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Abstract The main difficulties in modeling a variety of technical systems are
experienced when creating appropriate mathematical objects to simulate their
behavior. It is well known that such inter-objects dependences are defined with their
variable with strong nonlinear and multidimensional characteristics. The mathe-
matical models (MM) dependences are approximated with advance numerical
methods, such as polynomial decomposition, spline functions, etc., which are today
still very time-consuming and laborious to be correctly created and applied, also
considering their precision. In this paper, the authors have created and investigated
the high-precision analytical approximation method to model the nonlinear MM
dependences, which are defined only by appropriate analytical functions. These
approaches have been already studied in details, where the Cut-Glue approximation
method defines 1-dimensional dependences, and to 2-dimensional dependences
were approximated with analytical functions of 2 arguments. The important
advantage of the Cut-Glue method is that it well approximates the differentiability
of the proposed MM dependencies, as its enables to investigate analytically the
related modeling functions and thus, use them efficiently in applying MM in
dynamical systems simulations. In this work, the Cut-Glue method has been further
developed: (1) to prove its applicability by creating nonlinear models of any
dimension, (2) to analyze its performance at all the stages, in which the “Cut-Glue”
approximation is applied, and (3) to implement this formal algorithm, which allows
numerical verification and validation of its applicability. The considered opti-
mization criteria for both respective issues, accuracy and complexity, have been
applied to the investigated MM-s. The proposed method is formalized by the
optimal splitting of its experimental dependence into separate parts, which are then
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numerically defined and implemented within the proposed software, developed in
this work. In this paper, the different possibilities of applying the optimal multi-
dimensional “Cut-Glue” approximation method are illustrated by examples. The
achieved results represent a strong base to significantly expand the proposed
method applicability, and further on, they indicate potential opportunities to
improve the existing solutions. Especially, when solving a variety of problems,
which requires mathematical modeling of any type of technical objects, to simulate
overall systems dynamics.

Keywords Optimization � Approximation � Mathematical modeling �
Experimental data � Heuristic methods � Particle swarm optimization

1 Introduction

The experimental creation of the mathematical models (MM) of various processes,
objects, systems, etc. requires information on the involved research object, which
are described with data having a certain structure. The general structure of the
experimental data for the created MM is represented with the K records, containing
2 lists: (1) entrances x1; . . .xnð Þ and (2) exits y1; . . .ymð Þ. Such structure implies that
K is the number of the experiment tests, xi is the independent variables, yj—
dependent variables. The dependency modeling of the static variables of MM
means that each output of yj is the function of inputs x1; . . .xnð Þ. In this case, each
dependency is defined with a function uj, and general MM is defined by the Y
vector function:

yj ¼ uj x1; . . .xnð Þ; j ¼ 1;m;

Y ¼ U x1; . . .xnð Þ ¼ y1; . . .ymð ÞT:

)
ð1Þ

In addition to the general structure of the experimental data, it is necessary to
consider their internal structure. When carrying out a passive experiment, this
structure can be order-less, which means that the entrance data lists are formed in a
random way, and are not connected with each other, thus through defined depen-
dences. When carrying out the experiment, usually, the input data are built on the
regular basis. Then, n-ki (the vector or the sequence having n elements) of input
variables is connected by the internal dependency, where their values and change of
variables acquire a quite regular character. Most often, the so-called
coordinate-wise principle for the variables variation in an experiment is used.
The example of such an experiment creation is given in Table 1.

In this case, the force Fx of the side offset of the airship is the output variable,
which is interesting to the researcher performing the experiment. The experimental
results indicate that there is an influence on this force, which is coming from certain
airship flight parameters, which are: height h, angle of heel a, and airship takeoff
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speed v. These parameters are acquired from the flight experiment through the
limited number sequences. As a result, for 2-dimensional dependences, it is possible
to use the matrix-vector data representation. However, for 3-dimensional data, as an
example given in Table 1, it is necessary to define a 3-dimensional matrix, to
represent its structure. In general, these data can be displayed only by several
matrixes, having chosen the fixed 3rd parameter for each matrix. Such data are
presented in Table 1: 5 matrixes of dimension 4 � 6—with varying h and a, and
with 5 values of speed. It can be noted that the smooth structure of the approxi-
mated dependences doesn’t create difficulties when applying the mathematical
methods.

However, this approach can be significantly more difficult when the data is not
smooth, and has a fragmentary structure. The “fragmentary structure” has a
piecewise nature, where the mutual change of the specific arrangement is repre-
sented with the pointwise data, making it possible to allocate certain sites (the
differing sites of the approximation surface) with the obvious dependency, where
the fragments can have significantly various inclinations through their contact lines.
The example of the “fragmentary structure” of dependences is quite well illustrated

Table 1 The dependences of the strength of the lateral airship displacement resulting from the
flight parameters

Speed of
rise

Altitude of
fly

Angle of heel, a, angle degree

0 15 30 45 60 75

v, m/s h, km F(h), kN

2.5 0 0.086 11.90 19.26 21.89 9.491 3.625

5 0.050 6.996 19.12 13.03 5.422 2.871

10 0.027 4.193 10.39 7.234 3.081 2.513

15 0.012 1.957 4.707 3.382 1.435 0.720

4 0 0.224 30.19 46.28 57.61 22.88 12.44

5 0.132 20.44 47.45 33.85 14.27 9.331

10 0.071 12.30 27.24 18.54 8.056 5.605

15 0.032 5.010 11.37 8.684 3.530 2.061

5 0 0.366 35.65 87.22 87.99 36.68 25.84

5 0.208 26.47 67.39 52.48 23.09 17.01

10 0.113 22.48 42.77 28.84 12.30 8.501

15 0.051 7.841 17.72 13.77 5.482 2.238

6 0 0.550 61.54 119.43 127.3 58.23 37.38

5 0.300 36.71 96.68 77.62 32.76 22.34

10 0.166 22.96 60.82 41.88 19.97 11.48

15 0.074 11.35 25.56 19.89 8.192 4.371

7.5 0 0.894 80.35 180.3 185.4 92.46 55.31

5 0.480 79.17 133.1 123.3 50.86 27.49

10 0.261 42.74 84.90 66.40 28.04 24.42

15 0.117 18.24 44.90 30.76 13.34 8.445
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by the data shown in Table 1. The tabulated or matrix representation does not
always allow estimating this characteristic, while the graphic form, as presented in
Fig. 1, made this property more visible.

In these cases, the applied various methods are capable to fulfill the required
accuracy, which guarantee the sufficient condition to have a solvable task, thus to
receive the mathematical description for such nonlinearities. The piecewise
approximation [1–3], in which dependence fragments are accepted as “pieces”, is
quite the simplest and the most efficient manner to cope with a problem of the data
fragmentation. This method is applicable for any required approximation accuracy,
but unfortunately, it has an important shortcoming. The discontinuities of the
derivatives, arising on the lines, which are joining the fragments, are not defined as
the analytical transformations of the related approximations. In that case, the spline
approximation is more effective and closest to the piecewise approximation, for the
mathematical description of the essential nonlinearities [4–6]. However, this
approach considerably complicates the MM analytical transformation.

The regression analysis [7–10], the numerous methods applying special poly-
nomial decompositions [11–13], radial basis functions [14–16], etc. are related to
them. However, these methods are not adapted to approximate the piecewise
dependences, as they do not provide sufficient accuracy [7–13], or they are focused
on the description and representation of the graphical images [14–16].

Fig. 1 2-dimensional fragments for arguments �a, defined for 4h values defining 3-dimensional
piecewise experimental dependences
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2 Basic Provisions and Boundaries for Application
of “Cut-Glue” Approximation

For elimination of the specified shortcomings the cut-glue approximation method
has been developed [17–19]. The method allows presenting the piecewise depen-
dences with one analytical function, which has an additive structure consisting of
multiplicative members. These members perform the multiplication of 2 functions:
(1) the function approximating some fragment (FAF) of dependence, and (2) the
function, which multiplicatively is cutting out this fragment (MCF).

The multiplication of FAF and IMF provides two results: (1) the FAF values
within the fragment borders remain almost invariable, (2) all values of the multi-
plicative member behind the “cut-out” fragment borders become almost zero. The
obtained result is the interval, which is isolating the analytical function
(IIF) [17, 18]. The analytical property of IIF enables the algebraic addition of the
multiplicative members, having the smooth piecewise dependency approximation
with the improved accuracy, peculiar to IIF. At the same time, the coefficient of the
parametrical identification e, which is one of the MCF arguments, allows in
addition, to adjust the general accuracy of the approximation. This function rep-
resents the united approximating function (UAF), which mathematically describes
all the experimental data. At the same time, the coefficients of the parametrical
identification e, as arguments of MCF, in addition, allow to adjust the accuracy of
the approximated data with the use of UAF.

In articles [17, 18], the bases of the cut-glue approximation for the solution of
1-dimensional tasks are developed. In article [19] this method is generalized for the
2-dimensional case. Often, there is a need to approximate the multidimensional
dependences [1, 4, 9, 10, 19–24]. For example, the strength properties of the
composite materials depend both, on the concentration of components, and on
technological parameters of their production [26–28]. The positioning of the robot
multilink working body is also described by multidimensional nonlinear depen-
dences. For some positions, the relative bodies positioning has a discontinuity in
their mathematical description [23, 29, 30]. In order to finalize the solution in a case
of the nonlinear object control, only the mathematical model description is not
sufficient, as it needs to contain the analytical functions to describe its dependen-
cies, which synthesize the control law this object [30, 31, 32].

For example, in work [22], a similar dependence is represented as in Fig. 1 for
the 2-dimensional MM, which is received from the cut-glue approximation. The
model describes the communication of the airship moment from the side heel, with
the climbing speed (v, m/s) and with angle of the heel (a, angular degrees).
However, the dependence is 3-dimensional, as illustrated in Table 1, and shown
with the 3D images in Fig. 1, where this dependence has the 3rd state variable—
flight altitude (h, km), which is added up to the 2 already specified state variables.
The 2-dimensional cuts of the modelled dependence are constructed in Fig. 1, and
have obvious breaks along the dividing lines. The nature of dependence change is
not resulting from the experiment error. It is caused by the breakaway of the air
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stream, which flows around the airship at certain combinations of v, a and density
of air, largely depending on h. In operation [22] it was succeeded to describe such
dependence function of 2 variables, with fulfilling the acceptable accuracy, only by
the cut-glue approximation. To define a similar dependence, by involving 3 vari-
ables, is becoming a much more complex problem. Therefore, to solve the
3-dimensional problem, it is necessary to adapt the “cut-glue” approach to find a
solution for the bigger dimension problem.

3 Problem Formulation

In this article, the possibility to define the mathematical description and the related
experimental dependences for any n-dimension, by applying the “cut-glue”
approximation method, as developed in [17–20] is analyzed. In other words, it is
necessary to assert the general approach for the creation of the uniform analytical
differentiable function, which can describe any nonlinear dependence, including the
discontinuous derivatives. According to the “cut-glue” approximation, the method
has to be realized with use of the multiplicative “cutting out” of n-dimensional
fragments, modeled with the n-dimensional surface. The fragments need to have the
general mutual borders, providing the full range coverage of the approximated
dependences. The general uniform MM with the approximated dependences has to
associate the created fragments by applying the algebraic summation.

4 Experimental Fragmentation of Multidimensional
Strongly Nonlinear Dependencies

The process of the fragmentation is connected with the sufficient allocation of
smooth sites dependence to each coordinate. This process is very difficult, as in
many cases the dependence curvature can significantly change, due to the variation
influenced with other coordinates. Such property of the multidimensional depen-
dences is well visible in the 3D images, as shown in Fig. 1.

Usually, such dependences are dividing intervals, based on the respective
variable. To make it more visual appealing in the multidimensional case, even for
3-dimensional dependence, it is quite difficult to achieve it. For example, the above
described 3-dimensional dependence Fx v; h; að Þ, is illustrated in Table 1 by
numerical values, and shown in Fig. 1. It is demonstrated by the 3D—projections,
which are constructed in the plane of arguments h� a. The smooth curvature of the
Fx dependency on the h argument, and the existence of breaks with the extremum
are well visible for the same dependency on an argument a. However, it is difficult
to estimate the nature of its curvature depending on the v argument.
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It is possible to reconstruct the table and 3D-projections in the plane with the
v� a arguments, in order to achieve the visual assessment. Then, the
3D-projections of Fx v; h; að Þ are done on this plane and for the matrixes, and by
fixing h it is possible to estimate the nonlinearity influence of h on Fx. Besides that,
during the regular creation of the coordinates grid, the experiment entrance data can
be submitted as a multidimensional matrix. Thus, the data of Table 1 can be sub-
mitted by a 3-dimensional matrix, which sides are 2-dimensional matrixes, as
shown in Fig. 2. However, both procedures are quite cumbersome. With the
increase of the model dependencies dimension the complexity of the assessment of
its properties in the factorial space, and respectively, the complexity of the frag-
mentation is increasing rapidly. Due to the revealed features of the fragmentation
procedure for the experimental data with the multivariate dependences (for n � 3)
it is worth to notice that the relevance of automation of the fragmentation procedure
is an important software part. Without such software support, the cut-glue depen-
dency approximation for 3 and more variables would not be achievable.

Despite the specified difficulties, for the presented multidimensional application
of the “cut-glue” approximation for the 3-dimensional mathematical model with the
Fx v; h; að Þ dependency, resulting from the experimental data given in Table 1, has
been defined and solved.

The 3-dimensional matrix in Fig. 2, where the red rectangles show the projec-
tions of the selected 3-dimensional fragments to «v� a», «h� a» and «v� h»
planes (front, top and side of the 3-dimensional data matrix). The analysis of such

Fig. 2 3-dimensional fragmentation of the 3-dimensional piecewise experimental dependency
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configurations for the allocated sub-matrixes shows that the presence of the coin-
ciding peripheral areas, at the adjacent fragments, is in general having very law
fragmentation. The dimension of a bordering subspace is always one dimension less
than the dimension of the adjoining subspaces encompassing such multidimen-
sional space of the basic data. The 2-dimensional surfaces (parallelograms) for the
next 3-dimensional fragments (parallelepipeds) are coinciding. The 1-dimensional
edges (intervals) of these parallelograms and 0-dimensional boundary points of
these intervals are coinciding too.

The fragmentation of the data matrix is a consequence of the fragmentation of
the vectors, which are constructed from the arguments values, which varied in an
experiment to certain levels. In this case, the input variables vectors of an experi-
ment xi!; i ¼ 1; n are represented by a set of subvectors.

xi|
!; i ¼ 1; n; j ¼ 1; ni; where~x ¼

x1
. . .
xn

0
@

1
A; xi

!¼
xi1
. . .
xini

0
@

1
A: ð2Þ

In the fragmentation option presented in Fig. 2, these sub-vectors are defined as
follows:

x1
!¼~h ¼ h1

!
h2
!

 !
; x2

!¼~v ¼ v1
!
v2
!

� �
; x3

!¼~a ¼
a1
!
a2
!
a3
!

0
@

1
A; ð3Þ

h1
!¼ 0

5

� �
; h2

!¼
5
10
15

0
@

1
A; v1

!¼
2:5
4:0
5:0

0
@

1
A; v2

!¼
5:0
6:0
7:5

0
@

1
A; a1

!¼
0
15
30

0
@

1
A;

a2
!¼ 30

45

� �
; a3

!¼
45
60
75

0
@

1
A:

ð4Þ

Thus, the 3-dimensional dependency data, provided in Table 1, are divided into
12 3-dimensional fragments of the experimental data (FED) represented, generally
as parallelepipeds.

The further implementation stage, of the cut-glue approximation method, con-
sists in approximating each FED by an analytic function of N- (in this case 3-)
variables. The data approximation shall provide the required accuracy, which is set
for such solvable data domain task, and within the respective fragment. This
function is called above FAF, and behind a fragment borders the FAF values can be
any, but excepting to support the exponential growth to infinity. As the method
applies the polynomial equations of the regression, such property for FAF is not
applicable.
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5 Multidimensional Approximation of Fragments
for Experimental Dependences

According to the paradigm of the cut-glue approximation method [17–19, 22],
the approximation in each fragment is selected for all the experimental data of
n-dimensions in the second stage of the method. The approximation of the frag-
ments is defined with the analytical FAF of n-arguments ~x ¼ x1; . . .; xnð Þ0. The
defined n-FAF functions y i1;...inð Þ receive the approximated fragments. They are
identified with n-tuplets indices, which indicate the fragment contribution in the
Rn—space— i1; . . .inð Þ:

y i1;...inð Þ ¼ u i1;...inð Þ ~xð Þ: ð5Þ

where ij is the number of the fragment interval on xj axis.
The fragments partition of variables xi

! is defined by formulas (2)–(4). For
example, the fragment (2,1,3), and function—y 2;1;3ð Þ mean that the fragment
receives the input from the intervals: [5,15] for h, [2.5,5.0] for v and [45,75] for a.
The receiving FAF uses the classical regression analysis to approximate experi-
mental data with the specified polynomial degree. Therefore, in the presented
example, the 12 polynomial equations have to be resulting from this second stage.
The order and structure of each equation is defined by the number of data entering
to ‘FED’, and by the accuracy imposed by the studied subject domain. Since, for
the creation of the regression equations, the standard software algorithms, some-
times called standard software packages, are used. Thus this aspect in this article is
not considered. After receiving all the FAF-s (as described in the example:
y 1;1;1ð Þ�y 2;2;3ð Þ it is possible to progress with the realization of the 3rd stage of the
cut-glue approximation method. This stage is the creation of the interval-isolated
functions (IIF). For this purpose, and according to the CGA paradigm, the specially
designed functions—MCF—are defined. They have a number of unique mathe-
matical properties. Therefore, first of all, the structure and properties of MCF,
which depend on the application domain—structure and properties of the received
FAF are considered.

6 Multiplicative Cutting-Out Function, Its Types
and Properties

The kernel of the multiplicative method, when isolating a 1-dimensional fragment
(a jog) of FAF on the xj axis, consists in the multiplication of the FAF with the
special 1-dimensional MCF (1-MCF) [17, 18], which has the following form:
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kji xj; xji�1 ; xji ; e
� � ¼ 0:25 � rl xj; xji�1 ; e

� � � rr xj; xji ; e
� �

=d xj; xji�1 ; xji ; e
� �

; ð6Þ

where

rl xj; xji�1 ; e
� � ¼ xj � xji�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xji�1

� �2 þ e2
q

;

rr xj; xji ; e
� � ¼ xji � xj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xji � xj
� �2 þ e2

q
;

d xj; xji�1 ; xji ; e
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xj � xji�1

� �2 þ e2
h i

� xji � xj
� �2 þ e2
h ir

:

The multiplicative function has the following form

k i1;...inð Þ ~x;~x i1�1;...in�1ð Þ;~x i1;...inð Þ; e
� � ¼Yn

j¼1

kji xj; xji�1 ; xji ; e
� � ð7Þ

and represents the pulse in space of Rnþ 1. The pulse amplitude approaches to 1
inside a fragment, and behind the fragment boundaries, the value of n-MCF is
almost equal to 0.

Thus, expression (7) represents the n-dimensional MCF, or n-MCF. According
to the cut-glue approximation method [19, 22], and by using n-FAF (8) and n-MCF
(7), and with applying the multiplicatively construct for the n-dimension IIF, called
n-IIF, as follows:

f i1;...inð Þ ~xð Þ ¼ u i1;...inð Þ ~xð Þ � k i1;...inð Þ ~x;~x i1�1;...in�1ð Þ;~x i1;...inð Þ; e
� �

: ð8Þ

The functions 1-MCF and 2-MCF are developed and investigated in articles [18,
19], and have a number of important properties. The functions n-MCF has these
properties too. A number of quantitative characteristics of these properties depend
on the IMF dimension. Besides, depending on the space dimension, the new
properties are added. Therefore, the full set of the inherited and new n-MCF
properties is given below.

6.1 Properties of n-MCF

(1) Function (7) is symmetric in the middle of the approximated fragment range

xi0
�! ¼ x1i�1 þ x1i

2
; . . .

xji�1
þ xji
2

; . . .
xni�1 þ xni

2

� �
: ð9Þ

(2) Function (7) has only the maximum in a point xi0
�! depending on a set of its

adjusting parameters xji�1
; xji ; ej

��j 2 1; n½ �	 

and 0 infimum in such set, as

follows:
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X0
�! ¼ ~xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � � � þ x2n

q
! 1

� �
: ð10Þ

(3) With reduction of the adjusting parameter e, the functions (8) can accept the
value, as much as close to 1 in any range xi�1

��!; xi
!
 �

set as follows:

8~x; xi�1
��!; xi

! :~x 2 xi�1
��!; xi

!� 
! lime!0 k i1;...inð Þ ~x;~x i1�1;...in�1ð Þ;~x i1;...inð Þ; e
� � ¼ 1:

ð11Þ

(4) Function (7) in the ranges ½�1; ðxi�1
��!Þ� and ½ðx� 1

���!Þ;1� can accept value
extremely close to 0 as follows:

8~x; xi�1
��!; xi

!; e :~x 62 xi�1
��!; xi

!
 �! lim x!�� ��!1 k i1;...inð Þ ~x;~x i1�1;...in�1ð Þ;~x i1;...inð Þ; e
� �

¼ 0

ð12Þ

(5) Function (7) allocates the n-dimensional parallelepiped in the Rn space. Values
of the IMF (7) at the border sides, edges, which are parts, tops and so forth of
this n-dimensional parallelepiped, aspire at e ! 0 to the sizes depending only
on n. For n = 1, 2, 3 the limits for the border values are given in Table 2.

(6) Use of IMF (7) in formula (8) provides the approach to f i1;...inð Þ ~xð Þ to u i1;...inð Þ ~xð Þ
with any accuracy depending on e (except regional sides, edges and tops).

(7) The function (10) is infinite number of times continuously differentiated, as
well as any function with the fractional exponent of degree.

7 Illustrative Example Creating IIF with FAF and MCF

For the descriptive reasons the graphic representation of the 2-dimensional
approximation is considered. FAF of the fragment with the experimentally modeled
dependency is described by the polynomial function of the 3rd order, and received
by the KRA method having 2 arguments:

Table 2 The boundary values on the MCF borders for various functions dimensions

n 1 2 3

Border Curve
segment

Polygon
side

Polygon
vertex

Polyhedron
face

Polyhedron
edge

Polyhedron
vertex

Value 0.5 0.5 0.25 0.5 0.25 0.125
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z ðx; yÞ ¼ �108:91� 66:87 � xþ 87:59 � yþ 10:5 � x2 � 3:25 � x � y� 7:741 � y2
� 0:52 � x3 þ 0:98 � x2 � y� 0:89 � x � y2 þ 0:37 � y3:

ð13Þ

Its 3D image is shown in Fig. 3a. The borders of the fragment are determined by
the intervals [5,45] with scales indicated on the horizontal axes. According to the
drawing, it is visible that behind the fragment borders, the value of the approxi-
mating function, at the left and on the right is sharply increasing, and in the left
frontal plane—sharply decreasing. However, it does not violate the conditions
defining the FAF properties since function (13) is the polynomial. For “cutting out”
the isolated IIF from FAF, the MCF is constructed by the use of formulas (6) and (7).
This function has a parallelepiped representation, with top almost equal to 1 at the
fragment borders, and almost 0 values outside these borders, see Fig. 3b. The hor-
izontal axes in the 3D image are perpendicular to the paper page, i.e. the figure
is shown as seen from the front and from below. The vertical axis is hidden
behind IMF.

In Fig. 3, the multiplication of FAF and IMF allows to receive IIF—a basic
element of “cut-glue” of approximation—are shown.

8 Additive Join of the Interval Isolating Functions
into the Approximation United Function

The last stage of the cut-glue approximation method of n-dimensional data is to join
the fragments constructed as IIF into one EAF function. Its role consists to
approximate experimental data in the form of the analytical function—as united
whole. The big advantage of this method is that such assembly is carried out by
simple algebraic addition. The only condition to enable such combining is the
explicit form of the output variable for all the IIF functions, which require the
explicit form of their multiplicative components: FAF and IMF. The structure of

Fig. 3 Illustrate “cuttings” IIF from FAF by means of IMF; a FAF—analytical function
approximation of fragment; b MCF—multiplicative cutting out function of fragment; c IIF
—”isolated” function, describing only the fragment
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IMF is defined by formula (6), which is explicit form of the relatively kji �ð Þ
function. The choice for FAF, to have the polynomial structure, provides its explicit
character. Therefore, the EAF function completing the cut-glue approximation
method can be defined as follows:

f ~xð Þ ¼
X
i1

. . .
X
in

f i1;...inð Þ ~xð Þ: ð14Þ

In other words the IIF “f” functions f i1;...inð Þ ~xð Þ are added together coordinate-
wise, and according to the coordinate-wise numbering of the fragments. The
additive formation of EAF naturally inherits all the IIF properties, and, first of its
analytical form, is the most important property of the “cut-glue” approximation
method.

9 Illustrative Example of 3-Dimensional “Cut-Glue”
Approximation Solution

The “cut-glue” approximation solution for the 3-dimensional data is given in
Table 1 below. The full volume of the dependency data for the Fx force—the
airship side shift—depends on the three flight parameters given in Table 1 angle of
heel a, heights h and speed of its climbing velocity v is too complex for the
demonstration of the approximation procedure to be put in this article. Therefore,
the most important part of the studied characteristic containing its “hump”, which is
well visible in all the 5 3D-images shown in Fig. 1. Therefore, the most important
part of the studied characteristic containing its “hump” requires fragmentation of
the all the dependences, which require, at least 12 fragments. In this article, 4
fragments are described, as found to be the most important for covering the
operational properties of the airship flight: a 2 [0,60], h 2 [5,15], v 2 [2.5,7.5].

The data in Table 1 of the appointed range are highlighted in gray. The
dependency form as shown in the 3D-images of Fig. 1, indicates that the frag-
mentation is done for coordinate a covering two adjacent subranges: [0,30] both
[30,60], and v coordinate covering two adjacent subranges: [2.5,5.0] and [5.0,7.5].
The regrouping of data for the 4 selected fragments has allowed constructing
Table 3.

The data for each fragment in Table 3 are processed by the CRA mathematical
method, which receives polynomials of the second and third order. The approxi-
mation of the fragments with the polynomials of the second order leads to too high
approximation error of the experimental points, respectively for the described
fragments: 1–8%, 2–8.1%, 3–5.7%, 4–12.3%. The approximation of the same data
polynomials of the third order provides approximately twice higher precision: 1–
4.1%, 2–5.7%, 3–2.6%, 4–5.1%. Further increase in the accuracy applying the
polynomial approximation is only possible by applying special methods, since the
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number of data for each fragment is equal to 27. The size of the full polynomial of
the third order makes 20 members, and the size of the full polynomial of the fourth
order makes 35 members. Therefore, further increase in accuracy of the approxi-
mation by increasing the polynomial order is impossible, and in this example, the
order of the approximation is limited to the third order with the worst accuracy of
5.7%, as determined by the third fragment. Thus, FAF for all the fragments has an
identical structure:

Fp
x ðxÞ ¼ bp0 þ

X3
i¼1

bpi � xi þ
X3

i¼1;j¼1

bpij � xi � xj þ
X3

i¼1;j¼1;k¼1

bpijk � xi � xj � xk; k ¼ 1:4:

ð15Þ

The 3-dimensional 3-MVF is constructed, as shown above, on the base of
1-MCF with the intervals, which are predefined. According to the structure of
n-IMF, and according to formula (7) all four 3-MCF for the isolated fragments are
defined by the common expression, having the following form:

k i1;i2i3ð Þ ~x;~x i1�1;i2�1;i3�1ð Þ;~x i1;i2i3ð Þ; e
� � ¼Y3

p¼1

kpi xp; xpi�1 ; xpi ; e
� �

; ð16Þ

here i1 ¼ 1; 2; i2 ¼ 1; i3 ¼ 1; 2;~x ¼ x1; x2; x3ð Þ0; x110 ¼ 0�; x111 ¼ x120 ¼ 30�; x121 ¼ 60�;
x210 ¼ 5:0 km; x211 ¼ 15:0 km; x310 ¼ 2:5m/s; x311 ¼ x320 ¼ 5:0m/s; x321 ¼ m/s.

The applied IIF of the fragments are defined according to Eq. (8), as follows:

f 1;1;1ð Þ ~xð Þ ¼ u 1;1;1ð Þ ~xð Þ � k 1;1;1ð Þ ~x;~x 0;0;0ð Þ;~x 1;1;1ð Þ; e
� �

; ð17:1Þ

f 1;1;2ð Þ ~xð Þ ¼ u 1;1;2ð Þ ~xð Þ � k 1;1;2ð Þ ~x;~x 0;0;1ð Þ;~x 1;1;2ð Þ; e
� �

; ð17:2Þ

f 2;1;1ð Þ ~xð Þ ¼ u 2;1;1ð Þ ~xð Þ � k 2;1;1ð Þ ~x;~x 1;0;0ð Þ;~x 2;1;1ð Þ; e
� �

; ð17:3Þ

f 2;1;2ð Þ ~xð Þ ¼ u 2;1;2ð Þ ~xð Þ � k 2;1;2ð Þ ~x;~x 1;0;1ð Þ;~x 2;1;2ð Þ; e
� �

; ð17:4Þ

where values of indices in the brackets are specifying the coordinate number of the
fragment: the first and third index specify the numbers of a angle of heel fragments
and v speeds, respectively, and the coordinate number for ‘h’ as the second index,
which does not change, since the fragments belong to all the range of this variable.

The total EAF is formed according to Eq. (14), where the additive expression
has the following form:

f ~xð Þ ¼ f 1;1;1ð Þ ~xð Þþ f 1;1;2ð Þ ~xð Þþ f 2;1;1ð Þ ~xð Þþ f 2;1;2ð Þ ~xð Þ; ð18Þ
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The analysis of EAF (17.1–17.4) has shown that the module of the greatest
approximation error of this united function (5.64%) does not exceed the greatest
fragments error (5.7%). The check is made for the wide range of values e 2 [0.01–
0.10]. It confirms operability of the cut-glue approximation method for the
3-dimensional data.

In Fig. 4, the 3D-images illustrating the isolation stages of IIF from the corre-
sponding FAF are shown. In addition the result of the association of the four IIF in
EAF is shown too. Due to the impossibility of an evident illustration of the received
3-dimensional dependencies coming from 4-dimensional space, in Fig. 4, the
projections of the constructed 4-dimensional figures are representing 3-dimensional
subspace formed by independent variables x1 � a and x3 � v, and also the Fx output
variable, called “sections”.

10 Conclusion

1. The research on the mathematical models and algorithms defining the main
stages of the cut-glue approximation method of the multidimensional experi-
mental data has been shown, indicating the possible applications of this method,
as the viable solution in approximating n-dimensional problems.

2. For the first time, this conclusion is illustrated, by showing the solution of a
problem requiring the approximation of 3-dimensional dependences, based on
the experimental data from the performed research in designing a real airship.

3. This research has accomplished all the stages of the cut-glue approximation
method with the multidimensional experimental data, and showed high per-
formance with the mixed computer and manual methods resources for the data
processing, when approximating higher than 2-dimensions.

4. The final conclusion shows the urgent need to formalize the algorithms for all
stages of the studied method, and their full automation, in order to ensure a
broad and universal application of the CGA method for tackling the multidi-
mensional approximation problems.

Fig. 4 The 2 of 4 IIF, and the total EAF (sections for h = x2 = 10 km)
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