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Abstract In modern industrial processes, robotic equipment is widely used, and
one of the most pressing problems is to have to have navigation available for
mobile robots. In this paper, the ant algorithm for laying and optimizing the robots
paths in 2-dimensional environments with obstacles, is described and shown on
construction site examples. The most important requirement is to be able to plan the
shortest or permissible robot navigation route in such a complex environment with
obstacles. It is well known that one of the most effective solutions to resolve such
optimization problems of route seals is provided by the ant colony optimization
(ACO) algorithm. The exploratory nature of the ant colony behaviour requires a
classical partition of the search space, which is incomparably smaller, when com-
pared to the obstacles fragments, as considered within this paper. The ant’s agents
use the traditional logic of selecting the transition from fragment to fragment: the
memory of the most popular routes based on pheromone are investigated, and
formulated within the task elements, adopting appropriate tactics and situational
awareness, and based on the random decisions. In addition, the new elements of the
decision-making tactics are formulated for each task. For example, “feeling” of
targeted routes by laying points is added to the algorithm. The natural analogue
of this mechanism is similar to sensing the odors by the mustaches of real ants.
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The special software tool “Path Planning Optimization with Obstacle Avoidances
by Ant Algorithm” is designed as the research test bed. A comprehensive study of
the proposed algorithm, which shows superior performance, is done by utilizing the
developed software. The examples, of the construction site with different com-
plexity, are provided to explain the finding of the suboptimal routes for the specially
designed test tracks, with defined obstacles in the simulated construction site
landscape. The analysis of the results confirms the relevance and effectiveness of
the developed software, which is based on the ant algorithm for the robot path
planning, and validated for the environments containing complex obstacles.

Keywords Optimization - Route - Obstacle - Mathematical model - Group
behavior « Ant colony algorithm - Pheromone

1 Introduction

Robots are widely used for the production of all kinds of goods, in military,
construction and other working environments. Their widespread and continuous
applications require new tasks that should be solved. One such problem is the
“navigation and route optimization task”. For example, the navigation of different
groups of robots in one construction site requires to perform a variety of parallel
works, like the on-site navigation of the construction machinery. To solve such
problems, it is adequate to use various heuristic algorithms, as they provide
acceptable results within an adequate timeframe.

One of the superior heuristic group of algorithms is the ant colony (ACO) group
of algorithms [1, 2]. These algorithms are simulating the real ants behavior. For the
first time, these algorithms have been applied in the combinatorial graph task, for
the well-known traveling salesman problem [3]. They focus on the solution of
various graph problems, which makes it reasonable to apply ACO to solve the
optimization problems of the trajectory, in order to move robots in the environment
with static obstacles. Some known applications of ACO [4, 5] have shown com-
petitive results.

2 Formulation of the Problem

The purpose of this article is to study the capabilities and features of applying the
modified ACO to solve the problem of planning and optimization of the trajectory
within the static environment containing obstacles.

The analysis of the ACO application results is necessary to be performed on the
specially generated environment test scenes.
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3 ACO Description

In this paper we consider the modified classical ACO [4-9], which is adapted to
find a solution to the problem of laying out the route within the flat environment
containing obstacles. The algorithm is based on the mechanism simulating the real
ants behavior, when they are looking for food. As in the classical ACO [6, 7], this
modification can be divided into conditional steps, such as: placement and initial-
ization, movement of agents, pheromone update and breakpoint condition checking.

All the space considered is divided into equal fragments, in which the agents
travel to contribute to the process of the route optimization. To each fragment, a
small amount of the positive pheromone is allocated. In order to solve such a
problem, it is necessary to construct a route between 2 points (start and finish). We
need to allocate the “Start” fragment and place all the agents in it (the analog of the
colony). Respectively, the other allocated fragment is the “Finish” point (analogue
to the food place).

At the heart of the ant movement mechanism is the classical probability model
[5], which is updated with some appropriate modifications.

When the ant moves, it has 8 different options for further travel, as shown in
Fig. 1.

The ant transition probability k-th, for the t iteration in each adjacent fragment
i € [1;8] is calculated according to the modified formula [5], as
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where conditions are preferably transition assessment, and related to the goal
direction described by the following model, as proposed by the authors:

ny; = (cos(y) +2) + (cos(y) + 1)* 2)

where: ij is the fragment; k is the ant number; 7 is the pheromone level; 1 is the
“visibility”; o, B, A are variable coefficients; v is the angle between goal position,

Fig. 1 Direction options for
the agent to travel
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current position and next element position; * means available if fragment is both,
adjacent and do not have an obstacle.

At the core of Egs. (1) and (2), the proposed model is a classic ant algorithm, as
used for the optimization of routes in a graph [1-3, 6, 7, 10]. However, there are
number of incorrect situations that may arise from the calculation related to the
probabilities of moving the ants within the specific areas. This fact forced the
developers to introduce a number of modifications to this model.

First, the estimated concentration of the pheromone 7 may be less than an unity
found under a certain conditions. Therefore, when calculating the probabilities of
the introduced displacement, at each iteration 7, the summation operation is with
this unity. This is done in order to maintain a direct dependence between the
pheromone value and the degree coefficient.

There was also a component, which the authors reworked in the heuristic
algorithm part [see Eq. (2)], and which is responsible for the attraction to the goal.
The classical implementation of the attractiveness, to a particular graph vertex,
depends on its distance. This relationship is not direct, and depends on the angle
between the point considered to be moving, and the current position of the ant and
the finish point.

Also, it should be noted that this addition has added to the algorithm another
configuration parameter 4, which made this modification even more flexible, to
meet the challenges of varying difficulty. Figure 2 shows dependences graphs of the
“attraction” values # for different A values.

Once all the agents reach the finish point, and on all the investigated area, the
pheromone is updated applying the following model:
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Fig. 2 Graphics of dependence of the “attraction” for different A values in polar and Cartesian

coordinate systems
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Fig. 3 Flowchart of ACO

where: ij is the fragment; k is the ant number; p is the evaporation coefficient; 7 is
the pheromone level; ¢ is the iteration number; Q is the constant; L is the route
length.

Thus, in the whole space, there is an uniform evaporation of the pheromone, and
also on fragments, while the agents built the routes the pheromone is incremented.
Moreover, the increment value dependents on the length of the route.

The last step is to verify the breakpoint conditions. In this case the breakpoint
condition is limited by the number of iterations.

When applying the algorithm, we are observing the iterative improvement of the
route, which is building up to avoid obstacles.

Figure 3 shows the flowchart of the algorithm.

4 Examples of the Algorithm

Based on the above mentioned ant movement and the update of the pheromone
models Egs. (1-3), a software tool “PPO_OA_AA” (Path Planning Optimization
with Obstacle Avoidances by Ant Algorithm), is designed and implemented to
support the experiments.

To check the efficiency of the algorithm 3 test polygons, with obstacles of
varying difficulty, were created. Figure 4 shows the defined polygons. The diffi-
culty in this case is linked to the number of obstacles encountered within the zone
of movement.
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Fig. 4 Test polygons (a Ist, b 2nd, ¢ 3rd)

5 Parametric Optimization

Since the algorithm depends on Egs. (1-3) having variable parameters, it is
advisable to optimize it parametrically. The developed software provides the
opportunity to adjust the tuning parameters.

On the basis of previous works [6, 7, 11, 12], 4 key factors (parameters) have
been identified to have the greatest influence on the result.

A small number of factors allowed the use of the full factorial experiment (FFE).
The applied varying factors values, on 2 levels reduce time and number of required
experiments. At the same time, the total factors variation allows to investigate, not
only their linear effects, but also the interaction effects [13]. The first test site was
selected for the parametric optimization. It was planned for the 2-tier paradigm, the
FFE consists of 16 unique combination of factors. For each combinations of factors,
5 tests have been done having 10 parallel experiments in each of them. This was
done with the purpose to diversify the random data generated with pseudorandom
number generator provided in the computer systems. The initial parameters for
these experiments are offered in Table 1. These values were selected based on
earlier works [6, 7, 11, 12] performed.

The plan of this experiment is partially presented in Table 2. The applied
optimization criterion is the percentage of the best optimal route length in the
sample experiments. For this test site the best route length is 41 step.

Table 1 Intervals of considered values

Factor

Plan center

The range of
variation

Lower limit

Upper limit

Designation in
the alg./in FFE

The value in
the alg./in FFE

The value in
the alg./in FFE

The value in
the alg./in FFE

The value in
the alg./in FFE

O(/Xl

2.3/0

0.3/1

2/-1

2.3/+1

Brx, 0.2/0 0.1/1 0.1/-1 0.3/+1
Mx3 1/0 0.5/1 0.5/-1 1.5/+1
pIX4 0.7/0 0.2/1 0.5/-1 0.9/+1
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Table 2 Plan of the experiment

Plan
o B A p Combinations Y Dispersion | SD
avge.
%
No [x0 | x1 | x2 | x3 |x4 [12 |... |123 |... | 1234 |- - -
0 0 0 0 0 0 0 0 ... |0 8 70 8.3666
1 1 -1 |-1 |-1 |[-1 |1 Rl U OV N | 10 150 12.2474
2 1 -1 -1 |-1 |1 1 Ul N T e | 56 130 11.4018
3 1 -1 |-1 |1 -1 |1 1 | 12 20 4.4721
4 1 -1 [—-1 |1 1 1 o1 o1 58 120 10.9545
5 1 -1 |1 -1 -1 |[—-1|... |1 | 6 80 8.9443
6 (1 1 v e [ [ T4 (30 54772

Since the values of the regression coefficients and parameters of combinations do
not exceed the standard deviation value, it is not necessary to use the gradient
method. The parameters o and B are fixed on the lower level, and the parameter A is
fixed for the center of the plan, as it gives the same results, as the one for the upper
and the lower level of variation.

Thus, in the view of the specific nonlinear dependence, the p value has been
found to have the greatest influence. At one of its extremes, the algorithm shows the
highest efficiency, thus it was decided to explore the value of 0.9. The results are
given in Fig. 5.

It is obvious that the value of p = 0.9 provide the maximum efficiency of the
algorithm. 10 tests with 10 experiments for each of them were carried out to
validate the results, taking into account the following values of the parameters:
a=2,8=0.1,A =1, p=0.9. Figure 6 shows a probability chart for the computed
results.

Figure 6 indicates that the probability of getting the best result is equal to
42.73%. To increase this probability, ACO should be applied to this problem with
n-th number of times, which can be calculated from the formula:

k =log(1 — p}) /logp,,. “)

where prlw is the probability of nonappearance optimal results in one solution to the
problem; p’(j is the single occurrence probability of optimal result in k-sample set of
solutions.

Thus, with a probability of p¥ = 0.8 to get at least one global optimum results by
using parametrically suboptimized ACO, it is necessary to apply this algorithm to
the problem



182 R. Neydorf et al.

54

48

a2

36

24

18

12

0.5 0.6

Fig. 5 Dependence of the optimization criterion based on the p value

Fig. 6 Probability of the
obtained values

10.91%

2.73%

16.36%

271.27%

41 m42 w43 m44 m Othervalues

k = log(1 — 0.8)/log(1 — 0.4273) = —0.6989/—0.242 = 2.888 ~ 3 times.

Table 3 shows the results of calculating Eq. (4) to define the number of tests in
order to obtain the optimal results, and in addition the suboptimal results for the
different specified trust probabilities.
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Table 3 Number of experiments to get the specified result

The desired probability (%) 80 90 95 99 99.9
The number of tests to get the optimum result (41) 3 5 6 9 13
The number of tests to get the suboptimum result (42) 2 2 3 4 6

Fig. 7 Best routes results

6 Application Parametrically Optimized ACO

This section presents the results of the tests, which have been obtained by using the
parametric suboptimized ACO. Figure 7 shows the shortest routes, which were
found for all the 3 earlier described test polygons.

In all 3 cases, the global optimal results were achieved in 100 iterations.

7 Conclusion

The results of these studies indicate that the proposed modification effectively
manifested them as the solution to the problem in finding the laying route with
obstacles.

The parametric suboptimization significantly has improved the quality of the
result. It should be noted that for each particular task, it is required to perform its
parametric optimization, as it is strongly influenced by the variety of the test
conditions.

Also worth noting is that with almost 100% certainty we can get close to the
optimum or even optimal results, when repeating its application to the problem.
This indicates that the sub-optimization of the algorithm should be carried out, by
focusing not only on the accuracy of the solution, but more important, on the time
given to solve the optimization problem.
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