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Chapter 12
Social and Environmental Impact of Advances 
in Economically Driven Transport 
Optimization: Case Study in Automobile 
Distribution

Thomas Wensing

Abstract Contemporary optimization methods have shown to save costs and 
increase revenues in many operative fields of application. While human planners 
tend to focus on parts of the overall problem, these methods use the computational 
power of modern computers to deeply explore the solution space and thus enable 
decision-making on a superior level.

The methods itself are well explored by the operations research community, 
where much less is known about their effect on problem aspects that are not directly 
focused. This study examines the impact of improvements in optimization methods 
on the economic, social, and environmental dimension within the context of a real-
istic case in automobile distribution.

Two planning methods are compared. The first adapts a step-by-step planning 
technique typically used by human planners; the second addresses the problem from 
an overall perspective. The comparison is based on two scenarios. One assumes that 
a fixed amount of transport orders has to be fulfilled, while the other considers a 
freight market from which transport opportunities can be freely selected for 
fulfillment.

When the workload is fixed, advancements appear to be beneficial in the eco-
nomic, social, and environmental dimension at the same time. In contrast the eco-
nomic dimension is improved disproportionately in the freight market scenario. It 
can be shown that the objectives of the economic dimension are in conflict to a 
certain extent with those of the other two dimensions.
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12.1  Introduction

It is a widespread tendency to consider advances in operative transportation optimi-
zation that enable more efficient transport order fulfillment as beneficial for all par-
ties involved. The transport company profits from lower costs and may also create 
higher revenues, e.g., when truck utilization is improved. At the same time, the 
drivers’ productivity is increased which can justify better payments and/or less 
working time. Customers potentially benefit from faster fulfillment and more reli-
able arrival estimates. Finally, well-utilized distance-minimal trips also reduce 
emissions, noise, and road utilization which creates a positive effect on the 
environment.

It seems like a clear issue that any initiative to improve operative transport effi-
ciency is beneficial for multiple parties involved. The aim of this study is to examine 
this assumption more carefully in terms of testing the following hypothesis:

Hypothesis 12.1 Optimization advances in transport operations planning  – in 
terms of increasing the potential to create efficient trips – induce improvements in 
an economic, social, and environmental sense at the same time.

Against the backdrop of distributing cars via road from a terminal to a network 
of dealerships, it will be shown that the hypothesis can be supported if the workload 
may not be changed. When orders emerge from a freight market and may thus also 
be rejected, the three dimensions do not share a common objective anymore. The 
observed phenomenon relates to the well-studied rebound effect in the energy sec-
tor; see Greening et al. (2000).

The paper is organized as follows. Section 2 defines the underlying problem of 
planning automobile transports on a daily basis. The relevant literature is reviewed 
in Sect. 3, and this study’s contribution to it is clarified. Section 4 establishes the 
study case by describing the data generation process, performance indicators, and 
scenarios that will be explored. Section 5 presents two planning methods, a basic 
method that creates one trip at a time and an advanced method that creates a whole 
transport plan of multiple trips simultaneously from a holistic perspective. In order 
to test Hypothesis 12.1, the solution quality of both methods is experimentally com-
pared in Sect. 6. Finally, Sect. 7 summarizes the results and implications.

12.2  Problem Definition

Road transports of cars require special trucks and trailers called car transporters that 
cannot be used for other types of freight. As a result, the empty mile factor is much 
higher than in the general freight sector. This circumstance in connection with the 
inherent problem complexity of feasibly matching cars with suitable transporters 
creates interesting opportunities for decision support methods.
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The practical planning problem considered in this study emerges from the short- 
term dispatch operations of a car transporting company. It comprises the day-to-day 
planning of car transports from a single terminal to a number of contracted dealer-
ships. The task can be subdivided into four levels as depicted in Fig. 12.1. On level 
A, cars are selected for shipment either from the available stock of contracted cars 
or from a market place. Each selected car has then to be assigned to a transporter 
(level B). Knowing the set of cars to deliver, a stop sequence can be created for each 
transporter (level C). Finally, the packing problem is solved on level D, i.e., it is 
decided, where each car should be placed on the particular transporter.

Several types of restrictions limit the possible combination of cars that may be 
loaded on a trailer. For simplicity, this study only considers the capacity aspect of 
the transporter, where the following capacity model is used. Each car is mapped to 
a proper size category so that a feasible load of a transporter can be expressed by a 
combination of these categories, called a load pattern. For example, such a pattern 
may state that a transporter is capable of holding five medium- and four large-sized 
cars. The overall capacity is represented by the set of all feasible load patterns. To 
allow substitution, each car may also belong to multiple size categories of which 
only one needs to be covered by a pattern.

Examples of further restrictions that have been addressed in recent INFORM 
projects are the following. It may not be allowed to assign two vehicles to the same 
transporter, e.g., if different brands must not be mixed. A transporter may be unsuit-
able to approach a certain dealership, e.g., because it is too large to maneuver on the 
site. Road segments like tree-lined avenues or narrow bridges may not be passed by 
a transporter with its top deck loaded. Dealerships may exhibit opening hours 
beyond which a transporter cannot be received. Finally, the driver must take  frequent 
breaks from driving and working, required by law in many countries and induced by 
common sense everywhere.

For the purpose of this study an optimization model is considered that covers 
levels A, B, and C. The objective is to maximize overall profits defined by total 
revenue for successful deliveries minus total direct costs that are incurred per trip, 
per dealer stop, and per kilometer traveled. There is a homogeneous fleet of trans-

Fig. 12.1 Levels of 
day-to-day planning based 
on (Agbegha et al. 1998)

12 Social and Environmental Impact of Advances in Economically Driven Transport…



198

porters which is assumed to be sufficient to cover any amount of trips per day. The 
capacity of the transporters is modeled via load patterns as described above. No 
further constraints are considered.

12.3  Literature

There is a substantial literature on providing decision support to the operative plan-
ning of finished vehicle transports.

The earliest works are due to Agbegha et al. (1998) and Agbegha (1992). They 
focus on the packing aspect of the problem, i.e., level D in Fig. 12.1. They assume 
that a transporter’s capacity can be modeled as a set of slots that are suitable to hold 
certain vehicles, where a slot may block another slot, in the sense that the former 
must be cleared before a vehicle assigned to the latter can be unloaded. The model 
and solution approach aim to minimize reload operations for a given set of vehicles 
to be delivered in a fixed sequence. The authors develop an exact branch-and-bound 
algorithm to determine blocking-minimal assignments. The same problem is later 
revisited by Lin (2010).

Tadei et al. (2002) study the problem of building delivery loads against the back-
drop of a real-world case in Italy. They address levels A, B, and C of Fig. 12.1 as 
follows. The selection (level A) is controlled via delivery revenues and an urgency 
factor for each car reflecting the costs of postponing the order fulfillment to the next 
day. The capacity aspect (level B) is linearized by introducing single-dimension 
length equivalents for both the transporters and typical vehicle models. The routing 
aspect (level C) is eliminated from the problem by creating tight regional clusters, 
where a trip may only visit locations that belong to the same cluster. The minimiza-
tion of the number of different dealerships to be visited is part of the objective, 
where the actual routing costs within a region are neglected. The problem is heuris-
tically solved by combining a matheuristic, using a MIP solver for the loading prob-
lem, with a neighborhood search method.

Dell’Amico et al. (2014) address levels B, C, and D, where they extend the focus 
of Tadei et al. (2002) in two ways: They represent the capacity requirements (levels 
B and D) in a more detailed fashion and consider routing costs (level C) explicitly 
without defining regional clusters. Their capacity model combines the approaches 
described above in the sense that they divide the available space on the transporter 
into platforms. Each platform is modeled as in Tadei et al. (2002), and a platform 
blocks another one analogously to the slots in Agbegha et al. (1998) and Agbegha 
(1992), where blocking is completely prohibited here. The problem is solved by an 
iterative local search heuristic using a branch-and-bound algorithm for the loading 
problem.

Cordeau et al. (2015) study the problem considered by Dell’Amico et al. (2014) 
in a multi-period context with uncertainty. They use a framework similar to that of 
Dell’Amico et  al. (2014) to solve the daily planning problems with preselected 
vehicles. In addition they also address level A by a rule-based selection routine that 
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distributes the available cars over the remaining days and particularly selects the 
volumes to be considered in the current run.

A real-world case in China addressing levels B and C is studied by Hu et al. 
(2015). Analogously to this paper, they model the transporter’s capacity via loading 
pattern sets. All available cars must be delivered. Splitting loads for the same dealer 
is not allowed, and the objective is to minimize the total travel distance of all trans-
porters used. The problem is solved heuristically by an evolutionary algorithm.

The contribution of this study to the existing literature is twofold. Firstly, the 
daily problem scope addressed in Hu et al. (2015) is extended to the selection of 
vehicles (level A) and studied moreover within a multiple-period context. Secondly, 
the sociological and environmental impact of economically driven optimization 
advances is studied by the example of a realistic case in vehicle routing.

12.4  Case

The overall case is based on 269 cities in the German state of North Rhine- 
Westphalia that are delivered with cars by a transport company. Every working day, 
around 250 cars newly arrive and are ready for shipment, which means a rate of 1.5 
cars per 100,000 inhabitants per day. Each city’s demand is proportional to its popu-
lation. Details on data generation are given in Sect. 4.1. According to the German 
national agency for road transport, the Kraftfahrt-Bundesamt, 633,643 cars were 
licensed in North Rhine-Westphalia in 2015, which is around 2000 cars per working 
day including Saturdays, i.e., the study considers a market-share of 12.5%.

Hypothesis 12.1 is tested within the context of two scenarios; see Sect. 4.2. One 
scenario comprises a fixed set of transport orders that must be fulfilled, whereas the 
other scenario also allows the rejection of orders. The impact is monitored by three 
performance indicators that represent the transport company’s profitability (eco-
nomic dimension), driver productivity (social dimension), and environmental load 
(environmental dimension); see Sect. 4.3. For a clearer focus, the customer perspec-
tive is not directly represented.

One may argue that an increase of productivity will always have the negative 
social effect of reducing the required workforce. In contrast, this study follows the 
premise that there is no reason to fulfill a task with more effort than is necessary. 
Increasing an employee’s performance capability is thus preferred over generating 
a long-term stable amount of work from equivalent sets of tasks.

12.4.1  Data Generation

Daily transport orders are sampled as follows. There are 292 dealerships in total, 
where there is at least one dealer in each of the 269 cities plus one or more addi-
tional dealers per 200,000 inhabitants in the larger cities. A dealership is chosen 
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with 30% probability to exhibit demand on the particular day, so that on every day 
there are new arrivals for approximately 100 cities. The amount of cars per selected 
dealership is drawn from a normal distribution with mean μ = 3.5·pp and covariance 
Cov = 0.5, where pp is the associated population in 100,000 inhabitants. Samples 
are rounded up or down with equal probability, where numbers lower than or equal 
to zero cause that the according dealership is skipped. Two model sizes (medium 
and large) are distinguished that arrive in equal fractions. The transport company 
uses transporters of a single type that may carry nine medium-sized cars, seven 
large-sized cars, or a mixed load of five medium- and three large-sized cars, where 
a medium-sized car may substitute a large-sized car. The payment per delivery con-
sists of a fixed sum, randomly sampled from €[25,40], and a kilometer-dependent 
fraction, where the price per kilometer is randomly sampled from €[0.7, 0.9].

For simplicity, the distance (d) between two dealerships is approximated by the 
direct distance (dd) with correction factors: d = 1.2·dd + 5 [km]. Each trip creates 
fixed costs of €50, plus €20 per dealer stop plus €2 per kilometer driven from termi-
nal via the assigned dealers back to the terminal.

12.4.2  Scenarios

Two scenarios are considered, both comprising 10 days:

• In Scenario 1 the transport company has to immediately ship a car on the day of 
its arrival on the terminal. Such a requirement may directly be prescribed by 
transport contracts, but it can also result from tightly limited terminal space com-
bined with a high transshipping rate, where cars have to be sent out quickly to 
create space for new arrivals.

• Scenario 2 considers the same transport orders as Scenario 1, but the transport 
company may freely reject or accept to transport a newly arriving car and thus 
realize or lose its revenue. Rejected cars will be taken care of by competitors, so 
they do not reappear on the next day.

12.4.3  Performance Indicators

The following figures are used as performance indicators for the economic, social, 
and environmental dimension of the considered application.

• The economic impact is measured by the overall profit that is created for the 
transport company. Overhead expenses are excluded for the purpose of this 
study, so that the profit is defined as revenue minus direct costs, i.e., fixed costs 
per trip plus costs per stop and per kilometer driven.
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• The social dimension is represented by the driver’s productivity, which is defined 
as the ratio of revenue per working time required for order fulfillment in this 
context. It is assumed that transporters travel at 60 km/h on average including 
breaks. Each trip creates an organizational overhead of 30 min, and 20 min is 
required to access and leave a dealership. Finally, handling per car, i.e., loading 
and unloading, takes 10 min overall. The productivity is obviously directly cor-
related with the maximum payment that the transport company may afford which 
makes it an important social factor.

• Emissions, noise, and resource consumption are summarized by travel distance 
per order distance here, to characterize the environmental impact in relation to 
the basic effort of a transport order. Travel distance (of a trip) refers to the total 
distance covered by the transporter when going from the terminal via the dealer-
ships to visit back to the terminal. Order distance is the distance from the termi-
nal to a car’s destination if it gets delivered without detour.

12.5  Solution Methods

Two solution methods are compared, a greedy algorithm (Sect. 5.1) that uses a trip- 
for- trip strategy to create a solution, and a more advanced method (Sect. 5.2) that 
creates solutions from a holistic perspective.

12.5.1  Greedy Algorithm

Experienced dispatchers know what quality they may expect of trips that go to a 
certain dealer region. Once they have enough cars at hand to form a good trip, they 
just create it more or less independently from other opportunities and remaining 
truck capacities.

The greedy algorithm used in this study adapts this widespread manual planning 
technique. Algorithm 12.1 outlines the heuristic principle. Candidate trips are built 
by first selecting the dealership to which the most profitable direct trip can be cre-
ated with the remaining cars. To these seeded trips, the nearest (primary criterion) 
and most profitable (secondary criterion) cars are added that still find place on the 
transporter. The resulting trip is locally searched, i.e., the drops are arranged accord-
ing to the distance-minimal sequence, and non-beneficial stops are removed. In 
Scenario 1, the trip is then assigned to the transporter and thus added to the solution 
in any case. In scenario 2, it is only added if it positively contributes to the overall 
profits. Otherwise the trip is dissolved, and the dealership is not further considered 
as seed for a trip.

In case that the best possible solution is dominated by one- or two-stop trips, the 
greedy algorithm is already suitable to create solutions very close to optimality.

12 Social and Environmental Impact of Advances in Economically Driven Transport…
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Algorithm 12.1 Greedy algorithm
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12.5.2  Holistic Optimizer

The advanced method is a specific configuration of the vehicle routing solver for 
automobile distribution used within INFORM. It consists of a set of construction, 
local search, perturbation, and recombination methods. Algorithm 12.2 depicts the 
overall procedure. Each iteration may comprise the independent construction of 
new solutions as well as the deduction of solutions from the pool by perturbation or 
recombination. All methods are strengthened by a local search method that tries to 
improve a given solution by relocating and swapping cars either within a trip or 
between two trips.

In the following, the three subroutines construction, perturbation, and recombi-
nation are described on a principle level. Algorithm 12.3 shows the construction 
subroutine. New solutions are created via one of several implemented construction 
methods. One of them is the greedy method outlined above; others use different 
variants of best insertion procedures. All methods can be randomized so that mul-
tiple calls may lead to different solutions. Each new solution is locally searched 
until no more improvements can be found. It is added to the pool of solutions if its 
objective meets the current acceptance threshold and deleted otherwise.

The perturbation subroutine (Algorithm 12.4) comprises several methods to 
remove assignments from a given solution, e.g., the random removal of dealership 
visits from a trip. After perturbation, the new solution is locally searched. It replaces 
the original solution in the pool if it exhibits a lower objective value.

Finally, the recombination subroutine (Algorithm 12.5) comprises a set of meth-
ods to interchange or combine promising structures of two or more (parent) solu-

Algorithm 12.2 General 
outline of the holistic 
optimizer

Algorithm 
12.3 Construction 
subroutine

12 Social and Environmental Impact of Advances in Economically Driven Transport…



204

tions from the pool. Here, for example, new child solutions are generated by mixing 
the trips of two or more parents. The new solution replaces the whole set of parent 
solutions if it is better than the best of its parents.

12.5.3  Numerical Example

Figures 12.2 and 12.3 illustrate the solution quality of the methods described in this 
section by the example of 25 cars that should be transported from Aachen to 11 
destinations in North Rhine-Westphalia. One drop is depicted as a small circle, two 
drops as a larger circle, and three drops as two nested circles. For each delivery, a 
relatively high revenue of €100 is realized so that it is beneficial in any case to fulfill 
all transport orders.

The greedy algorithm (Fig. 12.2) first considers the southernmost trip with three 
stops and a total of nine drops that create revenues of €900 at costs of 50€ for orga-
nizing the trip plus 60€ for visiting three dealers plus 312€ for driving 156 km. The 
trip thus generates profits of €478. Second, it creates the northernmost trip with four 
stops and also nine drops inducing profits of €278. Finally, it finds a last trip cover-

Algorithm 12.5 Recombination subroutine

Algorithm 12.4 Perturbation subroutine

T. Wensing
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ing the remaining seven cars that are delivered to four destinations at a profit of €40. 
In total, the greedy algorithm arrives at profits of €796 for delivering all 25 cars.

The holistic optimizer (Fig. 12.3) also considers the southernmost trip in its solu-
tion, where the two other trips are rearranged. Here, the nine-drop trip going to the 
northeasternmost dealers creates profits of €210, which is €68 less than the second 
trip created by the greedy algorithm. However, the remaining seven cars are covered 
by a trip that creates profits of €182 (vs. €40) leading to an improved overall result 
of €870.

Fig. 12.2 Example solution of the greedy algorithm

12 Social and Environmental Impact of Advances in Economically Driven Transport…
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12.6  Experiments

On basis of Sects. 4 and 5, Hypothesis 12.1 is replaced by the more focused 
Hypothesis 12.2 for the experimental part of this study.

Hypothesis 12.2 Changing the planning principle from the greedy algorithm to the 
holistic optimizer positively influences profits, driver productivity, and environmen-
tal load even if the only explicit objective is to maximize profits.

To test the hypothesis, each 10-day scenario is once planned by both methods 
outlined above, where an additional third experiment is conducted on Scenario 2, 

Fig. 12.3 Example solution of the holistic optimizer
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referred to as Scenario 2* in the following. The greedy algorithm terminates in a 
few seconds, while the holistic optimizer requires a run time of approximately 
10 min per day of a scenario on a single core of an Intel i7-6820HQ CPU with 
2.70 GHz. The improvements within the three considered dimensions are compared 
in Fig. 12.4. Table 12.1 summarizes the results of the three experiments in detail.

In Scenario 1, every order must be fulfilled on the same day that it becomes avail-
able. The only way to improve is therefore to reduce costs. The holistic optimizer 
creates significant cost savings of 6.9% which increase profits by 16.1%. The 
improvement potential is partly due to a structural deficit of the greedy algorithm 
that the holistic optimizer overcomes. By myopically seeking the best dealership to 
seed a trip in every step, the greedy algorithm tends to create an increasingly hetero-
geneous set of remaining cars. Since every car must be shipped in this scenario, the 
according orders finally get covered by very inefficient trips at the cost of the overall 
solution quality. Besides an increased profitability, there are also substantial 
improvements in the social and environmental dimensions. Driver productivity is 
raised by 5.6%, and environmental load is dropped by 6.9%, i.e., at levels compa-
rable to the cost reduction. Since the increase of profits is leveled by the fixed rev-
enue, it is not comparable with that in productivity, emissions, and costs. The results 
of Scenario 1 therefore support Hypothesis.

Two experiments on Scenario 2 reveal a different picture. Profits are increased by 
7.1% when the holistic optimizer is applied to the plain scenario, i.e., at levels com-
parable to the cost reduction in Scenario 1. However, improvements in the social 
(1.6%) and environmental dimensions (1.5%) significantly lag behind. The holistic 
optimizer accepts 3.3% more transport orders than the greedy algorithm in its solu-
tion. Therefore, one may speculate that these additional 81 orders only marginally 
improve profitability at the cost of worsening the possible social and environmental 
benefits.

To explore the effect in more depth, an additional experiment (Scenario 2*) is 
conducted for which the rejection rate of the holistic optimizer is increased by inter-

Fig. 12.4 Comparison of performance indicators
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nally reducing all revenues to 90% of the original value. Each order thus has to 
contribute more substantially to the overall result to be accepted for fulfillment, so 
that the ones that only marginally improved the result in Scenario 2 are most likely 
rejected now. The solution is evaluated with the original revenues.

As expected, the adjustment leads to a decrease in overall revenues; in fact they 
even drop by 1.6% compared to the greedy algorithm’s solution. Improvements in 
profitability are only slightly reduced to a ratio of 6.2% which shows that the now 
rejected cars would indeed only marginally increase overall profits. As a further 
consequence, improvement ratios of productivity and environmental load are almost 
doubled to 3.1% and 2.8%.

12.7  Conclusion

The aim of this study was to explore the side effects of economically driven advances 
in operative transport optimization. Experiments were conducted against the back-
drop of a realistic case in automobile distribution that mainly revealed two insights.

When there is a fixed volume of orders to fulfill, advances turn out to be benefi-
cial throughout the economic, social, and environmental dimensions in the consid-
ered field of application. Comprehensive benefits are realized even when the 
objective is to only maximize profits. This is mainly due to the fact that improve-
ments are only possible by reducing costs in this case, which are highly correlated 
with individual trip efficiency and the reduction of environmental load.

The situation is more ambivalent if revenues are also subject to the optimization. 
The higher level of efficiency that the optimization advances establish is at least 
partly used to extend the overall workload. Transport orders whose relatively low 
margins caused them to be rejected by the greedy algorithm can now be fulfilled 
profitably. While these additional orders slightly increase overall profits, they 
worsen presumably the individual trip efficiency. Therefore, the unadjusted holistic 
optimizer creates significantly less improvement in the social and environmental 
dimensions when applied to the market-based scenario.

Even though all three dimensions are better served by the holistic method, the 
additional experiment on Scenario 2 shows that they are in conflict to some extent. 
By forcing the optimizer to be stricter with the acceptance of transport orders, pro-
ductivity and environmental load are substantially improved – at the cost of losing 
profit.

Current developments in the transportation industry suggest that methods like 
the holistic optimizer presented in this paper will increasingly be used in the near 
future to support day-to-day planning. To prosper in a competitive industry, compa-
nies will have to use the according advances to stabilize or even increase their prof-
its. By showing how economic, social, and environmental aspects may be in conflict, 
this study stresses the importance of explicitly regarding the effects of advances in 
optimization methods in all relevant dimensions.

12 Social and Environmental Impact of Advances in Economically Driven Transport…
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