ.

Definition 3. Let Φ := {t+a | t ∈ Θ, a = 0, . . . , n}∪⋃
i{ri, ri +1, . . . , ri +n}.

As for the starting time of calibrations, the worst case happens when we have
to recalibrate after the execution of every job.

Proposition 7. There exists an optimal solution in which the starting times
and completion times of jobs belong to Φ.

Proof. The first part of the proof comes from Proposition 1. Indeed, jobs can
only be scheduled when the machine is calibrated. Let i be the first job that is
not scheduled at a time in Φ in an optimal solution. Thanks to Proposition 1,
we know that a calibration occurs before a deadline. Job i belongs to some
calibration that starts at time t ≤ dj for some other job j. By moving job i to
the left, the cost of the schedule does not increase, since this job belongs to the
same calibration. Two cases may occur:

– job i meets another job i′ (Fig. 3(a)). In this case, we consider the continuous
block of jobs i′′, . . . , i′, i. We assume that at least one job in this block is
scheduled at its release date and job i is at a distance at most n of this
release date (because there is at most n jobs). Otherwise, we can shift this
block of jobs to the left by one time unit (Fig. 3(b)). Indeed, this shifting
is possible because no job in {i′′, . . . , i′} is executed at a starting time of a
calibration (if it is the case, job i is in Φ by definition). Since job i′ was in Φ,
by moving this block, job i will be scheduled at a time in Φ.

– job i meets its release date, thus its starting time is in Φ. ��

Fig. 3. Illustration of Proposition 7

Definition 4. Let S(j, u, v) = {i | i ≤ j and u ≤ ri < v}. We define F (j, u, v,
t, k) as the minimum cost of a schedule of the jobs in S(j, u, v) such that:

– all these jobs are scheduled during the time-interval [u, v)
– the last calibration of the machine is at time t for a length of λ + Tk (where

the time-interval [t, t + λ) corresponds to the activation length)
– the first calibration is not before u.

10 E. Angel et al.

We are now ready to give our dynamic programming algorithm. We examine
two cases depending on whether rj belongs to the interval [u, v). Otherwise,
there is two subcases: whether job j is scheduled in the last calibration or not.

Proposition 8. One has F (j, u, v, t, k) = F ′

F ′ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (j − 1, u, v, t, k) if rj /∈ [u, v)
min

u′∈Φ, rj≤u′<t+Tk+λ

t′+λ≤u′<v
u′<dj

F (j − 1, u, u′, t, k) last calibration

min
u′∈Φ, rj≤u′<t′+Tk′+λ

t′∈Θ, t′+λ≤u′<v
u′<dj

1≤k′≤K

{
F (j − 1, u, u′, t′, k′)

+F (j − 1, u′ + 1, v, t, k)

}

otherwise

with F (0, u, v, t, k) := fk, ∀t + λ ≤ v & t ≥ u.
F (0, u, v, t, k) := +∞ otherwise.

The objective function for our problem is mint∈Θ,1≤k≤K F (n,mini ri,maxi

di, t, k) (Fig. 4).

Fig. 4. Illustration of Proposition 8

Proof. When rj /∈ [u, v), we have necessarily F (j, u, v, t, k) = F (j − 1, u, v, t, k).
In the following, we suppose that rj ∈ [u, v) which includes two cases. The first
one is when job j is scheduled in the last calibration.
We first prove that F (j, u, v, t, k) ≤ F ′.

We consider a schedule S1 that realizes F (j − 1, u, u′, t′, k′) and a schedule
S2 that realizes F (j −1, u′ +1, v, t, k). We build a schedule as follows: from time
u to time u′ use S1, then execute job j in [u′, u′ + 1), and finally from u′ + 1 to
time v use S2. Moreover, it contains all jobs in {i | i ≤ j and u ≤ ri < v}. Since
the first calibration in S2 does not begin before u′ + 1, then we have a feasible
schedule.

On the Complexity of Minimizing the Total Calibration Cost 11

So F (j, u, v, t, k) ≤ F ′.
We now prove that F (j, u, v, t, k) ≥ F ′.

Since j ∈ {i | i ≤ j and u ≤ ri < v}, job j is scheduled in all schedules that
realize F (j, u, v, t, k).

Among such schedules, let X denote the schedule of F (j, u, v, t, k) in which
the starting time of job j is maximal. We claim that all jobs in {i ≤ j, u ≤ ri < v}
that are released before u′ are completed at u′. If it is not the case, we could swap
the execution of such a job with job j, getting in this way a feasible schedule
with the same cost as before. Formally, let i be a job with {i ≤ j, u ≤ ri < u′}
that is scheduled after u′ +1. We can swap the execution of job i with job j, the
resulting schedule is feasible since job j has larger deadline than job i, and job
i is released before u′. This will contradict the fact that the starting time of job
j is maximal.

We consider a schedule S1 that realizes F (j−1, u, u′, t′, k′) and a schedule S2

that realizes F (j−1, u′+1, v, t, k). Then, the restriction of S1 in the schedule X to
[u, u′) will be a schedule that meets all constraints related to F (j−1, u, u′, t′, k′).
Hence its cost is greater than F (j −1, u, u′, t′, k′). Similarly, the restriction of S2

in the schedule X to [u′ + 1, v) is a schedule that meets all constraints related
to F (j − 1, u′ + 1, v, t, k).

Finally, F (j, u, v, t, k) ≥ F ′. ��
Proposition 9. The problem of minimizing the total calibration cost with arbi-
trary calibration lengths, activation length and unit-time jobs can be solved in
time O(n16K2).

Proof. This problem can be solved with the dynamic program in Proposition 8.
Recall that the objective function is mint∈Θ,1≤k≤K F (n,mini ri,maxi di, t, k).
The size of both sets Θ and Φ is O(n3). Indeed, by rewriting the set Φ, we have

Φ =
⋃

i

{ri, ri + 1 . . . , ri + n} ∪ {t + a | t ∈ Θ, a = 0, . . . , n}

=
⋃

i

{ri, ri + 1 . . . , ri + n}
⋃

i

{
di − jλ − k + a, j = 0, . . . , n

k = 0, . . . , n, a = 0, . . . , n

}

=
⋃

i

{ri, ri + 1 . . . , ri + n}
⋃

i

{di − jλ + k, j = 0, . . . , n, k = −n, . . . , n}

The size of the table is O(n10K). When each value of the table is fixed, the
minimization is over the values u′, t′ and k′, so the time complexity is O(n6K).
Therefore the overall complexity time is O(n16K2). ��

Note that when there is no feasible schedule, the objective function
mint∈Θ,1≤k≤K F (n,mini ri,maxi di, t, k) will return +∞.

5 Conclusion

We considered different extensions of the model introduced by Bender et al. in
[2]. We proved that the problem of minimizing the total calibration-cost on a

12 E. Angel et al.

single machine can be solved in polynomial time for the case of jobs with arbi-
trary processing times when the preemption is allowed. Then we proved that
the problem becomes NP-hard for arbitrary processing times when there are
many calibration types, even if the preemption of jobs is authorized. Finally,
we considered the case with many calibration types, where the calibrations are
not instantaneous but take machine time, and we proved that the problem can
be solved in polynomial time using dynamic programming for unit-time jobs.
An interesting question is whether it is possible to find a lower time-complexity
algorithm for solving this version of the problem, either optimally, or in approx-
imation. Of course, it would be of great interest to study the case where more
than one machines are available. Recall that the complexity of the simple variant
studied by Bender et al. remains unknown for the multiple machines problem.

References

1. New integrated stockpile evaluation program to better ensure weapons stockpile
safety, security, reliability (2006). http://www.sandia.gov/LabNews/060331.html

2. Bender, M.A., Bunde, D.P., Leung, V.J., McCauley, S., Phillips, C.A.: Efficient
scheduling to minimize calibrations. In: 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2013, pp. 280–287. ACM (2013). http://doi.
acm.org/10.1145/2486159.2486193

3. Fineman, J.T., Sheridan, B.: Scheduling non-unit jobs to minimize calibrations. In:
Blelloch, G.E., Agrawal, K. (eds.) Proceedings of the 27th ACM on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA,
13–15 June 2015, pp. 161–170. ACM (2015). http://doi.acm.org/10.1145/2755573.
2755605

4. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.: Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5,
287–326 (1979)

5. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4), 617–643 (2000). http://doi.acm.org/10.1145/347476.347479

6. Lai, T.: Worst-case analysis of greedy algorithms for the unbounded knapsack,
subset-sum and partition problems. Oper. Res. Lett. 14(4), 215–220 (1993). http://
dx.doi.org/10.1016/0167-6377(93)90072-O

7. Lueker, G.: Two NP-complete problems in nonnegative integer programming.
Report No. 178, Computer Science Laboratory, Princeton University (1975)

8. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. Algorithmica 32(2), 163–200 (2002). http://dx.doi.org/10.
1007/s00453-001-0068-9

http://www.sandia.gov/LabNews/060331.html
http://doi.acm.org/10.1145/2486159.2486193
http://doi.acm.org/10.1145/2486159.2486193
http://doi.acm.org/10.1145/2755573.2755605
http://doi.acm.org/10.1145/2755573.2755605
http://doi.acm.org/10.1145/347476.347479
http://dx.doi.org/10.1016/0167-6377(93)90072-O
http://dx.doi.org/10.1016/0167-6377(93)90072-O
http://dx.doi.org/10.1007/s00453-001-0068-9
http://dx.doi.org/10.1007/s00453-001-0068-9

On the Fixed-Parameter Tractability
of Some Matching Problems Under

the Color-Spanning Model

Sergey Bereg1, Feifei Ma2, Wencheng Wang2, Jian Zhang2,
and Binhai Zhu3(B)

1 Department of Computer Science, University of Texas-Dallas,
Richardson, TX 75080, USA

besp@utdallas.edu
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing 100080, China
{maff,whn,zj}@ios.ac.cn

3 Gianforte School of Computing, Montana State University,
Bozeman, MT 59717, USA

bhz@montana.edu

Abstract. Given a set of n points P in the plane, each colored with
one of the t given colors, a color-spanning set S ⊂ P is a subset of t
points with distinct colors. The minimum diameter color-spanning set
(MDCS) is a color-spanning set whose diameter is minimum (among all
color-spanning sets of P). Somehow symmetrically, the largest closest
pair color-spanning set (LCPCS) is a color-spanning set whose closest
pair is the largest (among all color-spanning sets of P). Both MDCS and
LCPCS have been shown to be NP-complete, but whether they are fixed-
parameter tractable (FPT) when t is a parameter are still open. (For-
mally, the problem whether MDCS is FPT was posed by Fleischer and
Xu in 2010.) Motivated by this question, we consider the FPT tractabil-
ity of some matching problems under this color-spanning model, where
t = 2k is the parameter. The results are summarized as follows: (1) Min-
Sum Matching Color-Spanning Set, namely, computing a matching of 2k
points with distinct colors such that their total edge length is minimized,
is FPT; (2) MaxMin Matching Color-Spanning Set, namely, computing
a matching of 2k points with distinct colors such that the minimum edge
length is maximized, is FPT; (3) MinMax Matching Color-Spanning Set,
namely, computing a matching of 2k points with distinct colors such that
the maximum edge length is minimized, is FPT; and (4) k-Multicolored
Independent Matching, namely, computing a matching of 2k vertices in
a graph such that the vertices of the edges in the matching do not share
common edges in the graph, is W[1]-hard. With (2), we show that LCPCS
is in fact FPT.

1 Introduction

Given a set of n points Q with all points colored in one of the t given colors, a
color-spanning set (sometimes also called a rainbow set) is a subset of t points
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 13–21, 2017.
DOI: 10.1007/978-3-319-59605-1 2

14 S. Bereg et al.

with distinct colors. (In this paper, as we focus on matching problems, we set
t = 2k. Of course, in general t does not always have to be even.) In practice, many
problems require us to find a specific color-spanning set with certain property
due to the large size of the color-spanning sets. For instance, in data mining
a problem arises where one wants to find a color-spanning set whose diameter
is minimized (over all color-spanning sets), which can be solved in O(nt) time
using a brute-force method [2,14]. (Unfortunately, this is still the best bound to
this date.)

Since the color-spanning set problems were initiated in 2001 [1], quite some
related problems have been investigated. Many of the traditional problems which
are polynomially solvable, like Minimum Spanning Tree, Diameter, Closest Pair,
Convex Hull, etc., become NP-hard under the color-spanning model [6,7,9]. Note
that for the hardness results the objective functions are usually slightly changed.
For instance, in the color-spanning model, we would like to maximize the clos-
est pair and minimize the diameter (among all color-spanning sets). On the
other hand, some problems, like the Maximum Diameter Color-Spanning Set,
remain to be polynomially solvable [4].

In [6,7], an interesting question was raised. Namely, if t is a parameter,
is the NP-complete Minimum Diameter Color-Spanning Set (MDCS) problem
fixed-parameter tractable? This question is still open. In this paper, we try to
investigate some related questions along this line. The base problem we target at
is the matching problem, both under the geometric model and the graph model.
We show that an important graph version is W[1]-hard while all other versions
in consideration are fixed-parameter tractable (FPT). With that, we show that
the symmetric version of MDCS, the Largest Closest Pair Color-Spanning Set is
in fact FPT.

This paper is organized as follows. In Sect. 2, we define the basics regarding
FPT algorithms and the problems we will investigate. In Sect. 3, we illustrate the
positive FPT results on the geometric version MinSum Matching (and a related
graph version). In Sect. 4, we show the positive results on the MaxMin Matching
and MinMax Matching under the color-spanning model. In Sect. 5, we show that
a special graph version is W[1]-hard. In Sect. 5, we conclude the paper.

2 Preliminaries

We make the following definitions regarding this paper. An Fixed-Parameter
Tractable (FPT) algorithm is an algorithm for a decision problem with input
size n and parameter k whose running time is O(f(t)nc) = O∗(f(t)), where
f(−) is any computable function on t and c is a constant. FPT algorithms are
efficient tools for handling some NP-complete problems as they introduce an
extra dimension t. If an NP-complete problem, like Vertex Cover, admits an
FPT algorithm, then it is basically polynomially solvable when the parameter t
is a small constant [3,8].

FPT Tractability of Some Color-Spanning Matching Problem 15

Of course, it is well conceived that not all NP-hard problems admit FPT
algorithms. It has been established that

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · W [z] ⊆ XP,

where XP represents the set of problem which must take O(nt) time to solve
(i.e., not FPT), with t being the parameter. Typical problems in W[1] include
Independent Set and Clique, etc. For the formal definition and foundation, read-
ers are referred to [3,8].

Given a set Q of n points in the plane with t colors, a color-spanning set
S ⊂ Q is a subset of t points with distinct colors. If S satisfies a property
Π among all color-spanning sets of Q, we call the corresponding problem of
computing S the Property-Π Color-Spanning Set. For instance, the Minimum
Diameter Color-Spanning Set (MDCS) is one where the diameter of S is min-
imized (among all color-spanning sets of Q) and the Largest Close Pair Color-
Spanning Set (LCPCS) is one where the closest pair of S is maximized (among
all color-spanning sets of Q). All the distances between two points in the plane
are Euclidean (or L2). We next define the matching problems we will investigate
in this paper.

Given a set P of n points in the plane with 2k colors, a color-spanning set
S ⊂ P is a subset of 2k points with distinct colors. The points in S always form a
perfect matching, i.e., a set M of k edges connecting the 2k points in S. Among
all these matchings (over all color-spanning sets), if a matching M satisfies a
property Π, we call the problem the Property-Π Matching Color-Spanning Set
or Property-Π Color-Spanning Matching. The three properties we focus on are
MinSum, MinMax and MaxMin.

MinSum means that the sum of edge lengths in M is minimized, Min-
Max means that the maximum edge length in M is minimized, and MaxMin
means that the minimum edge length in M is maximized. The main purpose
of this paper is to investigate the FPT tractability of the three problems: Min-
Sum Matching Color-Spanning Set, MinMax Matching Color-Spanning Set, and
MaxMin Matching Color-Spanning Set. We show that all these problems are in
fact FPT.

We also briefly mention some of the related problems on graphs, where we are
given a general graph G whose vertices are colored with 2k colors, the problem is
to determine whether a perfect matching M exists such that M contains exactly
2k vertices of distinct colors. We call this problem k-Multicolored Matching, and
we will show that this problem is FPT.

Finally, we will study a special version on graphs where the (vertices of
the) edges in M cannot share edges in G. We call the problem k-Multicolored
Independent Matching, and we will show that this problem is W[1]-hard.

3 MinSum Matching Color-Spanning Set Is FPT

In this section, we consider the MinSum Matching Color-Spanning Set (MSMCS)
problem, namely, given a set P of n points in the plane, each colored with one

16 S. Bereg et al.

of the 2k colors, identify 2k points with distinct colors such that they induce
a matching with the minimum total weight (among all feasible color-spanning
matchings). Recall that the weight of an edge (pi, pj) is the Euclidean distance
between pi and pj . For a point pi, let color(pi) be the color of pi. For this
problem, we in fact have a good property of the optimal solution which is stated
as follows.

Lemma 1. In an optimal solution of MSMCS, let pi and pj be a matched edge
in the optimal matching, then (pi, pj) must be the closest pair between points of
color(pi) and color(pj).

With this property, among
(
2k
2

)
pairs of colors, we need to select k dis-

joint pairs and for each feasible solution compute the matching (by computing
the bichromatic closest pair between points in each of the k paired colors) in
O(kn log n) time [13]. This gives an FPT algorithm running in kO(k)O(n log n)
time. We hence have

Theorem 1. MinSum Matching Color-Spanning Set (MSMCS) is FPT.

We next consider the graph version of the MSMCS problem, or, the k-
Multicolored Matching problem, which is formally defined as follows.

INSTANCE: An undirected graph G = (V,E) with each vertex colored with
one of the 2k given colors.

QUESTION: Is there a matching E′ ⊆ E including all the 2k colors? That
is, are there k disjoint edges in E′, and all the vertices of the edges in E′ have
different colors.

The following theorem shows that k-Multicolored Matching is also FPT.

Theorem 2. k-Multicolored Matching is FPT.

Proof. We could simulate the method for Theorem 1 as follows. First, make G
into a complete weighted graph (Kn, w). For an edge e ∈ E(Kn), if e ∈ E(G)
then set w(e) = 1; if e �∈ E(G), then set w(e) = 2. Then, once the k pairs of colors
are given, we could compute the minimum weight matching (by computing the
bichromatic closest pair between points in each of the k paired colors) in O(kn2)
time. Then, there is a solution for k-Multicolored Matching if and only if the
minimum color-spanning matching, over all possible pairs of 2k colors, has a
weight k. Similar to Theorem 1, the running time is kO(k)O(n2). The theorem is
hence proved. �

In the next section, we investigate the MaxMin and MinMax Matching Color-
Spanning Sets problems.

4 MaxMin and MinMax Matching Color-Spanning Sets
Are FPT

We first study the MaxMin Matching Color-Spanning Set problem. The first
attempt is to try to see whether a property similar to Lemma1 holds or not.

FPT Tractability of Some Color-Spanning Matching Problem 17

In Fig. 1, we show an example where such a property does not hold for MaxMin
Matching Color-Spanning Set, i.e., the minimum edge length is maximized
among all feasible color-spanning matchings. In Fig. 1, the MinSum Color-
Spanning Matching is {(a, c), (b, d)}, with a total weight of 3 − 2ε. The Max-
Sum Color-Spanning Matching is {(c, d), (e, f)}, with a total weight of 3 + 6ε.
The optimal solution for MaxMin Matching Color-Spanning Set is {(c, e), (d, f)},
with a solution value of 1.5 (while the total weight is 3). Again, note that (c, e)
and (d, f) do not form the closest pairs among the subsets of respective colors.

Nonetheless, it is easy to see that MaxMin Matching Color-Spanning Set is
NP-complete. The reduction is from LCPCS: just compute an optimal solution
for the MaxMin Color-Spanning Matching on set P , the edge with the minimum
weight in the matching must be a solution for LCPCS. We next show that
Maxmin Matching Color-Spanning Set is FPT.

e

c d

a b

f

Fig. 1. A simple multicolored point set, the dotted, dashed and solid segments have
lengths 1.5 − ε, 3 and 1.5 respectively; moreover, d(e, f) = 6ε.

Theorem 3. MaxMin Matching Color-Spanning Set is NP-complete and is
FPT.

Proof. We first enumerate all possible ways to pair colors. Following Theorem1,
there are an kO(k) number of such valid pairs. Let Ci and Cj be the set of
points with colori and colorj respectively. If in the optimal solution for MaxMin
Matching Color-Spanning Set colori and colorj are paired together, then the
edge connecting two points p ∈ Ci and q ∈ Cj must be the �-th closest pair
between Ci, Cj , with � ≤ k. (The reason is that there are only k edges in the
matching, the other k − 1 edges in the matching could make at most the first
k − 1 closest pairs between Ci and Cj infeasible — or, are longer than these
closest pairs.) Then our FPT algorithm for MaxMin Matching Color-Spanning
set is straightforward: given each valid pairing of 2k colors, for each pair of colors
colori and colorj , compute the ≤ k closest pairs between the corresponding point
sets with colori and colorj respectively, then enumerate kk possible solutions for
the matching and return the one whose minimum edge length is maximized. For
a fixed pairing of 2k colors, this takes O∗(kk) time. As we have kO(k) number of
such pairings, the total running time is still O∗(kO(k)). �

18 S. Bereg et al.

Corollary 1. The parameterized version of LCPCS, where the number of colors
k is the parameter, is FPT.

Now we consider the MinMax Matching Color-Spanning Set, namely, the
maximum edge length is minimized among all feasible color-spanning match-
ings. Not surprisingly, the property illustrated in Lemma1 also does not hold.
In fact, such a matching might have nothing to do with the MinSum Color-
Spanning Matching or the MaxSum Color-Spanning Matching. In Fig. 2, the
MinSum Color-Spanning Matching is {(a, b), (c, d)}, with a total weight of 3.
The MaxSum Color-Spanning Matching is {(a, c), (b, d)} or {(c, d), (e, f)}, with
a total weight of 4 + 2ε. For the MinMax Color-Spanning Matching problem, all
of the above matchings give a solution value of 2 + ε. The optimal solution is
{(c, e), (d, f)}, with a solution value of 1.5 + ε (while the total weight is 3 + 2ε).
Also, note that (c, e) and (d, f) do not form the farthest pairs among the subsets
of respective colors.

f

a b

c d

e

Fig. 2. A simple multicolored point set, the dotted, dashed and solid segments have
lengths 1 − ε, 2 + ε and 1.5 + ε respectively.

It is unknown whether MinMax Color-Spanning Matching is NP-complete.
Nonetheless, we show that it is FPT. The algorithm is almost identical to that
for MaxMin Color-Spanning Matching in Theorem4. The only difference is that
when a pairing is fixed for point sets Ci and Cj , with colors colori and colorj

respectively, we enumerate the ≤ k farthest pairs between Ci and Cj .

Corollary 2. MinMax Color-Spanning Matching is FPT.

In the next section, we show that a special version on graphs is in fact
W[1]-hard.

5 k-Multicolored Independent Matching Is W[1]-Hard

The k-Multicolored Independent Matching problem is defined as follows.
INSTANCE: An undirected graph G = (V,E) with each vertex colored with

one of the 2k given colors.

FPT Tractability of Some Color-Spanning Matching Problem 19

QUESTION: Is there an independent matching E′ ⊆ E including all the k
colors? That is, are there k edges in E′ such that any two edges in E′ are not
incident to any vertex in V , and all the vertices of the edges in E′ have different
colors.

The problem originates from an application in shortwave radio broadcast,
where the matched nodes represent the shortwave channels which should not
directly affect each other [12]. (We also comment that this problem seems to
be related to the uncolored version of ‘Induced Matching’ which is known to
be W[1]-hard as well [10,11].) We will show that this problem is not only NP-
complete but also W[1]-hard. The problem to reduce from is the k-Multicolored
Independent Set, which is defined as follows.

INSTANCE: An undirected graph G = (V,E) with each vertex colored with
one of the k given colors.

QUESTION: Is there an independent set V ′ ⊆ V including all the k colors?
That is, are there k vertices in V ′ incurring no edge in E, and all the vertices in
V ′ have different colors.

When U ⊆ V contains exactly k vertices of different colors, we also say that
U is colorful.

For completeness, we first prove the following lemma, similar to what was
done by Fellows et al. on k-Multicolored Clique problem [5].

Lemma 2. k-Multicolored Independent Set is W[1]-complete.

Proof. The proof can be done through a reduction from k-Independent Set.
Given an instance (G = (V,E), k) for k-Independent Set, we first make k copies
of G, Gi’s, such that the vertices in each Gi are all colored with color i, for
i = 1..k. For any u ∈ V , let ui be the corresponding mirror vertex in Gi. Then,
for each (u, v) ∈ E and for each pair of i, j, with 1 ≤ i �= j ≤ k, we add four edges
(ui, uj), (vi, vj), (ui, vj) and (uj , vi). Let the resulting graph be G′. It is easy
to verify that G has a k-independent set if and only if G′ has a k-multicolored
independent set. As k-Independent Set is W[1]-complete [3], the lemma follows.

�

The following theorem shows that k-Multicolored Independent Matching is
not only NP-complete but also W[1]-hard.

Theorem 4. k-Multicolored Independent Matching is W[1]-hard, i.e., it does
not admit any FPT algorithm unless FPT=W[1].

Proof. We reduce k-Multicolored Independent Set (IS) to the k-Multicolored
Independent Matching problem.

Given an instance of k-Multicolored IS problem, i.e., a graph G = (V,E) with
each vertex in V = {v1, v2, . . . , vn} colored with one of the k colors {1, 2, . . . , k},
the question is whether one could compute an IS of size k, each with a distinct
color.

We construct an instance for the k-Multicolored Independent Matching as
follows. First, make a copy of G (with the given coloring of k colors). Then,
construct a set U = {u1, u2, . . . , uk} such that ui has color k + i. Finally, we

20 S. Bereg et al.

connect each ui ∈ U to each vj ∈ V , i.e., we construct a set E′ = {(ui, vj)|ui ∈
U, vj ∈ V, 1 ≤ i ≤ k, 1 ≤ j ≤ n}. Let the resulting graph be G′ = (V ∪U,E ∪E′),
with each vertex in G′ colored with one of the 2k colors. We claim that G has
a colorful independent set of size k if and only if G′ has a colorful independent
matching of size k. The details are given as follows.

If G has a colorful independent set V ′ ⊆ V of size k, we select the k vertices
in V ′ and match them up with the k vertices in U . As the vertices in V ′ are
independent and no two vertices in U share an edge (i.e., vertices in U are also
independent), we have a colorful independent matching for G′.

If G′ has a colorful independent matching of size k, then exactly k vertices
of V must match up with the k vertices in U . (Otherwise, if two vertices vi and
vj in V form an edge in the optimal colorful matching then we cannot have k
edges in the matching. This is because at least two vertices in U cannot match
up with the vertices in V of the same color as vi and vj . Then the colorful
matching contains at most k − 1 edges, a contradiction.) By the definition of
colorful independent matching, the k vertices from V cannot share any edge
hence form a independent set for G.

As the reduction takes polynomial time, the theorem is proved. �
We have the following corollary.

Corollary 3. The optimization version of k-Multicolored Independent Matching
(called Multicolored Maximum Independent Matching) does not admit a factor
n1−ε polynomial-time approximation, for some ε > 0, unless P = NP.

Proof. As the reductions in Lemma 2 and Theorem 4 are both L-reductions, the
Multicolored Maximum Independent Matching problem is as hard to approx-
imate as the Independent Set problem, which does not admit a factor n1−ε

polynomial-time approximation, for some ε > 0, unless P = NP [15]. �

6 Closing Remarks

Motivated by the open question of Fleischer and Xu, we studied the FPT
tractability of LCPCS and some related matching problems under the color-
spanning model. We show in this paper that most of these problems are FPT,
except one version on graphs which can be considered as a generalization of
the multicolored independent set problem. The original question on the FPT
tractability of Minimum Diameter Coloring-Spanning Set (MDCS), is, unfortu-
nately, still open.

Acknowledgments. This research is partially supported by NSF of China under
project 61628207. We also thank Ge Cunjing for pointing out some relevant reference.

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop,
B., Sacristán, V.: Smallest color-spanning objects. In: Heide, F.M. (ed.) ESA
2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001). doi:10.1007/
3-540-44676-1 23

http://dx.doi.org/10.1007/3-540-44676-1_23
http://dx.doi.org/10.1007/3-540-44676-1_23

FPT Tractability of Some Color-Spanning Matching Problem 21

2. Chen, Y., Shen, S., Gu, Y., Hui, M., Li, F., Liu, C., Liu, L., Ooi, B.C., Yang, X.,
Zhang, D., Zhou, Y.: MarcoPolo: a community system for sharing and integrating
travel information on maps. In: Proceedings of the 12th International Conference
on Extending Database Technology (EDBT 2009), pp. 1148–1151 (2009)

3. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
4. Fan, C., Luo, J., Wang, W., Zhong, F., Zhu, B.: On some proximity problems of

colored sets. J. Comput. Sci. Technol. 29(5), 879–886 (2014)
5. Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized com-

plexity of multiple-interval graph problems. Theoret. Comput. Sci. 410(1), 53–61
(2009)

6. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In:
Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14553-7 27

7. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard.
Info. Process. Lett. 111(21–22), 1054–1056 (2011)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
9. Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of

color-spanning sets. J. Comb. Optim. 26(2), 266–283 (2013)
10. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-

lem. Discret. Appl. Math. 157(4), 715–727 (2009)
11. Moser, H., Thilikos, D.: Parameterized complexity of finding regular induced sub-

graphs. J. Discret. Algorithms 7(2), 181–190 (2009)
12. Ma, F., Gao, X., Yin, M., Pan, L., Jin, J., Liu, H., Zhang, J.: Optimizing shortwave

radio broadcast resource allocation via pseudo-boolean constraint solving and local
search. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 650–665. Springer,
Cham (2016). doi:10.1007/978-3-319-44953-1 41

13. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, New York (1985)

14. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword
search in spatial databases: towards searching by document. In: Proceedings of
the 25th IEEE International Conference on Data Engineering (ICDE 2009), pp.
688–699 (2009)

15. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)

http://dx.doi.org/10.1007/978-3-642-14553-7_27
http://dx.doi.org/10.1007/978-3-319-44953-1_41

The Complexity of Finding (Approximate Sized)
Distance-d Dominating Set in Tournaments

Arindam Biswas1, Varunkumar Jayapaul2(B), Venkatesh Raman1,
and Srinivasa Rao Satti3

1 The Institute of Mathematical Sciences, Chennai 600113, India
{barindam,vraman}@imsc.res.in

2 Chennai Mathematical Institute, Chennai 603103, India
varunkumarj@cmi.ac.in

3 Seoul National University, Seoul, Korea
ssrao@cse.snu.ac.kr

Abstract. A tournament is an orientation of a complete graph. For
a positive integer d, a distance-d dominating set in a tournament is a
subset S of vertices such that every vertex in V \S is reachable by a path
of length at most d from one of the vertices in S. When d = 1, the set
is simply called a dominating set. While the complexity of finding a k-
sized dominating set is complete for the complexity class LOGSNP and
the parameterized complexity class W [2], it is well-known that every
tournament on n vertices has a dominating set of size g(n) = lg n −
lg lg n + 2 that can be found in O

(
n2
)

time. We first show that for any
k, one can find a dominating set of size at most k + g(n) in O

(
n2/k

)

time, and prove an (unconditional) lower bound of Ω(n2/k) for any k >
ε lg n for any ε > 0. Hence in particular, we can find a (1 + ε) lg n sized
dominating set in the optimal Θ(n2/ lg n) time.

For distance-d dominating sets, it is known that any tournament has
a distance-2 dominating set consisting of a single vertex. Such a vertex
is called a king or a 2-king and can be found in O (n

√
n) time. It follows

that there is a vertex, from which every other vertex is reachable by a
path of length at most d for any d ≥ 2 and such a vertex is called a

d-king. A d-king can be found in O
(
n1+1/2d−1

)
for any d ≥ 2 [3]. We

generalize our result for dominating set to show that for d ≥ 2,
– we can find a k-sized distance-d dominating set in a tournament in

O
(
k(n/k)1+1/2d−1

)
time for any k ≥ 1, and

– we can find a (g(n) + k)-sized distance-d dominating set in a tour-

nament using O
(
k(n/k)1+1/(2d−1)

)
time for any k ≥ 1.

The second algorithm provides a faster runtime for finding distance-d
dominating sets that are larger than g(n). We also show that the second
algorithm is optimal whenever k ≥ ε lg n for any ε > 0.

Thus our algorithms provide tradeoffs between the (additive) approx-
imation factor and the complexity of finding distance-d dominating sets
in tournaments. For the problem of finding a d-king, we show some addi-
tional results.

Keywords: Tournament · King · d-Cover · Dominating set

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 22–33, 2017.
DOI: 10.1007/978-3-319-59605-1 3

Finding Distance d Dominating Sets in Tournaments 23

1 Introduction and Motivation

Tournaments, Dominating Sets and Guarantees. A tournament is a
digraph in which there is exactly one directed edge between every pair of vertices.
As they model many practical scenarios (game tournaments, voting strategies),
tournaments are well-studied in structural and algorithmic graph theory. Various
structural and algorithmic properties of tournaments are known and Moon’s [17]
early monograph on this subject lead to much subsequent work in the area.

It is well-known that every tournament has a dominating set of size at most
�lg n� and can be found in O(n2) time. In fact, one can guarantee existence of
a slightly smaller sized dominating set that can also be found in the same time.
There exists a dominating set of size g(n) = log n − lg lg n + 2 in a tournament
on n vertices [12] (see also Sect. 2.2). Thus, the minimum dominating set can be
found in nO(lg n) time and hence it is unlikely to be NP -complete. Papadimitriou
and Yannakakis [18] show that finding the smallest dominating set in a tourna-
ment is complete for a complexity class LOGSNP . It is also known that there
are tournaments where the minimum dominating set size is Ω(lg n) [4,9] (see
also [16]) using which it has been shown that finding a k-sized dominating set is
complete for the parameterized complexity class W [2] (where the parameter is
the solution size k) and hence, even an f(k)nO(1) time algorithm is unlikely for
any function f of k [6].

It is also well-known that every tournament has a ‘centre’ or a king vertex,
i.e. a vertex from which every other vertex can be reached by a path of length at
most 2 (the maximum outdegree vertex of the tournament is one such vertex).
A king is also called a 2-king. In general, for any d ∈ N, a d-king is a vertex in
the tournament from which every other vertex can be reached by a dipath of
length at most d, and a d-cover is a set of vertices S such that every other vertex
in the tournament can be reached from some vertex in S by a dipath of length
at most d. A 1-cover is simply a dominating set, and d-covers are referred to as
distance-d dominating sets. We consider the complexity of finding dominating
sets of size more than lg n − lg lg n + 2 and more generally the complexity of
finding d-covers.

As is standard, we assume that the given tournament has the vertex set
V = {1, 2, . . . n}, and is represented by its adjacency matrix where the (i, j)-th
entry denotes the direction of the edge between vertex i and vertex j. We call a
query to the matrix entry an edge query or an edge probe.

Motivation. Above or below guarantee parameterization is a common well-
studied paradigm in parameterized complexity [7,10,11,13,14]. Here, one studies
the parameterized complexity of the problem where the parameter is a bound
above or below the guarantee (based on whether the guarantee is an upper or
lower bound, and whether the problem is a maximization or a minimization
problem). For example, for the dominating set problem in tournaments, the
natural ‘below-guarantee’ parameterization question is the complexity of find-
ing a dominating set of size at most g(n) − k where k is the parameter. In
that context, it is not clear whether there is an infinite family of tournaments

24 A. Biswas et al.

whose minimum dominating set size is g(n), as we only know of infinite fam-
ily of tournaments where the minimum dominating set size is �lg n� − 2�lg lg n�
(roughly g(n)− lg lg n) [12]. Tightening the gap to find the “tight” bound seems
open.

Here we depart from the usual below guarantee parameterization when we
have an upper bound. We consider the complexity of finding a dominating set
of size at most g(n) + k. Clearly such a dominating set exists, as a dominating
set remains a dominating set even if we add a few more vertices. Our question is
whether we can find such a (larger sized) dominating set faster, without neces-
sarily finding a dominating set of size at most g(n) first. We answer the question
affirmatively and even prove adversarial lower bounds for finding such dominat-
ing sets (or more generally d-covers). Such parameterization can be considered
as obtaining trade-offs between additive approximation and the running time of
finding a parameter. This could trigger other such work on approximation, and
can be considered as another variation of the recent popular approaches of ‘FPT
within P’ [1,8] where one investigates the complexity of parameters that are
already solvable in polynomial time, with a view to obtaining faster algorithms
for some relaxed parameterized versions. In our case, the parameter in question
is the additive approximation error.

Our Results

Dominating Sets and d-Covers. For dominating sets, our main result is that we
can find a lg n − lg lg n + 2 + k sized dominating set in a tournament using only
O

(
n2/k

)
time and that this bound is optimal as long as k > ε log n for any ε > 0.

The lower bound is shown using adversary arguments. We generalize this to show
that lg n − lg lg n + 2 + k sized d-covers can be found in O

(
k(n/k)1+1/(2d−1)

)

time for any d ≥ 2 and k ≥ 1. We also prove a matching adversary based lower
bound to show that this bound is optimal for k > ε lg n for any ε > 0.

Kings. While a king vertex forms a distance 2 dominating set by itself, motiva-
tion for finding kings comes from various practical scenarios. Acharya et al. [2]
study kings to help find bounds for density estimation, where the objective is
to approximate an unknown distribution based on its samples. Ajtai et al. [3]
study kings to perform sorting and searching operations when the comparisons
between two elements can be imprecise if the difference between the two ver-
tices is less than a certain threshold. While the maximum outdegree vertex in a
tournament is a king, it is known [5] that finding a maximum outdegree vertex
in a tournament can require Ω

(
n2

)
edge queries. Shen et al. [19] gave the first

known non-trivial upper bound of O
(
n3/2

)
edge queries for finding a king in a

tournament. They also gave the first lower bound of Ω
(
n4/3

)
edge queries for

finding a king in a tournament. Similar results were later proved independently
by Ajtai et al. [3] who generalized the bounds for finding a d-king. Narrowing
this gap between upper and lower bound has been mentioned as an open problem
in the papers [3,19]. We prove the following results regarding the complexity of
finding kings.

Finding Distance d Dominating Sets in Tournaments 25

– If an adversary gives orientations based on a pro-low strategy used to show
Ω

(
n4/3

)
lower bound (see Sect. 3.3) [19], then there is a O

(
n4/3

)
algorithm

for finding a king; this implies that we need a completely different adversary
strategy to prove a better lower bound, or there exists a better algorithm to
find a king;

– If a (2-)king can be found in O
(
n4/3

)
time, then a d-king, for any d ≥ 3 can

be found in the optimal O
(
n1+1/(2d−1)

)
time. The (matching) lower bound

for d-king using the pro-low adversary was proved by Ajtai et al. [3]. This
result was conjectured in the conclusions of [3];

– While a (2-)king can be found in O (n
√

n) time, verifying whether a vertex
is a (2-)king may take Ω

(
n2

)
edge-queries.

Organization of the Paper. In Sect. 2 we give the necessary terminologies and
some basic results on tournaments that we use in the paper. Section 3 describes
several upper and lower bounds for finding above-guarantee d-covers in a tour-
nament. In Sect. 4, we describe algorithms (against a weak adversary) and lower
bounds for verifying whether a vertex is a king. We conclude with pointers to
some open problems in Sect. 5.

2 Preliminaries

2.1 Definitions and Notation

Let T = (V,E) be a tournament. A dominator in T is a vertex u ∈ V such that
for any other vertex v ∈ S, (u, v) ∈ E. A king in T is a vertex u ∈ V such that
for any other vertex v ∈ V there is a u → v dipath of length at most 2. We
denote by V (T) the vertex set of T , and by E(T) the edge set of T . |T | denotes
the order of T , i.e., the size of V (T) and for a subset S ⊆ V (T), T [S] denotes
the subtournament of T induced by S.

Let d ∈ N and S ⊆ V . S is called a d-cover of T if for every vertex v ∈ V \S,
there is vertex u ∈ S such that there is a u → v dipath of length at most d.

A 1-cover is also called a dominating set. A king by itself is a 2-cover. If a
d-cover is of size 1, we call the unique element in the set a d-king. Let u ∈ V
be a vertex. An out-neighbour of u is a vertex v ∈ V such that (u, v) ∈ E; u is
said to dominate v. Similarly, an in-neighbour of u is a vertex v ∈ V such that
(v, u) ∈ E. For any v ∈ V (T), N+(v) denotes the set of out-neighbours of v, and
N−(v) denotes the set of its in-neighbours. We also define deg+(v) = |N+(v)|,
and deg−(v) = |N−(v)|.

Given a subset S of vertices, performing a round robin tournament on S refers
to the process of querying all possibles edges between every pair of vertices in S
to know their orientations. Using the same tournament analogy, we sometimes
refer to the out-neighbours of a vertex v as vertices that lose to v, and to its
in-neighbours as vertices that win against it. In other words, if there is an edge
from u to v, we say that u wins against v and v loses to u.

26 A. Biswas et al.

We assume that the vertex set of the tournament is {1, 2, . . . n} and is given
in the form of an adjacency matrix where the (i, j)-th entry denotes the direction
of the edge between i and j. By an edge query or an edge probe, we mean a
probe to the adjacency matrix.

Remark 1. To keep the notation simple, we sometimes omit ceilings and floors
on fractions when we actually mean integers, typically on the sizes of the vertex
subsets we handle. This doesn’t affect the asymptotic analysis.

2.2 Elementary Results

Lemma 1 [15]. Let T be a tournament and v ∈ V (T). If a vertex u in N−(v)
is a king in T [N−(v)], then u is a king in T .

Proof. The vertex u reaches every vertex in N+(v) through v. Every other vertex
in T is reachable from u by a dipath of length at most 2 as it is a king in
T [N−(v)]. 	

The following lemma follows from the fact that the sum of the indegrees, and
the sum of the outdegrees of the vertices of a tournament are both

(
n
2

)
.

Lemma 2 [12]. In any tournament T of order n, there is a vertex with outdegree
at least (n − 1)/2 and a vertex with indegree at least (n − 1)/2 and such vertices
can be found in O(n2) time.

The following result is immediate from Lemmas 1 and 2. We simply find a
vertex in the tournament that dominates at least (n−1)/2 other vertices, include
it in the dominating set and recurse on the in-neighbors of the vertex.

Theorem 1 [16]. For any tournament T of order n, a dominating set of size at
most �lg n� can be found in time O

(
n2

)
.

The following tighter upper bound is known [12], we give the proof here for
completion as it is not so well-known to the best of our knowledge.

Theorem 2. In any tournament T (V,E) of order n, a dominating set of size
at most lg n − lg lg n + 2 exists and can be found in time O

(
n2

)
.

Proof. We proceed as in the case of Theorem 1, but bail out the recursion after
�lg n − lg lg n + 1� steps at which point, the partial dominating set D we have
found has at most �lg n − lg lg n� + 1 vertices, and the resulting subtournament
R (whose vertices are yet to be dominated) has at most n/2lg n−lg lg n+1, i.e. at
most (lg n)/2 vertices. By the definition of R, the vertices of R dominate all of
D. Now we check in O(n2) time by looking at the (out)neighborhood of V (R) in
V \D whether V (R) dominates all vertices of V \D. If so, we output V (R) whose
size is at most (lg n)/2. Otherwise, there is some vertex x in V \(D ∪V (R)) that
dominates the vertices of R. In this case, we output D ∪ {x} as the dominating
set. Either way, the size of the dominating set is at most lg n − lg lg n + 2. 	

Finding Distance d Dominating Sets in Tournaments 27

3 Finding d-Covers

3.1 Finding a Dominating Set (1-Cover) of Size (k+lgN−lg lgn+2)

We start with the following above-guarantee result for 1-cover (dominating set).

Theorem 3. A (k+lg n−lg lg n+2) sized 1-cover in a tournament on n vertices
can be found in O

(
n2/k

)
time.

Proof. Let V be the input set of vertices. If k ≤ 2 apply Theorem 2. Oth-
erwise, pick a subset of vertices of size 2(n/k) + 1 and find a vertex (say
u) which dominates at least (n/k) vertices inside this subset using Lemma 2.
This vertex can be found using O

(
n2/k2

)
time. Delete u’s out-neighbors add

u to the dominating set. Now recurse on the remaining tournament as long
as |V | ≥ 2n/k + 1. Once |V | ≤ 2n/k, apply Theorem2 and find a 1-cover of
size lg n − lg lg n + 2 for the remaining tournament in O

(
(n/k)2

)
time, and

add these vertices to the output cover. The output cover is a 1-cover for the
tournament, of size at most k + lg n − lg lg n + 2. The total time taken is
O

(
(k − 2)(n/k)2 + (n/k)2

)
= O

(
n2/k

)
. 	

3.2 Finding d-Covers (d ≥ 2)

For d ≥ 2, the lower bound on the size of the d-cover is 1. We first make the
following simple generalization of the O

(
n1+1/2d−1

)
algorithm [3] to find a d-

king to show the following.

Theorem 4. In any tournament of order n, a d-cover of size k can be found in
O

(
k(n/k)1+1/2d−1

)
time.

Proof. Simply partition the vertex set into k parts to get k sub-tournaments on
roughly n/k vertices each. Find a d-king in each and add them all to the k-sized
d-cover. 	

In what follows, we give an improved algorithm for finding d-covers of size
more than �lg n�. We start with a lemma similar to Lemma 2 for 2-covers.

Lemma 3. In any tournament of order n, a vertex that reaches at least (n−1)/2
other vertices via dipaths of length at most 2 can be found in time O

(
n4/3

)
.

Proof. Let V be the vertex set of the tournament. Pick a subset of vertices of
size 2n1/3 + 1 and find a vertex (say u) which dominates at least n1/3 of those
vertices. Take exactly n1/3 of u’s losers and remove them from V . Also add u
to a set of vertices called C. Repeat this process on the resulting V as long as
|V | ≥ 2n1/3 +1. Once |V | < 2n1/3 +1, perform a round-robin tournament on all
the vertices in C and find a vertex k that dominates at least (|C|− 1)/2 vertices
using Lemma 2. The size of C is at least n2/3 − n1/3 − 1.

28 A. Biswas et al.

Thus vertex k can reach at least n1/3(n2/3−n1/3−1)/2 = n/2−(n2/3−n1/3)/2
vertices with path of length exactly two, and can reach (n2/3−n1/3−1)/2 vertices
with path of length 1. Thus the vertex k is king of at least (n − 1)/2 vertices.

The total number of edge queries made is O
(
n4/3

)
, since round robin on set

C costs O
(
n4/3

)
edge queries, as well as the time taken to create the set C is

O
(
n2/3(n1/3)2

)
= O

(
n4/3

)
. 	

Corollary 1. A (lg n − lg lg n + 2) sized 2-cover in a tournament on n vertices
can be found in O

(
n4/3

)
time.

Proof. Use Lemma 3 to find a vertex v ∈ V which has a path of length at most
2, to at least (n − 1)/2 vertices (say to the set C). Remove v and the vertices
in C from V after adding v to the 2-cover set S and adding C to S′, and
repeat this process on the remaining vertices, till the number of vertices in S is
lg n − lg lg n + 1. At this point the number of vertices remaining in V is at most
(lg n)/2. Find the relation of all vertices with these (lg n)/2 with the vertices in
S′ using O (n lg n) queries. One of the two cases happen. Either some vertex v′

in S′ dominates all vertices in V , in which case we add v′ to S and output it as
the 2-cover, or no vertex can dominate all vertices in V , in which case V forms
a dominating set of size (lg n)/2 and we output as 2-cover, since any 1-cover is
a valid 2-cover. This would give a lg n − lg lg n + 2 sized 2-cover. 	

Theorem 5. A (k+lg n−lg lg n+2) sized 2-cover in a tournament on n vertices
can be found in O

(
k(n/k)4/3

)
time.

Proof. Take a subset of input vertices of size 2n/k from V . Using Lemma 3 find
a 2-king u of at least half of these vertices using O

(
(n/k)4/3

)
edge queries.

Remove u from V and add it to the output set C, and remove all vertices in
V that can be reached by a path of length at most 2 from u. Recurse on the
remaining tournament as long as |V | ≥ 2n/k. When |V | < 2n/k, find a lg n −
lg lg n + 2 sized 2-cover, by using O

(
(n/k)4/3

)
edge queries using Corollary 1,

and add this 2-cover to the set C. The set C is a 2-cover for all the vertices in
the tournament of size at most k + lg n − lg lg n + 2. The total time spent is
O

(
k(n/k)4/3 + (n/k)4/3

)
= O

(
k(n/k)4/3

)
. 	

Now we generalize the above theorem for d ≥ 2.

Lemma 4. Let d ≥ 2 and k ≥ 1 be an integer. If a k-sized 2-cover can
be found in O

(
k(n/k)4/3

)
time, then a k-sized d-cover can be found in

O
(
k(n/k)1+1/(2d−1)

)
time.

Proof. We prove this by induction on d. For d = 2, there is nothing to prove.
Let d ≥ 3. Assume that the lemma is true for all integers from 2 to d − 1.

Let V be the set of vertices and s = (n/k)1/(2
d−1). As d ≥ 3, n/s =

n1−1/(2d−1)k1/(2d−1) > 3 + lg n (for large enough n), and so using Theorem 3

Finding Distance d Dominating Sets in Tournaments 29

find a (n/s)-sized 1-cover of V using O
(
n2/(n/s)

)
= O (ns) time. Now find a k-

sized (d−1)-cover for these n/s vertices using O
(
k(n/ks)1+1/(2d−1−1)

)
= O (ns)

time using induction hypothesis. The resulting set is a k-sized d-cover of entire
input, which is found in O (ns) = O

(
k(n/k)1+1/(2d−1)

)
time. 	

Thus we have from Theorem 5, Lemma 4 and Theorem 3,

Theorem 6. A (k+lg n−lg lg n+2)-sized d-cover in a tournament on n vertices
can be found in O

(
k(n/k)1+1/(2d−1)

)
time for any k ≥ 1 and d ≥ 1.

By setting k = 1 in Lemma 4, we have

Corollary 2. If a 2-king can be found in O
(
n4/3

)
time, then we can find a

d-king in O
(
n1+1/(2d−1)

)
time.

The above corollary was mentioned as a likely possibility (without proof) in the
conclusion of [3].

3.3 Lower Bounds

In this section, we show that most of the algorithms in the previous section are
optimal using an adversary argument. Central to the lower bound result in [19]
and [3] for finding a king, is, the adversary that answers according to the pro-low
strategy defined below.

Definition 1 (Pro-Low Strategy). Let T be a tournament whose edge direc-
tions are determined by the following adversary strategy for an algorithm that
queries edges: when the edge uv is queried, it is assigned the direction u → v if
deg+(u) ≤ deg+(v), and u ← v otherwise. Here deg+(u) and deg+(v) denote
the outdegree of u and v before the edge query is made.

Lemma 5 [3,19]. Let T be a tournament and S ⊆ V (T). Suppose an adversary
answers edge queries involving vertices u, v ∈ S using the pro-low strategy, i.e.,
it compares out-degrees within T [S]. If a vertex v in S achieves deg+S (v) = t, at
least t(t + 1)/2 edge queries must have been made by the algorithm.

Generalizing Lemma 5, Ajtai et al. [3] show that

Lemma 6 [3]. When playing against a pro-low adversary, if an algorithm finds
a vertex that reaches at least t vertices by a path of length at most d for d ≥ 1,
then at least Ω(t1+1/(2d−1)) edge queries must have been made.

Setting t = n gives the lower bound for finding a d-king. We generalize the above
lemma to show

Lemma 7. If an algorithm playing against the pro-low adversary finds a k-sized
d-cover for some k, d ≥ 1, then it must have made at least k(n/k)1+1/(2d−1) edge
queries.

30 A. Biswas et al.

Proof. Suppose the algorithm returns a set of vertices C = {v1, v2, v3, . . . , vk} as
the k sized d-cover of the entire tournament. Perform a breadth-first search from
the vertices of C with all vertices in C at level 0, those that have direct edges
from them at level 1 etc. The breadth-first search tree has d levels. Now, for each
vertex in level i (from d to 1) assign a unique vertex at level i − 1 from which
there is a direct edge to it. This partitions the vertices into k sets, where the
i-th set contains the vertex vi, and all vertices assigned to it from level 1, and all
vertices assigned to those level 1 vertices from level 2 and so on. Thus we have k
subtournaments T1, T2, . . . , Tk induced on the partition, and let si be the number
of vertices in the sub-tournament Ti. Note that vi has an at most d-length path
to every vertex in Ti and hence by Lemma 6, the number of edge queries made
in the tournament Ti is at least (si)1+1/(2d−1). Thus the total number of edge
queries done by all the vertices is at least

∑k
i=1[(si)

1+1/(2d−1)]. As
∑k

i=1 si = n,
we have that the number of edge queries made is at least k(n/k)1+1/(2d−1) using
Jensen’s inequalities (as

∑k
i=1[(si)

1+1/(2d−1)] attains its minimum when all the
si’s are the same as their average value which is n/k). 	

Note that this lower bound matches asymptotically the time bound in Theo-
rem 6, though the upper bound in Theorem6 is to find a d-cover of size at most
g(n)+k. Hence it follows that the bound of Theorem6 is optimal for k ≥ Ω(g(n))
or k ≥ ε lg n for any ε > 0.

4 Finding Kings

As mentioned in the introduction, it is known that O(n3/2) probes are sufficient
and Ω(n4/3) probes are necessary to find a king in a tournament on n vertices.
Narrowing this gap between upper and lower bound has been mentioned as
an open problem in literature [3,19]. In this section, we prove improved upper
bounds against weak adversaries.

4.1 Finding a King Against a Weak Adversary

Theorem 7. If the adversary follows a pro-low strategy as described in Defini-
tion 1 then we can find a king in O

(
n4/3

)
time.

Proof. Take a sample of 2n1/3 from the input V and find a vertex v that dom-
inates at least half of these vertices (that exists from Lemma 2) using a round-
robin tournament on the sample. Remove v and all vertices that lose to v from
V , and add v to the set F . Repeat this process of sampling and discarding ele-
ments, and adding elements to F , till there are at most n2/3 elements left in
V , which we call R. At this point F has f = n2/3 − n1/3 vertices. Perform a
round robin on all the vertices of F , and arrange vertices of F in non-decreasing
order of their out-degrees. Let v1, v2, . . . vf be the vertices of F in that order.
Let t1, t2, . . . , tn2/3 be the vertices in R. Now compare each ti with all vertices
in F in the same order. We first make the following claims.

Finding Distance d Dominating Sets in Tournaments 31

Claim. If for some i, ti wins the first q vertices of F and loses to vq+1, then ti+1

will win at least the first q + 1 vertices of F .

Proof. As ti+1 starts of exactly as ti when ti made no comparisons, it will
also win the first q comparisons of F . As ti lost to vq+1 at that time out-
degree(vq+1) ≥ out-degree(ti) at that time, which is the same as out-degree(ti+1)
now. But after the win out-degree(vq+1) is strictly more than out-degree(ti+1)
now, and so ti+1 will win vq+1 now, as the adversary plays the pro-low
strategy. 	

The following claim follows from previous claim and the fact that |R| > |F |, and
every vertex in F starts off with outdegree at least n1/3 and every vertex in R
starts with outdegree 0.

Claim. There exists a vertex in R that wins against all vertices of F .

Let F ′ be the set of all vertices in R that defeat everyone in F . Now the
algorithm finds a king k in the sub-tournament induced by F ′, and declares that
vertex as the king of the entire tournament.

Claim. The declared vertex k is a king of the entire tournament.

Proof. Clearly, k reaches all vertices of F ′ by a path of length at most 2. Let
x be a vertex in R\F ′. Then x has lost to some vertex y in F . Then k can
reach x through y as k has defeated all vertices of F . For the same reason, k
can reach all vertices of F by a direct edge. The vertex k can reach a vertex in
V \(R ∪ F) through a vertex in F , as such vertices are dominated directly by a
vertex in F . 	

The total number of comparisons made is clearly O

(
n4/3

)
.

The following corollary follows from Lemma 4 and Theorem 7.

Corollary 3. If the adversary follows a pro-low strategy as described in Defin-
ition 1 then we can find a d-king in O

(
n1+1/(2d−1)

)
time.

The above lemma implies that we need a completely different adversary strategy
to improve the lower bounds.

4.2 Verification of Kings

Lemma 8. Let T be a tournament of order n. Given a vertex v ∈ V (T), it takes
Ω

(
n2

)
edge queries to decide whether v is a king in T .

Proof. Consider the following adversary strategy. The adversary arbitrarily fixes
subsets A,B ⊆ V (T)\{v} such that |A| = �(n − 1)/2� and |B| = �(n − 1)/2�,
and then assigns edge directions such that N+(v) = B and N−(v) = A. The
remaining edge directions are assigned dynamically.

32 A. Biswas et al.

Suppose u ∈ A,w ∈ B, and the edge uw is queried. The following cases arise.

– There are other non-queried u–B edges: the adversary assigns the direction
u → w.

– All other u–B edges have been queried: the adversary assigns the direction
w → u.

For edges uw where u ∈ A and w ∈ A or u ∈ B and w ∈ B, the adversary answers
arbitrarily. Note that v directly reaches each vertex in N+(v) by a directed edge,
and it can only reach vertices in N−(v) through vertices in N+(v). For any vertex
u ∈ A, an algorithm cannot decide whether v can reach u until it queries all u–
B edges, since the status of v depends on how the adversary answers when the
last u–B edge query is made. By the same token, the algorithm cannot decide
whether v can reach all vertices of A unless it asks all edges between A and B.

Thus for every u ∈ A, �(n − 1)/2� queries must be made, i.e. a total of
�(n − 1)/2� · �(n − 1)/2� = Ω

(
n2

)
edge queries must be made to determine

whether v is a king. 	

5 Conclusions and Open Problems

We have investigated the complexity of finding above-guarantee sized d-
dominating sets in tournaments. While our algorithms are not very involved,
they are strengthened by the fact that the algorithms to find above Ω(lg n)
sized d-dominating sets are provably optimal. We have also provided some addi-
tional insights into the complexity of finding a d-king which may help narrow
the gap between upper and lower bound for the complexity of the problem. We
believe that our work will spur further work on developing above or below guar-
antee parameterizations in polynomially solvable problems. We end with some
specific problems from the work on tournaments.

– There is still a gap for the complexity of finding a d-king for d ≥ 2. We have
shown that to improve the upper bound, it is sufficient to improve the upper
bound for finding 2-kings. We don’t know whether one can find d-kings (for
d > 3) faster than finding 2-kings, which is the same as asking whether the
converse of Corollary 2 is true.

– Are the bounds in Theorem6 optimal for k < ε lg n, for d ≥ 2? For d = 1, we
know that finding a k-sized dominating set is W [2]-complete.

– Find the tight upper bound guarantee for the minimum number of vertices
in a dominating set in a tournament, and find the parameterized complexity
of parameterizing below the bound.

References

1. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter sub-
quadratic algorithms for radius and diameter in sparse graphs. In: Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, 10–12 January 2016, pp. 377–391 (2016)

Finding Distance d Dominating Sets in Tournaments 33

2. Acharya, J., Falahatgar, M., Jafarpour, A., Orlitksy, A., Suresh, A.T.: Maximum
selection and sorting with adversarial comparators and an application to density
estimation. Comput. Res. Repos. abs/1606.02786, 1–24 (2016)

3. Ajtai, M., Feldman, V., Hassidim, A., Nelson, J.: Sorting and selection with impre-
cise comparisons. ACM Trans. Algorithms 12(2), 19:1–19:19 (2016)

4. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, Hoboken (1992)
5. Balasubramanian, R., Raman, V., Srinivasaragavan, G.: Finding scores in tourna-

ments. J. Algorithms 24(2), 380–394 (1997)
6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
7. Garg, S., Philip, G.: Raising the bar for vertex cover: fixed-parameter tractability

above a higher guarantee. In: Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12
January 2016, pp. 1152–1166 (2016)

8. Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter
algorithms: a case study for longest path on interval graphs. In: Husfeldt, T.,
Kanj, I. (eds.) 10th International Symposium on Parameterized and Exact Com-
putation (IPEC 2015), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 43, pp. 102–113. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2015)

9. Graham, R.L., Spencer, J.H.: A constructive solution to a tournament problem.
Canad. Math. Bull. 14, 45–48 (1971)

10. Gutin, G., Yeo, A.: Constraint satisfaction problems parameterized above or below
tight bounds: a survey. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D.
(eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp.
257–286. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30891-8 14

11. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.:
Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms 11(2), 15:1–15:31 (2014)

12. Lu, X., Wang, D., Wong, C.K.: On the bounded domination number of tourna-
ments. Discret. Math. 220(1–3), 257–261 (2000)

13. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

14. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

15. Maurer, S.B.: The king chicken theorems. Math. Mag. 53(2), 67–80 (1980)
16. Megiddo, N., Vishkin, U.: On finding a minimum dominating set in a tournament.

Theor. Comput. Sci. 61, 307–316 (1988)
17. Moon, J.: Topics on tournaments. In: Selected Topics in Mathematics. Athena

series. Holt, Rinehart and Winston (1968)
18. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-

plexity of the V-C dimension. J. Comput. Syst. Sci. 53(2), 161–170 (1996).
http://dx.doi.org/10.1006/jcss.1996.0058

19. Shen, J., Sheng, L., Wu, J.: Searching for sorted sequences of kings in tournaments.
SIAM J. Comput. 32(5), 1201–1209 (2003)

http://dx.doi.org/10.1007/978-3-642-30891-8_14
http://dx.doi.org/10.1006/jcss.1996.0058

On Computational Aspects of Greedy
Partitioning of Graphs

Piotr Borowiecki(B)

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk, Poland

pborowie@eti.pg.gda.pl

Abstract. In this paper we consider a problem of graph P-coloring
consisting in partitioning the vertex set of a graph such that each of
the resulting sets induces a graph in a given additive, hereditary class
of graphs P. We focus on partitions generated by the greedy algorithm.
In particular, we show that given a graph G and an integer k deciding
if the greedy algorithm outputs a P-coloring with a least k colors is NP-
complete for an infinite number of classes P. On the other hand we get
a polynomial-time certifying algorithm if k is fixed and the family of
minimal forbidden graphs defining the class P is finite. We also prove
coNP-completeness of the problem of deciding whether for a given graph
G the difference between the largest number of colors used by the greedy
algorithm and the minimum number of colors required in any P-coloring
of G is bounded by a given constant. A new Brooks-type bound on the
largest number of colors used by the greedy P-coloring algorithm is given.

Keywords: Graph partitioning · Computational complexity · Graph
coloring · Greedy algorithm · Grundy number · Minimal graphs

1 Introduction and Problem Statement

We are interested, specifically, in partitions of the vertex set of simple, finite and
undirected graph in which each of the resulting sets induces a graph belonging
to a given additive, hereditary class of graphs. A class P of graphs is called
hereditary if for every graph G in the class all induced subgraphs of G belong
to P, and it is called additive if for each graph G all of whose components are
in P it follows that also G is in P. All classes of graphs considered in this paper
are additive and hereditary. It is well known that if a class P is additive and
hereditary, then it can be characterized by the family F (P) of connectedminimal
forbidden graphs consisting of graphs G such that G /∈ P but each proper induced
subgraph of G belongs to P (for graphs G and H we write H ≤ G if G contains
H, that is, if there exists an induced subgraph of G isomorphic to H). The family
F (P) should be distinguished from the family of minimal graphs in the class P

Supported by the Polish National Science Center grant DEC-2011/02/A/ST6/00201.

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 34–46, 2017.
DOI: 10.1007/978-3-319-59605-1 4

On Computational Aspects of Greedy Partitioning of Graphs 35

denoted by min≤P which consists of all graphs in P that do not contain any
graph from P as a proper induced subgraph.

Returning to the notion of partitions, a P-coloring of a graph G = (V,E) is a
partition (V1, . . . , Vk) of its vertex set V (G) such that each graph G[Vi] induced
by a color class Vi with i ∈ {1, . . . , k} belongs to the class P. Equivalently, every
P-coloring can be seen as a partition into P-independent sets, where a set of
vertices is P-independent if the graph induced by the vertices of that set belongs
to P. For example, if F (P) = {K2}, then we deal with the classical proper
coloring in which we simply partition the vertex set into independent sets. The
smallest k for which there exists some P-coloring of a graph G with k colors is
called the P-chromatic number of G and it is denoted by χP(G).

The greedy P-coloring algorithm (for brevity, we say the greedy algorithm)
colors the vertices of a graph G, one by one, in some order (v1, . . . , vn(G)) that
is independent of the algorithm. Following the order, the algorithm colors each
vertex vi using the smallest color such that its assignment to vi results in a P-
coloring of the graph induced by {v1, . . . , vi} (throughout the paper we assume
that P is a class for which deciding the membership in P is polynomial). A P-
coloring produced by the greedy algorithm is called a Grundy P-coloring. Note
that every Grundy P-coloring of a graph G with k colors can be seen as a surjec-
tion ϕ : V (G) → {1, . . . , k}. The number of colors used by the greedy algorithm
strongly depends on vertex ordering; with the largest number of colors denoted
by ΓP(G) and called the P-Grundy number of a graph G. By interpolation the-
orems of Cockayne et al. [7] the number of colors used by the greedy algorithm
can take any value from χP(G) to ΓP(G). For proper coloring, the notion of the
Grundy number is usually attributed to Christen and Selkow [6]. Considering
generalization of this notion we focus on the following problems.

Grundy P-Coloring
Input: A graph G and positive integer k.
Question: Does G have a Grundy P-coloring with at least k colors?

Grundy (P, k)-Coloring
Input: A graph G.
Question: Does G have a Grundy P-coloring with at least k colors?

Both problems have been intensively studied in context of proper coloring.
Goyal and Vishwanathan [10] and Zaker [17] proved that for proper coloring the
former problem is NP-complete. Does it also hold for every nontrivial fixed P? On
the other hand, for proper coloring, by finite basis theorem of Gyárfás et al. [11]
the latter problem admits a polynomial-time solution (for related concepts see
Zaker [17], Borowiecki and Sidorowicz [3]). Determining the Grundy number is
known to be polynomial, e.g., for trees [13] and P4-laden graphs [1]. For some
classes of graphs, e.g., interval graphs [16], complements of as well bipartite as
chordal graphs [12] and {P5,K4 − e}-free graphs [5], polynomial-time constant-
factor approximation algorithms are known. For a deeper discussion on approx-
imability and other aspects of the Grundy number we refer to [10,14,15].

In Sect. 3 of this paper we give a polynomial-time certifying algorithm for
Grundy (P, k)-Coloring when F (P) is finite (this strongly relies on structural

36 P. Borowiecki

properties related to critical partitions introduced in Sect. 2). In Sect. 4 we show
that Grundy P-Coloring is NP-complete for every class P such that F (P) =
{Kp} with p ≥ 3, while in Sect. 5 we prove that for every integer t ≥ 0 the
problem of the membership in H(P, t) = {G | ΓP(G) − χP(G) ≤ t} is coNP-
complete. We conclude the paper with a new Brooks-type bound on the P-
Grundy number generalizing and strengthening the bounds given in [2,18].

2 Motivation, Critical Partitions and Minimal Graphs

Describing the structural properties of critical partitions we step towards a gen-
eral technique that benefits from the knowledge of polynomial-time approxi-
mation algorithms solving diverse optimization problems for inputs in certain
graph classes. We use these algorithms to develop new polynomial-time approx-
imation algorithms that are applicable to all inputs in carefully constructed
superclasses of the above-mentioned classes and preserve the order of original
approximation ratios. More formally, let C(P, k) denote a class of graphs P-
colorable with at most k colors. Consider a minimization problem Π for which
there is a polynomial-time δ(n)-approximation algorithm A1 for inputs in P, and
assume that (V1, . . . , Vk) is an arbitrary P-coloring of G ∈ C(P, k). Moreover,
suppose that there exists a polynomial-time algorithm A2 that, given the outputs
of A1 for each of the k instances G[Vi], gives a solution of Π for G. A solution
that admits such an algorithm A2 is called compositive (note that the solutions
of various domination and coloring problems are trivially compositive). We do
not know, however, any simple realizations of this three-phase approach, since in
general the P-coloring problem is computationally hard [4] (with a sole excep-
tion of proper 2-Coloring) and our knowledge of F (C(P, k)) is very limited.
This directs our attention to a subclass G(P, k) of C(P, k), which consists of all
graphs for which ΓP(G) ≤ k. Since P ⊂ G(P, k) ⊂ C(P, k) for every k ≥ 2,
the algorithm PH that follows the above defined three phases and uses greedy
P-coloring in the first phase, works for all inputs in an extension G(P, k) of an
arbitrary class P and has an approximation ratio of the same order as A1 on P.

Proposition 1. If Π admits a polynomial-time δ(n)-approximation in P and its
solutions are compositive, then PH is a polynomial-time (k·δ(n))-approximation
algorithm for Π in G(P, k). ��

We say that a subset U of the vertices of a graph G is strongly P-dominating
in G if for every vertex v ∈ V (G) \ U there exists a set D ⊆ U such that
G[D ∪ {v}] ∈ F (P). For a given P-coloring (V1, . . . , Vk) of a graph G a vertex
v is called a Grundy vertex if v ∈ V1, or v ∈ Vi, i ≥ 2 and every color class Vj

with j < i contains a set Dj such that G[Dj ∪ {v}] ∈ F (P). Naturally, in every
Grundy P-coloring each vertex is a Grundy vertex.

Proposition 2. Let k ≥ 2 and let H be an induced subgraph of a graph G.
If ΓP(H) ≥ k − 1 and V (G) contains a nonempty P-independent set I that is
disjoint from V (H) and strongly P-dominating in G[I ∪V (H)], then ΓP(G) ≥ k.

On Computational Aspects of Greedy Partitioning of Graphs 37

G1 G2 G3 G4

Fig. 1. The graphs G1, . . . , G4 from Example 1.

Proof. Let V (H) = {x1, . . . , xn(H)}, I = {y1, . . . , yt} and let (x1, . . . , xn(H)) be
an ordering of V (H) that forces the greedy algorithm to produce P-coloring ϕ of
the graph H with k−1 colors. Now, consider the assignment of colors produced by
the same algorithm for the following vertex ordering (y1, . . . , yt, x1, . . . , xn(H)).
Naturally, since I is strongly P-dominating in G[I ∪ V (H)], for each vertex
x ∈ V (H) there exists a subset D of I such that G[D ∪ {x}] ∈ F (P). Moreover,
since I is P-independent and no vertex in I is preceded by a vertex in V (H), all
vertices in I will be colored 1. Consequently, for each vertex x of H the algorithm
will use color ϕ(x) + 1. This yields ΓP(G) ≥ k, since G[I ∪ V (H)] ≤ G. ��

The above proposition reveals the importance of specific bipartition of the
vertex set in which both parts have certain coloring or domination properties.
We focus on how they come into play in graphs that are minimal with respect
to the P-Grundy number under taking induced subgraphs. For k ≥ 1 by U(P, k)
we denote the class of graphs G for which ΓP(G) ≥ k. Naturally U(P, k) =
I \ G(P, k − 1), where I denotes the class of all graphs. In what follows Ck(P)
stands for the family of minimal graphs in the class U(P, k), that is, the graphs
for which ΓP(G) = k and ΓP(G − v) < k, where v is an arbitrary vertex of
G. Note that C1(P) = {K1}, C2(P) = F (P) and that forbidding all graphs
in Ck(P) defines G(P, k − 1); more formally Ck(P) = F (G(P, k − 1)). Minimal
graphs play a crucial role in the greedy coloring process; in fact they determine
the number of colors used in the worst case, and they characterize classes G(P, k).
For proper coloring the classes G(P, 2) and G(P, 3) were characterized by Gyárfás
et al. [11] who proved that C3(P) = {K3, P4} and listed all 22 graphs in C4(P).

The key notion in our analysis of minimal graphs is a class F(P, k) consisting
of all graphs G for which there exists a partition (I, C) of V (G) such that
I is nonempty, P-independent and strongly P-dominating in G, and G[C] ∈
Ck−1(P), where k ≥ 2. Such a partition is called a critical partition of graph G.
Note that critical partition of G is not necessarily unique.

Example 1. Consider the graphs G1, . . . , G4 in Fig. 1 and the class P for which
F (P) = {K3}. The graphs G1 and G2 are the elements of C3(P); their Grundy
P-coloring with 3 colors can be easily obtained using Proposition 2 with black
vertices forming the set I. Additionally, if we denote by C the set of white
vertices, then we get a critical partition (I, C). It is not hard to verify that
deleting any vertex results in the P-Grundy number equal to 2. The graphs
G3 and G4 belong to F(P, 4), since they admit critical partitions with black
and white vertices forming the sets I and C, respectively. Indeed, white vertices

38 P. Borowiecki

induce G1 or G2, while black ones do not induce K3 which means that I is
P-independent. To see that I is strongly P-dominating observe that each white
vertex belongs to a triangle with two black vertices. Again, it is not hard to see
that G3 ∈ C4(P). Consequently, since G3 ≤ G4, we get G4 ∈ F(P, 4) \ C4(P).

Theorem 1. If P is a class of graphs and k ≥ 2 is an integer, then

Ck(P) = min≤F(P, k).

Proof. Recall that Ck(P) is defined as a family of minimal graphs in the class
U(P, k) in which for every graph G it holds ΓP(G) ≥ k. If G ∈ F(P, k), then
by the definition of the class F(P, k) and Proposition 2 we have ΓP(G) ≥ k.
Thus F(P, k) ⊆ U(P, k). Consequently, for every graph H ′ ∈ min≤ F(P, k)
there exists a graph H ∈ min≤ U(P, k) such that H ≤ H ′. To finish the proof it
remains to show that H ∈ F(P, k). Note that by minimality ΓP(H) = k. Now,
if (V1, . . . , Vk) is an arbitrary Grundy P-coloring of H with k colors, we can
simply construct a partition (I, C) of V (H) by setting I = V1 and C =

⋃k
i=2 Vi.

Naturally, the set I of the partition is nonempty, P-independent, and by the
definition of Grundy P-coloring it is also strongly P-dominating in H. Since
(V2, . . . , Vk) is a Grundy P-coloring of H[C], we have ΓP(H[C]) ≥ k − 1. We
shall show that H[C] ∈ Ck−1(P). Suppose, contrary to our claim, that there
exists a vertex v ∈ C and an ordering of C ′ = C \ {v} that forces the algorithm
to color H[C ′] with k − 1 colors. Consequently, from Proposition 2 applied to I
and H[C ′] it follows that ΓP(H[I ∪ C ′]) ≥ k. This contradicts minimality of H
in the definition of Ck(P). Hence H ∈ F(P, k). ��

3 The Complexity of Grundy (P, k)-Coloring

In what follows, we have to carefully distinguish between the two important
cases of finite and infinite family F (P).

Proposition 3. Let P be a class of graphs with finite F (P). If α and β denote
the minimum and maximum order of a graph in F (P), respectively, then for
every k ≥ 1 and every graph G ∈ Ck(P) it holds (α−1)(k−1)+1 ≤ n(G) ≤ βk−1.

Proof. We use induction on k. The above inequalities are evidently fulfilled for
k ∈ {1, 2}. Assume that the statement is true for the parameters smaller than
k, where k ≥ 3. Let G ∈ Ck(P). By Theorem1 there exists a partition (I, C) of
V (G) such that I is nonempty, P-independent and strongly P-dominating in G.
Moreover G[C] ∈ Ck−1(P), which by the induction hypothesis implies

(α − 1)(k − 2) + 1 ≤ |C| ≤ βk−2. (1)

Since V (G) = I ∪ C and I ∩ C = ∅, the proof will be completed by showing
α − 1 ≤ |I| ≤ βk−2(β − 1). The inequality α − 1 ≤ |I| is obvious because C is
nonempty and I is strongly P-dominating in G. Suppose to the contrary that
|I| ≥ βk−2(β −1)+1. Let ϑ : C → 2I be a mapping that assigns to each x ∈ C a

On Computational Aspects of Greedy Partitioning of Graphs 39

subset ϑ(x) of I such that G[ϑ(x)∪ {x}] ∈ F (P). Note that the existence of the
set ϑ(x) follows immediately by the assumption that I is strongly P-dominating
in G. Naturally |ϑ(x)| ≤ β − 1 for each x ∈ C and the sets ϑ(x1), ϑ(x2) need not
be distinct when x1 = x2. Let I ′ denote the following union

⋃
x∈C ϑ(x). Thus

|I ′| =
∣
∣
⋃

x∈C

ϑ(x)
∣
∣ ≤

∑

x∈C

|ϑ(x)| ≤ (β − 1)|C|
(1)

≤ (β − 1)βk−2.

Consequently as a proper subset of I, the set I ′ is P-independent in G and hence
it is P-independent in each induced subgraph of G. Therefore, if G′ = G[I ′ ∪C],
then I ′ is strongly P-dominating in G′ by its definition, and it is P-independent
in G′ by our earlier consideration. Finally, it follows that G′ ∈ F(P, k) and
that G′ is a proper induced subgraph of G. This contradicts the fact that by
Theorem1 the graph G is minimal in F(P, k). ��

In what follows we need the class T (P, k) of forcing (P, k)-trees. Namely,
if k = 2, then T (P, 2) = C2(P). For k ≥ 3 let B be a graph in T (P, k − 1)
and let F1, . . . , Fn(B) be disjoint graphs, each being isomorphic to a graph in
F (P). A graph G belongs to T (P, k) if it can be obtained from B,F1, . . . , Fn(B)

by an identification of each vertex of B with an arbitrary vertex of some graph
Fj , j ∈ {1, . . . , n(B)} in such a way that every Fj takes part in exactly one
identification. As the root of a forcing (P, k)-tree we take any vertex of B ∈
T (P, 2). It is known that all graphs in T (P, k) are minimal in F(P, k).

Theorem 2. For every class P and every integer k ≥ 2, the set Ck(P) is finite
if and only if F (P) is finite.

Proof. If F (P) is finite, then simply observe that by Proposition 3 the set Ck(P)
is finite, too. Now, suppose to the contrary that F (P) is infinite and that for some
k the set Ck(P) is finite. Since C2(P) = F (P), it remains to consider k ≥ 3. Let
n∗ be the largest order of a graph in Ck(P) and let F ∈ F (P) be a graph such
that n(F) > k−1

√
n∗. Note that by the finiteness of Ck(P) and the infiniteness of

F (P) such a number and such a graph always exist. Next, consider Tk ∈ T (P, k)
constructed in k − 1 steps, starting with T2 = F , and such that for each step
i ∈ {2, . . . , k − 1}, in which we obtain Ti+1, it holds F1 = · · · = Fn(Ti) = F .
Since Tk ∈ Ck(P), the construction of Tk and the assumption on n(F) imply
n(Tk) = (n(F))k−1 > (k−1

√
n∗)k−1 = n∗. A contradiction with a choice of n∗. ��

The above finite basis theorem allows for the proof of the following result on
the computational complexity of Grundy (P, k)-Coloring.

Theorem 3. If P is a class with finite F (P) and k > 0 is a fixed integer, then
Grundy (P, k)-Coloring admits a polynomial-time certifying algorithm.

Proof. For a fixed k by Theorem2 the number of graphs in Ck(P) is finite.
Moreover, checking whether a graph H of order p is an induced subgraph of a
given graph G of order n can be done by brute force in O(np) time. Since for

40 P. Borowiecki

finite F (P) by Proposition 3 the order of any graph in Ck(P) is bounded from
above by βk−1, we can check if H is contained in G in O(nβk−1

) time. If G does
not contain a graph in Ck(P), then application of the greedy algorithm results
in a Grundy P-coloring with at most k − 1 colors, while in the opposite case,
i.e., when ΓP(G) ≥ k we get an induced subgraph (a Yes certificate) that can
be used to force a Grundy P-coloring of G with at least k colors. ��

For the state-of-the-art survey on the computational complexity of coloring
graphs with forbidden subgraphs, including certification, see Golovach et al. [9].

4 The Complexity of Grundy P-Coloring

In this section we prove that Grundy P-Coloring is NP-complete for every
class P defined by F (P) = {Kp} with p ≥ 3. In our proof we use a polynomial-
time reduction from 3-Coloring of planar graphs with vertex degree at most 4
(for NP-completeness see Garey et al. [8]). In fact we need a slight strengthening
of their result consisting in restricting the class to planar graphs with vertex
degree at most 4, size m ≡ 1(mod r) and every vertex belonging to at least one
triangle; the class of such graphs we denote by L(r) (the proof of this result is
omitted due to a limited space).

Theorem 4. For every fixed r ≥ 2, 3-Coloring is NP-complete in L(r). ��

Theorem 5. For every class P such that F (P) = {Kp} with p ≥ 3, Grundy
P-Coloring is NP-complete.

In order to prove the above theorem we give Construction 1 and prove several
lemmas. Let p ≥ 3,F (P) = {Kp}, and let G be an instance of 3-Coloring in
L(p − 1). We construct a graph G′ and calculate an integer k such that G′ has
a Grundy P-coloring with k colors if and only if G has a proper 3-coloring.

Construction 1. First, we define the vertices of G′. For each vertex vi ∈ V (G),
i ∈ {1, . . . , n(G)} create a set of vertices Ui = {ui

1, . . . , u
i
p−1}. Similarly, for each

edge ei ∈ E(G), i ∈ {1, . . . , m(G)} create a set of vertices Wi = {wi
1, . . . , w

i
p−1}

and a single vertex xi. Let Q denote the set {x1, . . . , xm(G)} and let U =⋃
1≤i≤n(G) Ui, W =

⋃
1≤i≤m(G) Wi. Finally, set V (G′) = Q ∪ W ∪ U . Now,

we define the edges of G′. First, create all edges so that Q induces a complete
graph. Then, for every edge et ∈ E(G), t ∈ {1, . . . , m(G)} with endvertices vi, vj

join the corresponding vertex xt with all vertices in Ui, Uj and Wt, and create
all edges so that Ui ∪ Wt and Uj ∪ Wt induce complete graphs. In what follows
a graph induced in G′ by Wt ∪ Ui ∪ Uj ∪ {xt} is denoted by Xt,i,j and called the
gadget corresponding to the edge et. The construction is completed by setting
k = �m(G)/(p − 1)� + 3. For an example of the construction see Fig. 2. ��

Property 1. Let Xt,i,j be a gadget and let H = Kp with p ≥ 3. If V (H)∩Wt =
∅, then (a) V (H) ⊆ V (Xt,i,j), (b) V (H) ⊆ Uτ ∪ Wt ∪ {xt}, when H contains a
vertex u ∈ Uτ , τ ∈ {i, j}. ��

On Computational Aspects of Greedy Partitioning of Graphs 41

v1

v2

v3

v4

e5

e3e1

e4

e2(2)

(1)

(3)

(1)

x4

u4
1

u4
2

u1
1

u1
2

w4
1 w4

2

x1 x2 x3 x4 x5

U4

U3

U2

U1

W1

W2

W3

W4

W5

(4) (4) (5) (6) (5)

(1)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

(2)

GG

X4,1,4

Q

Fig. 2. An example of Construction 1 for F (P) = {K3}; the numbers in braces denote
colors, while the lines in a drawing of G′ represent joins.

We say that in a P-colored graph H a set U ⊆ V (H) uses color � if every
vertex in U has color �.

Lemma 1. If G has a proper coloring with 3 colors, then G′ admits a Grundy
P-coloring with k colors.

Proof. Suppose that ϕ is a proper 3-coloring of G. In order to define the cor-
responding Grundy P-coloring ϕ′ of G′ we set ϕ′(u) = ϕ(vi) for all vertices u
in the set Ui corresponding to the vertex vi of G. Consequently, each set Ui

uses one of the colors in {1, 2, 3}, which is feasible since U is P-independent.
Let Xt,i,j be an arbitrary gadget in G′. Since Xt,i,j corresponds to the edge vivj

and ϕ is proper, the sets Ui and Uj use distinct colors, say a and b, respectively.
Thus for every vertex w ∈ Wt its colored neighbors in Ui ∪Uj use colors in {a, b}
and hence the color c ∈ {1, 2, 3} \ {a, b} is feasible for w. We set ϕ′(w) = c.
Following Construction 1, for every vertex w ∈ Wt it holds G′[Ui ∪ {w}] = Kp

and G′[Uj ∪ {w}] = Kp. It remains to observe that independently of color per-
mutation, each color smaller than ϕ′(w) is used by Ui or Uj . Hence, if ϕ′(w) = c,
then w is a Grundy vertex. Now, without loss of generality consider a vertex u
in Ui. Since by assumption every vertex of G belongs to a triangle, say induced
by {vi, vj , vτ}, the colors used by the corresponding sets Ui, Uj and Uτ are dis-
tinct and uniquely determine distinct colors used by the sets Wt and Wt′ that
correspond to the edges vivj and vivτ , respectively. Naturally, u is a Grundy
vertex, which follows by similar argument as above (note G′[Wt ∪{u}] = Kp and
G′[Wt′ ∪{u}] = Kp). Thus we have proved that ϕ′|W∪U is a Grundy P-coloring.
It remains to extend ϕ′|W∪U to V (G′) by processing vertices of Q in an arbitrary
order and P-coloring them greedily. Since for each xt ∈ Q the sets Wt, Ui, Uj

of Xt,i,j use three distinct colors in {1, 2, 3} and G′[A ∪ {xt}] = Kp for every
A ∈ {Ui, Uj ,Wt}, and G′[D ∪ {xt}] = Kp for every (p − 1)-element subset D of

42 P. Borowiecki

Q, a simple inductive argument shows that every (p−1)st vertex of Q new color
is introduced with the largest one achieving �m(G)/(p−1)�+3. For an example
see Fig. 2. ��
Lemma 2. If ϕ′ is a Grundy P-coloring of a graph G′ with k ≥ 6 colors, then
ϕ′(v) ≤ 3 if and only if v ∈ U ∪ W . ��
The proof of Lemma2 is rather technical so we skip it due to a limited space. Let
V1, V2 be two nonempty vertex sets of the same cardinality, and let �1, �2 be two
distinct colors. We say that V1, V2 mix colors �1 and �2 if there exists a partition
(A1, A2) of V1 ∪V2 such that |A1| = |A2|, A1 = Vi and Ai uses �i, i ∈ {1, 2}. The
next lemma says that certain vertex sets of G′ cannot mix colors.

Lemma 3. Let Xt,i,j be an arbitrary gadget in G′. If ϕ′ is a Grundy P-coloring
of a graph G′ with k ≥ 6 colors, then the sets Ui, Uj and Wt of Xt,i,j use pairwise
distinct colors in {1, 2, 3}.
Proof. First we show that V (Xt,i,j)\{xt} contains the three sets such that each
of them uses a distinct color in {1, 2, 3}. By Lemma2 we have ϕ(xt) ≥ 4. Hence,
since xt is a Grundy vertex, for each � ∈ {1, 2, 3} there exists a set D� that uses
color � in coloring ϕ′ and G′[D� ∪ {xt}] = Kp. By the same claim it follows that
each of these sets is contained in NG′(xt)∩ (U ∪W) while from the construction
of G′ it is easy to see that NG′(xt) ∩ (U ∪ W) = V (Xt,i,j) \ {xt}. Clearly, the
sets D� are pairwise disjoint and hence by their cardinalities it follows that
D1 ∪ D2 ∪ D3 = V (Xt,i,j) \ {xt}. It remains to prove that {D1,D2,D3} =
{Ui, Uj ,Wt}. Using Property 1(b) it is not hard to argue that for every gadget
Xt,i,j , considered independently of other gadgets, either (a) Ui, Uj ,Wt use distinct
colors in {1, 2, 3}, or (b) Ui,Wt (resp. Uj ,Wt) mix colors a, b ∈ {1, 2, 3} and Uj

(resp. Ui) uses the color in {1, 2, 3} \ {a, b}. Now, we show that if one considers
Xt,i,j as a subgraph of G′, then only the former condition is feasible. Let vi be
an arbitrary vertex of G. By assumption vi belongs to a triangle, say induced
by vi, vj and vτ . Let Xt,i,j , Xt′,i,τ and Xt′′,j,τ be the gadgets corresponding
to the edges of this triangle. Suppose to the contrary that Ui, Wt mix colors
a, b ∈ {1, 2, 3}. Following (b) for Xt′,i,τ we get that Ui,Wt′ have to mix a and b.
Again by (b) applied to Xt,i,j and Xt′,i,τ , it follows that Uj and Uτ have to use
the third color, say c. This results in 2(p − 1) vertices of Xt′′,j,τ that use color
c and hence contradicts the property that V (Xt′′,j,τ) contains the three sets of
cardinality p − 1 such that each of them uses a distinct color in {1, 2, 3}. ��
Lemma 4. If G′ has a Grundy P-coloring with k colors, then G admits a proper
coloring with 3 colors.

Proof. By the construction of G′, each set Ui of G′ corresponds to a unique
vertex vi of G, i ∈ {1, . . . , n(G)}. Let ϕ′ be a Grundy P-coloring of G′ with k
colors and let �i denote the color used by the set Ui in ϕ′. In order to define an
appropriate proper coloring ϕ of the graph G with 3 colors, for each vertex vi

of G we set ϕ(vi) = �i. From Lemma3 it follows that �i ∈ {1, 2, 3} and that for
every edge et = vivj of G the corresponding sets Ui, Uj of the gadget Xt,i,j use
distinct colors. Thus ϕ is a proper coloring of G with 3 colors. ��

On Computational Aspects of Greedy Partitioning of Graphs 43

Proof of Theorem 5. If F (P) is finite, we can use the arguments similar to
those in the proof of Theorem3 to show that a certificate function ϕ : V (G) → N

can be verified in polynomial time for being a Grundy P-coloring with k colors.
Hence Grundy P-Coloring belongs to NP. Now, Lemmas 1 and 4, and the
fact that Construction 1 is polynomial in the size of G imply NP-hardness of the
problem, which finishes the proof. ��

5 coNP-Completeness of the Membership in H(P, t)

In this section we prove that the problem of deciding the membership in the
class H(P, t) is coNP-complete for every t ≥ 0 and every class P for which
F (P) = {Kp} with p ≥ 3. We present a polynomial-time reduction from Grundy
P-Coloring of graphs in the class Q(p−1), where by Q(p−1) we mean a class of
graphs obtained by the application of Construction 1 to all graphs G in L(p− 1)
for which m(G) ≥ 4p − 3 (note that such a restriction on the size of graphs does
not influence the hardness of Grundy P-Coloring, i.e., it remains NP-complete
even in Q(p−1)). Before proving the hardness of the above membership problem
we need some facts on the P-Grundy number of graphs in Q(p − 1).

Lemma 5. Let P be a class of graphs such that F (P) = {Kp} with p ≥ 3. If G′

is a graph in Q(p − 1), then χP(G′) = �ω(G′)/(p − 1)�. ��

Remark 1. Note that if m(G) ≥ 4p − 3, then ω(G′) = m(G) and hence
χP(G′) = k − 3. Thus, the problem of determining the P-Grundy number of
graphs in Q(p−1) can be solved in polynomial time. Moreover, since by Lemma1
we have ΓP(G′) ≥ k, for every graph G′ ∈ Q(p − 1) it holds χP(G′) < ΓP(G′).

Theorem 6. If P is a class of graphs such that F (P) = {Kp} with p ≥ 3, then
for every t ≥ 0 the problem of the membership in H(P, t) is coNP-complete.

Proof. In order to show that our problem belongs to coNP it is enough to observe
that a graph does not belong to H(P, t) if and only if it admits two Grundy P-
colorings with k1 and k2 colors respectively, and k2 > k1 + t. Equivalently, two
orderings of the vertex set leading to the above-mentioned colorings could also
serve as an appropriate No certificate. Clearly, due to the general assumption
that the membership in P can be checked in polynomial time, the problem of
the verification of our certificate is also polynomial.

Now, we present a polynomial-time reduction from Grundy P-Coloring of
graphs in Q(p − 1) to the problem of the membership in I \ H(P, t). Given an
arbitrary instance (G,κ) of the former problem, for every t ≥ 0 we construct a
graph G′ such that G′ /∈ H(P, t) if and only if ΓP(G) ≥ κ.

Construction 2. First, for a given graph G with the vertex set {v1, . . . , vn(G)}
we construct a graph Ht. Let T1, . . . , Tn(G) be disjoint graphs such that each of
them is isomorphic to the forcing (P, t+1)-tree T (note that since F (P) = {Kp},
such a graph T is unique) and let xi denote the root of Ti, i ∈ {1, . . . , n(G)}. The
graph Ht we construct from the graphs G,T1, . . . , Tn(G) by the identification of

44 P. Borowiecki

each vertex vi of G with the root xi of the corresponding Ti, i ∈ {1, . . . , n(G)}.
Next, following Lemma5 we calculate χP(G). If χP(G) ≥ κ, then we set G′ = Ht.
On the other hand, if χP(G) < κ, then to construct G′ we take a complete graph
K of order κ(p−1) and a set S ⊆ V (K) such that |S| = p−1 and join each vertex
of Ht with all vertices in S. Since the order of G′ is at most n(G)·pt+κ = O(n(G))
and by Lemma5 determining χP(G) admits a polynomial-time algorithm, the
graph G′ can be constructed in polynomial time. ��

In what follows we use the following properties of Ht. Namely, for every t ≥ 0:
(i) χP(Ht) = χP(G), (ii) ΓP(Ht) = ΓP(G) + t. The former follows easily by the
fact that every forcing (P, t + 1)-tree admits a P-coloring with 2 colors. For a
lower bound in the latter one it is enough to consider one of the “from the leaves
up” orderings, that forces the greedy algorithm to use t + 1 colors on each of
the forcing (P, t + 1)-trees T1, . . . , Tn(G), while an upper bound follows by the
analysis of graphs F in Ck(P) contained in Ht and such that k > χP(F).

Suppose that χP(G) ≥ κ. Naturally, χP(G) ≥ κ implies ΓP(G) ≥ κ and
hence (G,κ) is a Yes instance of Grundy P-Coloring. Since by Remark 1
for every graph G ∈ Q(p − 1) it holds χP(G) < ΓP(G), by (i) and (ii) (recall
G′ = Ht) we get χP(G′) = χP(G) < ΓP(G) = ΓP(G′)− t. Thus G′ /∈ H(P, t); in
other words G′ is a Yes instance of the problem of the membership in I\H(P, t).

Now, assume that χP(G) < κ. Let us consider graph H ′ = Ht+G′[S]. It is not
hard to see that χP(H ′) ≤ χP(Ht) + 1 and hence by (i) we easily get χP(H ′) ≤
χP(G) + 1. On the other hand, observe that χP(H ′) ≥ �ω(H ′)/(p − 1)�. Since
ω(H ′) = ω(Ht)+p−1 and ω(Ht) = ω(G), we have χP(H ′) ≥ �ω(G)/(p−1)�+1,
which, by Lemma5, results in χP(H ′) ≥ χP(G)+1. Finally, χP(H ′) = χP(G)+1.
Now, consider G′ and observe that χP(G′) = max{χP(H ′), χP(K)}. Hence, since
χP(K) = κ and by assumption χP(G) < κ, we get χP(G′) = max{χP(G) +
1, κ} = κ. Moreover, by Proposition 2 and simple analysis of maximum degrees of
appropriate subgraphs of G′ we obtain ΓP(H ′) = ΓP(Ht)+ 1. Similar argument
results in ΓP(G′) = max{ΓP(H ′), ΓP(K)}, and since ΓP(K) = κ and from (ii)
it follows that ΓP(Ht) = ΓP(G)+ t, we obtain ΓP(G′) = max{ΓP(G)+ t+1, κ}.
Now, let us continue by considering the two cases. If ΓP(G) ≥ κ, then ΓP(G′) ≥
max{κ+ t+ 1, κ} = κ+ t+ 1 > χP(G′) + t, which implies G′ /∈ H(P, t). On the
other hand, if ΓP(G) < κ, then ΓP(G′) ≤ max{κ−1+t+1, κ} = κ+t = χP(G′)+t
and hence G′ ∈ H(P, t). ��

6 An Upper Bound on the P-Grundy Number

We conclude our paper with a new upper bound on the P-Grundy number. For
a vertex v of a graph G we use D(G, v) to denote the family of all subsets of
V (G) \ {v} such that for every D in D(G, v) it holds G[D ∪ {v}] ∈ F (P). The
P-degree of a vertex v of G, denoted by dG(P, v), we mean the cardinality of a
largest subfamily of D(G, v) consisting of pairwise disjoint sets. A natural upper
bound ΓP(G) ≤ maxv∈V (G) dG(P, v) + 1 follows directly from the greedy rule.
This can be significantly improved by careful analysis of a specific function on

On Computational Aspects of Greedy Partitioning of Graphs 45

the vertex set of a graph. Let φ0
G(P, v) = dG(P, v). For every integer r ≥ 1, let

φr
G(P, v) be the largest k for which there exist k pairwise disjoint sets D1, . . . , Dk

in D(G, v) such that for each of them λr−1
G (Di) ≥ i, where λr−1

G (Di) denotes the
(r−1)st intensity of Di defined as follows λr−1

G (Di) = min{φr−1
G (P, u) | u ∈ Di}.

A simple inductive argument shows that φr
G(P, v) ≤ φr−1

G (P, v) for every ver-
tex v and every r ≥ 1. This implies the existence of an integer t ≥ 0 such
that φt

G(P, v) = φr
G(P, v) for every vertex v and every r ≥ t. Thus φt

G(P, v)
is uniquely determined. The potential of a vertex v, denoted by φG(P, v),
is given by φG(P, v) = φt

G(P, v), while ΦP(G) stands for the potential of a
graph G, defined by ΦP(G) = max{φG(P, v) | v ∈ V (G)}. Using the properties
of minimal graphs (see Sect. 2) it is possible to prove the following upper bound
on ΓP(G).

Theorem 7. For every class P and every graph G it holds

ΓP(G) ≤ ΦP(G) + 1.

It is also not hard to prove that for every η > 0 there exists an infinite
number of graphs G for which max{dG(P, v) | v ∈ V (G)} − ΦP(G) > η.

Acknowledgements. Special thanks to D. Dereniowski, E.Drgas-Burchardt and
anonymous referees for their remarks on preliminary version of this paper, and to
S. Vishwanathan for sending the manuscript [10].

References

1. Araujo, J., Linhares-Sales, C.: On the Grundy number of graphs with few P4’s.
Discret. Appl. Math. 160(18), 2514–2522 (2012). doi:10.1016/j.dam.2011.08.016

2. Borowiecki, P., Rautenbach, D.: New potential functions for greedy independence
and coloring. Discret. Appl. Math. 182, 61–72 (2015). doi:10.1016/j.dam.2013.12.
011

3. Borowiecki, P., Sidorowicz, E.: Dynamic coloring of graphs. Fund. Inform. 114(2),
105–128 (2012). doi:10.3233/FI-2012-620

4. Brown, J.I.: The complexity of generalized graph colorings. Discret. Appl. Math.
69(3), 257–270 (1996). doi:10.1016/0166-218X(96)00096-0

5. Choudum, S.A., Karthick, T.: First-Fit coloring of {P5,K4−e}-free graphs. Discret.
Appl. Math. 158(6), 620–626 (2010). doi:10.1016/j.dam.2009.12.009

6. Christen, C.A., Selkow, S.M.: Some perfect coloring properties of graphs. J. Comb.
Theory Ser. B 27(1), 49–59 (1979). doi:10.1016/0095-8956(79)90067-4

7. Cockayne, E.J., Miller, G.G., Prins, G.: An interpolation theorem for partitions
which are complete with respect to hereditary properties. J. Comb. Theory Ser. B
13, 290–297 (1972)

8. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph
problems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

9. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the complexity
of coloring graphs with forbidden subgraphs. J. Graph Theory 84, 331–363 (2017)

10. Goyal, N., Vishwanathan, S.: NP-completeness of undirected Grundy numberings
and related problems (1998, unpublished manuscript)

http://dx.doi.org/10.1016/j.dam.2011.08.016
http://dx.doi.org/10.1016/j.dam.2013.12.011
http://dx.doi.org/10.1016/j.dam.2013.12.011
http://dx.doi.org/10.3233/FI-2012-620
http://dx.doi.org/10.1016/0166-218X(96)00096-0
http://dx.doi.org/10.1016/j.dam.2009.12.009
http://dx.doi.org/10.1016/0095-8956(79)90067-4

46 P. Borowiecki

11. Gyárfás, A., Király, Z., Lehel, J.: On-line 3-chromatic graphs II. Critical graphs.
Discret. Math. 177(1–3), 99–122 (1997). doi:10.1016/S0012-365X(96)00359-7

12. Gyárfás, A., Lehel, J.: First-Fit and on-line chromatic number of families of graphs.
Ars Comb. 29C, 168–176 (1990)

13. Hedetniemi, S.M., Hedetniemi, S.T., Beyer, T.: A linear algorithm for the Grundy
(coloring) number of a tree. Congr. Numer. 36, 351–363 (1982)

14. Kierstead, H.A.: Coloring graphs on-line. In: Fiat, A., Woeginger, G.J. (eds.)
Online Algorithms. LNCS, vol. 1442, pp. 281–305. Springer, Heidelberg (1998).
doi:10.1007/BFb0029574

15. Kortsarz, G.: A lower bound for approximating Grundy numbering. Discret. Math.
Theor. Comput. Sci. 9, 7–22 (2007)

16. Narayanaswamy, N.S., Babu, R.S.: A note on first-fit coloring of interval graphs.
Order 25(1), 49–53 (2008). doi:10.1007/s11083-008-9076-6

17. Zaker, M.: Results on the Grundy chromatic number of graphs. Discret. Math.
306(23), 3166–3173 (2006). doi:10.1016/j.disc.2005.06.044

18. Zaker, M.: New bounds for the chromatic number of graphs. J. Graph Theory
58(2), 110–122 (2008). doi:10.1002/jgt.20298

http://dx.doi.org/10.1016/S0012-365X(96)00359-7
http://dx.doi.org/10.1007/BFb0029574
http://dx.doi.org/10.1007/s11083-008-9076-6
http://dx.doi.org/10.1016/j.disc.2005.06.044
http://dx.doi.org/10.1002/jgt.20298

Maximum Edge Bicliques in Tree Convex
Bipartite Graphs

Hao Chen and Tian Liu(B)

Key Laboratory of High Confidence Software Technologies (MOE),
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, China
lt@pku.edu.cn

Abstract. We show that the computational complexity of the maximum
edge biclique (MEB) problem in tree convex bipartite graphs depends
on the associated trees. That is, MEB is NP-complete for star convex
bipartite graphs, but polynomial time solvable for tree convex bipartite
graphs whose associated trees have a constant number of leaves. In partic-
ular, MEB is polynomial time solvable for triad convex bipartite graphs.
Moreover, we show that the same algorithm strategy may not work for
circular convex bipartite graphs, and triad convex bipartite graphs are
incomparable with respect to chordal bipartite graphs.

Keywords: Maximum edge biclique · Tree convex bipartite graphs ·
Star convex bipartite graphs · Triad convex bipartite graphs ·
NP-completeness · Polynomial-time

1 Introduction

In the maximum edge biclique (MEB) problem, a bipartite graph G = (A,B,E)
and a positive integer k are given, the question is to decide whether there exist
two subsets R ⊆ A and S ⊆ B such that, |R| ∗ |S| ≥ k and (R,S) induces a com-
plete bipartite subgraph (biclique) in G. MEB was firstly introduced in [6] and
shown NP-complete for bipartite graphs in [27]. MEB has many applications in
molecular biology, web community discovery, manufacturing optimization, text
mining, and conjunctive clustering, see e.g. [1,11,26]. Polynomial time algorithms
for MEB in convex bipartite graphs and chordal bipartite graphs were developed
in [2,7,8,10,26]. An algorithm of MEB for random graphs was developed in [11].
The (in)approximability of MEB was also investigated in [3,9,12].

In a tree convex bipartite graph G = (A,B,E), there is an associated tree
T = (A,F) such that, for each vertex b in B, its neighborhood NG(b) induces
a subtree on T . When the associated tree T is a star (a number of edges with
a common end) or a triad (three paths with a common end), the tree convex
bipartite graph is called star convex or triad convex, respectively. Tree convex

T. Liu—Partially supported by Natural Science Foundation of China (Grant Nos.
61370052 and 61370156).

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 47–55, 2017.
DOI: 10.1007/978-3-319-59605-1 5

48 H. Chen and T. Liu

bipartite graphs were introduced in [14] as a generalization of convex bipartite
graphs. In a convex bipartite graph, the associated tree is a path [13].

Many graph problems are still NP-complete for bipartite graphs, but
tractable for convex bipartite graphs, such as the minimum feedback vertex set
(FVS), the minimum dominating set, treewidth, hamiltonicity, etc. For tree con-
vex bipartite graphs, it turns out that the computational complexity of these
problems depends on the associated trees. For example, star convex bipartite
graphs were introduced in [14], triad convex bipartite graphs were introduced in
[16], and it was shown that FVS is still NP-complete for star convex bipartite
graphs [14,31], but tractable for triad convex bipartite graphs [16]. Similar results
for the minimum dominating set and its variants such as independent dominating
set or connected dominating sets, as well as for the treewidth and hamiltonicity,
were obtained in [5,20,22,24,28–30]. (In)approximability of the minimum domi-
nating set for star convex bipartite graphs was also obtained in [28].

Besides the above mentioned graph problems, when taken tree convex bipar-
tite graphs as hypertrees or tree convex set systems, similar results for the min-
imum set cover, the minimum hitting set and the maximum set packing were
obtained in [23]. The union-closed sets conjecture was shown to hold for tree
convex sets [21].

In this paper, we show that the computational complexity of the maximum
edge biclique (MEB) problem in tree convex bipartite graphs depends on the
associated trees. That is, MEB is NP-complete for star convex bipartite graphs,
but polynomial time solvable for tree convex bipartite graphs whose associated
trees have a constant number of leaves. In particular, MEB is polynomial time
solvable for triad convex bipartite graphs. Moreover, we show that the same algo-
rithm strategy may not work for circular convex bipartite graphs, and triad con-
vex bipartite graphs are incomparable with respect to chordal bipartite graphs.

This paper is structured as follows. After introducing necessary definitions
and facts in Sect. 2, the NP-completeness of MEB for star convex bipartite graph
classes is shown in Sect. 3, the tractability of MEB for tree convex bipartite
graphs whose associated trees have a constant number of leaves and for triad
convex bipartite graphs is shown in Sect. 4, the comparison between triad convex
bipartite graphs and chordal bipartite graphs is shown in Sect. 5 and finally are
concluding remarks in Sect. 6.

2 Preliminaries

A graph G = (V,E) has a vertex set V and an edge set E. We use V (G) to
denote the vertex set of G, and E(G) the edge set of G. Each edge e = (u, v)
has its two ends u and v in V , and these two ends u and v are adjacent. The
neighborhood of a vertex x, denoted by NG(x), is the set of all adjacent vertices
to x. For a graph G = (V,E) and a subset U ⊆ V , we use G[U] to denote the
induced subgraph (U, {(u, v) ∈ E|u ∈ U, v ∈ U}). In a complete graph, every
two vertices are adjacent. A clique in a graph is an induced complete subgraph.

A bipartite graph G = (A,B,E) has a bipartition A ∪ B = V with no
adjacent vertices in A (B, respectively). For a bipartite graph G = (A,B,E)

Maximum Edge Bicliques in Tree Convex Bipartite Graphs 49

and two subset R ⊆ A and S ⊆ B, we use G[R,S] to denote the induced
bipartite subgraph (R,S, {(u, v) ∈ E|u ∈ R, v ∈ S}). In a complete bipar-
tite graph G = (A,B,E), every vertex in A is adjacent to every vertex in B.
A biclique in a bipartite graph is an induced complete bipartite subgraph.

A path is a vertex sequence with every two consecutive vertices adjacent.
A cycle is a path where the first vertex is equal to the last vertex in the path.
A graph is connected if every two vertices are connected by a path. A tree is
a connected cycle-less graph. Two special kinds of trees are stars and triads.
A star is a set of edges with a common end called its center. A triad is three
paths with a common end also called its center.

Given a cycle, a chord is an edge whose two endpoints are not consecutive
on the cycle. In a chordal bipartite graph, every cycle of length at least six has a
chord. It is known that all convex bipartite graphs are chordal bipartite graphs,
and all chordal bipartite graphs are tree convex bipartite graphs [4,15]. In a
circular convex bipartite graph G = (A,B,E), there is an associated circular
ordering on A such that, for each vertex b in B, its neighborhood NG(b) induces
an arc or interval on A under the circular ordering [17,19,25].

3 Hardness

In this section, MEB is shown NP-complete for star convex bipartite graphs.

Theorem 1. MEB is NP-complete for star convex bipartite graphs.

Proof. The proof in [27], showing NP-completeness of MEB in bipartite graphs,
made a reduction from CLIQUE to MEB and produced a bipartite graph which is
already a star convex bipartite graph. For completeness, we repeat the reduction
here and check the star convexity of the produced bipartite graph.

Given an instance (G, k) of CLIQUE, we can assume that G = (V,E) and,
without loss of generality, k = 1

2 |V |. An instance (G′, k′) of MEB is constructed
by G′ = (A,B,E′), A = V , B = E ∪ W , |W | = 1

2k
2 − k, k′ = k3 − 3

2k
2, and

E′ = {(v, e)|v ∈ V, e ∈ E, v �∈ e} ∪ {(v, w)|v ∈ V,w ∈ W}.

The correctness of this reduction was shown in [27]. To see that G′ is a star
convex bipartite graph with an associated star T on B, note that each vertex w
in W is adjacent to every vertex in A, thus we can take any w in W as the center
of T and make all vertices in B \ {w} the leaves of T . The proof is finished. �	

Since star convex bipartite graphs is a subclass of tree convex bipartite
graphs, MEB is also NP-complete for tree convex bipartite graphs. Another
subclass of bipartite graphs is the so-called perfect elimination bipartite graphs,
which is incomparable with respect to tree convex bipartite graphs by the results
in [18]. We note that NP-completeness of MEB for perfect elimination bipartite
graphs or for the so-called comb convex bipartite graphs [29] is still unknown.

50 H. Chen and T. Liu

4 Tractability

In this section, MEB is shown polynomial time solvable for tree convex bipartite
graphs whose associated trees are given and have a bounded number of leaves. In
particular, MEB is polynomial time solvable for triad convex bipartite graphs.

To this end, we first show a structural property of optimal solutions of MEB
for tree convex bipartite graphs. Recall that a solution of an instance (G, k) of
MEB is a pair of sets (R,S), such that R ⊆ A, S ⊆ B, |R| ∗ |S| ≥ k, and G[R,S]
is a biclique, where G[R,S] is the subgraph of G induced by (R,S). We call a
solution (R,S) to be optimal, if |R| ∗ |S| is maximized among all the solutions.

Lemma 1. If (R,S) is an optimal solution to an instance (G, k) of MEB and
G = (A,B,E) is a tree convex bipartite graph, with an associated tree T =
(A,F), then R is a vertex set of a subtree in T , that is, V (T [R]) = R.

Proof. Recall that R ⊆ A and S ⊆ B. For any two vertices x, y in R, there is a
unique path Pxy in T connecting x and y. For every w in S, NG(w) induces a
subtree T [NG(w)] in T , which contains both x and y. So any vertex z in Pxy is
also in NG(w) for all w in S, and (R ∪ {z}, S) is also a solution to (G, k). If z
is not in R, then |R ∪ {z}| ∗ |S| > |R| ∗ |S|, a contradiction to the optimality of
(R,S). Thus, R is already a vertex set of a subtree in T .

The proof is finished. �	
Lemma 2. In a tree with bounded number of leaves, the number of subtrees is
bounded by a polynomial.

Proof. The number of leaves in a subtree will never exceeds the number of leaves
in the tree. A subtree is uniquely determined by listing all its leaves. Indeed, a
subtree is just the union of all pairs shortest paths between its leaves. If a tree
with n vertices has L = O(1) leaves, then the number of its subtrees is at most
O(nL) = nO(1). The proof is finished. �	
Theorem 2. MEB is polynomial time solvable in tree convex bipartite graphs
whose associated trees are given and have a constant number of leaves.

Proof. A polynomial time algorithm based on enumeration is as follows.

Input: (G, k), where G = (A,B,E) is a tree convex bipartite graph with an
associated tree T on A. The number of leaves of T is a constant L.

Output: Yes, if there is (R,S) such that G[R,S] is a biclique and |R| ∗ |S| ≥ k;
No, otherwise.

Algorithm:

1. Enumerate all subtrees of T ;
2. For each subtree with vertex set R, let SR = {w ∈ B|R ⊆ NG(w)}.
3. Record (R,SR) with the maximum |R| ∗ |SR|.
4. Return Yes, if |R| ∗ |SR| ≥ k; No, otherwise.

Maximum Edge Bicliques in Tree Convex Bipartite Graphs 51

To enumerate all subtrees of T , we first enumerate and record all pairs short-
est paths of T in O(n3) time, where n is the input size, in any standard way.
Note that for a tree T , the shortest path Pxy between two vertices x and y in T
is also the unique path connecting x and y in T . Then we enumerate all subsets
A′ of size at most L of A in O(nL) time, where L is the number of leaves of T .
For each subset A′ of A, we compute the union of all shortest paths Pxy in T
for all pairs x and y in A′ in O(nL2) time, since we have O(L2) paths and each
path has length O(n). This union is a subtree T ′ of T , and any subtree T ′ of T
is obtained in this way by putting all leaves of T ′ into A′.

For each subtree T ′ with vertex set R, we can find the set SR and compute
|R| ∗ |SR| in O(n2) time. So the total running time is O(nL+2).

The correctness of this algorithm is guaranteed by Lemmas 1 and 2. The
proof is finished. �	
Theorem 3. MEB is O(n5) time solvable in triad convex bipartite graphs.

Proof. By Lemma2 and the fact that all triads have three leaves. �	
The number of subtrees in a star with n vertices is O(2n), and this seems to

be a reason for the hardness of MEB for star convex bipartite graphs. We guess
that MEB is also hard for comb convex bipartite graphs by the same reason,
that is, an exponential number of subtrees.

We note that Lemma 1 does not hold for circular convex bipartite graphs.
We construct a circular convex bipartite graph G by G = (A,B,E), where
A = {a1, a2, a3, a4}, B = {b1, b2, b3}, E = {(ai, bj)|1 ≤ i ≤ 4, 1 ≤ j ≤ 3} \
{(a1, b3), (a3, b1)}, and the associated circular ordering on A is T , as shown in
Fig. 1. The maximum biclique in G is induced by R = {a2, a4} and S = B, but
R does not induce an interval in T . Due to this break down of the connectedness
of the optimal solutions of MEB for circular convex bipartite graphs, the above
enumeration algorithm does not work for circular convex bipartite graphs. We
note that it is still unknown whether MEB is polynomial time solvable for circular
convex bipartite graphs.

Fig. 1. A circular convex bipartite graph G whose optimal solution does not induce an
interval in T .

52 H. Chen and T. Liu

5 Comparison

In this section, we show that triad convex bipartite graphs are incomparable
with respect to chordal bipartite graphs.

Lemma 3. There is a triad convex bipartite graph which is not a chordal convex
bipartite graph.

Proof. Let G = (A,B,E) with A = {a0, a1, a2, a3}, B = {b1, b2, b3} and E =
{(bi, a0), (ai, bi), (ai, bi−1 mod 3)|1 ≤ i ≤ 3}. That is, the graph G is a cycle
C = a1b1a2b2a3b3a1 plus a star with center a0 and leaves b1, b2, b3, as shown in
Fig. 2.

Apparently, G is not a chordal bipartite graph, since G has a cycle C of
length 6 but without a chordal. We can easily check that G is a triad convex
bipartite graph, with the associated triad T , where V (T) = {a0, a1, a2, a3} and
E(T) = {(a0, a1), (a0, a2), (a0, a3)}, respectively. The proof is finished. �	

Fig. 2. A triad convex bipartite graph G which is not a chordal bipartite graph.

We note that this graph G is used to separate tree convex bipartite graphs
from chordal bipartite graphs in [18]. Actually, G separates triad convex bipartite
graphs and star convex bipartite graphs from chordal bipartite graphs, as shown
above.

Lemma 4. There is a chordal convex bipartite graph which is not a triad convex
bipartite graph.

Proof. Let G = (A,B,E) with A = {a0, . . . , a4}, B = {u1, . . . , u4, w1, . . . , w4}
and E = {(wi, ai), (ai, ui), (ui, a0)|1 ≤ i ≤ 4}. That is, the graph G is four paths
Pi = wiaiuia0 (1 ≤ i ≤ 4) with a common end a0, as shown in Fig. 3.

Apparently, G is a chordal bipartite graph, since G contains no cycle at all.
To show that G is not a triad convex bipartite graph, by symmetry of G, it is
enough to show that none of w1, a1, u1, a0 is the center of the associated triad T .
Indeed, if w1 is the center of T , sinceNG(a0) = {u1, u2, u3, u4}, then u1, u2, u3, u4

must be grouped into a subpath P in T . Since NG(ai) = {wi, ui} for 2 ≤ i ≤ 4,
each of w2, w3, w4 must be consecutive to the path P , but this is impossible,

Maximum Edge Bicliques in Tree Convex Bipartite Graphs 53

Fig. 3. A chordal bipartite graph G which is not a triad convex bipartite graph.

since P only has two ends. If a1 is the center of T , since NG(ui) = {ai, a0} for
2 ≤ i ≤ 4, then each of a2, a3, a4 must be consecutive to a0 in T , but this is
impossible, since a0 has at most two neighbors in T . If u1 is the center of T ,
then by Pigeonhole Principle, two of w1, u2, u3, u4 must be on a subpath of T ,
but this is impossible, since NG(a1) = {w1, u1} and NG(a0) = {u1, u2, u3, u4},
any two of w1, u2, u3, u4 must be consecutive to u1 simultaneously and thus can
not be on a subpath of T . If a0 is the center of T , then by Pigeonhole Principle
again, two of a1, a2, a3, a4 must be on a subpath of T , but this is impossible,
since NG(ui) = {ai, a0} for 1 ≤ i ≤ 4, each of a1, a2, a3, a4 must be consecutive
to a0 in T . The proof is finished. �	

6 Conclusions

We have shown that MEB is NP-complete for star convex bipartite graphs,
but polynomial time solvable for tree convex bipartite graphs whose associated
trees have a constant number of leaves. In particular, MEB is O(n3) polynomial
time solvable for triad convex bipartite graphs. We also have show that the
enumeration algorithm may not work for circular convex bipartite graphs, and
triad convex bipartite graphs are incomparable with respect to chordal bipartite
graphs.

We list some open problems. First, it is unknown that whether MEB is NP-
complete for comb convex bipartite graphs. Second, it is unknown that whether
MEB is tractable for circular convex bipartite graphs. Third, it is unknown that
whether the O(n5) time bound of MEB for triad convex bipartite graphs can be
lowered to O(n(log n)k) or O(n2(log n)k).

Acknowledgments. We thank the unknown reviewers whose comments are helpful
to improve our presentations.

References

1. Acuña, V., Ferreira, C.E., Freire, A.S., Moreno, E.: Solving the maximum edge
biclique packing problem on unbalanced bipartite graphs. Discret. Appl. Math.
164, 2–12 (2014)

54 H. Chen and T. Liu

2. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus
algorithms for the generation of all maximal bicliques. Discret. Appl. Math. 145(1),
11–21 (2004)

3. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability resullts for maximum
edge biclique, minimum linear arrangement, and sparse cut. SIAM J. Comput.
40(2), 567–596 (2011)

4. Brandstad, A., Le, V.B., Spinrad, J.P.: Graph Classes - A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

5. Chen, H., Lei, Z., Liu, T., Tang, Z., Wang, C., Xu, K.: Complexity of domination,
hamiltonicity and treewidth for tree convex bipartite graphs. J. Comb. Optim.
32(1), 95–110 (2016)

6. Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and
multipartite clique problems. J. Algorithms 41, 388–403 (2001)

7. Dias, V.M., de Figueiredo, C.M., Szwarcfiter, J.L.: Generating bicliques of a graph
in lexicographic order. Theoret. Comput. Sci. 337(1C3), 240–248 (2005)

8. Dias, V.M., de Figueiredo, C.M., Szwarcfiter, J.L.: On the generation of bicliques
of a graph. Discret. Appl. Math. 155(14), 1826–1832 (2007)

9. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: Proceedings of STOC 2002, pp. 534–543 (2002)

10. Gély, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and
bicliques. Discret. Appl. Math. 157(7), 1447–1459 (2009)

11. Gillis, N., Glineur, F.: A continuous characterization of the maximum edge biclique
problem. J. Glob. Optim. 58, 439–464 (2014)

12. Goerdt, A., Lanka, A.: An approximation hardness result for bipartite clique. Elec-
tronic Colloquium on Computation Complexity TR2004-048 (2004)

13. Grover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist. Q.
14, 313–316 (1967)

14. Jiang, W., Liu, T., Ren, T., Xu, K.: Two hardness results on feedback vertex sets.
In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp.
233–243. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21204-8 26

15. Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite
graphs. Theoret. Comput. Sci. 507, 41–51 (2013)

16. Jiang, W., Liu, T., Xu, K.: Tractable feedback vertex sets in restricted bipartite
graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831,
pp. 424–434. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22616-8 33

17. Liang, Y.D., Blum, N.: Circular convex bipartite graphs: maximum matching and
Hamiltonian circuits. Inf. Process. Lett. 56, 215–219 (1995)

18. Liu, T.: Restricted bipartite graphs: comparison and hardness results. In: Gu, Q.,
Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 241–252. Springer,
Cham (2014). doi:10.1007/978-3-319-07956-1 22

19. Liu, T., Lu, M., Lu, Z., Xu, K.: Circular convex bipartitegraphs: feedback vertex
sets. Theoret. Comput. Sci. 556, 55–62 (2014)

20. Liu, T., Lu, Z., Xu, K.: Tractable connected domination for restricted bipartite
graphs. J. Comb. Optim. 29(1), 247–256 (2015)

21. Liu, T., Xu, K.: Union closed tree convex sets. In: Wang, J., Yap, C. (eds.)
FAW 2015. LNCS, vol. 9130, pp. 198–203. Springer, Cham (2015). doi:10.1007/
978-3-319-19647-3 19

22. Lu, M., Liu, T., Xu, K.: Independent domination: reductions from circular- and
triad-convex bipartite graphs to convex bipartite graphs. In: Fellows, M., Tan,
X., Zhu, B. (eds.) AAIM/FAW -2013. LNCS, vol. 7924, pp. 142–152. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38756-2 16

http://dx.doi.org/10.1007/978-3-642-21204-8_26
http://dx.doi.org/10.1007/978-3-642-22616-8_33
http://dx.doi.org/10.1007/978-3-319-07956-1_22
http://dx.doi.org/10.1007/978-3-319-19647-3_19
http://dx.doi.org/10.1007/978-3-319-19647-3_19
http://dx.doi.org/10.1007/978-3-642-38756-2_16

Maximum Edge Bicliques in Tree Convex Bipartite Graphs 55

23. Lu, M., Liu, T., Tong, W., Lin, G., Xu, K.: Set cover, set packing and hitting set
for tree convex and tree-like set systems. In: Gopal, T.V., Agrawal, M., Li, A.,
Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 248–258. Springer, Cham
(2014). doi:10.1007/978-3-319-06089-7 17

24. Lu, Z., Liu, T., Xu, K.: Tractable connected domination for restricted bipar-
tite graphs (extended abstract). In: Du, D.-Z., Zhang, G. (eds.) COCOON
2013. LNCS, vol. 7936, pp. 721–728. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38768-5 65

25. Lu, Z., Lu, M., Liu, T., Xu, K.: Circular convex bipartite graphs: feedback vertex
set. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp.
272–283. Springer, Cham (2013). doi:10.1007/978-3-319-03780-6 24

26. Nussbaum, D., Pu, S., Sack, J., Uno, T., Zarrabi-Zadeh, H.: Finding maximum
edge bicliques in convex bipartite graphs. Algorithmica 64, 311–325 (2012)

27. Peeters, R.: The maximum edge biclique problem is NP-complete. Discret. Appl.
Math. 131, 651–654 (2003)

28. Pandey, A., Panda, B.S.: Domination in some subclasses of bipartite graphs. In:
Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol. 8959, pp. 169–
180. Springer, Cham (2015). doi:10.1007/978-3-319-14974-5 17

29. Song, Y., Liu, T., Xu, K.: Independent domination on tree convex bipartite graphs.
In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM/FAW -2012. LNCS, vol.
7285, pp. 129–138. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29700-7 12

30. Wang, C., Chen, H., Lei, Z., Tang, Z., Liu, T., Xu, K.: Tree convex bipartite graphs:
NP-complete domination, hamiltonicity and treewidth. In: Chen, J., Hopcroft,
J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 252–263. Springer, Cham
(2014). doi:10.1007/978-3-319-08016-1 23

31. Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback Vertex Sets on Tree Convex Bipar-
tite Graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31770-5 9

http://dx.doi.org/10.1007/978-3-319-06089-7_17
http://dx.doi.org/10.1007/978-3-642-38768-5_65
http://dx.doi.org/10.1007/978-3-642-38768-5_65
http://dx.doi.org/10.1007/978-3-319-03780-6_24
http://dx.doi.org/10.1007/978-3-319-14974-5_17
http://dx.doi.org/10.1007/978-3-642-29700-7_12
http://dx.doi.org/10.1007/978-3-319-08016-1_23
http://dx.doi.org/10.1007/978-3-642-31770-5_9

Complete Submodularity Characterization
in the Comparative Independent Cascade Model

Wei Chen1 and Hanrui Zhang2(B)

1 Microsoft Research, Beijing, China
weic@microsoft.com

2 Tsinghua University, Beijing, China
zhang-hr13@mails.tsinghua.edu.cn, segtree@gmail.com

Abstract. We study the propagation of comparative ideas in social
network. A full characterization for submodularity in the comparative
independent cascade (Com-IC) model of two-idea cascade is given, for
competing ideas and complementary ideas respectively. We further intro-
duce One-Shot model where agents show less patience toward ideas,
and show that in One-Shot model, only the stronger idea spreads with
submodularity.

1 Introduction

Propagation of information in social networks has been extensively studied over
the past decades, along with its most prominent algorithmic aspect - influence
maximization. The cascade procedure of ideas in a network is usually modeled by
a stochastic process, and influence maximization seeks to maximize the expected
influence of a certain idea by choosing k agents (the seed set) in the network
to be early adopters of the idea. The seed set then initiates the propagation
through the network structure.

Influence maximization is proven to be NP-hard [7] in almost any non-trivial
setting. Most research therefore focuses on approximation algorithms, some par-
ticularly successful ones out of which are based on the celebrated (1 − 1

e)-
approximate submodular maximization [11]. Submodularity of influence in the
seed set therefore plays a central role in such optimization.1

Nevertheless, submodularity appears harder to tract when there are multiple
ideas interacting with each other. Most prior work focuses on single-idea cascade,
or completely competing propagation of ideas. These models somewhat fails in
modeling real world behavior of agents. Lu et al. [9] introduce a general model
called comparative independent cascade (Com-IC) model, which covers the entire
spectrum of two item cascades from full competition to full complementarity.
This full spectrum is crucially characterized by four probability parameters called
global adoption probabilities (GAP), and their space is called the GAP space.
However, they only provide submodularity analysis in a few marginal cases of
1 We say a function f : 2U → R is submodular, if for any S ⊆ U, a, b ∈ U , f(S) +
f(S ∪ {a, b}) ≤ f(S ∪ {a}) + f(S ∪ {b}).

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 56–67, 2017.
DOI: 10.1007/978-3-319-59605-1 6

Complete Submodularity Characterization in the Com-IC Model 57

the entire GAP space, and a full submodularity characterization for the entire
GAP space is left as an open problem discussed in their conclusion section.

Our Contribution. In this paper, we provide a full characterization of the sub-
modularity of the Com-IC model in both the mutually competing case and the
mutually complementary case (Theorems 1, 2, and 3). Our results show that in
the entire continuous GAP space, the parameters satisfying submodularity only
has measure zero. Next, we introduce a slightly modified One-Shot model for
the mutual competing case where agents are less patient: they would reject the
second item if they get influenced but failed to adopt the first item. We provide
the full submodularity characterization of the parameter space for this model
(Theorem 4), which contains a nontrivial half space satisfying submodularity,
contrasting the result for the Com-IC model. Our techniques for establishing
these characterization results may draw separate interests from the technical
aspect for the study of submodularity for various influence propagation models.

Related Work. Single-idea models, where there is only one propagating entity for
social network users to adopt, has been thoroughly studied. Some examples are
the classic Independent Cascade (IC) and Linear Thresholds (LT) models [7].
Some other work studies pure competition between ideas. See, e.g. [1–4,6,8].
Beside competing settings, Datta et al. [5] study influence maximization of inde-
pendently propagating ideas, and Narayanam and Nanavati [10] discuss a per-
fectly complementary setting, which is extended in [9].

2 The Model

We first recapitulate the independent cascade model for comparative ideas
(Com-IC).

First recall that in the classic Independent Cascade (IC) model, the social
network is described by a directed graph G = (V,E, p) with probabilities
p : E → [0, 1] on each edge. Each vertex in V stands for an agent, an edge
for a connection, whose strength is characterized by the associated probability.
Cascading proceeds at each time step 0, 1, At time 0, only the seed set is
active. At time t, each vertex u activated at time t−1 tries to activate its neigh-
bor v, and succeeds with probability p(u, v). The procedure ends when no new
vertices are activated at some time step.

In comparative IC (Com-IC henceforth) model, there are two ideas, A and B,
spreading simultaneously in the network, and therefore 9 states of each vertex:

{A-idle, A-adopted, A-rejected} × {B-idle, B-adopted, B-rejected}.

When an A-proposal reaches an A-idle vertex u, if u is previously B-adopted,
it adopts A w.p. qA|B . Otherwise, it adopts A w.p. qA|∅. The rules for idea B
is totally symmetric. The four probabilities, qA|∅, qB|∅, qA|B , qB|A, therefore fully
characterize strengths of the two ideas and the relationship between them: when
A and B are mutually competing ideas, qA|∅ ≥ qA|B and qB|∅ ≥ qB|A; when they
are mutually complementary ideas, qA|∅ ≤ qA|B and qB|∅ ≤ qB|A. These four

58 W. Chen and H. Zhang

probability parameters are referred as global adoption probabilities (GAP), and
their space as the GAP space.

For tie-breaking, we generate a random ordering of all in-going edges for
each vertex, and let proposals which reach at the same time try according to
that order. If a vertex adopts two ideas at a same time step, it proposes the two
ideas to its neighbors in the order adopted. We refer interested readers to [9] for
more details of Com-IC model.

3 Notations

Let the set of possible worlds (the complete state of the network and vertices
after fixing all randomness) be W. For a possible world W ∈ W, A-seed set
SA and B-seed set SB (unless otherwise specified), let σA(SA, SB ,W) (resp.
σB(SA, SB ,W)) be the number of vertices which adopt A (resp. B) at the
end of cascading in possible world W . σA(SA, SB) = E[σA(SA, SB ,W)] (resp.
σB(SA, SB) = E[σB(SA, SB ,W)]) then stands for the expected influence of A
(resp. B) after cascading. Similarly, let σu

A(SA, SB ,W) be 1 if A affects u in W ,
and 0 if not, and σu

A(SA, SB) = E[σu
A(SA, SB ,W)] the probability that A affects

u. Parameters are ignored when in clear context.

4 Submodularity in the Mutually Competing Case

Recall that when the two ideas are competing, we have qA|∅ ≥ qA|B , qB|∅ ≥ qB|A.
We are naturally interested in submodularity of σA(SA, SB) in SA fixing SB. It
turns out that this kind of submodularity is guaranteed only in a 0-measure
subset of the parameter space. Formally, we have the following theorem:

Theorem 1 (Submodularity Characterization for the Mutually
Competing Case). When the two ideas are mutually competing, for a fixed
SB , σA is submodular in SA whenever one of the following holds:

– qA|∅ ∈ {0, 1},
– qB|∅ = 0,
– qA|∅ = qA|B,
– qB|∅ = qB|A.

And when none of these conditions hold, submodularity is violated, i.e., there
exists (G,SA, SB , u, v) such that for each group of (qA|∅, qB|∅, qA|B , qB|A),

σA(SA, SB) + σA(SA ∪ {u, v}, SB) > σA(SA ∪ {u}, SB) + σA(SA ∪ {v}, SB).

Proof. First we prove the negative (non-submodular) half of the theorem by
given an counterexample, illustrated in Fig. 1. The basic seed sets for A and B
are SA = {a} and SB = {b} respectively. In order to show non-submodularity,
we consider the marginals of u at t when v is an A-seed and when v is not.

Complete Submodularity Characterization in the Com-IC Model 59

u a b

w

v

t

Fig. 1. Counterexample used in the proofs of Theorem 1 and Theorem 2

Note that considering submodularity at a single vertex suffices for establish-
ing a global proof, since we could duplicate the vertex such that it dominates
the expected influence. Also, we assume p(u, v) = 1 for each (u, v) ∈ E, since all
positive (submodularity) proofs can be partially derandomized and done in each
partial possible world, and for counterexamples, we simply set the probabilities
to be 1.

Formally, define

M1 = σt
A(SA ∪ {u}, SB) − σt

A(SA, SB),

M2 = σt
A(SA ∪ {u, v}, SB) − σt

A(SA ∪ {v}, SB).

Submodularity is violated if we show M1 < M2. We now calculate M1 and M2

separately. When v is not a seed, u has a marginal at t iff a fails to activate w
and idea A succeeds in affecting t from u. That is,

M1 = (1 − qA|∅)[(1 − q3B|∅)q
4
A|∅ + q3B|∅q

3
A|∅qA|B].

Similarly, when v is an A-seed, we have

M2 = (1 − qA|∅)[(1 − qB|∅qB|AqB|∅)q4A|∅ + qB|∅qB|AqB|∅q3A|∅qA|B].

Taking the difference, we get

M2 − M1 = q3A|∅q
2
B|∅(1 − qA|∅)(qA|B − qA|∅)(qB|A − qB|∅).

It is easy to see, when none of the conditions listed in Theorem1 hold,
M2 − M1 > 0, and σA is not submodular in the seed set of A.

We now show case by case, that whenever one of the conditions holds, σA is
submodular in the seed set of A.

– qA|∅ ∈ {0, 1}. When qA|∅ = 0, σA is always the size of SA, so submodularity
is obvious. Now suppose qA|∅ = 1. Consider an equivalent formulation of the
model: each vertex u draws two independent numbers uniformly at random

60 W. Chen and H. Zhang

from [0, 1], denoted by αA(u) and αB(u) respectively. When an A-proposal
reaches an (A-idle, B-idle) or (A-idle, B-rejected) vertex u, if αA(u) ≤ qA|∅, u
will accept A. When an A-proposal reaches an (A-idle, B-adopte) vertex u, if
αA(u) ≤ qA|B, u will accept A. The rules for B are symmetric.
After fixing all randomness, each vertex has two attributes for ideas A and
B respectively. That is, each vertex u can be in exactly one state out of

{αA(u) ≤ qA|B , qA|B < αA(u) ≤ qA|∅, qA|∅ < αA(u)}×
{αB(u) ≤ qB|A, qB|A < αB(u) ≤ qB|∅, qB|∅ < αB(u)}.

We show that in any possible world W , if σt
A(SA ∪ {u, v}, SB ,W) = 1, then

σt
A(SA∪{u}, SB ,W)+σt

A(SA∪{v}, SB ,W) ≥ 1. That is, if t is reachable by A
when u and v are both A-seeds, then it is reachable by A when u or v alone is
an A-seed. Submodularity then follows from monotonicity of σt

A(SA, SB ,W)
in SA and convex combination of possible worlds.
Let p = (w1, . . . , wk) be the A-path which reaches t when u and v are both
A-seeds, where w1 is an A-seed, and wk = t. W.l.o.g. v /∈ p. We argue that
for each w ∈ p, if w is not B-adopted at the time A reaches it when u and v
are A-seeds, then w is not B-adopted at the time A reaches it when only u is
an A-seed, so p remains A-affected even if v is not an A-seed. Suppose not.
Let w be the vertex closest to w1 on p, which becomes affected by B when
v is not a seed, p′ be the B-path through which w is affected by B. Let x
be the closest vertex to the B-seed on p′, which is affected by A at the time
the B-proposal reaches when v is an A-seed, and is affected by B when v is
not a seed (such a vertex must exist). Then because qA|∅ = 1, the subpath
[x, t] ⊆ p′ must be completely A-affected when v is an A-seed, and reaches t
earlier than p does, a contradiction.
Now since each vertex w ∈ p which is not affected by B when v is an A-seed
remains not affected when v is not, idea A can pass through the entire path p
from some seed vertex to t just like when v is an A-seed, so t is still A-affected.
In other words, w.l.o.g. σt

A(SA ∪ {u}, SB ,W) = 1.
– qB|∅ = 0. B does not propagate at all. We simply remove SB from the graph

and consider the equivalent IC procedure of A alone. Submodularity is then
easy.

– qA|∅ = qA|B . B does not affect the propagation of A. Again the propagation
of A is equivalent as an IC procedure, and submodularity follows directly.

– qB|∅ = qB|A. We use the possible world model discussed in the first case,
where qA|∅ ∈ {0, 1}. Still, let p = {w1, . . . , wk} be the path through which t
is affected by A when both u and v are A-seeds, and w.l.o.g. v /∈ p. We apply
induction on i to prove that A reaches wi still at the (i−1)-th time slot when
v is not an A-seed.
When i = 1, the statement holds evidently as w1 is an A-seed. Assume at
time i − 1, wi has just been reached by A and become A-adopted. Since the
propagation of B is not affected by the A seed set, wi+1 is in the same state
w.r.t. B as when v is a seed, so the A-proposal to wi+1 from wi ends up just
in the same way, and wi+1 becomes A-adopted at time i. And as a result, t
is eventually A-adopted, i.e. σt

A(SA ∪ {u}, SB ,W) = 1.

Complete Submodularity Characterization in the Com-IC Model 61

5 Submodularity in the Mutually Complimentary Case

When the two ideas are complementary, i.e. when qA|∅ ≤ qA|B and qB|∅ ≤ qB|A,
enlarging the seed set of one idea helps the propagation of both the idea itself
and that of the other idea. We discuss in this section the self and cross effect of
the seed set of an idea.

5.1 Self Submodularity

Fixing SB , we are interested in submodularity of σA in SA, i.e., submodularity
of the influence of some idea w.r.t. its own seed set, fixing the seed set of the
other idea.

Theorem 2 (Self-Submodularity Characterization for the Mutually
Complementary Case). When the two ideas are complementary, for a fixed
SB, σA is submodular in SA whenever one of the following holds:

– qA|∅ ∈ {0, 1},
– qB|∅ = 0,
– qA|∅ = qA|B,
– qB|∅ = qB|A.

And when none of these conditions hold, submodularity is violated, i.e., there
exists (G,SA, SB , u, v) such that for each group of (qA|∅, qB|∅, qA|B , qB|A),

σA(SA, SB) + σA(SA ∪ {u, v}, SB) > σA(SA ∪ {u}, SB) + σA(SA ∪ {v}, SB).

Proof. We first show the negative part. Recall that in the proof of Theorem1,
we calculate that for the graph in Fig. 1,

M2 − M1 = q3A|∅q
2
B|∅(1 − qA|∅)(qA|B − qA|∅)(qB|A − qB|∅),

which remains exactly the same no matter whether A and B are competing or
complementary. If none of the conditions in Theorem 2 hold, then M2 −M1 > 0,
and σt

A is not submodular in the seed set of A.
Now we prove case by case the positive cases.

– qA|∅ ∈ {0, 1}. When qA|∅ = 1, σA is simply all vertices reachable from the A
seed set, so submodularity is trivial. Now consider qA|∅ = 0, and take again
the possible world view. The fact that qA|∅ = 0 gives us two messages: that
A spreads only by following B, and consequently that A does not affect the
propagation of B. We use the same notations as in the proof of Theorem1.
Assume that in possible world W , when both u and v are A-seeds, t is affected
by A (or σt

A(SA ∪ {u, v}, SB ,W) = 1), and let p = {w1, . . . , wk} be the path
through which A reaches t, where w.l.o.g. v /∈ p. We prove by induction that
when v is not an A-seed, A affects wi exactly at time slot i − 1 for i ∈ [k].
Then statement is trivial when i = 1. Assume that wi becomes A-adopted
at time i − 1. Since the propagation of B is not interfered by the A seed set,
wi+1 is in the same B-state as when v is an A-seed at time i − 1, and the
A-proposal from wi gets the same reaction at wi+1, i.e. acceptance. So t is
eventually A-adopted, or σt

A(SA ∪ {u}, SB ,W) = 1.

62 W. Chen and H. Zhang

– qB|∅ = 0. That is, B spreads only through A-adopted vertices, and thus does
not affect the propagation of A. The equivalent IC cascade procedure gives
submodularity directly.

– qA|∅ = qA|B. Again, B does not affect A, and submodularity is trivial.
– qB|∅ = qB|A. The proof is totally similar to the case where qA|∅ = 0.

Note 1. The conuterexample used in the proof of Theorem2 is exactly the same
as that used in the proof of Theorem1. This versatility of the counterexample
comes from the factor (qA|∅ − qA|B)(qB|∅ − qB|A). In each case, qA|∅ − qA|B and
qB|∅ − qB|A are of the same sign.

5.2 Cross Submodularity

Fixing SA, because of the complementary nature of the two ideas, we are also
curious about submodularity of σA in SB , i.e., submodularity of the influence of
some idea w.r.t. the seed set of the other idea, fixing its own seed set.

Theorem 3 (Cross-Submodularity Characterization for the Mutually
Complementarity Case). When the two ideas are complementary, for a fixed
SA, σA is submodular in SB whenever one of the following holds:

– qA|∅ ∈ {0, 1},
– qB|∅ = 1,
– qA|∅ = qA|B.

And when none of these conditions hold, submodularity is violated, i.e., there
exists (G,SA, SB , u, v) such that for each group of (qA|∅, qB|∅, qA|B , qB|A),

σA(SA, SB) + σA(SA, SB ∪ {u, v}) > σA(SA, SB ∪ {u}) + σA(SA, SB ∪ {v}).

Proof. We prove the negative part first. Consider the counterexample presented
in Fig. 2, and let the basic seed sets of A and B be SA = {a}, SB = {b}.

ab

v

u

w

t

Fig. 2. Counterexample used in the proof of Theorem 3

Complete Submodularity Characterization in the Com-IC Model 63

We consider the marginals of u as a B-seed when v is a B-seed and when v is
not. Let

M1 = σt
A(SA, SB ∪ {u}) − σt

A(SA, SB),

M2 = σt
A(SA, SB ∪ {u, v}) − σt

A(SA, SB ∪ {v}).

When v is not a B-seed, u has a non-zero marginal iff it helps the propagation
of A at t (while b does not). That is, a reaches w, b does not reach w, and u
reaches t. Formally,

M1 = qB|∅(qA|B − qA|∅)[(1 − qB|∅)q3A|∅ + qB|∅(1 − qB|∅)qA|Bq2A|∅].

And when v is a B-seed, everything is the same except that it becomes easier
for A to activate v. And therefore

M2 = qB|∅(qA|B − qA|∅)[(1 − qB|∅)qA|Bq2A|∅ + qB|∅(1 − qB|∅)q2A|BqA|∅].

Taking the difference,

M2 − M1 = (qA|B − qA|∅)2qA|∅(1 − qA|∅)(qA|∅ + qB|∅qA|B).

It is clear that when no conditions stated in Theorem3 hold, M2 − M1 > 0 and
submodularity fails.

Now we look at the positive cases.

– qA|∅ ∈ {0, 1}. When qA|∅ = 1, submodularity is trivial. Now suppose qA|∅ = 0,
i.e., A spreads only by following B and does not affect the propagation of B.
We prove that for any possible world W , where σt

A(SA, SB ∪ {u, v},W) = 1,
we have σt

A(SA, SB ∪ {u},W) + σt
A(SA, SB ∪ {v},W) ≥ 1. That is, when t

is A-adopted when both u and v are B-seeds, t will still be activated either
when u alone is a B-seed or v alone is.
When both u and v are seeds, let p = {w1, . . . , wk} be the path through which
A reaches t, where w.l.o.g. v /∈ p. Clearly in our possible world view, for any
w ∈ p, αB(w) ≤ qB|∅. When u alone is a B-seed, w1 remains a B-seed, and
can activate every vertex w on the path just as when v is also a B-seed. It
follows that A still can reach t through p.

– qB|∅ = 1. We follow the same manner as we do in the first bullet point. The
same argument works in a sense that we still have αB(w) ≤ qB|∅ = 1 here for
w ∈ p. Sobmodularity follows.

– qA|∅ = qA|B . That means b has nothing to do with the propagation of A.
Submodularity of IC model then carries over directly.

6 The One-Shot Model

In foregoing sections, properties of a model with somewhat rational agents are
discussed. The agents are rational, in a sense that when a first proposal of some
idea fails, they still allow the other idea a chance to propose; and when a first
proposal succeeds, they do not accept/reject the possible proposal from the
other idea instantly. In this section, we look at a model where agents act more
extremely.

64 W. Chen and H. Zhang

6.1 The Model

As in the Com-IC model, there is a backbone network G = (V,E, p). The model
also has four parameters as the GAP parameters in Com-IC. We only consider
the mutually competing case for the One-Shot model. The key difference here is
that an idle vertex considers only the first proposal that reaches it. Each vertex
has 4 possible states: idle, exhausted, A-adopted, B-adopted.

Cascading proceeds in the following fashion: when an A (resp. B) proposal
reaches an idle vertex, the vertex adopts A (resp. B) w.p. qA|∅ (resp. qB|∅),
and becomes exhausted w.p. 1 − qA|∅ (resp. 1 − qB|∅). Once a vertex becomes
exhausted, it no longer considers any further proposals. Since A and B are com-
peting ideas, an A-adopted (resp. B-adopted) vertex no longer considers propos-
als of B (resp. A). (qA|∅, qB|∅) therefore completely characterizes the strengths
of the ideas.

6.2 Submodularity in One-Shot Model

The characterization of sumodularity in One-Shot model appears to be more
interesting. It demonstrates a dichotomy over the GAP space of One-Shot model,
i.e., only the stronger idea propagates with submodularity.

Theorem 4. In One-Shot model, when qA|∅ ≥ qB|∅ or qA|∅ = 0, σA is submodu-
lar in SA; when 0 < qA|∅ < qB|∅, submodularity is violated. To be specific, when
0 < qA|∅ < qB|∅, there exists (G,SA, SB , u, v) such that

σA(SA, SB) + σA(SA ∪ {u, v}, SB) > σA(SA ∪ {u}, SB) + σA(SA ∪ {v}, SB).

Proof. We prove the negative part first. Consider the network shown in Fig. 3,
where the basic seed sets are SA = ∅ and SB = {b}. We calculate the marginals
of u at t when v is an A-seed and when v is not. Formally, let

M1 = σt
A(SA ∪ {u}, SB) − σt

A(SA, SB),

M2 = σt
A(SA ∪ {u, v}, SB) − σt

A(SA ∪ {v}, SB).

When v is not a seed, u has a positive marginal iff b fails to reach t and u
successfully reaches t. That is,

M1 = qk+3
A|∅ (1 − qk+2

B|∅).

And when v is an A-seed, t has a positive marginal iff v fails to reach t and u
succeeds. So,

M2 = qk+3
A|∅ (1 − qk+1

A|∅).

Taking the difference,

M2 − M1 = qk+3
A|∅ (qk+2

B|∅ − qk+1
A|∅).

Complete Submodularity Characterization in the Com-IC Model 65

u b

vx1

. . .

xk+2

y1

. . .

yk

t

Fig. 3. Counterexample used in the proof of Theorem 4

As qA|∅ < qB|∅,

lim
k→∞

qk+2
B|∅

qk+1
A|∅

= ∞,

so when qA|∅ > 0, there is some k such that M2 − M1 > 0, and submodularity
is violated.

We prove the positive part now. When qA|∅ = 0, σA = |SA| is clearly sub-
modular in SA. Now we consider the case where qA|∅ ≥ qB|∅. We take a different
possible world view here, i.e., each vertex flips two independent coins and decide
whether it accepts A-proposals and B-proposals. Each vertex has 4 possible real-
izations: A-only, B-only, susceptible and repudiating, indicating that the vertex
accepts A-proposals only, B-proposals only, all proposals, and none respectively.

First we consider a partial realization of the world. We realize all susceptible
and repudiating vertices first. To do so, for each vertex v, we flip a coin and
determined with probability qA|∅qB|∅ + (1 − qA|∅)(1 − qB|∅) that v is eventually
realized to be either susceptible or repudiating. If so, we then flip another coin to
determine whether it is susceptible (w.p. qA|∅qB|∅

qA|∅qB|∅+(1−qA|∅)(1−qB|∅)
) or repudiating

(otherwise). For vertices remaining not realized, we flip a coin and decide it to be

66 W. Chen and H. Zhang

A-only w.p. qA|∅(1−qB|∅)−qB|∅(1−qA|∅)
qA|∅(1−qB|∅)+qB|∅(1−qA|∅)

. Now upon full realization, each of the rest

of vertices (which we call deferred vertices) is A-only exactly w.p. 1
2 and B-only

otherwise. The partial realization stops at this stage. We remove all repudiating
vertices, leaving vertices in 3 possible states: susceptible, A-only, and deferred.

Now for SA, SB , t and a partial realization Wp, suppose there are k deferred
vertices, w1, . . . , wk. Define probability spaces Ω0, Ω1, . . . , Ωk in the following
fashion: in Ωi, deferred vertex wj is realized such that:

– If j > i, wi is A-only w.p. 1
2 and B-only w.p. 1

2 .
– If j ≤ i, wi is susceptible w.p. 1

2 and repudiating w.p. 1
2 .

We show that for all i ∈ [k],

EWi←Ωi
[σt

A(SA, SB ,Wi)] = EWi−1←Ωi−1 [σ
t
A(SA, SB ,Wi−1)].

Consider fixing randomness of w1, . . . , wi−1, wi+1, . . . , wk in Ωi−1. After doing so,
we are able to determine the first proposal (if any) that reaches wi, since that part
of the propagation is fully deterministic. Say, the proposal is an A-proposal, then
because wi is A-only w.p. 1

2 and B-only otherwise, it accepts the proposal w.p. 1
2 ,

and becomes exhausted otherwise. This is indeed equivalent w.r.t. propagation
of A to making wi susceptible w.p. 1

2 and repudiating otherwise. Since for any
partial realization of {w1, . . . , wk}\{wi}, the above equivalence always holds, we
may conclude that the two probability spaces are equivalent w.r.t. the influence
of A. Formally,

EWi←Ωi
[σt

A(SA, SB ,Wi)] = EWi−1←Ωi−1 [σ
t
A(SA, SB ,Wi−1)].

Now we only need to show submodularity in Ωk. We fix all randomness,
remove repudiating vertices, and establish submodularity in each possible world.
In each possible world Wk drawn from Ωk, there are possibly 2 types of vertices:
susceptible ones and A-only ones. We show that for SA, SB , u, v, t,

σt
A(SA∪{u, v}, SB ,Wk) = 1 ⇒ σt

A(SA∪{u}, SB ,Wk)+σt
A(SA∪{v}, SB ,Wk) ≥ 1.

Let p = {w1, . . . , wk} be the A-path through which A reaches t when both u and
v are A-seeds. W.l.o.g. v /∈ p. In the competing case, let w be the vertex closest
to w1 on p, which becomes not A-adopted (and in fact, B-adopted) when v is
not a seed. w must be reachable from v. Let p′ be the shortest path from v to
w, and x the closest vertex to v on p′ which becomes B-adopted when v is not a
seed. Since v blocks B from affecting x through path [v, x] ⊆ p′, and when v is
not a seed, x blocks w from being affected by A through path [x,w] ⊆ p′, clearly
p′ is a shorter A-path (recall that A can pass through every vertex in the world)
from the A seed set to w than [w1, w] ⊆ p when v is an A-seed, a contradiction.

Note 2. Unlike in Theorems 1, 2 or 3, the counterexample needed for Theorem 4
has to be constructed after fixing qA|∅ and qB|∅.

Acknowledgment. We would like to thank Yingru Li for some early discussions on
the subject.

Complete Submodularity Characterization in the Com-IC Model 67

References

1. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
306–311. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77105-0 31

2. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in
social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17572-5 48

3. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in
social networks. In: Proceedings of the 20th International Conference on World
Wide Web, pp. 665–674. ACM (2011)

4. Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincon, D., Sun, X.,
Wang, Y., Wei, W., Yuan, Y.: Influence maximization in social networks when neg-
ative opinions may emerge and propagate. In: SDM, vol. 11, pp. 379–390. SIAM
(2011)

5. Datta, S., Majumder, A., Shrivastava, N.: Viral marketing for multiple products.
In: 2010 IEEE International Conference on Data Mining, pp. 118–127. IEEE (2010)

6. He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social
networks under the competitive linear threshold model. In: SDM, pp. 463–474.
SIAM (2012)

7. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

8. Lu, W., Bonchi, F., Goyal, A., Lakshmanan, L.V.: The bang for the buck: fair
competitive viral marketing from the host perspective. In: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 928–936. ACM (2013)

9. Lu, W., Chen, W., Lakshmanan, L.V.: From competition to complementarity: com-
parative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–71
(2015)

10. Narayanam, R., Nanavati, A.A.: Viral marketing for product cross-sell through
social networks. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD
2012. LNCS, vol. 7524, pp. 581–596. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33486-3 37

11. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions–I. Math. Program. 14(1), 265–294 (1978)

http://dx.doi.org/10.1007/978-3-540-77105-0_31
http://dx.doi.org/10.1007/978-3-642-17572-5_48
http://dx.doi.org/10.1007/978-3-642-33486-3_37
http://dx.doi.org/10.1007/978-3-642-33486-3_37

A Risk–Reward Model for On-line Financial
Leasing Problem with an Interest Rate

Xiaoli Chen and Weijun Xu(B)

School of Business Administration, South China University of Technology,
Guangzhou 510640, Guangdong, People’s Republic of China

chenxiaoli871122@163.com, xuweijun75@163.com

Abstract. As an important financing tool, the financial lease can help
the lessee obtain the ownership of equipment after paying the rent till the
expiration of the lease. Because the lessee does not know the exact length
of using the equipment, the financial leasing problem can be viewed as an
on-line problem. In this paper, we consider the on-line financial leasing
problem with an interest rate where there are two lease options: financial
lease and operating lease. We first discuss the traditional deterministic
optimal competitive strategy by competitive analysis method. Next, we
introduce the risk tolerance and forecast of the decision maker(the lessee)
into this problem and acquire the optimal risk–reward strategy. Finally,
we give numerical examples and the results show that the introduction
of the interest rate and risk tolerance has a significant influence on the
deterministic optimal strategy and risk–reward strategy.

Keywords: Financial leasing · Interest rate · Risk tolerance · Risk–
reward model · Competitive analysis

1 Introduction

The leasing industry as a sunrise industry has demonstrated its resilience since
the global economic crisis and the outlook is cautiously optimistic [1]. A company
or an individual without enough money to buy certain equipment can own the
right to use the equipment by leasing. To decide whether leasing is a beneficial
way to use the equipment or not, we should determine the duration the equip-
ment will be used. However, in practice, it is hard to know the exact duration.
This shows the on-line feature of leasing. Fortunately, researchers explore the
competitive analysis and on-line algorithm [2,3] to study the on-line problems
and evaluate their strategies. In this framework, we can find the appropriate
strategy through competitive ratio, which is the ratio of the cost paid by our on-
line strategy to the cost paid by the optimal off-line strategy (which is obtained
when everything is known in advance).

The classical on-line leasing problem is “ski rental” problem: to lease a pair
of skis needs 1 per day and to buy a pair of skis needs s, then which strategy is
optimal? By the competitive analysis method Karp [4] gave the optimal on-line
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 68–78, 2017.
DOI: 10.1007/978-3-319-59605-1 7

A Risk–Reward Model for On-line Financial Leasing Problem 69

strategy which is to lease for the first s − 1 days then to buy the skis if the skier
continues to ski in the s-th day. And the optimal competitive ratio is 2 − 1/s,
which means the on-line strategy never pays more than 2 − 1/s times of the
optimum. Then a lot of researchers discussed the on-line leasing problem based
on Karp’s model. For example, they introduced the interest rate [5], tax rate [6],
price fluctuation [7] and so on. Moreover, Fujiwara et al. [8] and Lotker et al. [9]
analyzed the multi-slope ski rental problem and gave the randomized algorithms
and the best possible competitive ratio, respectively.

Because the risk preference of the decision maker can not be ignored,
Al-Binali [10] introduced the decision maker’s risk tolerance and forecast for
the future into the “ski rental” problem and defined the risk and reward of
a competitive algorithm. In this model, if the input σ is an instance of the
problem Σ and the cost ratio of the on-line algorithm A and the optimal algo-
rithm OPT is denoted by RA(σ), then the competitive ratio of A on the prob-
lem Σ is RA = sup

σ∈Σ
RA(σ) and the optimal competitive ratio for the problem

Σ is R∗ = inf
A

RA. Then the risk of A is defined as RA/R∗. If the decision

maker’s risk tolerance is λ(λ ≥ 1), then the set of risk tolerable strategies is
Iλ = {A|RA ≤ λR∗}. And if the decision maker has a forecast F ⊂ Σ, then the
restricted ratio of A is RA = sup

σ∈F
RA(σ) and the reward of A is R∗/RA when the

forecast is correct. Then the risk-reward model is to maximize R∗/RA subject
to A ∈ Iλ. From then on, many researchers discussed the on-line leasing prob-
lem based on Al-Binali’s risk–reward framework. For example, Zhang et al. [11]
introduced the depreciation of equipment and obtained the optimal risk–reward
strategies with and without an interest rate.

In the above studies, the lease option is an operating lease which can not
transfer the ownership of the equipment to the lessee at the end of leasing period.
In the leasing market, there is another important leasing mode: the financial
lease. In a financial lease, the lessee can obtain the ownership of the equipment
finally, which is preferred by the lessee. Considering the necessity to study the
on-line financial leasing problem, Dai et al. [12] analyzed the financial leasing
problem that contains operating lease and financial lease. They gave the optimal
deterministic on-line strategy for this problem. In this paper, we analyze the
on-line financial leasing problem with an interest rate and give the optimal risk–
reward strategy based on Al-Binali’s framework.

The remainder of this paper is organized as follows. We first give the optimal
deterministic competitive strategy for the on-line financial leasing problem with
an interest rate in Sect. 2. Then we discuss the risk–reward strategy according to
the decision maker’s forecast in Sect. 3. Numerical examples are given in Sect. 4.
Finally, a summary of this paper is presented in Sect. 5.

2 Optimal Deterministic Competitive Strategy

In this section, we compute the optimal deterministic competitive strategy for
this problem with the interest rate. First of all, we give the precise definition of

70 X. Chen and W. Xu

the on-line financial leasing problem. In this problem there are two ways for the
decision maker to obtain the use of an equipment. One is operating lease, and
the other is financial lease. The operating lease is to lease the equipment at a
cost of c per period. The financial lease is to pay r(r > c) for each period and the
decision maker can obtain the ownership of the equipment after M periods, and
then no longer needs to pay for the use of this equipment. Then which strategy
is optimal for the decision maker? Here we assume that when the decision maker
ends the financial lease before obtaining the ownership of the equipment, he does
not need to pay any fees and the lessor still owns the equipment.

As the decision maker has no knowledge of the actual length n of using
the equipment, it is smart to choose the operating lease first. Let A(k) be the
strategy that the decision maker uses the equipment by operating lease for the
first k periods and by financial lease thereafter. We define OPT as the optimal
off-line strategy. Let i be the interest rate and β = 1/(i + 1) is the discount
factor. For strategies A(k) and OPT , let CostA(k)(n) and CostOPT (n) be the
present value of the total cost spent by A(k) and OPT from the start to time n,
respectively. Then according to competitive analysis we can know that A(k) is
ρ-competitive if for all possible n there is a constant α such that

CostA(k)(n) ≤ ρCostOPT (n) + α.

And the smallest ρ such that A(k) is ρ-competitive is called the competitive ratio
of A(k). All over this paper the competitive ratios are the strict competitive
ratios which is obtained under α = 0.

The off-line adversary knows exactly how long the equipment will be used.
He can obtain the least cost according to n. Let n∗ = ln[1 − r(1 − βM)/c]/ln β,
then the cost of the optimal off-line strategy OPT is

CostOPT (n) =

{
c(1−βn)

1−β , n ≤ n∗;
r(1−βM)

1−β , n > n∗.
(1)

We assume that 1 − r(1 − βM)/c > 0, that is c − r + rβM > 0. Otherwise,
operating lease is always better than financial lease, then no one will choose
financial lease. For the on-line strategy A(k), the cost is

CostA(k)(n) =

⎧⎪⎪⎨
⎪⎪⎩

c(1−βn)
1−β , n ≤ k;

c(1−βk)
1−β + rβk(1−βn−k)

1−β , k < n ≤ k + M ;
c(1−βk)

1−β + rβk(1−βM)
1−β , n > k + M.

(2)

According to competitive analysis and the cost of on-line and off-line strate-
gies, we can obtain the following theorem:

Theorem 1. The optimal competitive strategy for the on-line financial leasing
problem with an interest rate i is A(n∗ − M) and the competitive ratio is R∗ =
r/c − (r − c)2/(crβM), where β = 1/(1 + i) and n∗ = ln[1 − r(1 − βM)/c]/ln β.

A Risk–Reward Model for On-line Financial Leasing Problem 71

Proof. Let R(k, n) = CostA(k)(n)/CostOPT (n), R(k) = supn R(k, n), then R(k)
is the competitive ratio of A(k). Next we divide the value of k into three cases
to compute the optimal competitive ratio.

Case 1. If k < n∗ − M , then we have

R(k, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, n ≤ k;
c(1−βk)+rβk(1−βn−k)

c(1−βn) , k < n ≤ k + M ;
c(1−βk)+rβk(1−βM)

c(1−βn) , k + M < n ≤ n∗;
c(1−βk)+rβk(1−βM)

r(1−βM)
, n > n∗.

Through simple derivation we find that R(k, n) increases in the second interval
and decreases in the third interval. Besides R(k, n) is a piecewise continuous
function. So R(k, n) reaches its greatest value with regard to n at n = k + M .
Then the competitive ratio of strategy A(k) in this case is

R1(k) = R(k, k + M) =
c(1 − βk) + rβk(1 − βM)

c(1 − βk+M)
.

Take the derivation of R1(k) we have

R′
1(k) =

[
βk(r − rβM − c)(1 − βk+M) + βk+M [c + βk(r − rβM − c)]

]
ln β

c(1 − βk+M)2

=

[
(r − rβM − c)(1 − βk+M) + cβM + βk+M (r − rβM − c)

]
βk ln β

c(1 − βk+M)2

=
(r − c)(1 − βM)βk ln β

c(1 − βk+M)2
< 0

So R1(k) decreases with respect to k. Then when k → n∗ −M , R1(k) attains its
minimum R1, where

R1 = lim
k→n∗−M

R1(k)

=
(c − r)(1 − βn∗−M) + r(1 − βn∗

)
c(1 − βn∗)

=
r

c
− r − c − (r − c)

[
1 − r(1 − βM)/c

]
/βM

r(1 − βM)

=
r

c
− (r − c)

[
βM − 1 + r(1 − βM)/c

]
rβM (1 − βM)

=
r

c
− (r − c)2

crβM
.

Case 2. If n∗ − M ≤ k < n∗, we have

R(k, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, n ≤ k;
c(1−βk)+rβk(1−βn−k)

c(1−βn) , k < n ≤ n∗;
c(1−βk)+rβk(1−βn−k)

r(1−βM)
, n∗ < n ≤ k + M ;

c(1−βk)+rβk(1−βM)
r(1−βM)

, n > k + M.

72 X. Chen and W. Xu

It is easy to find that R(k, n) is also a piecewise continuous function and it
increases in both the second and third intervals. Then the competitive ratio
R2(k) of on-line strategy A(k) can be reached at n = n∗ or k + M in this case,
namely

R2(k) = max
{

c(1 − βk) + rβk(1 − βn∗−k)
c(1 − βn∗)

,
c(1 − βk) + rβk(1 − βM)

r(1 − βM)

}

= max
{

c(1 − βk) + rβk(1 − βn∗−k)
r(1 − βM)

,
c(1 − βk) + rβk(1 − βM)

r(1 − βM)

}

=
c(1 − βk) + rβk(1 − βM)

r(1 − βM)
.

Because R2(k) is an increasing function, it attains its smallest value R2 at k =
n∗ − M , namely

R2 = R2(n∗ − M) =
c + βn∗−M

[
r(1 − βM) − c

]
r(1 − βM)

=
cβM +

[
r(1 − βM) − c

] [
1 − r(1 − βM)/c

]
rβM (1 − βM)

=
r

c
− (r − c)2

crβM
= R1

Case 3. If k ≥ n∗, we have

R(k, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, n ≤ n∗;
c(1−βn)
r(1−βM)

, n∗ < n ≤ k;
c(1−βk)+rβk(1−βn−k)

r(1−βM)
, k < n ≤ k + M ;

c(1−βk)+rβk(1−βM)
r(1−βM)

, n > k + M.

According to the monotonicity of each section of R(k, n) we can get the com-
petitive ratio R3(k) of on-line strategy A(k) in this case. It is

R3(k) = max
{

c(1 − βk)
r(1 − βM)

,
c(1 − βk) + rβk(1 − βM)

r(1 − βM)

}
=

c(1 − βk)
r(1 − βM)

+ βk.

Through simple derivation of R3(k) we find that it increases with respect to k.
Then R3(k) attains its smallest value R3 at k = n∗, namely

R3 = R3(n∗) =
c(1 − βn∗

)
r(1 − βM)

+ βn∗
= 1 + βn∗

= 2 − r(1 − βM)
c

.

Because

R3 − R1 = 2 − r(1 − βM)
c

− r

c
− (r − c)2

crβM
=

(r − c − rβM)2

crβM
> 0,

that is R3 > R1. So the optimal competitive ratio of the financial leasing problem
is R∗ = R1. And the optimal on-line strategy is A(n∗ − M). Then the theorem
is proved.

A Risk–Reward Model for On-line Financial Leasing Problem 73

According to Theorem 1 we can obtain that the competitive ratio of the
financial leasing problem without the interest rate is 2 − c/r and if we let n∗′ =
(r/c−1)M , then the corresponding optimal strategy is A(n∗′), which agrees with
the results in Dai et al. [12]. In addition we find that the introduction of the
interest rate can reduce the competitive ratio of the financial leasing problem.

3 Risk–Reward Strategy with an Interest Rate

In this section, we introduce the decision maker’s forecast for the length of using
the equipment and his risk tolerance into the on-line financial leasing problem.
Based on the risk–reward framework of Al-Binali [10] we obtained the optimal
risk–reward strategy with the interest rate for this on-line problem.

Let λ(λ > 1) be the risk tolerance of the decision maker. Then the set of
risk tolerable strategies is Iλ = {A(k)|R(k) ≤ λR∗} according to Al-Binali’s
risk–reward framework. As n∗ and n∗ − M are both critical points, we assume
that there are three forecasts for n: F1 = {n : n ≤ n∗ −M}, F2 = {n : n∗ −M <

n ≤ n∗} and F3 = {n : n > n∗}. Let Rj(k) = sup
n∈Fj

CostA(k)(n)

CostOPT (n) for j = 1, 2, 3. For

these three forecasts we have the following theorem.

Theorem 2. If there are three forecasts F1 = {n : n ≤ n∗ − M}, F2 = {n :
n∗ − M < n ≤ n∗} and F3 = {n : n > n∗} for the decision maker to choose
and the risk tolerance is λ(λ > 1), then the risk–reward strategy for the on-line
financial leasing problem is as follows:

(1) When the decision maker chooses forecast F1, the optimal risk–reward strat-
egy is A(n∗ − M) and the restricted ratio is R

∗
= 1 if F1 comes true.

(2) When the decision maker chooses F2, if 1 < λ ≤ Δ, then the optimal risk–
reward strategy is A(k2) and the restricted ratio is R

∗
= R2(k2) if F2 comes

true. Else the optimal strategy is A(n∗) and the restricted ratio is R
∗

= 1 if
forecast F2 comes true.

(3) When the decision maker chooses F3, the corresponding optimal risk–reward
strategy is A(k1) and the restricted ratio is R

∗
= R3(k1) when forecast F3

comes true.

Wherein k1, k2, Δ and functions R2(·), R3(·) refer to the proof.

Proof. First of all, we compute the set of risk tolerable strategies Iλ. According
to on-line algorithm and the analysis in Sect. 2, we have

R(k) =

{
c+βk(r−rβM−c)

c(1−βk+M)
, k < n∗ − M ;

c+βk(r−rβM−c)
r(1−βM)

, k ≥ n∗ − M.

74 X. Chen and W. Xu

Then when k < n∗ − M we have

R(k) ≤ λR∗ ⇔ c + βk(r − rβM − c)
c(1 − βk+M)

≤ λ

[
r

c
− (r − c)2

crβM

]
⇔ crβM + rβk+M (r − rβM − c) ≤ λ[r2βM − (r − c)2](1 − βk+M)

⇔ (k + M) ln β ≤ ln
λr(rβM − r + c) + λc(r − c) − crβM

(λ − 1)r(rβM − r + c) + λc(r − c)

⇔ k ≥ 1
ln β

ln
λr(rβM − r + c) + λc(r − c) − crβM

(λ − 1)r(rβM − r + c) + λc(r − c)
− M � k1

That is to say, the set of risk tolerable strategies is I1λ = {A(k)|k1 ≤ k < n∗−M}
when k < n∗ − M .

Similarly, when k ≥ n∗ − M we have

R(k) ≤ λR∗ ⇔ c + βk(r − rβM − c)
r(1 − βM)

≤ λ

[
r

c
− (r − c)2

crβM

]

⇔ βk(rβM − r + c) ≥ c − λ(1 − βM)[r2βM − (r − c)2]
cβM

⇔ βk ≥ λ(rβM − r + c)2 − (λ − 1)c2βM

cβM (rβM − r + c)

⇔ k ≤ 1
ln β

ln
λ(rβM − r + c)2 − (λ − 1)c2βM

cβM (rβM − r + c)
� k2

That is to say, the set of risk tolerable strategies is I2λ = {A(k)|n∗−M ≤ k ≤ k2}
when k ≥ n∗ − M .

To sum up, we know that for arbitrary k the set of risk tolerable strategies
is Iλ = I1λ

⋃
I2λ = {A(k)|k1 ≤ k ≤ k2}.

Next, we discuss the optimal risk–reward strategies for the three forecasts
respectively.

For the forecast F1, we can obtain the restricted ratio R1(k) as

R1(k) = sup
σ∈F1

CostA(k)(σ)
CostOPT (σ)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, k ≥ n∗ − M ;
sup

n≤n∗−M

{
c(1−βk)+rβk(1−βn−k)

c(1−βn)

}
, n∗ − 2M ≤ k < n∗ − M ;

sup
n≤n∗−M

{
c(1−βk)+rβk(1−βn−k)

c(1−βn) , c(1−βk)+rβk(1−βM)
c(1−βn)

}
, k < n∗ − 2M.

=

⎧⎪⎨
⎪⎩

1, k ≥ n∗ − M ;
(c−r)(1−βk)+r(1−βn∗−M)

c(1−βn∗−M)
, n∗ − 2M ≤ k < n∗ − M ;

(c−r)(1−βk)+r(1−βk+M)
c(1−βk+M)

, k < n∗ − 2M.

(3)

A Risk–Reward Model for On-line Financial Leasing Problem 75

It is easy to find that R1(k) is a piecewise continuous function and non-increasing
with respect to k. So when the forecast F1 comes true the optimal restricted ratio
is R

∗
= min R1(k) = 1. And the strategies {A(k)|n∗ − M ≤ k ≤ k2} can obtain

the restricted ratio 1. But bigger k can bring larger risk, so the optimal strategy
is A(k) with k = n∗ − M .

For the forecast F2, the corresponding restricted ratio R2(k) is

R2(k) = sup
σ∈F2

CostA(k)(σ)
CostOPT (σ)

=

⎧⎪⎨
⎪⎩

c(1−βk)+rβk(1−βM)
c(1−βk+M)

, k < n∗ − M ;
c(1−βk)+rβk(1−βn∗−k)

r(1−βM)
, n∗ − M ≤ k < n∗;

1, k ≥ n∗.

(4)

Through simple derivation we can find that R2(k) is a non-increasing continuous
function. So when the forecast F2 is true the optimal restricted ratio is

R
∗

=
{

R2(k2), n∗ ≥ k2;
1, n∗ < k2.

By simplification we have

n∗ ≥ k2 ⇔ ln
rβM − r + c

c
≤ ln

λ(rβM − r + c)2 − (λ − 1)c2βM

cβM (rβM − r + c)

⇔ rβM − r + c

c
≤ λ(rβM − r + c)2 − (λ − 1)c2βM

cβM (rβM − r + c)

⇔ λ[c2βM − (rβM − r + c)2] ≤ rβM (1 − βM)(rβM − r + 2c)

Because cβM/2 − (rβM − r + c) > (c − r)(βM/2 − 1) > 0 and rβM − r + 2c > 0,
so if 1 < λ ≤ c2βM−βM (rβM−r+c)2

c2βM−(rβM−r+c)2
� Δ, we have n∗ ≥ k2 and R

∗
= R2(k2); if

λ > Δ, we have n∗ < k2 and R
∗

= 1.
For the forecast F3, the corresponding restricted ratio R3(k) is

R3(k) = sup
σ∈F3

CostA(k)(σ)
CostOPT (σ)

=
c(1 − βk) + rβk(1 − βM)

r(1 − βM)
(5)

As R3(k) is an increasing function, the optimal restricted ratio is R
∗

= R3(k1)
when the forecast F3 comes true.

Above all, we can obtain the optimal strategies with different forecasts. Then
the theorem is proved.

According to Theorem 2 we can obtain the following on-line algorithm.

76 X. Chen and W. Xu

Algorithm 1. The optimal risk–reward strategy for on-line financial leasing problem

Input: the parameters (c, r, M) in the on-line financial leasing problem, the interest
rate i, risk tolerance λ and the forecast Fj(j = 1, 2, 3) of the decision maker.

Output: the optimal risk–reward strategy A(k∗) and the restricted ratio R
∗
.

Compute β = 1
1+i

, n∗ = 1
ln β

ln[1 − r(1 − βM)/c], Δ = c2βM−βM (rβM−r+c)2

c2βM−(rβM−r+c)2
,

k1 = 1
ln β

ln λr(rβM−r+c)+λc(r−c)−crβM

(λ−1)r(rβM−r+c)+λc(r−c)
− M , k2 = 1

ln β
ln λ(rβM−r+c)2−(λ−1)c2βM

cβM (rβM−r+c)
,

and functions R2(·), R3(·) in Equation (4) and Equation (5), respectively.
1. If the forecast of the decision maker is F1,

then k∗ := n∗ − M , R
∗

:= 1.
2. If the forecast of the decision maker is F2, then

(a) If 1 < λ ≤ Δ, then k∗ := k2, R
∗

:= R2(k2).

(b) Else k∗ := n∗, R
∗

:= 1.
3. If the forecast of the decision maker is F3,

then k∗ := k1, R
∗

:= R3(k1).

Then the decision maker can make decisions flexibly according to Algorithm 1.

4 Numerical Examples

In this section, we give numerical examples to show the influence of the interest
rate i and risk tolerance λ on the optimal risk–reward strategy. Because the
largest improvement is R∗, we refer to the study of Zhang et al. [11] and take
imp = R∗−R

∗

R∗−1 as the improvement of the risk-reward strategy over the determin-
istic competitive ratio R∗. Here, we only consider the on-line financial leasing
problem with c = 1, r = 3 and M = 10. The results are shown in Table 1.
Since the optimal restricted ratio is 1 when the forecast F1 is true, the data R

∗

and imp are not included in Table 1. For the on-line financial leasing problem
with different c, r and M , the results can be obtained similarly according to
Algorithm 1.

Table 1. Numerical examples when c = 1, r = 3, M = 10

i R∗ λ Under F1 Under F2 Under F3

k∗ k∗ R
∗

imp k∗ R
∗

imp

0.003 1.6261 1.05 20.9462 23.7652 1.4477 0.2849 17.5319 1.5267 0.1588

1.1 26.6082 1.2693 0.5699 14.7965 1.4464 0.2871

1.5 30.9462 1 1 3.8171 1.1170 0.8131

0.005 1.5985 1.05 21.6334 24.7075 1.4113 0.3127 18.1557 1.5066 0.1536

1.1 27.8294 1.2241 0.6255 15.3679 1.4317 0.2786

1.5 31.6334 1 1 4.1599 1.1202 0.7992

0.007 1.5703 1.05 22.3724 25.7451 1.3735 0.3451 18.8223 1.4857 0.1485

1.1 29.1900 1.1767 0.6902 15.9758 1.4163 0.2702

1.5 32.3724 1 1 4.5206 1.1225 0.7852

A Risk–Reward Model for On-line Financial Leasing Problem 77

According to Table 1 we can find that larger interest rate can bring smaller
optimal deterministic competitive ratio. No matter which forecast the decision
maker chooses, the optimal switching time delays and the optimal restricted
ratio decreases when the interest rate increases. Besides, for a given interest
rate bigger risk tolerance can lead to later switching time but smaller restricted
ratio under the same forecast. In addition, we can find that the introduction of
the forecast and risk tolerance can improve the optimal competitive strategy,
sometimes the improvement can reach to about 80%. Above all, the interest rate
and risk tolerance of the decision maker have significant influence on the optimal
on-line financial leasing problem.

5 Conclusion

Financial lease is more and more popular with the public. However, most of
previous studies consider only operating lease. In this paper, we consider the
operating lease and financial lease at the same time. Since the decision maker
always can not know the exact length of using the equipment, this financial
leasing problem is on-line. Considering the value of money and decision maker’s
risk preference, we introduce the interest rate and risk tolerance of the decision
maker into the on-line financial leasing problem. And we analysis the traditional
competitive strategy and the risk–reward strategy for this problem. We also
give numerical examples to show the influence of the interest rate i and risk
tolerance λ on the risk–reward strategy. In the future research, more financial
leasing options can be considered and more general models can be introduced.

Acknowledgments. This paper was financially supported by the National Natural
Science Foundation of China under Grant no. 71471065.

References

1. White, E.: White Clarke Global Leasing Report. White Clarke Group, Bucking-
hamshire (2016)

2. Borodin, A., El-Yaniv, R.: Online Algorithms and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

3. Alvers, S.: Online algorithms: a survey. Math. Program. 97, 3–26 (2003)
4. Karp, R.: Online algorithms versus offline algorithms: how much is it worth to know

the future? In: IFIP 12th World Computer Congress, pp. 416–429. North-Holland
Publishing Co., Amsterdam (1992)

5. El-Yaniv, R., Kaniel, R., Linial, N.: Competitive optimal online leasing. Algorith-
mica 25, 116–140 (1999)

6. Xu, Y.F., Xu, W.J., Li, H.Y.: On the on-line rent-or-buy problem in probabilistic
environments. J. Glob. Optim. 38(1), 1–20 (2007)

7. Epstein, L., Zebedat-Haider, H.: Rent or buy problems with a fixed time horizon.
Theory Comput. Syst. 56(2), 309–329 (2015)

8. Lotker, Z., Patt-Shamir, B., Rawitz, D.: Rent, lease, or buy: randomized algorithms
for multislope ski rental. SIAM J. Discret. Math. 26(2), 718–736 (2012)

78 X. Chen and W. Xu

9. Fujiwara, H., Kitano, T., Fujito, T.: On the best possible competitive ratio for the
multislope ski-rental problem. J. Comb. Optim. 31(2), 463–490 (2016)

10. Al-Binali, S.: A risk-reward framework for the competitive analysis of financial
games. Algorithmica 25, 99–115 (1999)

11. Zhang, Y., Zhang, W.G., Xu, W.J., Li, H.Y.: A risk-reward model for the on-line
leasing of depreciable equipment. Inf. Process. Lett. 111(6), 256–261 (2011)

12. Dai, W.Q., Dong, Y.C., Zhang, X.T.: Competitive analysis of the online financial
lease problem. Eur. J. Oper. Res. 250, 865–873 (2016)

Designing and Implementing Algorithms
for the Closest String Problem

Shota Yuasa1, Zhi-Zhong Chen1(B), Bin Ma2, and Lusheng Wang3

1 Division of Information System Design, Tokyo Denki University,
Hatoyama, Saitama 350-0394, Japan

zzchen@mail.dendai.ac.jp
2 School of Computer Science, University of Waterloo,

200 University Ave. W, Waterloo, ON N2L3G1, Canada
binma@uwaterloo.ca

3 Department of Computer Science, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong SAR

cswangl@cityu.edu.hk

Abstract. Given a set of n strings of length L and a radius d, the clos-
est string problem (CSP for short) asks for a string tsol that is within a
Hamming distance of d to each of the given strings. It is known that
the problem is NP-hard and its optimization version admits a poly-
nomial time approximation scheme (PTAS). A number of parameter-
ized algorithms have been then developed to solve the problem when
d is small. Among them, the relatively new ones have not been imple-
mented before and their performance in practice was unknown. In this
study, we implement all of them by careful engineering. For those that
have been implemented before, our implementation is much faster. For
some of those that have not been implemented before, our experimental
results show that there exist huge gaps between their theoretical and
practical performances. We also design a new parameterized algorithm
for the binary case of CSP. The algorithm is deterministic and runs in
O
(
nL + n2d · 6.16d

)
time, while the previously best deterministic algo-

rithm runs in O
(
nL + nd3 · 6.731d

)
time.

1 Introduction

An instance of the closest string problem (CSP for short) is a pair (S, d), where S
is a set of strings of the same length L over an alphabet Σ and d is a nonnegative
integer. The objective is to find a string tsol of length L such that d(tsol, s) ≤ d
for every s ∈ S. The problem is fundamental and has been extensively studied
in a variety of applications in bioinformatics, such as finding signals in DNA or
protein family, and modif finding. Unfortunately, it is NP-hard [4,7].

Although CSP is NP-hard in general, we can still solve CSP exactly in rea-
sonable amount of time via parameterized algorithms when d is small. Indeed,
Gramm, Niedermeier and Rossmanith [5] designed the first parameterized algo-
rithm that runs in O(nL + nd · dd) time. Ma and Sun [8] present an algo-
rithm whose time complexity is O(nL + nd · (16|Σ|)d). Chen and Wang [2]
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 79–90, 2017.
DOI: 10.1007/978-3-319-59605-1 8

80 S. Yuasa et al.

improve the time complexity to O(nL + nd · 8d) for binary strings and to
O(nL + nd · (

√
2|Σ| + 4

√
8(

√
2 + 1)(1 +

√|Σ| − 1) − 2
√

2)d) for arbitrary alpha-
bets Σ. Chen, Ma, and Wang [1] further improved the time complexity to
O(nL+nd3 ·6.731d) for binary strings and to O(nL+nd·(1.612(|Σ|+β2+β−2))d)

for arbitrary alphabets, where β = α2+1−2α−1+α−2 with α = 3

√√|Σ| − 1 + 1.
In theory, this algorithm has the best time complexity among all known deter-
ministic parameterized algorithms for CSP when |Σ| is small (such as binary
strings and DNA strings). Chen, Ma, and Wang [3] designed a randomized algo-
rithm that runs in O∗(9.81d) and O∗(40.1d) expected time for DNA and protein
strings, respectively. In particular, for binary strings, their randomized algo-
rithm runs in O(nL+n

√
d ·5d) expected time. Hence, in theory, the randomized

algorithms in [3] look faster than the deterministic algorithms in [1,2].
All the aforementioned algorithms for CSP have been rigorously analyzed

and hence their theoretical performance is known. On the other hand, there is
another type of algorithms for CSP which solve the problem exactly but their
theoretical performance has never been rigorously analyzed. For convenience, we
refer to algorithms of this type as heuristic algorithms. Among heuristic algo-
rithms, TraverString [11] and qPMS9 [9] are known to have the best performance
in practice. Indeed, they are much faster than Provable, which is obtained by
implementing the algorithm for CSP in [2].

Ideally, we want to find an algorithm for CSP which not only has a good theo-
retical time-bound but also can be implemented into a program which runs faster
than the other known algorithms for CSP (including the best-known heuristic
algorithms, namely, TraverString [11] and qPMS9 [9]). To find such an algorithm,
one way is to implement the known algorithms (by careful engineering) which
have good theoretical time-bounds. Unfortunately, the recent algorithms in [1,3]
for CSP had not been implemented previously and hence their performance in
practice was previously unknown. Moreover, although the algorithm for CSP
in [2] has the best theoretical time-bound for large alphabets (such as protein
strings), its simple implementation done in [2] only yields a program that is
much slower than the best-known heuristic algorithms for CSP.

So, in this paper, we re-implement the algorithm for CSP in [2] by careful
engineering. For convenience, we refer to this algorithm as the 2-string algorithm
as in [1]. We also carefully implement the 3-string algorithm in [1] and the two
best randomized algorithms (namely, NonRedundantGuess and LargeAlphabet)
in [3], because they have good theoretical time-bounds. Our experimental results
show that NonRedundantGuess and LargeAlphabet are actually much slower than
the deterministic algorithms, although their theoretical time-bounds look better.
Of special interest is that for large alphabets (such as protein strings), our care-
ful implementation of the 2-string algorithm is much faster than all the other
algorithms including TraverString and qPMS9. Hence, for large alphabets, the
2-string algorithm is an ideal algorithm because it not only has the best-known
theoretical time-bound but also can be implemented into a program that out-
performs all the other known programs for CSP in practice.

Designing and Implementing Algorithms for the Closest String Problem 81

We also design and implement a new algorithm for the binary case of CSP.
The new algorithm runs in O(nL + n2d · 6.16d) time and is hence faster than
the previously best deterministic algorithm (namely, the 3-string algorithm).
It is worth pointing out that although the best-known randomized algorithm
(namely, NonRedundantGuess) for the binary case runs in O(nL + n

√
d · 5d)

expected time, its running time is random and it may fail to find a solution
even if one exists. Hence, one cannot say that NonRedundantGuess is better
than our new deterministic algorithm. Indeed, as aforementioned, it turns out
that NonRedundantGuess is actually very slow in practice. Another drawback of
randomized algorithms is that they cannot be used to enumerate all solutions.
In real applications of CSP, we actually need to enumerate all solutions rather
than finding a single one. We can claim that all the deterministic algorithms can
be used for this purpose with their time bounds remaining intact.

Nishimura and Simjour [10] designed an algorithm for (implicitly) enumerat-
ing all solutions of a given instance (S, d). For binary strings, their algorithm runs
in time O

(
nL + nd · ((n + 1)(d + 1))�log(1−δ/2) ε�5d(1+ε+δ)

)
for any 0 < δ ≤ 0.75

and 0 ≤ ε ≤ 1, and they claim that their time-bound is asymptotically bet-
ter than O(nL + nd3 · 6.731d) which is achieved by the 3-string algorithm. In
order for their claim to hold, ε + δ < log5 6.731 − 1 and 5d ≥ (n + 1)γ(d + 1)ρ,
where γ and ρ are the minimum values of the functions

log(1−δ/2) ε

log5 6.731−1−ε−δ and
(log(1−δ/2) ε)−2

log5 6.731−1−ε−δ under the condition ε + δ < log5 6.731 − 1, respectively. Since
γ ≥ 1795 and ρ ≥ 1765, their claim holds only when 5d ≥ (n + 1)1795(d + 1)1765

(i.e., the parameter d is very large). In other words, their claim is false when
5d < (n+1)1795(d+1)1765 (i.e., the parameter d is not very large, which is often
the case for a fixed-parameter algorithm to be meaningful).

2 Notations

Throughout this paper, Σ denotes a fixed alphabet and a string always means
one over Σ. For a string s, |s| denotes the length of s. For each i ∈ {1, 2, . . . , |s|},
s[i] denotes the letter of s at its i-th position. A position set of a string s is a
subset of {1, 2, . . . , |s|}. For two strings s and t of the same length, d(s, t) denotes
their Hamming distance.

Two strings s and t of the same length L agree (respectively, differ) at a
position i ∈ {1, 2, . . . , L} if s[i] = t[i] (respectively, s[i] �= t[i]). The position set
where s and t agree (respectively, differ) is the set of all positions i ∈ {1, 2, . . . , L}
where s and t agree (respectively, differ). The proofs in the paper frequently
use the position sets where a few strings are the same as or different from each
other. The following special notations will be very useful. For two or more strings
s1, . . . , sh of the same length, {s1 ≡ s2 ≡ · · · ≡ sh} denotes the position set
where si and sj agree for all pairs (i, j) with 1 ≤ i < j ≤ h, while {s1 �≡ s2 �≡
· · · �≡ sh} denotes the position set where si and sj differ for all pairs (i, j) with
1 ≤ i < j ≤ h. Moreover, for a sequence s1, . . . , sh, t1, . . . , tk of strings of the

82 S. Yuasa et al.

same length with h ≥ 2 and k ≥ 1, {s1 ≡ s2 ≡ · · · ≡ sh �≡ t1 �≡ t2 �≡ · · · �≡ tk}
denotes {s1 ≡ s2 ≡ · · · ≡ sh} ∩ {sh �≡ t1 �≡ t2 �≡ · · · �≡ tk}.

Another useful concept is that of a partial string, which is a string whose
letters are only known at its certain positions. If s is a string of length L and
P is a position set of s, then s|P denotes the partial string of length L such
that s|P [i] = s[i] for each position i ∈ P but s|P [j] is unknown for each position
j ∈ {1, 2, . . . , L} \ P . Let t be another string of length L. For a subset P of
{1, 2, . . . , L}, the distance between s|P and t|P is |{i ∈ P | s[i] �= t[i]}| and is
denoted by d(s|P , t|P). For two disjoint position sets P and Q of s, s|P + t|Q
denotes the partial string r|P∪Q such that r|P∪Q[i] =

{
s[i], if i ∈ P ;
t[i], if i ∈ Q.

.

At last, when an algorithm exhaustively tries all possibilities to find the right
choice, we say that the algorithm guesses the right choice.

3 A New Algorithm for the Binary Case

A sequence (x1, . . . , xk) of nonnegative integers is superdecreasing if for all 1 ≤
i ≤ k − 1, xi ≥ ∑k

j=i+1 xj . For a nonnegative integer x and a positive integer
k, let Sk(x) denote the set of all superdecreasing sequences (x1, . . . , xk) of k

nonnegative integers with
∑k

i=1 xi = x.

Lemma 1. Let k be a positive integer, and x and X be two nonnegative integers.
Consider the function fX that maps each (x1, . . . , xk) ∈ Sk(x) to

∏k
i=1

(
X+xi

xi

)
.

Then, fX reaches its maximum value when x1 = 	x
2
.

Lemma 2. Let k, x, X, and fX be as in Lemma 1. Then,

∑

(x1,...,xk)∈Sk(x)

fX(x1, . . . , xk) ≤
(

X + 	x
2

	x
2

)(
X + �x

2 �
�x
2 �

)
· 2x ·

(
4
3

)k

.

Theorem 1. The algorithm in Fig. 1 is correct and runs in O∗ (
6.16d

)
time.

Proof. The algorithm is a simple modification of the 2-string algorithm in [2] (see
Fig. 2). The only difference between the two is the way of guessing tsol|A1 . In
more details, the 2-string algorithm guesses tsol|A1 by guessing {tsol �≡ s0} ∩ A1

and further obtaining tsol[p] by flipping s0[p] for each p ∈ {tsol �≡ s0} ∩ A1. So,
the algorithm is clearly correct.

We next analyze the time complexity. Fix an i with 2 ≤ i ≤ log d. For each
1 ≤ j ≤ i−1, let λj = d(si|Ai

, tsol|Ai
). Since d(si, tsol) ≤ d and λ ≤ λ1, we have

λ +
i−1∑

j=2

λj + |Ai| − δi +
log d∑

j=i+1

δj ≤ d. (1)

Moreover, since d(s0, s1) is maximized over all pairs of strings in S, d(si, s0) +
d(si, s1) ≤ 2d(s0, s1) = 2|A1|. Summing up the contribution of the positions in

Designing and Implementing Algorithms for the Closest String Problem 83

Input: An instance S, d of the binary case of CSP.
Output: A solution to S, d if one exists, or NULL otherwise.

1. Select a pair of strings from S whose Hamming distance is maximized over
all pairs of strings in S. Without loss of generality, assume that (s0, s1) is
such a pair.

2. Let P = A1 = {s0 s1}.
3. Guess sh ∈ S (by trying every string in S) such that d(sh|P , tsol|P) is

minimized over all strings in S, where tsol is a fixed (unknown) solution
to S, d . Let λ = d(sh|P , tsol|P).

4. Guess tsol|P (by trying all choices of λ positions in P and flipping the
letters of sh in the λ chosen positions). Let t = tsol|P + s0|{1,2,...,|s0|}\P
and b = d − d(s0|P , t|P).

5. For i = 2, 3, . . . , log d (in this order), perform the following steps:
5.1. If every string in S is within a Hamming distance at most d from t,

then output t and halt.
5.2. Find a string in S whose Hamming distance from t is at least d + 1.

Without loss of generality, assume that si is such a string. Let Ai =
{s0 ≡ s1 ≡ · · · ≡ si−1 si}.

5.3. Let = d(t, si) − d and R = {si t} \ P .
5.4. If min{b, |R|}, then return NULL.
5.5. Guess δi = d(t|Ai , tsol|Ai) (by trying all integers in { + 1, . . . , b}).
5.6. Guess tsol|Ai and modify t accordingly (by trying all choices of δi

positions in R and flipping the letters of t in the chosen δi positions).
5.7. Update b = min{b − δi, δi − } and P = P ∪ R.

6. Return NULL.

Fig. 1. The new algorithm for the binary case

Input: An instance , d, t, P, b of ECSP.
Output: A solution to , d, t, P, b if one exists, or NULL otherwise.

1. If there is no s ∈ S with d(t, s) > d, then output t and halt.
2. If d = b, then find a string s ∈ S such that d(t, s) is maximized over all

strings in S; otherwise, find an arbitrary string s ∈ S such that d(t, s) > d.
3. Let = d(t, s) − d and R = {s t} \ P .
4. If min{b, |R|}, then return NULL.
5. Guess tsol|R by performing the following steps, where tsol is a fixed (un-

known) solution to , d, t, P, b .
5.1 Guess two sets X and Y such that Y ⊆ X ⊆ R, ≤ |X| ≤ b, and

|Y | ≤ |X| − .
5.2 For each i ∈ Y , guess a letter zi different from both s[i] and t[i]. Let

the partial string ŝ|Y be such that ŝ|Y [i] = zi for all i ∈ Y .
5.3 Let tsol|R = ŝ|Y + s|X\Y + t|R\X .

6. Let t = tsol|R + t|{1,2,...,|t|}\R and b = min{b − |X|, |X| − − |Y |}. (Com-
ment: d(t, t) = |X|.)

7. Solve s}, d, t , P ∪ R, b recursively.
8. Return NULL.

Fig. 2. The 2-string algorithm given in [2]

84 S. Yuasa et al.

each Aj (1 ≤ j ≤ i) towards d(si, s0) + d(si, s1), we have |A1| +
∑i−1

j=2 2|δj −
λj | + 2|Ai| ≤ d(si, s0) + d(si, s1) ≤ 2|A1|. Thus,

i−1∑

j=2

(δj − λj) + |Ai| ≤
i−1∑

j=2

|δj − λj | + |Ai| ≤ |A1|
2

. (2)

Adding up Eqs. 1 and 2, we have λ+
∑i−1

j=2 δj +2|Ai|−δi +
∑log d

j=i+1 δj ≤ |A1|
2 +d.

Let d′ =
∑log d

j=2 δj . Then, λ + 2|Ai| − 2δi + d′ ≤ |A1|
2 + d. So, |Ai| ≤ |A1|

4 +
d
2 − d′

2 − λ
2 + δi. Since |A1| + 2d′ = d(s0, tsol) + d(s1, tsol) ≤ 2d, we now have

|A1| ≤ 2(d − d′) and hence |Ai| ≤ d − d′ − λ
2 + δi.

Let X = d−d′ − λ
2 and k = log d. By Lemma 2, the exponential factor in the

time complexity of the algorithm is bounded from above by

(|A1|
λ

) ∑

(δ2,...,δk)∈Sk−1(d′)

k∏

i=2

(
X + δi

δi

)

≤
(|A1|

λ

)(
X + 	d′

2

	d′

2

)(

X + �d′
2 �

�d′
2 �

)
· 2d′ ·

(
4
3

)k−1

≤ d ·
(

2(d − d′)
λ

)(
X + 	d′

2

	d′

2

)(

X + �d′
2 �

�d′
2 �

)
· 2d′

≤ d ·
(

2(d − d′)
λ

)(
d − λ

2 − �d′
2 �

	d′
2

)(
d − λ

2 − 	d′
2

�d′
2 �

)
· 2d′

.

Now, using Stirling’s formula, the exponential factor in the time complexity of
the algorithm is bounded from above by

(2(d − d′))2(d−d′)

λλ · (2(d − d′) − λ)2(d−d′)−λ
·

⎛

⎜⎜
⎝

(
d − λ

2 − d′
2

)d− λ
2 − d′

2

(
d′
2

) d′
2 · (

d − λ
2 − d′)d− λ

2 −d′

⎞

⎟⎟
⎠

2

· 2d′
.

Let a = λ
d and b = d′

d . Then, the above bound becomes cd, where

c =
(2(1 − b))2(1−b)

aa · (2(1 − b) − a)2(1−b)−a
·
⎛

⎝
(
1 − a

2 − b
2

)1− a
2 − b

2

(
b
2

) b
2 · (

1 − a
2 − b

)1− a
2 −b

⎞

⎠

2

· 2b

=
22−b(1 − b)2(1−b)(2 − a − b)2−a−b

aabb(2 − a − 2b)2(2−a−2b)

Note that a + b ≤ 1 for λ + d′ ≤ d(s0, tsol) ≤ d. So, by numerical calculation,
one can verify that c ≤ 6.16 no matter what a and b are (as long as a + b ≤ 1).
Thus, the time complexity of the algorithm is O∗ (

6.16d
)
.

Designing and Implementing Algorithms for the Closest String Problem 85

4 Previous Algorithms

A number of parameterized algorithms whose time complexity has been rigor-
ously analyzed have not been implemented. One objective of this paper is to
implement the recent algorithms and see their performance in practice. We only
sketch the 2-string algorithm for CSP below.

The 2-String Algorithm has actually been implemented in [2]. However, as
demonstrated in [11], the implementation in [2] yields a program (called Prov-
able) which runs much slower than TraverString. In this paper, we give a different
implementation of the 2-string algorithm.

The algorithm is actually designed for a more general problem, called the
extended closest string problem (ECSP for short). An instance of ECSP is a
quintuple (S, d, t, P, b), where S is a set of strings of the same length L, t is a
string of length L, d is a positive integer, P is a subset of {1, 2, . . . , L}, and b is
a nonnegative integer. The objective is to find a string tsol of length L such that
tsol|P = t|P , d(tsol, t) ≤ b, and ∀s ∈ S, d(tsol, s) ≤ d. Intuitively speaking, we
want to transform t into a solution tsol by modifying ≤ b positions of t outside P .

To solve a given instance (S, d) of CSP, it suffices to solve the instance (S \
{t}, d, t, ∅, d) of ECSP, where t is an arbitrary string in S. The algorithm for
ECSP is detailed in Fig. 2.

5 Implementing the Algorithms

Because each step of NonRedundantGuess and LargeAlphabet is very simple, their
implementation is rather straightforward. So, we only describe the main ideas
used in our implementation of the deterministic algorithms below.

Basically, each of the deterministic algorithms maintains a string t, a set P
of fixed positions of t, and a bound b, and tries to transform t into a solution by
selecting and modifying at most b unfixed positions (i.e., positions outside P) of
t. It is possible that there is no way to transform t into a solution by modifying
at most b unfixed positions of t. We want to efficiently decide if this is really the
case. The next lemma can be used for this purpose.

Lemma 3 [11]. Let u, v, and w be three strings of the same length K. Then,
there is a string tsol of length K such that d(tsol, u) ≤ du, d(tsol, v) ≤ dv, and
d(tsol, w) ≤ dw if and only if the following conditions hold:

1. du ≥ 0, dv ≥ 0, and dw ≥ 0.
2. d(u, v) ≤ du + dv, d(u,w) ≤ du + dw, and d(v, w) ≤ dv + dw.
3. du+dv+dw ≥ |{u ≡ v �≡ w}|+|{u ≡ w �≡ v}|+|{v ≡ w �≡ u}|+2|{u �≡ v �≡ w}|.

As an example, we explain how to use Lemma 3 to prune a search tree for
the 2-string algorithm. Consider a call of the algorithm on input 〈S, d, t, P, b〉.
For convenience, let Q = {1, . . . , L} \ P and K = L − |P |. For each u ∈ S, let
du = d − d(t|P , u|P). Recall that t has been obtained by modifying the fixed
positions of some ũ ∈ S. Hence, b = dũ. What the algorithm needs to do is to

86 S. Yuasa et al.

transform t|Q into a string tsol of length K such that d(tsol, u|Q) ≤ du for all
u ∈ S. To decide if such a transformation exists, we want to check if Conditions 1
through 3 in Lemma 3 hold for every triple {u, v, w} of strings in S. However,
there are Ω(|S|3) such triples and hence it is time-consuming and wasteful to
do the checking for all of them. So, in our implementation, we only check those
triples (u, v, w) such that u = ũ, v is the string s selected in Step 2 of the
algorithm, and w ∈ S \ {u, v}. If the checking fails for at least one such triple,
Lemma 3 ensures that t cannot be transformed into a solution by selecting and
modifying at most b unfixed positions of t.

5.1 Enumerating Subsets of Unfixed Positions

In Step 5 of the 2-string algorithm, we need to decide which unfixed positions of
t should be selected and further how to modify them. The other deterministic
algorithms have the same issue. We only explain how to deal with this issue for
the 2-string algorithm below; the same can be done for the other algorithms.

In Step 5, we need to enumerate all subsets X of R with
 ≤ |X| ≤ b.
Then, for each enumerated X, we need to enumerate all subsets Y of X with
|Y | ≤ |X| −
. Furthermore, for each enumerated Y , we need to enumerate
all valid ways of modifying the positions of t in Y . Roughly speaking, in the
implementation of the 2-string algorithm done in [2], only after enumerating X
and Y , we start to enumerate all valid ways of modifying the positions of t in
Y . So, in the implementation in [2], every possible combination of X and Y will
be enumerated because only after modifying one or more positions of t in X, we
can decide if it is unnecessary to make a certain recursive call on the modified
t (i.e., if it is possible to prune a certain branch of the search tree). This seems
to be the main reason whey the implementation in [2] yields a slow program
for CSP.

To get over the above-mentioned drawback of the implementation in [2], our
idea is to enumerate the elements of X and Y one by one and at the same time
enumerate all possible ways of modifying each position in Y . In more details, we
scan the positions in R one by one (in any order). When scanning a p ∈ R, we
need to make two choices depending on whether to include p in X or not. If we
decide to exclude p from X, then we proceed to the next position in R. Otherwise,
we need to make two choices depending on whether to include p in Y or not. If
we decide to exclude p from Y , then we modify t by changing t[p] to s[p] and then
use Lemma 3 to check if the modified t can be further transformed into a solution
by modifying at most b − 1 positions outside P ∪ {p}. If the checking yields a
“no” answer, then we can quit scanning the remaining positions in R and hence
prune a certain branch of the search tree at an early stage. Similarly, if we decide
to include p in Y , then we need to make |Σ| − 2 choices depending on to which
letter we should change t[p]. For each of the choices, after modifying position p
of t, we use Lemma 3 to check if the modified t can be further transformed into
a solution by modifying at most b − 1 positions outside P ∪ {p}. If the checking
yields a “no” answer, then we can quit scanning the remaining positions in R
and hence prune a certain branch of the search tree at an early stage.

Designing and Implementing Algorithms for the Closest String Problem 87

5. Let p1, p2, . . . , pq be the positions in R. Initialize X = ∅ and Y =
∅. For i = 1, 2, . . . , q (in this order), guess tsol[pi] by performing
Steps 5.1 through 5.3:
5.1 If |X| + q − i + 1 = , then add pi to X, set tsol[pi] = s[pi], and

proceed to the next i (without performing Steps 5.2 and 5.3).
5.2 If |X| + q − i + 1 , perform the following steps:

5.2.1 Guess whether pi ∈ X or not.
5.2.2 If the guess is pi ∈ X, then add pi to X and perform

Steps 5.2.2.1 through 5.2.2.4:
5.2.2.1 If |X| + q − i − |Y | = , then set tsol[pi] = s[pi] and

proceed to the next i (without performing Steps 5.2.2.2
through 5.2.2.4 and 5.3).

5.2.2.2 Guess whether pi ∈ Y or not.
5.2.2.3 If the guess is pi Y , then set tsol[pi] = s[pi]; other-

wise, add pi to Y and guess tsol[pi] from Σ \{t[pi], s[pi]}.
5.2.2.4 Proceed to the next i (without performing Step 5.3).

5.3 Set tsol[pi] = t[pi].

Fig. 3. Modifying Step 5 of the 2-string algorithm in Figure 2

More formally, we modify Step 5 in the 2-string algorithm as shown in Fig. 3.
A crucial but missing detail in the modified Step 5 is that before we decide to
set tsol[pi] to be a certain letter a �= t[pi] in Step 5.1, 5.2.2.1, or 5.2.2.3, we
actually use Lemma 3 to check if setting tsol[pi] = a can lead to a solution as
follows. First, we obtain a string u from t by changing t[pi] to a and changing
t[pj] to tsol[pj] for all j ∈ {1, 2, . . . , i − 1}. We then compute du = b − d(t, u), set
v = s, and compute dv = d − d(v|P∪{p1,...,pi}, u|P∪{p1,...,pi}). For all w ∈ S, we
further compute dw = d − d(w|P∪{p1,...,pi}, u|P∪{p1,...,pi}) and now check if u, v,
w, du, dv, and dw altogether satisfy Conditions 1 through 3 in Lemma3. If this
checking fails for at least one w, then we can conclude that setting tsol[pi] = a
cannot lead to a solution, and hence we can quit setting tsol[pi] = a (i.e., can
prune a certain branch of the search tree).

5.2 Sorting the Input Strings

Again, we explain the idea by using the 2-string algorithm as an example. The
idea also applies to the other deterministic algorithms. As mentioned in the above
(immediately before Sect. 5.1), when we apply Lemma 3, we only check those
triples (u, v, w) such that u is the input string from which the current t has been
obtained, v is the string selected in Step 2 of the algorithm, and w ∈ S \ {u, v}.
So, there are |S| − 2 choices for w and we can try the choices in any order. As
one can expect, different orders lead to different speeds. In our implementation,
we try the choices for w in descending order of the Hamming distance of w from
t. Intuitively speaking, this order seems to enable us to find out that t cannot
be transformed into a solution at an earlier stage than other orders.

88 S. Yuasa et al.

5.3 On Implementing the Algorithm in Sect. 3

In Step 3 of our new algorithm, we need to guess an input string sh such that
d(sh|P , tsol|P) is minimized over all input strings, where tsol is a fixed solution.
To guess sh, a simple way is to try all input strings (in any order). When trying
a particular sh, we use Lemma 4 to cut unnecessary branches of the search tree.

Lemma 4. Let P be as in Step 2 of the algorithm. Further let tsol and sh be as
in Step 3 of the algorithm. Then, for every sj ∈ S, d(sh|D, tsol|D) ≤ |D|

2 , where
D = {sh|P �≡ sj |P }.

To use Lemma 4, we first compute mj = d(sh|P ,sj |P)
2 for each sj ∈ S in Step 3.

Later in Step 4, we scan the positions in P one by one (in any order). When
scanning a position p ∈ P , we need to make two recursive calls – one of them
corresponds to flipping the letter of sh at position p while the other corresponds
to keeping the letter of sh at position p intact. Before making each of the calls,
we decrease mj by 1 for all sj ∈ S such that the letter of sh at position p has
become different from sj [p] after scanning p; if mj becomes negative for some
sj ∈ S, then we know that it is unnecessary to make the recursive call. In this
way, we are able to cut certain unnecessary branches of the search tree.

6 Results and Discussion

We have implemented the new algorithm in Sect. 3 and the previously known
algorithms reviewed in Sect. 4. As the result, we have obtained a program (writ-
ten in C) for each of the algorithms. We not only compare these programs against
each other but also include TraverString and qPMS9 in the comparison. We do
not compare with the algorithm in [6], because its code is not available. The
machine on which we ran the programs is an Intel Core i7-975 (3.33GHz, 6MB
Cache, 6GB RAM in 64bit mode) Linux PC.

As in previous studies, we generate random instances of CSP as input to
the programs. In the generation of instances, we fix L = 600 and n = 20 but
varies d and |Σ|. As usual, the choices for |Σ| we employ in our test are 2 (binary
strings), 4 (DNA strings), and 20 (protein strings). Choosing d is less obvious.
Clearly, the larger d is, the longer the programs run. To distinguish the programs
from each other in terms of speed, we consider the following five ranges of d:
(1) 10 ≤ d ≤ 15, (2) 28 ≤ d ≤ 33, (3) 80 ≤ d ≤ 85, (4) 82 ≤ d ≤ 87,
and (5) d ∈ {89, 92, 95, 98, 101}. The choice of these ranges is based on the
expectation that some of the programs can be slow even if d is small, while the
others can show their significant difference in running time only if d is modest
or even large.

Since some of the programs can be very slow for certain d, we set a time limit
of 5 hours on each run of each program in our test. For each setting of parameters
(e.g., (L, n, |Σ|, d) = (600, 20, 4, 15)), we generate five instances, pass them to the
programs, and require each program to find all solutions for each instance. We
will summarize our experimental results in several tables. If a program solves all

Designing and Implementing Algorithms for the Closest String Problem 89

Table 1. Comparison of the programs for |Σ| = 4, 20, 2

of the five instances within the time limit, we calculate the average running time
and show it as is in a table; otherwise, we put a TL symbol in the corresponding
cell of the table, where TL stands for “time limit”.

Table 1 shows the comparison of the programs for DNA, protein, or binary
strings. As seen from the table, NonRedundantGuess and LargeGuess are slower
than the other algorithms even though NonRedundantGuess and LargeGuess
have better theoretical time-bounds. In the table, New means our new algorithm
in Sect. 3. We exclude the experimental results for NonRedundantGuess and
LargeGuess from the table, because both failed to solve a single instance within
the time limit. As seen from the table, our new algorithm in Sect. 3 is much

90 S. Yuasa et al.

faster than NonRedundantGuess and LargeGuess, but is much slower than the
other deterministic algorithms. The reason why the new algorithm runs slower
seems to be that the pruning inequalities in Lemma3 are much less effective in
cutting unnecessary branches of a search tree for our new algorithm.

Based on our above experimental results, we conclude that the 2-string and
the 3-string algorithms have little difference in running time and they are the sta-
blest algorithms among the tested algorithms. In particular, for large alphabets
(such as protein strings), the 2-string algorithm is an ideal algorithm because
it not only has the best-known theoretical time-bound but also can be imple-
mented into a program that outperforms the other known programs for CSP in
practice.

References

1. Chen, Z.-Z., Ma, B., Wang, L.: A three-string approach to the closest string prob-
lem. J. Comput. Syst. Sci. 78, 164–178 (2012)

2. Chen, Z.-Z., Wang, L.: Fast exact algorithms for the closest string and substring
problems with application to the planted (�, d)-motif model. IEEE/ACM Trans.
Comput. Biol. Bioinf. 8(5), 1400–1410 (2011)

3. Chen, Z.-Z., Ma, B., Wang, L.: Randomized fixed-parameter algorithms for the
closest string problem. Algorithmica 74, 466–484 (2016)

4. Frances, M., Litman, A.: On covering problems of codes. Theoret. Comput. Sci.
30, 113–119 (1997)

5. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37, 25–42 (2003)

6. Hufsky, F., Kuchenbecker, L., Jahn, K., Stoye, J., Böcker, S.: Swiftly computing
center strings. BMC Bioinform. 12, 106 (2011)

7. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string search
problems. Inform. Comput. 185, 41–55 (2003)

8. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM J. Comput. 39(4), 1432–1443 (2010)

9. Nicolae, M., Rajasekaran, S.: qPMS9: an efficient algorithm for quorum planted
motif search. Nat. Sci. Rep. 5 (2015)

10. Nishimura, N., Simjour, N.: Enumerating neighbour and closest strings. In:
Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 252–263.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33293-7 24

11. Tanaka, S.: Improved exact enumerative algorithms for the planted (l, d)-motif
search problem (2014). IEEE/ACM Trans. Comput. Biol. Bioinf. 11, 361–374
(2014)

http://dx.doi.org/10.1007/978-3-642-33293-7_24

The Broken-Triangle Property
with Adjoint Values

Jian Gao1(B), Rong Chen1(B), Minghao Yin2(B), and Hui Li1(B)

1 College of Information Science and Technology, Dalian Maritime University,
Dalian 116026, China

{gaojian,rchen,lih2002}@dlmu.edu.cn
2 College of Computer Science, Northeast Normal University,

Changchun 130024, China
ymh@nenu.edu.cn

Abstract. Recently, the Broken Triangle Property (BTP) and its exten-
sions have been proposed to identify hybrid tractable classes of Con-
straint Satisfaction Problems (CSPs). In this paper, we extend the BTP
to the concept of the Broken Triangle Property with adjoint values
(BTPv), and then identify a more general hybrid tractable class of binary
CSPs. To prove tractability, we present a polynomial-time algorithm to
solve CSP instances in the new tractable class using a novel variable
selection mechanism, and show correctness of it. We also show that deter-
mining whether an instance is in the class can be achieved efficiently.
Furthermore, we provide comparisons with the BTP and its extensions
showing that as a generalization of the BTP, the BTPv can find novel
tractable CSPs, which cannot be identified by those existing tractable
classes.

Keywords: Constraint Satisfaction Problem · Broken Triangle Prop-
erty · Tractable class

1 Introduction

The Constraint Satisfaction Problem (CSP) [1] has emerged as a fundamental
methodology to express and solve a large variety of practical problems in our
society. While it can neatly model the real-world problem as a set of variables
and a set of constraints that restrict the allowed values, the CSP is accompanied
with computational complexity — in general case deciding whether a given CSP
has a solution is an NP-complete problem.

CSP instances in the tractable classes can be solved (and often recognized)
in polynomial time. Over the past three decades, a great effort has been made to
find tractable classes by restricting the allowed constraint forms, or by identifying

This work was supported by the National Natural Science Foundation of China
(No. 61402070, No. 61370156, No. 61503074, No. 61672122 and No. 61602077), and
Natural Science Foundation of Liaoning Province (No. 2015020023).

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 91–102, 2017.
DOI: 10.1007/978-3-319-59605-1 9

92 J. Gao et al.

structural properties of constraint networks [2]. Recently, many hybrid tractable
classes [3–7] that combine structural and relational restrictions have been iden-
tified. Among them, the Broken Triangle Property (BTP) [8] outstands due to
its prefect properties that not only include several previous tractable classes but
also ensure its instances to be solved in polynomial time by maintaining arc
consistency with any instantiation order [3]. The BTP also has important appli-
cations such as variable elimination [9] and identifying hidden tractable classes
by enforcing local consistencies [10]. So far the BTP has been extended to the
joint-winner property for valued CSPs [11], the extension for quantified CSPs
[12], the Extendable-Triple Property (ETP) [13], and the dual broken triangle
property for non-binary CSPs [14]. In addition, recently Naanaa [15] has pro-
posed rank CSPs using independent set based on set theory. If a binary CSP
instance has a fixed rank bounded by a value κ (the maximum independent set
does not exceed κ) with respect to a fixed variable ordering and satisfies κ + 1
consistency, the problem is globally consistent.

The hybrid tractable classes of the BTP and of its extensions have a com-
mon property which guarantees tractability. Namely tractability is ensured dur-
ing assigning variables, where for any current partial assignment, all unassigned
variables have at least one consistent value to be assigned, and thus all vari-
ables can be assigned so as to construct a solution. To solve CSP instances in
the BTP class and others, variables should be assigned with a pre-computed
variable ordering. Furthermore, it can be seen that if there exists a right vari-
able to assign for any partial assignment keeping the tractability property and
if the right variable can be computed efficiently according to values assigned in
the current partial assignment, the CSP can also be solved in a backtrack-free
manner. So it is interesting to investigate required properties for computing the
right variable efficiently to ensure the tractability and thus we can obtain novel
tractable classes. Motivated by this, we propose the concept of adjoint values
as requirements for computing dynamical variable orderings, and then we gen-
eralize the BTP by introducing the BTP with adjoint values. In doing so, we
identify a novel tractable class as well as present an algorithm to solve CSPs in
that class. Moreover, we prove determining whether a CSP is in the class can
be achieved in polynomial time. Finally, we compare this new class with the
BTP class and other existing hybrid tractable classes, and indicate that using
the BTPv new tractable cases of CSPs can be identified.

2 Background

2.1 The Constraint Satisfaction Problem

Formally, a CSP is defined as a triple P = (V,D,C), where V = {x1, x2, . . . , xn}
is a set of n variables. D = {D1,D2, . . . , Dn} is a set of domains of values, and
each variable xi ∈ V can take its values in the finite domain Di ∈ D. C =
{C1, . . . , Ce} is a set of constraints, which specifies the allowable combinations
of values. A constraint Ci ∈ C is a pair (vars(Ci), rel(Ci)), where vars(Ci) is a
subset of V called the constraint scope and rel(Ci) is a subset of the Cartesian

The Broken-Triangle Property with Adjoint Values 93

product Di1 × . . . × Dik . The constraint Ci is binary if and only if there are
only two variables involved in Ci. A CSP is binary if all constraints are binary.
For the sake of simplicity, we only consider binary constraints in this paper,
and use the notation Cij to denote the constraint between xi and xj , Rij to
denote its relations. Note that Cij and Cji are different constraints, and universal
constraints should be added if there is no constraint between two variables.

A partial assignment to a set of variables V ′ ⊆ V is a sequence of pairs
of 〈xi, ai〉 where xi ∈ V ′ and ai ∈ Di. A partial assignment is consistent if it
satisfies all constraints whose scope is a subset of the variables involved in the
assignment. A solution to a CSP is a consistent partial assignment that includes
all variables in V . Solving a CSP is to find a solution to it (satisfiable) or to
determine there is no solution (unsatisfiable).

Given a constraint Cij , a value aj ∈ Dj is a support of ai ∈ Di if and only
if (ai, aj) ∈ Rij ; support set Dj(xi = ai) is a subset of Dj that is composed of
all supports of ai; we use Dj(ai) for short if xi is specified in the context. More-
over, given a subnetwork including three variables xi, xj and xk, Dk(ai, aj) =
Dk(ai)

⋂
Dk(aj) where ai ∈ Di, aj ∈ Dj .

To ensure tractability for CSPs, consistencies are always required. A binary
CSP P = (V,D,C) is arc consistent if and only if for all ordered pairs of variables
(xi, xj), for each value ai ∈ Di, there exists at least one value aj ∈ Dj such that
(ai, aj) ∈ Rij .

A binary CSP P = (V,D,C) is path consistent if and only if for all ordered
triples of variables (xi, xj , xk), for each pair of (ai, aj) ∈ Rij , there exists at least
one value ak ∈ Dk such that (ai, ak) ∈ Rik and (aj , ak) ∈ Rjk. P is Strong Path
Consistent (SPC) if and only if it is arc consistent and path consistent.

Given a binary CSP, enforcing arc consistency can be achieved in O(ed2)
time [16], where e is the number of constraints and d is the domain size. On
the other hand, enforcing path consistency on a binary CSP can be achieved in
O(n3d3) time [17].

2.2 The Broken Triangle Property

Cooper et al. [8] defined the BTP on binary CSPs. The BTP generalizes tree
structure, and identifies a new tractable class of CSPs. To extend the BTP by
adjoint values, it requires deeper investigation on microstructure of a CSP (e.g.
the BTP between two values and one variable). So we give a definition about
the BTP on triples of two values and a variable.

Given a binary CSP P = (V,D,C), where ai ∈ Di, aj ∈ Dj such that
(ai, aj) ∈ Rij , and xk ∈ V (i, j �= k). The ordered triple of (ai, aj , xk) satisfies
the BTP if and only if for each pair of values (ak1 , ak2) such that (ai, ak1) ∈ Rik

and (aj , ak2) ∈ Rjk, either (ai, ak2) ∈ Rik or (aj , ak1) ∈ Rjk. We use the notation
BT P to denote the set including all triples of values and variables that satisfies
the BTP, so the ordered triple (ai, aj , xk) satisfies the BTP can be described as
(ai, aj , xk) ∈ BT P. Also, it is noted that (aj , ai, xk) ∈ BT P if (ai, aj , xk) ∈ BT P
because the order ai and aj can be exchanged in the BTP definition.

94 J. Gao et al.

Moreover, let xi, xj , xk ∈ V (i �= j, and i, j �= k), the ordered triple of
variables (xi, xj , xk) ∈ BT P if and only if for each pair of (ai, aj) ∈ Rij , the
triple of (ai, aj , xk) ∈ BT P.

Let A be a consistent partial assignment and xk be a variable that is not
involved in A. The ordered pair of (A, xk) ∈ BT PA if and only if either there
is only one assignment in A or for each pair of (ai, aj) such that 〈xi, ai〉 ∈ A
and 〈xj , aj〉 ∈ A, the ordered triple of (ai, aj , xk) ∈ BT P. It is also said that A
satisfies the BTP with respect to xk.

Based on the definitions above, the BTP of a CSP is defined as follows.

Definition 1. Given a binary CSP P = (V,D,C), P satisfies the BTP with
respect to a variable ordering ≺ if and only if for all triples of variables
(xi, xj , xk) such that xi ≺ xj ≺ xk, the triple (xi, xj , xk) ∈ BT P.

According to Lemma 2.4 in [3], the BTP can also be described by set inclusion.
Given (ai, aj) ∈ Rij and a variable xk (i, j �= k), (ai, aj , xk) ∈ BT P if and only
if either Dk(ai) ⊆ Dk(aj) or Dk(ai) ⊇ Dk(aj).

A binary CSP that satisfies the BTP with a variable ordering ≺ can be solved
in polynomial time. Moreover, there exists an algorithm that runs in polynomial
time to find the variable ordering if it exists or to determine that there is no
such ordering. The BTP also has some nice properties that distinguish the BTP
class from other tractable classes. For example, the BTP with respect to any
fixed variable ordering is conservative, and this property ensures that it is closed
under domain restrictions, so a CSP satisfying the BTP retains the property
after enforcing arc consistency.

3 Adjoint Values of the BTP

3.1 Definitions

First, we define adjoint values with respect to the BTP.

Definition 2. Given a binary CSP P = (V,D,C), a value aj ∈ Dj is adjoint
to ai ∈ Di (i �= j) with respect to the BTP if and only if (ai, aj) ∈ Rij, and for
each value ak ∈ Dk and for each variable xl such that (ai, ak) ∈ Rik, (aj , ak) ∈
Rjk where xi, xj, xk and xl are different variables, (ai, ak, xl) ∈ BT P implies
(aj , ak, xl) ∈ BT P.

An adjoint value aj is included in at least as many BTP triples as ai, which
aj is adjoint to. So assigning aj together with ai will not break the BTP held
by ai. For the simplicity, we always say aj is adjoint to ai for short instead of aj

is adjoint to ai with respect to the BTP.
A BTP-adjoint value set of a value ai with respect to xj (ai /∈ Dj) is a

subset of Dj such that each aj in the set is adjoint to ai. Dadj
j (ai) denotes the

BTP-adjoint value set of ai.
Based on adjoint values, we introduce the notion Broken-Triangle Property

with adjoint values (BTPv for short). Given ai, aj such that (ai, aj) ∈ Rij and

The Broken-Triangle Property with Adjoint Values 95

a variable xk (i, j �= k), (ai, aj , xk) satisfies the BTP-adjoint property if and
only if for each ak ∈ Dk(ai, aj), both ak ∈ Dadj

k (ai) and ak ∈ Dadj
k (aj). The

BTP-adjoint property requires that any consistent value in Dk must be adjoint
to both ai and aj . Same as the BTP, notation BT PV is defined as follows:
(ai, aj , xk) ∈ BT PV if and only if either (ai, aj , xk) ∈ BT P or (ai, aj , xk) satisfies
the BTP-adjoint property, so it can be seen that the BT PV includes the BT P.
In addition, given three distinct variables xi, xj and xk, (xi, xj , xk) ∈ BT PV if
and only if for each pair of (ai, aj) ∈ Rij , the triple (ai, aj , xk) ∈ BT PV .

A binary CSP satisfies the BTPv is defined as follows.

Definition 3. A CSP P = (V,D,C) satisfies the BTPv with respect to a vari-
able ordering ≺ if and only if for each triple of variables (xi, xj , xk) such that
xi ≺ xj ≺ xk, (xi, xj , xk) ∈ BT PV .

Next, we analyze the computational complexity. Given two values ai and aj ,
testing whether aj is in Dadj

j (ai) can be decided in O(n2d2) time. This task
can be achieved by testing whether each triple of (ai, al, xk) ∈ BT P implies
(aj , al, xk) ∈ BT P. Since there are O(n2d) triples to be tested, while testing
whether a support set includes another one requires O(d) time, so the testing
is in O(n2d2) time. Moreover, to compute all adjoint values of each value in a
CSP, it requires O(n4d4) time as there are O(n2d2) pairs of values.

Finally, we give an example of the BTPv.

Example 1. Figure 1 shows a microstructure of a constraint network. The triple
(x1, x2, x3) satisfies the BTP, while triples involving variable x4 does not. It can
be seen that (x1, x2, x4) /∈ BT P as D4(x1 = 1) and D4(x2 = 1) cannot include
each other, whereas (x1, x2, x4) ∈ BT PV as x4 = 1, 2, 3 are adjoint to both
x1 = 1 and x2 = 1, respectively.

Fig. 1. The microstructure of Example 1

96 J. Gao et al.

3.2 Conflicts in the BTPv

This subsection discusses a special case of the BTPv. Consider a subnetwork with
four variables xi, xj , xk and xl, which is shown as Fig. 2, where Di = Dj = {1},
Dk = {2}, Dl = {1, 2, 3, 4}, and lines between values are binary relations, for
example, Dl(xi = 1) = {1, 2, 3}. Assume xk = 2 is adjoint to xi = 1 and xj = 1;
xl = 1, 2, 3 is adjoint to xi = 1; xl = 2, 3, 4 is adjoint to xj = 1; and xl = 1, 4
is adjoint to xk = 2, so (xi = 1, xj = 1, xk) ∈ BT PV and (xi = 1, xj = 1, xl) ∈
BT PV . Under the current partial assignment {〈xi, 1〉, 〈xj , 1〉, 〈xk, 2〉}, the next
variable to be assigned is xl, but this partial assignment leads to no value that can
be selected for xl due to the empty set Dl(xi = 1)

⋂
Dl(xj = 1)

⋂
Dl(xk = 2),

though the BTPv can be satisfied with respect to the ordering xi ≺ xj ≺ xk ≺ xl.

Fig. 2. Relations of a subnetwork with four variables

The case we describe above is a conflict in adjoint situations, where xk

and xl are adjoint to xi = 1 and xj = 1 at the same time. Formally, 4-tuple
(ai, aj , xk, xl) has a BTPv-conflict with respect to xl if and only if (ai, aj , xk)
and (ai, aj , xl) satisfy the BTP-adjoint property but they do not satisfy the BTP,
and there exists a value ak ∈ Dk(ai, aj) such that both (ai, ak, xl) /∈ BT P and
(aj , ak, xl) /∈ BT P.

To avoid this case in CSPs we investigate, we introduce the concept of no-
conflict BTPv, which is a necessary condition to identify our tractable class.

Definition 4. A CSP P = (V,D,C) satisfies the no-conflict BTPv with respect
to a variable ordering ≺ if and only if P satisfies the BTPv with ≺, and for each
4-tuple of (ai, aj , xk, xl) such that (ai, aj) ∈ Rij and xi, xj , xk ≺ xl, there are no
BTPv-conflict with respect to xl.

The no-conflict BTPv restricts that external BTP should be satisfied if val-
ues from xk and xl are adjoint to ai and aj at the same time. In fact, either
(ai, ak, xl) ∈ BT P or (aj , ak, xl) ∈ BT P is adequate to ensure that xl can be
assigned by a consistent value if the problem is path consistent, so it is not a
conflict if one of the triples (ai, ak, xl) and (aj , ak, xl) satisfies the BTP. The
restriction of no-conflict BTPv is a necessary condition for the tractable class,
which will be proved in the next section.

The Broken-Triangle Property with Adjoint Values 97

4 The Tractable Class

In this section, we identify a new tractable class of binary CSPs and show the
main tractable result with the no-conflict BTPv, and also present an algorithm
to solve CSPs in the class with a dynamic variable ordering.

Before presenting the tractable class, some lemmas are introduced first. The
following one concerns the adjoint values.

Lemma 1. Let P = (V,D,C) be a binary CSP, A be a consistent partial assign-
ment and xk be a variable such that (A, xk) ∈ BT PA. If al is adjoint to ai such
that 〈xi, ai〉 ∈ A, and if (ai, al, xk) ∈ BT P, then (A

⋃
{〈xl, al〉}, xk) ∈ BT PA.

Proof. It is clear the lemma holds if 〈xl, al〉 ∈ A. Otherwise, it suffices to show
for each 〈xj , aj〉 ∈ A, (aj , al, xk) ∈ BT P. If xj �= xi, then (aj , ai, xk) ∈ BT P as
(A, xk) ∈ BT PA. Since al is adjoint to ai, (aj , al, xk) ∈ BT P. If xj = xi, then
(aj , al, xk) ∈ BT P since (ai, al, xk) ∈ BT P. Therefore, (A

⋃
{〈xl, al〉}, xk) ∈

BT PA. 	

The second lemma is an extended result of the BTP. From [3], we can learn
that the BTP ensures that one can always assign consistent values to variables
so as to find a solution. Lemma 2 extends the case of the BTP with the help of
bipartite graph.

Here we employ a graph to describe relations of the BTP in a partial assign-
ment. Given a variable xk and a consistent partial assignment A (xk is not
involved in A), we can construct a graph according to the BTP relation of A
with respect to xk, The assigned values in A are nodes of the graph, where an
edge will be added between two nodes ai and aj if (ai, aj , xk) /∈ BT P. Such
BTP-relation graph constructed above is called a BTP-graph of A with respect
to xk. Lemma 2 shows a case that xk can take a value from its domain such that
the partial assignment is also consistent after involving the value.

Lemma 2. Given a path consistent binary CSP P = (V,D,C), let xk be a
variable and A be a consistent partial assignment. If the BTP-graph of A with
respect to xk is a bipartite graph, then there exists a value ak from Dk such that
A

⋃
{〈xk, ak〉} is consistent.

Proof. Since the BTP-graph is a bipartite graph, nodes in the graph can be
divided into two subsets V1 and V2. Without loss of generality, suppose the
partial assignment A is {〈xi1 , a1〉, . . . , 〈xif , af 〉, 〈xj1 , b1〉, . . . , 〈xjg , bg〉}, where
xi1 , . . . , xif ∈ V1 and xj1 , . . . , xjg ∈ V2. It can be seen that for each pair of
values (ai, aj) that are assigned to variables in V1, the triple (ai, aj , xk) ∈ BT P,
so there exists a minimal support set among Dk(a1), . . . , Dk(af), according to
the proof of Theorem 3.1 in [3]. Also, there exists a minimal support set for V2.
Assume the minimal support set for V1 is Dk(a) and the minimal support set
for V2 is Dk(b). Hence there are two cases: the first one is that there is no edge
between nodes a and b, so the triple (a, b, xk) ∈ BT P, i.e., one of Dk(al) and
Dk(br) includes the other, and thus there exists a value ak ∈ Dk(a)

⋂
Dk(b) such

that A
⋃

{〈xk, ak〉} is consistent; the second case is that there is an edge between

98 J. Gao et al.

nodes a and b, but Dk(a)
⋂

Dk(b) is not empty as the CSP is path consistent,
so there also exists a value ak ∈ Dk(a)

⋂
Dk(b) such that the partial assignment

A
⋃

{〈xk, ak〉} is consistent. 	

In the following, we present the tractable class characterizing by the no-
conflict BTPv.

Theorem 1. A binary CSP P = (V,D,C) that is strong path consistent is
satisfiable if there exists a variable ordering ≺ such that P satisfies the no-
conflict BTPv.

Proof. To prove this theorem, we divide the proof into two parts: in the first
part, it is to propose a polynomial-time algorithm for assigning all variables in
a CSP, and in the second part we prove correctness of the algorithm, i.e., it
can always construct a solution if the input CSP is included in the class. The
detailed procedure of the algorithm is shown as follows.

Algorithm 1. Solve-BTPv
Require:

A binary CSP P = (V,D,C) with a variable ordering ≺
Ensure:

A solution A
1: let xi be the first variable of the ordering ≺, and ai be a value from Di

2: A ← {〈xi, ai〉}
3: Vu ← V − {xi}; Vmark ← {xi}
4: while Vu �= ∅ do
5: let xi be the first variable in Vu of the ordering ≺
6: select a value ai from

⋂
〈xj ,aj〉∈A Di(aj)

7: A ← A
⋃

{〈xi, ai〉}
8: Vu ← Vu − {xi}; Vmark ← Vmark

⋃
{xi}

9: Vadj ← AdjointVariables(Vu,A,Vmark,xi)
10: Vu ← Vu − Vadj

11: while Vadj �= ∅ do
12: let xk be the first variable in Vadj of the ordering ≺
13: select a value ak from

⋂
〈xj ,aj〉∈A Dk(aj)

14: A ← A
⋃

{〈xk, ak〉}
15: Vadj ← Vadj − {xk}.
16: return A
17: Function AdjointVariables(Vu,A,Vmark,xi)
18: Vadj ← ∅
19: for each variable xk ∈ Vu do
20: if there exists a pair of (〈xi, ai〉, 〈xj , aj〉) in A (xj ∈ Vmark,i �= j) s.t. (ai, aj , xk) /∈

BT P then
21: Vadj ← Vadj

⋃
{xk}

22: return Vadj

Algorithm 1 assigns variables in a backtrack-free manner, and determines the
next variable dynamically. It starts from assigning a value to the first variable,

The Broken-Triangle Property with Adjoint Values 99

and assigns other variables according to the ordering ≺. Vmark is used to record
the assigned variables that are not included in any Vadj . However, in each iter-
ation, variables in Vadj will be assigned immediately after xi is assigned, where
the ordering for assigning those variables is also according to ≺ if there is more
than one variable in Vadj . Function AdjointVariables computes Vadj for each iter-
ation by checking whether triples satisfy the BTP, where an unassigned variable
xk will be included in Vadj if there exists a pair of values (ai, aj) assigned to
variables in the current Vmark such that (ai, aj , xk) /∈ BT P.

Time complexity of Algorithm 1 can be computed as follows: selecting a
value from its domain requires intersection of O(n) support sets, so comput-
ing

⋂
Di(aj) (Line 6 or Line 12) can be achieved in O(nd) time; and to compute

Vadj , there are at most O(n) pairs to check for each variable in Vu, whereas for
each triple, checking satisfaction of the BTP needs O(d), so time complexity of
Function AdjointVariables is O(n2d). As a result, because there are n variables
to be assigned for constructing a solution, Algorithm1 runs in O(n3d) time.

We are now turning to the proof of Theorem1. The idea is to show a path
consistent CSP that satisfies the no-conflict BTPv can be solved by Algorithm 1.
State in another way, the partial assignment including all variables constructed
by Algorithm 1 is a solution to such a CSP.

The key condition that guarantees Algorithm1 works is that in each assign-
ment step there is a consistent value that can be assigned to the current variable
under any consistent partial assignment. To prove this, we discuss the assign-
ment for each variable. Clearly, consistent values can be assigned to the first and
the second variables as the problem is arc consistent. For the other variables,
the trick of the proof is to show that for each variable, the BTP-graph of the
current partial assignment with respect to it is a bipartite graph.

Without loss of generality, suppose xk is a variable to be assigned, and A is
the current consistent partial assignment. The bipartite graph can be constructed
by considering two cases: xk ∈ Vadj of a variable xp and otherwise. In the first
case, it is obvious that 〈xp, ap〉 ∈ A, and all values in A assigned before ap are
put into the first subset, and ap is put into the second subset. Moreover, it is
obvious that all variables in A assigned after ap are included in Vadj of xp from
the description of Algorithm 1. Hence, for each xi ∈ Vadj of xp (i �= k), its value
ai is put into the first subset if (ap, ai, xk) /∈ BT P, otherwise it is put into the
second subset. In the second case, we put all assigned values into the first subset
with the second subset empty.

Next, we will prove the BTP-graph with the above subsets is a bipartite
graph.

For the second subset, there is no edge if only one node is in the subset or if
the subset is empty. If there are two or more nodes, we will prove that for each
pair of {〈xi, ai〉, 〈xj , aj〉} within the subset, triple (ai, aj , xk) ∈ BT P. If ai is ap,
then (ai, aj , xk) ∈ BT P because aj would be put into the first subset with the
case that (ap, aj , xk) /∈ BT P. Also, (ai, aj , xk) ∈ BT P if aj is ap. Furthermore,
we discuss the case that ai and aj are not ap. It is clear that there exists a pair
of {〈xg, ag〉, 〈xh, ah〉} in A such that xg, xh ∈ Vmark and (ag, ah, xi) /∈ BT P, and

100 J. Gao et al.

it is easy to see one of ag and ah is ap because if not xi would be in a Vadj before
xp. Suppose xh is xp, so (ag, ap, xi) satisfies the BTP-adjoint property and ai is
adjoint to ap. Also, (ap, aj , xk) ∈ BT P, and it follows that (ai, aj , xk) ∈ BT P.

For the first subset, let A′ ⊆ A be the partial assignment composed of all
assignments whose variables are in Vmark. Clearly, (A′, xk) ∈ BT PA, since if
not, xk would be in a Vadj before xp. It is obvious that there exist at least two
variables in A′. Next, we add other variables in the first subset to A′ iteratively
keeping (A′, xk) ∈ BT PA. Suppose ai is in the first subset but not in A′, so
according to Function AdjointVariables in Algorithm1 there exist 〈xg, ag〉 and
〈xh, ah〉 in A′ such that ai is adjoint to both ag and ah, where xg and xh are
included in Vmark. Moreover, there is at least one of ag and ah is in the first
subset according to the partition method mentioned above, and thus there are
two cases to discuss:

(a) If both ag and ah are in the first subset, then ag and ah are in A′, so we
have (ag, ah, xk) ∈ BT P, and thus (ag, ai, xk) ∈ BT P. Hence new A′ after
adding 〈xi, ai〉 satisfies the BTP with respect to xk according to Lemma 1.

(b) If only one of ag and ah is in the first subset, suppose ag is in the first subset,
and thus from the partition method it can be seen that ah is ap. Suppose
(ag, ap, xk) ∈ BT P, then we have (ai, ap, xk) ∈ BT P, while this is contrary
to the fact that (ai, ap, xk) /∈ BT P because ai is put into the first subset, so
(ag, ap, xk) /∈ BT P and thus (ag, ap, xk) satisfies the BTP-adjoint property.
Moreover, (ag, ap, xi) also satisfies the BTP-adjoint property. In addition,
both xi and xk are in Vadj of xp, so it follows that xi ≺ xk. According to
the satisfaction of the no-conflict BTPv between 4-tuple (ag, ap, xi, xk), and
(ai, ap, xk) /∈ BT P so (ag, ai, xk) ∈ BT P. So new A′ after adding 〈xi, ai〉
also satisfies the BTP with respect to xk according to Lemma 1.

Clearly, variables can be added into A′ iteratively, and A′ including all vari-
ables in the first subset satisfies the BTP with respect to xk, so it can be seen
that there is no edge in the first subset.

From the above discussions, we can see that the BTP-graph is a bipartite
graph. Furthermore, as the CSP is path consistent, according to Lemma2, there
exists a value ak from Dk such that A

⋃
{〈xk, ak〉} is consistent. As xk is any

variable, Algorithm 1 can find a solution to the CSP after assigning all variables.
Therefore the CSP is satisfiable. 	

According to discussions in [18], a CSP is tractable if both its search problem
and its identification problem are tractable, i.e., there exists a polynomial-time
algorithm to find a solution of the problem, as well as there exists a polynomial-
time algorithm to determine a CSP is in the tractable class. So it is also needed
to find the variable ordering ≺ in polynomial time.

Theorem 2. Given a binary CSP P = (V,D,C), determining whether there
exists a variable ordering ≺ such that P satisfies the no-conflict BTPv or deter-
mining there is no such ordering can be achieved in polynomial time.

The Broken-Triangle Property with Adjoint Values 101

Proof. The proof of this result is similar to that given in Theorem 3.2 in [3] by
constructing an indicator problem whose solution is a suitable variable ordering.
For each triple of variables (xi, xj , xk), if (xi, xj , xk) /∈ BT PV , then a disjunctive
constraint xk < xi ∨ xk < xj is added into the indicator problem.

To ensure the no-conflict BTPv, for each 4-tuple of variables (xi, xj , xk, xl), if
a 4-tuple (ai, aj , xk, xl) such that (ai, aj) ∈ Rij has a BTPv-conflict with respect
to xl, then a disjunctive constraint xl < xi ∨ xl < xj ∨ xl < xk will be added.
It is clear that all constraints added into the indicator problem are max-closed
[19], so the problem can be solved in polynomial time.

To construct the indicator problem, we should first check that for each pair
of values whether one is adjoint to the other, and obtain all adjoint values of
each value. This can be achieved in O(n4d4) time as mentioned above. Next, we
should check whether all triples of variables satisfy the BTPv, which will cost
at most O(n3d3) time for examining all triples. Finally, the no-conflict BTPv
of each 4-tuple will be considered, and this check will take O(n4d4) time. In a
word, time complexity for constructing the indicator problem can be achieved
in O(n4d4) time.

As both constructing the indicator problem and solving the problem can be
achieved in polynomial time, the theorem is proved. 	

To sum up, given a binary CSP, checking whether it is strong path consistent
can be achieved in polynomial time, and if it is strong path consistent and there
exists a variable ordering such that it satisfies the no-conflict BTPv, then a
solution can be found in polynomial time. It is noted that though a static variable
ordering should be computed, the actual ordering for assigning variables depends
on values assigned currently, since variables in Vadj will be assigned before their
positions in the ordering.

Clearly, CSP instances satisfying the BTP satisfy the BTPv, so the new class
is an extension of the BTP. Moreover, the rank CSP includes many other known
tractable classes. We denote the class including all strong path consistent CSP
instances of rank 2 discussed in [15] by Rank2-SPC and the class identified by
Theorem 1 by BTPv-SPC, then we have that BTPv-SPC and Rank2-SPC cannot
include each other (the proof is omitted here), so BTPv-SPC can identify new
tractable cases not included in known tractable classes.

5 Conclusions

In this paper, we discuss a new method to generalize the BTP class by proposing
the notion of adjoint values and the no-conflict BTPv, and then identify a novel
tractable class using those concepts. We also prove that determining whether
a CSP instance is in the new class can be checked efficiently. Besides, we show
that the new generalized class is incomparable with the class of rank CSPs. A
possible further work would be to investigate extending other hybrid tractable
class by using the concept of adjoint values.

102 J. Gao et al.

References

1. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)
2. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a

survey. Constraints 21(2), 115–144 (2016)
3. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction

on trees: hybrid tractability and variable elimination. Artif. Intell. 174(9–10), 570–
584 (2010)

4. Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.: The tractability
of CSP classes defined by forbidden patterns. J. Artif. Intell. Res. (JAIR) 45, 47–78
(2012)

5. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Zivny, S.: Tractable classes of binary
CSPs defined by excluded topological minors. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, 25–31 July 2015, pp. 1945–1951 (2015)

6. Thorstensen, E.: Hybrid tractability of constraint satisfaction problems with global
constraints. Ph.D. thesis, University of Oxford (2013)

7. Cooper, M.C., Duchein, A., Mouelhi, A.E., Escamocher, G., Terrioux, C., Zanut-
tini, B.: Broken triangles: from value merging to a tractable class of general-arity
constraint satisfaction problems. Artif. Intell. 234, 196–218 (2016)

8. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Hybrid tractable CSPs which gen-
eralize tree structure. In: Proceedings of the ECAI 2008, pp. 530–534. IOS Press
(2008)

9. Cohen, D.A., Cooper, M.C., Escamocher, G., Zivny, S.: Variable elimination in
binary CSP via forbidden patterns. In: Rossi, F. (ed.) Proceedings of the IJCAI,
IJCAI 2013. AAAI, Menlo Park (2013)

10. Mouelhi, A.E., Jégou, P., Terrioux, C., Classes, H.T.: From theory to practice. In:
Proceedings of the ICTAI 2014, pp. 437–445 (2014)

11. Cooper, M.C., Zivny, S.: Hybrid tractability of valued constraint problems. Artif.
Intell. 175(9–10), 1555–1569 (2011)

12. Gao, J., Yin, M., Zhou, J.: Hybrid tractable classes of binary quantified constraint
satisfaction problems. In: Burgard, W., Roth, D. (eds.) Proceedings of the AAAI
2011. AAAI Press (2011)

13. Jégou, P., Terrioux, C.: The extendable-triple property: a new CSP tractable class
beyond BTP. In: Proceedings of the AAAI 2015 (2015)

14. Mouelhi, A.E., Jégou, P., Terrioux, C.: A hybrid tractable class for non-binary
CSPs. In: Proceedings of the ICTAI 2013, pp. 947–954. IEEE Computer Society
(2013)

15. Naanaa, W.: Unifying and extending hybrid tractable classes of CSPs. J. Exp.
Theor. Artif. Intell. 25(4), 407–424 (2013)

16. Bessière, C., Régin, J.: Refining the basic constraint propagation algorithm. In:
Nebel, B. (ed.) Proceedings of the IJCAI 2001, pp. 309–315. Morgan Kaufmann
(2001)

17. Singh, M.: Path consistency revisited. Int. J. Artif. Intell. Tools 5(1–2), 127–142
(1996)

18. Green, M.J., Cohen, D.A.: Domain permutation reduction for constraint satisfac-
tion problems. Artif. Intell. 172(8–9), 1094–1118 (2008)

19. Jeavons, P., Cooper, M.C.: Tractable constraints on ordered domains. Artif. Intell.
79(2), 327–339 (1995)

Online Knapsack Problem Under
Concave Functions

Xin Han1(B), Ning Ma1, Kazuhisa Makino2, and He Chen1

1 Software School, Dalian University of Technology, Dalian 116620, China
hanxin.mail@gmail.com, 912583307@qq.com, ankachan@126.com

2 Research Institute for Mathematical Sciences,
Kyoto University, Kyoto, Japan
makino@kurims.kyoto-u.ac.jp

Abstract. In this paper, we address an online knapsack problem under
concave function f(x), i.e., an item with size x has its profit f(x). We first

obtain a simple lower bound max{q, f ′(0)
f(1)

}, where q ≈ 1.618, then show
that this bound is not tight, and give an improved lower bound. Finally,
we find the online algorithm for linear function [8] can be employed to

the concave case, and prove its competitive ratio is f ′(0)
f(1/q)

, then we give

a refined online algorithm with a competitive ratio f ′(0)
f(1)

+1. And we also
give optimal algorithms for some piecewise linear functions.

1 Introduction

Knapsack problem is one of the most classical and studied problems in combi-
natorial optimization field and has a lot of applications in the real world [11].
The (classical) knapsack problem is defined as below: given a set of items with
weights (here, we call it profit) and sizes, and the capacity of a knapsack, to
maximize the total weight (profit) of selected items in the knapsack satisfying
the capacity constraint.

In this paper, we study the online knapsack problem: (i) items are given
one by one over time, i.e., after a decision is made on a given item, the next
one is then known or given, (ii) in order to accept a new item, it is allowed to
remove old items accepted in the knapsack, (iii) the objective is the same as the
offline version, i.e., to maximize the total profit in the knapsack. If the profit
function is a linear function, then there is an optimal online algorithm in [8],
i.e., the problem admits an online algorithm with a competitive ratio matching
the lower bound of the problem. Motivated by the above results, in this paper,
we consider the case in which the profit function is a concave curve. Require
that function f(x) has the following properties: Concave; Monotone increasing;
f(0) = 0; f ′(0) exists and is bounded.

Related Work: For the offline case, there are many papers working on it, refer
to [11]. As for the online maximization knapsack problem, it was first studied on
average case analysis by Marchetti-Spaccamela and Vercellis [13]. They proposed

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 103–114, 2017.
DOI: 10.1007/978-3-319-59605-1 10

104 X. Han et al.

a linear time approximation algorithm such that the expected difference between
the optimal and the approximation value is O(log3/2 n) under the condition
that the capacity of the knapsack grows proportionally to n, the number of
items. Lueker [12] further improved the expected difference to O(log n) under
a fairly general condition on the distribution. In 2002 Iwama and Taketomi [8]
studied the problem on worst case analysis. They obtained an 1.618-competitive
algorithm for the online Max-Knapsack under the removable condition, if each
item has its size equal to its profit. Here the removable condition means that it is
allowed to remove some items accepted in the knapsack in order to accept a new
item. They also showed that this is best possible by providing a lower bound
1.618 for this case. For the general case, Iwama and Zhang [9] showed that no
algorithm for online Max-Knapsack has a bounded competitive ratio, even if
the removal condition is allowed. Iwama and Zhang gave some tight bounds for
the online Max-Knapsack problem with resource augmentation [9]. Noga and
Sarbua studied an online partially fractional knapsack problem with resource
augmentation, in which items are only allowed to be cut just before they are
packed into the knapsack. They gave an upper bound 2/m and proved the bound
is the best possible, where m ≥ 1 is the capacity of the knapsack used by online
algorithms while the optimal offline algorithm uses a unit capacity knapsack.
Han and Makino studied an online fractional knapsack problem with limited
cuts, where items are allowed to be cut at most k (≥ 1) times, they obtained an
optimal algorithm with a competitive ratio k+1

k [5]. For other results, refer to
papers in [1–4,6,7,10,14].

Our Contributions: For the online knapsack problem with concave function
f(x), we first obtain a lower bound max{q, f ′(0)

f(1) }, where q ≈ 1.618, then prove
that this bound is not tight, and give an improved for some specific functions.
Finally, we find the online algorithm for linear function [8] can be employed
to the concave case, and prove its competitive ratio is f ′(0)

f(1/q) , then we give a

refined online algorithm with a competitive ratio f ′(0)
f(1) + 1. The main ideas in

the improved algorithm are below: (i) if there are large items, then we accept the
largest one, (ii) otherwise we use the policy: the smaller the first to select small
items. And we also give optimal algorithms for some piecewise linear functions.

2 Preliminary

Knapsack Problem Under Concave Function: The input is a unit size of
knapsack and a set of items associated with a size-profit function f(x), where
function f(x) is concave. The output is to select a subset of items to maximize
the total profit of all the selected items without exceeding the capacity of the
knapsack.

Online Knapsack Problem with Concave Function: In this paper, we
study an online knapsack problem under a concave size-profit function. The
capacity of the knapsack and the function f(x) are known before packing.

Online Knapsack Problem Under Concave Functions 105

The word “Online” means that (i) items are given one by one over time, i.e.,
after a decision is made on the current item, then the next one is known, (ii) in
order to accept a new item, it is allowed to remove old items in the knapsack.
During selection, in order to accept a new item, some old items are allowed to
be discarded or removed. The objective of the online knapsack is the same as
the offline version, i.e., to maximize the profit under the capacity constraint. Let
f(x) be the concave profit function, i.e., for each item with size x, its profit is
f(x). Here we require that function f(x) has the following properties:

– Concave;
– Monotone increasing;
– f(0) = 0;
– f ′(0) exists and is bounded.

If f ′(0) is unbounded, then following the proof in [9], we can prove that
there is no online algorithm with a bounded competitive ratio (we will give the
definition of the competitive ratio later). So, in the following, we assume that
f ′(0) exists and is bounded.

Competitive Ratio: We analyze online algorithms by using one of the stan-
dards: the competitive ratio. Given an input sequence L and an online algorithm
A, the competitive ratio of algorithm A is defined as follows:

RA = sup
L

OPT (L)
A(L)

,

where OPT (L) and A(L) denote the profits obtained by an optimal algorithm
and algorithm A, respectively.

3 Lower Bounds

We first give a simple lower bound, then show the bound is not tight, finally give
an improved bound.

3.1 A Simple Lower Bound

Theorem 1. There is no online algorithm with a competitive ratio strictly less
than max{q, f ′(0)

f(1) }, where q ≈ 1.618 is the golden ratio.

Proof. We first prove that the lower bound of the competitive ratio cannot be
strictly less than q ≈ 1.618. The proof is similar with the one in [8]. Find a
constant x0 > 0.5 such that

f(x0) + f(1 − x0)
f(x0)

=
f(x0)

f(1 − x0)
⇒ f(x0)

f(1 − x0)
= q ≈ 1.618.

We can prove that such x0(> 0.5) must exist, by constructing the following
function:

F (x) = f(x) − q × f(1 − x).

106 X. Han et al.

Observe that F (1) = f(1) − 0 > 0 and F (0.5) = −(q − 1) · f(0.5) < 0. F (x) is
continuous, hence there is x0>0.5 such that F (x0)=0, i.e., f(x0)=q×f(1−x0).

Assume there is an online algorithm with a competitive ratio r which is
strictly less than q ≈ 1.618. Next we construct an instance to prove that such
online algorithm does not exist. In the instance, the first item a1 is of size 1−x0

and the second item a2 is of size x0 + ε, where we require that f(x0)+f(1−x0)
f(x0+ε) > r

(such that ε must exist by the same approach of proving x0 must exist). Note
that items a1 and a2 cannot be accepted together. Before the third item a3 is
given, in order to achieve the competitive ratio r, the online algorithm has to
accept item a2 and discard item a1. Otherwise the competitive ratio is at least
f(x0+ε)
f(1−x0)

> q > r. Finally item a3 of size x0 is given and the input stops. Either
a3 is discarded or is accepted, we have that the competitive ratio of the online
algorithm is at least f(x0)+f(1−x0)

f(x0+ε) > r. Hence, there is no online algorithm with
a competitive ratio strictly less than q.

Next we prove that the lower bound is at least f ′(0)
f(1) . With the similar idea,

we construct an instance to prove that there is no online algorithm with a com-
petitive ratio strictly less than f ′(0)

f(1) . Find a sufficiently small real ξ > 0 such that

f(1)
f(ξ)

>
f ′(0)
f(1)

.

Since f ′(0) is bounded, f(0) = 0 and f(x) is monotone increasing, such ξ must
exist (we skip the proof here). Then we consider the following instance:

1, ξ, ξ, ξ, . . . ,

the first item is of size 1 and all the others have the same size ξ. Observe that
any time once an online algorithm discards the first item then the input stops
immediately, which will cause the online algorithm has a competitive ratio at
least f(1)

f(ξ) since there is only one item of size ξ accepted by the online algorithm
and the optimal value is at least f(1). Also find if an online algorithm keeps
holding the item with size 1 in the knapsack all the times and discards all the

others, the competitive ratio is at least
� 1

ξ �f(ξ)

f(1) , since there is a feasible solution
of keeping � 1

ξ � items of size ξ in the knapsack. If we can prove that

lim
ξ→0

�1
ξ
�f(ξ) = f ′(0),

then we are done. Since

(
1
ξ

− 1)f(ξ) ≤ �1
ξ
�f(ξ) ≤ f(ξ)

ξ
,

observe that

lim
ξ→0

f(ξ)
ξ

= f ′(0),

Online Knapsack Problem Under Concave Functions 107

and
lim
ξ→0

(
1
ξ

− 1)f(ξ) = f ′(0) − f(0) = f ′(0).

Hence we have limξ→0� 1
ξ �f(ξ) = f ′(0), and this theorem holds. �	

3.2 An Improved Lower Bound

It seems that the lower bound max{q, f ′(0)
f(1) } is tight for all concave functions.

However this is not true. We first give an evidence to show that for some specific
function the lower bound max{q, f ′(0)

f(1) } can be improved. Then we generalize the
approach and obtain an improved lower bound.

Lemma 1. The lower bound max{q, f ′(0)
f(1) } is not tight.

Proof. Consider the following function f(x), refer to Fig. 1:

f(x) =
{

x, if 0 ≤ x ≤ 1/3,

(
√

3 − 1)(x − 1
3) + 1

3 , else 1/3 < x ≤ 1.

Observe that

f(
1
3
) =

1
3
, f(

2
3

+ ε) =
√

3
3

+ O(ε), f ′(0) = 1.

1/3

Fig. 1. An instance of f(x)

Next we prove that there is no online algorithm with a competitive ratio
strictly less than

√
3, which is larger than max{q, f ′(0)

f(1) } ≈ 1.618. The main idea
is similar with the one in Theorem1. We construct the following instance:

2
3

+ ε,
1
3
,
1
3
,
1
3
, . . . ,

where ε is sufficiently small. Observe that an item of size 2
3 + ε and an item

of size 1
3 can not be accepted together. If there is an online algorithm with a

competitive ratio strictly less than
√

3, then before the third item is given the
online algorithm has to keep the first item in the knapsack, i.e., discard the

108 X. Han et al.

second item. Otherwise if the first item is discarded, then the competitive ratio
is at least f(2

3+ε)
1
3

>
√

3. However if the online algorithm keeps holding the first

item after the fourth item is given, then the competitive ratio is at least 3f(1
3)

f(2
3+ε)

,

which will be close to
√

3 when ε approaches to zero.
For the function f(x) we defined above, there is no online algorithm with

a competitive ratio less than
√

3. Hence the lower bound max{q, f ′(0)
f(1) } is not

tight. �	
Theorem 2. Given a concave function f(x), find a maximum integer k ≥ 2
such that

f(1 − 1
k)

f(1
k)

=
k · f(1

k)
f(1 − 1

k)
, (1)

If such integer k exists, then there is no online algorithm with a competitive ratio
less than

√
k.

Proof. It is not difficult to see that

f(1 − 1
k)

f(1
k)

=
k · f(1

k)
f(1 − 1

k)
⇒ f(1 − 1

k)
f(1

k)
=

√
k. (2)

Similar with the instance used in Lemma1, we construct the following
instance, where ε > 0 is sufficiently small,

1 − 1
k

+ ε,
1
k

,
1
k

,
1
k

, . . . ,
1
k

,

i.e., the first item has size 1− 1
k + ε and all the others have size 1

k (once the first
item is discarded or removed, the input stops).

By Eq. (2) and the analysis framework used in Lemma1, we can prove that
there is no online algorithm with a competitive ratio less than

√
k. �	

4 Upper Bounds

First we observe that the algorithm [8] for linear online knapsack problem can be
exploited to the concave case, then prove the competitive ratio is ≈1.618 · f ′(0)

f(1) .
Finally we give a new online algorithm and prove that its competitive ratio is
f ′(0)
f(1) +1. The idea in the new algorithm is very simple: (i) if there are large items,
then we accept the largest one, (ii) otherwise we use the policy: the smaller the
first to select small items.

Lemma 2. If function f(x) is concave and monotone increasing, f(0) = 0, then
we have f(x)

x is non-increasing for any x > 0.

Online Knapsack Problem Under Concave Functions 109

Proof. Given two variables 0 < x1 < x2 ≤ 1, we will prove that f(x1)
x1

≥ f(x2)
x2

.
Since

x1 = 0 · (1 − x1

x2
) + x2 · x1

x2
,

and function f(·) is concave and f(0) = 0, we have

f(x1) ≥ (1 − x1

x2
)f(0) + f(x2) · x1

x2
= f(x2) · x1

x2
.

Hence we have this lemma. �	
By the above lemma, we have the following result.

Corollary 1. If the total size in the knapsack is x then the profit in the knapsack
is at least f(x).

4.1 Upper bound f ′(0)
f(1/q)

Our algorithm generalizes the idea in [8]. Let q ≈ 1.618 be the golden ratio.
We group items into three classes: large, medium and small. If an item has size
larger than 1

q , then we say it is large, if its size is in (1
q2 , 1

q], we say it is medium,
otherwise we call it small. The main idea of our algorithm is given as below:

– If there is a large given item, then we select one of them and keep it in the
knapsack, discard all the others.

– Else if there are medium items given, we use the policy: the smaller the first
to select medium items, if there are two mediums selected then we can discard
all the others, else keep the minimal medium item in the knapsack.

– Else we first keep the smallest medium item in the knapsack if possible,
then remove small items one by one until all the remaining items can be
accommodated in the knapsack.

Lemma 3. At line 7 in algorithm A1, item u must be medium.

Proof. If items u is a small item, then the total size in the knapsack is at least

1 − 1
q2

=
1
q
,

where the equality holds from the definition of the golden ratio q. Then by
Corollary 1, we have the profit in the knapsack is at least f(1/q), which means
that item u would have been discarded at line 2 in the algorithm. Hence we have
item u must be a medium item. �	
Theorem 3. The competitive ratio of the above online algorithm is f ′(0)

f(1/q) , where
q ≈ 1.618 is the golden ratio.

110 X. Han et al.

Algorithm 1. A1

Input: the set B of items accepted in knapsack, and the new arriving u-item
Output: the new knapsack set: B′

1: if the profit in set B is at least f(1/q) then
2: discard u
3: else if item u can be accepted in the knapsack without removing any item then
4: B′ = B ∪ {u}
5: else if u-item is a large item then
6: keep u-item and discard all others
7: else(u-item must be medium item, refer to Lemma 3.)
8: if B only contains small items then
9: holds u-item and removes small items until the total size of items is at most

1.
10: else(B contains one medium v-item)
11: if u + v ≤ 1 then
12: keep u-item and v-item, B′ = {u, v}.
13: else
14: keep min{u, v}-item and discard the bigger item.
15: end if
16: end if
17: end if
18: return B′

Proof. For an input L, let A(L), OPT (L) be the profit by our online algorithm
and an optimal algorithm, respectively. We are going to prove that

f ′(0)
f(1/q)

· A(L) ≥ OPT (L).

Case 1: the total size in the knapsack is at least 1/q. Then we have A(L) ≥
f(1/q) by Corollary 1. And OPT (L) ≤ f ′(0) by Lemma 2. Therefore in this case
RA ≤ f ′(0)

f(1/q) .
Case 2: the total size in the knapsack is less than 1/q. Then we have the

following facts:

– there is no large item in L;
– no small item is discarded or removed;
– in the knapsack there is at most one medium item.

Otherwise the total size in the knapsack would have been at least 1/q.
Case 2.1: there is no medium item in L. Then we have A(L) = OPT (L),

since our algorithm accepts all the small items.
Case 2.2: there is a medium item in L. And we have the following important

fact:

– any two medium items cannot be packed in the knapsack if there are at least
two medium items in L.

Online Knapsack Problem Under Concave Functions 111

The reason is that: refer to line 14 in A1, we always select the minimal medium
item in the knapsack. So if any two medium items can be packed in the knapsack
then algorithm A1 would have kept two medium items in the knapsack, which
contradicts with the fact: the total size in the knapsack is less than 1/q. Then
we have

A(L) ≥ f(S) + f(u), OPT (L) ≤ f(S) + f(m),

where set S is all the small items in L and item u is the minimal medium item
in L and item m is the maximal medium item in L. By Lemma 2, we have
f(m)
f(u) ≤ m

u ≤ q. Then in this case RA ≤ q. Observe that

lim
ξ→0

f(ξ)
ξ

= f ′(0),

and f(ξ)
ξ is a monotonically decreasing function by Lemma2. For some ε > 0,

f ′(0)
f(1/q)

≥ f(ε)
εf(1/q)

≥ ε

ε/q
= q,

where the last inequality holds by Lemma 2. �	

4.2 Upper bound f ′(0)
f(1)

+ 1

Let α = f ′(0)
f(1) . We find if α is very large, the gap between the lower bound α and

f(1)
f(1/q) · α may be very large. So we need a new algorithm for the case when α is
very large.

Theorem 4. There is an online algorithm with a competitive ratio α+1 for the
problem.

Proof. We first give the online algorithm and analyze its competitive ratio. If
an item has size at least α

α+1 , it is called large, otherwise small. Our algorithm
works as below:

– If there are large items, then we select one of them and keep it in the knapsack,
discard all the others.

– Else we use a greedy algorithm (the smallest the first) for small items, i.e., if
all the small items can be accepted then hold all of them, otherwise discard
the largest one until all the remaining items can be accommodated in the
knapsack.

Again, for an input L, let A(L), OPT (L) be the profit by our online algorithm
and an optimal algorithm, respectively. Next we are going to prove that (α + 1)
A(L) ≥ OPT (L). There are two cases.

Case 1: there is one large item in the input L. We have

A(L) ≥ f(
α

α + 1
) ≥ α

α + 1
· f(1),

112 X. Han et al.

where the last inequality holds from Lemma 2. Again, by Lemma 2 it is not
difficult to see that

OPT (L) ≤ f ′(0).

Hence in this case, we have (α + 1)A(L) ≥ OPT (L), where α = f ′(0)
f(1) .

Case 2: there is no large item in the input. If there is no item discarded, then
we are done. Observe that if some small items are discarded, then the total size
in the knapsack is at least 1

α+1 since a small item has size less than α
α+1 . By

Lemma 2, we know a smaller item has a higher density (the ratio between the
profit and size). Since in our algorithm, the greedy algorithm (the smallest the
first) is used for small items, we have A(L) ≥ OPL(L)

α+1 .

4.3 Tight Upper Bounds for Piecewise Linear Functions

In this subsection, we give some optimal online algorithms for some piecewise
linear functions, refer to Figs. 2 and 3. Given 0 ≤ c2 < c1, define piecewise linear
function f(x) as below:

f(x) =
{

c1 · x, if 0 ≤ x ≤ p;
c2 · x, p ≤ x ≤ 1.

Similar with the proof in Theorem4, we have the following result.

Lemma 4. The competitive ratio of algorithm A1 for function f(x) is f ′(0)
f(1/q) =q,

which meets the lower bound q, where p ≥ 1/q.

The above result also holds for the case: the second line-segment is changed by
any concave function. Next we focus on the case: p < 1/q.

Lemma 5. There is an optimal online algorithm with competitive ratio 1
p for

function f(x) with c2 = 0 and p < 1/q.

Proof. Case 1: 0.5 < p < 1/q. We group items into three classes: large, medium
and small. If an item has size larger than p, then we say it is large, if its size is
in (p2, p], we say it is medium, otherwise we call it small. Then we run the same
algorithm as A1 by just changing the threshold f(1/q) into f(p). By the same
proof in Theorem4 and 0.5 < p < q, we can prove that the competitive ratio is
1/p, which matches the lower bound 1/p by Theorem 1.

Case 2: p ≤ 0.5. We group items into two classes: large, and small. If an item
has size larger than p, then we say it is large, otherwise we call it small. Then
we run the following algorithm which is similar with A1. Observe that at line
5 in algorithm A2 item-u must be a large item, otherwise the total size in the
knapsack is at least 1−p ≥ p since p ≤ 0.5. Then the total profit in the knapsack
would have been at least f(p) by Corollary 1. By the same proof in Theorem 4
and p ≤ 0.5, we can prove that the competitive ratio is 1/p, which matches the
lower bound 1/p by Theorem 1. �	

Online Knapsack Problem Under Concave Functions 113

Algorithm 2. A2

Input: the set B of items accepted in knapsack, and the new arriving u-item
Output: the new knapsack set: B′

1: if the profit in set B is at least f(p) then
2: discard u
3: else if item u can be accepted in the knapsack without removing any item then
4: B′ = B ∪ {u}
5: else(u-item must be a large item)
6: keep u-item and discard all others
7: end if
8: return B′

p1/q

Fig. 2. p ≥ 1/q

p 1/q

Fig. 3. c2 = 0 and p < 1/q

5 Concluding Remarks

The gap between the lower bound and upper bound is at most (min{ f ′(0)
f(1) + 1,

f ′(0)
f(1/q)}−max{q, f ′(0)

f(1) }). It will be very interesting to reduce the gap as an open
question.

Acknowledgment. This research was partially supported by NSFC (11101065), RGC
(HKU716412E).

References

1. Cygan, M., Jez, L., Sgall, J.: Online knapsack revisited. Theory Comput. Syst.
58(1), 153–190 (2016)

2. Han, X., Kawase, Y., Makino, K.: Online unweighted knapsack problem with
removal cost. Algorithmica 70(1), 76–91 (2014)

3. Han, X., Kawase, Y., Makino, K.: Randomized algorithms for online knapsack
problems. Theor. Comput. Sci. 562, 395–405 (2015)

4. Han, X., Kawase, Y., Makino, K., Guo, H.: Online removable knapsack problem
under convex function. Theor. Comput. Sci. 540, 62–69 (2014)

114 X. Han et al.

5. Han, X., Makino, K.: Online removable knapsack with limited cuts. Theor. Com-
put. Sci. 411(44–46), 3956–3964 (2010)

6. Han, X., Makino, K.: Online minimization knapsack problem. Theor. Comput. Sci.
609, 185–196 (2016)

7. Horiyama, T., Iwama, K., Kawahara, J.: Finite-state online algorithms and their
automated competitive analysis. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288,
pp. 71–80. Springer, Heidelberg (2006). doi:10.1007/11940128 9

8. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P.,
Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002). doi:10.1007/
3-540-45465-9 26

9. Iwama, K., Zhang, G.: Optimal resource augmentations for online knapsack. In:
Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX/RANDOM-
2007. LNCS, vol. 4627, pp. 180–188. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74208-1 13

10. Kawase, Y., Han, X., Makino, K.: Proportional cost buyback problem with weight
bounds. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS,
vol. 9486, pp. 794–808. Springer, Cham (2015). doi:10.1007/978-3-319-26626-8 59

11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
12. Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. In:

SODA, pp. 179–188 (1995)
13. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.

Math. Program. 68, 73–104 (1995)
14. Thielen, C., Tiedemann, M., Westphal, S.: The online knapsack problem with

incremental capacity. Math. Methods OR 83(2), 207–242 (2016)

http://dx.doi.org/10.1007/11940128_9
http://dx.doi.org/10.1007/3-540-45465-9_26
http://dx.doi.org/10.1007/3-540-45465-9_26
http://dx.doi.org/10.1007/978-3-540-74208-1_13
http://dx.doi.org/10.1007/978-3-540-74208-1_13
http://dx.doi.org/10.1007/978-3-319-26626-8_59

Fluctuated Fitting Under the �1-metric

Kai Jin(B)

University of Hong Kong, Pokfulam, Hong Kong SAR, China
cscjjk@gmail.com

Abstract. We consider the problem of fitting a given sequence of inte-
gers by an (α, β)-fluctuated one. For a sequence of numbers, those ele-
ments which are larger than their direct precursors are called ascends,
those elements which are smaller than their direct precursors are called
descends. A sequence is said to be (α, β)-fluctuated if there is a descend
between any α + 1 ascends and an ascend between any β + 1 descends;
or equivalently, if it has at most α consecutive ascends and at most β
consecutive descends, when adjacent equal values are ignored.

Given a sequence of integers a = (a1, . . . , an) and two parameters
α, β in [1, n], we compute (1) a sequence b = (b1, . . . , bn) of integers
that is (α, β)-fluctuated and is closest to a among all such sequences; (2)
a sequence b′ = (b′

1, . . . , b
′
n) of integers that is (α, β)-fluctuated and is

bounded by a (i.e. b′
i ≤ ai for all i) and is closest to a among all such

sequences. We measure the distance between sequences under �1 metric.
Our algorithm runs in O((α+β)·n) time, which is linear when α, β are

considered as constants. We also show that a variation of our problem
can be solved in the same time complexity. We achieve our result mainly
by exploiting and utilizing the property of the closest sequence.

Keywords: Curve approximation · Histogram · Fitting

1 Introduction

Curve fitting and polygonal regression are fundamental problems in statistics,
which aim to approximate a set of points, discrete or continuous, by a function
that satisfies certain constraints. They have received much attention since their
numerous applications, including operations research, signal processing, image
compression, data analysis, and information retrieve [3,7,8,16,20].

In this paper, we consider a new shape-constrained regression problem, which
aims to approximate a sequence of integers (which can be regarded as a histogram
or a set of points) by another sequence of integers that is “fluctuated”. We define
the notion of (α, β)-fluctuated as follows; see Fig. 1 for an illustration.

Definition 1. Given two parameters α ≥ 1, β ≥ 1 and a sequence of integers
x = (x1, . . . , xn). An element xi is called an ascend if i > 1 and xi > xi−1;
a descend if i > 1 and xi < xi−1. The sequence x is called (α, β)-fluctuated if
there is a descend between any α + 1 ascends and an ascend between any β + 1
descends; or equivalently, if it has at most α consecutive ascends and at most β
consecutive descends, when adjacent equal values are ignored.
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 115–126, 2017.
DOI: 10.1007/978-3-319-59605-1 11

116 K. Jin

Fig. 1. Illustration of (α, β)-fluctuated. The sequences represented by the left and
middle pictures are (1, 1)-fluctuated. The right one is (1, 2)-fluctuated

A sequence b = (b1, . . . , bn) is bounded by a = (a1, . . . , an) if bi ≤ ai for all i.
We measure the distance between two sequences by �1 metric; so the distance

between a,b is given by Σn
i=1|ai − bi|.

Our problems and results are stated as follows.

Unbounded version: Given a sequence a = (a1, . . . , an), find a sequence b =
(b1, . . . , bn) of integers which is (α, β)-fluctuated and is closest to a in �1
metric among all such sequences.

Bounded version: Given a sequence a = (a1, . . . , an), find a sequence b =
(b1, . . . , bn) of integers which is (α, β)-fluctuated and is bounded by a and is
closest to a in �1 metric among all such sequences.

Theorem 1. Given a sequence of integers a = (a1, . . . , an), we can compute a
solution to the bounded or unbounded version in O((α + β) · n) time.

1.1 Related Works

Fitting a function to a data set has been extensively studied and widely
applied. Given a data set (x1, y1), . . . , (xn, yn), perhaps with nonnegative weights
w1, . . . , wn, the task is to find a function f in a group of candidates F , so that
it has the minimum error to represent the data, in which the most common
criterions for error are

�p :(
n∑

i=1

wi · |yi − f(xi)|p)1/p; and

�∞ :
n

max
i=1

wi · |yi − f(xi)|.

The famous V-optimum histogram problem considers the case where F are
k-step functions (i.e. histograms) and measure the error by the �2 criterion.
A naive dynamic programming approach is widely known, which costs O(kn2)
time, and no better results have been found for computing the best fitting; yet
[13] manage to compute an O(1 + ε) approximation in linear time and poly-
logarithmic space. Another instance is the maximum error histogram problem,
which concerns the same set F but under the �∞ criterion. [12] solve the unit
weighted case in O(n + k2 log3 n) time, and the general case in O(n log n +
k2 log6 n) time. Later, [10] solve the unit case and general case in O(n) time and
O(n log4 n) time respectively. This result has further been improved in several
papers [2,9].

Fluctuated Fitting Under the �1-metric 117

Some researchers study the case where F are the k-link piece-wise linear
functions. [11] presents an O(n log n) time algorithm for the �∞ criterion, and
[1] present a FPTAS for the �1/�2 criterion.

In works more related to ours, the constraints on the candidate functions is
not on the number of links but on the morphology. For example, the monotonic
regression demands the candidate functions to be monotonic, and the unimodal
regression asks them to be unimodal, which is increasing and then decreasing.
For these regressions, [17] develop Θ(n), Θ(n log n), Θ(n) algorithms for the �2, �1
and unit weighted �∞ case respectively. A generalization of the monotonic regres-
sion is the isotonic regression, and part of its results can be found in [18,19].
Sometimes, the constraints can be both on the number of links and on the mor-
phology. [14] study a variant of the V-optimal histogram problem, in which the
candidate functions are required to be k-step histograms that are monotonic or
unimodal. They solve this variant in O(n2k) time, which is the same as the time
required to solve the V-optimal histogram problem, i.e. the problem without the
constraints on morphology.

Other researchers study the case where the data set is a curve rather than
a set of discrete points. Most commonly, the data curve is an n-link piece-wise
linear function (i.e. a polygonal curve); and the error criterion is defined in the
same manner as the discrete case shown above. A survey for this case is given
by [15]. In particular, [5] consider approximating the curve by a unimodal curve,
and they solve it in Θ(n) time for the �2 criterion. [6] consider approximating
the curve by a curve with at most k peaks. Under the �p (p < ∞) criterion, they
solve it in Θ(n log n) time for k = 1 and Θ(kh2 +hn log n) time for k > 1, where
h denotes the number of peaks of the given curve. [4] consider the same problem
under the �∞ criterion, and their algorithm works in Θ(n) time.

In this paper, our restriction to F is not on the number of peaks, but the
morphology of each peak.

1.2 Technique Overview

We first define four terms, namely good, bounded-good, superb, bounded-superb.

Definition 2. For a sequence b = (b1, . . . , bn), we define its distance D(b),
length L(b), and height H(b) as follows:

D(b) =

n∑

i=1

|bi − ai| , L(b) =

n∑

i=2

|bi − bi−1| , H(b) =

n∑

i=1

bi.

For sequences b,b′, we regard that b is better than b′ if the following is true:

– D(b) < D(b′), or
– D(b) = D(b′) and L(b) > L(b′), or
– D(b) = D(b′) and L(b) = L(b′) and H(b) > H(b′).

A sequence is good, if it is (α, β)-fluctuated and has minimum distance among
all such sequences. A sequence is bounded-good, if it is (α, β)-fluctuated and is

118 K. Jin

bounded by a and has minimum distance among all such sequences. So, a good
sequence refers to a solution to the unbounded version, and a bounded-good
sequence refers to a solution to the bounded version.

A sequence is superb, if it is (α, β)-fluctuated and no such sequence is better
than it. A sequence is bounded-superb, if it is (α, β)-fluctuated and bounded by a
and no such sequence is better than it. Shortly, superb means good and nothing
better, bounded-superb means bounded-good and nothing better.

Note that “better than” is a partial order between the sequences. So, there
is at least one superb sequence and at least one bounded-superb sequence.

To find a good or bounded-good sequence, we will actually find a superb
or bounded-superb sequence. Those superb or bounded-superb sequences have
a special property which allows us to compute them efficiently. This property
briefly states that each element of the sequence is confined to a particular set
whose size is bounded by a constant. According to this property, we use dynamic
programming to compute the superb and bounded-superb sequence.

The good or bounded-good sequences in general do not have the mentioned
property; this is why we should consider “better than” instead of “closer than”.

Outline. We describe and prove the special property of the superb and bounded-
superb sequences in Sect. 2. We present our algorithm in Sect. 3. We solve a
variant in Sect. 4. We discuss a future direction in Sect. 5.

2 A Property of the Superb or Bounded-Superb
Sequence

A key property of the superb or bounded-superb sequences is stated in the
following lemma.

Definition 3. Given a sequence x = (x1, . . . , xn). For i ∈ [1, n], denote δ(i) =
{j ∈ [1, n] : |i− j| ≤ 2}. An element xi is shaped if there exists j(i) in δ(i), such
that |xi − aj(i)| ≤ 1. The sequence x is shaped if all of its elements are shaped.

Lemma 1

1. The superb sequence(s) must be shaped.
2. The bounded-superb sequence(s) must be shaped.

The proof of Lemma 1.2 is given below. The proof of Lemma 1.1 is similar
but much more complicated; it is given in the full version of this paper.

To prove this lemma, we first define the pieces of a given sequence.

Definition 4. Assume that x = (x1, . . . , xn). For a pair of indices j, k such
that j ≤ k, let 〈xj , xk〉 denote xj , . . . , xk and we call it a segment of x. We can
uniquely partition x into several segments so that the elements in each segment
are identical but elements in adjacent segments are distinct; and we call each of
such segment a piece of x.

We define the height of a piece to be the value of any of its element (which
are all the same). If 〈xj , xk〉 is a piece of x, we refer to the two neighboring
pieces of 〈xj , xk〉 as its “ previous piece” and “ next piece”, respectively.

Fluctuated Fitting Under the �1-metric 119

Proof (of Lemma 1.2). Assume x is bounded-superb and 〈xj , xk〉 is an arbitrary
piece of x. We shall prove that all the elements in this piece are shaped.

First of all, we make some notations and conventions.

– We denote by L the absolute height difference between piece 〈xj , xk〉 and its
previous piece, and set L = +∞ if 〈xj , xk〉 is the first piece.

– We denote by R the absolute height difference between piece 〈xj , xk〉 and its
next piece, and set R = +∞ if 〈xj , xk〉 is the last piece.

– For simplicity of presentation, we regard that the first piece is higher than its
previous piece, and that the last piece is higher than its next piece.

– For proving some properties of a sequence x, we frequently show that if they
did not hold, then a sequence x′ better than x could be constructed from x.
In these cases, we will make sure that x′ is (α, β)-fluctuated. But, for brevity,
we do not repeatedly declare this “fluctuated” property of x′.

We discuss four cases depending on the relative height between 〈xj , xk〉 and
its neighboring pieces.

1. Piece 〈xj , xk〉 is lower than its previous piece but higher than its next.
1.1. k = j. We claim that xj = aj and so xj is shaped. Otherwise, xj < aj ,

and x would be improved by augmenting xj by 1.
1.2. k > j. For the same reason as Case 1.1, we have xi = ai for i ∈ [j + 1, k].

This implies that elements xj , . . . , xk are shaped.
2. Piece 〈xj , xk〉 is higher than its previous piece but lower than its next. This

case is symmetric to the previous case and we omit its proof.
3. Piece 〈xj , xk〉 is lower than its neighboring pieces.

3.1. k ≥ j + 2. Similar to case 1.2, we have xi = ai for i ∈ [j + 1, k − 1]. This
implies that elements xj , . . . , xk are shaped.

3.2. k = j + 1. We claim that xj = aj or xk = ak, thus xj , xk are shaped.
Suppose to the contrary that xj < aj and xk < ak. If both L,R are larger
than 1, we augment xj and xk by 1; if L = 1, we augment xj by 1; if
R = 1, we augment xk by 1. In each case, we obtain a better sequence.

3.3. k = j. When L > 1 and R > 1, we can easily get xj = aj and so xj

is shaped. In the following we show that if L = 1 then xj is shaped.
Symmetrically, xj is shaped when R = 1. So, xj is always shaped. Notice
that since 〈xj〉 is lower than its previous piece, it is not the first piece.

3.3.1. The previous piece has one element. Then, xj−1 = aj−1. Otherwise x
can be improved by augmenting xj−1 by 1.

3.3.2. The previous piece has two elements. Then, xj−1 = aj−1 or xj−2 =
aj−2. Otherwise x can be improved by augmenting xj−2, xj−1 by 1.

3.3.3. The previous piece has at least three elements. Then, xj−1 = aj−1.
Otherwise x can be improved by augmenting xj−1 by 1 and reducing
xj−2 by 1. (The distance is unchanged but the length is increased.)

In each subcase, applying L = 1 we can further get that xj is shaped.
4. Piece 〈xj , xk〉 is higher than its neighboring pieces.

4.1. k ≤ j + 1. If xj < aj and xk < ak, we can improve x by augmenting this
piece by 1. Therefore, xj = aj or xk = ak. So xj , xk are shaped.

120 K. Jin

4.2. k ≥ j+2. We claim xj = aj . Otherwise, x can be improved by augmenting
xj by 1 and reducing xj+1 by 1. (The distance remains unchanged but
the length increases.) Symmetrically, xk = ak. Therefore, xj , xj+1, xj+2

and xk, xk−1, xk−2 are shaped. Moreover, we claim that xi ≥ ai − 1 for
any i ∈ [j + 3, k − 3]. This implies that the other elements in 〈xj , xk〉 are
also shaped. Suppose to the contrary that xi < ai − 1, then x can by
improved by augmenting xi by 2 and reducing xi−1, xi+1 by 1.

Remark 1. The definition for “shaped” is tricky and noteworthy. To explain this,
let us introduce a term called k-shaped. (Notice that “shaped” is the same as “2-
shaped”.) An element xi of a sequence x = (x1, . . . , xn) is k-shaped if there exists
an index j(i) in δk(i) := {j ∈ [1, n] | i−k ≤ j ≤ i+k}, such that |xi −aj(i)| ≤ 1.
Moreover, a sequence x is said k-shaped if all of its elements are k-shaped. At
first we guess that the bounded-superb sequence must be 1-shaped. However,
it is not! A counter example is: a = (3, 6, 7, 7, 10), α = β = 1. The reader can
check that the bounded-superb sequence is (3, 6, 6, 5, 10). Here the 4-th element
5 is not 1-shaped. Similarly, the superb sequence may not be 1-shaped.

Also note that a good or bounded-good sequence may not be 2-shaped; only
the superb or bounded-superb ones are assured to be 2-shaped.

3 Algorithm for Computing a Fluctuated Fitting
Sequence

In this section, we first design an algorithm for solving the following problem.

(*) Given α, β, a = (a1, . . . , an), and n sets of integers S1, . . . , Sn, each of
which contains at most C elements (C is some constant). Find a sequence
of integers b = (b1, . . . , bn) such that

∑
i |ai − bi| is minimized subject to

the constraints that b is (α, β)-fluctuated and bi ∈ Si for each i in [1, n].

Briefly speaking, our algorithm is based on dynamic programming and it
costs O(C2(α + β) · n) = O((α + β) · n) time.

First, we introduce the “Tail Fluctuate State” TFS(x) of sequence x.

Definition 5. Assume that x = (x1, . . . , xi). We call each ascend and each
descend in this sequence a “ change”, and define TFS(x) to be

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if x has no changes at all;

j,
if the last j changes of x are all ascends, and there are

no other changes or the last (j + 1)-th change is a descend;

−j,
if the last j changes of x are all descends, and there are

no other changes or the last (j + 1)-th change is an ascend.

(1)

For 1 ≤ i ≤ n, let t(i) = |Si| and denote Si = {Si,1, . . . , Si,t(i)}.

Fluctuated Fitting Under the �1-metric 121

For −β ≤ j ≤ α and 1 ≤ k ≤ t(i), let Fi(j, k) denote the following subprob-
lem: Find (x1, . . . , xi) to minimize

∑i
h=1 |xh − ah|, subject to:

(i) xh ∈ Sh for all h < i, and xi = Si,k.
(ii) (x1, . . . , xi) is (α, β) − fluctuated and TFS(x1, . . . , xi) = j.

Let fi(j, k) denote the value (
∑i

h=1 |xh − ah|) of the minimization problem
Fi(j, k). The initial condition is given by f1(0, k) = |S1,k − a1| for 1 ≤ k ≤ t(1).
For i > 1, the recurrence is given as follows. (Here k′ denotes the index such
that Si−1,k′ = Si,k when Si,k ∈ Si−1; and (k′ = 0) indicates that Si,k /∈ Si−1.)

fi(j, k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+∞, if j = 0 and k′ = 0;
|Si,k − ai| + fi−1(0, k′), if j = 0 and k′ > 0;

|Si,k − ai| + min
h:Si−1,h≤Si,k

fi−1(j − Δh, h), if j > 0;

|Si,k − ai| + min
h:Si−1,h≥Si,k

fi−1(j + Δh, h), if j < 0;

(2)

where

Δh =
{

1, Si−1,h �= Si,k;
0, Si−1,h = Si,k.

We explain the recurrence for the case j > 0; the other cases are analogous.
Suppose that (x1, . . . , xi) is a solution to problem Fi(j, k), we have TFS(x) = j.
Since j > 0, xi can not be a descend; namely, xi−1 ≤ xi. Besides, we must have
xi = Si,k and xi−1 ∈ Si−1. Therefore, xi−1 must be an element in Si−1 which is
smaller than or equal to Si,k. If xi−1 equals Si,k, the problem reduces to problem
Fi−1(j, k′); otherwise, xi−1 = Si−1,h for some h such that Si−1,h < Si,k, and the
problem reduces to problem Fi−1(j − 1, h). Thus we prove this case.

We now give the algorithm. The proof of correctness is obvious and omitted.

1 Compute the array f based on Eq. (2);

2 Compute (j�, k�) so that fn(j
�, k�) = min1≤j≤t(n),−β≤k≤αfn(j, k);

3 (j, k) ← (j�, k�);
4 foreach i = n downto 2 do
5 bi ← Si,k;
6 Find (j�, k�) so that fi(j, k) is achieved from fi−1(j

�, k�); (Using (2))
7 Let (j, k) ← (j�, k�);

8 end
9 b1 ← S1,k;

10 Output (b1, . . . , bn).

Algorithm 1. An algorithm for solving Problem (*).

Apply Algorithm1 to Compute the Fluctuated Fitting Sequence. By applying this
algorithm, we can solve the original problem as follows and thus prove Theorem1.
Due to Lemma 1, the superb sequence(s) and the bounded-superb sequences(s)
are shaped. This means there is at least one good sequence which is shaped, and
at least one bounded-good sequence which is shaped. Therefore:

122 K. Jin

– Computing a good sequence reduces to compute the sequence closest to a
subject to the constraint that it is (α, β)-fluctuated and shaped. This reduces
to solving an instance of problem (*) - (n, α, β,a, U), where

Ui := {aj − 1, aj , aj + 1 | j ∈ δ(i)} (for i ∈ [1, n]).

– Computing a bounded-good sequence reduces to compute the sequence clos-
est to a subject to the constraints that it is (α, β)-fluctuated, shaped and
bounded. This reduces to solving an instance of problem (*) - (n, α, β,a, U ′),
where

U ′
i := Ui ∩ (−∞, ai] (for i ∈ [1, n]).

Note that |U ′
i | ≤ |Ui| ≤ 15, so we can set C = 15.

4 Fitting by Circularly-Fluctuated Sequence

In this section, we introduce an extended notion of “fluctuated sequence” called
“circularly fluctuated sequence” (see Definition 6) and study the following variant
problem: find the sequence closest to a that is bounded by a and is circularly
fluctuated. As a result, we show that this variant can be reduced to the non-
circular bounded version and thus can be solved in the same time asymptotically.

Definition 6. A sequence x = (x1, . . . , xn) is circularly-(α, β)-fluctuated if
the sequence constructed by repeating x is (α, β)-fluctuated. In other words,
x is circularly-(α, β)-fluctuated if (x,x) = (x1, . . . , xn, x1, . . . , xn) is (α, β)-
fluctuated.

Recall that bounded-good means “(α, β)-fluctuated, bounded by a, and with
minimum distance among such sequences”. Similarly, we define C-bounded-good
as “circularly-(α, β)-fluctuated, bounded by a, and with minimum distance
among such sequences”. To show the reduction, we first give two lemmas.

Lemma 2. Assume that a = (a1, . . . , an).

(1) If sequence b is bounded-good, then min(b1, . . . , bn) = min(a1, . . . , an).
(2) If sequence c is C-bounded-good, then min(c1, . . . , cn) = min(a1, . . . , an).

Proof. Denote γ = min(a1, . . . , an). Since b, c are bounded by a, we have

min(b1, . . . , bn) ≤ γ,min(c1, . . . , cn) ≤ γ.

So, we only need to prove that

min(b1, . . . , bn) ≥ γ,min(c1, . . . , cn) ≥ γ.

In other words, we only need to prove that 1© b does not have elements smaller
than γ; and 2© c does not have elements smaller than γ.

Fluctuated Fitting Under the �1-metric 123

Proof of 1©: Suppose to the contrary that b has elements smaller than γ. We
construct another sequence b′ and argue that (i) b′ is (α, β)-fluctuated; (ii) it
is bounded by a; (iii) it has distance smaller than b. This means that b is not
bounded-good, which is contradictory.

We construct b′ as follows. For 1 ≤ i ≤ n, define b′
i = max(bi, γ). Briefly, b′

is a modification of b, which increases all the elements smaller than γ to γ.
Arguments (ii) and (iii) are obvious; we prove (i) in the following. For con-

venience, we introduce an array M = (M2, . . . ,Mn) defined as follows.

For 2 ≤ i ≤ n,Mi =

⎧
⎪⎪⎨

⎪⎪⎩

A, if b′
i > b′

i−1;
D, if b′

i < b′
i−1;

G, if b′
i = b′

i−1 = γ;
, otherwise.

By the construction of b′, we observe: (I) if Mi = A, then bi is an ascend; if
Mi = D, then bi is a descend; if Mi = , then bi = bi−1, i.e. bi is neither an ascend
nor a descend; and (II) if bi is a descend, then Mi equals D or G.

To prove that b′ is (α, β)-fluctuated, we need to prove statements (A), (B):

(A) If Mj , . . . ,Mk (j < k) contain α + 1 A’s, they contain at least one D;
(B) If Mj , . . . ,Mk (j < k) contain β + 1 D’s, they contain at least one A.

We prove (A); (B) is symmetric. Without loss of generality, assume that
Mj = Mk = A. First, suppose that Mj , . . . ,Mk contain a G. Then, between
this G and the nearest A left to it there must be an D, since the symbol before
any G must be a G or D. Second, suppose that Mj , . . . ,Mk neither contain G’s
nor contain D’s. Now, applying (I) and (II), bj , . . . , bk contain α + 1 ascends
but no descends, which contradicts the assumption that b is (α, β)-fluctuated.
Therefore, no matter Mj , . . . ,Mk contain a G or not, they contain a D.

Proof of 2©: Suppose to the contrary that c has some elements smaller than
γ. We construct a new sequence c′ based on c: define c′

i = max(ci, γ) for 1 ≤
i ≤ n. Since c is circularly-(α, β)-fluctuated, (c, c) is (α, β)-fluctuated. Then,
by applying the proof of 1©, we see that (c′, c′) is (α, β)-fluctuated. Therefore,
c′ is circularly-(α, β)-fluctuated. Besides, it is obvious that c′ is bounded by a
and with distance less than c. All the above properties together contradicts the
assumption of c. Thus, c has no elements smaller than γ.

Lemma 3. Given a = (a1, . . . , an), where a1 is the minimum element
in a. Assume that (b1, . . . , bn+1) is bounded-good with respect to (w.r.t.)
(a1, . . . , an, a1). Then, (b1, . . . , bn) is C-bounded-good with respect to a.

Proof. Since (b1, . . . , bn+1) is bounded-good with respect to (a1, . . . , an, a1) and
min(a1, . . . , an, a1) = a1, we get b1 = bn+1 = a1 applying Lemma 2 (1).

First, we prove that (b1, . . . , bn) is circularly-(α, β)-fluctuated.
Define d = (d1, . . . , d2n) = (b1, . . . , bn, b1, . . . , bn). We need to show that d is

(α, β)-fluctuated. This reduces to prove the following arguments.

124 K. Jin

(i) If 1 < j < k ≤ 2n and dj , dk are both ascends and there are more than α
ascends in dj , . . . , dk, then there is at least one descend in dj , . . . , dk.

(ii) If 1 < j < k ≤ 2n and dj , dk are both descends and there are more than β
descends in dj , . . . , dk, then there is at least one ascend in dj , . . . , dk.

We only show the proof of (i); (ii) is symmetric. We discuss three cases.

1. j ≥ n+2. In this case, dj , . . . , dk is a subset of dn+1, . . . , d2n. If dj , . . . , dk con-
tain more than α ascends but no descend, then (dn+1, . . . , d2n) = (b1, . . . , bn)
is not (α, β)-fluctuated, which contradicts the assumption of (b1, . . . , bn+1).

2. k ≤ n + 1. Here, dj , . . . , dk is a subset of d1, . . . , dn+1. If dj , . . . , dk contain
more than α ascends but no descend, then (d1, . . . , dn+1) = (b1, . . . , bn, b1) =
(b1, . . . , bn+1) is not (α, β)-fluctuated, which contradicts the assumption.

3. j ≤ n + 1 and k ≥ n + 2. Clearly, dn+1 = b1 is the minimum element in
d1, . . . , d2n. Further since dj is an ascend, there must be a descend between
dj and dn+1. Further since k ≥ n + 2, there is a descend in dj , . . . , dk.

Second, we prove that (b1, . . . , bn) is C-bounded-good w.r.t. a. Let c =
(c1, . . . , cn) be a C-bounded-good sequence w.r.t. a. We should prove that
D(b) ≤ D(c), where D(b),D(c) denote the distance of b, c w.r.t. (a1, . . . , an).

For convenience, let c̄ = (c1, . . . , cn, c1) and b̄ = (b1, . . . , bn, bn+1), and let
D(b̄),D(c̄) denote the distance of b̄, c̄ w.r.t. (a1, . . . , an, a1). We claim:

(i) c̄ is bounded by (a1, . . . , an, a1) and (ii) c̄ is (α, β)-fluctuated.
Proof of (i): Since c is C-bounded-good w.r.t. a, it is bounded by (a1, . . . , an).

So, c̄ = (c1, . . . , cn, c1) is bounded by (a1, . . . , an, a1).
Proof of (ii): Since c is C-bounded-good, it is circularly-(α, β)-fluctuated. So,

(c1, . . . , cn, c1, . . . , cn) is (α, β)-fluctuated. Therefore, c̄ is (α, β)-fluctuated.
According to (i), (ii) and the assumption which says that (b1, . . . , bn+1) is

bounded-good w.r.t. (a1, . . . , an, a1), we get D(b̄) ≤ D(c̄).
Applying Lemma 2 (1), we get bn+1 = b1 = a1. Therefore, D(b̄) = D(b).
Applying Lemma 2 (2), we get c1 = a1, which follows that D(c̄) = D(c).
Altogether, we obtain D(b) ≤ D(c).

By applying Lemma 3, computing C-bounded-good sequence reduces to com-
puting bounded-good sequence. This is made precise in the next theorem.

Theorem 2. Given a = (a1, . . . , an) and parameters α, β, we can compute a
C-bounded-good sequence in O((α + β) · n) time.

Proof. Assume ai = min(a1, . . . , an). Computing a C-bounded-good sequence of
a is equivalent to computing a C-bounded-good sequence of

(ai, . . . , an, a1, . . . , ai−1).

In other words, we can assume that a1 = min(a1, . . . , an). Then, according to
Lemma 3, computing an C-bounded-good sequence of a reduces to computing a
bounded-good sequence of (a1, . . . , an, a1). We can compute the bounded-good
sequence of (a1, . . . , an, a1) in O((α + β) · n) time according to Theorem 1.

Fluctuated Fitting Under the �1-metric 125

5 Conclusion and Future Work

In this paper, we fit a sequence of data a by an (α, β)-fluctuated sequence b. We
consider three types of constraints on b: 1. no constraints; 2. bounded (by a);
3. bounded and circularly-fluctuated. All of them are solved in O((α + β) · n)
time. Our algorithm is mainly based on a nontrivial observation on the best
fitting sequences.

We can consider another variant where b is only required to be circularly-
fluctuated. This is an open problem and is the subject of future work.

References

1. Aronov, B., Asano, T., Katoh, N., Mehlhorn, K., Tokuyama, T.: Polyline fitting
of planar points under min-sum criteria. Int. J. Comput. Geom. Appl. 16, 97–116
(2006)

2. Chen, D.Z., Wang, H.: Approximating points by a piecewise linear function. Algo-
rithmica 66(3), 682–713 (2013)

3. Chen, D.Z., Healy, M.A., Wang, C., Xu, B.: Geometric algorithms for the con-
strained 1-D K-means clustering problems and IMRT applications. In: Preparata,
F.P., Fang, Q. (eds.) FAW 2007. LNCS, vol. 4613, pp. 1–13. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73814-5 1

4. Chen, D., Wang, C., Wang, H.: Representing a functional curve by curves with
fewer peaks. Discret. Comput. Geom. 46(2), 334–360 (2011)

5. Chun, J., Sadakane, K., Tokuyama, T.: Linear time algorithm for approximating
a curve by a single-peaked curve. Algorithmica 44(2), 103–115 (2006)

6. Chun, J., Sadakane, K., Tokuyama, T., Yuki, M.: Peak-reducing fitting of a curve
under the lp metric. Interdisc. Inf. Sci. 2, 191–197 (2005)

7. Cleju, I., Fränti, P., Wu, X.: Clustering based on principal curve. In: Kalviainen,
H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 872–881.
Springer, Heidelberg (2005). doi:10.1007/11499145 88

8. Douglas, D.H., Peucker, T.K.: Algorithms for the Reduction of the Number of
Points Required to Represent a Digitized Line or its Caricature. Wiley, Hoboken
(2011). pp. 15–28

9. Fournier, H., Vigneron, A.: A deterministic algorithm for fitting a step function to
a weighted point-set. Inf. Process. Lett. 113(3), 51–54 (2013)

10. Fournier, H., Vigneron, A.: Fitting a step function to a point set. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 442–453. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87744-8 37

11. Goodrich, M.: Efficient piecewise-linear function approximation using the uniform
metric. Discret. Comput. Geom. 14(1), 445–462 (1995)

12. Guha, S., Shim, K.: A note on linear time algorithms for maximum error his-
tograms. Knowl. Data Eng. 19(7), 993–997 (2007)

13. Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. In: Proceedings of
33rd Symposium on Theory of Computing, STOC 2001, pp. 471–475. ACM (2001)

14. Haiminen, N., Gionis, A., Laasonen, K.: Algorithms for unimodal segmentation
with applications to unimodality detection. Knowl. Inf. Syst. 14(1), 39–57 (2008)

15. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE
Comput. Graph. Appl. 21(3), 24–35 (2001)

http://dx.doi.org/10.1007/978-3-540-73814-5_1
http://dx.doi.org/10.1007/11499145_88
http://dx.doi.org/10.1007/978-3-540-87744-8_37

126 K. Jin

16. Ramesh, N., Yoo, J.H., Sethi, I.: Thresholding based on histogram approximation.
IEEE Proc. Vis. Image Sig. Process. 142(5), 271–279 (1995)

17. Stout, Q.F.: Unimodal regression via prefix isotonic regression. Comput. Stat. Data
Anal. 53(2), 289–297 (2008)

18. Stout, Q.F.: Isotonic regression via partitioning. Algorithmica 66(1), 93–112 (2013)
19. Stout, Q.F.: Isotonic regression for multiple independent variables. Algorithmica

71(2), 450–470 (2015)
20. Tokuyama, T.: Recent progress on geometric algorithms for approximating func-

tions: toward applications to data analysis. Electron. Commun. Jpn. (Part III:
Fundam. Electron. Sci.) 90(3), 1–12 (2007)

Optimal Partitioning Which Maximizes
the Weighted Sum of Products

Kai Jin(B)

University of Hong Kong, Pokfulam, Hong Kong SAR, China
cscjjk@gmail.com

Abstract. We consider the problem of partitioning n real numbers to K
nonempty groups, so that the weighted sum of products over all groups
is maximized. Formally, given S = {r1, . . . , rn} and W = (w1, . . . , wK)
where wi ≥ 0, we look for a partition of S into K nonempty groups
S1, . . . , SK , so that

∑K
g=1(wg ·∏rj∈Sg

rj) is maximized. Our main result

is an O(n2) time algorithm for finding an optimal partition.

Keywords: Partitioning with additive objective · K-partition · Sum of
products · Greedy algorithms · Rearrangement inequality

1 Introduction

Let S = {r1, . . . , rn} be a set of n real numbers. We consider the problem of
partitioning S into K nonempty groups, so as the weighted sum of the products
over all groups is maximized, where the product of a group refers to the product
of all elements in this group. Thus, we look for a partition which maximizes

K∑

g=1

wg ·
∏

rj∈Sg

rj , (1)

subject to Sg �= ∅ for any g, and
⋃K

g=1 Sg = S, and Sg ∩ Sg′ = ∅ for g �= g′.
We assume that the number of groups K is fixed (and 1 ≤ K ≤ n), and

that all the weights w1, . . . , wK are nonnegative. For convenience, assume that
0 ≤ w1 ≤ . . . ≤ wK and r1 ≤ . . . ≤ rn.

A partition of S into K mutually exclusive and nonempty groups is called a
K-partition. Throughout this paper, K will be fixed. So, unless otherwise stated,
a partition means a K-partition. We call (1) the score of the partition, and we
call wg ·

∏
rj∈Sg

rj the score of group Sg. A partition is optimal if it has maximum
score. We are interested in finding an optimal partition.

Our problem belongs to the class of optimal partitioning problem with addi-
tive objective function, in which the score is separable in the groups. For a gen-
eral choice of the group score function this problem is NP-hard even for K = 2.
For example, let the score of group Sg be −(

∑
rj∈Sg

rj)2. The well-known NP-
complete problem Number Partitioning [13] can be formulated to check whether
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 127–138, 2017.
DOI: 10.1007/978-3-319-59605-1 12

128 K. Jin

the optimum 2-partition has score −((R/2)2 + (R/2)2), where R is the sum of
all elements in S. Moreover, the problem of minimize (1) is also NP-hard for
K = 2. (We may discuss it in the full version of this paper.1)

The optimal partitioning problems arise in many fields including system reli-
ability, circuit design, vehicle routing, inventory grouping, location problems,
scheduling, grouping testing, clustering, and bin-packing. (See [1,9] and the ref-
erences within; and also see Subsect. 1.2 for some examples.)

For some partitioning problems, there exists an optimal partition which
admits some special properties, such as “consecutive” (i.e. the indices of the
elements in all groups are consecutive), or “ordered” (i.e. the indices of the ele-
ments in Sg+1 are larger than those in Sg). If there exists an ordered optimal
partition, the problem can be solved in polynomial time. If there exists a con-
secutive optimal partition, the problem can be solved in O(nO(K)). Researches
have proposed several sufficient conditions on the objective function under which
an optimal partition with a special property exists, see [1,4,5,8–10]. Examples
satisfying these conditions are discussed in these literatures.

Our objective function does not satisfy any sufficient conditions given in the
aforementioned literatures. Consequently, there are cases where all optimal par-
titions are not consecutive. For example, for S = {r1, r2, r3, r4} = {−2,−2, 1, 2}
and K = 2 and unit weights, the unique optimal partition assign {−2,−2, 2}
to one group and {1} to the other, which is not consecutive because the indices
in the first group are {1, 3, 4}. Nevertheless, we are able to derive an efficient
algorithm for our problem. It runs in O(n2) time, which is near-optimal, because
computing the score of a given partition requires O(n2) time. (In realistic com-
putational model, computing the product of n reals would take O(n2) time.)

1.1 Technique Overview and Organization of This Paper

Definition 1. A partition is ordered if for any two groups Sg, Sg+1, the indices
of elements in Sg are smaller than those in Sg+1. A partition is extremal, if
beside the first and last group, each group contains exactly one element.

We start from solving two special cases: all the elements are nonnegative; or
there is exactly one negative element. We prove that in these cases, there exists
an optimal partition which is ordered and extremal.

We then consider the general case. Our basic idea is to reduce the general
case to the preceding special cases. To this end, we design a suit of four policies
(see Lemma 5) and prove that there always exists an optimal partition obeying
these policies. The design of the policies applies greedy strategies. For example,
one policy roughly states that most of the negative elements must be paired in
a monotone order (e.g. r1, r2 are paired and assigned to the same group; r3, r4
are paired and assigned to the same group).

We then presents an algorithm framework for computing an optimal parti-
tion. It generates several candidate partitions χ0, . . . , χK−1 and select the best
1 According to one of the reviewers, this can be proved from “exact cover by 3-sets”

problem, similar to Yao’s NP-hardness proof for the “subset product” problem.

Optimal Partitioning Which Maximizes the Weighted Sum of Products 129

of them. We prove that χ0, . . . , χK−1 dominate all the partitions that obey the
aforementioned four policies. So, the best among χ0, . . . , χK−1 is optimal. (Note
that we do not enumerate out all the partitions that obey the four policies.)

Finally, we present the detailed algorithm. Note that computing the score
of a candidate partition requires O(n2) time. So, a direct implementation of
the above framework would take O(n3) time. However, in O(n) time we can
compute the score of a candidate partition based on the score of the previous
one. Therefore, an improved algorithm only runs in O(n2) time.

Theorem 1. An optimal K-partition of set S can be found in O(n2) time.

Alternatively, Sect. 5 provides a different approach that uses dynamic pro-
gramming. It exploits the characterization of the optimal partition that the last
group SK always consists of a union of a prefix and a suffix of r1, . . . , rn.

1.2 Related Work - Typical Partitioning Problems

Example 1 (System reliability [10]). Assume r1, . . . , rn are reals in [0, 1]. Given
n1, . . . , nK so that

∑
ni = n. Minimize

∑K
g=1 log(1 −

∏
rj∈Sg

rj), in which Sg

contains ng elements.

Example 2 (Grouping testing [8]). Assume r1, . . . , rn are reals in [0, 1]. Minimize∑K
g=1{1 + (1 −

∏
rj∈Sg

rj)ng}, where ng is the cardinality of Sg.

Example 3 (Clustering [6]). Assume object i in S is characterized by two
attributes wi and ri. Minimize

∑K
g=1 wi × (ri − r̄i), where r̄i is the weighted

arithmetic mean of those r’s that are assigned to the subset containing i.

Example 4 (Scheduling [7]). Assume each object i in S is characterized by two
attributes ri and pi. Maximize

∑K
g=1(

∑
i∈Sg

piri/
∑

i∈Sg
pi).

Example 5 (Bin-packing [11,12]). Given a concave function F , minimize∑K
g=1 F (

∑
rj∈Sg

rj), so that the sum of items in each subset does not exceeds
the size of bin.

In addition, [2] considered a generalization where each object in S is charac-
terized by a point in p-dimensional space. [3] considered a constrained partition
problem where the groups in the partition must be basics of given matroids.

2 The Structural Properties of the Optimal Partition

Recall that the product of Sg is defined to be
∏

rj∈Sg
rj .

Proposition 1. Let χ be an arbitrary partition. Consider two groups Si and
Sj of χ, where i < j. If the product of Si is no less than the product of Sj, by
interchanging the elements in these two groups, the score of χ does not decrease.

130 K. Jin

Lemma 1. Consider the special case where K = n. Notice that in this case
there is a unique ordered partition, which assigns ri to Si for 1 ≤ i ≤ K. We
claim that this partition is optimal.

The above proposition and lemma follow from the Rearrangement Inequality.

Lemma 2. Two claims on two restricted cases are given below.

1. Consider a restricted case where all elements in S are in range [1,+∞).
Notice that there is a unique ordered partition in which each of the first K −1
groups contains a single element. It is optimal in this restricted case.

2. Consider a restricted case where all elements are in range [0, 1]. Notice that
there is a unique ordered partition in which each of the last K − 1 groups
contains a single element. It is optimal in this restricted case.

To prove the first claim, we will show that for K > 1, every partition can be
modified without loss of score so that r1 is assigned solely to the first group. Then,
the first claim follows by induction. The proof of the second claim is symmetric.
The trivial proofs can only be given in the full version due to space limit.

Remark 1. To find an optimal partition, one may consider the following greedy
strategy: always make the last group as large as possible. This works for the two
restricted cases considered in Lemma 2. But it fails in general case. For example,
let S = {0.9, 0.9, 1.01, 1.01},K = 3 and let the weights be unit. The greedy
strategy outputs {0.9}, {0.9}, {1.01, 1.01}, which has a score of 2.8201; but the
optimal one is {0.9, 0.9}, {1.01}, {1.01}, which has a score of 2.83.

2.1 The Special Case: Zero or One Negative Element

The following lemmas show that in the case where there is at most one negative
in r1, . . . , rn, there exists an optimal partition which is ordered and extremal.

Lemma 3. When r1, . . . , rn are nonnegative, there exists an optimal partition
which is ordered and extremal and satisfies the following additional property:

If K > 1, either the first group contains only one element, or all the elements
contained in the first group are at most 1.

Lemma 4. When there is exactly one negative in r1, . . . , rn, there exists an
optimal partition which is ordered and extremal.

To prove Lemmas 3 and 4, we apply the following proposition.

Proposition 2. Assume the following hold.

(1) r1, . . . , rn are nonnegative.
(2) K > 1.
(3) Not all weights are zeros (i.e. wk > 0).

Then, in any optimal partition, an element larger than 1 is not assigned together
with an element smaller than 1 into the same group.

Optimal Partitioning Which Maximizes the Weighted Sum of Products 131

We use indirect method to prove this proposition. When an element larger
than 1 is assigned with an element smaller than 1, we can modify the partition
to increase the total value. The trivial proof is given in the full version.

Proof (of Lemma 3). Assume that K > 1 and not all weights are zeros. Otherwise
the result is obvious. Further assume that there exists an element larger than 1
and an element smaller than 1. Otherwise the elements are in [1,+∞) or [0, 1]
and the result follows from Lemma 2.

Suppose χ is an optimal partition. Some groups in χ contain elements smaller
than 1 and are called light groups. Others do not contain elements smaller than 1
and are called heavy groups. By Proposition 2, the light groups does not contain
elements larger than 1. So, their respective products are smaller than 1. On the
other hand, since the heavy groups do not contain elements smaller than 1, their
respective products are at least 1. Therefore, by Proposition 1, we can modify χ
without loss of score so that the light groups are in front of the heavy groups.

Now, assume that in χ the light groups are in front of the heavy groups. Let
l denote the number of elements in the light groups. By the definition of light
and heavy groups, the elements in the light groups are the smallest l elements in
S. So, we can assume that r1, . . . , rl are in the light groups while the remaining
elements rl+1, . . . , rn are in the heavy groups. Next, we repartition the elements
in the light groups using the method given in Lemma2.2, and we repartition
the elements in the heavy groups using the method given in Lemma2.1. This
would not cut the total score. As a consequence, the final partition is ordered
and extremal. The additional property is also satisfied since the first group is
light and all elements in the light groups are at most 1. ��
Proof (of Lemma 4). Notice that the only negative element is r1.

Let χ be an optimal partition. First, we modify χ so that r1 is assigned to S1.
On the opposite case, we interchange S1 with the group containing r1. Notice
that group containing r1 has nonpositive product while any other group has non-
negative product, this interchange would not cut the score due to Proposition 1.

Then, we modify χ so that the elements in S1 are consecutive elements
r1, . . . , ri. On the opposite case, there is a pair of elements ri, rj where i < j
such that rj is assigned to S1 but ri is assigned to another group. We swap ri, rj
to each other’s group. This would not cut the total score since the individual
scores of the associated groups are both non-decreased.

If K = 2, we are done since partition χ is already ordered and extremal. In
the following we assume that K ≥ 3.

Consider all the elements in groups S2, . . . , SK . Since all of them are non-
negative, by Lemma 3, there is an optimal partition of them into S2, . . . , SK ,
which satisfies the three properties stated in Lemma 3. We reassign the elements
in S2, . . . , SK by adopting the preceding partition. Afterwards, there are two
cases: (1) S2 contains exactly one element, or (2) all elements in S2 are in range
[0, 1]. Under the first case, χ is already ordered and extremal. Under the second
case, we further move all elements in S2 except for the largest one to S1. This
would not cut the total score because the elements being moved are in range
[0, 1]. Finally, χ becomes ordered and extremal. ��

132 K. Jin

2.2 The General Case

For convenience, let n− denote the number of negative elements.
A group is called a Neg-group, if it has a negative product; is called a

Pos/Zero-group (abbreviated as P/0-group), if it has a nonnegative product.

Lemma 5. When 1 < K < n, there exists an optimal partition obeying the
following four policies.

P1 It has at least one P/0-group.
P2 There exists an integer number x(0 ≤ x ≤ n−) such that the negative

elements r1, . . . , rx are assigned to P/0-groups while the negative elements
rx+1, . . . , rn− are assigned to Neg-groups.
Moreover, this number x is even when there exist Neg-groups.

P3 For each i (1 ≤ i ≤ 	x/2
), r2i−1 and r2i are assigned to the same P/0-group.
P4 If the number of Neg-groups is m and m > 1, two additional policies P4.1 and

P4.2 must be obeyed. Here, we define the “components”. (1) Each nonnegative
element constitutes a component. (2) For each i (1 ≤ i ≤ 	x/2
), elements
r2i−1 and r2i constitute a component. Notice that x is even according to
P2. So, each element in the P/0-groups belongs to a unique component. The
price of a component is defined to be the product of the elements contained
in this component. For convenience, let c1, . . . , cn′ be an enumeration of all
components from smallest price to largest price.
P4.1 Each Neg-group contains exactly one element. More specifically,

S1 = {rx+1}, S2 = {rx+2}, etc., Sm = {rx+m} = {rn−}.

P4.2 Except for the last P/0-group, each P/0-group contains exactly one
component. Specifically, Sm+1 = {c1}, Sm+2 = {c2}, etc., SK−1 =
{cK−m−1}; and other components are assigned to SK .

Remark 2. Our basic idea is to reduce the general case to the preceding special
cases. We will see this more clearly when we design algorithms in the next section.
(See Remark 3.)

In designing the suite of policies, we mainly apply greedy strategies. For
example, P3 roughly states that most of the negative elements must be paired
in a monotone order (e.g. r1, r2 are paired and assigned to the same group).

The proof of Lemma 5 is complicated and can only be given in the full version.
We state the following facts of the partitions that obey P1, . . . ,P4.

Proposition 3. Let χ be any partition that obeys P1, . . . ,P4 and has zero Neg-
groups. For each i (1 ≤ i ≤ 	n−

2
), elements r2i−1 and r2i are assigned to the
same group under χ.

Proposition 4. Let χ be any partition that obeys P1, . . . ,P4 and has one Neg-
group. For each i (1 ≤ i ≤ �n−

2 �), elements r2i−1 and r2i are assigned to the
same group under χ.

Optimal Partitioning Which Maximizes the Weighted Sum of Products 133

Proof (of Proposition 3). Recall that x denotes the number of negative elements
assigned to the P/0-groups. When there are no Neg-groups, we have x = n−.
Proposition 3 follows from P3. ��

Proof (of Proposition 4). Recall the definition of x as above. Since there is one
Neg-group, x must be even according to P2. According to P3, for each i (1 ≤
i ≤ x

2), elements r2i−1 and r2i are assigned to the same group. Moreover, for
each i (x2 < i ≤ �n−

2 �), elements r2i−1 and r2i are both assigned to the unique
Neg-group. Together, we obtain Proposition 4. ��

3 The Framework for Computing an Optimal Partition

The following proposition is trivial (proof omitted) and it briefly states that
there are only O(n) partitions which are ordered and extremal.

Proposition 5. If a partition is ordered and extremal, there exists x(1 ≤ x ≤
n − (K − 1)), such that S1 = {r1, . . . , rn−K+2−x} and SK = {rn−x+1, . . . , rn}
and the remaining K − 2 elements are assigned to the middle K − 2 groups in
the monotone order.

We now present an algorithm framework for finding an optimal partition.

Definition 2. Recall policies P1, . . . ,P4 in Lemma 5. When 1 < K < n, for
any integer m (0 ≤ m < K), we denote by Am the set of partitions which obey
P1, . . . ,P4 and contain m Neg-groups.

Our idea for finding the optimal partition is as follows. For each integer
m (0 ≤ m < K), we find a partition χm which has score larger than or equal
to any partition in Am. (Note that χm may not belong to Am.) Then, we select
the partition χ∗ with maximum score among χ0, . . . , χK−1. Clearly, χ∗ must be
an optimal partition and the reason is the following. First, χ∗ has score larger
than or equal to any partition in A0 ∪ . . .∪AK−1. On the other hand, according
to Lemma 5, there must an optimal partition in A0 ∪ . . .∪AK−1. Our algorithm
is given below.
procedure Compute 0. � This procedure computes χ0.

Let T0 be an empty set.
For each i (0 ≤ i ≤ 	n−

2
), put the number (r2i−1 × r2i) into set T0.
For each j (j > 2 · 	n−

2
), put the number rj into set T0.
Compute the optimal partition of T0. � Reduce to special case.
Recover this partition of T0 to be a partition of S and store it to χ0.

To “recover”, we split the number (r2i−1 × r2i) to r2i−1 and r2i.
end procedure

procedure Compute 1. � This procedure computes χ1.
Let T1 be an empty set.
For each i (0 ≤ i ≤ �n−

2 �), put the number (r2i−1 × r2i) into set T1.
For each j (j > 2 · �n−

2 �), put the number rj into set T1.

134 K. Jin

Compute the optimal partition of T1. � Reduce to special case.
Recover this partition of T1 to be a partition of S and store it to χ1.
To “recover”, we split the number (r2i−1 × r2i) to r2i−1 and r2i.

end procedure

procedure Compute m(m) � This procedure computes χm for m > 1.
if (n− − m) is even and (n− − 2(n − K) ≤ m ≤ n−) then

Let Tm be an empty set.
For each i (0 ≤ i ≤ n−−m

2), put the number (r2i−1 × r2i) into set Tm.
For each j (j > n−), put the number rj into set Tm.
Let c1, . . . , cn′ be an enumeration of Tm from small to large.
Let χm be the following partition: Assign negatives rn−−m+1, . . . , rn−

to the first m groups, from small to large. Assign c1 to Sm+1, c2 to Sm+2, etc.,
cK−m−1 to SK−1. Assign cK−m, . . . , cn′ to SK .

else
Let χm be an arbitrary partition.

end if
end procedure

Algorithm 1. Algorithm for computing the optimal partition.
1: if (K = 1) ∨ (K = n) then
2: Let χ∗ be the unique ordered partition.
3: else
4: Call Compute 0.
5: Call Compute 1.
6: for m : 1 < m < K do
7: Call Compute m(m).
8: end for
9: Let χ∗ be the partition with maximum score among χ0, χ1, . . . , χK−1.

10: end if
11: Output χ∗.

Lemma 6. 1. In Procedure Compute 0,
(a) Set T0 contains zero of one negative number.
(b) Partition χ0 has score larger than or equal to any partition in A0.

2. In Procedure Compute 1,
(a) Set T1 contains zero of one negative number.
(b) Partition χ1 has score larger than or equal to any partition in A1.

3. For 1 < m < K,
(a) Set Am is nonempty if and only if

n− − m is even;m ≤ n−; and m ≥ n− − 2(n − K). (2)

(b) Partition χm has score larger than or equal to any partition in Am.
4. The partition χ∗ outputted by Algorithm1 is an optimal partition.

Optimal Partitioning Which Maximizes the Weighted Sum of Products 135

Proof

1-(a). When i < 	n−
2
, we have 2i < n− and so r2i−1 × r2i is positive. When

j > 2 · 	n−
2
, we have j > n− and so rj is nonnegative. Therefore, the only

possible negative element that may be added to T0 is (r2i−1×r2i) for i = 	n−
2
.

1-(b). By Proposition 3, any partition in A0 obeys the policy that it assigns
r2i−1, r2i to the same group for 1 ≤ i ≤ 	n−

2
. On the other hand, χ0 is the
optimal partition that obeys this policy. Therefore, χ0 has score larger than
or equal to any partition in A0. (Note: if the size of T0 is smaller than K, set
A0 must be empty; in this case we let χ0 be an arbitrary partition.)

2-(a). When i ≤ �n−
2 �, we have 2i ≤ n− and so r2i−1 × r2i is positive. When

j > 2 · �n−
2 �+1, we have j > n− and so rj is nonnegative. Therefore, the only

possible negative element that may be added to T1 is rj for j = 2 · �n−
2 � + 1.

2-(b). By Proposition 4, any partition in A1 obeys the policy that it assigns
r2i−1, r2i to the same group for 1 ≤ i ≤ �n−

2 �. On the other hand, χ1 is the
optimal partition that obeys this policy. Therefore, χ1 has score larger than
or equal to any partition in A1. (Note: if the size of T1 is smaller than K, set
A1 must be empty; in this case we let χ1 be an arbitrary partition.)

3-(a). First, assume that Am is nonempty. Then, there is a partition χ which
has m Neg-groups and obeys P1,P2,P3,P4. Since it obeys P2, the number of
negatives in the P/0-groups should be even, i.e., n− − m is even. Since the
number of Neg-groups must be at most the number of negative elements, we
get m ≤ n−. Since the number of components must be at least the number of
P/0-groups, we get n − n− + (n− − m)/2 ≥ K − m, i.e. m ≥ n− − 2(n − K).
Together, we get (2).
Now, suppose (2) holds. Then, we can find a partition χm (by Procedure
Compute m) which has m Neg-groups and obeys P1,P2,P3,P4. This implies
that Am is nonempty.

3-(b). Assume (2) holds. Otherwise Am is empty and the claim is trivial.
The elements in Tm are exactly the “components” defined in Lemma 5.
According to P4, there could be only one “essentially distinct” partition in
Am, which is exactly χm. This implies 3-(b). (Note: there might be distinct
partitions χ, χ′ in Am; however, the corresponding groups in χ and χ′ have
the same product (and score); in this manner, χ, χ′ are essentially the same.)

4. When K = 1, this claim is trivial. When K = n, this claim follows from
Lemma 1. When 1 < K < n, we have: (i) The best partition in A0, . . . ,AK−1

is an optimal partition (due to Lemma5). (ii) for 0 ≤ i < K, χi has score larger
than or equal to any partition in Ai (due to 1-(b), 2-(b), and 3-(b)). (iii) χ∗ is
the best partition among χ0, . . . , χK−1. Altogether, we get Claim 4. ��

Since sets T0, T1 both contain at most one negative, their optimal partition
can be computed efficiently. From what we have shown in Subsect. 2.1, there is
an optimal partition of T0 (respectively, T1) which is ordered and extremal. On
the other hand, there are only O(n) such partitions due to Proposition 5. We
can enumerate all of these partitions and find the best one among them.

Therefore, Procedure Compute 0 and Compute 1 and thus Algorithm1
can be implemented in polynomial time. We show a more delicate
implementation of Algorithm 1 in the next section.

136 K. Jin

Remark 3. According to the above framework, solving an instance of the general
case reduces to solving two instances of the aforementioned special cases.

4 An O(n2) Time Implementation of Algorithm1

To compute χ0, χ1, we have to consider O(n) candidate partitions. Moreover,
Procedure Compute M generates a partition for each m so that 1 < m < K.
Therefore, Algorithm 1 generates in total O(n) candidate partitions. For each
partition, we can use O(n2) time to compute its score. (In the realistic compu-
tational model, the computation of the product of n elements would take O(n2)
time, not O(n) time. This is because we need to do O(n) multiplication between
a large O(n) bytes number with a small number.) Therefore, Algorithm1 can
easily be implemented in O(n3) time.

In this section, we show an improved implementation of Algorithm1, which
only takes O(n2) time.

The basic idea for the improvement is simple. We arrange the candidate
partitions in a queue; and in computing the score of the current partition, we
always borrow the partial results for computing the previous one. In this way,
computing the new score only takes O(n) time.

First, consider the procedure for computing χ0. (The same analysis applies
for χ1.) Assume that T0 = (a1, . . . , an′) are sorted. There are n′ − (K − 1)
candidate partitions, which are those partitions that are ordered and extremal
(see Proposition 5), and they can be arranged as follows.

Index S1 | S2 | . . . | SK−1 | SK

1 a1 | a2 | . . . | aK−1 | aK , . . . , an′

2 a1, a2 | a3 | . . . | aK | aK+1, . . . , an′

. | . . . | . . . | . . . | . . .
n′ − (K − 1) a1, . . . , an′−K−1 | an′−K+2 | . . . | an′−1 | an′

To compute the score of the i-th (i > 1) candidate partition, we need to sum
up the score of its K groups. It is easy to compute the summation of the middle
K−2 groups in O(n) time. To compute the score of group S1 (i.e. a1×. . .×ai), we
borrow the score of group S1 in the previous candidate, which is (a1× . . .×ai−1);
so, we compute the product of (a1 × . . . × ai−1) and ai; this only takes O(n)
time. Similarly, we can compute the score of group SK in O(n) time.

The same idea can be applied in computing the scores of χ2, . . . , χK−1.
We first illustrate it by the following example. Assume n = 13,K = 7,

n− = 8. We have three candidate partitions, which are arranged in a queue:

χ2 = r7 | r8 || r9 | r10 | (r5, r6) | (r3, r4) | r11, r12, r13, (r1, r2)
χ4 = r5 | r6 | r7 | r8 || r9 | r10 | r11, r12, r13, (r3, r4), (r1, r2)
χ6 = r3 | r4 | r5 | r6 | r7 | r8 || r9, r10, r11, r12, r13, (r1, r2)

In these partitions, the first K−1 groups always contain one or two elements;
thus the total score of the first K −1 groups can be computed in O(n) time. The

Optimal Partitioning Which Maximizes the Weighted Sum of Products 137

challenge lies on computing the score (or product) of the last group - we should
compute it in O(n) time.

To compute the product of SK of χm, we use the product of SK in χm−2. In
the above example,

– for m = 4, we should multiply (r3 × r4) with the previous product;
– for m = 6, we should multiply r9 as well as r10, and then divide (r3 × r4).

To make the general method more clear and to make the following claim
(namely, Proposition 6) rigorous, here we have to give a more specific definition
for the last group of χm. (Recall that in Policy P4 or Procedure Compute m,
the assignment of components was not uniquely specified.)

Definition 3 (Specific definition of the last group of χm). Let α :=
(rn− , . . . , rn). Let β = (β1, . . . , βb) := (r2�n−/2�−1 × r2�n−/2�, . . . , r1 × r2). Recall
that Tm denote all components in χm. Notice that the elements in α, β include
Tm for any m > 1.

Suppose that group SK in χm should contain tm components. Clearly, tm =
|Tm| − (K − M − 1).

We define Sk := {rpm
, . . . , rn, βqm , . . . , βb}, where (pm, qm) are the unique

pair of numbers (p, q) such that (i) {rp, . . . , rn, βq, . . . , βb} are the largest tm
components in Tm and (ii) p is minimized.

Proposition 6. SK may add 1 or 2 and remove 0 or 1 component, comparing
χm to χm−2.

Proof (Sketch). If βqm−2 /∈ Tm, we must have pm = pm−2 − 2 and qm = qm−2 +
1. In this case, we add two components to SK and remove one. If βqm−2 ∈
Tm, there are two subcases. If {αpm−2−1, . . . αn, βqm−2 , . . . , βb} are the largest
tm components in Tm. Then, pm = pm−2 − 1, qm = qm−2. Otherwise, pm =
pm−2, qm = qm−2 − 1. In each subcase, we add one component. ��

When computing χm, we can store the change of SK compared with χm−2.
Based on this change, we can compute the product of SK in χm from the product
of SK in χm−2 in O(n) time.

5 An Alternative Approach - Dynamic Programming

Lemma 7. There is an optimal partition, in which the last group is assigned
with a union of a suffix and a prefix of r1, . . . , rn, namely, SK = {r1, . . . , rx} ∪
{ry, . . . , rn} for some x, y.

Proof. Due to the definition of χ0, . . . , χK−1, the last group in any of these
partitions is assigned with a suffix and a prefix of r1, . . . , rn. Moreover, there is
an optimal partition among χ0, . . . , χK−1. Together, we obtain the lemma. ��

138 K. Jin

According to this lemma and by using Dynamic-Programming, an alterna-
tive algorithm can be designed for finding an optimal partition. The transition
equation is given below. Let fi,j,K denote the maximum score we can get by
partitioning ri, . . . , rj into the first K groups.

fi,j,K =
{

w1

∏j
x=i rx, K = 1;

max{gi,j,k,i′,j′ | i ≤ i′ ≤ j′ ≤ j, j′ − i′ < j − i}, K > 1.
, (3)

where

gi,j,k,i′,j′ = fi′,j′,K−1 + wK ·
i′−1∏

x=i

rx

j∏

x=j′+1

rx.

References

1. Anily, S., Federgruen, A.: Structured partitioning problems. Oper. Res. 39(1), 130–
149 (1991)

2. Barnes, E.R., Hoffman, A.J., Rothblum, U.G.: Optimal partitions having disjoint
convex and conic hulls. Math. Program. 54, 69–86 (1992)

3. Burkard, R.E., Yao, E.: Constrained partitioning problems. Discret. Appl. Math.
28(1), 21–34 (1990)

4. Chakravarty, A.K., Orlin, J.B., Rothblum, U.G.: Technical note - a partitioning
problem with additive objective with an application to optimal inventory groupings
for joint replenishment. Oper. Res. 30(5), 1018–1022 (1982)

5. Chakravarty, A.K., Orlin, J.B., Rothblum, U.G.: Consecutive optimizers for a par-
titioning problem with applications to optimal inventory groupings for joint replen-
ishment. Oper. Res. 33(4), 820–834 (1985)

6. Fisher, W.D.: On grouping for maximum homogeneity. J. Am. Stat. Assoc.
53(284), 789–798 (1958)

7. Gal, S., Klots, B.: Optimal partitioning which maximizes the sum of the weighted
averages. Oper. Res. 43(3), 500–508 (1995)

8. Hwang, F.K.: Optimal partitions. J. Optim. Theory Appl. 34(1), 1–10 (1981)
9. Hwang, F.K., Rothblum, U.G., Yao, Y.: Localizing combinatorial properties of

partitions. Discret. Math. 160(1–3), 1–23 (1996)
10. Hwang, F.K., Sun, J., Yao, E.Y.: Optimal set partitioning. SIAM J. Algebraic

Discret. Methods 6(1), 163–170 (1985)
11. Leung, J.Y., Li, C.: An asymptotic approximation scheme for the concave cost bin

packing problem. Eur. J. Oper. Res. 191(2), 582–586 (2008)
12. Li, C., Chen, Z.: Bin-packing problem with concave costs of bin utilization. Nav.

Res. Logist. 53(4), 298–308 (2006)
13. Wikipedia: Partition problem. Technical report, Wikipedia (2016). https://en.

wikipedia.org/wiki/Partition

https://en.wikipedia.org/wiki/Partition
https://en.wikipedia.org/wiki/Partition

Modular-Width: An Auxiliary Parameter
for Parameterized Parallel Complexity

Faisal N. Abu-Khzam1,4, Shouwei Li2(B), Christine Markarian3,
Friedhelm Meyer auf der Heide2, and Pavel Podlipyan2

1 Department of Computer Science and Mathematics,
Lebanese American University, Beirut, Lebanon

2 Heinz Nixdorf Institute and Department of Computer Science,
Paderborn University, Paderborn, Germany

sli@mail.uni-paderborn.de
3 Department of Mathematical Sciences, Haigazian University, Beirut, Lebanon

4 School of Engineering and Information Technology,
Charles Darwin University, Darwin, Australia

Abstract. Many graph problems such as maximum cut, chromatic num-
ber, hamiltonian cycle, and edge dominating set are known to be fixed-
parameter tractable (FPT) when parameterized by the treewidth of the
input graphs, but become W-hard with respect to the clique-width
parameter. Recently, Gajarský et al. proposed a new parameter called
modular-width using the notion of modular decomposition of graphs.
They showed that the chromatic number problem and the partitioning
into paths problem, and hence hamiltonian path and hamiltonian cycle,
are FPT when parameterized by this parameter. In this paper, we study
modular-width in parameterized parallel complexity and show that the
weighted maximum clique problem and the maximum matching prob-
lem are fixed-parameter parallel-tractable (FPPT) when parameterized
by this parameter.

1 Introduction

Parameterized complexity has become a mainstream framework of theoretical
computer science in the last two decades. The central idea of this theory is to
study the complexity of NP or even PSPACE-hard problems with respect to one
(or more) parameter(s) rather than restricting the analysis to the input size.
This has led to the development of the class of fixed-parameter tractable (FPT)
problems. In short, a parameterized problem is FPT if it has a deterministic
algorithm with running time f(k) · nO(1), where n is the input size, k is the
parameter, and f is an arbitrary computable function.

To further reduce the running time of fixed-parameter algorithms, paral-
lel computing is employed, and this is broadly known as parameterized paral-
lel complexity. To the best of our knowledge, there are three complexity classes

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901) and
the International Graduate School “Dynamic Intelligent Systems”.

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 139–150, 2017.
DOI: 10.1007/978-3-319-59605-1 13

140 F.N. Abu-Khzam et al.

defined in the literature with the aim of capturing parametrized analogues of the
class NC, known as PNC (parameterized analog of NC), introduced in [2], FPP
(fixed-parameter parallelizable), introduced in [6], and FPPT (fixed-parameter
parallel-tractable), introduced in [1], respectively. Let f(k), g(k), and h(k) be
arbitrary functions of the parameter k, and α, β be positive constants. (1) PNC
is the class of all parametrized problems solvable in time f(k) · (log n)h(k) using
g(k) · nβ parallel processors. (2) FPP is the class of all parametrized problems
solvable in time f(k) · (log n)α using g(k) · nβ parallel processors. (3) FPPT is
the class of all parametrized problems solvable in time f(k) · (log n)α using nβ

parallel processors. It is easy to observe that FPPT ⊆ FPP ⊂ PNC according
to the definition.

We also note here that FPP ⊆ FPPT, because a parallel algorithm with
runtime f(k) ·(log n)α using g(k) ·nβ parallel processors can be simulated by one
with running time g(k)f(k) · (log n)α using nβ parallel processors. The definition
of FPPT is, therefore, a simplified version of FPP, and it was introduced in [1]
to emphasize the need to have a polynomial number of processors. In fact, the
parameter k may be treated like another input variable (rather than a constant),
so a number of processors that varies as an arbitrary (super-polynomial) function
of k is not desired. Yet, from a theoretical standpoint, an FPP-algorithm may
give more information about the parametrized complexity of a problem than
FPPT, if we are interested in the maximum possible size of k (as a function
k(n) of n) so that the problem is in NC as long as k ≤ k(n). For example, an
algorithm with running time O(k · logα n) using O (

2k · nβ
)

parallel processors
is an NC-algorithm for k = O(log n). Expressing its performance in the FPPT
model O (

k · 2k · logα n
)

using O(nβ) processors would only yield the bound
k = O(log log n). The results in this paper can be interpreted in either of these
models.

One of the most ubiquitous parameters studied in both sequential and par-
allel classes is treewidth, which roughly measures how tree-like a graph is. Algo-
rithms for problems on graphs of bounded treewidth are much more efficient
than their counterparts in general graphs (e.g. see [3,4]). A celebrated meta-
theorem of Courcelle and Di Ianni [8] states that any problem expressible in
monadic second-order logic is FPT when parameterized by the treewidth of the
input graphs. Similarly, Cesati et al. in [6] showed that all problems involving
MS (definable in monadic second-order logic with quantifications over vertex and
edge sets) or EMS properties (that involve counting or summing evaluations over
sets definable in monadic second-order logic) are FPP when restricted to graphs
of bounded treewidth. Moreover, Lagergren [17] presented an efficient parallel
algorithm for the tree decomposition problem for fixed treewidth. Hagerup et al.
[16] showed that the maximum network flow problem is in NC when parame-
terized by treewidth. Despite the fact that these results are noteworthy, one of
the main drawbacks of treewidth is that a large number of interesting instances
are excluded since graphs of small treewidth are necessarily sparse. The notion
of clique-width (as well as rank-width [20], boolean-width [5] and shrub-depth
[14]), which is stronger than treewidth, tries to address this problem by covering a

Modular-Width: An Auxiliary Parameter 141

larger family of graphs, including many dense graphs. However, the price for this
generality is exorbitant. Several natural problems such as maximum cut, chro-
matic number, hamiltonian cycle, and edge dominating set, which were shown
to be FPT for bounded treewidth, become W[1]-hard when parameterized by
these measures [10–12].

Consequently, a parameter called modular-width, that covers a significantly
larger class of graphs has been introduced by Gajarský et al. in [13] where it was
shown that several problems, such as the chromatic number and the partitioning
into paths, and hence hamiltonian path and hamiltonian cycle, which are W[1]-
hard for both clique-width and shrub-depth, are FPT when parameterized by
modular-width.

In this paper, we extend the study of modular-width to parameterized parallel
complexity and show that the weighted maximum clique problem and the maxi-
mum matching problem are FPPT for bounded modular-width. Our algorithms
are based on the following ideas/techniques: we use an algebraic expression to
represent the input graph. Then, we construct the modular decomposition tree of
the input graph and a computation tree that corresponds to the maximal strong
modules in the maximal decomposition tree. For each node of the computation
tree, we compute an optimal solution by giving the optimal solutions for the
children of this node in the modular decomposition tree. The optimal solution
for each node can be obtained by integer linear programming. Then, we use a
bottom-up dynamic programming approach along with the modular decompo-
sition tree to obtain the global solution. In order to explore and evaluate the
tree efficiently, we use a parallel tree contraction technique due to Miller and
Reif [18].

2 Preliminaries

All graphs considered in this paper are simple, undirected and loopless. We
use the classical graph theoretic notations and definitions (e.g. see [15]). The
neighborhood of a vertex x in a graph G = (V,E) is denoted by N(x). Given a
subset of vertices X ⊆ V , G[X] denotes the subgraph induced by X.

Let M be a subset of vertices of a graph G, and x be a vertex of V \ M . We
say that vertex x splits M (or is a splitter of M) if x has both a neighbor and a
non-neighbor in M . If x does not split M , then M is homogeneous with respect
to x.

Definition 1. Given a graph G = (V,E), M ⊆ V is called a module if M
is homogeneous with respect to any vertex x ∈ V \ M (i.e. M ⊆ N(x) or
M ∩ N(x) = ∅).

Let M and M ′ be disjoint sets. We say that M and M ′ are adjacent if any
vertex of M is adjacent to all the vertices in M ′ and non-adjacent if the vertices
of M are non-adjacent to the vertices of M ′. Thus, it is not hard to observe that
two disjoint modules are either adjacent or non-adjacent.

142 F.N. Abu-Khzam et al.

A module M is maximal with respect to a set S of vertices if M ⊂ S and
there is no module M ′ such that M ⊂ M ′ ⊂ S. If the set S is not specified,
we assume that S = V . A module M is a strong module if it does not overlap
with any other module. Note that, one-vertex subsets and the empty set are
modules and are known as the trivial modules. A graph is called prime if all of
its modules are trivial.

Definition 2. Let P = {M1, . . . ,Mk} be a partition of the vertex set of a graph
G = (V,E). If for all i, 1 ≤ i ≤ k, Mi is a non-trivial module of G, then P is a
modular partition of G.

A non-trivial modular partition P = {M1, . . . ,Mk} which only contains max-
imal strong modules is a maximal modular partition. Note that each undirected
graph has a unique maximal modular partition. If G (resp. G) is not connected
then its connected (resp. co-connected) components are the elements of the max-
imal modular partition.

Definition 3. For a modular partition P = {M1, . . . ,Mk} of a graph G =
(V,E), we associate a quotient graph G/p, whose vertices are in one-to-one cor-
respondence with the parts of P . Two vertices vi and vj of G/p are adjacent if
and only if the corresponding modules Mi and Mj are adjacent in G.

The inclusion tree of the strong modules of G, called the modular decom-
position tree, entirely represents the graph if the representative graph of each
strong module is attached to each of its nodes (see Fig. 1). It is easy to observe
that there are only three relations, M ⊆ M ′, M ′ ⊆ M , or M ∩ M ′ = ∅, for any

Fig. 1. (a) Shows the graph G; {{1}, {2, 3}, {4}, {5}, {6, 7}, {9}, {8, 10, 11}} is
a modular partition of G. The maximal modular partition of G is P =
{{1}, {2, 3, 4}, {5}, {6, 7}, {8, 9, 10, 11}} and (b) represents its quotient graph. (c) is the
modular decomposition tree of G. The maximal strong modules are in blue. The green
edges indicate that the root node is parallel, the red edges indicate that the root is
series, and the black edges indicate that the root is a prime graph. (Color figure online)

Modular-Width: An Auxiliary Parameter 143

two nodes M and M ′ in the modular decomposition tree. The modular-width is
the maximum degree of the modular decomposition tree. An excellent feature
of modular decomposition is that it can be computed in O(log2 n) time with
O(n + m) parallel processors [9], thus the modular-width stays also within the
same resource bounds.

Theorem 1 (Modular decomposition theorem [7]). For any graph G =
(V,E), one of the following three conditions is satisfied:

1. G is not connected;
2. G is not connected;
3. G and G are connected and the quotient graph G/P , where P is the maximal

modular partition of G, is a prime graph.

Theorem 1 indicates that, the quotient graphs associated with the nodes of
the modular decomposition tree of the strong modules are of three types: an
independent set if G is not connected (the node is labeled parallel); a clique if
G is not connected (the node is labeled series); a prime graph otherwise.

Parallel tree contraction is a “bottom-up” technique for constructing parallel
algorithms on trees. There are two basic operations called rake and compress.
During each contraction, processors are assigned to leaves of the tree and perform
local modifications by removing these leaves, hence creating new leaves that are
processed at the next round. This operation is called rake. Clearly, removing
leaves is not sufficient for a tree that is thin and tall, like a linked list, which
would take a linear number of rounds to reduce the tree to a point. Thus, a
complementary operation called compress that reduces a chain of vertices, each
with a single child to a chain of half the length is introduced. Ideally, rake and
compress work on different parts of the tree simultaneously. During the run of
the algorithm, the rake operation tends to produce chains that are then reduced
by the compress operation. Thus, the whole tree can be evaluated in O(log n)
time using O(n) parallel processors.

3 Parallel Algorithms on Modular Decomposition

In this section, we show how modular-width can be used to derive efficient par-
allel algorithms for the weighted maximum clique problem and the maximum
matching problem. Our results imply that these two problems are FPPT.

The input to our algorithms is assumed to be a graph of modular-width
at most k, and we shall represent the input graph as an algebraic expression
consisting of the following operations:

1. G has only one vertex. This corresponds to a leaf node in the modular decom-
position tree.

2. G is a disjoint union of two graphs G1 and G2 of modular-width at most k.
The disjoint union of G1 and G2 defined as a graph with vertex set V1 ∪ V2

and edge set E1 ∪ E2. This corresponds to a parallel node in the modular
decomposition tree.

144 F.N. Abu-Khzam et al.

3. G is a complete join of two graphs G1 and G2 of modular-width at most k.
The complete join of G1 and G2 is defined as a graph with vertex set V1 ∪ V2

and edge set E1 ∪ E2 ∪ {{u, v} : u ∈ V1 and v ∈ V2}. This corresponds to a
series node in the modular decomposition tree.

4. The substitution operation with respect to a graph G is the reverse of the
quotient operation and defined as replacing a vertex of G by Gi = (Vi, Ei) of
modular-width at most k while preserving the neighborhood,

Gx→Gi
= (V \ {x} ∪ Vi,

(E \ {(x, y) ∈ E} ∪ Ei ∪ {(y, z) : (x, y) ∈ E, z ∈ Vi})).

This is corresponding to the maximal modular partition of G, and Gi is one
of the maximal strong module of G.

Throughout the rest of this paper, we may assume that a graph G = (V,E)
and the modular decomposition of G, of modular-width at most k, are already
given. Otherwise, we can apply the algorithm presented in [9] to obtain one.
Under this assumption, it is easy to note that the modular decomposition tree of
G can be constructed in constant time using O(n) parallel processors. Moreover,
the number of maximal strong modules in the decomposition tree of G is at most
n, which is equal to the cardinality of the maximal modular partition of G.

The central idea of our algorithm is a bottom-up dynamic programming
approach along the modular decomposition tree of the algebraic expression as
defined above. For each node of the modular decomposition tree, we compute a
record for the graph represented by the subtree of the modular decomposition
below that node. That is, given the optimal solutions for the children of each
node in the modular decomposition tree, we can compute an optimal solution
for the node itself. In order to explore the decomposition tree efficiently, we take
the parallel tree contraction technique due to Miller and Reif [18].

3.1 The Weighted Maximum Clique Problem

Let us consider the weighted maximum clique problem which is known to be
NP-complete for general graphs. Given a graph G = (V,E) and weights on each
vertex, is there a clique with maximum weight ω?

Theorem 2. The weighted maximum clique problem parameterized by the
modular-width k can be solved in O(2k ·log n) time using O(n) parallel processors.
Thus it is FPPT.

Proof. Clearly, graph G with bounded modular-width k can be represented by
the four operations mentioned above according to Theorem1. We only need to
show that each operation can be done efficiently, and the whole decomposition
tree can be evaluated by the parallel tree contraction technique.

First, each leaf node in the modular decomposition tree is an isolated vertex,
which can be represented by the first operation of the algebraic expression. Thus,

Modular-Width: An Auxiliary Parameter 145

the maximum clique weight of each vertex is trivially its own weight. Obviously,
this can be done in constant time with a linear number of parallel processors.

Next, we consider other operations on combining two modules to form a
larger module:

– If G is the disjoint union of G1 and G2, then the maximum clique weight of
G would be:

ω(G) = max{ω(G1), ω(G2)},

since the disjoint union operation corresponds to a parallel node, which
implies two modules are non-adjacent.

– If G is the complete join of G1 and G2, then the maximum clique weight of
G would be:

ω(G) = ω(G1) + ω(G2),

since complete join corresponding to a series node, which implies any vertex
in G1 is adjacent to all the vertices in G2.

The last case is for G is a substitution of Gi for 1 ≤ i ≤ k, which means G
is neither obtained by disjoint union operation nor complete join operation. In
other words, the quotient graph of G is prime, and the vertices are in one-to-one
correspondence with Gi for 1 ≤ i ≤ k. In this scenario, graph G can be treated
as a graph with at most k vertices, and the weight of each vertex is equal to
the maximum clique weight of the corresponding module Gi for 1 ≤ i ≤ k.
Since each Gi looks like a black box to the other Gj in the maximal modular
decomposition of G for 1 ≤ i, j ≤ k and i 	= j, and there has no efficient
algorithm for the maximum weighted clique problem, we have no choice but
take a brute-force strategy to evaluate G if the maximum clique weight of each
Gi for 1 ≤ i ≤ k are given, and this can be done in O(2k) time.

Now we show how to parallelize the algorithm by the parallel tree contrac-
tion technique. We construct a computation tree corresponding to the modular
decomposition tree of G, such that each tree node corresponds to a maximal
strong module of size at most k and has at most k children. Suppose v is an
internal node in the computation tree, we call v is half-evaluated when all but
one of its children has been evaluated. With the parallel tree contraction tech-
nique, it can be compressed later. Suppose the unevaluated child is v1 and its
maximum clique weight is ω′, the maximum clique weight of v without v1 eval-
uated to a, and the maximum clique weight among evaluated children v2, . . . , vk

of v is b, a and b are known values. Then the maximum clique weight of v is

ω = max{a, ω′ + b}.

During each contraction progress, we can take the above function recursively
and have

ω′′ = max{c, ω + d},

where c and d are two known values for next round, then

ω′′ = max{max{b + c, d}, ω′ + (a + c)}.

146 F.N. Abu-Khzam et al.

Thus, the running time is O(2k · log n) using O(n) parallel processors, because
O(2k) time is required to compute a maximum weight clique for a prime graph
with at most k vertices, the parallel tree contraction takes O(log n) time using a
linear number of parallel processors, and half-evaluating a node requires O(log k)
time. �

3.2 The Maximum Matching Problem

A matching in a graph is a set of edges such that no two edges share a common
vertex. We now consider the maximum matching problem which seeks a matching
of maximum size (i.e., the largest number of edges). The existence of an NC
algorithm for this problem has been open for several decades, even if the graph
is planar. By considering the modular-width as the parameter, we prove the
following:

Theorem 3. The maximum matching problem parameterized by the modular-
width k can be solved in O(2k · log n) time using O(n) parallel processors. There-
fore the problem is FPPT.

Proof. We follow the same strategy as Theorem 2 and evaluate different opera-
tions on combining modules. Let n1, n2 denote the number of vertices and u1, u2

denote the number of unmatched vertices of graphs G1 and G2. We use the pair
<ni, ui> to track the maximum matching of graph Gi.

First, each leaf node i in the modular decomposition tree is an isolated vertex,
thus

ni = 1 and ui = 1.

Next, we consider various operations on combining two modules to form a
larger module:

– If G is the disjoint union of G1 and G2, the values of G would be:

n = n1 + n2 and u = u1 + u2,

since disjoint union corresponds to a parallel node, which implies there is no
edge between G1 and G2.

– If G is the complete join of G1 and G2, the values of G would depend on
the values of n1, n2, u1 and u2. We have to consider different cases for this
scenario. In fact, no matter for which cases,

n = n1 + n2

always valid, we only need to consider u.
1. If u1 > n2, then the unmatched vertices in G1 are more than the vertices

of G2, then the values of G would be:

u = u1 − n2,

because we could match all vertices of G2 through the edges between
unmatched vertices in G1 and all vertices of G2.

Modular-Width: An Auxiliary Parameter 147

2. Symmetrically, if u2 > n1, the values of G would be:

u = u2 − n1.

3. The last case comes to u1 < n2 and u2 < n1. In this circumstances, we
are able to match almost all vertices in G1 and G2, and only have one
unmatched vertex left over if there is an odd number of vertices in G, the
values of G would be

u = n1 + n2 (mod 2).

Without loss of generality, suppose u1 − u2 ≥ 2, we can further match
the u2 unmatched vertices in G2 by the additional edges of complete join
operation. After that, all vertices in G2 are matched, and only u1 − u2 ≥
2 vertices left in G1 still unmatched. Suppose x, y are two unmatched
vertices in G1; we know that x, y are also adjacent to all vertices in G2

because of the complete join operation, and all vertices of G2 are matched.
Then there must be at least one edge (a, b) in the matching of G2, such
that x−a−b−y is an augmenting path and the matching can be extended
by 1. Thus the number of unmatched vertices in G only depends on the
parity of u1 + u2, which is equal to the parity of n1 + n2.

Thus for the complete join of G1 and G2, we have

n = n1 + n2,

and
u = max{u1 − n2, u2 − n1, n1 + n2 (mod 2)}.

Obviously, this can be done in a constant time given the values of G1 and G2.
– Finally, we consider the case where G is a prime graph, which is obtained by

the substitution operation on modules G1, . . . , Gk. As claimed in the proof of
Theorem 2, G can be treated as a prime graph with at most k vertices, and
each vertex corresponding to a module Gi for 1 ≤ i ≤ k in this case.
It is well-known that the maximum matching problem can be formulated
as integer linear programming. Once again, let ui denote the number of
unmatched vertices in Gi, E denotes the edge set among G1, . . . , Gk, and
ei,j denote the number of matched edges between Gi and Gj for 1 ≤ i, j ≤ k.
Then finding a maximum matching in G is equivalent to solving the following
problem:

Maximize

⎧
⎨

⎩

∑

(i,j)∈E

ei,j +
∑

i

ei,i

⎫
⎬

⎭
subject to

2ei,i +
∑

(i,j)∈E

ei,j ≤ ni for i = 1, . . . , k

ei,i ≤ (ni − ui)
2

for i = 1, . . . , k

ei,j ∈ [1, k] for 1 ≤ i, j ≤ k.

148 F.N. Abu-Khzam et al.

For each prime graph, we can compute the matching by taking the maximum
of our objective function at every feasible solution. This can be done in O(2k)
time since the graph has a bounded modular-width k.

Now, we show how to parallelize the algorithm using the parallel tree con-
traction technique.

Let n1, . . . , nk denote the number of vertices and u1, . . . , uk denote the num-
ber of unmatched vertices in G1, . . . , Gk. Suppose n1, . . . , nk and u2, . . . , uk are
known, but u1 is not. Then the number of unmatched vertices of the graph G
can be represented as a function u of u1 of the form max{p, u1 − q} for a proper
choice of constants p and q, such that p = u(n1 (mod 2)) and q = n1 − u(n1).

As argued in the complete join operation of two graphs, u1 must have the
same parity as n1. For any x of the same parity as n1 between 2 and n1, it is
clear that u(x−2) ≤ u(x) ≤ u(x−2)+2. We will show that u(u1) is a piecewise
linear function, consisting of a constant portion for low values of u1 followed by
a portion with slope 1 for high values of u1 in Lemma 1. Thus u(u1) has the
form max{p, u1 − q}. We choose p = u(n1 (mod 2)) so the formula is correct at
the low end. For the high end, we choose q = n1 − u(n1).

We now use the parallel tree contraction technique. Composing functions of
the form u(x) = max{p, x − q} leaves another function of the same form which
can be computed in constant time. Therefore, the tree contraction can be done
in O(log n) time with O(n) parallel processors. �

Lemma 1. If x has the same parity as n1 and also 4 ≤ x ≤ n1, then it cannot
satisfy: u(x) = u(x − 2) = u(x − 4) + 2.

Proof. Let M ′ be the matching used to calculate u(x−4) and M be the matching
used to calculate u(x). Then we have

n1 = 2 ∗ |M ′| + (x − 4) = 2 ∗ |M | + x;

thus,
|M ′| = |M | + 2;

It follows that M ′ contains at least two edges between vertices in G1.
Let M ′′ be the matching M ′ without an edge e between two of the vertices

in G1, then M ′′ will be a matching used to calculate u(x − 2). If we choose
u1 = x − 2, both matchings M and M ′′ have the same cardinality and both
are also maximum. Let G′ be the resultant graph from taking the symmetric
difference of M and M ′′; i.e. (M −M ′′)∪(M ′′−M). Every connected component
of G′ must be either an even cycle whose edges alternate between M and M ′′

or an even length path whose edges alternate between M and M ′′ with distinct
endpoints. Now add the edge e that is in M ′ \ M ′′, its connected component
must be an odd path. If there is another matched edge e′ between two of the
vertices in G1, and e′ is not in the same connected component, then we can take
the edges from M in the component of e′, add them to the rest of M ′, and have
a larger matching for the case u1 = x − 2. Alternatively, if there does not exist
a matching edge between vertices in G1, that is also in a different component

Modular-Width: An Auxiliary Parameter 149

from e, we can still modify the matching to obtain a larger one when u1 = x−2.
Let e′ be another edge from M ′ that is contained in G1. Any vertex outside of
G1 that is adjacent to the vertices of e is also adjacent to the vertices of e′. We
can add an edge between one of these vertices and a vertex of e′ so that an even
cycle is created. We use this even cycle to take a different set of edges. This new
set has the property that it no longer includes edge e′. We have found a larger
matching for the case u1 = x − 2, contradicting our assumption. In both cases,
u(x − 2) = u(x) + 2 follows from our premises. �

4 Concluding Remarks and Future Work

In this paper, we showed that the weighted maximum clique problem and the
maximum matching problem are FPPT when parameterized by modular-width.
It would be interesting to find out whether other problems are FPPT when
parameterized by this parameter. It was shown that the maximum network flow
problem is FPPT with respect to treewidth as parameter [16]. We know that
the maximum network flow problem is not easier than the maximum matching
problem from a parallel complexity standpoint, being P-Complete. However, we
believe that the maximum network flow problem would also fall in FPPT when
parameterized by modular-width. Moreover, it was shown that the chromatic
number, hamiltonian cycle, maximum cut, and edge dominating set problems
are FPT when parameterized by treewidth but become W[1]-hard when parame-
terized by clique-width. Also, when parameterized by modular-width, chromatic
number and hamiltonian cycle are FPT, while the other two are still open. We
conjecture that the chromatic number problem parameterized by modular-width
is not FPPT, mainly because Miyano [19] showed that most of the lexicographi-
cally first maximal subgraph problems are still P-complete even if the instances
are restricted to graphs with bounded degree three.

References

1. Abu-Khzam, F.N., Li, S., Markarian, C., Meyer auf der Heide, F., Podlipyan, P.:
On the parameterized parallel complexity and the vertex cover problem. In: Chan,
T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 477–488.
Springer, Cham (2016). doi:10.1007/978-3-319-48749-6 35

2. Bodlaender, H., Downey, R., Fellows, M.: Applications of parameterized complexity
to problems of parallel and distributed computation (1994, unpublished extended
abstract)

3. Bodlaender, H.L.: Treewidth: characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006). doi:10.1007/11917496 1

4. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255–269 (2008)

5. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoret.
Comput. Sci. 412(39), 5187–5204 (2011)

http://dx.doi.org/10.1007/978-3-319-48749-6_35
http://dx.doi.org/10.1007/11917496_1

150 F.N. Abu-Khzam et al.

6. Cesati, M., Di Ianni, M.: Parameterized parallel complexity. In: Pritchard, D.,
Reeve, J. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 892–896. Springer, Heidelberg
(1998). doi:10.1007/BFb0057945

7. Chein, M., Habib, M., Maurer, M.-C.: Partitive hypergraphs. Discret. Math. 37(1),
35–50 (1981)

8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

9. Dahlhaus, E.: Efficient parallel modular decomposition (extended abstract). In:
Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 290–302. Springer, Heidelberg
(1995). doi:10.1007/3-540-60618-1 83

10. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the
price of generality. In: Proceedings of the Twentieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 825–834. Society for Industrial and Applied
Mathematics (2009)

11. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower
bounds for problems parameterized by clique-width. In: Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 493–502. Society
for Industrial and Applied Mathematics (2010)

12. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

13. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). doi:10.1007/978-3-319-03898-8 15

14. Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., Ossona de Mendez, P.,
Ramadurai, R.: When trees grow low: shrubs and fast MSO1. In: Rovan, B.,
Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 419–430.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2 38

15. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010)

16. Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multitermi-
nal flow networks and computing flows in networks of small treewidth. J. Comput.
Syst. Sci. 57(3), 366–375 (1998)

17. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J.
Algorithms 20(1), 20–44 (1996)

18. Miller, G.L., Reif, J.H.: Parallel tree contraction-part I: fundamentals (1989)
19. Miyano, S.: The lexicographically first maximal subgraph problems:

P-completeness and NC algorithms. Math. Syst. Theory 22(1), 47–73 (1989)
20. Oum, S.-I.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100

(2005)

http://dx.doi.org/10.1007/BFb0057945
http://dx.doi.org/10.1007/3-540-60618-1_83
http://dx.doi.org/10.1007/978-3-319-03898-8_15
http://dx.doi.org/10.1007/978-3-642-32589-2_38

Online Strategies for Evacuating
from a Convex Region in the Plane

Songhua Li1,2(&) and Yinfeng Xu1,2

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China
lisonghua@stu.xjtu.edu.cn, yfxu@mail.xjtu.edu.cn

2 The State Key Lab for Manufacturing Systems Engineering,
Xi’an 710049, China

Abstract. This paper studies an evacuation problem that evacuees inside an
affected convex region in the plane try to escape to a boundary of the region as
quickly as possible. The boundary information of the region is usually unknown
to the evacuees at the beginning during an emergency. But with the help of
helicopters or even satellite remote sensing technology, outside rescuers can
easily get complete boundary information, and rescuers can share the infor-
mation with evacuees once getting in touch with the evacuee who firstly reaches
a boundary. For the scenario that people evacuate from several different posi-
tions, we first show that 3 is a lower bound on the competitive ratio, and present
an online strategy with its competitive ratio proved to be no more than 2þ ffiffiffi

5
p

.
For the scenario that people evacuate from a single initial position, we present a
strategy with its competitive ratio very close to the lower bound.

Keywords: Evacuation strategy � Competitive analysis � Convex region

1 Introduction

Emergencies have occurred frequently in recent years, such as the Tianjin Tanggu blast
happened in 2015, and the Haiti earthquake happened in 2010. Thus, much attention
has recently been devoted to the evacuation problem, which becomes increasingly
important for public crisis management and social safety. In this paper, suppose
evacuees lack information about the boundary, but they can share information with
each other during the evacuation. We seek strategies for evacuating from an affected
region as quickly as possible when an emergency happens.

Previous Work. Previous research has focused on two main problems, search problem
and evacuation problem. Deng [1] proved that there exists a competitive algorithm for
exploring interiors of general polygons which has a bounded number of polygonal
obstacles. Papadimitriou [2] tried to seek dynamic decision rules that optimize the
worst-case ratio of the distance covered to the length of the optimal path. Berman [3]
surveyed the problems of online searching and navigation. In recent works, Xu et al.
[4] and Wei et al. [5, 6] considered the evacuation problem that evacuees don’t know
any boundary information about the affected region, this really occurs in an emergency,
as the affected region is usually unknown to the evacuees. Xu et al. [4] presented the

© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 151–162, 2017.
DOI: 10.1007/978-3-319-59605-1_14

EDES evacuation strategy for k (k > 3) groups of evacuees with a competitive ratio of
3/cos(p/k), and they proved that the evacuate ratio of any groups strategy in the plane is
no less than 3. For the case k = 1, Wei et al. [5] gave a 19.64-competitive evacuation
strategy SEP. Qin et al. [8] improved the result by presenting a 19.5-competitive
strategy FSS based on the Fibonacci sequence. For k = 3, Wei et al. [6] gave the EET
strategy with an improved competitive ratio of 2þ 2

ffiffiffi
3

p
.

Our Work. The previous studies mainly focus on the evacuation problem that people
evacuate from a single initial position. But in reality, the evacuees may be located at
several different initial positions. In this paper, we further consider a more practical
scenario that people evacuate from several different initial positions.

For the problem that people evacuate from a single initial position, recall the best
previous strategy EET proposed by Wei et al. [6], the evacuees still in the affected
region are just required to move towards the boundary point that evacuees firstly reach.
We present the SES strategy by improving the last step in strategy EET [6], thus SES
can be proved to perform better.

For the problem that people evacuate from several different initial positions, we first
show that 3 is a lower bound on the competitive ratio for this problem, and then present
the strategy MES derived by some observations about a convex region. The compet-
itive ratio of MES is proved to be no more than 2þ ffiffiffi

5
p � 4:237, this is better than the

best previous result of 4
ffiffiffi
2

p � 5:656 proposed by Liu et al. [7].
The rest of this paper is organized as follows. Section 2 gives some basic defini-

tions. The lower bound on the competitive ratio for the problem is given in Sect. 3. In
Sect. 4, we present the algorithm SES for the evacuation problem that evacuates from a
single initial position, with its competitive analysis. Section 5 studies a more practical
scenario that evacuates from several different initial positions, we present the strategy
MES with its competitive ratio very close to the lower bound. In Sect. 6, we analyze
the performances of our presented algorithms. Section 7 concludes this paper with a
discussion of further research.

2 Preliminaries

2.1 Problem Statement

In this paper, we define the affected region P as a convex region in the plane and define
the evacuees as the points inside P. The evacuees can’t get any boundary information
of P until someone of them reaches an arbitrary boundary line, they try to evacuate
from P to its boundary as quickly as possible. A successful evacuation requires all
evacuees reach a boundary of P. The goal is to design an online strategy for the
evacuees that minimizes the competitive ratio, which is the ratio of the path length (or
evacuation time, used interchangeably) in the online strategy without boundary
information to that in the optimal strategy with the full information. We call the
problem k-source evacuation problem when people evacuates from k different initial
positions. Particularly, we call the problem single-source evacuation problem when

152 S. Li and Y. Xu

k = 1 and multi-source evacuation problem when k � 2. Our discussions are based
on the following assumptions.

Assumptions

(a) The evacuees in P can’t get any boundary information until someone of them
reaches an arbitrary point on the boundary.

(b) The evacuees can share real-time information during the evacuation.
(c) The evacuees move at unit speed.

Assumption (a) is derived by the fact that, the boundary information of the affected
region is usually unknown to the evacuees during an emergency, but with the help of
helicopters or even satellite remote sensing technology, outside rescuers can easily get
complete boundary information of the region, and share it with other evacuees once
getting in touch with the evacuee who firstly reaches a boundary. According to
Assumption (c), we use path length and evacuation time interchangeably in this paper.

2.2 Competitive Ratio

For k-source evacuation problem, the competitive ratio is defined as follows. Let
P denote an affected area restricted to a convex region in the plane. The initial positions
of evacuees in P are modeled as position points I = {I1, I2, …, Ik} in P. For an arbitrary

online algorithm S, we denote lIjSðPÞ as the path length (or evacuation time) of evacuees
to evacuate from position Ij to a boundary of P by algorithm S, let lIJOPTðPÞ denote the
optimal (offline) evacuation path length of evacuees to evacuate from position Ij to a

boundary of P. Thus, lSðP; IÞ ¼ max
j2f1;2;...:kg

flIjS ðPÞg can denote the path length of all

evacuees by algorithm S, and lOPTðP; IÞ ¼ max
j2f1;2;...:;kg

flIjOPTðPÞg can denote the optimal

path length that all evacuees evacuate with complete boundary information of P at the
beginning. The competitive ratio of algorithm S can be defined as

cS ¼ sup
P;I

lSðP; IÞ
lOPTðP; IÞ

The quantity a ¼ inf
S
cS is the limit of the competitive ratios for k-source evacuation

problem that can ever be achieved by online algorithms. Note that cS � 1 for any online
algorithm S, thus 1 is a trivial lower bound on a.

3 A Lower Bound

In this section, we prove a lower bound on the competitive ratio for the evacuation
problem in the plane.

Lemma 1 Xu et al. [4]. For single-source evacuation problem, no online algorithm
can achieve a competitive ratio less than 3.

Online Strategies for Evacuating from a Convex Region 153

Theorem 1. For multi-source evacuation problem, no online algorithm can achieve a
competitive ratio less than 3.

Proof. We prove the lower bound by the following instance, which is similar to the
proof in Lemma 1, see Fig. 1. All evacuees are located at the same segment in P initially,
with their positions denoted by {O1, O2, …, On} respectively, the closest boundary line
to evacuees is supposed to be parallel to segment O1On, denoted by l0, other boundary
lines are very far from evacuees. Let Gi denote the group of evacuees that evacuates
from Oi. Suppose G1 to be the first one that reaches l0, with the shortest distance denoted
by lOPT. And suppose group Gk to be the one that moves towards the opposite direction.
Clearly, the distance covered by group Gk is no less than 3lOPT. Therefore, the path
length covered by any strategy is at least 3 times as the optimal path length.

4 Single-Source Evacuation Problem

In this section, we study the single-source evacuation problem that evacuates from a
single (k = 1) initial position O in the affected region P. Recall that with the help of
helicopters or even satellite remote sensing technology, outside rescuers can easily get
complete boundary information of the region, and share it with other evacuees once
getting in touch with the evacuee who firstly reaches a boundary.

Theorem 2. The competitive ratio of algorithm SES is no more than 5.
The proof of Theorem 2 is straightforward.

Fig. 1. The proof of a lower bound

154 S. Li and Y. Xu

5 Multi-source Evacuation Problem

In this section, we study the multi-source evacuation problem, that evacuees are located
at k � 2 different initial evacuation positions in the affected region P. The set of initial
evacuation positions can be denoted as E = {e1, e2, …, ek}, let d(ei, ej) denote the
distance between any two evacuation positions ei and ej, and d(ei, vP) denote the
shortest distance from position ei to a boundary of the affected area P. Derived by the
fact that, initial positions of evacuees in one group is usually visible by each other
during an emergency, while boundaries are usually invisible by the evacuees. Thus, the
maximum distance among initial evacuation positions is supposed to be no more than
lOPTðPÞ ¼ max

8ei2E
fdðei;PÞg meaning that max

8ei;ej2E
fdðei; ejÞg� max

8ei2E
fdðei;PÞg.

Derived by the following three facts about a convex polygon, we design an online
evacuation strategy MES. What’s more, the evacuees can also take the strategy
respectively by being divided into several groups when the maximum distance among
initial positions is more than lOPT(P).

Fact 1. For any rectangular region R, if its 4 vertices are in a convex region P or on the
boundary of P, then any interior point of R must be an interior point of P.

Fact 2. For any boundary of a convex region P, it can’t intersect with the interior of P.

Fact 3. For an arbitrary interior point M of a convex region P, the boundary point N
with the shortest distance to M can’t be a vertex of P. Besides, line MN must be
perpendicular to the boundary line that N lies on.

5.1 Algorithm MES

At the high level, the algorithm MES consists of two main stages, the preparation stage
and routing stage.

Preparation Stage. At the beginning, the algorithm MES chooses a pair of two initial
positions, denoted by A and B, satisfying dðA;BÞ ¼ max

8ei;ej2E
fdðei; ejÞg. If there are

multiple such pairs, choose an arbitrary pair. Then, algorithm MES determines the

direction vector D
!¼ ðD1

�!
; D2
�!

; D3
�!

; D4
�!Þ ¼ ðþ y!;� y!; þ x!;� x!Þ, where þ x!¼

AB
�!

=jAB�!j, � x!¼ BA
�!

=jBA�!j, þ y! and � y! are the unit vectors that are perpendicular
to þ x! and � x! respectively. Let GA and GB denote the group that evacuates from
initial position A and B respectively. The MES divides each group into two subgroups
arbitrarily, denoted by GA ¼ G1

A;G
2
A

� �
and GB ¼ G1

B;G
2
B

� �
respectively.

Routing Stage. Let m = d(A, B) denote the maximum distance that evacuees can
move towards a new direction, let n denote the total direction turning times, let
T1T2T3T4 denote the rectangle with its length equal to 2 m and its width equal to m,
with A and B as the midpoints of its 2 sides T1T2 and T3T4 respectively. The using
superscripts and subscripts are {a, i1, i2, j1, j2}. Let i1 ← 1, j1 ← 1, i2 ← 2, j2 ← 2,
a ← 2, n ← 1.

Online Strategies for Evacuating from a Convex Region 155

Firstly, subgroups G1
A;G

2
A;G

1
B;G

2
B

� �
move towards directions fDi1

�!
; Di2
�!

; Dj1
�!

; Dj2
�!g

at once, with a distance equal to m respectively. The other evacuees move towards the
nearest vertex of the rectangular T1T2T3T4, and join in the corresponding evacuation
subgroup. During this evacuation, once someone reaches a boundary point of the
affected region P, they can get complete boundary information by outside rescuers and
send it to the other evacuees. In the meantime, evacuees still in P stop to move towards
the nearest boundary. The algorithm MES terminates when all evacuees reach a
boundary.

If no evacuee reaches a boundary of P during the previous process, algorithm MES
updates j1 ← j1 + (−1)a � 2, j2 ← j2 + (−1)a, i1 ← i1 + (−1)a � 3, i2 ← i2 + (−1)a � 2,
n ← n + 1, a ← a + 1. Subgroups G1

A;G
2
A;G

1
B;G

2
B

� �
turn to move towards directions

fDi1
�!

; Di2
�!

; Dj1
�!

; Dj2
�!g at once, with a distance equal to m respectively. Repeat this

process until someone reaches a boundary of P in some iteration, then the evacuees still
in P stop to move towards the nearest boundary to their current position. The algorithm
terminates as soon as all evacuees reach a boundary.

5.2 Competitive Analysis on MES

Theorem 3. For 2-source evacuation problem, the competitive ratio of the algorithm
MES is no more than 4.

Proof. In 2-source evacuation problem, all evacuees are located at 2 different initial
evacuation positions. Clearly, the 2 positions can just be chosen as the special initial
positions A and B by the algorithm MES. Suppose G1

A to be the subgroup that firstly

156 S. Li and Y. Xu

reaches a boundary point (denoted by P0) of the affected region P at an arbitrary time
(denoted by t0). Let l0 denote the boundary line that P0 lies on, let d0 denote the
distance that a subgroup covers from time 0 to time t0, let diK denote the shortest
distance between subgroup Gi

K and a boundary of P at t0, for 8K ∊ {A, B}, i ∊ {1, 2}.
Recall that m = d(A, B) and F2, F3, F4 denote the positions of G2

A;G
2
B;G

1
B at time t0

respectively, n denote the direction turning times derived by the algorithm MES, let b
denote the distance that a subgroup moves after turning the last (the nth) direction in

the algorithm MES. Establish a rectangular coordinate system with vector D1
�!

, D3
�!

and

initial position P0. Recall that D1
�!

and D3
�!

represent þ x! and þ y!, respectively.
Let P1 and P2 denote the boundary points that have the shortest distance to initial

positions B and A, respectively. Thus lA
OPT

¼ dðA;P2Þ, lBOPT ¼ dðB;P1Þ. According to
the positions of P1 and P2, we can study the competitive ratio of algorithm MES by
analyzing the following 2 cases.

Case 1: P1 and P2 are both on the same boundary.
Case 2: P1 and P2 are not on the same boundary.

Case 1: P1 and P2 are both on the same boundary line l0, see Fig. 2.
Suppose line l0 satisfy the linear function y = kx, where k � 0 derived by Fact 1

and Fact 2. Clearly, l0 is the boundary that is closest to every subgroup at t0 in the worst

case, meaning that F2, F3, F4 lie on l0. Let u2 denote the angle between þ x! and P0B
��!

,

u1 denote the angle between þ x! and P0F3
��!

, let h ¼ arctan k 2 ½0; p2Þ. Notice that
lMES ¼ d0 þ max

K2fA;Bgi2f1;2g
fdiKg ¼ d0 þ d2B; lOPT ¼ max lAOPT ; l

B
OPT

� �
, the competitive

ratio can be formed as

cMES ¼ lMES

lOPT
¼

ðn� 1Þmþ bþ
ffi
½ðn� 1Þmþ 2b�2 þm2n2

q
� sinðu1 þ hÞffi

½ðn�1Þ
2 mþ b�2 þðmþ n�1

2 mÞ2
q

� sinðu2 þ hÞ

¼ 2þ �m sin h

½ðn�1Þ
2 mþ b� � cos hþ nþ 1

2 m sin h
þ ðn� 1Þmþ b

½ðn�1Þ
2 mþ b� � cos hþ nþ 1

2 m sin h

¼ 2þ c1 þ c2
� 2þ c1jh¼0 þ c2jh¼0

� 4

Case 2: P1 and P2 are not on the same boundary line.
Let d(K, l) denote the shortest distance from an arbitrary point K ∊ {A, B} to an

arbitrary linel. The boundary line that P1 lies on satisfies linear equation lP:
y = kx + b. Clearly, there can’t be any boundary point of the affected region P in the
rectangular P0F2F3F4 derived by Fact 1, BP1⊥lP derived by Fact 3, and lP can’t
intersect with rectangular P0F2F3F4 derived by Fact 2. The plane can be divided into 8
regions besides the rectangular P0F2F3F4, denoted by {R1, R2, …, R8}, see Fig. 3.

Online Strategies for Evacuating from a Convex Region 157

The competitive ratio can be formed as c ¼ ðd0 þ max
K2 A;Bf g;i2 1;2f g

diK
� �Þ=

max lAOPT ; l
B
OPT

� �
, and P2 must lie on l0 when analyzing the competitive ratio in the

worst case. Clearly, lBOPT is no more than d(B, l0), and lOPT is equal to lAOPT in case
that jBP1j\dA;l0 . Thus, we just need to consider the possible positions of P1 that
satisfy lAOPT\lBopt\dðB; l0Þ. When analyzing the competitive ratio in the worst case, we

aim to consider the position of P1 that lBOPT can approach to lAOPT as much as possible,
and max

K2 A;Bf g;i2 1;2f g
diK

� �
can be larger in the meantime. Noticing the geometrical features

of Fig. 4, we can see that for any case in the situation that P1 is located in R1 (or R2, R3,
R4), there exist a worse case in the situation that P1 is located in R5 (or R6, R7, R8).
Besides, the situation that P1 is located in R6 (or R7) is similar to the situation that P1 is
located in R5 (or R8). Thus, we only need to consider the situation that P1 is located in
R6 (or R5) and R7 (or R8).

Case 2.1: P1 is located in R7, see Fig. 4.
Derived by Fact 2, we know that l0 : y� kxþ b satisfy k � 0, b � 0. It’s clear

that the points F0(m, 0), Bðnþ 1
2 m;�bþ 1�n

2 mÞ and F3ðmn;�2bþ 1� nÞmð Þ are col-
linear. Line F3F0 intersect l1 at point F1, draw a line F3P0

1 perpendicular to l0 at point
P0
1, then, DP1F1B and DP0

1 F1F3 are similar, let ɛ = |F1F3| − |F0F3| = |F0F1|. In the
worst case, there doesn’t exist any other boundary point of P that has a shorter distance
to F3 than F3P0

1

�� ��. Thus, the ratio can be formed as

c ¼ d0 þ jF3P0
1j

lBOPT

¼ d0 þðeþ 2AP0Þ � sinðarctan kþ\F3F0F4Þ
ðeþAP0Þ � sinðarctan kþ\BF0F4Þ ¼ 1þ

ffi
ðn�1

2 mÞ2 þðn�1
2 mþ bÞ2

q

eþ
ffi
ðn�1

2 mÞ2 þðn�1
2 mþ bÞ2

q

þ ðn� 1Þmþ b

ðeþ
ffi
ðn�1

2 mÞ2 þðn�1
2 mþ bÞ2

q
Þ � sinðarctan kþ arctan

n�1
2 mþ b
n�1
2 m

Þ

in which, 0 � b < m, @c
@k\0; @c@e\0. Hence, cMES\ lim

k;e!0
cMES � 4.

Fig. 2. The proof of Theorem 3 in Case 1 Fig. 3. Dividing the plane.

158 S. Li and Y. Xu

Case 2.2: P1 is located in R6, see the above Fig. 5.
Draw a line F3P0

1 that is perpendicular to l0 at point P0
1. In the worst case, there

doesn’t exist any other boundary point of P that has a shorter distance to F3 than
F3P0

1

�� ��, and we only need to consider the case that lAOPT � lBOPT\dðB; l0Þ, thus, the
competitive ratio can be formed as c ¼ ðd0 þmaxfdF2;l0 ; jF3P0

1jgÞ=jBP1j in the worst
case, and the ratio c can get its maximum value when circle B (with its center at B, and
its radius equal to |BP1|) is tangent to the line F4P1. Let l0 : y ¼ kx� kmn, in which
k � 0, let u = arctan k − p/2, thus u ∊ (0, p/2]. We know dA;l0 �BP1, F3P0

1 [dF2;l0 .
Then, the ratio can be further formed as

c ¼ d0 þ jF3P0
1j

jBP1j ¼ c1 þ c2\c1ju¼0 þ c2j
u¼arctan

n�1
2 mþ b

n�1
2 m

\4

where c1 ¼ ðn� 1Þmþ b

ðn�1
2 mþ bÞ � sinuþ n�1

2 m � cosu ; c2 ¼ ðn� 1Þmþ 2b
n�1
2 mþ bþ n�1

2 m � cotu :

Case 2.3: P1 is located in R5 (or R8). The analysis of the competitive ratio is similar
to the situation that P1 is located in R6 (or R7), and the competitive ratio in the worst
case is also equal to 4.

The theorem follows.

Theorem 4. For multi-source evacuation problem, the competitive ratio of the algo-
rithm MES is no more than 2þ ffiffiffi

5
p

.

Proof. In multi-source evacuation problem, all evacuees are located at several different
initial evacuation positions. the algorithm MES chooses a pair of two initial positions,
denoted by A and B, that has the maximum distance between each other. If there are
multiple such pairs, choose an arbitrary pair. Clearly, any other initial position must be
in the intersection area of circle A (with its radius equal to m) and circle B (with its
radius also equal to m), see the above Fig. 6.

Comparing the evacuation route derived by the algorithm MES in 2-source evac-
uation problem and in multi-source evacuation problem, we can see the difference is just
in the first direction turning process, meaning that the direction turning time n = 1

Fig. 4. The proof of Case 2.1 Fig. 5. The proof of Case 2.2

Online Strategies for Evacuating from a Convex Region 159

during the evacuation. During the first direction turning process (n = 1) by the algorithm
MES, evacuees move a distance equal to m in 2-source evacuation problem, while
evacuees move a distance no more than ð ffiffiffi

5
p

=2Þ � m in multi-source problem. Thus,

lMESjmulti�source � lMESj2�source þð
ffiffiffi
5

p

2
� 1Þm

Note also that the lOPT in multi-source evacuation problem is no less than the lOPT
in the corresponding 2-source evacuation problem. Hence, the competitive ratio of the
algorithm MES in multi-source evacuation problem satisfy

cMES ¼ lMESjmulti�source

lOPT
� lMESj2�source þð

ffiffi
5

p
2 � 1Þm

lOPT
\4þ ð

ffiffi
5

p
2 � 1Þm

n�1
2 mþ b

� 2þ
ffiffiffi
5

p
:

Where b also denotes the distance that a subgroup covers after turning the last
(the nth) direction in the algorithm MES.

This proves the theorem.

6 Performance Analysis

In this section, we analyze the performances of the algorithm SES and the algorithm
MES respectively.

For single-source evacuation problem, we present the SES strategy, which
improves the last step in the EET strategy proposed by Wei et.al. [6]. We compare the
performance results among the SES strategy, the EET strategy and the lower bound, as
shown in Fig. 7. Through the comparison, it can conclude that the SES strategy always
performs a little better than the EET strategy, and both of the strategies can approach
very closely to the lower bound as group number increases.

For multi-source evacuation problem, we prove the lower bound of this problem is
3, and we present the MES strategy which is derived by some observed facts about a
convex polygon. The competitive ratio of the MES strategy is proved to be no more
than 2þ ffiffiffi

5
p � 4:237, which is better than the best previous result of 4

ffiffiffi
2

p � 5:656
proposed by Liu et.al. [7]. The performance of MES strategy, strategy proposed by Liu
et al. [7], and the lower bound is shown in Table 1.

Fig. 6. The proof of Theorem 4

160 S. Li and Y. Xu

7 Conclusions

In this paper, we study the problem that people evacuate from an affected convex
region in the plane to a boundary of the region as soon as possible. For multi-source
evacuation problem, we show that 3 is a lower bound on the competitive ratio. Based
on the fact that with the help of helicopters or even satellite remote sensing technology,
outside rescuers can easily get complete boundary information of the region, and they
can share it with other evacuees once getting in touch with the evacuee who firstly
reaches a boundary. Then we present the strategy MES derived by some observations
about a convex polygon. The competitive ratio of MES is proved to be no more than
2þ ffiffiffi

5
p � 4:237, which is better than the best previous result of 4

ffiffiffi
2

p � 5:656 pro-
posed by Liu et.al. [7]. For single-source evacuation problem, we present the SES
strategy by improving the last step in the EET strategy proposed by Wei et.al. [6]. The
competitive ratio of the SES strategy is proved to be better than the EET strategy, and
both can approach very closely to the lower bound as the groups number increases.

Further possible research could consider the case that outside rescuers are searching
for the evacuees in the mean time during the evacuation. It would also be interesting to
take evacuees’ individual behaviors into account that people prefer to turn less direc-
tions during their evacuation.

Acknowledgments. This research is partially supported by the NSFC (Grant No. 71601152),
and by the China Postdoctoral Science Foundation (Grant No. 2016M592811).

References

1. Deng, X.T., Kameda, T., Papadimitriou, C.: How to learn an unknown environment I: the
rectilinear case. J. ACM 45(2), 215–245 (1998)

Fig. 7. The comparison on competitive ratio among the SES strategy, the EET strategy and
lower bound

Table 1. The performance comparison

Lower bound The MES strategy Liu’s

The competitive ratio 3 2þ ffiffiffi
5

p � 4:237 4
ffiffiffi
2

p � 5:656

Online Strategies for Evacuating from a Convex Region 161

2. Papadimitriou, C.H., Yannakakis, M.: Shortest path without a map. Theoret. Comput. Sci. 84
(1), 127–150 (1991)

3. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.) Online
Algorithms. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998). doi:10.1007/
BFb0029571

4. Xu, Y., Qin, L.: Strategies of groups evacuation from a convex region in the plane. In:
Fellows, M., Tan, X., Zhu, B. (eds.) AAIM/FAW -2013. LNCS, vol. 7924, pp. 250–260.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38756-2_26

5. Wei, Q., Tan, X., Jiang, B., Wang, L.: On-line strategies for evacuating from a convex
region in the plane. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS,
vol. 8881, pp. 74–85. Springer, Cham (2014). doi:10.1007/978-3-319-12691-3_7

6. Wei, Q., Wang, L., Jiang, B.: Tactics for evacuating from an affected area. Int. J. Mach.
Learn. Comput. 3(5), 435–439 (2013)

7. Liu, Y., Jiang, B., Zhang, H.: Online strategies for evacuating from a convex region by
groups in the plane. In: 2015 Ninth International Conference on Frontier of Computer
Science and Technology, pp. 178–183. IEEE (2015)

8. Qin, L., Xu, Y.: Fibonacci helps to evacuate from a convex region in a grid network.
J. Comb. Optim. 1–16 (2016)

9. Lu, Q., George, B., Shekhar, S.: Capacity constrained routing algorithms for evacuation
planning: a summary of results. In: Bauzer Medeiros, C., Egenhofer, Max J., Bertino, E.
(eds.) SSTD 2005. LNCS, vol. 3633, pp. 291–307. Springer, Heidelberg (2005). doi:10.
1007/11535331_17

10. Zhang, H., Xu, Y.: The k-Canadian travelers problem with communication. In: Atallah, M.,
Li, X.-Y., Zhu, B. (eds.) Frontiers in Algorithmics and Algorithmic Aspects in Information
and Management. LNCS, vol. 6681, pp. 17–28. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21204-8_6

162 S. Li and Y. Xu

http://dx.doi.org/10.1007/BFb0029571
http://dx.doi.org/10.1007/BFb0029571
http://dx.doi.org/10.1007/978-3-642-38756-2_26
http://dx.doi.org/10.1007/978-3-319-12691-3_7
http://dx.doi.org/10.1007/11535331_17
http://dx.doi.org/10.1007/11535331_17
http://dx.doi.org/10.1007/978-3-642-21204-8_6
http://dx.doi.org/10.1007/978-3-642-21204-8_6

A Further Analysis of the Dynamic Dominant
Resource Fairness Mechanism

Weidong Li1,2, Xi Liu1, Xiaolu Zhang1, and Xuejie Zhang1(B)

1 Yunnan University, Kunming 650091, People’s Republic of China
{weidong,zxl,xjzhang}@ynu.edu.cn

2 Dianchi College of Yunnan University,
Kunming 650228, People’s Republic of China

Abstract. Multi-resource fair allocation has been a hot topic in cloud
computing. Recently, a dynamic dominant resource fairness mechanism
(DDRF) is proposed for dynamic multi-resource fair allocation. In this
paper, we develop a linear-time algorithm to find a DDRF solution at
each step. Moreover, we give the competitive ratios of the DDRF mech-
anism under three widely used objectives.

Keywords: Multi-resource fair allocation · Dominant resource fairness ·
Dynamic dominant resource fairness · Competitive ratio

1 Introduction

Max-min fair allocation is a fundamental problem in combinatorial optimization.
Several polynomial-time approximation algorithms are designed to find near-
optimal solutions for max-min fair allocation with different constraints [1,2]. In
2011, Ghodsi et al. [13] proposed a novel max-min fair allocation problem, which
is to allocation multiple resources to heterogeneous agents as fair as possible.
They [13] advocated the dominant resource fairness (DRF) mechanism, which
has a wide range of applications in cloud computing systems. Most importantly,
agents can not be able to benefit by lying about their resource demands under
DRF mechanism, i.e., DRF satisfies strategy-proof, which is also called incentive
compatible or truthful.

Since then, DRF and its variants became a hot topic in cloud computing,
computational economics, and computer networks, and has been extended to
many dimensions. Joe-Wong et al. [24] designed a unifying multi-resource allo-
cation framework that captures the trade-offs between fairness and efficiency,
which generalizes the DRF measure. Gutman and Nisan [14] situated DRF in a
common economics framework, obtaining a general economic perspective. Bhat-
tacharya et al. [5] generalized DRF to a hierarchical scheduler that offers service
isolations in a computing system with a hierarchical structure. Parkes et al. [18]
extended DRF in several ways, including the presence of zero demands and the
case of indivisible tasks. Wang et al. [22] generalized DRF into the cloud comput-
ing systems with heterogeneous servers. Psomans and Schwartz [20], and Fried-
man et al. [12] studied the multi-resource allocation of discrete tasks on multiple
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 163–174, 2017.
DOI: 10.1007/978-3-319-59605-1 15

164 W. Li et al.

machines. Zarchy et al. [26] developed a framework for fair resource allocation
that captures such implementation tradeoffs by allowing users to submit mul-
tiple resource demands. Chowdhury et al. [10] extended DRF from static and
fixed demands to elastic demands and proposed an optimal allocation algorithm.
More related results can be found in the recent survey [19].

There are several alternative mechanisms for multi-resource fair allocation.
Notably, Dolev et al. [11] proposed an alternative notion of multi-resource fair
allocation, called bottleneck based fairness, which guarantees that each user
receives at least its entitlement on some bottleneck resource. Bonald and Roberts
[6] argued that proportional fairness (PF) is preferable to DRF in certain envi-
ronment. The same author [7] advocated bottleneck max fairness under a stochas-
tic demand model. Jin and Hayashi [15] studied the efficiency of PF and DRF
in the aspect of resource usage and total throughput when there are two differ-
ent type resources are available. Zahedi and Lee [25] presented a Cobb-Douglas
preferences based allocation mechanism, which satisfies fair properties similar
to DRF. Wang and Varman [21] proposed bottleneck aware allocation mecha-
nism, capturing trade-offs between fairness and system utilization in multi-tiered
storage systems. Recently, Wang et al. [23] proposed task share fairness (TSF)
mechanism for multi-resource fair allocation with placement constraints.

DRF uses complete information about the requirements of all agents in order
to find the fair solution. However, in reality, agents arrive over time, and we do
not know the requirements of forthcoming agents before allocating the resources
to the arrived agents. Recently, Kash et al. [16] introduced a dynamic model
of fair allocation and proposed a dynamic dominant resource fairness (DDRF)
mechanism, which is generalized to a more general case [17]. They [16] mentioned
that a DDRF solution can be found by using water-filling algorithm or solving
the corresponding linear program. However, the running time of the water-filling
algorithm is pseudo-polynomial in worst-case scenario. Although solving a linear
program can be done within polynomial time, the running time is high. It is
desired to design an efficient algorithm to find a DDRF solution.

In this paper, we further study the DDRF mechanism. We design an efficient
algorithm to find a DDRF solution. In addition, motivated by [3,4,9], we discuss
the efficiency of the DDRF mechanism from the worst-case perspective. We
consider three important objectives, and give the tight ratios, by exploring the
properties of DDRF. The rest of the paper is organized as follows. Section 2
describes the DDRF mechanism. Section 3 presents a polynomial-time algorithm,
which can find a DDRF solution in O(k) time at every step k. Section 4 gives the
competitive ratios analysis of the DDRF mechanism. Finally, Sect. 5 concludes
the paper and gives the future work.

2 The Description of DDRF

Throughout this paper, assume that resources are divisible. In a multi-resource
environment, there are n agents and m resources. Each agent i requires Dir-
fraction of resource r for each task, assuming that Dir > 0 for each resource r.

A Further Analysis of the Dynamic Dominant Resource Fairness Mechanism 165

As defined in [13], the dominant resource of agent i is the resource r∗
i such that

Dir∗
i

= maxr Dir. Following [16,18], the normalized demand of agent i is given
by di = (di1, . . . , dim), where dir = Dir/Dir∗

i
for each resource r = 1, . . . , m.

Clearly, dir ≤ 1 and dir∗
i

= 1 for each agent i.
In the dynamic resource allocation model considered in [16], agents arrive

at different times and do not depart. Assume that agent 1 arrives first, and in
general agent k arrives after agents 1, . . . , k − 1, for k ≥ 2. For convenience, we
say that agent k arrives in step k. An agent reports its demand which does not
change over time when it arrives. Thus, at step k, demand vectors d1, . . . ,dk

are known, and demand vectors dk+1, . . . ,dn are unknown. At each step k, the
DDRF mechanism [16] produces an allocation Ak over the agents present in the
system, where Ak allocates Ak

ir-fraction of resource r to agent i, subject to the
feasibility condition

n∑

i=1

Ak
ir ≤ k

n
, for r = 1, 2, . . . ,m. (1)

Under the DDRF mechanism, assume that allocations are irrevocable, i.e.,
Ak

ir ≥ Ak−1
ir , for every step k ≥ 2, every agent i ≤ k − 1, and every resource r.

At every step k, assume Ak is non-wasteful, which means that for every agent i
there exists y ∈ R+ such that for every resource r,Ak

ir = y · dir. Let xk
i be the

dominant share of agent i, which means that agent i is allocated xk
i -fraction of

dominant resource. For a non-wasteful allocation Ak, it is easy to verify that

Ak
ir = xk

i · dir, for i = 1, 2, . . . , k, and r = 1, 2, . . . ,m. (2)

At each step k, the DDRF mechanism [16] starts from the current allocation
among the present agents 1, . . . , k and keeps allocating resources to agents that
have the minimum dominant share synchronously, until a k/n fraction of at least
one resource is allocated. Formally, at every step k, the dominant share vector
(xk

1 , . . . , x
k
k) of the DDRF allocation Ak can be obtained by solving the following

linear program (LP):
⎧
⎪⎪⎨

⎪⎪⎩

Maximize Mk

xk
i ≥ Mk,∀i ≤ k;

xk
i ≥ xk−1

i ,∀i ≤ k − 1; (irrevocable)∑k
i=1 dirx

k
i ≤ k

n ,∀r. (capacity constraints)

(3)

As shown in [16], the DDRF mechanism satisfies many desired properties. Espe-
cially, it satisfies sharing incentives (SI) and dynamic Pareto optimality (DPO).
SI means that, for all steps k and all agents i ≤ k, xk

i ≥ 1/n, i.e., when an agent
arrives it receives an allocation that it likes at least as much as an equal split of
the resources. DPO means that, for all steps k, there is a resource r such that∑k

i=1 dirx
k
i = k/n, i.e., it should not be possible to increase the allocation of an

agent without decreasing the allocation of at least another user, subject to not
allocating more that k/n fraction of any resource.

166 W. Li et al.

3 A Linear-Time Optimal Algorithm

Although the water-filling algorithm can produce a DDRF solution [16], the
running time is pseudo-polynomial [14]. Also, we can compute a DDRF solution
by solving the LP (3). However, it is not a combinatorial optimal algorithm.
At every step k, by modifying the linear-time algorithms for computing a DRF
solution in [14,18] slightly, we can obtain a variant of water-filling algorithm with
running time O(k2). In this section, we will design a linear-time algorithm to find
a DDRF solution. In the proof below, Mk and xk

i refer to the optimal solution
of LP (3) at step k. The following two lemmas are very useful for designing the
linear-time algorithm.

Lemma 1 [16]. At any step k ∈ {1, . . . , n}, it holds that xk
i = max{Mk, xk−1

i }
for all agents i ≤ k.

Lemma 2 [16]. At any step k ∈ {1, . . . , n}, for all agents i, j such that i < j,
it holds that xk

i ≥ xk
j .

Theorem 3. At any step k ∈ {2, . . . , n}, a DDRF solution can be found within
O(k) time.

Proof. Consider an agent j. By Lemma 1, we have xk
j = max{Mk, xk−1

j }. If
xk

j = xk−1
j > Mk, by Lemma 2, for all agents i ≤ j, we have xk−1

i ≥ xk−1
j > Mk,

which implies that xk
i = max{Mk, xk−1

i } = xk−1
i . If xk

j = Mk > xk−1
j , by

Lemma 2, for all agents i ≥ j, we have xk−1
i ≤ xk−1

j < Mk, which implies that
xk

i = max{Mk, xk−1
i } = Mk. Therefore, at any step k ≥ 2, there is an agent

τ ≤ k such that
{

xk
i = xk−1

i > Mk, for < τ ;
xk

i = Mk ≥ xk−1
i , for τ ≤ i ≤ k.

(4)

Thus, if we know τ , Mk can be obtained by solving the following linear program
{

Maximize Mk

∑
i:τ≤i≤k dirM

k +
∑

i:i<τ dirx
k−1
i ≤ k

n , for r = 1, 2, . . . ,m.
(5)

As pointed in [18], this linear program can be rewritten as

Mk = min
r

k/n − ∑
i:i<τ dirx

k−1
i∑

i:τ≤i≤k dir
. (6)

We are now ready to describe our linear-time algorithm. Our main idea is
to find τ by using a bisection method. At any step k ≥ 2, consider the agent
l = �(1 + k)/2�. Let

{
xk

i = xk−1
i , for i < l;

xk
i = xk−1

l , for l ≤ i ≤ k,
(7)

A Further Analysis of the Dynamic Dominant Resource Fairness Mechanism 167

For convenience, let
{

αr =
∑

i:i<l dirx
k−1
i ,∀r;

βr =
∑

i:l≤i≤k dir,∀r.
(8)

Clearly, if αr + xk−1
l βr ≤ k/n for every resource r, i.e., (xk

1 , . . . , x
k
k) satisfies the

capacity constraints in (1), we have Mk ≥ xk−1
l and l ≥ τ . Otherwise, we have

Mk < xk−1
l and l < τ . We distinguish the following two cases:

Case 1. l ≥ τ . For every agent i satisfying l ≤ i ≤ k, we have xk
i = Mk, as

i ≥ l ≥ τ . Let AI = {i : l ≤ i ≤ k} be set of known agents with identical
dominant share in the optimal solution (xk

1 , . . . , x
k
k). Next, consider the agent

�(1 + l)/2� as before.
Case 2. l < τ . For every agent i satisfying i < l, we have xk

i = xk−1
i , as

i < l < τ . Let AS = {i : i < l} be set of known agents with same dominant
share as in step k − 1 in the optimal solution (xk

1 , . . . , x
k
k). Next, consider the

agent �(l + k)/2� as before.

At every step k, the number of unclassified agents in {i : i /∈ AI, i /∈ AS}
is reduced to half. Finally, all the agents are divided into two subsets AI and
AS, and we will find the τ and the optimal solution (xk

1 , . . . , x
k
k). Clearly, the

running time of deciding whether l ≥ τ at each iteration is linear in the number
of unclassified agents. Thus, the total running time is O(k+k/2+k/22+· · ·+1) =
O(k), where m is seen as a constant. The complete algorithm is given as Linear-
time DDRF algorithm.

4 Competitive Analysis of the DDRF Mechanism

In [16], the authors analyzed the performance of the DDRF mechanism on real
data, for two objectives: the minimum dominant share (the maxmin objective)
and the sum of dominant shares (the maxsum objective) of the agents present in
the system. In this section, we analyze the performance of the DDRF mechanism
in the worst-case scenario.

For a maximization problem, it is well known that the competitive ratio ρ of
an online algorithm is the worst-case ratio between the cost of the solution found
by the online algorithm and the cost of an optimal solution in an offline setting
where all the demands of agents are known [8]. Clearly, ρ ∈ [0, 1]. Similarly,
we define the competitive ratio of the DDRF mechanism as the worst-case ratio
between the objective value of the DDRF solution (xk

1 , . . . , x
k
k) and the opti-

mal solution (ẋk
1 , . . . , ẋ

k
k) of instance I under certain objective function in the

offline setting. Accordingly, the competitive ratio CR of the DDRF mechanism
is defined as

CR = min
I

min
k

The objective value of (xk
1 , . . . , x

k
k)

The objective value of (ẋk
1 , . . . , ẋ

k
k)

. (9)

168 W. Li et al.

Linear-time DDRF algorithm
1: Data: Demand di, 1 ≤ i ≤ k
2: Result: Allocation Ak at each step k
3: x1

1 ← 1/n, A1
1r ← x1

1 · d1r, ∀r;
4: k ← 2;
5: while k ≤ n do
6: if

∑k
i=1 dirx

k−1
1 ≤ k/n, ∀r, do

7: αr ← 0, βr ← ∑k
i=1 dir, ∀r;

8: else, do
9: LB ← 1, UB ← k, τ ← �(LB + UB)/2�;

10: αr ← ∑τ−1
i=1 dirx

k−1
i , βr ← ∑k

i=τ dir, ∀r;
11: while UB − LB > 1, do
12: if αr + βrx

k−1
τ ≤ k/n, ∀r, do

13: LB ← LB, UB ← τ , τ ← �(LB + UB)/2�;
14: αr ← αr − ∑UB−1

i=τ dirx
k−1
i , βr ← βr +

∑UB−1
i=τ dir;

15: else, do
16: LB ← τ , UB ← UB, τ ← �(LB + UB)/2�;
17: αr ← αr +

∑τ−1
i=LB dirx

k−1
i , βr ← βr − ∑τ−1

i=LB dir;
18: end if ;
19: end while;
20: end if ;
21: Mk ← minr(k/n − αr)/βr;
22: xk

i ← max(xk−1
i ,Mk),∀i ≤ k;

23: Ak
ir ← xk

i · dir,∀i ≤ k;
24: k ← k + 1;
25: end while

4.1 The Maxmin Objective

When the objective is minimum dominant share maximization (maxmin, for
short), the optimal solution (x̃k

1 , . . . , x̃
k
k) at step k (≥2) in the offline setting can

be obtained by solving the following linear program
{

Maximize mini xk
i∑k

i=1 dirx
k
i ≤ k

n ,∀r.
(10)

Actually, (x̃k
1 , . . . , x̃

k
k) is a DRF solution [13,14,18], where the dominant

shares of all agents are equal. Formally, for a given instance I, at every step
k, (x̃k

1 , . . . , x̃
k
k) is obtained by

x̃k
1 = · · · = x̃k

k = min
r

k/n
∑k

i=1 dir

, (11)

following from [14,18].

A Further Analysis of the Dynamic Dominant Resource Fairness Mechanism 169

Therefore, the competitive ratio CR1 of the DDRF mechanism for the
maxmin objective can be defined as

CR1 = min
I

min
k

mini xk
i

mini x̃k
i

= min
I

min
k

mini xk
i

x̃k
k

= min
I

min
k

xk
k

x̃k
k

, (12)

where the last equality follows from the fact mini xk
i = xk

k, which can be obtained
by Lemma 2.

Theorem 4. When the objective is minimum dominant share maximization,
the competitive ratio of the DDRF mechanism is 1/m. Moreover, no mechanism
satisfying DPO can do better than 1/(m − 1).

Proof. At every step k ∈ {2, . . . , n}, since the DDRF mechanism satisfies the SI
property, we have

xk
k ≥ 1

n
. (13)

By the pigeonhole principle, there exists a resource which is the dominant
resource for at least �k/m� agents. It implies that the DRF solution (x̃k

1 , . . . , x̃
k
k)

satisfies

x̃k
k ≤ k/n

�k/m� . (14)

Thus, the competitive ratio of the DDRF mechanism satisfies

CR1 =
xk

k

x̃k
k

≥ �k/m�
k

≥ 1
m

. (15)

Consider a setting with m (>2) resources and n = m2 + 1 agents. For i =
1, 2, . . . ,m2, the demand of agent i is defined as

di =

⎧
⎪⎪⎨

⎪⎪⎩

(1, ε, . . . , ε), if i ≡ 1(mod m)
(ε, 1, . . . , ε), if i ≡ 2(mod m)

· · ·
(ε, ε, . . . , 1), if i ≡ 0(mod m)

(16)

where ε → 0 is a small enough number. The demand of agent n = m2 + 1 is
dn = (1, 1, . . . , 1). At step k = m2, the DDRF solution is

xk
i =

m2

[m + ε(m2 − m)](m2 + 1)
→ m

m2 + 1
, for i = 1, 2, . . . , k, (17)

when ε → 0. Actually, after the first m2 steps, at least m2/(m2 + 1) share of at
least one resource r∗ must be exhausted for any dynamic mechanism satisfying
the DPO property. It implies that at most 1/(m2 +1) share of resource r∗ is left
for the last agent n. Hence,

xn
n ≤ 1

m2 + 1
, (18)

170 W. Li et al.

for any dynamic mechanism satisfying DPO, while the DRF solution (x̃n
1 , . . . , x̃n

n)
satisfies

x̃n
i =

1
m + 1 + ε(m2 − m)

→ 1
m + 1

, for i = 1, 2, . . . , n, (19)

when ε → 0. It implies that, at step k = n, the competitive ratio of any dynamic
mechanism satisfying DPO including the DDRF mechanism is at most

xn
n

x̃n
n

→ m + 1
m2 + 1

≤ 1
m − 1

. (20)

Thus, the theorem holds.

4.2 The Maxsum Objective

When the objective is the sum of dominant shares maximization (maxsum, for
short), for a given instance I, the optimal solution (x̄k

1 , . . . , x̄
k
k) at step k (≥2)

in the offline setting can be obtained by solving the following linear program
{

Maximize
∑k

i=1 xk
i∑k

i=1 dirx
k
i ≤ k

n ,∀r.
(21)

Accordingly, the competitive ratio of the DDRF mechanism for the maxsum
objective can be defined as

CR2 = min
I

min
k

∑k
i=1 xk

i∑k
i=1 x̄k

i

. (22)

Theorem 5. When the objective is the sum of dominant shares maximization,
the competitive ratio of the DDRF mechanism is 1/m, and the ratio is tight.

Proof. Since the DDRF mechanism satisfies SI, we have xk
i ≥ 1/n for every

agent i ≤ k at step k, which implies that

k∑

i=1

xk
i ≥ k

n
. (23)

Consider the optimal solution (x̄k
1 , . . . , x̄

k
k) obtained from (21). Clearly, at step

k, for every resource r,

∑

i:r∗
i =r

x̄k
i =

∑

i:r∗
i =r

dir∗
i
x̄k

i ≤
k∑

i=1

dirx̄
k
i ≤ k

n
, (24)

following from the fact dir∗
i

= 1 and the capacity constraint of (21). It implies
that

n∑

i=1

x̄k
i ≤

m∑

r=1

∑

i:r∗
i =r

x̄k
i ≤ mk

n
, (25)

A Further Analysis of the Dynamic Dominant Resource Fairness Mechanism 171

where the first inequality follows from the fact that each agent has at least one
dominant resource. Thus, following (23) and (25), we have

∑k
i=1 xk

i∑n
i=1 x̄k

i

≥ 1
m

, (26)

i.e., the competitive ratio of the DDRF mechanism is at least 1/m.

Next, we will prove that the competitive ratio is tight. Consider a setting
with m (≥2) resources and n (�m) agents. For i = 1, 2, . . . , n − m, the demand
vector of agent i is di = (1, 1, . . . , 1). For agents i = n−m+1, n−m+2, . . . , n, the
demand vectors are (1, ε, . . . , ε), (ε, 1, . . . , ε), · · · , (ε, ε, . . . , 1), respectively, where
ε is a small enough number. It is easy to verify that the DDRF mechanism
produces a solution with

xn
i =

1
n − m + 1 + ε(m − 1)

→ 1
n − m + 1

, for i = 1, 2, . . . , n, (27)

at step n. The optimal solution will allocate all resources to the last m agents,
obtaining a solution with

x̄n
i =

1
1 + ε(m − 1)

→ 1, for i = n − m + 1, n − m + 2, . . . , n, (28)

and x̄n
i = 0 for other agents. Thus, the competitive ratio is

∑k
i=1 xn

i∑n
i=1 x̄n

i

→ n

m(n − m + 1)
=

1
m

1
1 − m/n + 1/n

. (29)

when ε → 0. If n is large enough, the ratio approaches 1/m. Thus, the theorem
holds.

4.3 Resource Utilization Maximization

In cloud computing systems, the resource managers care more about the resource
utilization. For example, Ghodsi et al. [13] shows CPU and memory utilization
for the small workload when using DRF compared to Hadoop’s fair scheduler
(slot). Given an allocation (x1, . . . , xn), let cr =

∑n
i=1 dirxi be the utilization

rate (or consumption) of resource r. Define utilization of (x1, . . . , xn) as minr cr,
which is the minimum utilization rate of m resources.

When the objective is resource utilization maximization, the optimal solution
(x̂k

1 , . . . , x̂
k
k) at step k (≥2) in the offline setting can be obtained by solving the

following linear program
{

Maximize c

c ≤ ∑k
i=1 dirx

k
i ≤ k/n,∀r.

(30)

172 W. Li et al.

Accordingly, the competitive ratio of the DDRF mechanism for utilization max-
imization can be defined as

CR3 = min
I

min
k

minr

∑k
i=1 dirx

k
i

minr

∑k
i=1 dirx̂k

i

. (31)

Theorem 6. When the objective is utilization maximization, the competitive
ratio of the DDRF mechanism is 1/n, and the ratio is tight.

Proof. Let (x̂1, . . . , x̂n) be a utilization maximized solution with utilization ĉ.
Since DDRF satisfies the SI property, for each agent i, we have

dir∗
i
xk

i ≥ 1
n

. (32)

Consider the resource r∗
i , by the constraint in (30), we have

dir∗
i
x̂k

i ≤
k∑

i=1

dirx̂
k
i ≤ k

n
≤ 1, (33)

Therefore, for i = 1, . . . , k at step k, we have

xk
i ≥ x̂k

i

n
. (34)

Let r′ be the resource such that
∑k

i=1 dirx̂
k
i is minimized, which implies that

the utilization of (x̂k
1 , . . . , x̂

k
k) is ĉ =

∑k
i=1 dir′ x̂k

i . Consider the DDRF solution
(xk

1 , . . . , x
k
k). Obviously, for each resource r = 1, . . . ,m, we have

k∑

i=1

dirx
k
i ≥ 1

n

k∑

i=1

dirx̂
k
i ≥ 1

n

k∑

i=1

dir′ x̂k
i ≥ ĉ

n
, (35)

where the first inequality follows from (34), and the last two inequalities fol-
low from the definitions of r′ and ĉ. Thus, the competitive ratio of the DDRF
mechanism for the utilization maximization objective is at least 1/n.

Consider a setting with two resources and n agents. The demand of agent 1 is
(1, 1). For i = 2, . . . , n, the demand of agent i is (1, 1/nK), where K is a large pos-
itive number. The optimal allocation with utilization maximization will allocate
the entire resource to agent 1, for a utilization 1. In contrast, under the DDRF
mechanism, at step n, each agent will receive a 1/n-fraction of the resource 1
for a utilization 1/n + (n − 1)/nK . When K grows larger, the competitive ratio
of the DDRF mechanism approaches

lim
K→∞

1/n + (n − 1)/nK

1
= lim

K→∞
nK−1 + (n − 1)

nK
=

1
n

. (36)

Thus, the competitive ratio of the DDRF mechanism is at most 1/n. Therefore,
the theorem holds.

A Further Analysis of the Dynamic Dominant Resource Fairness Mechanism 173

5 Discussions and Future Work

We have described a non-trivial polynomial-time algorithm to find a DDRF
allocation, whose running time is linear in the number of present agents at every
step, improving the result in [16]. We also analyzed the competitive ratios of the
DDRF mechanism, which shows that the DDRF mechanism is a nearly optimal
mechanism satisfying DPO for the maxmin objective.

Note that another fair allocation mechanism, called cautious LP, is pro-
posed in [16]. Cautious LP achieves near optimal maxmin value at the last step.
However, since cautious LP violates the DPO property and allocates too many
resources at the last several steps, it is unfair to compare cautious LP with
DDRF for the maxmin objective. It is interesting to analyze the competitive
ratio of the cautious LP mechanism under different objectives. Since solving the
linear program takes too much time, it is challenging to develop a combinatorial
algorithm to find a cautious LP solution as in Sect. 3.

On the other hand, our results show that the DDRF mechanism is not good
enough for the maxsum (or utilization maximization) objective. It is interesting
to design other dynamic fair allocation mechanisms, which satisfy necessary fair
properties and have higher welfare (i.e. the sum of dominant shares) or resource
utilization in the worst-case scenario.

Acknowledgment. The work is supported in part by the National Natural Science
Foundation of China [Nos. 61662088, 11301466], the Natural Science Foundation of
Yunnan Province of China [No. 2014FB114], and IRTSTYN.

References

1. Annamalai, C., Kalaitzis, C., Svensson, O.: Combinatorial algorithm for restricted
max-min fair allocation. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1357–1372 (2015)

2. Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation
of indivisible goods. SIAM J. Comput. 39(7), 2970–2989 (2012)

3. Aumann, Y., Dombb, Y.: The efficiency of fair division with connected pieces.
ACM Trans. Econ. Comput. 3(4) (2015). Article No. 23

4. Bertsimas, D., Farias, V.F., Trichakis, N.: The price of fairness. Oper. Res. 59(1),
17–31 (2011)

5. Bhattacharya, A.A., Culler, D., Friedman, E., Ghodsi, A., Shenker, S., Stoica, I.:
Hierarchical scheduling for diverse datacenter workloads. In: Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC 2013 (2013). Article No. 4

6. Bonald, T., Roberts, J.: Enhanced cluster computing performance through pro-
portional fairness. Perform. Eval. 79, 134–145 (2014)

7. Bonald, T., Roberts, J.: Multi-resource fairness: objectives, algorithms and perfor-
mance. ACM SIGMETRICS Perform. Eval. Rev. 43(1), 31–42 (2015)

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University, Cambridge (1998)

9. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency
of fair division. Theory Comput. Syst. 50(4), 589–610 (2012)

174 W. Li et al.

10. Chowdhury, M., Liu, Z., Ghodsi, A., Stoica, I.: HUG: multi-resource fairness for cor-
related and elastic demands. In: Proceedings of the 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2016), pp. 407–424 (2016)

11. Dolev, D., Feitelson, D.G., Halpern, J.Y., Kupferman, R., Linial, N.: No justi-
fied complaints: on fair sharing of multiple resources. In: Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pp. 68–75 (2012)

12. Friedman, E., Ghodsi, A., Psomas, C.-A.: Strategyproof allocation of discrete jobs
on multiple machines. In: Proceedings of the Fifteenth ACM Conference on Eco-
nomics and Computation, pp. 529–546 (2014)

13. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: Proceedings of
the 8th USENIX Conference on Networked Systems Design and Implementation,
pp. 24–37 (2011)

14. Gutman, A., Nisan, N.: Fair allocation without trade. In: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems, pp. 719–
728 (2012)

15. Jin, Y., Hayashi, M.: Efficiency comparison between proportional fairness and dom-
inant resource fairness with two different type resources. In: 2016 Annual Confer-
ence on Information Science and Systems (CISS), pp. 643–648 (2016)

16. Kash, I., Procaccia, A.D., Shah, N.: No agent left behind: dynamic fair division of
multiple resources. J. Artif. Intell. Res. 51, 579–603 (2014)

17. Li, W., Liu, X., Zhang, X., Zhang, X.: Dynamic fair allocation of multiple resources
with bounded number of tasks in cloud computing systems. Multiagent Grid Syst.
Int. J. 11, 245–257 (2015)

18. Parkes, D.C., Procaccia, A.D., Shah, N.: Beyond dominant resource fairness: exten-
sions, limitations, and indivisibilities. ACM Trans. Econ. Comput. 3(1) (2015).
Article No. 3

19. Procaccia, A.D.: Cake cutting: not just child’s play. Commun. ACM 56(7), 78–87
(2013)

20. Psomas, C.-A., Schwartz, J.: Beyond beyond dominant resource fairness: indivisible
resource allocation in clusters. Technical report Berkeley (2013)

21. Wang, H., Varman, P.J.: Balancing fairness and efficiency in tiered storage systems
with bottleneck-aware allocation. In: Proceedings of the 12th USENIX Conference
on File and Storage Technologies, pp. 229–242 (2014)

22. Wang, W., Liang, B., Li, B.: Multi-resource fair allocation in heterogeneous cloud
computing systems. IEEE Trans. Parallel Distrib. Syst. 26(10), 2822–2835 (2015)

23. Wang, W., Li, B., Liang, B., Li, J.: Towards multi-resource fair allocation with
placement constraints. In: Proceedings of the 2016 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Science, pp. 415–416
(2016)

24. Wong, C.J., Sen, S., Lan, T., Chiang, M.: Multi-resource allocation: fairness effi-
ciency tradeoffs in a unifying framework. IEEE/ACM Trans. Netw. 21(6), 1785–
1798 (2013)

25. Zahedi, S.M., Lee, B.C.: REF: resource elasticity fairness with sharing incentives
for multiprocessors. ACM SIGARCH Comput. Architect. News 42(1), 145–160
(2014)

26. Zarchy, D., Hay, D., Schapira, M.: Capturing resource tradeoffs in fair multi-
resource allocation. In: 2015 IEEE Conference on Computer Communications
(INFOCOM), pp. 1062–1070 (2015)

A 42k Kernel for the Complementary Maximal
Strip Recovery Problem

Wenjun Li1, Haiyan Liu1, Jianxin Wang2(B), Lingyun Xiang1,
and Yongjie Yang2

1 Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on
Transportation, Changsha University of Science and Technology, Changsha, China

2 School of Information Science and Engineering, Central South University,
Changsha, China

jxwang@csu.edu.cn

Abstract. In the Complementary Maximal Strip Recovery prob-
lem (CMSR), we are given two strings S1 and S2 of distinct letters,
where each letter appears either in the positive form or the negative
form. The question is whether there are k letters whose deletion results
in two matched strings. String S1 matches string S2 if there are parti-
tions of S1 and S2, such that, for each component Si

1 of the partition
of S1, there is a unique component Sj

2 in the partition of S2 which is
either equal to Si

1 or can be obtained from Si
1 by firstly reversing the

order of the letters and then negating the letters. The CMSR problem is
known to be NP-hard and fixed-parameter tractable with respect to k.
In particular, a linear kernel of size 74k + 4 was developed based on 8
reduction rules. Very recently, by imposing 3 new reduction rules to the
previous kernelization, the linear kernel was improved to 58k. We aim to
simplify the kernelization, yet obtain an improved kernel. In particular,
we study 7 reduction rules which lead to a linear kernel of size 42k + 24.

1 Introduction

A major task in comparative genomic is to compare genetic maps of different
organisms. In many cases, the genetic maps to be compared have noise and
ambiguities. Hence, a preprocessing to eliminate these noise and ambiguities is
carried out before the comparison. In this paper, we study the Complementary
Maximal Strip Recovery problem (CMSR), which models the preprocessing
scenario of deleting minimum number of gene markers of two genomes so that
the remaining genomes can be decomposed into syntonic blocks. The CMSR
problem and numerous related problems were proposed and studied in [4,17]

This work is supported by the National Natural Science Foundation of China (Grants
No. 61672536, 61502054, 61420106009), the Natural Science Foundation of Hunan
Province, China (Grant No. 2017JJ3333), the Scientific Research Fund of Hunan
Provincial Education Department (Grant No. 17C0047), and the China Postdoctoral
Science Foundation (Grant No. 2017M612584).

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 175–186, 2017.
DOI: 10.1007/978-3-319-59605-1 16

176 W. Li et al.

from the biological point of view, and since then have received a consider-
able amount of attention from biological and computer science communities
[2,3,15,16]. Recently, the CMSR problem has been studied from the parame-
terized complexity point of view [5,7], which is also the main focus of this paper.

Recall that a parameterized problem is fixed-parameter tractable (FPT) if
it can be solved in O(f(k)|I|O(1)) time, where k is the parameter and |I| is
the size of the main part. A kernelization of a parameterized problem Q is
an algorithm that transforms each instance (I, k) of Q in time (|I| + k)O(1)

into an instance (I ′, k′) of Q such that (1) (I, k) ∈ Q if and only if (I ′, k′) ∈
Q; (2) k′ ≤ f(k) for some computable function f ; and (3) |I ′| ≤ g(k)
for some computable function g. Here, the new instance (I ′, k′) is called the
kernel and g(k) is the size of the kernel. Moreover, if g is a polynomial (linear)
function of k, we say that (I ′, k′) is a polynomial kernel (linear kernel) of the
problem Q. We refer to [11] for further discussion on parameterized complexity.

Once a kernel of an FPT problem is developed, the next question which is
of particular importance is to improve the quality of the kernel (see, e.g., [9,12,
14]). In this paper, we derive a kernel of size 42k + 24 for the CMSR problem
based on 7 reduction rules. The previous kernelization is built upon 11 reduction
rules and yields a kernel of size 58k [5]. So, our kernelization outperforms the
previous kernelization in [5] not only in terms of the size of the kernel but also
in terms of simplicity. Before further discussion, let’s give the formal definition
of the problem. To not distract the attention, we describe the problem in a
mathematic language, and refer to [4,17] and references therein for detailed
biological background of the CMSR problem.

Problem Statement. Unless stated otherwise, all numerical data mentioned
hereinafter are integers. Let L be a set of letters, each of which occurs either
in the positive form or the negative form. In particular, for a letter a ∈ L, +a
denotes its positive form and −a denotes its negative form. When it is clear from
the context we remove the plus symbol from “+a”. Moreover, negating a gives
us −a and negating −a gives us a.

A string is a sequence of distinct letters, each of which is either in its posi-
tive form or its negative form. We denote a sequence of elements by embracing
its elements in a brace according to their relative positions in the sequence
and separating them by the comma. For instance, a string consisting of “a1”,
“−a3”, “a2” in the order of their appearances is denoted by (a1,−a3, a2). In
a sequence (a1, a2, . . . , an), a1 is the first element and an the last element. The
length of a string is the number of letters in the string. For a string S, let
L(S) be the set of letters appearing in S. For instance, for L = {a1, a2, a3, a4}
and S = (a1,−a3, a2), we have that L(S) = {a1, a2, a3}. In addition, let −←−

S
be the string obtained from S by first reversing the order of the letters, and
then negating each letter. For instance, for S = (a1, a2,−a3, a4,−a5), we have
that −←−

S = (a5,−a4, a3,−a2,−a1). Moreover, for a subset L ⊆ L of letters,
S\L is the string obtained from S by deleting all letters in L. For instance, if
S = (a1,−a2,−a3, a4, a5) and L = {a2, a4}, S\L = (a1,−a3, a5). A substring of
a string is a sequence of consecutive letters in the string.

A 42k Kernel for the Complementary Maximal Strip Recovery Problem 177

A (t, 2≥)-partition of a string S is a t-tuple (S1, S2, . . . , St) such that (1)
each Sx where 1 ≤ x ≤ t is a substring of S; (2) each Sx where 1 ≤ x ≤ t
consists of at least 2 letters; (3) L(Sx)∩L(Sy) = ∅ for all 1 ≤ x �= y ≤ t; and (4)⋃

x∈[t] L(Sx) = L(S), where [t] = {1, 2, . . . , t}. Two (sub)strings S1 and S2 are

syntonic if S1 = S2, or S2 = −←−
S1. A string S1 matches another string S2 if there

is a (t, 2≥)-partition (S1
i , S2

i , . . . , St
i) of Si for both i = 1, 2, where t is a positive

integer, and an one-to-one mapping f from {S1
1 , S2

1 , . . . , St
1} to {S1

2 , S2
2 , . . . , St

2}
such that for each 1 ≤ x ≤ t, Sx

1 and f(Sx
1) are syntonic. Now we are ready to

give the formal definition of the CMSR problem.

Complementary Maximal Strip Recovery (CMSR)
Input: Two strings S1 and S2 of length n such that L(S1) = L(S2), an integer
0 ≤ k ≤ n − 2.
Parameter: k.
Question: Is there an L ⊆ L(S1) such that |L| ≤ k and S1\L matches S2\L?

Due to space limitation, many proofs are deferred to the full version.

2 Related Work and Our Contribution

If we adopt n − k as the parameter in the definition of the CMSR problem, we
have the Maximal Strip Recovery Problem (MSR). Zheng et al. [17] set up
the line of research on the MSR and CMSR problems. As a matter of fact, they
studied the optimization version of the MSR problem, where the objective is
to find an L ⊆ L(S1) of maximum size such that S1\L′ matches S2\L′, where
L′ = L(S1)\L. The optimization version of the CMSR problem is to find an
L of minimum size such that S1\L matches S2\L. Apparently, the optimiza-
tion versions of the MSR problem and the CMSR problem are polynomial-time
equivalent. In fact, both problems are NP-hard [13]. Concerning approximation
algorithms, Jiang et al. [6] developed a factor-3 polynomial-time approxima-
tion algorithm for the optimization version of the CMSR problem, which was
later improved to a factor-2.33 polynomial-time approximation algorithm by
Lin et al. [10]. For the optimization version of the MSR problem, a factor-4
polynomial-time approximation algorithm was proposed by Chen et al. [3]. On
the negative side, both problems were shown to be APX-hard [2,8].

From the parameterized complexity point of view, the CMSR problem was
shown to be FPT. In particular, Jiang et al. [6] devised an FPT-algorithm
with running time O(3kn2). Shortly later, the FPT-algorithm was improved
to O(2.36kn2) by Bulteau et al. [1]. Given these positive results, an intriguing
question is whether the CMSR problem admits a polynomial kernel, or even a
linear kernel. This line of research has been initiated by Jiang and Zhu [7], who
crafted a linear kernel of size 74k + 4 for the CMSR problem1. To obtain this
linear kernel, Jiang and Zhu [7] devised 8 reduction rules. Following the work of
Jiang and Zhu [7], Hu et al. [5] recently reported a kernelization which leads to
1 In the paper [7], Jiang and Zhu claimed 74k + 4 = 78k as the kernel size.

178 W. Li et al.

an improved linear kernel of size 58k. The kernelization of Hu et al. [5] relies on
the previous 8 reduction rules studied in [7] together with 3 additional reduction
rules.

In this paper, we further improve the kernelization of the CMSR problem.
Instead of complicating the kernelization by imposing new reduction rules to deal
with further specific structures into the previous kernelization, we simplify the
kernelization by utilizing 7 reduction rules. Our reduction rules do not only cover
all the previous reduction rules but also are able to deal with more new structures
that are beyond the ability of the previous reduction rules studied in [5,7]. More
importantly, our reduction rules result in a kernel of size 42k + 24. Hence, for
k > 1 the bound of our kernel improves the previous result 58k. We believe that
our simplification of the kernelization provides a better understanding of the
CMSR problem, and shed some light on further studies on the CMSR problem.

Finally, we would like to point out that in a sharp contrast to the posi-
tive results for the CMSR problem discussed above, the investigation on the
parameterized complexity of the MSR problem moves slowly—it is not even
known whether the problem is FPT (A generalization of the MSR problem,
where instead of two strings there are d strings in the input, has been studied by
Bulteau et al. [1] from the parameterized complexity. In particular, they proved
that the generalization is W[1]-hard for every d ≥ 4).

3 Reduction Rules

In this section, we study the kernelization of the CMSR problem. Let I =
(S1, S2, k) be a given instance of the CMSR problem. A substring b of Si where
i ∈ {1, 2} is a block if there is a substring b′ of S3−i such that b and b′ are syn-
tonic and, moreover, b is maximal under this condition. We denote syn(b) = b′

and analogously syn(b′) = b, and call {b, syn(b)} a block pair, or say b and b′

are paired blocks. So, blocks must appear in pairs, and two blocks in a block
pair are from different strings. An isolator is a block consisting of one letter. For
convenience, we call a block of length i an i-block, and a block of length at least
i an i≥-block. If {b, syn(b)} is a block pair and b is an i-block, we call {b, syn(b)}
an i-block pair. A super block of Si where i = 1, 2 is a maximal sequence of
consecutive 2≥-blocks in Si. Consecutive blocks in a string are blocks without
any other block between them in the string.

A graph G is a tuple (V,E) where V is the set of vertices and E the set
of edges. We also use V (G) and E(G) to denote the vertex set and edge set
respectively. An edge between two vertices v, u is denoted by (v, u). For a vertex
v of G, let NG(v) be the set of neighbors of v in G, i.e., NG(v) = {u ∈ V (G) |
(v, u) ∈ E(G)}. For B ⊆ V (G), let NG(B) =

⋃
v∈B N(v)\B. By merging a

set A of vertices, we mean to first create a new vertex vA and create an edge
between vA and every vertex u ∈ NG(A), and then delete all vertices in A from
the graph. Notice that merging a subset of vertices may result in multiple edges
between two vertices. A path is a sequence (v0, v1, . . . , vt−1) of vertices such that
there is an edge between vi and vi+1 for every i = 0, . . . , t − 2. If there is an

A 42k Kernel for the Complementary Maximal Strip Recovery Problem 179

edge between v0 and vt−1 in a path (v0, v1, . . . , vt−1), then we have a cycle. An
induced subgraph of G is a graph with vertex set V ′ for some V ′ ⊆ V (G) and edge
set {(v, u) | v, u ∈ V ′, (v, u) ∈ E(G)}. A graph is connected if there is a path
between every pair of vertices. A connected component is a maximal induced
subgraph of G which is connected. A tree is a connected graph without cycles.
A forest is a graph with each connected component being a tree.

The terms “block” and “super block” have been studied in [5,7] with the
same meanings. In particular, the kernelizations in [5,7] create an auxiliary graph
whose vertices correspond to super blocks. Moreover, there is an edge between
two vertices if the corresponding super blocks contain a block pair. Then, based
on the auxiliary graph, the kernelizations reduce the size of the super blocks by
several reduction rules.

Our kernelization follows the recipe of that studied in [5,7], but with more
fine-grained ingredients. First, same as the kernelizations in [5,7], we first find
in polynomial-time all 2≥-blocks and super blocks. Then, we create an auxiliary
graph G as follows. For each 2≥-block pair (b, syn(b)) we create two vertices v(b)
and v(syn(b)) correspondingly, and create an edge between v(b) and v(syn(b)).
In addition, we connect the vertices corresponding to blocks in each super block
one by one in a path, according to the relative positions of the blocks in the
super block, i.e., if b and b′ are two consecutive blocks in the super block, then
there is an edge between v(b) and v(b′). Hence, our auxiliary graph is different
from the one used in [5,7]. See Fig. 1 for an illustration. Finally, based on the
auxiliary graph G, we utilize 7 reduction rules to shrink the instance.

In our reduction rules, we will mark some blocks. Informally speaking, we
mark a block as we know that there is an optimal solution excluding the letters of
the block. Note that it is possible for the letters of a marked block to be included
in some optimal solution, but the point is that there exists at least one optimal
solution that does not include any letter of the marked block. Hence, marking
blocks are just auxiliary operations and not part of the problem definition.

A reduction rule is sound if each application of the reduction rule does not
affect the answer to the instance. An instance is reduced by a set of reduction
rules if no reduction rule in the set applies to the instance. We assume that
before the i-th reduction rule is introduced where i ≥ 2, the instance is reduced
by the j-th reduction rule for every 1 ≤ j < i. The following lemma is due to [6].

S1 : a1,−a2, a3, a4, a5, a6, a7,−a8,−a9, a10, −a11, a12, a13, a14,−a15, a16, a17, a18, a19, a20

G :

a11,S2 : a7,−a8,−a9, −a17,−a16, a15,−a14, a10, −a3, a2,−a1, a12, a13, −a6,−a5,−a4, a19, a20, a18

Fig. 1. An illustration of blocks, super blocks and the auxiliary graph G. Each 2≥-
block is bounded in a white-background rectangle, and each super block is bounded in
a gray-background rectangle.

180 W. Li et al.

Lemma 1. There exists an optimal solution Lopt such that

1. for every 2≥-block b either Lopt ∩ L(b) = ∅ or L(b) ⊆ Lopt; and
2. for every 4≥-block b, it holds that Lopt ∩ L(b) = ∅.

By and large, the above lemma states that every instance has a special opti-
mal solution such that each 2≥-block is either completely disjoint with the solu-
tion or completely included in the solution and, moreover, every 4≥-block is
completely disjoint from the solution.

Now we describe the reduction rules. The first 3 reduction rules are to iden-
tify a number of 2≥-blocks that are completely disjoint with a certain optimal
solution. If such a block is identified, we mark it. Moreover, if we mark a block
b, we simultaneously mark syn(b) as well. Lemma 1 suggests that we can mark
all 4≥-blocks.

Rule 1. Mark all 4≥-blocks.

Rule 1 has been studied in [7] (Rule 2.1 in [7]). The second reduction rule
marks 2≥-blocks corresponding to vertices forming a cycle in the graph G.

Rule 2. If there is a cycle in G with a vertex whose corresponding block is
unmarked, then mark all unmarked blocks corresponding to the vertices in the
cycle.

To prove the soundness of Rule 2, we need the following lemma. For a subset
B of blocks, let L(B) =

⋃
b∈B L(b).

Lemma 2. Let L ⊆ L(S1) be a subset of letters such that S1\L matches S2\L.
Let B be a subset of 2≥-blocks in S1 and S2 such that L(B) ⊆ L. Let I be the set
of isolators if we bring back all blocks in B and their paired blocks into S1\L and
S2\L correspondingly. Then, there exists an L′ ⊆ L such that S1\L′ matches
S2\L′ and |L′| = |L| − |L(B)| + |L(I)|.

Now, we are ready to prove the soundness of Rule 2. For a sequence of con-
secutive blocks P = (b1, . . . , bt), let first(P) and last(P) denote the first and
the last blocks in P , respectively, i.e., first(P) = b1 and last(P) = bt.

Lemma 3. Rule 2 is sound.

Proof. Let (v(b1), v(b2), . . . , v(bt)) be a cycle in G as stipulated in Rule 2. Due to
the construction of G, the blocks b1, . . . , bt are from at least two different super
blocks. Without loss of generality, assume that b1 and bt are not in the same
super block (otherwise, we rotate the sequence (v(b1), v(b2), . . . , v(bt)) so that the
first and the last blocks involved are from different super blocks). Then, there is
a partition (P0 = (b1, . . . , bx), P1 = (bx+1, . . . , by), . . . , P�−1 = (bz, bz+1, . . . , bt))
of (b1, . . . , bt) such that for every i = 0, 1, . . . , � − 1 (1) all blocks in Pi are from
the same super block; (2) last(Pi mod �) = syn(first(P(i+1) mod �)); and (3)
Pi consists of at least two blocks. Let B be the set of all blocks appearing in
the first or last positions in some Pi, i.e., B =

⋃
0≤i≤�−1{last(Pi), first(Pi)}.

A 42k Kernel for the Complementary Maximal Strip Recovery Problem 181

Clearly, |B| is even. More precisely, according to the above discussion, if b ∈ B,
then syn(b) ∈ B. We first show that we can mark each block b in B. Let Lopt be
an optimal solution that does not contain any letters of already marked blocks.
Let B′ be the set of blocks b ∈ B such that L(b) ⊆ Lopt. Clearly, if b ∈ B′,
then syn(b) ∈ B′. As a result, |B′| is even. Let d be the number of Pis where
0 ≤ i ≤ �− 1 such that {first(Pi), last(Pi)} ⊆ B′, and e the number of Pis such
that |{first(Pi), last(Pi)}∩B′| = 1. If we bring back all blocks in B′ into S1\Lopt

and S2\Lopt correspondingly, then there will result in at most 2d+e new 1-block
pairs, 2 for each Pi such that {first(Pi), last(Pi)} ⊆ B′, and 1 for each Pi such
that |{first(Pi), last(Pi)} ∩ B′| = 1. Since |L(B′)| ≥ 2 · |B′|

2 = |B′| = 2d + e,
due to Lemma 2, we can get another optimal solution Lopt′ obtained from Lopt

by deleting all letters of blocks in B′ and adding all letters in the 1-block pairs,
arising after bringing back all blocks in B′ into S1\Lopt and S2\Lopt. Clearly,
Lopt′ ∩L(B′) = ∅ and Lopt′ does not contain any letters of already marked blocks.

Now consider other blocks in each Pi. Let b be an intermediate block in
Pi. Due to symmetry, assume that b is from S1. If L(b) ∈ L′

opt, then bringing
the block b back into S1\L′

opt does not result in any isolator. Bringing back
syn(b) in S2\L′

opt, however, may result in at most two 1-block pairs. Then due
to Lemma 2, Lopt′′ = Lopt′\L(B) ∪ I is another optimal solution that does not
contain any letters of already marked blocks, where I is the set of letters in the
isolators arising after bringing back b and syn(b) into the strings. By iteratively
applying the above argument, we can achieve at an optimal solution that does
not include any letter in L(B) and all already marked blocks. As a consequence,
we can mark all blocks in B. The lemma follows. �

Now we study another reduction rule which marks all blocks involved on a
path between two vertices.

Rule 3. If there is a path (v(b1), v(b2), . . . , v(bn)) in G such that
1. n ≥ 3;
2. for each i ∈ {1, n}, bi is either a marked block or a 3-block;
3. every bi, 2 ≤ i ≤ n − 1, is unmarked,
then mark all blocks b1, . . . , bn.

Lemma 4. Rule 3 is sound.

Previous reduction rules only mark blocks but never shrinks the size of
the instance. Now we study reduction rules to shrink the size of the marked
blocks. For a 5≥-block pair {b, syn(b)} where b = (a1, a2, . . . , at), by contracting
{b, syn(b)} we mean to reset b as (a1, a2, a3, at), and reset syn(b) as (a1, a2, a3, at)
if syn(b) = (a1, a2, . . . , at) in advance; and reset syn(b) = (−at,−a3,−a2,−a1)
otherwise. What’s important in the contraction operation is to remain the right-
most and leftmost letters of b and syn(b), and keep the length of b and syn(b)
to be 4. A marked block b is a boundary marked block if b is either the leftmost
or the rightmost block of a maximal sequence of consecutive marked blocks.

Rule 4. Let b be a marked block. If b is a 5≥-block, contract {b, syn(b)}; and if
both b and syn(b) are non-boundary marked blocks, delete L(b).

182 W. Li et al.

Lemma 5. Rule 4 is sound.

For two sequences A = (a1, a2, . . . , ax) and B = (b1, b2, . . . , by), let (A,B) be
the concatenation of A and B, i.e., (A,B) = (a1, . . . , ax, b1, . . . , by). We further
develop several reduction rules to reduce marked blocks. When we create a new
block pair {b̄, syn(b̄)} we mean that the letters of b̄ (and syn(b̄)) are disjoint with
the letters of all existing blocks in the current instance. To utilize these reduction
rules, we first create two new 4-block pairs (b∗

1, syn(b∗
1)) and (b∗

2, syn(b∗
2)) and

concatenate them with S1 and S2 in a certain way. In particular, we reset S1 :=
(S1, (b∗

1, syn(b∗
2))) and S2 := (S2, (b∗

2, syn(b∗
1))). Clearly, this does not change the

answer to the instance. Due to Rule 1, all these newly created blocks are marked.

Rule 5. If there is a boundary marked block b in Si lying before b∗
i for i ∈ {1, 2}

such that syn(b) is a non-boundary marked block lying before b∗
3−i, then put

syn(b) after the last block in S3−i.

See Fig. 2 for an illustration of Rule 5.

Lemma 6. Rule 5 is sound.

S1

b b∗
1 syn(b∗

2)

S2

syn(b) b∗
2 syn(b∗1)

Fig. 2. An illustration of Reduction Rule 5. Black blocks are marked blocks.

Note that after an exhaustive application of Rule 5 (and other rules described
above), every maximal sequence of marked block before b∗

i , i = 1, 2, consists of
at most 2 blocks. Moreover, all non-boundary marked blocks lie after b∗

1 or b∗
2.

Rule 6. If there are two consecutive boundary marked blocks b, b′ in Si lying
before b∗

i for i ∈ {1, 2} such that syn(b) and syn(b′) lie after b∗
3−i then,

– create a new 4-block pair {b̄, syn(b̄)}, put b̄ immediately after b′, and put
syn(b̄) after the last block in S3−i;

– mark b̄ and syn(b̄); and
– delete the letters of b and b′ in the instance.

See Fig. 3 for an illustration of Rule 6.

Lemma 7. Rule 6 is sound.

Proof. Let b, b′ and b̄ be as stipulated in Rule 6, and I ′ the instance obtained
from I after applying Rule 6. Observe that in I, b and b′ do not form new blocks
with other blocks after deleting any letters not in the marked blocks. Moreover,
b̄ does not form new blocks with other blocks after deleting any letters not in the
marked blocks in I ′. Hence, any optimal solution of I which is complete disjoint
with marked blocks is a solution of I ′ which is complete disjoint with marked
blocks, and vice versa. �

A 42k Kernel for the Complementary Maximal Strip Recovery Problem 183

S1

b b′ b∗
1 syn(b∗

2)

S2

b∗
2 syn(b∗1) syn(b) syn(b′)

S1

b̄ b∗1 syn(b∗2)

S2

b∗2 syn(b∗1) syn(b̄)

Fig. 3. An illustration of Rule 6. Black blocks are marked blocks. The left-hand instance
is the original instance, and the right-hand one is the instance after the reduction rule.

For a block b, let
−−→L(b) be the order of letters in L(b) according to their

relative orders in b. For instance, if b = (−x, y − z, w) then
−−→L(b) = (x, y, z, w).

For each marked block b, we define a 3-tuple xb ∈ {0, 1}×L∪{⊥}×L∪{⊥}. The
first component indicates whether b is a boundary marked block. In particular,
xb[1] = 1 means b is a boundary marked block; and xb[1] = 0 means b is a
nonboundary marked block. The second and third components are determined
as follows. A boundary marked block is a left (resp. right) boundary marked block
if it is the leftmost (resp. rightmost) block of a maximal sequence of marked
blocks. If b is not a left boundary marked block, then xb[2] =⊥; otherwise xb[2]
is the first letter in

−−→L(b). Moreover, if b is not a right boundary marked block,
then xb[3] =⊥; otherwise xb[3] is the last letter in

−−→L(b). For instance, if the block
b = (a4, a5, a6) of S1 in Fig. 1 is marked, then xb = (1, a4, a6) if both (a1,−a2, a3)
and (a7,−a8,−a9) are unmarked, and xb = (1, a4,⊥) if (a1,−a2, a3) is unmarked
and (a7,−a8,−a9) is marked. According to the definition, for each marked block
b if xb[1] = 0, then xb[2] = xb[3] =⊥. Now we introduce the last reduction rule.
We call b∗

1 and b∗
2 dividing blocks.

Rule 7. If there are two consecutive marked blocks b1 and b2 in Si lying before
b∗
i where i ∈ {1, 2} such that

1. syn(bj) is a boundary marked block, i.e., xsyn(bj)[1] = 1, where j ∈ {1, 2};
2. there is another boundary marked block b′ lying consecutively with syn(bj) in

S3−i;
3. at least one of {syn(b′), syn(b3−j)} lies after the dividing blocks, then,

– If {xbj [2],xbj [3]} ∩ {xsyn(bj)[2],xsyn(bj)[3]}\{⊥} �= ∅, then, delete the letters
of exactly one of {syn(b′), syn(b3−j)} which lies after the dividing blocks (if
both lie after the dividing blocks, choose arbitrarily one).

– If {xbj [2],xbj [3]}∩{xsyn(bj)[2],xsyn(bj)[3]}\{⊥} = ∅, then, we create two new
4-block pairs (b̄, syn(b̄)) and (b̈, syn(b̈)), mark these new blocks, put b̄ between
bj and b3−j in Si, put syn(b̄) after the last block in S3−i, put b̈ between b′ and
syn(bj) in S3−i, and put syn(b̈) after the last block in Si. Then, if syn(b3−j)
lies after the dividing blocks, delete the letters of bj and b3−j; otherwise, delete
the letters of bj and b′.

Lemma 8. Rule 7 is sound.

4 Analysis of the Kernel

Let I = (S1, S2, k) be an instance such that none of the reduction rules studied
in the previous section applies. Let G be the auxiliary graph corresponding to

184 W. Li et al.

I as discussed in the previous section. We analyze the size of I. To this end, we
create a graph G′, which is obtained from G by first deleting all edges between
two vertices v(b), v(syn(b)) such that b is a marked block, and then for each
super block merging all vertices corresponding to blocks in the super block.
Hence, edges in G′ one-to-one correspond to block pairs {b, syn(b)} where b is
an unmarked 2≥-block. For a vertex sv in G′, let supblock(sv) be the super
block corresponding to sv, and blocks(sv) the set of all blocks in supblock(sv).
We first show that G′ is a forest. In fact, if this was not the case, then there will
be unmarked blocks in a cycle in G, which contradicts with the fact that the
instance is reduced by Rule 2.

Lemma 9. The graph G′ is a forest.

Let H1,H2, . . . , Hm be the connected components of G′, and qi the number
of edges in each Hi. Due to Lemma 9, each Hi is a tree. The following lemma was
studied in [7] (see proofs of Lemmas 7, 8 and Theorem 1 in [7]). As our reduction
rules cover all of the ones studied in [7], the lemma holds here.

Lemma 10. m ≤ 4k − ∑m
i=1 qi + 2.

Now we are ready to analyze the size of I, i.e., 2|L(S1)|. Assume that I is a
YES-instance and L ⊆ L(S1) is a solution of I. We define four sets A,B,C,D as
follows: A consists of all blocks b such that L(b) ⊆ L; B consists of all isolators
except the ones in A; C consists of all marked blocks; and D consists of all
unmarked 2≥-blocks. Clearly, A ∪ B ∪ C ∪ D is the set of all blocks in S1 and
S2 except b∗

1, syn(b∗
1), b

∗
2, syn(b∗

2).
Obviously, |L(S1)| ≤ |L(A)|+ |L(B)|+ |L(C)|+ |L(D)|+8 (notice that it may

be that L(A)∩L(D) �= ∅). The correctness of the following lemma is independent
of the reduction rules, and has been studied in [7].

Lemma 11. |L(A)| + |L(B)| ≤ 5k.

Now we investigate the size of C and D. For V ′ ⊆ V (G′), let supblock(V ′) =
{supblock(sv) | sv ∈ V ′}, and blocks(V ′) =

⋃
sv∈V ′ blocks(sv).

Lemma 12. If for some Hi, where 1 ≤ i ≤ m, there is a vertex sv ∈ V (Hi)
such that C ∩ blocks(sv) �= ∅, then all blocks in blocks(V (Hi))\(C ∩ blocks(sv))
are unmarked 2-blocks.

Lemma 13. If for some Hi, where 1 ≤ i ≤ m, all blocks in blocks(V (Hi))
are unmarked and there is a 3-block b in blocks(V (Hi)), then all blocks in
blocks(V (Hi))\{b, syn(b)} are 2-blocks.

Now we are ready to investigate the size of C and D.

Lemma 14. |L(C)| + |L(D)| ≤ 16k + 8.

Proof. For each Hi, i ∈ {1, 2, . . . ,m}, let Ci and Di be the sets of marked and
unmarked 2≥-blocks in blocks(V (Hi)) lying before b∗

1 or b∗
2, respectively. Notice

A 42k Kernel for the Complementary Maximal Strip Recovery Problem 185

that only marked blocks lie after b∗
i where i ∈ {1, 2}. Moreover, if a marked

block b lies after b∗
i where i ∈ {1, 2}, then syn(b) must lie before b∗

3−i. Hence,
|L(C)| + |L(D)| =

∑m
i=1 |L(Ci)| + |L(Di)|. For each Hi where i ∈ {1, 2, . . . ,m},

let Xi be the set of all super blocks in supblocks(V (Hi)) containing some marked
block, and let xi = |Xi|. Due to Rule 4, each marked block is of size at most
4. Due to Rule 3, each super block in Xi has exactly one maximal sequence of
consecutive marked blocks. Moreover, due to Rules 5–7, each Ci consists of no
more than two blocks. Furthermore, if some Ci consists of two blocks b, b′, then
there is a b̄ ∈ {b, b′} such that both b̄ and syn(b̄) are boundary marked blocks.
It then follows that

|L(C)| =
m∑

i=1

|L(Ci)| ≤
m∑

i=1

4xi (1)

Due to Lemma 12, it holds that xi ∈ {0, 1} for every 1 ≤ i ≤ m. Moreover, if
xi = 1 for some 1 ≤ i ≤ m, each edge of Hi corresponds to an unmarked 2-block
pair. On the other hand, if xi = 0, due to Lemma 13 at most one edge of Hi

corresponds to an unmarked 3-block pair, and every other edge corresponds to
an unmarked 2-block pair. Due to Lemma 9, each Hi is a tree. Then, as each
unmarked 2≥-block pair corresponds to an edge in G′, we have that

|L(D)| =
m∑

i=1

2qi + (1 − xi) (2)

In summary, we have

|L(C)| + |L(D)| =
m∑

i=1

(|L(Ci)| + |L(Di)|)

≤
m∑

i=1

(4xi + 2qi + 1 − xi) due to (1) and (2)

= 2
m∑

i=1

qi + m + 3
m∑

i=1

xi ≤ 2
m∑

i=1

qi + 4m xi ∈ {0, 1}

≤ 2
m∑

i=1

qi + 4(4k + 2 −
m∑

i=1

qi) Lemma 10

= 16k + 8 − 2
m∑

i=1

qi ≤ 16k + 8

�

Theorem 1. The CMSR problem admits a kernel of size 42k + 24.

Proof. Let I = (S1, S2, k) be a given instance. The kernelization first creates
the auxiliary graph G as illustrated in Sect. 3. Then, based on the graph G, the
reduction rules are used until none of them is applicable. Due to the soundness of
the reduction rules (see Lemmas 3–8), the original instance is a YES-instance if

186 W. Li et al.

and only if the reduced instance is a YES-instance. Moreover, due to Lemmas 11
and 14, if the reduced instance is a YES-instance, then each of S1 and S2 without
{b∗

1, b
∗
2, syn(b∗

1), syn(b∗
2)} consists of at most |L(A)|+ |L(B)|+ |L(C)|+ |L(D)| ≤

5k + 16k + 8 = 21k + 8 letters. Due to this, if the reduced instance has at most
2(21k + 8) + 8 = 42k + 24 letters, we return the reduced instance; otherwise, we
return a trivial NO-instance. The last number 8 here is |L({b∗

1, b
∗
2})|. �

References

1. Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and approximability of
maximal strip recovery. Theor. Comput. Sci. 440–441, 14–28 (2012)

2. Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: hard-
ness and approximation algorithms. J. Discret. Algorithms 19, 1–22 (2013)

3. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from compar-
ative maps. J. Comb. Optim. 18(3), 307–318 (2009)

4. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny
blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI
2007. LNCS, vol. 4645, pp. 277–288. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74126-8 26

5. Hu, S., Li, W., Wang, J.: An improved kernel for the complementary maximal strip
recovery problem. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol.
9198, pp. 601–608. Springer, Cham (2015). doi:10.1007/978-3-319-21398-9 47

6. Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms
for the complementary maximal strip recovery problem. J. Comb. Optim. 23(4),
493–506 (2012)

7. Jiang, H., Zhu, B.: A linear kernel for the complementary maximal strip recovery
problem. J. Comput. Syst. Sci. 80(7), 1350–1358 (2014)

8. Jiang, M.: Inapproximability of maximal strip recovery. Theor. Comput. Sci.
412(29), 3759–3774 (2011)

9. Kowalik, L., Pilipczuk, M., Suchan, K.: Towards optimal kernel for connected ver-
tex cover in planar graphs. Discret. Appl. Math. 161(7–8), 1154–1161 (2013)

10. Lin, G., Goebel, R., Li, Z., Wang, L.: An improved approximation algorithm for
the complementary maximal strip recovery problem. J. Comput. Syst. Sci. 78(3),
720–730 (2012)

11. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press Inc., Oxford (2006)

12. Wang, J., Yang, Y., Guo, J., Chen, J.: Planar graph vertex partition for linear
problem kernels. J. Comput. Syst. Sci. 79(5), 609–621 (2013)

13. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. J. Comput. Biol.
17(7), 907–914 (2010)

14. Yang, Y.: Towards optimal kernel for edge-disjoint triangle packing. Inf. Process.
Lett. 114(7), 344–348 (2014)

15. Zheng, C.: Pathgroups, a dynamic data structure for genome reconstruction prob-
lems. Bioinformatics 26(13), 1587–1594 (2010)

16. Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness,
heuristics and the history of the hemiascomycetes. In: ISMB, pp. 96–104 (2008)

17. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from compara-
tive maps in rearrangement analysis. IEEE/ACM Trans. Comput. Biol. Bioinform.
4(4), 515–522 (2007)

http://dx.doi.org/10.1007/978-3-540-74126-8_26
http://dx.doi.org/10.1007/978-3-540-74126-8_26
http://dx.doi.org/10.1007/978-3-319-21398-9_47

On-line Scheduling with a Monotonous
Subsequence Constraint

Kelin Luo1(B), Yinfeng Xu1,2, Huili Zhang1, and Wei Luo3

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China
{luokelin,zhang.huilims}@stu.xjtu.edu.cn, yfxu@xjtu.edu.cn

2 The State Key Lab for Manufacturing Systems Engineering,
Xi’an 710049, China

3 Department of Geography, Santa Barbara, University of California,
Berkeley, USA

wei.luo@ucsb.edu

Abstract. In this paper, we study a new on-line scheduling problem
that each server has to process a monotonous request subsequence. The
customer requests are released over-list, and the operator has to decide
whether or not to accept the current request and arrange it to a server
immediately. The goal of this paper is to find a strategy which accepts
the maximal requests. When the number of servers k is less than that
of the request types m, we give several lower bounds for this problem.
Also, we present the optimal strategy for k = 1 and k = 2 respectively.

Keywords: Scheduling · On-line algorithm · Competitive analysis ·
Monotonous subsequence

1 Introduction

In recent years, “Sharing Economy” is making traveling easier and cheaper [1].
To thumb a lift to destination may hinge on luck, Uber COMMUTE meets your
needs for sure. People can take some passengers with the same destination or on
the way to the destinations. How to schedule requests to the potential drivers
efficiently is a tough problem, especially in peak hours. In this paper, we use
“monotonous subsequence [2]” to represent the “path with a fixed destination”
feature. By labeling all the possible requests as 1 to m, and the destination
as 1 or m based on various factors, like request and driver locations, as shown
in Fig. 1. Each driver (server) has two optional paths, which can be identified
as a monotonous subsequence (an increasing or decreasing subsequence) in the
request set, as shown in Fig. 2.

The problem that we solve is this: Suppose there are k servers and the request
rj are released over-list and non-preemptively. Given information of all possi-
ble request labels (rj ∈ {1, 2, . . . m}), we seek to find a strategy, along with a
monotonous subsequence constraint, that maximizes the total accepted requests.
Denote this problem as On-line scheduling problem with a monotonous subse-
quence constraint(k − MS).
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 187–195, 2017.
DOI: 10.1007/978-3-319-59605-1 17

188 K. Luo et al.

Fig. 1. A request set Fig. 2. An example of subsequence

This problem is close to the longest monotonous subsequence problem [6].
A decision maker observes a subsequence of independent variables {X1,X2,
. . . , Xn} with distribution F (n is unknown in advance), and the task is to
select a subsequence {Xr1,Xr2, . . . , Xrn} such that Xr1 � Xr2 � Xrn or
Xr1 � Xr2 � Xrn. In early year, researchers [3,4] studied the off-line longest
monotonous circular subsequence problem based on an exist integer set. Albert
et al. [5] came up with the on-line version problem and analyzed the expected
situation. In this paper, we investigate this problem from competitive analysis
aspect and apply it to practical matters. Our approach allows to select more than
one monotonous subsequence. We thereby answer this problem by referring to
the on-line scheduling problem [7–10].

The rest of this paper is organized as follows. Section 2 introduces the k−MS
problem and some preliminaries. In Sect. 3, we develop several lower bounds for
the k − MS problems. A description of the algorithm with competitive analysis
follows in Sect. 4. Final results and remarks are given in Sect. 5.

2 Model

We consider a k servers scheduling problem, with each server serving an increas-
ing or a decreasing request subsequence. For example, {1, 3, 4, 7} is an increasing
subsequence, {9, 5, 2} is a deceasing subsequence. Denote server si, i ∈ K and
K = {1, 2, . . . k}. The request rj are released over-list, denote rj ∈ M and
M = {1, 2, . . . m}. Define variable xij as follows:

xij =

{
1, if for request rj , we arrange it to server si,

0, otherwise.

The k − MS problem is formulated as follows:

Max

k∑
i=1

m∑
j=1

xij (2.1)

s.t rj1 > rj2 , ∀j1, j2, j1 > j2,
−→si = +, xij1 = xij2 = 1 i ∈ K. (2.2)

rj1 < rj2 , ∀j1, j2, j1 > j2,
−→si = −, xij1 = xij2 = 1 i ∈ K. (2.3)

k∑
i=1

xij ∈ {0, 1}, j ∈ M. (2.4)

xij ∈ {0, 1}. (2.5)

On-line Scheduling with a Monotonous Subsequence Constraint 189

The objective, (2.1), of the k − MS problem is to maximize the number of
requests accepted in the schedule. Constraint (2.2) and Constraint (2.3) ensure
that each server serves either an increasing request subsequence or a decreasing
request subsequence. −→si = + represents the server serves an increasing subse-
quence, and −→si = − represents the server serves a decreasing subsequence. Inte-
ger restrictions are imposed in constraint (2.4) and (2.5), meaning that either a
request is accepted in the schedule or it is rejected.

The performance is measured by competitive ratio (see [11]). Translated
into our problem terminology, for any input request sequence R, let A(R) be
the objective value produced by an on-line algorithm A, and OPT (R) be that
obtained by one of the optimal scheduler OPT who has the request informa-
tion in advance. The competitive ratio of A is define as cA = supR

OPT (R)
A(R) . Let

ON be the set of all the on-line strategies. The lower bound β is defined as
β = infA∈ONcA. We say A is an optimal on-line strategy if cA = β.

3 Lower Bound for k-MS Problem

In this section we discuss the lower bound of k − MS problem when m > k > 2,
k = 1 and k = 2, respectively. For the ease of expression, we denote ALG as any
one of the on-line algorithm and OPT as one of the optimal scheduler.

Theorem 1. For k − MS problem, there exists no on-line algorithm that is
3
2 -competitive for all m > k > 2.

Proof. Consider OPT releases the following 1st sequence of at most 2k requests:
{1,m, 1,m, . . . 1,m︸ ︷︷ ︸

2k

}. According to ALG response, we can classify this problem

into two cases.

Case 1. ALG accepts all these requests on k servers, OPT will release and
accept 2nd sequence {1, 2, . . . m; . . . ; 1, 2, . . . m︸ ︷︷ ︸

k·m

}, yielding a ratio on this sequence

of OPT (R)
A(R) = k·m

2k > m
2 .

Case 2. ALG rejects some requests of the 1st sequence, saying accepts ksum
(ksum

2 ≤ k) requests in all, which k1 (k1 ≤ k) servers accepts {1,m}, k2 (k2 ≤ k)
servers accepts {1} and k3 (k3 ≤ k) servers accepts {m}.

Case 2.1 ksum ≤ k. OPT will not release requests any more and accepts the 1st

sequence, yielding a ratio on this sequence of OPT (R)
A(R) = 2k

ksum
≥ 2.

Case 2.2 ksum > k. OPT will release the 3rd sequence. If k2 ≥ k3, the 3rd

sequence is {m,m, . . . , m;m − 1,m − 1, . . . ,m − 1; . . . ; 1, 1, . . . , 1︸ ︷︷ ︸
k·m

}. If k2 < k3,

the 3rd sequence is {1, 1, . . . , 1; 2, 2, . . . , 2; . . . ;m,m, . . . ,m︸ ︷︷ ︸
k·m

}. OPT accepts the

requests {1, 2, . . . m} on each of the servers, yielding a ratio on this sequence

190 K. Luo et al.

of OPT (R)
A(R) = k·m

2k1+2max{k2,k3}+m·(k−k1−max{k2,k3}) . The ratio of OPT (R)
A(R) is no

greater than 3
2 (Further analysis of the ratio in AppendixA).

Thus, c ≥ 3
2 and the theorem follows. ��

3.1 Unique Server

In this part, we exhibit the lower bound of k − MS problem when k = 1.

Theorem 2. For k − MS problem, there exists no on-line algorithm with com-
petitive ratio less than m

2 for k = 1.

Proof. Consider OPT releases the 1st request 	m
2
. According to ALG response,

we can classify this problem into two cases.

Case 1. ALG rejects this request, OPT will not release any more, yielding a
ratio on this sequence of OPT (R)

A(R) = ∞.

Case 2. ALG accepts this request, OPT then releases the following 1st sequence
of at most 	m

2
 requests: {1, 2, . . . , 	m
2
}.

Case 2.1. ALG rejects all the 1st sequence requests, OPT will not release any
more. OPT accepts all the 1st sequence requests, yielding a ratio on this sequence
of OPT (R)

A(R) = 	m
2
.

Case 2.2. Once ALG accepts a request in the 1st sequence, OPT will release the
rest requests of the 1st sequence sequentially, and then release the 2nd sequence
of at most �m

2 requests: {	m
2
 + 1, 	m

2
 + 2, . . . ,m}. OPT accepts all the m

requests, yielding a ratio on this sequence of OPT (R)
A(R) = m

2 .
Thus, The lower bound of 1 − OIS problem is m

2 . ��

3.2 Two Servers

In this part, we exhibit the lower bound of k − MS problem when k = 2.

Theorem 3. For k − MS problem, there exists no on-line algorithm with com-
petitive ratio less than m

3 for k = 2.

Proof. Consider OPT releases a request 	m
2
. According to ALG, we can classify

this problem into two cases.

Case 1. ALG rejects 	m
2
, OPT will not release any more, yielding a ratio on

this sequence of OPT (R)
A(R) = ∞.

Case 2. ALG accepts 	m
2
. Without loss of generality, suppose this request is

accepted by server s1, and let r11 represent this request. OPT then releases the
following 1st sequence of at most 2 · 	m

3
 requests: {1, 1, 2, 2, . . . , 	m
3
, 	m

3
}.

Case 2.1. ALG rejects all the 1st sequence requests, OPT will not release any
more. OPT accepts all the 1st sequence requests, yielding a ratio on this sequence
of OPT (R)

A(R) = 2 · 	m
3
.

On-line Scheduling with a Monotonous Subsequence Constraint 191

Case 2.2. ALG accepts a request of the 1st sequence by server s1 , let r12 denote
this request. OPT will release the rest requests of the 1st sequence sequentially,
and then release the 2nd sequence of at most 2 · � 2m

3 requests: {	m
3
 + 1, 	m

3
 +
1, 	m

3
 + 2, 	m
3
 + 2, . . . ,m,m}.

Case 2.2.1. ALG rejects all the rest of the 1st sequence and the 2nd sequence.
OPT accepts all the 2m requests (1st sequence and 2nd sequence), yielding a
ratio on this sequence of OPT (R)

A(R) = 2m
2 = m.

Case 2.2.2. Once ALG accepts one more request, this request must be accepted
by server s2 because this request is greater than r12 and −→s1 = −. Without loss
of generality, denote the third request as r21.

(i) If r21 ≥ 	m
2
, OPT will not release requests any more. OPT accepts the

requests {1, 2, . . . , r21} on each of the server, yielding a ratio on this sequence of
OPT (R)
A(R) = 2r21

3 ≥ m
3 .

(ii) If r21 < 	m
2
 (r21 ≥ r12), OPT will not release the above sequence, and

release the 3rd sequence: {m,m,m − 1,m − 1, . . . , r21, r21}.
ALG rejects all request of the 3rd sequence, OPT accepts all request of the

3rd sequence, yielding a ratio on this sequence of OPT (R)
A(R) = 2(m−r21+1)

3 > m
3 .

ALG accepts a request of the 3rd sequence, which denoted as r22, OPT will
release the rest requests of the 3rd sequence sequentially, and then release the 4th

sequence of at most �m
2 requests: {r21 − 1, r21 − 1, r21 − 2, r21 − 2, . . . , r12, r12}.

ALG could not accept the request of 4th sequence any more because the last
request of the server s1 is r12 and −→s1 = −, and the last request of the server s2
is r22 and −→s1 = +. OPT accepts all the 2 · (m− r12 +1) requests, yielding a ratio
on this sequence of OPT (R)

A(R) = 2·(m−r12+1)
4 = m−r12+1

2 > 2/3m
2 = m

3 .

Case 2.3. ALG accepts a request of the 1st sequence by server s2, let r21 denote
this request. OPT will not release the above 1st sequence any more, and then
release the 2nd sequence of at most 2 ·	m

3
 requests: {m,m,m−1,m−1, . . . ,m−
�m

3 ,m − �m
3 }.

Case 2.3.1. ALG rejects all the 2nd sequence, OPT will not release request
any more and accept all the 2nrd sequence, yielding a ratio on this sequence of
OPT (R)
A(R) = 2·�m

3 �
2 = 	m

3
.
Case 2.3.2. ALG accepts the third request, there are 2 cases.

(i) The third request is accepted by server s1, which denoted as r12. OPT
will release the rest request of the 2nd sequence sequentially, and then release
the 3rd sequence requests: {m − �m

3 − 1,m − �m
3 − 1,m − �m

3 − 2,m − �m
3 −

2, . . . , r21, r21}.
ALG rejects all the above sequence (the rest request of the 2nd sequence

and the 3rd sequence), OPT will not release request any more and accept
{m,m − 1, . . . , r12} on each of the two servers, yielding a ratio on this sequence
of OPT (R)

A(R) = 2(m−r21)
3 > 2·2/3·m

3 = 4m
9 .

ALG accepts one of the requests, it must be accepted by server s2 and −→s2 = +,
because the last request of the server s1 is r12 and −→s1 = +. OPT will release
the rest of the above sequence and the on-line algorithm could not accept any

192 K. Luo et al.

more request because the last request of the server s1 is r12 and −→s1 = +, and the
last request of the server s2 is r22 and −→s1 = +. OPT accepts all the 2(m − r21)
requests, yielding a ratio on this sequence of OPT (R)

A(R) = 2(m−r21)
4 = m

3 .
(ii) The third request is accepted by server s2, which denoted as r22. OPT

will not release the 2nd sequence any more, and then release the 3rd sequence of
at most 2 · m

2 requests: {1, 1, 2, 2, . . . , m
2 , m

2 }.
ALG rejects all the above sequence since then, OPT will not release request

any more and accept {1, 2, . . . , m
2 } on each of the two servers, yielding a ratio

on this sequence of OPT (R)
A(R) = 2·m2

3 > m
3 .

ALG accepts one of the request, the fourth request must be accepted by
server s1 and −→s2 = −, because the last request of the server s2 is r22 and −→s1 = +.
OPT will release the rest of the 3rd sequence and then release the 4th sequence
{	m

2
 + 1, 	m
2
 + 1, 	m

2
 + 2, 	m
2
 + 2, . . . , r22, r22}. The on-line algorithm could

not accept the request of 4th sequence any more because the last request of the
server s1 is r12 and −→s1 = −, and the last request of the server s2 is r22 and−→s1 = +. OPT accepts 2r22 requests {1, 2, . . . , r22} on each of the two servers,
yielding a ratio on this sequence of OPT (R)

A(R) ≥ 2·2/3·m
4 = m

3 .
Thus, The lower bound of 2 − OIS problem is m

3 . ��

4 On-line Scheduling by K-Interval Algorithm

In the k-interval algorithm (k − IA), we create two types of intervals denoted
Ii and FIi (i ∈ K). Let Si represent all request accepted by si. rij is the jth

request of Si. Ii represents the acceptable request interval of si when |Si| < 2
(a = m

2(k+1)). FIi represents the feasible request interval of si when |Si| ≥ 2.

Ii =

⎧⎪⎨
⎪⎩

[ri,1, ri,1 + (m − 2a)], ri,1 ≤ a

[a,m − a], a < ri,1 < m − a

[ri,1 − (m − 2a), ri,1], ri,1 ≥ m − a

FIi =

{
[ri,|Si|, m], −→si = +,

[1, ri,|Si|],
−→si = −.

Algorithm 1. k-Interval Algorithm
Input : k (k=1 or 2) identical servers, m types of possible requests, rj ∈ M ;
Initialize: Set i = 1, j = 1, schedule rj to si, go to Step 3.
Step 1 : If i < k, let i = i+ 1 and schedule rj to si, goto Step 3.

Otherwise, go to Step 2.
Step 2 : If ∃i∗ ∈ Ki, |Si∗ | ≥ 2, and rj ∈ FIi∗ , schedule rj to si∗ , go to Step 3.

If ∃i∗ ∈ Ki, |Si∗ | < 2, and rj ∈ Ii∗ , schedule rj to si∗ , go to Step 3.
Otherwise, go to Step 3.

Step 3 : If all the requests have already been arranged, the game terminates;
otherwise, j=j+1, go to Step 1.

Note 1: Ki = {s1, s2, ...si}.

Observation. The k-Interval Algorithm 1 (k = 1) 1 − IA has a performance
guarantee of m

2 for one server with m types of requests.

On-line Scheduling with a Monotonous Subsequence Constraint 193

Note that when k = 1, any non-trivial algorithm will take in at least 2 integers
from the given sequence, and therefore is optimal.

Theorem 4. The k-Interval Algorithm1 (k= 2) 2−IA has a performance guar-
antee of m

3 for 2 servers and m (m > 2) types of requests.

Proof. For all schedules, 2 − IA has a performance guarantee of m
3 . There are

six cases based on the schedule produced by 2 − IA.
Case 1: |S1| = 0, |S2| = 1. The schedule produced by 2 − IA includes one

request (
∑

i∈K |Si| = 1). According to the Step 1 of 2 − IA, because 2 − IA
accepts two requests without constraint, so |M | = 1, and OPT at most accepts
one request, too. Therefore, yielding a ratio on this sequence of OPT (R)

A(R) = 1
1 =

1 ≤ 1
3m.

Case 2: |S1| = 1, |S2| = 1. Each server accepts one request, respectively.
According to the Step 2 of 2 − IA, si rejects all the requests outside of Ii, so
OPT at most accepts 2a requests on each of servers. Therefore, OPT (R) ≤ 2

3m

and A(R) ≥ 2, yielding a ratio on this sequence of OPT (R)
A(R) ≤ 2·2·a

2 = 1
3m

(a = m
2(k+1) = 1

6m).
Case 3: |S1| = 1, |S2| >= 2. One server accepts one request, and the other

one accepts more than 2 requests. According to the Step 2 of 2 − IA, OPT
at most accepts m − 2a requests on server s2 and at most accepts 2a requests
on server s1. Therefore, OPT (R) ≤ m and A(R) ≥ 3, yielding a ratio on this
sequence of OPT (R)

A(R) ≤ m
3 = 1

3m.
Case 4: |S1| = 2, |S2| = 2. Each server accepts two requests, respectively.

According to the Step 2 of 2 − IA, OPT at most accepts m − 2a requests on
each of servers. Therefore, OPT (R) ≤ 2(m − 2a) and A(R) = 4, yielding a ratio
on this sequence of OPT (R)

A(R) ≤ 2(m−2a)
4 = 1

3m.
Case 5: |S1| = 2, |S2| >= 3. One server accepts 2 requests, and the other one

accepts more than 2 requests. According to the Step 2 of 2 − IA, OPT at most
accepts m − a requests on each of servers. Therefore, OPT (R) ≤ 2(m − a) and
A(R) ≥ 5, yielding a ratio on this sequence of OPT (R)

A(R) ≤ 2(m−a)
5 = 1

3m.
Case 6: 3 <= |S1| <= |S2|. According to the Step 2 of 2 − IA, each server

accepts requests within its request interval, so OPT at most accepts 2m requests
on each of servers. Therefore, OPT (R) ≤ 2m and A(R) ≥ 6, yielding a ratio on
this sequence of OPT (R)

A(R) ≤ 2m
6 = 1

3m.

Using Case 1–6 we derive OPT (R)
A(R) ≤ 1

3m. ��
Both of 1−IA and 2−IA are optimal because the lower bound of the problem

is equal to the algorithm competitive ratio.

5 Conclusions

Our solutions of 1−OMS and 2−OMS are optimal in expectation. This result is
useful to scheduling idle drivers if their destinations are fixed, but their traveling

194 K. Luo et al.

are flexible. The optimal algorithm of k−OMS (k < m) remains open. Another,
interesting future research is to analyze the relationship of k and m for most of
the requests. Moreover, it would be interesting to study the problem when k
fluctuates over time.

Acknowledgement. This work was partially supported by the NSFC (Grant
No. 71601152), and by the China Postdoctoral Science Foundation (Grant No.
2016M592811).

A Appendix

The analysis of ratio OPT (R)
A(R) in Theorem 1. Case 2.2.

As we already know, A(R) = 2k1+2max{k2, k3}+m ·(k−k1 −max{k2, k3})
and OPT (R) = k ·m for all m > k > 2, where k2+k3+2k1 = ksum (k < ksum ≤
2k). To make the ratio of OPT (R)

A(R) easier to solve, we analyse

A(R)
OPT (R)

=
2k1 + 2max{k2, k3} + m · (k − k1 − max{k2, k3})

k · m
(5.1)

=
k1 · (2 − m) + max{k2, k3} · (2 − m) + m · k

k · m
= 1 + C

C =
k1 · (2 − m) + max{k2, k3} · (2 − m)

k · m
. (5.2)

We analyse the change of C with respect to k1, max{k2, k3} and k1 +
max{k2, k3}, respectively.

∂C

∂k1
=

∂C

∂max{k2, k3} =
∂C

∂k1 + max{k2, k3} =
(2 − m) · k · m

(k · m)2
(5.3)

< 0 (Because m > k > 2).

Because k2 + k3 + 2k1 = ksum (k < ksum ≤ 2k) and 5.3, we have:

C ≤
k+1
2 · (2 − m)

m · k
= −1

3
(Because m > k > 2),

and

OPT (R)
A(R)

≥ 1
1 − 1

3

(5.4)

≥ 3
2

(Because m > k > 2),

On-line Scheduling with a Monotonous Subsequence Constraint 195

References

1. Zervas, G., Proserpio, D., Byers, J.: The rise of the sharing economy: estimating
the impact of Airbnb on the hotel industry. 18 November 2016. Boston U. School
of Management Research Paper No. 2013–2016

2. Fredman, M.L.: On computing the length of longest increasing subsequences. Dis-
cret. Math. 11(1), 29–35 (1975)

3. Deorowicz, S.: An algorithm for solving the longest increasing circular subsequence
problem. Inf. Process. Lett. 109(12), 630–634 (2009)

4. Romik, D.: The Surprising Mathematics of Longest Increasing Subsequences. Cam-
bridge University Press, Cambridge (2014)

5. Albert, M.H., Golynski, A., Hamel, A.M., et al.: Longest increasing subsequences
in sliding windows. Theoret. Comput. Sci. 321(2–3), 405–414 (2004)

6. Arlotto, A., Nguyen, V.V., Steele, J.M.: Optimal online selection of a monotone
subsequence: a central limit theorem. Stochast. Process. Appl. 125(9), 3596–3622
(2014)

7. Nagarajan, V., Sviridenko, M.: Tight bounds for permutation flow shop scheduling.
Math. Oper. Res. 34(2), 417–427 (2009)

8. Sitters, R.: Competitive analysis of preemptive single-machine scheduling. Oper.
Res. Lett. 38(6), 585–588 (2010)

9. Nther, E., Maurer, O., Megow, N., et al.: A new approach to online scheduling:
approximating the optimal competitive ratio. In: Twenty-Fourth ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 118–128. Society for Industrial and Applied
Mathematics (2012)

10. Karhi, S., Shabtay, D.: On the optimality of the TLS algorithm for solving
the online-list scheduling problem with two job types on a set of multipurpose
machines. J. Comb. Optim. 26(1), 198–222 (2013)

11. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

A 1.4-Approximation Algorithm for Two-Sided
Scaffold Filling

Jingjing Ma, Haitao Jiang, Daming Zhu(B), and Shu Zhang

School of Computer Science and Technology, Shandong University,
Jinan, People’s Republic of China

majingjing.sdu@gmail.com, {htjiang,dmzhu}@sdu.edu.cn,
zhangshu365@163.com

Abstract. Scaffold Filling aims at getting what can be used as whole
genomes from scaffolds by computation. Two-Sided Scaffold Filling is
given by two scaffolds, asks respectively, to fill one scaffold with those
genes in the other but the scaffold itself, so that the two new produced
scaffolds have as many as possible common adjacencies. This problem has
long been learnt to be NP-Hard and can be approximated to a constant
performance ratio. In this paper, we devise an approximation algorithm
which can achieve a performance ratio 1.4 + ε. This improves upon the
so far best approximation algorithm proposed by Liu et al.

1 Introduction

With the genomes being published in scaffold or contig forms increasingly [1],
people often run into scaffolds or contigs in their genomic analysis related prac-
tice. The use of draft genomes often makes analyses and interpretations tentative
and prone to error, and leads to particular problems. Thus the scaffold filling
problem is motivated by extracting whole genomes from scaffolds via computa-
tion [5].

Muñoz et al. pioneered to investigate the One-Sided Scaffold Filling of signed
permutations, and devised a polynomial time algorithm to minimize the DCJ
distance [5]. Subsequently, Jiang and Zhu proposed a polynomial time algorithm
for Two-Sided Scaffold Filling of signed permutations under the objective of
minimizing the DCJ distance.

Many genome similarity measures can be used as an optimization objective
in filling scaffolds with duplicated genes, where the breakpoint distance as well as
the (common) adjacency number seems the most basic. Although the breakpoint
distance or the adjacency number is computationally easy for genomes with
duplicated genes, it has been shown that One-Sided Scaffold Filling is NP-Hard
under breakpoint distance [2], which means NP-Hard under adjacency number.
Two-Sided Scaffold Filling under breakpoint distance or adjacency number is
NP-Hard consequently.

Scaffold filling for genomes with duplicated genes admits approximation algo-
rithms with constant performance ratios, if adjacency number is used as the

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 196–208, 2017.
DOI: 10.1007/978-3-319-59605-1 18

An Improved Approximation Algorithm for TSSF 197

maximization objective. For One-Sided Scaffold Filling, Jiang et al. designed a
greedy 1.33-approximation algorithm [3,4]. Liu et al. then improved the per-
formance ratio to 5

4 by the so called local improvement followed by greedy [6].
Recently, Ma et al. presented a 6

5 -approximation local search algorithm for One-
Sided Scaffold Filling [10]. For Two-Sided Scaffold Filling, Liu et al. proposed an
approximation algorithm which can achieve a performance ratio 1.5 [9], which
is the best as we know by now.

In this paper, we present an approximation algorithm for Two-sided Scaffold
Filling with performance ratio 1.4+ε. This improves upon the 1.5-approximation
algorithm proposed by Liu et al.. Section 2 will present on those notations of the
two-sided scaffold filling problem formally. In Sect. 3, we bound on how many
adjacencies scaffold filling can increase firstly. Then by finding an approximated
maximum independent set in a 5-claw free graph and a 7-claw free graph, we
propose the algorithm which can carry out the two-sided scaffold filling in poly-
nomial time. Section 5 will show that the performance ratio of the algorithm
is 1.4 + ε.

2 Preliminaries

Let Σ be an alphabet in which each element represents a gene family. A scaffold
on Σ is a gene sequence, where a gene is an occurrence of a gene family in Σ. In
the absence of exception, we will represent a gene with the same symbol as with
which we represent the gene’s family. Let S = s1 s2 · · · sn be a scaffold on Σ, then
all genes in S form a multi-set which will be denoted as c(S). A substring in S
with m genes is referred as an m-string. A 2-string in S is particularized as a pair.
Let P [S] be the multi-set of pairs in S. Then P [S] = {s1 s2, s2 s3, . . . , sn−1 sn}.
A pair is in S, if and only if it is in P [S].

Let A = a1 a2 · · · an and B = b1 b2 · · · bm be two scaffolds on Σ, P [A] and
P [B] the sets of pairs in A and B respectively, ai ai+1 ∈ P [A], bj bj+1 ∈
P [B]. If ai ai+1 = bj bj+1 (or bj+1 bj), then ai ai+1 and bj bj+1 form a match
(ai ai+1, bj bj+1) between P [A] and P [B]. Let R be the set of all matches between
P [A] and P [B]. Then a subset R ⊆ R is referred to as a maximum matching
between P [A] and P [B] (or A and B) if, (1) any pair in A or B does not occur in
two or more matches in R; (2) the cardinality of R is maximized over all subsets
of R which subject to (1).

According to the maximum matching between P [A] and P [B] (resp. A
and B), an adjacency as well as a breakpoint in A or B can be identified by,

Definition 1. Let R be a maximum matching between P [A] and P [B]. A pair
in A (resp. B) is an adjacency relative to B (resp. A) with respect to R, if it
forms a match in R with a pair in B (resp. A), otherwise, a breakpoint.

No matter with respect to which maximum matching those pairs in A
(resp. B) have been identified as adjacencies or breakpoints, A must have as
many adjacencies (resp. breakpoints) as B has. So in the situation without any
need of stressing, we will mention an adjacency or a breakpoint in A or B

198 J. Ma et al.

regardless of the maximum matching. We denote by a(A, B) the set of adjacen-
cies in A relative to B. Note that there must be as many adjacencies in a(A, B)
as the matches in a maximum matching between A and B.

An insertion of a gene into a scaffold refers to the operation to insert the
gene between two genes of a pair, onto the left side of the first or the right
side of the last gene in the scaffold. Let S = s1 . . . si si+1 . . . sn be a scaffold
on Σ and x a gene with its family in Σ. Then inserting x between si and si+1

transforms S into S′ = s1 . . . si x si+1 . . . sn, 1 ≤ i ≤ n − 1, inserting x onto the
left (resp. right) side of s1 (resp. sn) transforms S into S′ = x s1 . . . sn (resp.
S′ = s1 . . . sn x). For a gene x with family in Σ, let S + x ≡ S + {x} denote
the set of scaffolds resulted from inserting x into S. For a gene set X, let S + X
denote the set of scaffolds resulted from inserting all those genes in X into S,
which can be formulated recursively as,

S + X =

⎧
⎪⎨

⎪⎩

S, X = ∅;
⋃

S′∈S+x

(S′ + (X − {x})), x ∈ X. (1)

We also refer to the operation to insert a gene x into a scaffold S as an insertion
to fill S with x.

The scaffold filling problem is originated from Muñoz et al. [5], who suggested
to get a seemingly no-gene-missing genome by filling a scaffold with those genes
it has missed, where the adjacency number has been most commonly used to
measure how alike two scaffolds are, as well as how optimal the resulting scaffolds
are. Two-Sided Scaffold Filling has first been proposed in [9], which is given by
two scaffolds, asks to fill each one with the genes in the other but it, such that
the number of adjacencies between the two resulting scaffolds is maximized.

Instance: Two scaffolds A and B on Σ.

Objective: Find A′ ∈ A + (c(B) − c(A)), B′ ∈ B + (c(A) − c(B)) such that
|a(A′, B′)| − |a(A,B)| is maximized.

A gene is missing if it is in c(B)−c(A) or c(A)−c(B). Following [9], the first
and the last gene of A (resp. B) both be #, which is different from any other
one in A (resp. B). Thus we only accept those insertions each of which happens
to insert missing genes between two genes of a pair in A or B.

3 An Adjacency Number Bound in the Optimal Solution

Let A,B be two scaffolds on Σ which are given in a two-sided scaffold filling
instance, X = c(A) − c(B), Y = c(B) − c(A).

Let X ′ ⊆ X,Y ′ ⊆ Y,A′ ∈ A + Y ′, B′ ∈ B + X ′. A substring of A′ (resp. B′)
is missing, if all its genes are missing. A missing substring (or string) of A′

(resp. B′) is maximal, if either of the gene on the left side of its first gene and
the gene on the right side of its last gene is not missing. A maximal missing
substring of A′ (resp. B′) is abbreviated as an MMS, and a k-MMS, if it has
k genes.

An Improved Approximation Algorithm for TSSF 199

Let I be an arbitrary MMS of A′ (resp. B′), A′′ (resp. B′′) the scaffold
resulted from removing those genes in I from A′ (resp. B′). Usually, it suffices
to treat I as one made by one insertion to fill A′′ (resp. B′′). Thus, the insertion
to fill A′′ (resp. B′′) with I increases k adjacencies between A′′ (B′′) and B′

(A′), if |a(A′, B′)|−|a(A′′, B′)| = k (resp. |a(A′, B′)|−|a(A′, B′′)| = k). We relax
to say the insertion to fill A′′ with I increases k adjacencies between A and B,
provided it increases k adjacencies between A′′ and B′.

A substring involves a pair, if it shares a gene with the pair. A k-MMS of
A (resp. B) can involve at most k + 1 adjacencies. Thus it can increase at most
k + 1 adjacencies between A and B to fill A (resp. B) with a k-string. In [9], a
polynomial time algorithm has been proposed with guarantee as follows,

Lemma 1. For any two scaffolds A and B on Σ, it can find string insertions
in polynomial time to fill A and B with genes in c(B) − c(A) and c(A) − c(B)
respectively, such that each insertion can fill the scaffold with a missing gene
string to increase at least as many adjacencies as those genes in the string.

Let M ′ be the maximum matching with respect to which the adjacencies in
A′ and B′ have been identified. A pair in A′ (resp. B′) is boundary for an MMS,
if it shares exactly one gene with the MMS. A match in M ′ is boundary, if both
of its pairs in A′ and B′ are boundary.

To evaluate on at most how many adjacencies A′ and B′ can have, we take two
MMSs into consideration together, if they involve two pairs forming a boundary
match in M ′. Thus we set a bipartite graph G(M ′) = (V1, V2, E) with V1 = {u |u
corresponds to an MMS in A′}, V2 = {v | v corresponds to an MMS in B′},
E = {(u, v) | those two MMSs corresponding to u and v involve two pairs forming
a boundary match in M ′}.

Since an MMS can share pairs with at most two boundary matches, a vertex
in G(M ′) is incident with at most two edges. Thus a connected component in
G(M ′), must be a path, which can take the form of an isolated vertex, a path
with two 1-degree vertices, or a cycle. In what follows, a path (resp. vertex,
cycle) component in G(M ′) refers to a connected component which is a path in
G(M ′). For an arbitrary vertex v in G(M ′), we denote by mms(v) that MMS
corresponding to which v has been set. We assign a weight to a vertex v by
|mms(v)|, which is the gene number of mms(v). Let P be a path component in
G(M ′). Then we denote by mms(P) the set of MMSs corresponding to which
the vertices on P have been set. Moreover, the weight of P will be mentioned as
|mms(P)| =

∑
v∈V (P) |mms(v)|. A path component of weight i is abbreviated

as an i-path for i > 0.
Let A∗ ∈ A + Y,B∗ ∈ B + X with |a(A∗, B∗)| = max {|a(A′, B′)| : A′ ∈

A + Y,B′ ∈ B + X},M∗ the maximum matching between P [A∗] and P [B∗]
with respect to which those pairs in A∗ and B∗ have been identified as adjacen-
cies or breakpoints. Then those vertices on a path component in G(M∗) must
correspond to a set of MMSs which can involve as many adjacencies as,

Lemma 2. Let P be an i-path in G(M∗), removing from A∗, B∗ those strings
in mms(P) transform A∗ and B∗ into A∗∗ and B∗∗. Then |mms(P)| ≤
|a(A∗, B∗)| − |a(A∗∗, B∗∗)| ≤ |mms(P)| + 1.

200 J. Ma et al.

Proof. The inequality |mms(P)| ≤ |a(A∗, B∗)| − |a(A∗∗, B∗∗)| holds because
otherwise, by Lemma 1, one can find insertions to fill A∗∗ and B∗∗ with those
genes in the strings in mms(P) to increase at least |mms(P)| adjacencies
between A and B. Since P is a path component in G(M∗), those MMSs in
mms(P) can involve at most two boundary pairs which do not happen to any
boundary matches in M∗. Thus if each pair involved by a string in mms(P)
is an adjacency with respect to M∗, there are at most |mms(P)| + 1 less
adjacencies between A∗∗ and B∗∗ than between A∗ and B∗. This leads to
|a(A∗, B∗)| − |a(A∗∗, B∗∗)| ≤ |mms(P)| + 1.

A path component P in G(M ′) is good, if removing from A′ and B′ all those
MMSs in mms(P) transforms A′ and B′ into A′′ and B′′ respectively, such that
|a(A′, B′)| − |a(A′′, B′′)| = |mms(P)| + 1.

Let PC∗[k] be the set of good k-paths in G(M∗) for k ≥ 1. Then the number
of matches in M∗ can be accounted by,

Lemma 3

|M∗| = |a(A,B)| + |X| + |Y | +
|X|+|Y |∑

k=1

|PC∗[k]| (2)

Proof. Since X ∩ Y = ∅, a match in M∗ is either boundary, or has at least one
pair no MMS in A∗ or B∗ can involve. Thus for any two path components, say
P1, P2 in G(M∗), no pair involved by an MMS in mms(P1) can form a match in
M∗ with a pair involved by an MMS in mms(P2). Let P be a path component
in M∗. By Lemma 2, those pairs involved by the MMSs in mms(P) must join
in |mms(P)| + 1 matches in M∗, if P is good; or |mms(P)| matches otherwise.
Thus those matches in M∗ each with at least a pair involved by an MMS can be
summed up as |X| + |Y | +

∑|X|+|Y |
k=1 |PC∗[k]|. The lemma equation follows. 	

Lemma 3 implies |a(A∗, B∗)| = |a(A,B)|+ |X|+ |Y |+∑|X|+|Y |
k=1 |PC∗[k]|. To

bound the number of those more adjacencies in a(A∗, B∗) than in a(A,B), it
suffices to take into account of those good paths with weight no more than 2.
That is,

Lemma 4

|a(A∗, B∗)| − |a(A,B)| ≤ 4
3
(|X| + |Y |) +

2
3
|PC∗[1]| +

1
3
|PC∗[2]| (3)

Proof. The lemma follows from Lemma 3 and
∑|X|+|Y |

k=3 |PC∗[k]| ≤ 1
3 (|X|+ |Y |−

|PC∗[1]| − 2|PC∗[2]|). 	

4 Approximation Algorithm for Two-Sided Scaffold
Filling

Let X ′ ⊆ X,Y ′ ⊆ Y,A′ ∈ A+Y ′, B′ ∈ B +X ′,M ′ the maximum matching with
respect to which the adjacencies and breakpoints in P (A′) and P (B′) have been

An Improved Approximation Algorithm for TSSF 201

identified. An MMS set, say S, is good, if there exists a good path component,
say P in G(M ′), such that S = mms(P). A missing string is an MMS candidate
for A′ and B′ if all its genes are in (X − X ′) or (Y − Y ′). An MMS candidate
set will be mentioned with no two strings sharing a gene. Let S be an MMS
candidate set. Then the length of S, denoted as L(S), refers to the number of
genes all those strings in S have. An insertion of S into A′ and B′ refers to a
group of insertions each of which can insert a string in S between two genes of a
pair in A′ or B′, such that provided they transform A′ and B′ into A′′ and B′′,
each string in S will turn into an MMS in A′′ or B′′. Every time we mention to
insert S into A′ and B′ or fill A′ and B′ with S, it refers to an insertion of S
into A′ and B′.

An insertion of S into A′ and B′ is good, if it transforms A′ and B′ into A′′

and B′′ such that S turns into a good MMS set in A′′ and B′′.
For a good insertion of S which transforms A′ and B′ into A′′ and B′′. Let

position(S) denote the multiset of pairs in P (A′) or P (B′), between those two
genes of which the elements are inserted into turn into MMSs as members in S.

Lemma 5. For pr ∈ position(S), pr ∈ P (B′) (resp. P (A′)), if pr is an adja-
cency in P (B′) with respect to M ′, there must exist at least one breakpoint pr or
its reversal in P (B′) (resp. P (A′)) with respect to M ′.

For a good insertion of S, let the multiset of pairs in P (A′′) and P (B′′)
involved by MMSs in S denote as I(S), the pairs in P (A′) and P (B′) matched by
those in I(S) which do not form boundary matches in M ′′ denote as NBMP(S).

Lemma 6. For czcz+1 ∈ NBMP(S), czcz+1 ∈ p(B′) (resp. P (A′)), if czcz+1 is
an adjacency in P (B′) (resp. P (A′)) with respect to M ′, there must be at least
one breakpoint czcz+1 or cz+1cz in P (B′) (resp. P (A′)) with respect to M ′.

Lemma 7. If there exists a good insertion of S into A′ and B′, then there must
exist a good insertion of S into A′ and B′ such that: (1) the MMSs in S each is
inserted into a breakpoint in P (A′) or P (B′); (2) the pairs in P (A′) or P (B′)
matched by those involved by MMSs in S are all breakpoints.

From Lemma 7, the good insertion of MMS set S into A′ and B′ discussed
below is a good insertion of S, which by default inserts the MMSs in S each into
a breakpoint in P (A′) or P (B′), and the pairs in P (A′) or P (B′) matched by
those involved by MMSs in S are all breakpoints.

An MMS candidate set S is good for A′ and B′, if there exists a good insertion
of S into A′ and B′. Let S be a good MMS candidate set for A′ and B′, inserting
those strings in S into A′ and B′ transform A′ and B′ into A′′, B′′. Each element
in S must correspond to a breakpoint in P (A′) or P (B′), between those two genes
of which the element can be inserted to turn into an MMS as a member in a
good MMS set.

Let S1 and S2 be two good MMS candidate sets for A′ and B′. Then S1

conflicts with S2 if one of the following situations occurs: (1) an element in S1

shares a gene with an element in S2; (2) an element in S1 and an element in
S2 happen to correspond to one and the same breakpoint in P (A′) or P (B′),

202 J. Ma et al.

or the breakpoint in P (A′) or P (B′) which an element in S2 corresponds to is
matched by a pair involved by one element in S1; (3) the breakpoint in P (A′)
or P (B′) matched by a pair involved by one element in S2 is also matched by a
pair involved by one MMS in S1; or the breakpoint in P (A′) or P (B′) matched
by the one involved by one element in S2 is also a breakpoint which one MMS
in S1 corresponds to.

To obtain more good MMS sets, we set a conflict graph G = (V,E) in accor-
dance with the conflict relationships of good MMS candidate sets, where a vertex
in V stands for a good MMS candidate set, and the edge set E = {(u,v) | the
good MMS candidate set u stands for conflicts with the one which v stands
for,u,v ∈ V }.

A graph is called k-claw free if it contains no independent set of k vertices,
all adjacent to a common vertex [7]. Based on the conflict relations, we know,

Lemma 8. A conflict graph G, where each vertex stands for a good MMS can-
didate set on a path of length at most k, is (2k + 3)-claw free.

Proof. A good MMS candidate set on an i-path, say Si, consksts of i genes from
X and Y , and corresponds to j1 breakpoknts in P (A), and j2 breakpoints in
P (B), where 1 ≤ j1 + j2 ≤ i. By the definition of conflict, another good MMS
candidate set could conflict with Si, if (1) one of its MMSs shares one gene in
Si; (2) for the breakpoints in P (A) or P (B) which the MMSs in Si correspond
to, one of its MMSs corresponds to one of them, or one of them is matched by
a pair involved by one of its MMSs; (3) for the breakpoints in P (A) and P (B)
matched by pairs involved by MMSs in Si, one of them is matched by a pair
involved by one of its MMSs; or one of them is a breakpoint which one of its
MMSs corresponds to.

Note that there are i genes consisting of Si from X and Y , j1+j2 breakpoints
the MMSs in Si correspond to in P (A) and P (B), and (i+2-(j1+j2)) breakpoints
in P (A) and P (B) matched by pairs involved by MMSs in Si. We treat them as
2i+2 different factors of Si. Si cannot be obtained without anyone of them. So,
good MMS candidate sets conflicting with Si could be divided into 2i + 2 types
for different factors. It means that, at most 2i+2 types of good MMS candidate
sets conflict with Si, and among them, those conflicting with Si for the same
factor must conflict with each other, and those conflicting with Si for distinct
factors could not have conflicts.

Thus, in conflict graph G, there are at most 2i + 2 types of vertices standing
for the good MMS candidate sets, which are adjacent to a common vertex which
Si stands for. Among them, vertices standing for the same type of good MMS
candidate sets conflicting with Si must be adjacent to each other pairwiseand
vertices standing for the same type of good MMS candidate sets conflicting with
Si could not connect to each other. Thus, there are no independent set of at most
2i + 3, among those vertices which are adjacent to a common vertex standing
for a good MMS candidate set on an i-path.

Note that in G, each vertex stands for a good MMS candidate set on a path
of length at most k, so every vertex in G can not have a (2k + 3)-claw as an
induced subgraph, G is a (2k + 3)-claw free graph. 	

An Improved Approximation Algorithm for TSSF 203

By Lemma 4, we focus on searching for certain number of good MMS sets
on a 1-path or a 2-path in our algorithm, by constructing conflict graphs based
on their conflict relationships. Since any good MMS candidate set can probably
conflict with another one, we set a 5-claw free graph only with good MMS candi-
date sets on a 1-path, and a 7-claw free graph with good MMS candidate sets on
a path of length at most 2. Then, we compute the maximum independent set in
the 5,7-claw free graph respectively. We choose better results by comparing the
number of good MMS sets obtained respectively, and fill Scaffold A and B with
them. Finally, we fill the scaffolds with the remaining genes, guaranteeing that
it can increase at least as many adjacencies as genes inserted by the algorithm
in [9].

A good MMS set on a 1-path must be a 1-MMS from X or Y . Thus, by
enumerating 1-MMSs in X or Y , we identify all the good MMS candidate sets
on a 1-path in polynomial time. Let the set of the good MMS candidate sets on
a 1-path in X be X1, and in Y be Y1, then Vg = X1

⋃
Y1. By enumeration, we

also identify all the good MMS candidate sets on a 2-path. A good MMS set on
a 2-path can be a 2-MMS from X or Y , or a 1-MMS from X and a 1-MMS from
Y . Let the set of good MMS candidate sets on a 2-path only from X be X2, the
set of good MMS candidate sets on a 2-path only from Y be Y2, For the set of
good MMS candidate sets on a 2-path, where one 1-MMS from X and the other
1-MMS from Y , we denote it by Z. Let V ′

g = X1

⋃
X2

⋃
Y1

⋃
Y2

⋃
Z.

4.1 Searching for Good MMS Sets in a 5-claw Free Graph

In order to obtain as many good MMS sets on a 1-path as possible, we set a
conflict graph G′ = (V ′,E′), where a vertex in V ′ stands for a good MMS
candidate set in Vg, and the edge set is E′ = {(u, v)| if the good MMS candidate
set which u stands for conflicts with the one that v stands for}. Then, from
Lemma 8, G′ is a 5-claw free graph. Using the approximation algorithm in [8],
we can compute good MMS sets on a 1-path in polynomial time by seeking the
approximative maximum independent set in G′.

Lemma 9. There exists a polynomial approximation algorithm with ratio
1

2+ε(ε > 0) for the maximum independent set problem in a 5-claw free graph [8].

By computing the maximum independent set of the conflict graph using the
approximation algorithm in [8], we can obtain certain number of good MMS sets
on a 1-path. The algorithm is described as follows:

Algorithm 1. MIS-1(A,B,X, Y)
1: identify all the good MMS candidate sets on a 1-path for A and B.
2: construct the conflict graph G′ = (V ′, E′).
3: compute the approximative maximum independent set in G′.(Lemma 9).
4: return the approximative maximum independent set D1.

204 J. Ma et al.

Let D1 be the result returned by MIS-1(A, B, X, Y). For scaffold A and B,
we obtain |D1| good MMS sets on a 1-path, then we have

Lemma 10. In some optimal solution, if there are |PC∗[1]| good 1-paths in A∗

and B∗, then

|D1| ≥ 1
2 + ε1

|PC∗[1]| (4)

Proof. Let D′ be the maximum independent set in G′. By definition, the |PC∗[1]|
good 1-paths stand for |PC∗[1]| good MMS sets in the optimal solution. They
also construct an independent set in G′ because of their optimality, so we have
|D′| ≥ |PC∗[1]|. Moreover, from Lemma 9, we can obtain |D1| = 1

2+ε1
|D′|. The

lemma follows. 	

4.2 Searching for Good MMS Sets in a 7-claw Free Graph

For the sake of more good MMS sets on a 1-path and on a 2-path, we set a conflict
graph G′′ = (V ′′, E′′), where a vertex in V ′′ stands for a good MMS candidate
set in V ′

g , and the edge set is E′′ = {(w, z)| if the good MMS candidate set which
w stands for conflicts with the one that z stands for.}. Then, from Lemma 8, G′

is a 7-claw free graph. We can compute good MMS sets on a 1-path, or on a
2-path in polynomial time by seeking the approximative maximum independent
set in G′′, using the algorithm in [8].

Lemma 11. There exists a polynomial approximation algorithm with ratio
1

3+ε (ε > 0) for the maximum independent set problem in a 7-claw free graph [8].

By computing the maximum independent set of the conflict graph G′′ by an
approximation algorithm, we can obtain an approximative maximum indepen-
dent setwhich stands for certain number of good MMS sets on a 1-path or on a
2-path. The algorithm is described as follows:

Algorithm 2. MIS-2(A,B,X, Y)
1: identify all the good MMS candidate sets on a 1, 2-path for A and B.
2: construct the conflict graph G′′ = (V ′′, E′′).
3: compute the approximative maximum independent set in G′′.(Lemma 11).
4: return the approximative maximum independent set D2.

Let D2 be the result returned by MIS-2(A, B, X, Y). For scaffold A and B,
we obtain |D2| good MMS sets on a 1-path or on a 2-path, then we have

Lemma 12. In some optimal solution, if there are |PC∗[1]| good 1-paths in A∗

and B∗, and |PC∗[2]| good 2-paths in A∗ and B∗, then

|D2| ≥ 1
3 + ε2

(|PC∗[1]| + |PC∗[2]|) (5)

An Improved Approximation Algorithm for TSSF 205

Proof. Let D′′ be the maximum independent set in G′′. In the optimal solution,
we can know by definition, that the |PC∗[1]| good 1-paths stand for |PC∗[1]|
good MMS sets, the |PC∗[2]| good 2-paths stand for |PC∗[2]| good MMS sets in
G′′. They also construct an independent set in G′′ because of their optimality. So
|D′′| ≥ (|PC∗[1]| + |PC∗[2]|). Moreover, from Lemma 11, we can obtain |D2| =

1
3+ε2

|D′′|. The lemma follows. 	

4.3 The Algorithm for Two-Sided Scaffold Filling

Now we describe our approximation algorithm for the Two-sided Scaffold Filling
as a whole.

Algorithm 3. TwoSideScaffoldFill(A,B,X, Y)
Input: Two scaffolds A and B, X = c(A) − c(B),Y = c(B) − c(A).
Output: A′ ∈ A + Y , B′ ∈ B + X.
1: α = β = γ =φ.
2: α ← MIS-1(A, B, X, Y).
3: β ← MIS-2(A, B, X, Y).
4: If (|α| ≥ |β|) γ = α.
5: Else γ = β.
6: fill A and B with the good MMS sets in γ, obtain A+ and B+.
7: fill A+ and B+ with the remaining genes, obtain A′ and B′ by the algorithm in

[9].
8: return A′,B′.

5 Proof of the Approximation Ratio

To analyze the performance of our algorithm, we need to compare the num-
ber of good MMS sets obtained by our algorithm with that in some optimal
solution. So we assume that A′ and B′ be the result scaffolds returned by
TwoSideScaffoldFill(A, B, X, Y), and M ′ is maximum matching with respect
to which the adjacencies are identified in A′ and B′. In graph G(M ′), let PC[k]
be the set of good k-paths. Then in A′ and B′, there are |PC[k]| good MMS sets
on a k-path.

By the definition and Lemma1, we have

|a(A′, B′)| − |a(A,B)| = |X| + |Y | +
|X|+|Y |∑

i=1

|PC[k]| (6)

Let A+ and B+ be the scaffolds returned by running TwoSideScaffoldFill(A,B,
X, Y) ended in Line 6. Let PC+[1] be the set of good MMS sets on a 1-path,
PC+[2] be the set of good MMS sets on a 2-path in A+ and B+.

206 J. Ma et al.

Lemma 13

|X|+|Y |∑

i=1

|PC[k]| ≥ |PC+[1]| + |PC+[2]| (7)

Proof. Note that there are
∑|X|+|Y |

i=1 |PC[k]| good MMS sets in A′ and B′, and
there are |PC+[1]|+ |PC+[2]| good MMS sets in A+ and B+. Let X+ = c(B′)−
c(B+), and Y + = c(A′) − c(A+). If X+ and Y + are empty, obviously there are
as many good MMS sets in A′ and B′ as those in A+ and B+. Otherwise, there
are some insertions in Line 7 by running TwoSideScaffoldFill(A,B,X, Y), and
assume λ is an arbitrary insertion. From the algorithm in [9], if λ insert an MMS
set between two genes of a breakpoint, it will be a good MMS set or not without
destroying the original ones in the scaffold, so λ will increase good MMS sets by
number zero or one; if λ insert an MMS set between two genes of an adjacency,
the number of good MMS sets will not increase. Since those insertions like λ
transform A+ into A′, and transform B+ into B′, there are at least as many
good strings in A′ and B′ as in A+ and B+. 	

Let s be a number such that 4
3 < 1

s < 3
2 . Thus from Lemma 4, we have

|a(A∗, B∗)| − |a(A,B)|
≤ 4

3
(|X| + |Y |) +

2
3
|PC∗[1]| +

1
3
|PC∗[2]|

=
1
s
((|X| + |Y |) + (

4s

3
− 1)(|X| + |Y |) +

2s

3
|PC∗[1]| +

1s

3
|PC∗[2]|)

Since the number of genes in good MMS sets is not larger than that of X and
Y , we have |X| + |Y | ≥ |PC∗[1]| + 2|PC∗[2]|. What’s more, 4s

3 − 1 < 0, thus the
bound of optimal solution can be transformed as,

|a(A∗, B∗)| − |a(A,B)|
≤ 1

s
((|X| + |Y |) + (

4s

3
− 1)(|PC∗[1]| + 2|PC∗[2]|) +

2s

3
|PC∗[1]|+ 1s

3
|PC∗[2]|)

=
1
s
((|X| + |Y |) + (2s − 1)|PC∗[1]| + (3s − 2)|PC∗[2]| (8)

Now from the above formula 6 and 8, we can obtain the approximation ratio
1
s , if and only if the formula below always holds,

|X|+|Y |∑

i=1

|PC[k]| ≥ (2s − 1)|PC∗[1]| + (3s − 2)|PC∗[2]| (9)

Moreover, by Lemma 13, if the formula

|PC+[1]| + |PC+[2]| ≥ (2s − 1)|PC∗[1]| + (3s − 2)|PC∗[2]| (10)

holds, we will have the approximation ratio 1
s .

An Improved Approximation Algorithm for TSSF 207

Let α be the result obtained by running the TwoSideScaffoldFill(A,B,X, Y)
ended in Line 2, β be the result obtained by running Line 3 in the TwoSideScaf-
foldFill (A, B,X, Y), γ the returned by running TwoSideScaffoldFill(A,B,X, Y)
ended in Line 5, then |γ| = max {|α|, |β|}.

Note by Lemma 10, we obtain

|α| ≥ 1
2 + ε1

|PC∗[1]| (11)

By Lemma 12, we obtain

|β| ≥ 1
3 + ε2

(|PC∗[1]| + |PC∗[2]|) (12)

By Algorithm 3, we obtain

|PC+[1]| + |PC+[2]| = |γ| = max{|α|, |β|} (13)

Let |φ| = (2s − 1)|PC∗[1]| + (3s − 2)|PC∗[2]|. We should assign s to satisfy
|γ| ≥ |φ|. In what follows, we aim at acquiring the value of s, by comparing the
bound of |α| in formula (11) and |β| in formula (12).

If 1
2+ε1

|PC∗[1]| ≥ 1
3+ε2

(|PC∗[1]| + |PC∗[2]|) holds, then |PC∗[2]| ≤ 1+ε2−ε1
2+ε1|PC∗[1]|. Moreover, 3s − 2 > 0. So we have |φ| = (2s − 1)|PC∗[1]| + (3s − 2)

|PC∗[2]| ≤ (2s − 1)|PC∗[1]| + (3s − 2) 1+ε2−ε1
2+ε1

|PC∗[1]| = ((2s − 1) + (3s − 2)
1+ε2−ε1
2+ε1

)|PC∗[1]|.
From formula(11) and (13), |γ| ≥ |α| ≥ (1

2+ε1
)|PC∗[1]|. |γ| ≥ |φ| always

holds, iff (2s − 1) + (3s − 2) 1+ε2−ε1
2+ε1

≤ 1
2+ε1

holds, then 1
s ≤ 7+3ε2−ε1

5+2ε2−ε1
.

If 1
2+ε1

|PC∗[1]| < 1
3+ε2

(|PC∗[1]| + |PC∗[2]|) holds, then |PC∗[1]| < 2+ε1
3+ε2

(|PC∗[1]| + |PC∗[2]|). Moreover, 1 − s > 0. So we have |φ| = (2s − 1)|PC∗[1]| +
(3s − 2)|PC∗[2]| = (3s − 2)(|PC∗[1]| + |PC∗[2]|) + (1 − s)|PC∗[1]| < (3s − 2)
(|PC∗[1]| + |PC∗[2]|) + (1 − s) 2+ε1

3+ε2
(|PC∗[1]| + |PC∗[2]|) = ((3s − 2) + (1 − s)

2+ε1
3+ε2

)(|PC∗[1]| + |PC∗[2]|).
From formula (12) and (13), |γ| ≥ |β| ≥ 1

3+ε2
(|PC∗[1]| + |PC∗[2]|). |γ| ≥ |φ|

always holds, iff (3s − 2) + (1 − s) 2+ε1
3+ε2

≤ 1
3+ε2

holds, then 1
s ≤ 7+3ε2−ε1

5+2ε2−ε1
.

Thus, when 1
s = 7+3ε2−ε1

5+2ε2−ε1
, the performance ratio of our algorithm is 1

s =
1.4 + ε′.

6 Conclusion

In this paper, we conduct a further research on the Two-sided Scaffold Filling
problem, and improve the approximation algorithm to 1.4 + ε based on a new
lower bound. We devise a new approximation algorithm with 1.4+ε-ratio, which
applies an approximative maximum independent set algorithm in a 5-claw free
and a 5-claw free graph. Exploring new algorithms with smaller approximation
ratio is still a valuable future work.

Acknowledgments. This research is partially supported NSF of China under grant
61472222.

208 J. Ma et al.

References

1. Huson, D.H., Reinert, K., Myers, E.W.: The greedy path-merging algorithm for
contig scaffolding. J. ACM 49(5), 603–615 (2002)

2. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint
distance. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 83–92.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16181-0 8

3. Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: maximizing
the number of adjacencies. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS,
vol. 6661, pp. 55–64. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21458-5 7

4. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and
related distances. IEEE/ACM Trans. Bioinform. Comput. Biol. 9(4), 1220–1229
(2012)

5. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold
filling, contig fusion and gene order comparison. BMC Bioinform. 11, 304 (2010)

6. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An improved approximation algorithm for
scaffold filling to maximize the common adjacencies. IEEE/ACM Trans. Comput.
Biol. Bioinform. 10(4), 905–913 (2013)

7. Yu, G., Goldschmidt, O.: Local optimality and its application on independent sets
for k-claw free graphs. J. Comb. Optim. 1(2), 151–164 (1997)

8. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1995), pp. 160–169 (1995)

9. Liu, N., Zhu, D., Jiang, H., Zhu, B.: A 1.5-approximation algorithm for two-sided
scaffold filling. Algorithmica 74(1), 91–116 (2016)

10. Ma, J., Jiang, H.: Notes on the 6/5-approximation algorithm for one-sided scaffold
filling. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, vol. 9711, pp. 145–157.
Springer, Cham (2016). doi:10.1007/978-3-319-39817-4 15

http://dx.doi.org/10.1007/978-3-642-16181-0_8
http://dx.doi.org/10.1007/978-3-642-21458-5_7
http://dx.doi.org/10.1007/978-3-319-39817-4_15

FPT Algorithms for FVS Parameterized
by Split and Cluster Vertex Deletion Sets

and Other Parameters

Diptapriyo Majumdar(B) and Venkatesh Raman

The Institute of Mathematical Sciences, HBNI, Chennai, India
{diptapriyom,vraman}@imsc.res.in

Abstract. A feedback vertex set in an undirected graph is a subset of
vertices whose deletion results in an acyclic graph. The problem (which
we call FVS) of finding a minimum (or k sized) feedback vertex set is
NP-hard in general graphs, while it is polynomial time solvable in some
classes of graphs including split graphs and cluster graphs. The current
best fixed-parameter tractable (FPT) algorithm for determining whether
a given undirected graph has a feedback vertex set of size at most k
has a runtime of O∗(3.618k)(O∗ notation hides polynomial factors). We
consider the parameterized complexity of feedback vertex set parameter-
ized by (vertex deletion) distance to some polynomially solvable classes
of graphs including cluster and split graphs. We call a graph G a (c, i)-
graph if its vertex set can be partitioned into c cliques and i independent
sets. When c = 0 and i = 2, such a graph is simply a bipartite graph
where FVS is NP -hard. It can be deduced easily that FVS is NP -hard
even for constant c when i ≥ 2. When c ≤ 1 and i ≤ 1, then the graph is
a split graph where FVS is solvable in polynomial time. Given a graph,
let k be the size of the modulator whose deletion results in a (c, i)-graph.
We address the parameterized complexity of FVS parameterized by k
when i ≤ 1. Specifically we show that

1. FVS admits an FPT algorithm that runs in O∗(3.148k) time, when
c ≤ 1 and i ≤ 1 (i.e. when the modulator is a deletion set to a split
graph). When c ≥ 2, we generalize the algorithm to one with run-
time O(3.148k+c ·nO(c)). We also show that FVS is W [1]-hard when
parameterized by c (i.e. the c in the exponent of n is unavoidable) if
i ≤ 1 extending a known hardness reduction for the case when i = 0.

2. For the special case when i = 0 and c ≥ 1, and when there are
no edges across vertices in different parts (i.e. the modulator is a
deletion set to a cluster graph), we give an O∗(5k) algorithm.

1 Introduction and Motivation

A feedback vertex set in an undirected graph is a subset of vertices whose deletion
results in an acyclic graph. It finds applications in multiple domains where one
needs to identify a small number of nodes that cover loops or cycles. It is a well-
studied parameter in algorithmic paradigms. The problem of finding a minimum
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 209–220, 2017.
DOI: 10.1007/978-3-319-59605-1 19

210 D. Majumdar and V. Raman

feedback vertex set is one of the classical NP-hard problems in general graphs.
It is closely related to the other well-studied parameter vertex cover as it has
a simple reduction from vertex cover, and it also has a ratio 2 approximation
algorithm [1].

However the parameterized complexity of feedback vertex set (FVS) appears
harder than that of vertex cover. While vertex cover has an efficient O∗(1.28k)
fixed-parameter algorithm [6] (see Sect. 2 for definitions) when parameterized by
the solution size, the current best fixed-parameter tractable (FPT) algorithm for
FVS has a runtime of O(3.618k ·nO(1)) [12] after a series of initial algorithms [4,
5,12,17]. While vertex cover has a O(k2) sized kernel with at most 2k − lg k
vertices [15], an O(k2) sized kernel for FVS [18] is considerably involved.

There has also been a number of structural parameterizations of vertex
cover [11], where the parameter is the size of some structure in the input, rather
than the solution size. In fact, it is easy to see that if F is a hereditary class
of graphs where vertex cover is polynomial time solvable, then vertex cover is
fixed-parameter tractable in a graph that is k vertices away from a graph in
F when parameterized by k. However the parameterized complexity of FVS
is varied when parameterized by deletion distance to a class of graphs where
it is polynomially solvable [10]. See [16] for kernel results on some structural
parameterizations of FVS. We continue this line of work on structural parame-
terizations of FVS by giving efficient fixed-parameter tractable algorithms when
parameterized by deletion distance to split and cluster graphs.

Our Results: For a given c, i ∈ N, an undirected graph G is called (c, i)-graph
if V (G) can be partitioned into c cliques and i independent sets. We consider
the parameterized complexity of the following problem.

FVS-deletion to (c, i)-graph
Input: An undirected graph G = (V, E), S ⊆ V (G) such that G \ S is a graph
for which V (G) \ S = A1∪̇ . . . ∪̇Ac∪̇B1∪̇ . . . ∪̇Bi where A1, . . . , Ac are cliques,
B1, . . . , Bi are independent sets and an integer �.
Question: Is there a feedback vertex set of G with at most � vertices?

We study the parameterized complexity of the problem when parameterized by
|S| and sometimes by c and |S|.

When c ≤ 1 and i ≤ 1, a (c, i)-graph is a split graph where Feedback
Vertex Set is polynomial time solvable. In this case S is the split vertex deletion
set and we give the following special name to the problem.

FVS-Split-Vertex-Deletion Parameter: k
Input: An undirected multi-graph G, S ⊆ V (G) of size at most k such that
G\S is a split graph and an integer �
Question: Does G have a feedback vertex set of size at most �?

FPT Algorithms for FVS Parameterized 211

Our algorithm for this problem that appears in Sect. 4.1 takes O∗(3.148k)
time. Note that the base of the exponent is smaller than 3.618 which is the base
for the best known FVS when parameterized by solution size.

When i = 2 and c = 0, a (c, i)-graph is a bipartite graph where FVS is
NP-Complete and this result can easily be extended for i ≥ 2 and c = 0. Thus
the FVS-deletion to (c, i)-graph is para-NP-hard when i ≥ 2 even when
parameterized by c. Jansen et al. [10] proved that Feedback Vertex Set is
W [1]-hard but contained in XP when parameterized by the number of cliques
in a vertex clique cover. In Sect. 4.2), we extend these results for i ≤ 1; I.e. we
show that FVS is W [1]-hard in a (c, i)-graph when parameterized by c, but has
an algorithm of running time O(nf(c)).

In Sect. 5, we consider deletion distance to a special case of the (c, i)-graph
where i = 0. For this special case, each part of the c partitions is a connected
component. So, there is no edge between two vertices of different parts. Such a
(c, i)-graph is simply a cluster graph.

FVS-CVD Parameter: k
Input: An undirected multi-graph G, S ⊆ V (G) of size at most k such that
every component of G\S is a clique and an integer �
Question: Does G have a feedback vertex set of size at most �?

We provide an algorithm with running time O∗(5k) for this problem.

2 Preliminaries

We use N to denote the set of natural numbers. For r ∈ N, we use [r] to denote the
set {1, . . . , r}. We use standard graph theoretic notations from Diestel [9]. For a
vertex u ∈ V (G) we use NG(u) = {v ∈ V (G)|(u, v) ∈ E(G)} \ {u} to denote the
open neighborhood of u and NG[u] = {v ∈ V (G)|(u, v) ∈ E(G)}∪{u} to denote
the close neighborhood of u. By degG(u), we denote the number of edges incident
on u in the graph G. Let F be a subgraph of G. Then by degF (u), we denote
the number of edges incident on u in F . Let S ⊆ V (G). By G[S], we denote
the graph induced on the vertex set S. By G\S, we denote the graph that we
obtain after deleting the vertices of S and the edges incident on S. Equivalently,
G\S can be represented as G[V (G) \ S]. We use these two notations (G\S and
G[V (G) \ S]) interchangeably to denote the same thing. By multiplicity of an
edge (u, v) we mean the number of edges present between u and v. For a subset
S and for an integer d, we denote

(
S

≤d

)
as the collection of subsets of S with at

most d elements. And by
(

S
≥d

)
, we denote the collection of subsets of S with at

least d elements.

Definition 1 (Fixed Parameter Tractability). Let L ⊆ Σ∗×N is a parame-
terized language. L is said to be fixed parameter tractable (or FPT) if there exists
an algorithm B, a constant c and a computable function f such that ∀x,∀k, B on
input (x, k) runs in at most f(k)·|x|c time and outputs (x, k) ∈ L iff B([x, k]) = 1.
We call the algorithm B as fixed-parameter algorithm.

212 D. Majumdar and V. Raman

Definition 2 (Slice-Wise Polynomial (XP)). Let L ⊆ Σ∗ ×N is a parame-
terized language. L is said to be Slice-Wise Polynomial (or in XP) if there exists
an algorithm B, a constant c and computable functions f, g such that ∀x,∀k, B
on input (x, k) runs in at most f(k).|x|g(k)+c time and outputs (x, k) ∈ L iff
B([x, k]) = 1. We call the algorithm B as XP Algorithm.

There is a notion of hardness in parameterized complexity captured by the
weft hierarchy, W -hard complexity classes and parameterized reduction. W -
hierarchy is defined as FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ XP using boolean circuits
and parameterized reductions. It is believed that the subset relations are strict
in this sequence and a parameterized problem that is hard for some complexity
class above FPT is unlikely to be FPT .

Definition 3 (Parameterized Reduction). Let P1 and P2 be two parameter-
ized languages. We say that there is a parameterized reduction from P1 to P2 if
there exists an algorithm B, a constant c and computable functions f, g : N → N

such that ∀x,∀k such that given an instance (x, k) of P1, B runs in at most
f(k) · |x|c time and outputs an instance (x′, k′) of P2 such that (x, k) ∈ P1 if and
only if (x′, k′) ∈ P2 and k′ ≤ g(k).

Theorem 1 (See Chap. 13, [7]). Let P1, P2 be two parameterized languages
and let there is a parameterized reduction from P1 to P2. Then, if P2 is fixed-
parameter tractable, then P1 is fixed-parameter tractable. Equivalently, for a
given i ≥ 1, if P1 is W [i]-hard, then P2 is W [i]-hard (unlikely to be FPT).
We call the algorithm B a parameterized reduction.

L ⊆ Σ∗ × N is called para-NP-hard if L is NP -hard even when the parameter
is a constant. We refer the reader to the recent monograph [7] for more on
parameterized complexity.

3 FVS-DELETION TO (c, i)-GRAPH when i ≥ 2

As Feedback Vertex Set on bipartite graphs is NP-Complete, we have the
following observation.

Observation 1. When c = 0, i ≥ 2, Feedback Vertex Set is NP-Complete
on (c, i) graphs. So, when the parameter is either c or k and i ≥ 2, FVS-
deletion to (c, i)-graph is Para-NP-Hard.

4 FVS-DELETION TO (c, i)-GRAPH when i ≤ 1

4.1 When c ≤ 1

A graph G is called a Split Graph if V (G) = C∪̇I where G[C] is a clique and I is
an independent set. A set of vertices S ⊆ V (G) is called split vertex deletion set
if G\S is a split graph. In this section, we provide a fixed-parameter algorithm

FPT Algorithms for FVS Parameterized 213

when it is parameterized by the size (number of vertices) of a split vertex deletion
set. Note that the size of the split vertex deletion set is incomparable to the
solution size. We assume that the split vertex deletion set is also given with the
input. Otherwise we use an algorithm by Cygan and Pilipczuk [8] that runs in
O(1.2738k · kO(log2 k) · nO(1)) time to determine the existence of a split vertex
deletion set of size at most k. Now, we are ready to describe our algorithm. We
use (G,S, �) to denote the input instance. We denote F = G\S. F is a split
graph whose vertices can be partitioned into a clique and an independent set.
So, we denote F = (C, I) where V (F) = C∪̇I. Note that any FVS must contain
at least |C| − 2 vertices from F . In particular, all vertices of S with |C| vertices
from F form a feedback vertex set of G. So, if � ≥ |S| + |C|, then (G,S, �) is
Yes-Instance as vertices of I is an independent set. So, we have the following
reduction rule whose correctness is also easy to see.

Reduction Rule 1. If � ≥ |S| + |C|, then (G,S, �) is Yes-Instance.

So, we can assume that � ≤ |S| + |C| − 1. Now we apply the following standard
rules to make the graph minimum degree three. It is easy to see that these rules
can be implemented in polynomial time. For correctness, refer to Chap. 3 in [7].

Reduction Rule 2. If there exists u ∈ V (G) where there is a self loop in u,
then delete u and reduce � by 1.

Reduction Rule 3. If ∃u ∈ V (G) such that degG(u) ≤ 1, then delete u.

Reduction Rule 4. If there exists u ∈ V (G) such that degG(u) = 2, NG(u) =
{v, w}, then delete u and add an extra-edge between v and w.

The above reduction rule can create parallel edges (or self loops).

Reduction Rule 5. If there exists an edge (u, v) ∈ E(G) whose multiplicity is
more than two, then reduce its multiplicity to two.

Now, our algorithm proceeds as follows. We guess a subset S′ ⊆ S and a subset
C ′ ∈ (

C
≥|C|−2

)
that intersect the feedback vertex set of G we are looking for.

Note that |C ′| ≥ |C| − 2 as C is a clique. If G[(S\S′) ∪ (C\C ′)] is not a forest,
then clearly the guess is wrong, we move on to a different subset. So, G[(S\S′)∪
(C\C ′)] is a forest. Now, we have to find a subset I ′ from I with at most �′ =
� − |S′| − |C ′| ≤ |S| + |C| − 1 − |C| + 2 − |S′| = |S| − |S′| + 1 vertices such
that G \ (S′ ∪ I ′ ∪ C ′) becomes a forest. So, now our goal is to solve Disjoint
Feedback Vertex Set problem defined below on the instance (G′, (S\S′) ∪
(C\C ′), I, |S| − |S′| + 1).

Disjoint Feedback Vertex Set Parameter: |S1|
Input: An undirected graph G = (V, E), S1 ∪ S2 = V (G), S1 ∩ S2 = ∅, G[S1]
is a forest, S2 is an independent set and an integer �′.
Question: Is there a feedback vertex set W of G such that W ∩ S1 = ∅ and
|W | ≤ �′?

214 D. Majumdar and V. Raman

Note that for our case, � ≤ |S1| − 1 as we are looking for a set of at most
|S|−|S′|+1 vertices from I that kills all cycles in G[(S\S′)∪(C\C ′)∪I]. Also for
our case I is an independent set. Let C ′′ = C\C ′ and S′′ = S\S′. After deletion
of C ′∪S′ from G, we get G′. Now we consider the Disjoint Feedback Vertex
Set instance on (G′, S′′∪C ′′, I, |S′′|+1). We define a measure μ(G′) = �′+d(G′)
where d(G′) is the number of components in G′[S′′ ∪ C ′′]. We will use μ and
μ(G′) interchangeably as we describe the rest of the parts for our algorithm. Let
|S′| = i. Note that |S′′ ∪ C ′′| = k − i + 2. But, one (or two vertices) from C also
is part of S′′ ∪ C ′′. So, d ≤ k − i + 1. Then �′ ≤ k − i + 1 and d ≤ k − i + 1, we
have that μ ≤ 2(k − i) + 2. Now, we apply Reduction Rules 3, 6, 7 in sequence.
Correctness of first reduction rule is easy to see. Reduction Rule 7 is a slight
modification to the rule 4, but we need to be careful as we have made our guesses
from S. For correctness of these rules, refer to [12].

Reduction Rule 6. If there exists a vertex u ∈ I such that G′[S′′ ∪ C ′′ ∪ {u}]
contains a cycle, then delete u and reduce �′ by one.

Note that Reduction Rule 6 works also when u has exactly two neighbors in the
same component of G′[S′′ ∪ C ′′].

Reduction Rule 7. If there exists u ∈ I such that u has exactly two neighbors
that are in different components of G′[S′′ ∪C ′′], then move u from I to S′′ ∪C ′′.

Lemma 1. Reduction rule 7 is correct.

Proof. Reduction Rule 7 is applied only when Reduction Rule 3, 6 are not
applicable. Then G′[S′′ ∪ C ′′ ∪ {u}] does not create a cycle for any vertex u ∈ I.
The intuition behind this reduction rule is that there exists an optimal solu-
tion that does not contain u. Suppose, any optimal solution contains u. Take
one such feedback vertex set D. As D is a minimal feedback vertex set as well,
G′ \ (D\{u}) has a cycle. Let t1, t2 be the two neighbors of u in G′[S′′ ∪ C ′′].
In particular, in G′\D, there is a unique path from t1 to t2 (as D is minimal).
Moreover, the cycle in G′ \ (D\{u}) is also unique. Now, t1, t2 are in different
components of G′[S′′ ∪C ′′]. So, the unique path from t1 to t2 in G′\D must pass
through a vertex u′ in I. So, (D ∪{u′}) \ {u} is also a minimum feedback vertex
set of G′.
�
Now, we argue that the measure does not increase when Reduction Rules 3, 6, 7
are applied.

Lemma 2. Application of Reduction Rules 3, 6, 7 does not increase μ(G′).

Proof. Reduction Rule 3 does not increase �′ or d(G′). Such a vertex u ∈ I on
which this rule has been applied can be adjacent to only one vertex of S′′ ∪ C ′′.
Such a vertex does not increase d(G′) also. So, μ(G′) does not increase.

Reduction Rule 6 deletes a vertex from I, reduces �′, but does not increase
d(G′). So, μ(G′) does not increase. Reduction Rule 7 does not increase �′, but
it decreases d(G′) as two components in G′[S′′ ∪ C ′′] merges into one single
component after pushing such a vertex u from I to S′′ ∪ C ′′. So, again μ does
not increase.
�

FPT Algorithms for FVS Parameterized 215

Now, when Reduction Rules 3, 6, 7 are not applicable, then every vertex of I
has at least three neighbors that are in S′′ ∪C ′′ and all these three neighbors are
in different components. If for every vertex u ∈ I, u has exactly three neighbors
all in different components, then the instance is polynomial time solvable by
Kocuimaka and Pilipczuk [12]. Otherwise there exists a vertex u ∈ I that has
at least four neighbors in S′′ ∪ C ′′ and all are in different components. In such
case, we apply the following branching rule.

Branching Rule 1. If there exists a vertex u ∈ I such that u has at least four
neighbors all of whom are in different components of G′[S′′ ∪ C ′′], then in one
branch, pick u into the solution (or in other words, delete u and reduce �′ by 1)
and in another branch, we push the vertex u from I to S′′ ∪ C ′′.

It is clear that when Branching Rule 1 is applied, then in one branch μ(G′) drops
by 1 and in other branch, μ(G′) drops by at least 3 (as four components get
merged into a single one). So, we get the following recurrence for this branching
rule.

T (μ) ≤ T (μ − 1) + T (μ − 3)

Solving this recurrence, we get

T (μ) ≤ 1.4656µ ≤ 2.148k−i+1·

As this branching rule is applied over all subsets of S, the algorithm runs in

time
k∑

i=0

(
k
i

)
2.148k−i+1 ·nO(1) = O(3.148k ·nO(1)). Given k, finding a split vertex

deletion set of size at most k takes O∗(1.2738k · kO(log2 k)) time. So, we have the
following theorem.

Theorem 2. Feedback Vertex Set parameterized by Split Vertex Dele-
tion Set can be solved in O(3.148k · nO(1)) time.

4.2 When c ≥ 2

For this case, first we need the assumption that the deletion set (S ⊆ V (G)) and
the partition of V (G) \ S = A1∪̇ . . . ∪̇Ac ∪ I are given with the input. Because,
even when c ≥ 3, the recognition of (c, 0)-Graph is NP-Complete. So, when
c ≥ 3, then we can not even hope to have an FPT algorithm that outputs an
(c, 0) (or (c, 1)) Deletion Set. When c ≤ 2, Kolay and Panolan [13,14] provided
an algorithm with runtime O∗(3.314k).

XP Algorithm. An XP algorithm is known for FVS parameterized by the
number of cliques in a vertex clique cover by Jansen et al. [10]. It follows that
for c ≥ 2, i = 0, k = 0, FVS deletion to (c, i)-graph admits an algorithm
with running time O(nO(c)). We give an explicit algorithm and extend it to the
case when i = 1 with running time O(3.148k+c · n2c+O(1)) where S is a set of at
most k vertices whose deletion from G results into a (c, 1)-Graph.

216 D. Majumdar and V. Raman

Algorithm. Let G\S = A1∪̇ . . . ∪̇Ac∪̇B. As A1, . . . , Ac are all cliques, any feed-
back vertex set of G intersects Aj in at least |Aj | − 2 vertices for all j ∈ [c]. If

� ≥ |S| +
c∑

j=1

|Aj |, then it is an yes-instance. So, � ≤ |S| +
c∑

j=1

|Aj | − 1. Now we

make the minimum degree of G to three by using Reduction Rules 2, 3, 4 and 5.
Let D be a feedback vertex set of G. Then, for every j ∈ [c], |D∩Aj | ≥ |Aj |−2.

So, we have
c∏

j=1

(1 + |Aj | +
(|Aj |

2

)
) = O(n2c) many choices of intersections of a

feedback vertex set of G with A1, . . . , Ac. Now, fix one such choice (A′
1, . . . , A

′
c)

from Aj ’s. And we guess a subset S′ ⊆ S that intersects with feedback vertex
set in G. Note that we have excluded the vertices of Aj\A′

j in the feedback

vertex set. If G[(S\S′) ∪ (
c⋃

j=1

(Aj\A′
j))] is not a forest, then we move to the

next guess. Otherwise G[(S\S′) ∪ (
c⋃

j=1

(Ai\A′
j))] is a forest. We update �′ =

|S| +
c∑

j=1

|Aj | − 1 − |S′|
c∑

j=1

|A′
j | ≤ k − |S′| + 2c − 1. Now, our goal is to identify

whether there exists a feedback vertex set of size at most �′ contained in B, after
deletion of vertices of A′

1, . . . , A
′
c, S

′. This is again the Disjoint Feedback
Vertex Set problem where V (G′) = S′′∪̇B such that S′′ induces a forest,

B is an independent set. Let |S′| = p. As � ≤ |S| +
c∑

j=1

|Aj |, we have that

�′ ≤ |S| − |S′| + 2c − 1 ≤ k − p + 2c − 1 as at least two vertices from each of

A1, . . . , Ac had been deleted. Let S′′ = (S\S′)∪ (
c⋃

j=1

(Aj\A′
j)). Also, the number

of connected components in G[(S\S′) ∪ (
c⋃

j=1

(Aj\A′
j))] is c(S′′) which is at most

|S| − |S′| + c − 1 = k + c − p − 1 as there are c components of them having at
least two vertices. We define a measure μ(G′) = �′ + c(S′′) ≤ 2k + 3c − 2p − 1.
Now, we apply Reduction Rules 3, 6 and 7 in sequence. It is easy to see that μ
does not increase when a reduction rule is applied. When Reduction Rules 3, 6
and 7 are not applicable, then we have that every vertex in I has at least three
neighbors in S′′ and all of them are in different components of G[S′′]. If every
vertex in B has exactly three neighbors in S′′ and all are in different components
in G[S′′], then the problem is polynomial time solvable. So, we can assume that
there exists some vertex u ∈ B that has at least four neighbors in S′′ and all
of those neighbors are in different components of G[S′′]. We branch on such
vertices using Branching Rule 1. In one branch, we pick v into the solution. In
that case μ drops by one. In other branch, we add v to S′′. In this case, μ drops
by at least three as at least four connected components in G[S′′] merges into
one component. So, we have the following recurrence where α is constant not
depending on k or n.

T (μ) ≤ T (μ − 1) + T (μ − 3)

FPT Algorithms for FVS Parameterized 217

Solving the recurrence we get that T (μ) ≤ 1.4656µ = 2.148k−j+1.5c−1. The total
running time of the algorithm is as follows.

n2c+O(1) ·
k∑

j=0

(
k

j

)
· 2.148k−j+1.5c = n2c+O(1)2.1481.5c ·

k∑

j=0

(
k

k − j

)
· 2.148k−j

= O(3.148k+c · n2c+O(1))

Theorem 3. FVS deletion to (c, 1)-graph admits an algorithm with run-
ning time O(3.148k+c ·n2c+O(1)). I.e. the problem admits an XP algorithm when
c is part of the parameter.

W [1]-hardness. Jansen et al. [10] also prove that FVS parameterized by c
is W [1]-hard. We slightly extend this result to justify that FVS is W [1]-hard
when it is parameterized by deletion distance to (c, 1)-Graph when (c, k) is a
parameter. We have the following lemma.

Lemma 3. For i ≤ 1 and c ≥ 2 FVS-deletion to (c, i)-graph is W [1]-hard
when (c, k) is the parameter.

Proof. We reduce FVS-deletion to (c, 0)-graph to FVS-(c, 1)-Graph as
follows. We assume that the partition V (G)\S = A1∪̇ . . . ∪̇Ac is given with the
input. Find a maximal independent set from G\S. Let B be the set of such
vertices. We delete B from A1, . . . , Ac. We get A′

1, . . . , A
′
c where for all j ∈ [c],

A′
i is also a clique and B is an independent set of size at least 2. The reason

we are guaranteed to get an independent set of size at least 2 from G\S is
that otherwise we could merge all C1, . . . , Cr into a single partition which is
also a clique, that contradicts the assumption that c ≥ 2. Note that we have
not changed the graph at all and we have adjusted the partitions slightly. So,
FVS-deletion to (c, 1)-graph is W [1]-hard when (c, k) is the parameter.
�

5 FVS Parameterized by Cluster Vertex Deletion Set

Now, we consider a special case of (c, i)-Graph where i = 0. Moreover, there
is no edge between a vertex u in one partition and a vertex v in a different
partition of G\S. In particular, each clique partition is a connected component,
and the parameter is the number of vertices in a cluster vertex deletion set. Here
we can omit the assumption that the cluster vertex deletion set (S) is given
along with the input as there is an algorithm by Boral et al. [3] that runs in
O∗(1.9106k · (n + m)) time and either outputs a cluster vertex deletion set of
size at most k (if exists) or says that no cluster vertex deletion set of size at
most k exists. Central to our algorithm is the following theorem which is what
is essentially used in the proof of Theorem 4.5 of Bodlaender et al. [2].

Theorem 4. Let G be a graph given with a nicer path decomposition P =
(X1, . . . , Xq) such that the intersection of any feedback vertex set with any bag
Xi has at most 2k · (|Xi| − k)O(1) possibilities. Then, Feedback Vertex Set
can be solved in O(5k · nO(1)) time.

218 D. Majumdar and V. Raman

Now, we explain nicer path decomposition and justify how G has such a nicer
path decomposition as required by the Theorem 4. We define path decomposition
and pathwidth of a graph.

Definition 4 (Path Decomposition). Let G = (V,E) be an undirected graph.
Path decomposition of G is a sequence of bags P = (X1, . . . , Xq) where ∀i ∈
[q],Xi ⊆ V (G) such that the following properties are satisfied.

1. For every vertex u ∈ V (G), there exists i ∈ [q] such that u ∈ Xi.
2. For every edge (u, v) ∈ E(G), there exists i ∈ [q] such that u, v ∈ Xi.
3. For any vertex u ∈ V (G), if u ∈ Xi ∩ Xk for some i ≤ k, then u ∈ Xj for all

i ≤ j ≤ k.

Definition 5 (Pathwidth). Let P = (X1, . . . , Xq) be a path-decomposition of
G. Then, width of P is denoted as pw(P) = maxi∈[q]{|Xi| − 1}. And pathwidth
of G is the minimum over the width of all possible path-decompositions of G.
More specifically, if Å be the set of path decompositions of G, then pw(G) =
minP∈Å

pw(P).

A path decomposition is called nice if all of its bags are one of the following
types.

– Introduce Bag: A bag Xi+1 is called an introduce vertex bag if Xi+1 = Xi∪{u}
where u /∈ Xi.

– Forget Bag: A bag Xi+1 is called a forget bag if Xi+1 = Xi\{u} where u ∈ Xi.
– X1 = Xq = ∅.

We also have the following lemma which is Lemma 7.2 of [7].

Lemma 4. If a graph G admits a path decomposition of width p, then it
also admits a nice path decomposition of width p. Moreover, given a path
decomposition P = (X1, . . . , Xq) of G of width at most p, one can in time
O(p2max(q, |V (G)|)) compute a nice path decomposition of G of width p.

In particular, we can convert a nice path decomposition into a nicer path decom-
position in polynomial time where the bags are of three types (see again [7]).

– Introduce Vertex Bag: A bag Xi+1 is called an introduce vertex bag if Xi+1 =
Xi ∪ {u} where u /∈ Xi.

– Introduce Edge Bag: We say a bag Xi is introduce edge bag if it is labeled by
an edge (u, v) and Xi = Xi−1. Note that in such case u, v ∈ Xi. Also note
that an edge is introduced exactly once in the entire decomposition.

– Forget Bag: A bag Xi+1 is called a forget bag if Xi+1 = Xi\{u} where u ∈ Xi.

We consider V (Gi) = (
i⋃

j=1

Xi) and E(Gi) = {(u, v) ∈ E(G)|(u, v) is introduced

in one of the bags Xj for some j ∈ [i]}. In particular, it is easy to see that a given
a nice path decomposition can be converted into a nicer path decomposition also
in O(p2max(q2, |V (G)|2)) time.

FPT Algorithms for FVS Parameterized 219

Now, we get back to our problem FVS-CVD. Let C1, . . . , Cc be the set of
connected components of G\S. Consider the following subsets of vertices ∀i ∈
[c], S ∪ Ci ⊆ V (G). Let us denote these subsets in the following order. S ∪
C1, . . . , S ∪ Cc. We argue that (S ∪ C1, . . . , S ∪ Cc) is a path-decomposition.

Lemma 5. For the problem FVS-CVD, (S ∪ C1, . . . , S ∪ Cc) forms a path-
decomposition of G.

Proof. Consider any vertex u ∈ V (G). If u ∈ S, then u ∈ S ∪ Ci for all i ∈ [q].
So, both property 1 and 3 are satisfied for some u ∈ S. If u ∈ Ci for some i ∈ [c],
then u ∈ S ∪ Ci and there is exactly one i ∈ [c] in which u exists. So, property
1 and 3 are satisfied for all u ∈ V (G). Consider any edge (u, v) ∈ E(G). If
u, v ∈ S, then u, v ∈ S ∪ C1. If u ∈ S, v ∈ Ci for some i ∈ [c], then u, v ∈ S ∪ Ci.
If u, v ∈ Ci, then u, v ∈ S ∪ Ci. So, property 2 is satisfied.
�
Now, notice that in this path decomposition, a feedback vertex set of G can
intersect any bag (S∪Ci) in at most 2|S| ·|Ci|2 possibilities. It can be easily shown
that this path decomposition can be converted into a nicer path decomposition
with similar intersection behavior with a feasible feedback vertex set of G. Now,
from Lemma 5 and Theorem 4 we get the following theorem.

Theorem 5. FVS-CVD admits an algorithm that runs in O(5k · nO(1)) time.

6 Conclusion

We have considered structural parameterization of Feedback Vertex Set
where the parameter is the deletion distance to a graph whose vertex set is
partitioned into cliques and independent sets. When parameterized by the size
of the deletion set to split graphs, our FPT algorithm is faster than the best
known FPT algorithm for FVS when parameterized by the solution size, though
the split deletion set size is incomparable to the solution size. A clear open
problem is to improve the runtime of the FPT algorithms we considered in
this paper. Improving the FPT runtime of FVS parameterized by solution size
remains as an open problem by itself.

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discret. Math. 12(3), 289–297 (1999)

2. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015)

3. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm
for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

4. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures.
Algorithmica 73(1), 63–86 (2015)

220 D. Majumdar and V. Raman

5. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

6. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further
improvements. J. Algorithms 41(2), 280–301 (2001)

7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

8. Cygan, M., Pilipczuk, M.: Split Vertex Deletion meets Vertex Cover: new fixed-
parameter and exact exponential-time algorithms. Inf. Process. Lett. 113(5–6),
179–182 (2013)

9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

10. Jansen, B., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set.
Tsinghua Sci. Technol. 19(4), 387–409 (2014)

11. Jansen, B.M.P., Fellows, M.R., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: parameter ecology and the deconstruction of computational complexity.
Eur. J. Comb. 34(3), 541–566 (2013)

12. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf.
Process. Lett. 114(10), 556–560 (2014)

13. Kolay, S., Panolan, F.: Parameterized algorithms for deletion to (r, ell)-graphs. In:
Proceedings of FSTTCS, pp. 420–433 (2015)

14. Kolay, S., Panolan, F.: Parameterized algorithms for deletion to (r, l)-graphs.
CoRR, abs/1504.08120 (2015)

15. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh,
S.: Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms 11(2), 15:1–15:31 (2014)

16. Majumdar, D.: Structural parameterizations of feedback vertex set. In: IPEC,
Aarhus, Denmark, pp. 21:1–21:16 (2016)

17. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed-parameter tractable algo-
rithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415
(2006)

18. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2),
1–8 (2010)

A Constant Amortized Time Algorithm
for Generating Left-Child Sequences

in Lexicographic Order

Kung-Jui Pai1, Jou-Ming Chang2(B), and Ro-Yu Wu3

1 Department of Industrial Engineering and Management,
Ming Chi University of Technology, New Taipei City, Taiwan

poter@mail.mcut.edu.tw
2 Institute of Information and Decision Sciences,

National Taipei University of Business, Taipei, Taiwan
spade@ntub.edu.tw

3 Department of Industrial Management,
Lunghwa University of Science and Technology, Taoyuan, Taiwan

eric@mail.lhu.edu.tw

Abstract. Wu et al. (Theoret. Comput. Sci. 556:25–33, 2014) recently
introduced a new type of sequences, called left-child sequences (LC-
sequences for short), for representing binary trees. They pointed out
that such sequences have a natural interpretation from the view point of
data structure and gave a characterization of them. Based on this char-
acterization, Pai et al. (International conference on combinatorial opti-
mization and applications. Springer, Cham, pp. 505–518, 2016) showed
that there is an easily implementing algorithm that uses generate-and-
test approach to filter all LC-sequences of binary trees with n internal
nodes in lexicographic order, while in general this algorithm is not effi-
cient at all. In this paper, we design two novel rotations that allow us to
drastically alter the shape of binary trees (and thus their corresponding
LC-sequences). As an application, these operations can be employed to
generate all LC-sequences in lexicographic order. Accordingly, we present
a more efficient algorithm associated with the new types of rotations for
generating all LC-sequences and show that it takes only constant amor-
tized running cost.

Keywords: Constant amortized time algorithm · Binary trees · Left-
child sequences · Lexicographic order · Generation algorithms · Amor-
tized cost

1 Introduction

Binary trees are one of the most fundamental data structures in computer sci-
ence and have been widely studied over half a century. Usually, binary trees are
encoded by using integer sequences and many types of integer sequences have
been introduced (e.g., see [9,11] for surveys). For convenience, hereafter the terms
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 221–232, 2017.
DOI: 10.1007/978-3-319-59605-1 20

222 K.-J. Pai et al.

of binary trees and their corresponding sequences are often used interchangeably.
Due to many practical applications in computer science, such as combinato-
rial object search or algorithm performance analysis, exhaustively generating
all binary tree sequences is an important issue in research topic. Generation
algorithms customarily produce sequences in a specific ordering, such as lexico-
graphic order [16,22,23] or Gray-code order [14,17]. For algorithmic efficiency, in
general, sequences generated in lexicographic order is demanded to run in con-
stant amortized time [2,3,18]. By contrast, sequences generated in Gray-code
order is in need of taking a constant time for each generation (e.g., the so-called
loopless algorithms proposed by Ehrlich [4]). For more references of binary tree
sequences generation, we refer to [10,13–16,19,20].

Recently, Wu et al. [20] proposed a loopless algorithm associated with the
usual tree rotations (i.e., left rotation and right rotation for AVL-trees) to
generate four types of binary tree sequences simultaneously. In particular, the
generation includes two new types of sequences called left-child sequences (LC-
sequences for short) and their mirror images called right-child sequences (RC-
sequences for short), as defined later in Sect. 2. It is well-known that the prac-
tice in implementing binary trees usually adopted the so-called structure-pointer
representation so that the spaces of nodes in a tree are dynamically allocated
by structured memory and children of nodes are accessed via pointers. Wu
et al. [20] thereby claimed that LC- and RC-sequences are inspired by such
a natural structure representation. Moreover, they gave characterizations of the
two types of sequences (see Theorem 1). However, both LC- and RC-sequences
generated in [20] are not in lexicographic order or Gray-code order. In fact,
the difference between two successive LC-sequences (resp., RC-sequences) in the
generated list is either one or two digits.

Later on, based on the characterization of LC-sequences provided in [20], Pai
et al. [12] showed that there is an algorithm using generate-and-test approach
that allows developers to easily implement for generating all LC-sequences of
binary trees with n internal nodes in lexicographic order (see Procedure Lex-Gen-
Tree in Sect. 3), while this algorithm is quite not efficient. Indeed, the purpose
of [12] is to develop efficient ranking algorithm (i.e., a function that determines
the rank of a given sequence in the generated list) and unranking algorithm
(i.e., a function that produces the sequence corresponding to a given rank) of
LC-sequences in lexicographic order. As expected, their ranking and unranking
algorithms can be run in amortized cost of O(n) time and space. Since the
difference between two consecutive LC-sequences in the lexicographic order may
vary widely, it means that the shapes of corresponding binary trees are possibly
changed drastically. To adapt to this unavoidable situation, in this paper we
design two massive rotations which can deal with a great variety of changes to
assist our generation. As a result, we develop an algorithm called Refined-Lex-
Gen-Tree that associates with these tree rotations to generate all LC-sequences in
lexicographic order. Moreover, we show that this algorithm is more efficient and
has constant amortized running cost. By symmetry, generation of RC-sequences
can be developed by a similar way.

A CAT Algorithm for Generating Left-Child Sequences 223

The rest of this paper is organized as follows. In Sect. 2, we formally give the
definitions of LC- and RC-sequences, and introduces a coding trees structure for
representing all LC-sequences in lexicographic order. In Sect. 3, we define two
new types of rotations for binary trees, and then propose a constant amortized-
time algorithm associated with these rotations for generating all LC-sequences
in lexicographic order. Finally, concluding remarks are given in the last section.

2 Preliminaries

An extended binary tree is a rooted and ordered tree such that every internal
node has exactly two children called the left child and the right child [9]. Let T be
an extended binary tree with n internal nodes numbered from 1 to n in inorder
(i.e., visit recursively the left subtree, the root and then the right subtree of T).
Henceforth, we shall not distinguish the terms between a node and its inorder
number. For a node i ∈ T , the subtree rooted at i is denoted by Ti. Also, the sub-
tree rooted at the left child (resp., right child) of i is called the left subtree (resp.,
right subtree) of i and is denoted by Li (resp., Ri). The left arm (resp., right
arm) of T is the path from the root to its leftmost leaf (resp., rightmost leaf).

2.1 Left-Child Sequences

Recently, Wu et al. [20] introduced new types of sequences called left-child
sequence (LC-sequence for short) and right-child sequence (RC-sequence for
short) to represent binary trees. Given a binary T with n internal nodes
labeled by 1, 2, . . . , n in inorder, the LC-sequence of T , denoted by �(T) =
(�[1], �[2], . . . , �[n]), is an integer sequence so that the term �[i], 1 � i � n,
is defined as follows:

�[i] =

{
0 if the left child of i is a leaf;
j if j is the left child of i in T.

(1)

Similarly, r(T) = (r[1], r[2], . . . , r[n]) denotes the RC-sequence of T , where we
use the right child instead of the left child in Eq. (1) to define the term r[i]. For
instance, the LC-sequence and RC-sequence of the binary tree T shown in Fig. 1
are �(T) = (0, 1, 0, 3, 0, 2, 0, 0, 7) and r(T) = (0, 4, 0, 5, 0, 9, 8, 0, 0), respectively.

Wu et al. [20] showed that the two types of binary tree sequences can trans-
form to each other in linear time. Moreover, they characterized the two types of
sequences as follows.

Theorem 1 (Wu et al. [20]). Let c = (c1, c2, . . . , cn) be an integer sequence.
Then,

(a) c is the LC-sequence of a binary tree T with n internal nodes if and only if
the following conditions are fulfilled for all i ∈ {1, 2, . . . , n}: (1) 0 � ci < i
and (2) cj = 0 or cj > ci for all ci < j < i.

(b) c is the RC-sequence of a binary tree T with n internal nodes if and only if
the following conditions are fulfilled for all i ∈ {1, 2, . . . , n}: (1) ci > i or
ci = 0 and (2) cj = 0 or cj < ci for all i < j < ci.

224 K.-J. Pai et al.

1 7

8

92

3

4

5

6

Fig. 1. A binary tree T with LC-sequence �(T) = (0, 1, 0, 3, 0, 2, 0, 0, 7) and RC-
sequence r(T) = (0, 4, 0, 5, 0, 9, 8, 0, 0).

2.2 Coding Tree Structure

Let Tn be the set of binary trees with n internal nodes. It is well-known that
|Tn| = 1

n+1

(
2n
n

)
(i.e., the Catalan number). To depict all binary tree sequences,

a systematic way by using coding trees was suggested in [10]. For a rooted tree,
a path from the root to a leaf is called a full path. A coding tree Tn is a rooted
tree consisting of n levels of nodes such that every node is associated with a label
and the labels along a full path in Tn represent the sequence of a binary tree
with n internal nodes. Figure 2 demonstrates the coding tree T5 for representing
LC-sequences, where each node xi in a full path (x1, x2, . . . , xn) is labeled by
�[i]. For notational convenience, we also write �(xi) = �[i] when we provide the
full path (x1, x2, . . . , xn) corresponding to a binary tree T .

For instance, in T5, labels in the left arm represent the right-skewed tree with
LC-sequence (0, 0, 0, 0, 0), and labels in the right arm represent the left-skewed
tree with LC-sequence (0, 1, 2, 3, 4). Hereafter, we consider a specific coding tree
Tn in which all LC-sequences of binary trees are emerged from left to right in
lexicographic order.

1

1 00

0

0

0 31 2 3 1 20 0

2

3 0 3

2

0 3

1 2 430 40 1 40 1 2 40 430 40 1 430 40 1 40 2 430 40 2 40 40430

0
0
0
0
1

0
0
0
0
0

0
0
0
0
2

0
0
0
0
3

0
0
0
0
4

0
0
0
1
0

0
0
0
1
4

0
0
0
2
0

0
0
0
2
1

0
0
0
2
4

0
0
0
3
0

0
0
0
3
1

0
0
0
3
2

0
0
0
3
4

0
0
1
0
0

0
0
1
0
3

0
0
1
0
4

0
0
1
3
0

0
0
1
3
4

0
0
2
0
0

0
0
2
0
1

0
0
2
0
3

0
0
2
0
4

0
0
2
1
0

0
0
2
1
4

0
0
2
3
0

0
0
2
3
1

0
0
2
3
4

0
1
0
0
0

0
1
0
0
2

0
1
0
0
3

0
1
0
0
4

0
1
0
2
0

0
1
0
2
4

0
1
0
3
0

0
1
0
3
2

0
1
0
3
4

0
1
2
0
0

0
1
2
0
3

0
1
2
0
4

0
1
2
3
0

0
1
2
3
4

Fig. 2. A coding tree T4 for representing LC-sequences and LD-sequences.

A CAT Algorithm for Generating Left-Child Sequences 225

3 Generating LC-sequences in Lexicographic Order

Based on the characterization of LC-sequences described in Theorem 1, Pai et al.
[12] showed that there is an easy implementing algorithm (see Fig. 3) to generate
all LC-sequences of binary trees with n internal nodes in lexicographic order. In
this algorithm, the outer loop specifies the range of condition (a.1) in Theorem1,
and the if · · · then statement in the inner loop is the testing of condition (a.2)
in Theorem 1. Initially, we set �[1] = 0, and then perform a procedure call Lex-
Gen-Tree(2) to start the generation.

Fig. 3. An procedure for generating LC-sequences in lexicographic order.

The above algorithm uses generate-and-test approach for filtering out all
non-valid LC-sequences. Although the algorithm is correct, in general it is not
efficient at all. For instance, we reveal some non-efficient evidences as follows.
Suppose that c = (c1, c2, . . . , cn) is a non-valid LC-sequence satisfying cj �= 0
and cj � ci for some integers i ∈ {3, 4, . . . , n} and ci < j < i. By Theorem 1,
all subsequent sequences (c1, . . . , ci−1, c

′
i, ci+1, . . . , cn) for c′

i ∈ {ci + 1, . . . , i − 2}
are also non-valid. However, Lex-Gen-Tree does not detect this aspect and it
performs the sequence generation and testing continuously.

A rotation is a simple operation that reconstructs a binary tree into another
tree with the same number of nodes and preserves its inorder to be unchanged.
In what follows, we design two new types of rotations for binary trees, where one
is adjustable and the other is non-adjustable. Then, we present a more efficient
algorithm, called Refined-Lex-Gen-Tree, that associates with these rotations for
generating all LC-sequences in lexicographic order. Particularly, both rotations
in a binary tree T are performed at node n (i.e., the parent of the rightmost leaf
in T). Also, we imagine that T is the right subtree of a dummy node numbered
by 0. The first one is called the flip-on-site rotation, denoted by fos(k), which
is an operation that flips the node n and its k immediate descendants in the
left arm of the subtree Tn. Note that this operation is adjustable because the

226 K.-J. Pai et al.

number of all flipped nodes is dependent on k. In fact, the degenerate case of
this operation when k = 1 is the usual right rotation (for AVL trees) at node n
in T . See Fig. 4(a) for an illustration.

xk n

n
xk xk−1

x1Tk

Tk−1

T1

fos(k)

0

p

q

T0

x1

x2

T0

T1

T0xk

Tk Tk−1

0
p

q

(a)

00
p

Tm

xm xm−1

xk

n
n

x1

T1

p

q

x1

x2

T0T1

q
ftt()

T2

T2

xm

Tm(b)

Fig. 4. (a) A flip-on-site rotation fos(k); (b) A flip-to-top rotation ftt().

The second operation is called the flip-to-top rotation, denoted by ftt(),
which is an operation that flips the node n and its all descendants in the left
arm of Tn, and then moves this flipped list to the position between the root 0
and its right child. See Fig. 4(b) for an illustration. In general, the two types of
rotations consist of a sequence of usual right rotations except for the last move
of the flipped list in ftt().

Initially, the improved algorithm, called Refined-Lex-Gen-Tree, generates the
first tree (i.e., the right-skewed tree with n internal nodes), and then repeatedly
call a procedure Next-Tree() to generate all subsequent trees by using rotations
defined above until a certain condition (i.e., carry � n, as explained later in the
list of algorithm) is fulfilled. In each generation, a boolean variable flip to top
can determine which of fos(k) and ftt() is the current operation. To preserve
the inorder of binary trees to be unchanged after a rotation, we need the following
three arrays �[0..n], r[0..n] and p[0..n], where the first two are used for LC- and
RC-sequences, and the last one is used for storing the parent information of

A CAT Algorithm for Generating Left-Child Sequences 227

nodes. For each usual right rotation in the flipped list, the node where the
rotation acts on is indicated by the variable “this”, and its parent and left child
are indicated by variables “prev” and “next”, respectively. The detail of the
refined algorithm is as shown in Fig. 5.

Algorithm 1: Refined-Lex-Gen-Tree

begin
for i ← 0 to n do // Generate the first tree.

[i] ← 0; r[i] ← i+ 1; p[i] ← i − 1;
r[n] ← 0;
Print([1], [2], . . . , [n]); // Print the first tree sequence;
carry ← 2;
while carry � n do // Generate the next tree sequence

Next-Tree();

Procedure Next-Tree()

1 begin
2 this ← n; prev ← p[this]; next ← [this];
3 if [n] = 0 then flip to top ← true;
4 else if r[[n]] = 0 then flip to top ← false;
5 else
6 repeat // Flip a sequence of nodes.
7 r[next] ← this; p[this] ← next; [this] ← 0;
8 p[next] ← 0; this ← next; next ← [this];
9 until [this] = this − 1;

10 if [this] = 0 then flip to top ← true;
11 else flip to top ← false;

12 if flip to top then // Perform a flip-to-top rotation.
13 r[prev] ← 0; [this] ← r[0]; p[r[0]] ← this;
14 r[0] ← this; p[this] ← 0;

15 else // Perform a usual right rotation.
16 [this] ← r[next]; p[r[next]] ← this; r[next] ← this;
17 p[this] ← next; r[prev] ← next; p[next] ← prev;

18 Print([1], [2], . . . , [n]); // Print the current tree sequence;
19 if [carry] = carry − 1 then carry ← carry+ 1;

Fig. 5. A refined algorithm for generating LC-sequences in lexicographic order.

In the above algorithm, we use a global variable carry to control the gener-
ation in progress. Since the last tree in the generated list is the left-skewed tree
satisfying �[i] = i − 1 for all 1 � i � n, it is the errand of carry for completing
this setting. Since �[1] = 0 is never changed, we set carry = 2 at the beginning.
Once the setting in the current position is accomplished, carry is increased by
one and goes ahead to the next position (see Line 19). The algorithm terminates
when the condition carry = n + 1 is achieved.

In Next-Tree(), the variable flip to top determines which type of rotations
will be invoked. The decision is relied on the following rules:

228 K.-J. Pai et al.

(R1) if �[n] = 0, call ftt(); (Lines 13–14)
(R2) if �[n] �= 0 and r[�[n]] �= 0, call fos(1); (Lines 16–17)
(R3) if �[n] �= 0 and r[�[n]] = 0, flip a sequence of nodes by using usual right

rotations until a rotation is performed at a node satisfying �[this] �= this−1;
(Lines 6–9)

Note that, for our Next-Tree() procedure, all flipped nodes triggered by the rule
(R3) indeed have no right child because these nodes in the sequence meet with
the condition �[this] = this− 1. After flipping the list of nodes in (R3), there are
two statuses of the node where the last rotation acted on (i.e., the node indicated
by the variable “this”). Accordingly, two kinds of subsequent processes are as
follows:

(R4) if �[this] = 0, call ftt(); (Lines 13–14)
(R5) if �[this] �= 0, call fos(1); (Lines 16–17)

Actually, a flip-on-site rotation fos(k) is an operation integrated with rules (R3)
and (R5) for flipping the node n and partial descendants with k − 1 nodes in
the prefix segment of the left arm of Tn, as shown in Fig. 4(a). By contrast, a
flip-to-top rotation ftt() is an operation integrated with rules (R3) and (R4)
for flipping the node n and all descendants in the left arm of Tn, and then
moving the flipped list to the top of the tree, as shown in Fig. 4(b). Obviously,
fos(k) operation requires O(k) time, and the complexity of ftt() operation
is dependent on the length of the left arm of Tn. Since a usual right rotation
requires only constant time, the complexity of each operation is indeed equal to
the number of different digits between two consecutive LC-sequences, i.e., before
operating and after operating.

We now at a position to show that the above rules can correctly generate the
next sequence in lexicographic order by using the two types of rotations.

Lemma 1. Let T be a binary tree and suppose that �(T) = (�[1], �[2], . . . , �[n])
satisfies the condition of (R1). If T̃ is the binary tree obtained from T by taking
a ftt() rotation at the node n, then �(T̃) is the immediately succeeding sequence
of �(T) in lexicographic order.

Proof. Let p be the right child of the root (i.e., the dummy node 0) in T .
Since the node n has no left child, after performing ftt(), the whole sequence
�(T) keeps unchanged except the last position. In fact, the difference between
�(T) and �(T̃) only occurs at �[n], which is changed from 0 to p. We suppose
to the contrary that the immediately succeeding sequence of �(T) is �(T ′) =
(�[1], �[2], . . . , �[n] = i) where 0 < i < p and T ′ is the corresponding binary
tree. Since every number in an LC-sequence can appear at most once except the
number 0, it implies that �[j] �= i for 1 � i � n − 1, and thus �(T) does not
contain i as an element. Moreover, since i < p, it follows that i must be the right
child of some node in the subtree Lp of T . Let q be the least ancestor of i in
T for which some node k ∈ Lp takes q as its left child (i.e., �[k] = q). Clearly,

A CAT Algorithm for Generating Left-Child Sequences 229

q < i < k < p. For T ′, since i is the left child of n, it implies k ∈ Ri and q /∈ Ri.
However, this contradicts the fact that �[k] = q remains unchanged in T ′ because
k �= n. �

Lemma 2. Let T be a binary tree and suppose that �(T) = (�[1], �[2], . . . , �[n])
satisfies the condition of (R2). If T̃ is the binary tree obtained from T by taking
a usual right rotation at the node n, then �(T̃) is the immediately succeeding
sequence of �(T) in lexicographic order.

Proof. Suppose that x is the left child of n and let y be the right chile of x in
T , i.e., �[n] = x and r[�[n]] = y. Clearly, after performing fos(1), the sequence
�(T) keeps unchanged except the last position �[n], which is changed from x to
y. Suppose to the contrary that the immediately succeeding sequence of �(T) is
�(T ′) = (�[1], �[2], . . . , �[n] = i) where x < i < y and T ′ is the corresponding
binary tree. Since x < i < y and �[j] �= i for 1 � i � n − 1, i must be the right
child of some node in the subtree Ly of T . Let q be the least ancestor of i in
T for which some node k ∈ Ly takes q as its left child (i.e., �[k] = q). Clearly,
q < i < k < y. For T ′, since i is the left child of n, it implies k ∈ Ri and q /∈ Ri.
However, this contradicts the fact that �[k] = q remains unchanged in T ′ because
k �= n. �

Lemma 3. Suppose that T and T̃ are two binary trees generated by the proce-
dure Next-Tree() such that T̃ is obtained from T . Then, �(T̃) is the immediately
succeeding sequence of �(T) in lexicographic order.

Proof. By Lemmas 1 and 2, we have proved the correctness of generation pro-
duced by rotations without a flipped list of nodes, i.e., the status meets with
the condition of (R1) or (R2). In general, to show the correctness when the
current status meets with the condition of (R3), we may imagine that nodes
in the flipped list are contracted to form a single node and it is indicated by
the variable “this”. This is due to the fact that every node in the flipped list
contains no right child. As a result, the rule (R4) is in keeping with the rule
(R1) if we treat the variable “this” as n. Also, we note that if the current status
meets with the condition of (R5), it guarantees r[�[this]] �= 0. Otherwise, we
have �[this] = this − 1 and the loop (Lines 6–9) goes ahead to the next round.
Similarly, if we treat the variable “this” as n, the rule (R5) is again in keeping
with the rule (R2). Therefore, using arguments similar to Lemmas 1 and 2, we
can prove the correctness if the status meets with the condition of (R4) or (R5),
and thus the lemma follows. �

Theorem 2. The algorithm Refined-Lex-Gen-Tree can correctly generates all
LC-sequences of binary trees with n internal nodes in lexicographic order. In
particular, each generation requires only constant amortized time with no more
than 2.

Proof. The correctness of the algorithm Refined-Lex-Gen-Tree directly follows
from Lemma 3. We now give the complexity analysis as follows. Recall that we

230 K.-J. Pai et al.

use Tn to denote the set of binary trees with n internal nodes. Let ECn be
the expected cost of generating an LC-sequences of length n in Refined-Lex-
Gen-Tree. In [10], Lucas et al. showed that several coding trees for representing
binary tree sequences are isomorphic. Actually, a coding tree for representing a
certain type of binary tree sequences may come from an old one by changing
the sequence representation and rearranging sequence order. Thus, the number
of nodes in each level of the coding tree does not be changed, i.e., a Catalan
number |Tk| for k ∈ {1 . . . n}. Let Nk be the number of pairs of two consecutive
LC-sequences of length n with k different digits in the lexicographic order. It is
easy to observe that for each k ∈ {1 . . . n − 1},

Nk = |Tn−k+1| − |Tn−k|.
Since |T1| = 1, the total complexity of generating all LC-sequences of length
n is
n−1∑
k=1

kNk =
(|Tn| − |Tn−1|

)
+ 2

(|Tn−1| − |Tn−2|
)

+ 3
(|Tn−2| − |Tn−3|

)
+ · · ·

+(n − 2)
(|T3| − |T2|

)
+ (n − 1)

(|T2| − |T1|
)

= Sn − n,

where Sn denote the sum of the first n Catalan numbers [1]. In fact, it has been
pointed out in [24] that Sn < |Tn+1|. Thus, we have

ECn =

n−1∑
k=1

kNk

|Tn| =
|Tn| + Sn−1 − n

|Tn| <
2|Tn| − n

|Tn| < 2.

In particular, the expected cost ECn = 4
3 when n tends to infinite. This com-

pletes the proof. �

4 Concluding Remarks

In this paper, we propose a constant amortized-time algorithm for generating
all LC-sequences of binary trees with n internal nodes in lexicographic order. It
is especially interested that the proposed algorithm is associated with two new
types of rotations called flip-on-site and flip-to-top. As we know that a rotation
can be viewed as a transformation that changes the shape of a binary tree and
usually preserves some desired property, such as keeping the inorder unchanged
or adjusting to be a balanced tree, this leads to that tree transformation has
many applications [5–8]. Thus, the design of efficient way for tree transformation
is an important issue. However, up to now there are many discussions related
to the usual rotations, and only a few attention has been focused on the design
of massive rotations (e.g., see [21] as an instance). Since both flip-on-site and
flip-to-top are massive rotations, we expect to find more applications that can
be dealt with by these rotations in the near future.

A CAT Algorithm for Generating Left-Child Sequences 231

Acknowledgments. This research was partially supported by MOST grants MOST
105-2221-E-131-027 (Kung-Jui Pai), 104-2221-E-141-002-MY3 (Jou-Ming Chang) and
104-2221-E-262-005 (Ro-Yu Wu) from the Ministry of Science and Technology, Taiwan.

References

1. Adamchuk, A.: A014138. The On-Line Encyclopedia of Integer Sequences (2006).
http://oeis.org/A014138

2. Boyer, J.M.: Simple constant amortized time generation of fixed length numeric
partitions. J. Algorithms 54, 31–39 (2005)

3. Effler, S., Ruskey, F.: A CAT algorithm for generating permutations with a fixed
number of inversions. Inform. Process. Lett. 86, 107–112 (2003)

4. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and
other combinatorial configurations. J. ACM 20, 500–513 (1973)

5. Gibbons, A., Sant, P.: Rotation sequences and edge-colouring of binary tree pairs.
Theor. Comput. Sci. 326, 409–418 (2004)

6. Guibas, L., Hershberger, J., Suri, S.: Morphing simple polygons. Discret. Comput.
Geometry 24, 1–34 (2000)

7. Hershberger, J., Suri, S.: Morphing binary trees. In: Proceedings of the ACM-SIAM
Sixth Annual Symposium on Discrete Algorithms (SODA), pp. 396–404 (1995)

8. Kensler, A.: Tree rotations for improving bounding volume hierarchies. In: IEEE
Symposium on Interactive Ray Tracing, pp. 73–76. IEEE Computer Society, Wash-
ington (2008)

9. Knuth, D.E.: The Art of Computer Programming. Fascicle 4A - Generating All
Trees, vol. 4. Addison-Wesley, Boston (2005)

10. Lucas, J.M., van Baronaigien, D.R., Ruskey, F.: On rotations and the generation
of binary trees. J. Algorithms 15, 343–366 (1993)

11. Mäkinen, E.: A survey on binary tree codings. Comput. J. 34, 438–443 (1991)
12. Pai, K.-J., Wu, R.-Y., Chang, J.-M., Chang, S.-C.: Amortized efficiency of ranking

and unranking left-child sequences in lexicographic order. In: Chan, T.H., Li, M.,
Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 505–518. Springer, Cham
(2016). doi:10.1007/978-3-319-48749-6 37

13. Pallo, J.: Enumerating, ranking and unranking binary trees. Comput. J. 29, 171–
175 (1986)

14. Proskurowski, A., Ruskey, F.: Binary tree Gray codes. J. Algorithms 6, 225–238
(1985)

15. van Baronaigien, D.R.: A loopless algorithm for generating binary tree sequences.
Inform. Process. Lett. 39, 189–194 (1991)

16. Ruskey, F., Hu, T.C.: Generating binary trees lexicographically. SIAM J. Comput.
6, 745–758 (1977)

17. Savage, C.D.: A survey of combinatorial Gray codes. SIAM Rev. 39, 605–629 (1997)
18. Sawada, J.: Generating bracelets in constant amortized time. SIAM Comput. 31,

259–268 (2001)
19. Vajnovszki, V.: On the loopless generation of binary tree sequences. Inform.

Process. Lett. 68, 113–117 (1998)
20. Wu, R.-Y., Chang, J.-M., Chan, H.-C., Pai, K.-J.: A loopless algorithm for gener-

ating multiple binary tree sequences simultaneously. Theoret. Comput. Sci. 556,
25–33 (2014)

http://oeis.org/A014138
http://dx.doi.org/10.1007/978-3-319-48749-6_37

232 K.-J. Pai et al.

21. Wu, R.-Y., Chang, J.-M., Wang, Y.-L.: A linear time algorithm for binary tree
sequences transformation using left-arm and right-arm rotations. Theoret. Com-
put. Sci. 355, 303–314 (2006)

22. Zaks, S.: Lexicographic generation of ordered trees. Theoret. Comput. Sci. 10,
63–82 (1980)

23. Zaks, S., Richards, D.: Generating trees and other combinatorial objects lexico-
graphically. SIAM J. Comput. 8, 73–81 (1979)

24. Zumkeller, R.: A014138. The On-Line Encyclopedia of Integer Sequences (2010).
http://oeis.org/A014138

http://oeis.org/A014138

Geodetic Contraction Games on Trees

Yue-Li Wang(B)

Department of Digital Multimedia Design,
National Taipei University of Business, Taipei, Taiwan

ylwang@ntub.edu.tw

Abstract. The geodetic contraction game was introduced by Fraenkel
and Harary (Int. J. Game Theor. 18:327–338, 1989). They showed that
the problem on trees can be solved by using the algorithm for solving
the Hackendot game. However, if we use the algorithm for solving the
Hackendot game directly, then it will take O(n3) time for solving the
geodetic contraction game on trees, where n is the number of vertices
in a tree. They also posed the following open question: Is there a more
efficient strategy to solve the geodetic contraction game on trees? In this
paper, we show that the geodetic contraction game on trees can be solved
in O(n log n) time.

1 Introduction

In [3], Fraenkel and Harary introduced the geodetic contraction game on graphs
which is defined as follows:

Definition 1. Let G = (V,E) be a finite graph. The set L of labeled vertices
is initially empty. Two players Alice and Bob move alternately (Alice first), by
choosing an unlabeled vertex u ∈ V \L; then u itself and all vertices on shortest
paths between u and any vertex of L are adjoined to L. When L = V , the game
is over and the first player unable to move loses and the other player wins.

Example 1. In this example, the geodetic contraction game is played on the
graph as shown in Fig. 1(a). Initially, the set L is empty and Alice moves first.
If Alice selects vertex a, then vertex a is labeled and is put to L (see Fig. 1(b)).
In the turn by Bob, if he selects vertex e, then e is labeled (see Fig. 1(c)). Since
vertices b and d are on the shortest paths from e to a, vertices b and d are also
labeled. Thus L = {a, b, d, e} and vertices a, b, d, and e are contracted to one
vertex (see Fig. 1(d)). After that, no matter what vertex is selected by Alice,
Bob will select the last unlabeled vertex which makes L = V and wins.

In [3], Fraenkel and Harary showed that playing the geodetic contraction
game on a tree after a vertex is labeled is equivalent to playing the Hackendot
game on the rooted tree with the labeled vertex as the chopped root. The Hack-
endot game was invented by J. Von Neumann. The definition of the Hackendot
game is as follows:

Y.-L. Wang—This work is supported under grants MOST 104–2221–E-011–023–
MY3 and MOST 105–2221–E–011–086–.

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 233–240, 2017.
DOI: 10.1007/978-3-319-59605-1 21

234 Y.-L. Wang

Fig. 1. An example of geodetic contraction games.

Definition 2. The initial position of the Hackendot game is a directed tree T
with root r. Two players Alice and Bob move alternately (Alice first). In the
first move, Alice can select any vertex, say a, from T . Then every vertex on the
path from the root r to a is deleted. This results in T to be a forest, denoted by
T−a. If T−a is not empty, Bob can select a vertex, say b, from one of the rooted
trees in T−a. Similarly, all vertices from b to the root of the tree containing b
are deleted. This leaves a forest T−ab. Provided that the resulting forest T−ab

is nonempty, Alice selects a further vertex c, and forms T−abc, and so on, with
the players moving alternately. The first player unable to move loses.

Example 2. Assume that we want to play the Hackendot game on the rooted
tree as shown in Fig. 2(a). If Alice selects vertex a, then the vertices in the path
from r to a are deleted. Thus T−a is a forest (see Fig. 2(b)). In the turn by Bob,
if he selects vertex b, then the vertices in the path from f to b are deleted. The
forest becomes T−ab (see Fig. 2(c)). Figure 2(d) depicts T−abc. In this way, Alice
will win the game since there exist only four isolated vertices and now is Bob’s
turn.

Von Neumann proved that the first player has a winning strategy in the Hack-
endot game. However, he did not produce any construction for such a strategy.
In [5], Úlehla provided such a strategy by computing the nim-value of a rooted
tree which can be computed in O(n) time, where n is the number of vertices
in a tree. Furthermore, we can determine which vertex will be selected to win
the game after the nim-value of the rooted tree is obtained. By applying the
same procedure on the subtrees repeatedly, the winning way can be constructed
in O(n2) time. By trying every vertex of an unrooted tree as the root of the
tree and using the algorithm in [5], the geodetic contraction game on trees can
be solved in O(n3) time. In [3], Fraenkel and Harary posed the following open
question: Is there a more efficient strategy for solving the geodetic contraction
game on trees? In this paper, we show that the geodetic contraction game on
trees can be solved in O(n log n) time.

Geodetic Contraction Games on Trees 235

Fig. 2. An example of the Hackendot game.

This paper is organized as follows. In Sect. 2, we introduce the algorithm in
[5] for computing the nim-value of a rooted tree. In Sect. 3, we show an efficient
algorithm for solving the geodetic contraction game on trees.

2 Preliminaries

The following theorem states that the geodetic contraction game is closely related
to the Hackendot game.

Theorem 1 [3]. Playing the geodetic contraction game on a tree T after a ver-
tex, say u, is labeled is equivalent to playing the Hackendot game on T−u, i.e.,
u is a chopped root.

We use an example to illustrate Theorem 1. In Fig. 3(a), there is an unrooted
tree. If we select vertex u as a labeled vertex (see Fig. 3(b)) in playing the geodetic
contraction game, then it is equivalent to playing the Hackendot game on T−u

(see Fig. 3(c)).

Fig. 3. An illustration for Theorem 1.

236 Y.-L. Wang

In the rest of this section, we introduce the algorithm in [5] for computing
the nim-value of a rooted tree in the Hackendot game. We use nim(T) to denote
the nim-value (also called the Grundy value) on an outwardly directed forest T ,
i.e., every tree in T is rooted. Note that, by Theorem 1, if there exists a vertex,
say u, in an unrooted tree T and the nim-value of nim(T−u) is equal to 0, then
there is a way to win the game in the geodetic contraction game. For the detail
of the nim-function, the interested reader is referred to [1,2,4]. The definition of
the nim-function on an outwardly directed forest T is as follows:

Definition 3. Assume that T is a forest in the current position. Note that,
initially, T is a rooted tree. The nim-value of nim(T) can be defined recursively
as follows:

nim(T) =

⎧
⎨

⎩

0 if T is empty,
nim(T1) ⊕ nim(T2) ⊕ · · · ⊕ nim(Ts) if T has more than one tree,
mex({nim(F1), nim(F2), . . . , nim(Ft)}) if T is exactly a tree,

(1)
where T1, T2, . . ., and Ts are the trees in T with s > 1, the operation ⊕ is the
bitwise-exclusive-or of the corresponding numbers, F1, F2, . . ., and Ft are all of
the possible resulting forests after a move is taken on T , and mex({nim(F1),
nim(F2), . . ., nim(Ft)}) is equal to the smallest nonnegative integer which does
not appear in the set {nim(F1), nim(F2), . . . , nim(Ft)}.

First, we explain the bitwise-exclusive-or operation and the mex function.
Assume that we want to compute the bitwise-exclusive-or of two numbers x = 13
and y = 6, i.e., 13 ⊕ 6. The binary representations of 13 and 6 are 11012 and
01102, respectively. Thus 13 ⊕ 6 = 11012 ⊕ 01102 = 10112. Note that 0 ⊕ 0 =
0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, and 1 ⊕ 1 = 0. Now let us use an example to explain the
mex function. We have mex({5, 3, 1, 0}) = 2 since 2 is the smallest nonnegative
integer which does not appear in the set {5, 3, 1, 0}.

If we apply Eq. (1) to compute nim(T) directly, then it will be very inefficient.
In [5], Úlehla gave an O(n)-time algorithm for computing the nim-value of a
rooted tree. In Úlehla’s algorithm, there is an operation to transform a tree T
to another tree L1T which is described in Algorithm A.

We use the tree in Fig. 2(a) as an example to illustrate Algorithm A. After
Step 2 of Algorithm A, we obtain the tree L0T in which vertices r, d, f , and c
are black and all other vertices are white (see Fig. 4(a)). In Step 3 of Algorithm
A, vertices r, d, f , and c are the vertices in L1T . Since there are directed edges
between vertices r and d, and d and f in T , there are also directed edges between
these two pairs of vertices in L1T (see Fig. 4(b)). We can find that the parent
of vertex c is vertex a which is a white vertex in L0T and its parent is d. Thus
there is a directed edge from d to c in L1T .

By applying Algorithm A again on L1T , we can obtain LL1T = L2T (see
Fig. 4(c)). Thus, by repeatedly applying Algorithm A, we can obtain L2T , L3T
and so on until LmT is empty. Note that LxT = LLx−1T for x � 1. After LiT
for 0 � i � m − 1 are obtained, the binary representation of nim(T) can be
computed as follows: Bit i for 0 � i � m − 1 is 1 if the number of the rooted

Geodetic Contraction Games on Trees 237

Algorithm A

Input: A tree T .
Output: L1T .
Step 1. /* Initialization. */

Label the vertices of T from 1 to n by the breadth-first search and set every
vertex to be a white vertex.

Step 2. /* Finding L0T . */
For i = n down to 1,
if the vertex with label i is not a leaf and one of its children is a white vertex,
then set this vertex to be a black vertex.

Step 3. /* Constructing L1T . */
Select all black vertices from T to be the vertices of L1T .
Add a directed edge between vertices x and y in L1T if one of the following
conditions is satisfied:
(1) There is a directed edge between x and y in T .
(2) The parent of y is a white vertex and x is a grand parent of y in L0T .

Step 4. /* Output. */
Output L1T .

white vertices in the forest LiT is odd; otherwise, bit i is 0. Thus the binary
representation of nim(T) for the tree in Fig. 2(a) is 1102. Therefore, it follows
that nim(T) = 6 for the tree in Fig. 2(a).

Fig. 4. An example of LiT for 0 � i � 2.

It is easy to show that, by using Algorithm A, the nim-value of a forest can
be computed in O(n) time. If the nim-value of a forest is not equal to zero, then
the player who is going to make a move on the forest wins the game; otherwise,
he/she loses. In the example above, to make nim(T) = 6 to be zero, we have
to chop vertex d in T which is the only vertex in L2T . Note that, after we
obtain the nim-value of a forest, we can only determine the next move. After
the opponent played, we have to recompute the nim-value of the resulting forest.
Therefore, if we apply Algorithm A for each move in the Hackendot game, then

238 Y.-L. Wang

it takes O(n2)-time for constructing a winning way. Note that, in [6], Deuber
and Thomassé showed that the Grundy value of N -free posets of order n can be
computed in O(n4) time, where N -free posets are a larger class of rooted trees.

3 Main Results

In this section, we show that constructing a winning way for the Hackendot game
can be done in O(n log n) time. Furthermore, we also show that determining
whether Alice can win the game in the geodetic contraction game or not can also
be done in O(n log n) time. Our main idea is to use the dynamic programming
technique to compute the nim-value for every subtree in a rooted tree in the
Hackendot game. Then, by using the depth-first search on a tree, we can compute
the nim-value for every vertex in an unrooted tree T as a root of T for the
geodetic contraction game.

Before we introduce our algorithm for computing nim(T), we want to make
a minor modification on Úlehla’s algorithm when computing the ith bit for the
binary representation of nim(T). That is, if bit i is 0 in the binary representation
of a forest T and the corresponding LiT has more than one rooted white vertex,
then we use 0+ instead. In this case, we say that 0+ is an impure 0; otherwise,
we say that the zero is a pure 0. Moreover, we want to define an operation on a
set of binary numbers which is defined as follows:

Definition 4. Let B1, B2, . . . , Bn for some integer n � 1 be a set of nonnegative
integers and btm−1b

t
m−2 . . . bt0 be the binary representation of Bt for 1 � t � n.

Note that bti for some 1 � t � n and 1 � i � m−1 may contain impure 0. The left-
most k bits of Bt for 1 � t � n are denoted by Bt

m−1,k. An index i of B1, B2, . . . ,

Bn is called a p-index if i is the smallest index satisfying that bti is a pure 0 for
t = 1, 2, . . . , n. If there is no p-index in the range from 1 to m − 1, then let m
be the p-index. Assume that s is the p-index of B1, B2, . . . , Bn. A p-value of
B1, B2, . . . , Bn is equal to 2s(1 + 2(B1

m−1,k ⊕ B2
m−1,k ⊕ · · · ⊕ Bn

m−1,k)), where
k = m − s − 1. For brevity, we use σs(B1, B2, . . . , Bn) to denote the p-value of
B1, B2, . . . , Bn. Note that, in the ⊕ operation, we have 0+⊕0+ = 0+, 0+⊕0 = 0+,
0+ ⊕ 1 = 1, and 1 ⊕ 1 = 0+. Note also that the rightmost s bits, i.e., bit 0 to bit
s − 1, after the operation σs(B1, B2, . . . , Bn) are set to pure 0.

Now we are at a position to describe our dynamic programming algorithm for
computing nim(T). Clearly, if a rooted tree T contains only one vertex; then the
vertex is a white vertex in L0T and nim(T) = 1. Now assume that v is the root
of T and v1, v2, . . . , vt are the children of v. The subtrees rooted at v1, v2, . . . , vt
are denoted by T1, T2, . . . , Tt, respectively. In the following, we assume that
nim(T1), nim(T2), . . . , nim(Tt) have already computed. Note that all those val-
ues of nim(T1), nim(T2), . . . , nim(Tt) are in the binary representation.

nim(T) =
{

1 if T contains only one vertex,
σs(nim(T1), nim(T2), . . . , nim(Tt)) otherwise,

(2)
where s is the p-index of nim(T1), nim(T2), . . ., and nim(Tt).

Geodetic Contraction Games on Trees 239

The meaning of the equation nim(T) = σs(nim(T1), nim(T2), . . . , nim(Tt))
in Eq. (2) is that vertex v will be a black vertex in LiT for 0 � i � s − 1 and a
white vertex in LsT . After that, vertex v will not appear in LiT for i > s. We
use the following example to illustrate Eq. (2).

Example 3. Assume that we have nim(T1) = 10100011, nim(T2) = 101010+00,
and nim(T3) = 10001010. It can be found that the p-index of nim(T1), nim
(T2), and nim(T3) is 4. Thus, by Eq. (2), it follows that σ4(nim(T1), nim(T2),
nim(T3)) = 100+10000 = 24(1 + 2(5 ⊕ 5 ⊕ 4)) = 144. Figure 5 shows the compu-
tations of the nim-values for all subtrees in Fig. 2(a) by using Eq. (2).

Fig. 5. An example to illustrate Eq. (2).

Theorem 2. Constructing a winning way for the Hackendot game can be done
in O(n log n) time, where n is the number of vertices in a tree.

Proof. Note that the binary representation of the nim-value of each subtree
has at most log n bits. By using Eq. (2), the nim-value of each subtree rooted
at vertex v can be computed in O(deg(v) log n) time. Therefore, the total time-
complexity for computing the nim-values of all subtrees is

∑
v∈V deg(v) log n =

O(n log n). �
Let T be an unrooted tree and u and v be two adjacent vertices in T . Let

Tu and T v denote the rooted trees of T with roots u and v, respectively. In Tu

(respectively, T v), the subtree with root v (respectively, u) is denoted by Tu
v

(respectively, T v
u). Comparing Tu with T v, we can find that all subtrees are the

same in these two rooted trees except those two subtrees T v and T v
u which are

different from Tu
v and Tu, respectively. Thus, when we have all the nim-values of

the subtrees in Tu, we only need to compute nim(T v
u) and nim(T v) to obtain all

the nim-values of the subtrees in T v. Accordingly, we have the following theorem.

Theorem 3. Determining whether there is a winning way in the geodetic con-
traction game on an unrooted tree can be done in O(n log n) time, where n is the
number of vertices in the tree.

Proof. To solve the geodetic contraction game on trees T , we only need to
compute the nim-value of each tree rooted at a vertex of T . To find the nim-
value of each vertex, we can select any vertex in T as the root and compute the

240 Y.-L. Wang

nim-values of all subtrees in the rooted tree. By using the depth-first search, we
can compute the nim-value of each vertex as the root of T in 2deg(v) log n time.
Thus the total time-complexity is still O(n log n). If there exists a rooted tree
such that the nim-value of the chopped root is equal to 0, then Alice can win
the game; otherwise, Bob wins. This completes the proof. �

References

1. Bouton, C.: Nim, a game with a complete mathematical theory. Ann. Math. 3,
35–39 (1902)

2. Conway, J.H.: On Numbers and Games. CRC Press, London (1976)
3. Fraenkel, A., Harary, F.: Geodetic contraction games on graphs. Int. J. Game Theory

18, 327–338 (1989)
4. Gale, D., Neymann, A.: Nim-type games. Int. J. Game Theory 11, 17–20 (1982)
5. Úlehla, J.: A complete analysis of Von Neumann’s Hackendot. Int. J. Game Theory

9, 107–113 (1980)
6. Deuber, W., Thomassé, S.: Grundy sets of partial orders. http://citeseer.nj.nec.

com/19302.html (1996, preprint)

http://citeseer.nj.nec.com/19302.html
http://citeseer.nj.nec.com/19302.html

On Approximation Algorithms
for Two-Stage Scheduling Problems

Guangwei Wu1,2, Jianer Chen1,3, and Jianxin Wang1(B)

1 School of Information Science and Engineering, Central South University,
Changsha, People’s Republic of China

jxwang@csu.edu.cn
2 College of Computer and Information Engineering,
Central South University of Forestry and Technology,

Changsha, People’s Republic of China
3 Department of Computer Science and Engineering,

Texas A&M University, College Station, USA

Abstract. We study scheduling on parallel two-stage flowshops in which
each job has to pass through two operations: an R-operation and a T -
operation. Motivated by the current research in data centers, we consider
two restricted versions of the problem: one restricts that for each job, the
R-operation consumes no less time than the T -operation, while the other
assumes that the T -operation takes more time than the R-operation for
each job. For the first case, we present an online 2-competitive algorithm
and an offline 11/6-approximation algorithm. For the second case, we give
an online 5/2-competitive algorithm, and prove, for the offline setting,
that the problem can be reduced to the problem in the first case.

1 Introduction

A job is a two-stage job if it consists of an R-operation and a T -operation.
Correspondingly, a flowshop is called a two-stage flowshop if it contains an R-
processor and a T -processor. If a job is assigned to a flowshop, its T -operation
cannot start on the T -processor of this flowshop unless the R-operation is finished
on the R-processor of the same flowshop. Scheduling a set of two-stage jobs on
multiple two-stage flowshops is to assign the jobs to the flowshops and for each
flowshop to determine the execution order of the R- and T -operations of the jobs
assigned to it. In this paper, we will focus on schedulings whose objective is to
minimize the makespan, i.e., the completion time of the last job.

We will consider two restricted versions of the problem. The first assumes that
for each job the R-operation consumes no less time than the T -operation, while
the second assumes that the T -operation takes more time than the R-operation
for each job. These scheduling models are motivated by our current research in

This work is supported by the National Natural Science Foundation of China under
grants 61420106009, 61672536, 61232001 and 61472449, Scientific Research Fund of
Hunan Provincial Education Department under grant 16C1660.

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 241–253, 2017.
DOI: 10.1007/978-3-319-59605-1 22

242 G. Wu et al.

data centers. A modern data center contains hundreds of thousands of servers,
and each server contains processors, network interface, and local I/O, etc. [1].
Softwares and data are stored as resources in the servers. Clients dynamically
request the resources, and the cloud sends the resources to the clients over Inter-
net. When a request arrives at a server, the server needs to read the resource from
the secondary memory to the main memory first, and then sends the resource to
the client over Internet. A server can read resource for one request while sending
resources for other requests. Correspondingly, each request needs to pass through
two stage operations, i.e., disk-read (the R-operation) and network-transmission
(the T -operation), and the network-transmission cannot start unless the disk-
read is finished. Thus scheduling such requests on servers in data centers to
minimize the makespan is exactly the scheduling model studied by this paper.

The setting of servers in data centers is chosen based on the requested services
[3]. For certain services that require high reliability of data, disk I/O transfer
rate may be much lower than that of network, i.e., the R-operation costs more
than the T -operation. On the other hand, services such as many web services
have high I/O rate requirement to tackle with the huge requests from clients. In
this circumstances, the R-operation is less expensive than the T -operation. As
a result, if the servers in a cloud are divided into clusters based on the services
they provide, then the requests to the servers in each cluster will be likely to be
all with more expensive R-operations or all with more expensive T -operations.

It is easy to see that our scheduling models are generalizations of the clas-
sical Makespan problem, which schedules n (one-stage) jobs on m (one-stage)
machines to minimize the makespan. The Makespan problem is NP-hard even
when m is a constant, and becomes strongly NP-hard when m is an input [8].
As a consequence, both the versions of the parallel two-stage flowshop problem
studied in this paper are strongly NP-hard.

We focus on approximation algorithms and competitive algorithms for the
problem. A scheduling algorithm is an α-approximation algorithm, with an
approximation ratio α, if for all instances, the algorithm delivers a schedule
whose makespan is bounded by α times the minimum makespan of the instance
[16]. Scheduling problems where the input is received online and the output must
be given online are called online scheduling problems, and algorithms solving the
problems are called online algorithms. An online algorithm is α-competitive, with
a competitive ratio α, if for all finite input sequences I, the algorithm constructs
an online schedule whose makespan is within α times the minimum makespan
of the online schedules for the sequence I.

For classical Makespan problem, ListRanking is a well-known algorithm for
both online and offline settings, which will also impact our algorithms for the
new scheduling models. The ListRanking algorithm was proposed by Graham [9],
who proved that the algorithm achieves (2 − 1/m)-approximation ratio. Later
he improved the approximation ratio to (4 − 1/m)/3 by sorting the jobs before
ListRanking [10]. ListRanking is also the first online algorithm for the prob-
lem. The competitive ratio (2 − 1/m) stood for a long time, until Galambos
and Woeginger provided a (2 − 1

m − εm)-competitive algorithm, where ε is a
positive constant for m ≥ 4, but tends to be 0 with the growth of m [7].

On Approximation Algorithms for Two-Stage Scheduling Problems 243

Bartal et al. presented a 1.986-competitive algorithm for m > 70, that first
achieves a competitive ratio 2 − ε for a positive constant ε [4]. Albers presented
a 1.923-competitive algorithm based on a new strategy for m ≥ 2 [2].

The paralled two-stage flowshop problem had not been studied throughly
until very recently, and most of the studies focused on the problem when the
number m of flowshops is a fixed constant. He et al. [12] first proposed this
problem, motivated by applications in glass manufacturing. Vairaktarakis et al.
[15] studied the problem in their work on hybrid flowshops, and proposed a for-
mulation that leads to a pseudo-polynomial time algorithm when m = 2. Zhang
et al. [18] presented constant ratio approximation algorithms for scheduling on
two and three two-stage flowshops. The approximation ratio of these algorithms
can reach 3

2 for m = 2 and 12
7 for m = 3. Using the formulation similar to that

of [15], Dong et al. [6] presented a pseudo-polynomial time algorithm and devel-
oped a fully polynomial-time approximation scheme for the problem. Recently,
Wu et al. [17] proposed a new formulation for the problem that leads to improve-
ments over the algorithm complexity. They also studied algorithms for the cases
where the costs of the two stages are different significantly. Approximation
algorithms for k-stage jobs on multiple k-stage flowshops for general k had also
been studied [14].

To the best of our knowledge, no approximation results for the paralled two-
stage flowshop problem have been known when the number m of flowshops is
not a fixed constant, which makes the problem become strongly NP-hard. This
paper considers two restricted versions of the problem: one restricts that the
R-operation consumes no less time than the T -operation for each job, while the
other assumes that the T -operation takes more time than the R-operation for
each job. For the first case, we present an online 2-competitive algorithm and
an offline 11/6-approximation algorithm, for arbitrary m. For the second case,
we give an online 5/2-competitive algorithm for arbitrary m, and prove, for the
offline setting, that the problem can be reduced to the problem in the first case.

2 Scheduling on a Single Two-Stage Flowshop

Let G = {J1, . . . , Jn} be a set of two-stage jobs to be scheduled in a system
{M1, . . . ,Mm} of m identical two-stage flowshops. We assume that (1) each job
Ji = (ri, ti) consists of an R-operation of cost ri (i.e. the R-time) and a T -
operation of cost ti (i.e. the T -time); (2) each flowshop has an R-processor and
a T -processor that can run in parallel and can process the R-operations and
the T -operations, respectively, of the assigned jobs; (3) the R- and T -operation
of a job must be executed in the R- and T -processor, respectively, of the same
flowshop, in a way that the T -operation cannot start unless the R-operation
is completed; (4) there are no precedence constraints among the jobs; and (5)
preemption is not allowed.

Under the above assumptions, each job Ji is represented by a pair (ri, ti) of
integers. A schedule S consists of an assignment that assigns all jobs in G to flow-
shops, and for each flowshop, the execution orders of the R- and T -operations
of the jobs assigned to that flowshop. The completion time of a flowshop M

244 G. Wu et al.

under the schedule S is the time when M finishes the last T -operation of the
jobs assigned to M . The makespan Cmax of S is the largest flowshop comple-
tion time over all flowshops. In this paper, the number of flowshops is an input.
Following the three-field notation α|β|γ suggested by Graham et al. [11], the gen-
eral parallel two-stage flowshop problem can be written as P |2FL|Cmax, and as
P |2FLR≥T |Cmax for the first version, as P |2FLR<T |Cmax for the second version.

Without loss of generality, we say an ordered job sequence 〈J1, . . . , Jn〉 is a
schedule on a flowshop if the R- and T -operations of the jobs are executed by
the R- and T -processor of the flowshop in the way which strictly follows the
given order. Let ρ̄i and τ̄i, respectively, be the times when the R-operation and
T -operation of job Ji are started. The following lemma holds if the objective of
scheduling is to minimize the makespan.

Lemma 1 [17]. Let S = 〈J1, J2, . . . , Jn〉 be a two-stage job sequence scheduled
on a single two-stage flowshop, where Ji = (ri, ti), for 1 ≤ i ≤ n. Then for all i,
1 ≤ i ≤ n, we can assume: ρ̄i =

∑i−1
j=1 rj; and τ̄i = max{ρ̄i + ri, τ̄i−1 + ti−1}.

Note that the execution of the R-processor of flowshop is continuous, the R-
operation of a job starts as soon as the R-operations of previous jobs scheduled
on the same flowshop are finished. On the other hand, the way the T -processor
executes is different. For a job, its T -operation can not start unless not only
the previous T -operations are finished but also its own R-operation is finished.
Thus the execution of T -processor may not be continuous, and each “gap” in the
execution means that there is a job whose T -operation waits for its R-operation
being completed.

Let ρq, τq be the finishing times of the R- and T -processor of the flowshop
Mq, respectively, when the jobs assigned to Mq are finished. From Lemma 1, we
have Algorithm 1 that assigns a new job Ji to the flowshop Mq. The scheduling
algorithms presented in the subsequent sections will call it whenever they need
to assign a new job to a flowshop.

Algorithm 1. Assign job Ji to flowshop Mq

1: ρq = ρq + ri;
2: if ρq > τq then τq = ρq + ti else τq = τq + ti

For a two-stage job Ji = (ri, ti), define Jd
i = (ti, ri) to be the dual job of Ji

(i.e., the dual job Jd
i is obtained from the job Ji by swapping its R- and T -time).

Let S = 〈J1, J2, . . . , Jn〉 be a schedule of two-stage jobs on a two-stage flowshop.
Denote by Sd = 〈Jd

n, . . . , Jd
2 , Jd

1 〉 the dual schedule of S on the dual jobs, where
Jd
i is the dual job of Ji for 1 ≤ i ≤ n.

Theorem 1 [17]. On a single two-stage flowshop, the optimal schedule of the
job set G = {J1, J2, . . . , Jn} and the optimal schedule of the dual job set Gd =
{Jd

1 , Jd
2 , . . . , Jd

n}, where Jd
i is the dual job of Ji for 1 ≤ i ≤ n, have the same

completion time. Moreover, if a schedule S is optimal for the job set G then its
dual schedule Sd is optimal for the dual job set Gd.

On Approximation Algorithms for Two-Stage Scheduling Problems 245

Suppose that S is a schedule of the job set G = {J1, J2, . . . , Jn} on m two-
stage flowshops, where for each i, S assigns a subset Gi of jobs in G to the i-th
flowshop. By replacing the schedule of Gi on the i-th flowshop by its dual sched-
ule for the dual job set Gd

i , we can get a schedule Sd on the m flowshops for the
dual job set Gd. Based on the above discussion, it is easy to see that the com-
pletion times of each flowshop of the two schedules are the same. Furthermore,
the following theorem holds [17].

Theorem 2. On multiple two-stage flowshops, the optimal schedule of the job
set G and the optimal schedule of the dual job set Gd have the same makespan.
Moreover, an optimal schedule for the job set G can be easily obtained from an
optimal schedule for the dual job set Gd.

3 The Case P |2FLR≥T |Cmax

In this section, we consider the problem P |2FLR≥T |Cmax, which assumes that
the R-operation consumes no less time than the T -operation for each job, i.e.,
ri ≥ ti for each job Ji = (ri, ti). This case is suitable for the situation where the
major time consumed by each job comes from data reading from server disks,
rather than data transmission over Internet.

3.1 An Online Algorithm

We first consider the online version of the model, where jobs come in sequence
and a scheduling algorithm has to decide which flowshop to assign a job to when
the job arrives without any information about the following jobs.

Let ρ and τ denote the finishing times of the R-processor and T -processor of a
flowshop, respectively. Specially, as defined in the last section, ρq, τq represent the
finishing times of the R- and T -processor of the flowshop Mq, 1 ≤ q ≤ m, when
the assigned jobs on it are finished. The online algorithm is given as Algorithm2.
The main idea of the algorithm is that: for a coming job Ji, the algorithm
provides the flowshop with the minimum ρ over all flowshops. Note that after
assigning a new job, the algorithm needs to permute the flowshops (i.e., to re-
organize flowshops) in non-decreasing order by their ρ value. Thus ρ1 is always
the minimum value and M1 is always the flowshop for the coming job. Using
a heap structure to hold the flowshops, sorted by their ρ value, the permuting
operation takes time O(log m), while keeping the decision time O(1). Therefore
the algorithm can be regarded as “effective” [5].

Algorithm 2. The online algorithm for P |2FLR≥T |Cmax.
1: When a job Ji arrives, assign it to the flowshop M1 using Algorithm 1.
2: permute the list of flowshops in non-decreasing order by their ρ.

We introduce some notations for analysis. Let OPT (G) be the minimum
makespan of scheduling a two-stage job sequence G in a given system of m

246 G. Wu et al.

two-stage flowshops. Without loss of generality, it is supposed that the algorithm
achieves its makespan on the flowshop Mh. The completion time of Mh is denoted
by τ∗ instead of Cmax for convenience. Let the job sequence 〈J1, . . . , Jc〉 be the
schedule on Mh, and k (1 ≤ k ≤ c) be the minimum job index from which the
T -operations of the following jobs on Mh are executed continuously by Mh.

Let a0 =
∑k−1

i=1 ri be the sum of the R-times of the jobs from J1 to Jk−1,
b0 =

∑k−1
i=1 ti be the sum of the T -times of these jobs correspondingly. Similarly,

a1 =
∑c−1

i=k+1 ri and b1 =
∑c−1

i=k+1 ti. Figure 1 illustrates the state of Mh after
scheduling. Note that we denote by b0 the sum of the T -times of the jobs before
Jk, though these T -operations may not be executed continuously. It is easy to
see that such action will not affect the following analysis.

a0 rk a1 rc

b0 tk b1 tcT

R

τ∗

Fig. 1. The state of Mh after scheduling by the online algorithm in P |2FLR≥T |Cmax

We start the competitive analysis of Algorithm 2 with some lemmas.

Lemma 2. OPT (G) is no smaller than ri plus ti for every job Ji. Moreover,
OPT (G) is no smaller than 2ti for every job Ji.

Lemma 3. b1 is no larger than a1.

Lemma 4. OPT (G) is no smaller than a0 + rk + a1.

Proof. Jc is the last job scheduled on the flowshop Mh. According to Algorithm2,
Mh must be in the first place in the list of the flowshops when scheduling the
coming job Jc, thus has the minimum ρ over all flowshops at that time. Therefore,
the completing times of R-processors of all flowshops must be no smaller than
the minimum ρ, which equals a0+rk +a1. Combining the fact that by Lemma1,
the R-operations are executed continuously in any flowshop, it is obvious that
OPT (G) is no smaller than the minimum completing time of R-processor over
all flowshops, that is OPT (G) ≥ a0 + rk + a1. ��

Based on the above lemmas, we give a competitive analysis of this online
algorithm as the following theorem.

Theorem 3. Algorithm2 is 2-competitive for all m ≥ 2.

Proof. The makespan achieved on Mh by Algorithm 2 is expressed as:

τ∗ = a0 + rk + tk + b1 + tc ≤ a0 + rk + tk + a1 + tc (1)

≤ OPT (G) +
1
2
OPT (G) +

1
2
OPT (G) = 2OPT (G). (2)

On Approximation Algorithms for Two-Stage Scheduling Problems 247

We explain the derivations in (1) and (2). As discussed above, the execution of
R-processor of any flowshop is continuous. By the definition of the job index k,
the T -operations of the jobs from Jk to Jc are executed continuously. Moreover,
the T -operation of Jk starts once its own R-operation is finished, otherwise by
Lemma 1, the T -operation of Jk must be waiting for the previous T -operations
on Mh being completed at that time. Thus there exists a job Jk′ , k′ < k, from
which the T -operations of the following jobs on Mh are executed continuously,
which is a contradiction against the definition of k. As a result, the equation
in (1) holds. Lemma 3, b1 ≤ a1, explains the inequality in (1). By Lemma 4,
a0 + rk + a1 ≤ OPT (G). We also have ti ≤ 1

2OPT (G) for each job Ji by
Lemma 2. These explain the inequality in (2). The equation in (2) completes
the proof that Algorithm2 can construct a schedule with makespan bounded by
2OPT (G). ��

This competitive ratio almost matches that of the best online algorithm for
the classical scheduling problem P ||Cmax [13], which can be regarded as a simpler
version of the P |2FL|Cmax problem in which all jobs are one-stage jobs and all
machines are one-stage flowshops.

3.2 An Offline Algorithm

In this section, we discuss the same problem P |2FLR≥T |Cmax in the situation
where all the jobs are given offline, i.e., every job Ji = (ri, ti), where 1 ≤ i ≤
n, is known at the beginning. Offline version is also meaningful for scheduling
problem [5]. Unlike online algorithm which makes decision when a job comes,
offline algorithm outputs a schedule for all jobs at once. An offline algorithm for
scheduling m multiple two-stage flowshops is given as Algorithm 3.

Algorithm 3. The offline algorithm for P |2FLR≥T |Cmax.
1: Sort all jobs into job sequence G = 〈J1, . . . , Jn〉 in non-increasing order by R-time;
2: for i = 1 to n do
3: select a flowshop Mq which has the minimum ρq over all q, 1 ≤ q ≤ m;
4: assign the job Ji to the flowshop Mq using Algorithm 1;
5: return max1≤q≤m{τq} as makespan

We give more detailed descriptions about step 3. There may be more than
one flowshops which have the same minimum finishing time of R-processor when
scheduling a job. In such case, the algorithm always picks the flowshop whose
flowshop index is minimum over them. The time complexity of the offline algo-
rithm is shown in the following theorem.

Theorem 4. Algorithm3 runs in time O(n log n + nm).

The main idea of Algorithm 3 is similar to that of Algorithm 2. When assign-
ing a job Ji, Algorithm 3 always picks the flowshop Mq with the minimum ρ over

248 G. Wu et al.

all flowshops to process Ji. The difference between them is that: in the offline
algorithm, all the jobs are sorted into non-increasing order by their R-time at
the first step, while such sorting can not be done in online setting where all
jobs are coming online and algorithm does not have any information about the
following jobs. As a consequence, after scheduling by Algorithm 3, the schedule
on each flowshop must be a subsequence of the job sequence G, thus also follows
non-increasing order by R-time.

Before analysis, we introduce some further notations used in the following
part of this section. For a two-stage job Ji = (ri, ti) in G, define by Jr

i = (ri, 0)
the R-partial job of Ji, i.e., the job Jr

i is constructed from the original job Ji by
setting its T -time to 0. Given a two-stage job set G = {J1, . . . , Jn}, its R-partial
job set is Gr = {Jr

1 , . . . , Jr
n}, where Jr

i is the R-partial job of Ji for 1 ≤ i ≤ n.
Let OPT (G) and OPT (Gr) be the minimum makespan of scheduling G and
Gr respectively on m two-stage flowshops. It is straightforward that OPT (G) ≥
OPT (Gr). We also have the following observation.

Theorem 5. On m two-stage flowshops by Algorithm 3, a two-stage job Ji is
assigned to the flowshop Mq when scheduling a two-stage job set G if its R-
partial job Jr

i is assigned to Mq when scheduling the corresponding R-partial job
set Gr, and vice versa.

We use the same notations supposed in Sect. 3.1. Mh is the flowshop achieving
the makespan τ∗. The job sequence 〈J1, . . . , Jc〉 is the schedule on Mh, and k (1 ≤
k ≤ c) is the minimum job index from which the T -operations of the following
jobs on Mh are executed continuously. For the sake of analysis, we remove the
jobs following Jc in the job sequence G, which is sorted by Algorithm 3 in non-
increasing order by R-time. This removal does not affect our analysis of the
approximation ratio for this algorithm for two reasons: first, τ∗ can not decrease,
because all the removed jobs are scheduled after Jc thus are assigned to other
flowshops. Second, OPT (G) can not increase by removing jobs in G. After this
removal, Jc is also the last job in the job sequence G, and hence has the minimum
R-time over all jobs.

With these notations and observation, we start the analysis of the approxi-
mation ratio for Algorithm3, which is divided into two cases based on whether
the R-time rc of the job Jc is larger than 1

3OPT (G). Now we consider the first
case where rc > 1

3OPT (G).

Lemma 5. After scheduling a two-stage job set G on m flowshops by Algo-
rithm3, if rc > 1

3OPT (G), then the value max1≤q≤m{ρq} is no larger than
OPT (G).

Based on Lemma 5, the approximation ratio of the algorithm when rc >
1
3OPT (G) is given as the following lemma.

Lemma 6. If rc > 1
3OPT (G), Algorithm3 is 3

2 -approximation for all m ≥ 2.

Then we consider the second case where the last job Jc on Mh has rc ≤
1
3OPT (G). We use the same notations in Sect. 3.1, such as the costs a0, b0,

On Approximation Algorithms for Two-Stage Scheduling Problems 249

a0 rk a1 rc

b0 tk b1 tcT

R

τ∗

Fig. 2. The state of Mh after scheduling by the offline algorithm in P |2FLR≥T |Cmax

when rc ≤ 1
3
OPT (G)

a1 and b1. The state of Mh after scheduling is shown in Fig. 2. The difference
between Figs. 1 and 2 is that: since Algorithm 3 sorts the jobs in non-increasing
order by R-time before scheduling and Jc is the last job in this sorted sequence,
it follows that rc is no larger than rk in Fig. 2, while the relationship between
rc and rk is uncertain in Fig. 1. Note that Lemmas 2 and 3, which are valid
in arbitrary job sequence in this problem, still hold here. Lemma 4 is also valid
because the property, Mh has the minimum ρ over all flowshops, still holds when
scheduling Jc by Algorithm 3. The case is discussed in the following lemma.

Lemma 7. If rc ≤ 1
3OPT (G), Algorithm3 is 11

6 -approximation for all m ≥ 2.

Proof. The makespan is expressed as:

τ∗ = a0 + rk + tk + b1 + tc ≤ a0 + rk + tk + a1 + rc (3)

≤ OPT (G) +
1
2
OPT (G) +

1
3
OPT (G) =

11
6

OPT (G). (4)

As discussed in Sect. 3.1, the equation in (3) holds obviously. b1 is no larger
than a1 by Lemma 3, and tc is no larger than rc in this section. These explain
the inequality in (3). By the same reasons for the inequality in (2), we have
a0 + rk + a1 ≤ OPT (G) and tk ≤ 1

2OPT (G) in this problem. Combining the
assumption that rc is no larger than 1

3OPT (G), the inequality in (4) is proved.
Finally we give the conclusion that the makespan, which is achieved on the
flowshop Mh by the offline algorithm, is bounded by 11

6 OPT (G). ��
By Lemmas 6 and 7 about the two cases based on whether the R-time of the

last job scheduled on Mh is larger than 1
3OPT (G), the approximation ratio of

the offline algorithm follows immediately as the following theorem.

Theorem 6. Algorithm3 is 11
6 -approximation for all m ≥ 2.

4 The Case P |2FLR<T |Cmax

In this section, the other problem P |2FLR<T |Cmax is considered, which restricts
that the R-time ri is smaller than the T -time ti for each job Ji where 1 ≤ i ≤ n.
This version is considered for the situation where the jobs on any servers in a
cluster are all with more time-consuming T -operations.

250 G. Wu et al.

We first consider the problem in online setting where jobs come online. For
convenience, we define an array set ψ = {ψ1, . . . , ψm}, where ψq (1 ≤ q ≤ m)
records the sum of the T -times of jobs scheduled on Mq. In order to decide which
flowshop to choose when a new job Ji is coming, this online algorithm always
sorts flowshops in non-decreasing order by their ψ each time it assigns a job,
and then picks M1 as the flowshop to assign the job Ji to, i.e., the flowshop with
the minimum sum of T -times of the jobs scheduled on it. This online algorithm
is shown as Algorithm 4.

Algorithm 4. The online algorithm for P |2FLR<T |Cmax.
1: When a job Ji arrives, assign it to flowshop M1 using Algorithm 1;
2: ψ1 = ψ1 + ti; permute the list of flowshops in non-decreasing order by their ψ;

The only difference between Algorithms 2 and 4 is that: Algorithm 4 bases
its scheduling strategy on the sum of the T -times instead of the sum of the R-
times in Algorithm 2, of the jobs on each flowshop. The permuting operation and
the decision also take time O(log m) and O(1) respectively here, which makes
Algorithm 4 “effective”. Let OPT (G) be the minimum makespan of scheduling
a two-stage job sequence G in a given system of m flowshops. Without loss
of generality, suppose that Algorithm 4 achieves makespan τ∗ on the flowshop
Mh. Let the job sequence 〈J1, . . . , Jc〉 denote the schedule on Mh, and k be the
minimum job index from which the T -operations of the following jobs on Mh

are executed continuously. We define the following notations similar to that in
Sect. 3.1. Denote by a0 =

∑k−1
i=1 ri and b0 =

∑k−1
i=1 ti the sum of the R and

T -times of the jobs J1, . . . , Jk−1 respectively. Similarly, a1 =
∑c−1

i=k+1 ri and
b1 =

∑c−1
i=k+1 ti. The state of Mh after scheduling is illustrated in Fig. 3. Note

that the execution of the T -operations of the jobs on Mh before Jk may not be
continuous. As Lemmas 2, 3 and 4, we have the following similar lemmas.

a0 rk a1 rc

b0 tk b1 tcT

R

τ∗

Fig. 3. The state of Mh after scheduling by the online algorithm in P |2FLR<T |Cmax

Lemma 8. OPT (G) is no smaller than ri plus ti for every job Ji. Moreover,
OPT (G) is larger than 2ri for every job Ji.

Lemma 9. a0 is smaller than b0.

Lemma 10. OPT (G) is no smaller than b0 + tk + b1.

The analysis for the online algorithm is shown as Theorem7.

On Approximation Algorithms for Two-Stage Scheduling Problems 251

Theorem 7. Algorithm4 is 5
2 -competitive for all m ≥ 2.

Proof. The makespan achieved on the flowshop Mh is expressed as:

τ∗ = a0 + rk + tk + b1 + tc < b0 + rk + tk + b1 + tc (5)

< OPT (G) +
1
2
OPT (G) + OPT (G) =

5
2
OPT (G). (6)

It is obvious from Fig. 3 that the equation in (5) holds, whose reason is the
same as that for the equation in (1). The reason for the inequality in (5) is also
straightforward: by Lemma 9, a0 is smaller than b0. By Lemma 10, b0 + tk +
b1 ≤ OPT (G). We have that rk < 1

2OPT from Lemma 8. By the same lemma,
OPT (G) is no smaller than ri + ti for every job Ji, thus is no smaller than tc.
These explain the inequality in (6). The equation in (6) completes the proof. ��

Now we describe how to deal with the problem P |2FLR<T |Cmax in offline
setting, where all the jobs are given from the beginning. Given a job set G of
n two-stage jobs and m flowshops, we first construct the dual job set Gd of
G, where Jd

i in Gd is obtained from Ji in G by swapping its R-time and T -
time for 1 ≤ i ≤ n. It is easy to see that for each job Jd

i in Gd, its R-time is
larger than its T -time. Thus by Theorems 4 and 6, applying offline Algorithm3
on the job set Gd can generate a schedule for Gd with makespan bounded by
11
6 OPT (Gd) in time O(n log n+nm). By Theorem 2, OPT (Gd) equals OPT (G),
and moreover, according to the description of Theorem1, a schedule for the job
set G can be easily constructed from a schedule for its dual job set Gd with no
change in makespan in time O(n). Using this method, we can get a schedule
for the original job set G whose makespan is also bounded by 11

6 OPT (G). The
offline algorithm is given as Algorithm 5.

Algorithm 5. The offline algorithm for P |2FLR<T |Cmax.
1: for i = 1 to n do r′

i = ti, t′
i = ri;

2: let Gd = {Jd
1 , . . . , Jd

n}, where for each i, Jd
i = (r′

i, t
′
i);

3: Call Algorithm 3 on Gd, which returns makespan for Gd;
4: return makespan which is also the makespan for the job set G.

Compared to Algorithm 3, the additional step in Algorithm5 of constructing
the dual job set Gd of G costs time O(n). Therefore the time complexity of
Algorithm 5 is still O(n log n + nm).

5 Conclusion

Motivated by the current research in data centers and cloud computing, we
studied the problem, that schedules two-stage jobs on m multiple two-stage
flowshops to minimize the makespan. Especially, we considered this problem in

252 G. Wu et al.

the situation where the number m of flowshops is a part of input, which makes
the problem become strongly NP-hard. To the best of our knowledge, there are
no approximation results for the paralled two-stage flowshop problem when m
is not a fixed constant. To meet the practice demand, this paper studied two
restricted versions of the problem based on whether the R-time is smaller than
the T -time for each job.

Online and offline algorithms for both versions are provided. For the first
case which assumes that the R-time is no smaller than the T -time for each job,
an online 2-competitive algorithm for all m ≥ 2 is provided, whose competitive
ratio almost matches that of the best online algorithm for the classical scheduling
problem, which can be regarded as a simpler case of our problem. An offline
11
6 -approximation algorithm is also given for all m ≥ 2. Then for the second
case which constricts that the R-time is smaller than the T -time for each job,
we give an online 5

2 -competitive algorithm for all m ≥ 2. Using the concept
and the theorems of dual job built in chapter 2, we state that by applying the
offline algorithm in the first case on the dual job set, we can get an offline 11

6 -
approximation algorithm for the original job set in this case.

References

1. Abts, D., Felderman, B.: A guided tour through data-center networking. Queue
10(5), 10–23 (2012)

2. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473
(1999)

3. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an intro-
duction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit.
8(3), 1–154 (2013)

4. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient schedul-
ing problem. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, pp. 51–58. ACM (1992)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (2005)

6. Dong, J., Tong, W., Luo, T., Wang, X., Hu, J., Xu, Y., Lin, G.: An FPTAS for
the parallel two-stage flowshop problem. Theoret. Comput. Sci. 657, 64–72 (2017)

7. Galambos, G., Woeginger, G.J.: An on-line scheduling heuristic with better worst-
case ratio than Graham’s list scheduling. SIAM J. Comput. 22(2), 349–355 (1993)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

9. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

10. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

11. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5(1), 287–326 (1979)

12. He, D.W., Kusiak, A., Artiba, A.: A scheduling problem in glass manufacturing.
IIE Trans. 28(2), 129–139 (1996)

On Approximation Algorithms for Two-Stage Scheduling Problems 253

13. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer Science, New
York (2016)

14. Tong, W., Miyano, E., Goebel, R., Lin, G.: A PTAS for the multiple parallel
identical multi-stage flow-shops to minimize the makespan. In: Zhu, D., Bereg, S.
(eds.) FAW 2016. LNCS, vol. 9711, pp. 227–237. Springer, Cham (2016). doi:10.
1007/978-3-319-39817-4 22

15. Vairaktarakis, G., Elhafsi, M.: The use of flowlines to simplify routing complexity
in two-stage flowshops. IIE Trans. 32(8), 687–699 (2000)

16. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, New York (2011)

17. Wu, G., Chen, J., Wang, J.: On scheduling two-stage jobs on multiple two-stage
flowshops. Technical report, School of Information Science and Engineering Central
South University (2016)

18. Zhang, X., van de Velde, S.: Approximation algorithms for the parallel flow shop
problem. Eur. J. Oper. Res. 216(3), 544–552 (2012)

http://dx.doi.org/10.1007/978-3-319-39817-4_22
http://dx.doi.org/10.1007/978-3-319-39817-4_22

A New Lower Bound for Positive Zero Forcing

Boting Yang(B)

Department of Computer Science, University of Regina, Regina, SK, Canada
boting.yang@uregina.ca

Abstract. The positive zero forcing number is a variant of the zero forc-
ing number, which is an important parameter in the study of minimum
rank/maximum nullity problems. In this paper, we first introduce the
propagation decomposition of graphs; then we use this decomposition
to prove a lower bound for the positive zero forcing number of a graph.
We apply this lower bound to find the positive zero forcing number of
matching-chain graphs. We prove that the positive zero forcing number
of a matching-chain graph is equal to its zero forcing number. As a con-
sequence, we prove the conjecture about the positive zero forcing number
of the Cartesian product of two paths, and partially prove the conjec-
ture about the positive zero forcing number of the Cartesian product of
a cycle and a path. We also show that the positive zero forcing number
and the zero forcing number agree for claw-free graphs. We prove that it
is NP-complete to find the positive zero forcing number of line graphs.

1 Introduction

This paper studies the positive zero forcing number and introduces the prop-
agation decomposition of graphs which is used to prove a lower bound for the
positive zero forcing number of a graph. The zero forcing number was introduced
in [1]. The motivation is to bound the maximum nullity of a graph (and hence
the minimum rank) because the zero forcing process is a method of forcing zeros
in a null vector of a symmetric matrix described by a graph. The maximum
nullity problem for a graph G is to determine the largest possible nullity over all
real symmetric matrices described by the graph (the edges of G correspond to
nonzero off-diagonal entries), which is equivalent to the minimum rank problem.
Independently, the zero forcing number was introduced in physics as the graph
infection number [6], and it was also introduced in graph searching as the fast-
mixed search number [19,20]. The zero forcing number has been studied as an
interesting graph parameter by many researchers, see for example, [2,5,9,13].

The positive zero forcing number, also called positive semidefinite zero forcing
number, was introduced in [3] as a variant of the zero forcing number. The max-
imum positive semidefinite nullity problem (equivalently, the minimum positive
semidefinite rank problem) for a graph G is to determine the largest possible nul-
lity (smallest possible rank) over all real positive semidefinite matrices described

Research supported in part by an NSERC Discovery Research Grant, Application
No.: RGPIN-2013-261290.

c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 254–266, 2017.
DOI: 10.1007/978-3-319-59605-1 23

A New Lower Bound for Positive Zero Forcing 255

by the graph. The motivation of the positive zero forcing is to bound the max-
imum positive semidefinite nullity. Details of the positive zero forcing process
and the zero forcing process will be given in Sect. 2.

Barioli et al. [4] showed that for an outerplanar multigraph G, its maxi-
mum positive semidefinite nullity is equal to its tree cover number, which is the
minimum number of vertex disjoint induced trees that cover all vertices of G.
Ekstrand et al. [7] showed that every vertex of G is in some minimum positive
zero forcing set. They also showed that the tree cover number of G is bounded
by the positive zero forcing number. Ekstrand et al. [8] extended the definition of
the positive zero forcing number for simple graphs to multigraphs. They showed
that for a multigraph G of tree-width at most 2, its positive zero forcing num-
ber is equal to its maximum positive semidefinite nullity, and is also equal to
its tree cover number. Fallat et al. [10] established a relation between the zero
forcing and the fast-mixed searching [19], which implies some NP-completeness
results for the zero forcing problem. They also gave a linear time algorithm for
computing the positive zero forcing number of chordal graphs. Fallat et al. [11]
investigated positive zero forcing within the context of certain edge clique cov-
erings. They introduced the compressed cliques graph and studied a number of
properties associated with the compressed cliques graph, including: uniqueness,
forbidden subgraphs, connections to Johnson graphs, and positive zero forcing.
Yang [21] proved that it is NP-complete to find the positive zero forcing number
of a graph, and it remains NP-complete for graphs with maximum vertex degree
seven. A linear time algorithm is presented in [21] for computing the positive
zero forcing number of generalized series-parallel graphs.

In [16] (Table 3.1, p. 828), Peters conjectured that for the Cartesian product
of a path of m vertices and another path of n (n ≥ m) vertices, the positive
zero forcing number is equal to m. He proved a special case of the conjecture
for m = 2. Warnberg [17] proved another special case of the conjecture for
m = 3. We will prove the general case of this conjecture in Sect. 5. Peters also
conjectured that for the Cartesian product of a cycle of m vertices and a path of
n vertices, the positive zero forcing number is equal to min{m, 2n}. He proved
two special cases, one for m ≥ 4 and n = 2 and the other for m = 4 and n ≥ 2.
We will prove the conjecture for the case when m ≤ 2n.

The main contributions of this paper are the following:

– We introduce the propagation decomposition of graphs (Sect. 3).
– We introduce the matrix form of graphs and use it to prove a lower bound

for the positive zero forcing number of a graph (Sect. 4).
– We introduce the matching-chain graphs. We show that the positive zero

forcing number of a matching-chain graph is equal to its zero forcing number,
which can be used to prove the conjectures mentioned above (Sect. 5).

– We prove that the positive zero forcing number of a claw-free graph is equal
to its zero forcing number (Sect. 6). We give an NP-completeness result for
the positive zero forcing number of line graphs.

256 B. Yang

2 Preliminaries

In this paper, we only consider finite undirected graphs with no loops or multiple
edges. Let G = (V,E) denote a graph with vertex set V and edge set E. We
also use V (G) for the vertex set of G and E(G) for the edge set. For vertices
u, v ∈ V , we use {u, v} to denote an edge with endpoints u and v; if {u, v} ∈ E,
we say that u and v are adjacent. The degree of v, denoted degG(v), is the
number of edges incident to v. The neighborhood of v, denoted NG(v), is the set
of all vertices adjacent to v. For a subset V ′ ⊆ V , let G[V ′] denote the subgraph
induced by V ′, which is a subgraph whose vertex set is V ′ and the edge set is
{{u, v} ∈ E(G) : u, v ∈ V ′}. We use G − V ′ to denote the induced subgraph
G[V \ V ′]. Definitions omitted here can be found in [18].

We now define the positive zero forcing, and the associated positive zero
forcing number. Let G be a graph and B0 be a subset of vertices of G such that
each vertex of B0 is colored blue and all other vertices of G are uncolored. Let
B be the current set of blue vertices of G (initially, B = B0). Let U1, . . . , Uk

be the sets of uncolored vertices in each of the connected components of G − B
(note that it is possible that k = 1). Positive zero forcing (also called Positive
semidefinite zero forcing [5]) is based on the following coloring rule: If v is a blue
vertex in B and it has exactly one uncolored neighbor u in G[Ui ∪B], then color
the vertex u blue. In this case, we say that the vertex v forces u. We repeatedly
applying this coloring rule (adding the new blue vertices into B at the end of
each iteration) until no more vertices can be forced. If all uncolored vertices of
G are forced to blue, then the set of initial blue vertices (i.e., B0) is called a
positive zero forcing set ; it is called a minimum positive zero forcing set if the
positive zero forcing set has the minimum cardinality; this minimum cardinality
is called the positive zero forcing number of G, denoted Z+(G). That is,

Z+(G) = min{|B0| : B0is a positive zero forcing set of G}.

The procedure of coloring a graph using the coloring rule of the positive zero
forcing is called a positive zero forcing process.

The positive zero forcing is a variant of the zero forcing, which has a different
coloring rule: If v is a blue vertex in G and it has only one uncolored neighbor, say
u, then color the vertex u blue. Similar to the positive zero forcing set/number,
we can define the zero forcing set and the zero forcing number (see e.g., [1]).

Given two graphs H1 and H2, the Cartesian product of H1 and H2, denoted
H1�H2, is the graph such that its vertex set is the Cartesian product V (H1) ×
V (H2) and two vertices (u, v), (u′, v′) ∈ V (H1)×V (H2) are adjacent if and only
if u = u′ and {v, v′} ∈ E(H2), or v = v′ and {u, u′} ∈ E(H1).

Let Sn(R) denote the set of n × n real symmetric matrices. The graph of
A = [aij] ∈ Sn(R), denoted G(A), is the graph with vertex set {1, 2, . . . , n}
and edge set {{i, j} : aij �= 0, 1 ≤ i < j ≤ n}. Note that the diagonal of
A is ignored in determining G(A). For a given graph G, the set of symmetric
matrices described by G is defined to be S(G) = {A ∈ Sn(R) : G(A) = G}. Let
S+(G) denote the subset of positive semidefinite matrices in S(G). The nullity

A New Lower Bound for Positive Zero Forcing 257

of a matrix B is denoted by null(B). The maximum nullity of G is defined to
be M(G) = max{null(B) : B ∈ S(G)}, and, similarly, the maximum positive
semidefinite nullity of G is defined to be

M+(G) = max{null(B) : B ∈ S+(G)}.

It is shown in [3] that M+(G) ≤ Z+(G) ≤ Z(G).
A connected graph G is said to be k-connected (also called k-vertex-

connected) if it contains at least k+1 vertices and it remains connected whenever
fewer than k vertices are removed. The vertex connectivity κ(G) is defined as the
largest k such that G is k-connected. A connected graph G is k-edge-connected
if it remains connected whenever fewer than k edges are removed. A bridge of a
connected graph is an edge whose removal disconnects the graph.

A path is a sequence (v0, v1, . . . , vk) of distinct vertices of G with {vi−1, vi} ∈
E(G) for all i (1 ≤ i ≤ k). The length of a path is the number of edges on it. The
distance between two vertices u and v of G, denoted distG(u, v), is the length of
the shortest path between them.

3 Propagation Tree Decomposition

Definition 1. Given a connected graph G = (V,E), a propagation tree decom-
position of G is a pair (T,W), where T = (I, F) is a rooted tree with vertex set
I = {1, 2, . . . ,m} and edge set F such that each directed edge (i, j) ∈ F satisfies
i < j (the vertex j is called a child of the vertex i), and W = {Wi ⊆ V : i =
1, 2, . . . ,m} is a family of distinct non-empty subsets (called bags) associated
with the vertices of T such that the following properties are satisfied:

1. For each vertex v ∈ V \ W1, there is a unique directed edge (i, j) ∈ F such
that Wj \ Wi = {v}.

2. For each edge {u, v} ∈ E, either there is at least one vertex i ∈ I such that
u, v ∈ Wi, or there is a directed edge (i, j) ∈ F such that {u} = Wi \ Wj and
{v} = Wj \ Wi.

3. For each directed edge (i, j) ∈ F , there is an edge {u, v} ∈ E such that
{u} = Wi \ Wj and {v} = Wj \ Wi.

4. For all i, j, k ∈ I, if i is an ancestor of j and j is an ancestor of k on the
directed path from i to k in T , then Wi

⋂
Wk ⊆ Wj .

The size of a propagation tree decomposition (T,W) is the number of directed
edges in T (i.e., |F |). The maximum propagation tree size of G, denoted pts(G),
is the maximum size over all propagation tree decompositions of G.

Theorem 1. Let G be a connected graph that contains at least one edge. Then

Z+(G) + pts(G) = |V (G)|.

Proof. Let |V (G)| = n. We first show that Z+(G) + pts(G) ≥ n. Let Z+(G) = k
and B1 = {b1, . . . , bk} be a minimum positive zero forcing set in which every

258 B. Yang

vertex is blue initially, and let S be a corresponding positive zero forcing process
whose positive zero forcing set is B1. We construct a propagation tree decompo-
sition (T,W) with a rooted tree T = (I, F) and a set of distinct non-empty bags
W = {Wi : i ∈ I} in the following way: Let W1 = B1. Let U1

1 , . . . , U1
j1

be the
sets of uncolored vertices in each of the connected components of G − B1. Let
the root of T be the vertex 1. For two vertices i, j ∈ I, i is a descendant of j if
the unique directed path from the root 1 to i passes through j. The vertex 1 will
have j1 children and each child will be the root of the rooted subtree consisting
of this child and its descendants after the construction of T is finished. Each U1

i ,
1 ≤ i ≤ j1, will be equal to the union of the bags associated to the vertices of the
rooted subtree whose root is the i-th child of the vertex 1 after the construction
of T is finished. Suppose that b1 is the blue vertex in W1 that forces v1 to blue
in the first forcing action of S. Then let W2 = (W1 \ {b1}) ∪ {v1} and create
the vertex 2 and edge (1, 2) for T . Let B2 = B1 ∪ {v1} and U2

1 , . . . , U2
j2

be the
sets of uncolored vertices in each of the connected components of G − B2. Then
after the construction of T is finished, there will be j2 rooted subtrees in the
forest T − {1, 2}, and each U2

i , 1 ≤ i ≤ j2, will be equal to the union of the bags
associated to the vertices of a rooted subtree whose root is a child of the vertex
1 or 2. Suppose b2 is the blue vertex in Wk′ (1 ≤ k′ ≤ 2) that forces v2 to blue
in the second forcing action of S. Then let W3 = (Wk′ \ {b2}) ∪ {v2} and create
the vertex 3 and edge (k′, 3) for T . In general, repeat the following until the last
forcing action of S is considered: let B� = B�−1 ∪ {v�−1} and U �

1 , . . . , U
�
j�

be the
sets of uncolored vertices in each of the connected components of G − B�. Then
after the construction of T is finished, there will be j� rooted subtrees in the
forest T − {1, 2, . . . , �}, and each U �

i , 1 ≤ i ≤ j�, will be equal to the union of
the bags associated to the vertices of a rooted subtree whose root is a child of a
vertex in {1, 2, . . . , �}. Suppose b� is a blue vertex in Wk′ (1 ≤ k′ ≤ �) that forces
v� to blue in the �-th forcing action of S. Then let W�+1 = (Wk′ \ {b�}) ∪ {v�}
and create the vertex � + 1 and edge (k′, � + 1) for T .

Since |B1| = k, we know that S contains n − k forcing actions. Thus T is a
rooted tree with vertex set I = {1, 2, . . . , n−k+1} and edge set F such that each
directed edge (i, j) ∈ F satisfies i < j. We now show that W satisfies the four
properties in Definition 1. The first property is easy to verify. Let {u, v} be an
edge of G. If u and v are blue initially, then u, v ∈ W1, otherwise, suppose that
v is uncolored when u is colored (u could be blue initially or forced by another
blue vertex). If v is forced to blue by a vertex u′, then there is a directed edge
(k′, �′) ∈ F such that u′ ∈ Wk′ and v ∈ W�′ = (Wk′ \ {u′}) ∪ {v}. If u = u′

or u ∈ W�′ , then property 2 is satisfied. Suppose that u �= u′ and u �∈ W�′ . Let
(j′, j + 1) ∈ F be a directed edge on the directed path of T from the root 1 to �′

such that u ∈ Wj′ , u �∈ Wj+1 and u forces u′′. Since u′′ and v belong to the same
connected component of G − Bj and both of them are uncolored before u forces
u′′, u cannot force u′′ to blue by the coloring rule of the positive zero forcing
(because v, u′′ ∈ NG(u)). This is a contradiction. Thus property 2 is held. For
each directed edge (k′, �+1) in F , where 1 ≤ k′ ≤ �, there is an edge {b�, v�} ∈ E
such that {b�} = Wk′ \ W�+1 and {v�} = W�+1 \ Wk′ . Thus, the third property

A New Lower Bound for Positive Zero Forcing 259

is satisfied. For any i, j, � ∈ I, where i is an ancestor of j and j is an ancestor of
� on the directed path from i to � in T , suppose that u is a vertex in Wi

⋂
W�.

If u forces a vertex v to blue such that v ∈ Wj′ and j′ is on the directed path
from i to � in T , then u �∈ Wj′ , and furthermore, u �∈ W�. This is a contradiction.
Thus u ∈ Wj . Hence the fourth property is satisfied.

From the above, we know that (T,W) is a propagation tree decomposition
of size n − k. Therefore pts(G) ≥ n − Z+(G).

We next show that Z+(G)+pts(G) ≤ n. Let pts(G) = p. Given a propagation
tree decomposition (T,W) of size p, we will describe a positive zero forcing
process such that the corresponding positive zero forcing set has size n − p.
Let T = (I, F). Since pts(G) = p, from Definition 1, |F | = p and |I| = p + 1.
Let I = {1, 2, . . . , p + 1} and let W = {Wi ⊆ V (G) : 1 ≤ i ≤ p + 1} be
a family of distinct non-empty bags satisfying the properties in Definition 1.
Color all vertices of W1 blue and leave all other vertices of V (G) \W1 uncolored
initially. Assume that all vertices in W1, . . . ,Wj are blue just before the j-th
forcing action of the positive zero forcing process. We will show that all vertices
of Wj+1 are blue just after the j-th forcing action of the positive zero forcing
process. Suppose (i, j + 1) ∈ F is a directed edge of T such that the vertex j + 1
is a child of i. Then there is an edge {u, v} ∈ E(G) such that {u} = Wi \ Wj+1

and {v} = Wj+1 \ Wi. Since i ≤ j, we know that v is the only uncolored vertex
in Wj+1 just before the j-th forcing action of the positive zero forcing process.
Let B be the set of blue vertices just before the j-th forcing action, and let U be
the set of uncolored vertices in a connected component of G − B that contains
v. Note that {v} = U ∩ Wj+1. Let H = G[U ∪ B]. Suppose that NH(u) contains
at least two uncolored vertices, say v and v′. Let Wj′ be a bag in W which
contains v′. Since {v} = U ∩ Wj+1, from the fourth property of W , we have
j′ > j + 1. So u �∈ Wj′ . Thus, the second property of W is violated for the edge
{u, v′} ∈ E(G). This is a contradiction. Hence v is the only uncolored vertex in
NH(u), and therefore, we can let “u forcing v” to be the j-th forcing action of
the positive zero forcing process. Thus, all vertices of Wj+1 are blue just after
the j-th forcing action of the positive zero forcing process.

Since W contains p + 1 bags and each bag Wi, 2 ≤ i ≤ p + 1, contains an
uncolored vertex that is forced to blue by another vertex, we must have n − p
blue vertices initially. Thus Z+(G) ≤ n − p = n − pts(G).

From the first part of the proof of Theorem1, we obtain the following result.

Corollary 1. For a connected graph G with n vertices, if Z+(G) = k, then G
has a propagation tree decomposition (T,W) of size n− k such that W = {Wi ⊆
V (G) : 1 ≤ i ≤ n − k + 1} satisfies the following

|W1| = |W2| = · · · = |Wn−k+1| = k.

4 Lower Bound

In this section, we first introduce the matrix form and then apply the propagation
tree decomposition to show a lower bound on positive zero forcing numbers. We

260 B. Yang

will use this lower bound to find the positive zero forcing number of matching-
chain graphs in Sect. 5.

Definition 2. We say that a graph G has an m × n matrix form if all vertices
of G can be arranged in an m × n matrix

⎡

⎢
⎢
⎢
⎣

v11 v12 . . . v1n

v21 v22 . . . v2n

...
...

. . .
...

vm1 vm2 . . . vmn

⎤

⎥
⎥
⎥
⎦

such that each row Ai = {vi1, vi2, . . . , vin}, 1 ≤ i ≤ m, induces a connected
subgraph G[Ai], and each column Bj = {v1j , v2j , . . . , vmj}, 1 ≤ j ≤ n, also
induces a connected subgraph G[Bj].

From Definition 2, it is easy to see that every connected graph G has a 1 ×
|V (G)| matrix form. If |V (G)| (as a number) has more than two factors, then G
may have two or more different matrix forms.

Lemma 1. Let G be a connected graph and (T,W) be a propagation tree decom-
position of G such that T = (I, F) is a rooted tree with I = {1, 2, . . . ,m} and
W = {Wi ⊆ V (G) : 1 ≤ i ≤ m} is a family of distinct non-empty bags satisfying
the properties in Definition 1. Let H be a connected subgraph of G. If there is a
Wj ∈ W such that V (H) ∩ Wj = ∅, then there is a connected component T ′ in
the forest T − {j} such that V (H) ⊆ ∪�∈V (T ′)W�.

By Lemma 1, we can prove the main result of this section.

Theorem 2. Let G be a connected graph that has an m × n matrix form with
m rows A1, . . . , Am, and n columns B1, . . . , Bn.

(i) If
∑n

j=1 κ(G[Bj]) ≥ m ≥ 2, then Z+(G) ≥ m; and
(ii) If

∑m
i=1 κ(G[Ai]) ≥ n ≥ 2, then Z+(G) ≥ n.

Proof. (i) Let Z+(G) = k. From Corollary 1, G has a propagation tree decompo-
sition (T,W) such that T = (I, F) is a rooted tree with I = {1, 2, . . . ,mn−k+1}
and W = {Wi ⊆ V (G) : 1 ≤ i ≤ mn − k + 1} is a family of distinct non-empty
bags satisfying the properties in Definition 1. It follows from Corollary 1 that
|W1| = |W2| = · · · = |Wmn−k+1| = k.

For the sake of contradiction, we assume that k < m. Let Ai =
{vi1, vi2, . . . , vin}, 1 ≤ i ≤ m, and Bj = {v1j , v2j , . . . , vmj}, 1 ≤ j ≤ n. For
any W�, 1 ≤ � ≤ mn − k + 1, since k < m and |W�| = k, at least one of the
intersection sets W� ∩ Ai, 1 ≤ i ≤ m, must be empty. Let �1 = 1 be the root
of T . Then the induced subgraph G[V \ W�1] contains a connected component
that contains all vertices of some row, say Ah1 , because G[Ah1] is connected.
By Lemma 1, there is a connected component T�1 in the forest T − {�1} such
that Ah1 ⊆ ∪�∈V (T�1)

W�. Suppose that vertex �2 is a child of �1 on T such that
�2 ∈ V (T�1). Similarly, G[V \W�2] contains a connected component that contains

A New Lower Bound for Positive Zero Forcing 261

all vertices of a row, say Ah2 (note that it is possible that Ah2 = Ah1). From
Lemma 1, there is a connected component T�2 in the forest T − {�2} such that
Ah2 ⊆ ∪�∈V (T�2)

W�. Continue in this way, we will find a path (�1, �2, . . . , �t, �t+1)
on T , where each vertex is a parent of the next vertex along the path, such that
the following properties are satisfied:

1. For each s ∈ {1, . . . , t}, G[V \ W�s
] contains a connected component that

contains all vertices of a row, say Ahs
, and there is a connected component

T�s
in the forest T − {�s} such that �s+1 ∈ V (T�s

) and Ahs
⊆ ∪�∈V (T�s)

W�;
and

2. G[V \ W�t+1] contains a connected component that contains all vertices of
a row, say Aht+1 , and there is a connected component T�t+1 in the forest
T − {�t+1} such that �t ∈ V (T�t+1) and Aht+1 ⊆ ∪�∈V (T�t+1)

W�.

To simplify the notation, let Aht
= Ax = {vx1, vx2, . . . , vxn} and Aht+1 =

Ay = {vy1, vy2, . . . , vyn}. From the properties of the path (�1, �2, . . . , �t, �t+1), we
know that Ax �= Ay. Consider an arbitrary j ∈ {1, . . . , n}. Suppose W� contains
vxj and W�′ contains vyj . Let κ(G[Bj]) = k′. Note that m ≥ 2. So G[Bj] is a
connected graph with at least two vertices, and thus, k′ ≥ 1. Since G[Bj] is k′-
connected, from Menger’s theorem [18], there are k′ pairwise internally disjoint
paths from vxj to vyj on G[Bj]. Let PG be one of the k′ paths from vxj to
vyj on G[Bj] and PT be a path from � to �′ on T . From the properties of the
path (�1, �2, . . . , �t, �t+1), we know that �t is a vertex on the path PT and �′ is
a descendant of �t. Note that �t is a descendant or sibling of �. By properties 2
and 4 in Definition 1, W�t

must contain at least one vertex of PG because W�

contains vxj and W�′ contains vyj . Let v be the closest vertex to vyj among
the vertices in W�t

∩ V (PG). From property 3 in Definition 1, if PG contains at
least one internal vertex, then v must be an internal vertex of PG; otherwise,
v = vxj and V (PG) = {vxj , vyj}, and thus vxj ∈ W�t

. Note that there is at
most one edge between vxj and vyj because G does not contain multiple edges.
Therefore, W�t

must contain at least k′ vertices of G[Bj]. Since j is an arbitrary
number in {1, . . . , n} and the k′ paths from vxj to vyj on G[Bj] are pairwise
internally disjoint, W�t

must contain at least
∑n

j=1 κ(G[Bj]) distinct vertices.
Hence |W�t

| ≥ ∑n
j=1 κ(G[Bj]) ≥ m > k, which is a contradiction.

(ii) The result follows from (i) if we consider the transpose of the matrix form
of G.

Corollary 2. Let G be a connected graph that has an m×n matrix form. Then

Z+(G) ≥ min{m,n}.

5 Matching-Chain Graphs

In this section, we introduce a class of graphs, called matching-chain graphs, on
which the zero forcing number equals the positive zero forcing number.

262 B. Yang

Definition 3. A graph G = (V,E) is an m×n matching-chain graph, denoted by
Mm,n, if its vertex set V can be partitioned into n disjoint subsets V1, V2, . . . , Vn

such that each subset contains m vertices and they satisfy the following
properties:

1. for each j ∈ {1, 2, . . . , n}, the induced subgraph G[Vj] is connected;
2. for each edge {u, v} ∈ E, there is a j ∈ {1, 2, . . . , n} such that either both u

and v belong to Vj or one belongs to Vj and the other belongs to Vj+1; and
3. for each j ∈ {1, 2, . . . , n − 1}, the bipartite graph (Vj , Vj+1;Ej,j+1), where

Ej,j+1 = {{u, v} ∈ E : u ∈ Vj and v ∈ Vj+1}, has a unique perfect matching.

Lemma 2 [15]. Let G = (U, V ;E) be a bipartite graph with two parts U and V .
If G has a unique perfect matching, then there are vertices u ∈ U and v ∈ V
such that degG(u) = degG(v) = 1.

Theorem 3. Let Mm,n = (V,E) and (V1, V2, . . . , Vn) be a partition of the vertex
set V such that each Vi, 1 ≤ i ≤ n, contains m vertices and the properties in
Definition 3 are satisfied. If

∑n
i=1 κ(G[Vi]) ≥ m ≥ 2, then

Z+(Mm,n) = Z(Mm,n) = m.

Proof. From [3] we know that Z(Mm,n) ≥ Z+(Mm,n). We now show that
Z+(Mm,n) ≥ m. For each j ∈ {1, 2, . . . , n − 1}, consider the bipartite graph
Hj = (Vj , Vj+1;Ej,j+1), where Ej,j+1 = {{u, v} ∈ E : u ∈ Vj and v ∈ Vj+1}.
Let Mj = {{vi,j , vi,j+1} ∈ E : 1 ≤ i ≤ m, vi,j ∈ Vj and vi,j+1 ∈ Vj+1} be
the unique perfect matching for Hj . For each i ∈ {1, 2, . . . ,m}, we have a path
(vi,1, vi,2, . . . , vi,n) such that {vi,j , vi,j+1} ∈ Mj , j ∈ {1, 2, . . . , n−1}. Thus Mm,n

has an m×n matrix form with rows {vi,1, vi,2, . . . , vi,n}, 1 ≤ i ≤ m, and columns
{v1,j , v2,j , . . . , vm,j}, 1 ≤ j ≤ n. By Theorem 2, we have Z+(Mm,n) ≥ m.

We next describe a zero forcing process for Mm,n, which has m blue vertices
initially. Color all vertices of {v1,1, v2,1, . . . , vm,1} blue and leave all other ver-
tices of Mm,n uncolored. Since M1 is the unique perfect matching for H1, from
Lemma 2, there is a vertex in V1, say v1,1, such that degH1

(v1,1) = 1. Since v1,1

has only one uncolored neighbor (i.e., v1,2) in Mm,n, it can force v1,2 to blue.
Notice that M1 \ {{v1,1, v1,2}} is the unique perfect matching for the bipartite
graph H1 − {v1,1, v1,2}. Thus, there is a vertex in V1 \ {v1,1}, say v2,1, whose
degree is one in H1 − {v1,1, v1,2}. Note that v2,1 currently has only one uncol-
ored neighbor (i.e., v2,2) in Mm,n. Hence v2,1 can force v2,2 to blue. Continue
like this, all vertices of V2 can be blue. Similarly, each vertex of Vj , 3 ≤ j ≤ n,
can be forced to blue by the corresponding vertex in Vj−1. So Z(Mm,n) ≤ m,
and therefore, Z(Mm,n) = Z+(Mm,n) = m.

From Theorem 3, we have the following result.

Corollary 3. Let G be a connected graph and P be a path. If |V (G)| ≤ |V (P)|,
then

Z+(G�P) = Z(G�P) = |V (G)|.

A New Lower Bound for Positive Zero Forcing 263

Let Pn denote a path with n vertices. As a consequence of Corollary 3, we
can prove the conjecture that Z+(Pm�Pn) = min{m,n} (see p. 828 in [16]).

Corollary 4. Z+(Pm�Pn) = Z(Pm�Pn) = min{m,n}.
Let Cm denote a cycle with m vertices. Peters conjectured that

Z+(Cm�Pn) = min{m, 2n} ([16], p. 828). We next prove this conjecture par-
tially by using Theorem 3.

Corollary 5. If m ≤ 2n, then Z+(Cm�Pn) = Z(Cm�Pn) = m.

Corollary 6. Let G be a k-connected graph. If k ≥ |V (G)|/2 ≥ 1 and n ≥ 2,
then

Z+(G�Pn) = Z(G�Pn) = |V (G)|.
Note that κ(Km) = m− 1 for a complete graph Km with m ≥ 2 vertices. By

Corollary 6 we can obtain the following result.

Corollary 7. For any m ≥ 2 and n ≥ 2, Z+(Km�Pn) = Z(Km�Pn) = m.

6 Claw-Free Graphs

In this section, we first show that the zero forcing number of a claw-free graph is
equal to its positive zero forcing number. We then prove that finding the positive
zero forcing number of line graphs (which is a subclass of claw-free graphs) is
NP-complete.

6.1 Z(G) = Z+(G) for Claw-Free Graphs

In a positive zero forcing process, let B be a positive zero forcing set of G and
U1, . . . , Uk be the sets of uncolored vertices in each of the connected components
of G − B. When the coloring rule of the positive zero forcing is applied, a blue
vertex in B can force an uncolored vertex in some connected component Ui to
blue. Then we update the blue vertex set and apply the coloring rule again. We
repeat this process until all vertices are blue. For each initial blue vertex v, the
forces determine an induced rooted-tree T , referred to as a forcing tree with root
v, and write v ⇒ T . If B is a positive zero forcing set of G, then the set of
rooted-trees {T : v ∈ B, v ⇒ T} is called a positive zero forcing tree cover of G;
furthermore, if B is a minimum positive zero forcing set of G, then this set is
called a minimum positive zero forcing tree cover of G. Since every vertex not
in the positive zero forcing set B is forced by exactly one vertex, it is easy to
see that {T : v ∈ B, v ⇒ T} is a set of vertex-disjoint induced rooted-trees that
partition V (G).

In [12], Fallat and Soltani showed that the zero forcing number of a line graph
is equal to its positive zero forcing number. We extend this result to claw-free
graphs.

264 B. Yang

Theorem 4. If a graph G is claw-free, then Z+(G) = Z(G) and each forcing
tree in a minimum positive zero forcing tree cover of G is a path.

Proof. Suppose there is a forcing tree T in a minimum positive zero forcing tree
cover of G which contains a vertex v with degT (v) ≥ 3. Let a, b, c ∈ NT (v). If v is
the root of T , then v forces a, b, c to blue. Since G is claw-free, at least two of a, b, c
must be adjacent. Without loss of generality, suppose a and b are adjacent. When
v forces a or b to blue, both a and b belong to the same connected component
of the graph induced by the uncolored vertices. This violates the coloring rule of
the positive zero forcing. Assume that v is not the root of T . Then a neighbor
of v, say a, must force v to blue and v forces all other vertices in NT (v) to blue.
So there is no edge between a and NT (v) \ {a}. Since G is claw-free, we know
that G[NT (v) \ {a}] is a clique in G. Hence, v cannot force b and c to blue. This
is a contradiction.

From the above, we know that each tree in a minimum positive zero forcing
tree cover of G must be a path, and thus Z+(G) ≥ Z(G). On the other hand,
we have Z+(G) ≤ Z(G) [3]. Therefore Z+(G) = Z(G).

The reverse of Theorem 4 is not always true. For example, consider the Carte-
sian product of an edge and a path with at least three vertices. This graph is not
claw-free, but it has a minimum positive zero forcing tree cover that contains
two paths.

6.2 Complexity

In [19], Yang proved that finding the fast-mixed search number of a given graph
is NP-complete and it remains NP-complete even for biconnected graphs with
maximum vertex degree 4. Since the fast-mixed search number of a graph is equal
to its zero forcing number, this NP-completeness result is also held for the zero
forcing problem [10]. Recently, Yang [21] proved that finding the positive zero
forcing number of a given graph is NP-complete and it remains NP-complete
for graphs with maximum vertex degree 7. In this subsection, we consider the
complexity of computing the positive zero forcing number of another class of
graphs – the line graphs. We will show that finding the positive zero forcing
number (or zero forcing number) of line graphs is still NP-complete. This result
enhances the NP-completeness results in [10,21].

Theorem 5. Given a graph G and an integer k, the problem of determining
whether Z+(L(G)) ≤ k is NP-complete. The problem remains NP-complete
even when G is a 2-edge-connected planar bipartite graph with maximum ver-
tex degree 3.

Since line graphs are claw-free, from Theorems 4 and 5, we obtain the follow-
ing result.

Corollary 8. Given a graph G and an integer k, the problem of determin-
ing whether Z(L(G)) ≤ k is NP-complete for 2-edge-connected planar bipartite
graphs G with maximum vertex degree 3.

A New Lower Bound for Positive Zero Forcing 265

Fallat et al. [10] considered the structure of trees in a zero forcing tree cover
of a graph. For a given graph G and a positive integer �, among all the positive
zero forcing tree covers of G with size �, they wanted to minimize the number
of positive zero forcing trees that are non-trivial trees (a tree is non-trivial if it
contains at least one edge). We now consider a strong version of this problem,
that is, we want to decide if the number of non-trivial positive zero forcing trees
is one. The following result is derived from the proof of Theorem5.

Corollary 9. Given a graph L(G) that is the line graph of a graph G and an
integer k, the problem of determining whether L(G) has a positive zero forcing
tree cover of size at most k such that there is only one positive zero forcing tree
that is non-trivial is NP-complete. The problem remains NP-complete even when
G is a 2-edge-connected planar bipartite graph with maximum vertex degree 3.

6.3 Line Graphs

Recall that a path in a graph G is a sequence (v0, v1, . . . , vk) of distinct vertices
with {vi−1, vi} ∈ E(G) for all i ∈ {1, . . . , k}, and its length is the number of
edges on it.

Theorem 6. Let G be a connected graph and P = {P1, . . . , Pk} be a set of
vertex-disjoint paths in G such that each Pi contains at least two edges. Suppose
the sum of the lengths of all paths in P is k′. Then Z+(L(G)) = Z(L(G)) ≤
|E(G)| − k′ + k.

The upper bound in Theorem6 is tight when G is a path or cycle. The next
result is from [21]. We state it here for easier referencing.

Lemma 3 [21]. Let G = (V,E) be a connected graph and Gi = (Vi, Ei), 1 ≤ i ≤
k, be maximal cliques of G satisfying the following conditions: (1) ∪k

i=1Vi = V
and ∪k

i=1Ei = E, (2) for any 1 ≤ i < j ≤ k, |Vi ∩ Vj | ≤ 1, and (3) each
Gi, 1 ≤ i ≤ k, contains a vertex vi that is not in any Gj , j �= i. Then

Z+(G) = M+(G) = |V | − k.

Theorem 7. Let G be a connected graph with minimum vertex degree 2 and G′

be a graph obtained from G by adding a pendant edge to each vertex of G. Then

Z(L(G′)) = M(L(G′)) = Z+(L(G′)) = M+(L(G′)) = |E(G)|.

References

1. AIM Minimum Rank-Special Graphs Work Group: Zero forcing sets and the min-
imum rank of graphs. Linear Algebra Appl. 428, 1628–1648 (2008)

2. Barioli, F., Barrett, W., Fallat, S., Hall, H.T., Hogben, L., Shader, B., van den
Driessche, P., van der Holst, H.: Parameters related to tree-width, zero forcing,
and maximum nullity of a graph. J. Graph Theory 72, 146–177 (2013)

266 B. Yang

3. Barioli, F., Barrett, W., Fallat, S., Hall, H.T., Hogben, L., Shader, B., van den
Driessche, P., van der Holst, H.: Zero forcing parameters and minimum rank prob-
lems. Linear Algebra Appl. 433(2), 401–411 (2010)

4. Barioli, F., Fallat, S., Mitchell, L., Narayan, S.: Minimum semidefinite rank of
outerplanar graphs and the tree cover number. Electron. J. Linear Algebra 22,
10–21 (2011)

5. Booth, M., Hackney, P., Harris, B., Johnson, C.R., Lay, M., Mitchell, L.H.,
Narayan, S.K., Pascoe, A., Steinmetz, K., Sutton, B.D., Wang, W.: On the min-
imum rank among positive semidefinite matrices with a given graph. SIAM J.
Matrix Anal. Appl. 30, 731–740 (2008)

6. Burgarth, D., Giovannetti, V.: Full control by locally induced relaxation. Phys.
Rev. Lett. 99(10), 100501 (2007)

7. Ekstrand, J., Erickson, C., Hall, H.T., Hay, D., Hogben, L., Johnson, R., Kingsley,
N., Osborne, S., Peters, T., Roat, J., Ross, A., Row, D., Warnberg, N., Young, M.:
Positive semidefinite zero forcing. Linear Algebra Appl. 439, 1862–1874 (2013)

8. Ekstrand, J., Erickson, C., Hay, D., Hogben, L., Roat, J.: Note on positive semi-
definite maximum nullity and positive semidefinite zero forcing number of partial
2-trees. Electron. J. Linear Algebra 23, 79–87 (2012)

9. Fallat, S., Hogben, L.: Minimum rank, maximum nullity, and zero forcing number
of graphs. In: Handbook of Linear Algebra, Discrete Mathematics and its Appli-
cations, chap. 46, pp. 775–810. CRC Press (2013)

10. Fallat, S., Meagher, K., Yang, B.: On the complexity of the positive semidefinite
zero forcing number. Linear Algebra Appl. 491, 101–122 (2016)

11. Fallat, S., Meagher, K., Soltani, A., Yang, B.: Positive zero forcing and edge clique
coverings. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, vol. 9711, pp. 53–64.
Springer, Cham (2016). doi:10.1007/978-3-319-39817-4 6

12. Fallat, S., Soltani, A.: Line graphs: their maximum nullities and zero forcing num-
bers. Czechoslov. Math. J. 66, 743–755 (2016)

13. Huang, L.-H., Chang, G.J., Yeh, H.-G.: On minimum rank and zero forcing sets of
a graph. Linear Algebra Appl. 432, 2961–2973 (2010)

14. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamiltonian paths in grid graphs.
SIAM J. Comput. 11(4), 676–686 (1982)

15. Lovász, L., Plummer, M.D.: Matching Theory. North Holland Publishing, Amster-
dam (1986)

16. Peters, T.: Positive semidefinite maximum nullity and zero forcing number. Elec-
tron. J. Linear Algebra 23, 815–830 (2012)

17. Warnberg, N.: Positive semidefinite propagation time. Discret. Appl. Math. 198,
274–290 (2016)

18. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle
River (2001)

19. Yang, B.: Fast-mixed searching and related problems on graphs. Theoret. Comput.
Sci. 507(7), 100–113 (2013)

20. Yang, B.: Fast edge-searching and fast searching on graphs. Theoret. Comput. Sci.
412, 1208–1219 (2011)

21. Yang, B.: Lower bounds for positive semidefinite zero forcing and their applications.
J. Comb. Optim. 33, 81–105 (2017)

http://dx.doi.org/10.1007/978-3-319-39817-4_6

Phase Transition for Maximum
Not-All-Equal Satisfiability

Junping Zhou1, Shuli Hu1, Tingting Zou2, and Minghao Yin1(B)

1 College of Computer Science and Information Technology,
Northeast Normal University, Changchun 130117, China

ymh@nenu.edu.cn
2 College of Information Science and Technology,
Dalian Maritime University, Dalian 116026, China

Abstract. Phase transition is a dramatic transition from one state to
another state when a particular parameter varies. This paper aims to
study the phase transition of maximum not-all-equal satisfiability prob-
lem (Max NAE SAT), an optimization of not-all-equal satisfiability prob-
lem (NAE SAT). Given a conjunctive normal formula (CNF) F with n
variables and rn k-clauses (the clause exactly contains k literals), we use
first-moment method to obtain an upper bound for f(n, rn) the expec-
tation of the maximum number of NAE-satisfied clauses of random Max
NAE k-SAT. In addition, we also consider the phase transition of decision
version of random Max NAE k-SAT—bounded not-all-equal satisfiability
problem (NAE k-SAT(b)). We demonstrate that there is a phase tran-
sition point rk,b separating the region where almost all NAE k-SAT(b)
instances can be solved from the region where almost all NAE k-SAT(b)
instances can’t be solved. Furthermore, we analyze the upper bound and
lower bound for rk,b.

1 Introduction

Propositional satisfiability (SAT) is a prototypical NP-complete problem, and
consists in deciding whether there exists an assignment to all variables satisfying
a given propositional logic formula in conjunctive normal formula (CNF). This
problem has been well studied due to its academic and practical significance
[1]. Not-all-equal satisfiability (NAE SAT) is an extension of SAT, which is
a problem to decide whether there exists an assignment to all variables such
that every clause in a given CNF formula contains at least one satisfied literal
and at least one unsatisfied literal [2]. The optimization version of NAE SAT
is Maximum Not-All-Equal-Satisfiability (Max NAE SAT), which consists in
finding an assignment to all variables such that the maximum number of clauses
are NAE-satisfied. Nowadays, the optimization problems have arised in many
real problems like routing, bioinformatics, scheduling, probabilistic reasoning,
electronic markets [3].

The phase transition phenomenon is usually a dramatic transformation from
one state to another state when a particular parameter varies. Research on phase
c© Springer International Publishing AG 2017
M. Xiao and F. Rosamond (Eds.): FAW 2017, LNCS 10336, pp. 267–279, 2017.
DOI: 10.1007/978-3-319-59605-1 24

268 J. Zhou et al.

transition is significant. This is because phase transition is one of the most cru-
cial features of these inherently intractable problems and by working on it the
researchers can not only analyze the structure of intractable problems, but also
understand the average-case performance of solvers. Recently, numerous theo-
retical analyses and experiments have provided evidences that phase transition
phenomena exist in a large number of problems [4]. In the pioneering work of
Kirkpatrick and Selma [5], a sharp phase transition phenomenon was proved
to exist in the satisfiable probability of a random SAT formula with respect to
the control parameter of the density of clauses. In [6,7], Xu and Li proposed a
random CSPs model, called RB, and proved that there exists an exact phase
transition point in this model. Phase transition phenomena of several real-world
problems, such as traveling salesman problem and manipulation problem, have
been observed [8,9]. In [10–12], we have proved that phase transition phenomena
exist in intelligent planning problems, counting constraint satisfaction problems,
and knowledge compilation problems.

Several results on phase transition of NAE SAT have also been proposed.
Achlioptas first proved that phase transition phenomena exist in NAE SAT, and
provided both an upper bound and a lower bound for phase transition point
of NAE 3-SAT in [13]. After that, he further improved the upper bound and
lower bound for NAE k-SAT as well [14]. Coja-Oghlan et al. proposed a survey
propagation inspired second moment method to study the phase transition of
NAE k-SAT, and obtained the upper bound and lower bound for NAE k-SAT
[15]. Ding et al. considered the regular NAE k-SAT and established a critical
value of the phase transition point [16].

Phase transition phenomena exist in not only decision problems, but also
optimization problems. Achilioptas et al. presented a mathematical method for
locating phase transition point for optimization problems [17]. Coppersmith et
al. provided bounds for Max 2-SAT, Max k-SAT, and Max Cut [18]. Further, Xu
et al. presented a tighter upper bound for Max 2-SAT by using the first moment
method [19]. In [10], we provided bounds for Max CSP and Min CSP problems.
Some researchers also study the phase transition for bounded satisfiability prob-
lems, a decision version of Max SAT. Zhang first showed that there exists phase
transition for the bounded satisfiability problems, and obtained the phase tran-
sition points of 3-SAT(b) and 2-SAT(b) respectively [20]. Based on that, Bailey
and Kolaitis provided a theoretical analysis to obtain phase transition points of
3-SAT(b) and k-SAT(b) problems in [21].

This paper also follows this line of research by studying the upper bound
of the Max NAE SAT and the phase transition of the decision version of
the Max NAE SAT. Until now, within our knowledge, there has been no lit-
erature analyzing the bounds for Max NAE k-SAT. Firstly, we present an
upper bound for the expectation of the maximum number of NAE-satisfied
clauses f(n, rn) of random Max NAE k-SAT. That is, when r > (2k − 2) ln 2,
f(n, rn) ≤ (1 − (1/2k−1) +

√
(2k − 2) ln 2/

√
r22k−2)rn, where k is the length of

each clause, r is the clause density, n and rn denote the number of variables
and clauses respectively. Moreover, we also research the decision version of Max

Phase Transition for Maximum Not-All-Equal Satisfiability 269

NAE SAT problem—NAE k-SAT(b). We prove that there exists phase transition
phenomenon in NAE k-SAT(b), regardless of the value of b. Further, we precisely
locate the area of the phase transition point, i.e., the upper bound and lower
bound for NAE k-SAT(b) by theoretical analyses.

This paper is organized as follows. First, we recall some basic concepts in
Sect. 2. Then in Sect. 3, we present how to obtain the upper bound for random
Max NAE k-SAT. In Sect. 4, we show how to acquire the upper and lower bounds
for NAE k-SAT(b). Finally, conclusions are provided in Sect. 5.

2 Preliminary

Let {x1,x2,. . . ,xn} denote a set of n variables. The corresponding set of liter-
als is {x1,x̄1,x2,x̄2,. . . ,xn,x̄n}, and x̄ denotes the negation of x. A clause is a
disjunction of literals which come from distinct variables and a k-length clause
is the clause with exactly k literals. A conjunctive normal formula (CNF) is a
conjunction of clauses. A k-CNF formula F (n, �rn�) is a CNF formula with n
variables and rn k-length clauses, where r is the clause density equalling the
number of clause divides the number of variables. For simplicity, we use rn in
lieu of �rn�. And a random k-CNF F (n, rn) formula can be obtained by choos-
ing rn k-length clauses over n variables uniformly and independently at random
among all (2n)k possible clauses. Fk(n, rn) is the collection of all random k-CNF
F (n, rn) with n variables and rn clauses.

Given a CNF F , a truth assignment is a mapping that assigns to each variable
contained by F either 0 or 1. If the value of a literal is 1, we say the literal is satis-
fied; otherwise, we say the literal is unsatisfied. We say a clause is NAE-satisfied if
it contains at least one satisfied literal and at least one unsatisfied literal under
the assignment; otherwise, the clause is NAE-unsatisfied. A truth assignment
is a Not-All-Equal-satisfying assignment (NAE-satisfying assignment) iff every
clause of F is NAE-satisfied under the assignment. If a clause is NAE-unsatisfied
under an assignment, then we say the assignment violates the clause. If F has
a NAE-satisfying assignment we say the formula F is Not-All-Equal-satisfied
(NAE-satisfied); otherwise, F is Not-All-Equal-unsatisfied (NAE-unsatisfied).

Given a random k-CNF F (n, rn), the Not-All-Equal-k-Satisfiability problem
(NAE k-SAT) consists in deciding whether there exists a NAE-satisfying assign-
ment such that all clauses of F (n, rn) are NAE-satisfied. The problem Maximum
Not-All-Equal-k-Satisfiability (Max NAE k-SAT) consists in finding an assign-
ment to all variables such that the maximum number of clauses of F (n, rn)
are NAE-satisfied. The bounded Not-All-Equal-k-Satisfiability problem (NAE
k-SAT(b)) is to decide whether there is an assignment such that does not violate
more than b clauses of F (n, rn). That is, NAE k-SAT(b) asks whether there is
an assignment such that the number of NAE-satisfied clauses is at least rn − b.
Therefore, NAE k-SAT(b) problem can be regarded as a decision version of Max
NAE k-SAT problem.

Until now, there have been several research results about NAE k-SAT. In
the following, we present two relevant theorems about bounds for NAE k-SAT

270 J. Zhou et al.

problem. In [13], Achlioptas proved that the phase transition phenomenon exists
in NAE 3-SAT with respect to the control parameter of the clause density r, and
the upper and lower bounds for its phase transition point rNAE

3 is presented as
follows:

Theorem 1 [13]. 1.514 < rNAE
3 < 2.215, where rNAE

3 is the clause density of
NAE 3-SAT.

In [15], Coja-Oglan further presented the upper and lower bound for the
phase transition point rNAE

k of NAE k-SAT as follows:

Theorem 2 [15]. There is a sequence εk = 2−(1−ok(1))k, such that

2k−1 ln 2 − (
ln 2
2

+
1
4
) − εk ≤ rNAE

k ≤ 2(k−1) ln 2 − (
ln 2
2

+
1
4
) + εk,

where rNAE
k is the clause density of NAE k-SAT.

As can be seen in Theorem 2 when r < 2k−1 ln 2−(ln 2
2 + 1

4)−εk, as n → ∞, the
k-CNF formulas are almost all NAE-satisfied; when r > 2k−1 ln 2−(ln 2

2 + 1
4)+εk,

the k-CNF formulas are nearly all NAE-unsatisfied.

3 An Upper Bound for Max NAE k-SAT

For a random k-CNF F (n, rn) formula, we usually use max F to denote the
maximum number of NAE-satisfied clauses of F (n, rn). And let f(n, rn) =
E(max F) denote the expectation of the maximum number of NAE-satisfied
clauses over the random k-CNF. In this section, we shall present the upper
bound for f(n, rn) = E(max F) of random Max NAE k-SAT and give the proof
subsequently.

Theorem 3. When r > (2k−2) ln 2, f(n, rn) = E(max F), where the operation
E reflects the expectation of maximum number of NAE-satisfied clauses over the
random instances, then

f(n, rn) ≤ (1 − 1
2k−1

+

√
(2k − 2) ln 2

r22k−2
)rn. (1)

Proof. Let σ denote a real number, 0 ≤ σ ≤ 1. If max F > (1 − σ)rn, then
there must exist an NAE-satisfied subformula F

′
such that the number of clauses

is more than (1 − σ)rn. For each clause, it is NAE-satisfied by any assignment
with probability 2k−2

2k
, and NAE-unsatisfied by the assignment with probability

2
2k

. Then, the following inequality holds:

P = P(∃NAE-satisfied F
′
) ≤ 2n

σrn∑

i=0

(
rn

i

)
(
2k − 2

2k
)rn−i(

2
2k

)i. (2)

Phase Transition for Maximum Not-All-Equal Satisfiability 271

When σ < 2
2k

, the last term of Eq. (2) is maximum. So we have:

P ≤ 2n(σrn + 1)
(

rn

σrn

)
(
2k − 2

2k
)rn−σrn(

2
2k

)σrn. (3)

According to the Stirling’s formula n! ≈ √
2πn(n/e)n, we know that

(
rn

σrn

)
=

(rn)!
(σrn)!(rn − σrn)!

=
σ−σrn(1 − σ)−(1−σ)rn

√
2πσ(1 − σ)rn

. (4)

By using Eq. (4) we can simplify Eq. (3)

P ≤ 1
√

2πσ(1 − σ)rn
2n(σrn + 1)

[
σ−σ(1 − σ)σ−1(

2k − 2

2k
)1−σ(

2

2k
)σ

]rn

. (5)

Thus,

ln P

rn
≤ ln 2

r
+

ln (σrn + 1)
rn

+ ln
[
σ−σ(1 − σ)σ−1(

2k − 2
2k

)1−σ(
2
2k

)σ

]
. (6)

Let σ = 2
2k

− λ(0 < λ < 2
2k

), and note that ln (1 + x) =
∞∑

i=1

(−1)i−1xi/i. Let us

consider the last term of in Eq. (6):

ln
[
σ−σ(1 − σ)σ−1(

2k − 2
2k

)1−σ(
2
2k

)σ

]

= ln
[
σ−σ(1 − σ)σ−1(

2k − 2
2k

)(
2

2k − 2
)σ

]

= −σ ln σ + (σ − 1) ln (1 − σ) + ln
2k − 2

2k
+ σ ln (

2
2k − 2

)

= ln (
2k − 2

2k
) − (

2
2k

− λ) ln (
2
2k

− λ) + (
2
2k

− λ − 1) ln
[
1 − (

2
2k

− λ)
]

+ (
2
2k

− λ) ln (
2

2k − 2
)

= (
1

2k−1
− λ − 1) ln (1 +

2k

2k − 2
λ) − (

1
2k−1

− λ) ln(1 − 2k−1λ)

= (
1

2k−1
− λ − 1)(x1λ + x2λ

2 + x3λ
3 + . . .) + (λ − 1

2k−1
)

× (x1((1 − 2k−1)λ) + x2((1 − 2k−1)λ)2 + x3((1 − 2k−1)λ)3 + . . .).

where

xi =
(−1)i−1

i
(

2k

2k − 2
)i, i ≥ 1.

272 J. Zhou et al.

So,

ln
[
σ−σ (1 − σ)σ−1 (

2k − 2
2k

)1−σ(
2
2k

)σ

]
=

∞∑

j=2

Φjλ
j , (7)

where Φj =
[
(−1)j−1 − (2k−1 − 1)j−1

]
(

2k

2k − 2
)j−1(

1
j(j − 1)

), j ≥ 2. (8)

According to Eqs. (6), (7) and (8), we have

ln P

rn
≤ ln 2

r
+

ln (σrn + 1)

rn
+

∞∑

j=2

[
(−1)j−1 − (2k−1 − 1)j−1

]
(

2k

2k − 2
)j−1(

1

j(j − 1)
)λj .

(9)

Let us first consider the case k=2. When ξ = 1, 2, 3, . . ., it is obvious that
according to Eq. (8), if j = 2ξ, then Φj < 0, and if j = 2ξ + 1 then Φj = 0.
So we can draw the conclusion that Φj ≤ 0 for any j ≥ 2 if k = 2. Then we
can consider the case when k ≥ 3. According to Eq. (8), obviously Φj < 0 for

any j ≥ 2. Thus, we can simplify inequality Eq. (9) by omitting
∞∑

j=2

Φjλ
j . If we

reserve λ2 and omit O(λ3), then we have

ln P

rn
≤ ln 2

r
+

ln (σrn + 1)
rn

+
[
(−1) − (2k−1 − 1)

]
(

2k

2k − 2
)
1
2
λ2. (10)

To obtain Pr ≤ 0 when n → ∞, we must make sure (ln 2)/r + [(−1) − (2k−1 −
1)] × [2k/(2k − 2)](1/2)λ2 < 0. We can solve the following equation first:

ln 2
r

+
[
(−1) − (2k−1 − 1)

]
(

2k

2k − 2
)
1
2
λ2 = 0. (11)

Solving the equation, we can gain its root as follows:

λ = ±
√

(2k − 2) ln 2
r22k−2

. (12)

Thus, when λ >
√

(2k−2) ln 2
r22k−2 then ln 2

r +
[
(−1) − (2k−1 − 1)

]
(2k

2k−2
) 12λ2 < 0

Recalling that λ < 2
2k

, so

√
(2k − 2) ln 2

r22k−2
< λ <

2
2k

. (13)

Then we have r > (2k − 2) ln 2. Therefore, we can draw the conclusion when
r > (2k − 2) ln 2 and n → ∞

P = P(∃NAE-satisfied F
′
) ≤ 0. (14)

Phase Transition for Maximum Not-All-Equal Satisfiability 273

So

max F < (1 − σ)rn = (1 − (
2
2k

− λ))rn = (1 − 1
2k−1

+ λ)rn. (15)

Therefore,

f(n, rn) ≤ (1 − 1
2k−1

+

√
(2k − 2) ln 2

r22k−2
)rn. (16)

Finally, we can obtain that when r > (2k − 2) ln 2, f(n, rn) ≤ (1 − 1
2k−1 +√

(2k−2) ln 2
r22k−2)rn. �

According to Theorem 3, we can attain the upper bound for Max NAE k-SAT
in Table 1.

Table 1. Upper bound for Max NAE k-SAT

k r
′

Upper bound for f(n, rn) k r
′

Upper bound for f(n, rn)

2 1.386 1
2
rn + n

√
r ln 2

2
3 4.159 3

4
rn + n

√
3r ln 2

8

4 9.704 7
8
rn + n

√
7r ln 2

32
5 20.794 15

16
rn + n

√
15r ln 2

128

6 41.589 31
32

rn + n
√

31r ln 2
512

7 87.337 63
64

rn + n
√

63r ln 2
2048

8 176.059 127
128

rn + n
√

127r ln 2
8192

9 353.505 255
256

rn + n
√

255r ln 2
32768

10 708.396 511
512

rn + n
√

511r ln 2
131072

11 1418.179 1023
1024

rn + n
√

1023r ln 2
524288

12 2837.745 2047
2048

rn + n
√

2047r ln 2
2097152

13 5676.875 4095
4096

rn + n
√

4095r ln 2
8388608

Note that in Theorem 3, the estimation of the upper bound by the first
moment method is invalid when r < r

′
= (2k − 2) ln 2 (see Fig. 1).

Fig. 1. The curves show the upper bound for f(n, rn)/rn in Theorem 3

274 J. Zhou et al.

In Theorem 3, we only keep λ2 and omit O(λ3). In order to attain a tighter

upper bound for f(n, rn), we can reserve all terms of
∞∑

j=2

Φjλ
j , as can be seen

in Theorem 4.

Theorem 4. Let F (n, rn) be a random k-CNF formula, k ≥ 2, f(n, rn) =
E(max F). When r > − ln 2

∞∑

j=2
Φj(1/2k−1)j

, then

f(n, rn) ≤ (1 − 1
2k−1

+ δ)rn, (17)

where δ is the only positive root of the equation

ln 2
r

+
∞∑

j=2

Φjλ
j = 0, and (18)

Φj =
[
(−1)j−1 − (2k−1 − 1)j−1

]
(

2k

2k − 2
)j−1(

1
j(j − 1)

), j ≥ 2. (19)

Proof. Similar to Theorem3, we have

ln P

rn
≤ ln 2

r
+

ln (σrn + 1)

rn
+

∞∑

j=2

[
(−1)j−1 − (2k−1 − 1)j−1

]
(

2k

2k − 2
)j−1(

1

j(j − 1)
)λj .

(20)

To make ln 2
r +

∞∑

j=2

[
(−1)j−1 − (2k−1 − 1)j−1

]
(2k

2k−2
)j−1(1

j(j−1))λ
j < 0, we need

to solve the following equation

ln 2
r

+
∞∑

j=2

Φjλ
j = 0,

where Φj =
[
(−1)j−1 − (2k−1 − 1)j−1

]
(

2k

2k − 2
)j−1(

1
j(j − 1)

), j ≥ 2.

(21)

According to the property of this equation, there exists only one positive root
of the equation. Let δ be the only positive root of the equation. Thus, when

λ > δ, ln 2
r +

∞∑

j=2

[
(−1)j−1 − (2k−1 − 1)j−1

]
(2k

2k−2
)j−1(1

j(j−1))λ
j < 0. Therefore,

as n → ∞, we have P → 0. So we can attain

f(n, rn) = E(max F) ≤ (1 − 1
2k−1

+ δ)rn. (22)

Because δ < λ < 2
2k

, we have ln 2
r +

∞∑

j=2

Φj(2
2k

)j < 0. The variant of this inequality

is showed as follows:

r >
− ln 2

∞∑

j=2

Φj(1/2k−1)j

(23)

Phase Transition for Maximum Not-All-Equal Satisfiability 275

Let G = ln 2
r +

∞∑

j=2

Φjx
j , then G(δ) = 0. For any x

′ ∈ [0,+∞), if G(x
′
) < 0, then

x
′
> δ, and if G(x

′
) > 0, then x

′
< δ.

Since,

G(

√
(2k − 2) ln 2

r22k−2
) =

ln 2

r
+

∞∑

j=2

Φj(

√
(2k − 2) ln 2

r22k−2
)j =

∞∑

j=3

Φj(

√
(2k − 2) ln 2

r22k−2
)j < 0,

(24)

we have δ <
√

(2k−2) ln 2
r22k−2 . Thus,

(1 − 1
2k−1

+ δ)rn < (1 − 1
2k−1

+

√
(2k − 2) ln 2

r22k−2
)rn. (25)

Therefore, we gain a tighter upper bound for f(r, rn). When r > − ln 2
∞∑

j=2
Φj(1/2k−1)j

,

f(n, rn) ≤ (1 − 1
2k−1

+ δ)rn,

where δ is the only positive root of the equation:

ln 2
r

+
∞∑

j=2

[
(−1)j−1 − (2k−1 − 1)j−1

]
(

2k

2k − 2
)j−1(

1
j(j − 1)

)λj = 0.

Finally, we gain a tighter upper bound for f(r, rn) by reserving all terms of
∞∑

j=2

Φjλ
j . �

4 Upper and Lower Bounds for NAE k-SAT(b)

In this section, we shall investigate the phase transition phenomena of the family
of NAE k-SAT(b) problems. From the definition of NAE k-SAT(b), we can see
that if b = 0, then NAE k-SAT(b) is equivalent to NAE k-SAT; and if b equals
the result of the total number of clauses minus the optimal solution cost, then
NAE k-SAT(b) is equivalent to Max NAE k-SAT. In this sense, both NAE k-SAT
and Max NAE k-SAT can be regarded as special cases for NAE k-SAT(b).

Let Xn,r,b
k be a random variable on Fk(n, rn) such that Xn,r,b

k (ϕ) is the
number of assignments on n variables that violate no more than b clauses of ϕ
and Xn,r,b

k =
∑

ϕ
Xn,r,b

k (ϕ), where ϕ is a random k-CNF formula in Fk(n, rn).

Now, we have the following conjecture for the family of NAE k-SAT(b) problems,
where k ≥ 3 and b ≥ 0.

276 J. Zhou et al.

Conjecture 1. For every integer k ≥ 3 and every b ≥ 0, there is a positive real
number rk,b such that

If r > rk,b, then lim
n→∞P[Xn,r,b

k ≥ 1] = 0.

If r < rk,b, then lim
n→∞P[Xn,r,b

k ≥ 1] = 1.

We first assume there exists a phase point rk,b when the clause density r
varies. That is, when r > rk,b, almost all NAE k-SAT(b) instances can not be
solved. And when r < rk,b, almost all NAE k-SAT(b) instances can be solved. In
order to prove the conjecture, we can establish certain analytical results, which
generate the upper bound and lower bound for the value of rk,b. In Theorem 5,
we present an upper bound for rk,b.

Theorem 5. Let k ≥ 3 and b ≥ 0 be two integers. If r > 1
k−1−log2 (2k−1−1)

, then

lim
n→∞P[Xn,r,b

k ≥ 1] = 0. It follows that if rk,b exists, then rk,b ≤ 1
k−1−log2 (2k−1−1)

,
regardless of the value of b.

Proof. For each truth assignment θ on n variables, let Ib
θ be a random vari-

able on Fk(n, rn) such that Ib
θ(ϕ) = 1 and Ib

θ =
∑

ϕ
Ib
θ(ϕ), if θ is an assignment

that violates no more than b clauses of ϕ; and Ib
θ(ϕ) = 0, otherwise. Obvi-

ously, there are a total of (2k
(
n
k

)
)rn possible formulas in Fk(n, rn), and there are

b∑

i=0

(
rn
i

)
(2

(
n
k

)
)i((2k − 2)

(
n
k

)
)rn−i formulas in Fk(n, rn) for which NAE-satisfying

assignment θ violates no more than b clauses. Therefore,

E(Ib
θ) =

∞∑

i=0

(
rn
i

)
(2

(
n
k

)
)i((2k − 2)

(
n
k

)
)rn−i

(2k
(
n
k

)
)rn

. (26)

Since Xn,r,b
k =

∑

θ

Ib
θ , the linearity of expectation implies that E(Xn,r,b

k) =
∑

θ

E(Ib
θ) = 2n

E(Ib
θ). By Markov’s inequality, we have that

P[Xn,r,b
k ≥ 1] ≤ E(Xn,r,b

k) = 2n(

b∑

i=0

(
rn
i

)
(2

(
n
k

)
)i((2k − 2)

(
n
k

)
)rn−i

(2k
(
n
k

)
)rn

)

=
2n

2krn

b∑

i=0

(2k − 2)rn

(
rn

i

)
2i

(2k − 2)i

= (2(
(2k − 2)

2k
)r)n

b∑

i=0

(
rn

i

)
(

2
2k − 2

)i

(27)

Phase Transition for Maximum Not-All-Equal Satisfiability 277

Thus,

lim
n→∞P[Xn,r,b

k ≥ 1] ≤ lim
n→∞(2(

2k − 2
2k

)r)n
b∑

i=0

(
rn

i

)
(

2
2k − 2

)i

≤ lim
n→∞(2(

2k − 2
2k

)r)nO(nb).

(28)

Therefore, if r > 1
k−1−log2 (2k−1−1)

, then lim
n→∞P[Xn,r,b

k ≥ 1] = 0, regardless of
the value of b. �

For the lower bound for rk,b, obviously, if all k-CNF formulas are NAE-
satisfied, then lim

n→∞P[Xn,r,b
k ≥ 1] = 1, regardless of the value of b. Since [14]

have proved that if r < 2k−1 ln 2 − ln 2
2 − 1

4 − εk, then all k-CNF formulas are
NAE-satifiable, where εk = 2−(1−ok(1))k, we know rk,b ≥ 2k−1 ln 2− ln 2

2 − 1
4 −εk.

In summary, we obtain the upper bound and the lower bound for NAE k-
SAT(b) in the following.

Theorem 6. Let k ≥ 3 and b ≥ 0 be two integers.

If r >
1

k − 1 − log2(2
k−1 − 1)

, then lim
n→∞

P[Xn,r,b
k ≥ 1] = 0.

If r < 2k−1 ln 2 − ln 2

2
− 1

4
− εk, εk = 2−(1−ok(1))k, then lim

n→∞
P[Xn,r,b

k ≥ 1] = 1.

It follows that if rk,b exists, then 2k−1 ln 2 − ln 2
2 − 1

4 − εk ≤ rk,b ≤
1

k−1−log2(2
k−1−1)

, εk = 2−(1−ok(1))k, regardless of the value b.

According to Theorem 6, for k = 3, 4, 5, . . . , the upper and lower bounds for
NAE k-SAT(b) can be illustrated in Table 2.

Table 2. Upper and lower bounds for NAE k-SAT(b)

k 3 4 5 7 9 10 11 12

Upper bound for rk,b 2.4096 5.195 10.753 45.454 195.695 452.489 709.220 1419.219

Lower bound for rk,b, 1.514 4.083 9.973 43.432 177.099 354.027 708.925 1418.712

5 Conclusion

In this paper, we systematically research the upper bound of Max NAE k-SAT
and the phase transition of the decision version of Max NAE k-SAT. We use
first-moment method to obtain an upper bound for f(n, rn) of random Max
NAE k-SAT (k ≥ 2). Furthermore, we prove that NAE k-SAT(b) (k ≥ 3) has
phase transition at critical point rk,b, and acquire both the upper bound and
lower bound for NAE k-SAT(b).

278 J. Zhou et al.

Acknowledgement. The authors of this paper wish to extend their sincere gratitude
to all anonymous reviewers for their efforts. This work was supported in part by NSFC
(under Grant Nos.61503074, 61403076, 61402070, and 61403077), the Natural Science
Foundation for Youths of JiLin Province (20160520104JH) and (NCET-13-0724).

References

1. Xu, K., Li, W.: The SAT phase transition. Sci. China Ser. E 42, 494–501 (1999)
2. Sly, A., Sun, N., Zhang, Y.: The number of solutions for random regular NAE-SAT.

In: FOCS (2016)
3. Larrosa, J., Heras, F., De Givry, S.: A logical approach to efficient Max-SAT solv-

ing. Artif. Intell. 172(2–3), 204–233 (2006)
4. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determin-

ing computational complexity from characteristic phase transitions. Nature 400,
133–137 (1999)

5. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random boolean
expressions. Science 264, 1297–1301 (1994)

6. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.
J. Artif. Intell. Res. 12, 93–103 (2000)

7. Fan, Y., Shen, J., Xu, K.: A general model and thresholds for random constraint
satisfaction problems original. Artif. Intell. 193, 1–17 (2012)

8. Gent, I.P., Walsh, T.: The TSP phase transition. Artif. Intell. 88(1–2), 349–358
(1996)

9. Walsh, T.: Where are the really hard manipulation problems? the phase transi-
tion in manipulating the veto rule. In: Proceedings of the 21st International Jont
Conference on Artifical intelligence, Morgan Kaufmann Publishers Inc. (2009)

10. Huang, P., Yin, M.: An upper (lower) bound for Max (Min) CSP. Sci. China Inf.
Sci. 57(7), 1–9 (2014)

11. Gao, J., Wang, J., Yin, M.: Experimental analyses on phase transitions in compiling
satisfiability problems. Sci. China Inf. Sci. 58, 1–11 (2015)

12. Zhou, J., Yin, M., Li, X., Wang, J.: Phase transitions of EXPSPACE-complete
problems: a further step. Int. J. Found. Comput. Sci. 23(01), 173–184 (2012)

13. Achlioptas, D., Chtcherba, A., Istrate, G., Moore, C.: The phase transition in 1-in-k
SAT and NAE 3-SAT. In: SODA, pp. 721–722 (2001)

14. Achlioptas, D.: The asymptotic order of the random k-SAT threshold. In: Proceed-
ings of the 43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS02), pp. 779–788 (2002)

15. Coja-Oglan, A., Panagiotou, K.: Catching the k-NAE SAT threshold. In: Proceed-
ings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp.
899–908 (May 2012)

16. Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT.
In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pp. 814–822 (May 2014)

17. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard
optimization problems. Nature 435, 759–764 (2005)

18. Coppersmith, D., et al.: Random MAX SAT, random MAX CUT, and their phase
transitions. Random Struct. Algorithms 24, 502–545 (2004)

Phase Transition for Maximum Not-All-Equal Satisfiability 279

19. Xu, X.L., Gao, Z.S., Xu, K.: A tighter upper bound for random MAX 2-SAT. Inf.
Process. Lett. 111, 115–119 (2011)

20. Zhang, W.: Phase transitions and backbones of 3-SAT and maximum 3-SAT. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 153–167. Springer, Heidelberg
(2001). doi:10.1007/3-540-45578-7 11

21. Bailey, D.D., Kolaitis, P.G.: Phase transitions of bounded satisfiability problems.
In: IJCAI, pp. 1187–1193 (2003)

http://dx.doi.org/10.1007/3-540-45578-7_11

Author Index

Abu-Khzam, Faisal N. 139
Angel, Eric 1

Bampis, Evripidis 1
Bereg, Sergey 13
Biswas, Arindam 22
Borowiecki, Piotr 34

Chang, Jou-Ming 221
Chau, Vincent 1
Chen, Hao 47
Chen, He 103
Chen, Jianer 241
Chen, Rong 91
Chen, Wei 56
Chen, Xiaoli 68
Chen, Zhi-Zhong 79

Gao, Jian 91

Han, Xin 103
Hu, Shuli 267

Jayapaul, Varunkumar 22
Jiang, Haitao 196
Jin, Kai 115, 127

Li, Hui 91
Li, Shouwei 139
Li, Songhua 151
Li, Weidong 163
Li, Wenjun 175
Liu, Haiyan 175
Liu, Tian 47
Liu, Xi 163
Luo, Kelin 187
Luo, Wei 187

Ma, Bin 79
Ma, Feifei 13

Ma, Jingjing 196
Ma, Ning 103
Majumdar, Diptapriyo 209
Makino, Kazuhisa 103
Markarian, Christine 139
Meyer auf der Heide, Friedhelm 139

Pai, Kung-Jui 221
Podlipyan, Pavel 139

Raman, Venkatesh 22, 209

Satti, Srinivasa Rao 22

Wang, Jianxin 175, 241
Wang, Lusheng 79
Wang, Wencheng 13
Wang, Yue-Li 233
Wu, Guangwei 241
Wu, Ro-Yu 221

Xiang, Lingyun 175
Xu, Weijun 68
Xu, Yinfeng 151, 187

Yang, Boting 254
Yang, Yongjie 175
Yin, Minghao 91, 267
Yuasa, Shota 79

Zhang, Hanrui 56
Zhang, Huili 187
Zhang, Jian 13
Zhang, Shu 196
Zhang, Xiaolu 163
Zhang, Xuejie 163
Zhou, Junping 267
Zhu, Binhai 13
Zhu, Daming 196
Zissimopoulos, Vassilis 1
Zou, Tingting 267

	Preface
	Organization
	Contents
	On the Complexity of Minimizing the Total Calibration Cost
	1 Introduction
	2 Arbitrary Processing Times and Preemption
	3 Arbitrary Processing Times, Preemption and Many Calibration Types
	4 Unit-Time Jobs, Many Calibration Types and Activation Length
	5 Conclusion
	References

	On the Fixed-Parameter Tractability of Some Matching Problems Under the Color-Spanning Model
	1 Introduction
	2 Preliminaries
	3 MinSum Matching Color-Spanning Set Is FPT
	4 MaxMin and MinMax Matching Color-Spanning Sets Are FPT
	5 k-Multicolored Independent Matching Is W[1]-Hard
	6 Closing Remarks
	References

	The Complexity of Finding (Approximate Sized) Distance-d Dominating Set in Tournaments
	1 Introduction and Motivation
	2 Preliminaries
	2.1 Definitions and Notation
	2.2 Elementary Results

	3 Finding d-Covers
	3.1 Finding a Dominating Set (1-Cover) of Size (k+lgN - lglgn+2)
	3.2 Finding d-Covers (d 2)
	3.3 Lower Bounds

	4 Finding Kings
	4.1 Finding a King Against a Weak Adversary
	4.2 Verification of Kings

	5 Conclusions and Open Problems
	References

	On Computational Aspects of Greedy Partitioning of Graphs
	1 Introduction and Problem Statement
	2 Motivation, Critical Partitions and Minimal Graphs
	3 The Complexity of Grundy (P,k)-Coloring
	4 The Complexity of Grundy P-Coloring
	5 coNP-Completeness of the Membership in H(P,t)
	6 An Upper Bound on the P-Grundy Number
	References

	Maximum Edge Bicliques in Tree Convex Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 Hardness
	4 Tractability
	5 Comparison
	6 Conclusions
	References

	Complete Submodularity Characterization in the Comparative Independent Cascade Model
	1 Introduction
	2 The Model
	3 Notations
	4 Submodularity in the Mutually Competing Case
	5 Submodularity in the Mutually Complimentary Case
	5.1 Self Submodularity
	5.2 Cross Submodularity

	6 The One-Shot Model
	6.1 The Model
	6.2 Submodularity in One-Shot Model

	References

	A Risk--Reward Model for On-line Financial Leasing Problem with an Interest Rate
	1 Introduction
	2 Optimal Deterministic Competitive Strategy
	3 Risk--Reward Strategy with an Interest Rate
	4 Numerical Examples
	5 Conclusion
	References

	Designing and Implementing Algorithms for the Closest String Problem
	1 Introduction
	2 Notations
	3 A New Algorithm for the Binary Case
	4 Previous Algorithms
	5 Implementing the Algorithms
	5.1 Enumerating Subsets of Unfixed Positions
	5.2 Sorting the Input Strings
	5.3 On Implementing the Algorithm in Sect.3

	6 Results and Discussion
	References

	The Broken-Triangle Property with Adjoint Values
	1 Introduction
	2 Background
	2.1 The Constraint Satisfaction Problem
	2.2 The Broken Triangle Property

	3 Adjoint Values of the BTP
	3.1 Definitions
	3.2 Conflicts in the BTPv

	4 The Tractable Class
	5 Conclusions
	References

	Online Knapsack Problem Under Concave Functions
	1 Introduction
	2 Preliminary
	3 Lower Bounds
	3.1 A Simple Lower Bound
	3.2 An Improved Lower Bound

	4 Upper Bounds
	4.1 Upper bound f'(0)f(1/q)
	4.2 Upper bound f'(0)f(1) +1
	4.3 Tight Upper Bounds for Piecewise Linear Functions

	5 Concluding Remarks
	References

	Fluctuated Fitting Under the 1-metric
	1 Introduction
	1.1 Related Works
	1.2 Technique Overview

	2 A Property of the Superb or Bounded-Superb Sequence
	3 Algorithm for Computing a Fluctuated Fitting Sequence
	4 Fitting by Circularly-Fluctuated Sequence
	5 Conclusion and Future Work
	References

	Optimal Partitioning Which Maximizes the Weighted Sum of Products
	1 Introduction
	1.1 Technique Overview and Organization of This Paper
	1.2 Related Work - Typical Partitioning Problems

	2 The Structural Properties of the Optimal Partition
	2.1 The Special Case: Zero or One Negative Element
	2.2 The General Case

	3 The Framework for Computing an Optimal Partition
	4 An O(n2) Time Implementation of Algorithm1
	5 An Alternative Approach - Dynamic Programming
	References

	Modular-Width: An Auxiliary Parameter for Parameterized Parallel Complexity
	1 Introduction
	2 Preliminaries
	3 Parallel Algorithms on Modular Decomposition
	3.1 The Weighted Maximum Clique Problem
	3.2 The Maximum Matching Problem

	4 Concluding Remarks and Future Work
	References

	Online Strategies for Evacuating from a Convex Region in the Plane
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Competitive Ratio

	3 A Lower Bound
	4 Single-Source Evacuation Problem
	5 Multi-source Evacuation Problem
	5.1 Algorithm MES
	5.2 Competitive Analysis on MES

	6 Performance Analysis
	7 Conclusions
	Acknowledgments
	References

	A Further Analysis of the Dynamic Dominant Resource Fairness Mechanism
	1 Introduction
	2 The Description of DDRF
	3 A Linear-Time Optimal Algorithm
	4 Competitive Analysis of the DDRF Mechanism
	4.1 The Maxmin Objective
	4.2 The Maxsum Objective
	4.3 Resource Utilization Maximization

	5 Discussions and Future Work
	References

	A 42k Kernel for the Complementary Maximal Strip Recovery Problem
	1 Introduction
	2 Related Work and Our Contribution
	3 Reduction Rules
	4 Analysis of the Kernel
	References

	On-line Scheduling with a Monotonous Subsequence Constraint
	1 Introduction
	2 Model
	3 Lower Bound for k-MS Problem
	3.1 Unique Server
	3.2 Two Servers

	4 On-line Scheduling by K-Interval Algorithm
	5 Conclusions
	A Appendix
	References

	A 1.4-Approximation Algorithm for Two-Sided Scaffold Filling
	1 Introduction
	2 Preliminaries
	3 An Adjacency Number Bound in the Optimal Solution
	4 Approximation Algorithm for Two-Sided Scaffold Filling
	4.1 Searching for Good MMS Sets in a 5-claw Free Graph
	4.2 Searching for Good MMS Sets in a 7-claw Free Graph
	4.3 The Algorithm for Two-Sided Scaffold Filling

	5 Proof of the Approximation Ratio
	6 Conclusion
	References

	FPT Algorithms for FVS Parameterized by Split and Cluster Vertex Deletion Sets and Other Parameters
	1 Introduction and Motivation
	2 Preliminaries
	3 FVS-DELETION TO (c,i)-GRAPH when i 2
	4 FVS-DELETION TO (c,i)-GRAPH when i 1
	4.1 When c 1
	4.2 When c 2

	5 FVS Parameterized by Cluster Vertex Deletion Set
	6 Conclusion
	References

	A Constant Amortized Time Algorithm for Generating Left-Child Sequences in Lexicographic Order
	1 Introduction
	2 Preliminaries
	2.1 Left-Child Sequences
	2.2 Coding Tree Structure

	3 Generating LC-sequences in Lexicographic Order
	4 Concluding Remarks
	References

	Geodetic Contraction Games on Trees
	1 Introduction
	2 Preliminaries
	3 Main Results
	References

	On Approximation Algorithms for Two-Stage Scheduling Problems
	1 Introduction
	2 Scheduling on a Single Two-Stage Flowshop
	3 The Case P|2FLR T|Cmax
	3.1 An Online Algorithm
	3.2 An Offline Algorithm

	4 The Case P|2FLR < T|Cmax
	5 Conclusion
	References

	A New Lower Bound for Positive Zero Forcing
	1 Introduction
	2 Preliminaries
	3 Propagation Tree Decomposition
	4 Lower Bound
	5 Matching-Chain Graphs
	6 Claw-Free Graphs
	6.1 Z(G)=Z+(G) for Claw-Free Graphs
	6.2 Complexity
	6.3 Line Graphs

	References

	Phase Transition for Maximum Not-All-Equal Satisfiability
	1 Introduction
	2 Preliminary
	3 An Upper Bound for Max NAE k-SAT
	4 Upper and Lower Bounds for NAE k-SAT(b)
	5 Conclusion
	References

	Author Index

