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Abstract. MicroRNAs are small endogenous RNAs that play important roles in
gene regulation. With the accumulation of expression data, numerous approa-
ches have been proposed to infer miRNA-mRNA regulation from paired
miRNA-mRNA expression profiles. These mainly focus on discovering and
validating the structure of regulatory networks, but do not address the prediction
and simulation tasks. Furthermore, functional annotation of miRNAs relies on
miRNA target prediction, which is problematic since miRNA-gene interactions
are highly tissue-specific. Thus a different approach to functional annotation of
miRNA-mRNA regulation that can generate context-specific expression levels is
needed. In this study, we analyzed paired miRNA-mRNA expressions from
breast cancer studies. The expression of mRNAs is modeled as a multiple linear
function of the expression of miRNAs and the parameters are estimated using
stepwise multiple linear regression (SMLR). We demonstrate that the SMLR
model can predict mRNA expression patterns from miRNA expressions alone
and that the predicted gene expression levels preserve differentially regulated
gene sets, as well as the functional categories of these genes. We show that our
quantitative approach can determine affected biological activities better than the
traditional target-prediction based methods.

Keywords: Micro-RNA � Gene expression � Co-expression � Stepwise
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1 Introduction

MicroRNAs (miRNAs) are small (*22 nucleotides) non-coding endogenous RNAs
that play important roles in gene regulation by targeting the messenger RNA (mRNA)
of protein-coding genes [1]. In most cases, though not always [2], miRNAs act to
repress the expression of their target gene [3, 4]. miRNAs guide the repression by either
degrading the mRNA molecules, decreasing the translational efficiency, or both. When
a miRNA and its target mRNA are highly complementary, the pairing is extensive and
the miRNA directs the cleavage of the mRNA, which is the predominant mode of
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miRNA-guided repression in plants. In animals, extensive miRNA-mRNA comple-
mentary pairing and the consequent cleavage of mRNA is less prevalent. Nevertheless,
recent studies indicate that target mRNA degradation provides a major contribution to
translational repression in animals [5, 6].

miRNAs participate in a wide range of biological processes, affecting the expres-
sion of over 60% of mammalian genes [7]. Over the past decade, it has become clear
that miRNAs contribute to almost all known physiological and pathological processes,
cancer being of particular interest. Since dysregulation of miRNAs is closely linked
with dysregulation of oncogenes and tumor suppressors, studying the biological pro-
cesses of miRNAs provides unique opportunities for the development of miRNA-based
diagnostics and treatment of cancer [8, 9].

To understand the functions of miRNAs, a central goal and major challenge is to
determine their target mRNAs. There are many experimental techniques for target
identification of miRNAs of interest [10]. These experimentally identified
miRNA-mRNA interactions are collected in several repositories, such as TarBase [11]
and miRTarBase [12]. So far thousands of miRNAs have been identified in animals and
plants, but only a small fraction of targets for these miRNAs have been validated
experimentally, because of the low efficiency and high cost of experimental validation.
Sequence-based computational methods have been developed to fill this gap by gen-
erating putative lists of miRNA-mRNA pairs, which have greatly reduced the number
of interactions researchers need to validate experimentally. Widely used miRNA target
prediction methods include TargetScan [7], miRanda [13], PicTar [14], TargetScanS
[15], and DIANA-microT [16].

Currently, reliable prediction of miRNA-mRNA interactions remains a challenge.
Predictions based solely on sequence information have high false positive rates [17]. In
order to improve the performance, novel integrative approaches that combine sequence
based predictions and miRNA experimental data are needed. Genome-wide mRNA
expression measurement has become an indispensable tool in molecular biology.
Similarly, technological advances have spawned a multitude of miRNA profiling
platforms [18]. They together provide paired miRNA-mRNA expression profiles that
enable researchers to pinpoint important miRNAs and their roles in particular bio-
logical processes.

Several methods that incorporate these high throughput data have been developed
to find miRNA-mRNA regulatory pairs, including those based on correlation [19–22]
or mutual information [23]. The findings from gene-expression analysis can be inte-
grated with those from sequence-based methods by intersection [24] or weighted sum
[20]. These simple approaches are efficient in extracting potential interactions from big
datasets but they only consider independent pairwise miRNA-mRNA associations.
Since a mRNA can be targeted by several miRNAs and its expression profile is affected
by multiple miRNAs at the same time, multiple linear regression models have been
proposed [25, 26]. When the data is co-linear or the number of samples is less than the
number of regulators, the linear model is underdetermined and optimal solution is
unattainable. This can be circumvented by introducing penalty terms to the system,
such as L1 � norm, L2 � norm, or combination of both, of the coefficients of regulators
[27]. In addition to regression-based approaches, several Bayesian models have been
developed, inferring the posterior probability of real miRNA-mRNA interactions based
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on the expression data, such as implemented in GenmiR++ [28] and its variations
[29–31]. Bayesian network structure learning has also been proposed [32], in which
regulatory relationships are represented as a graph and the graph that is best supported
by the expression data is sought after.

The approaches proposed so far have focused on inference and validation of the
“structure” of the miRNA-mRNA regulatory networks from the paired miRNA-mRNA
expression data. Although knowing which genes are targeted by which miRNAs is of
great value, it is not sufficient for determining whether a gene would be differentially
expressed in a particular cellular context.

We have previously shown that a simple linear model is able to quantitatively
predict and simulate gene expression levels in time-series data [33]. In this study, we
investigate the application of a similar linear model for quantitative estimation of
mRNA expression levels from miRNA data. The present study is unique in its focus on
explicit quantitative modeling of gene expression levels, rather than just identifying
miRNA targets.

2 Methods

We infer miRNA-mRNA regulatory interactions by analyzing paired miRNA-mRNA
expression data using stepwise multiple linear regression (SMLR) [33]. Suppose there
are M mRNAs and N miRNAs of interest; the expression level of each mRNA is
modeled as a linear function of the expression levels of the miRNAs:

yi ¼ bi0 þ
XN

j¼1
bijxj þ ei ð1Þ

where yi and xj are variables representing the expression of mRNA i and miRNA
j respectively (i ¼ 1; 2; . . .;M and j ¼ 1; 2; . . .;N); ei is the error term; and bi0 is a
constant term representing the baseline mRNA expression. The bij term characterizes
the regulatory effect of miRNA j on mRNA i. We identify the coefficient weights bij
using stepwise multiple linear regression with a forward selection strategy, as described
in our previous study [33]. Briefly, the predictors for a given gene yi are identified
starting with the inclusion of the constant term. In each forward selection step, indi-
vidual predictor variables are considered for addition based on their statistical signif-
icance in the regression fitting. The p-value of an F-statistic for each variable is
calculated to determine whether to include or exclude that variable in the model, using
the null hypothesis that its weight coefficient is zero.

Suppose there are L samples; we can denote the expression of mRNA i and miRNA
j across samples as row vectors: yi ¼ yi1; yi2; . . .; yiL½ � and xj ¼ xj1; xj2; . . .; xjL

� �
. More

compactly, let X ¼ 1; x1; x2; . . .; xN½ � and Y ¼ y1; y2; . . .; yM½ �, with each row repre-
senting a mRNA or miRNA and each column representing a sample. If the data is
already normalized, the constant term 1 in X can be dropped, leaving X and Y with
dimensions ofM-by-L and N-by-L, respectively, and representing the experimental data
of M miRNAs and N mRNAs across L samples. Let bi ¼ bi0; bi1; bi2; . . .; biN½ � and
B ¼ b1; b2; b3; . . .; bM½ �. Then the SMLR model can be written in a simple matrix
form:
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Y ¼ B � X ð2Þ

The coefficient matrix B is M-by-N, which represents miRNA-mRNA regulatory
interactions from M miRNAs and N mRNAs. Note that the coefficient matrix B is
sparse, since the coefficients of insignificant interactions are set to zero.

Before estimating the interaction coefficients from training data and predicting gene
expression levels, we need to perform necessary data pre-processing. Since we want to
have a general model that works for expression datasets from different platforms and
given the fact that most expression data available on Gene Expression Omnibus
(GEO) database have already been normalized based on different assumptions
regarding the specific platform, we avoid extra normalization across each sample unless
necessary. First, we remove probes (genes) that have more than 3 missing data points
and impute the missing value of the rest using the k-nearest-neighbor method with
k = 3. Next, we center and scale the expression of each probe (gene) to have a mean
value of zero and a standard deviation of one. This transformation does not alter the
correlation between genes or the results of t-test for samples from different subgroups.
Data preprocessing ensures that expression levels from different samples are on the
same scale and that our predicted values can be directly compared with those from the
real data. After preprocessing, we estimate the interaction coefficients B using stepwise
multiple linear regression [33].

We evaluate the accuracy of the model predictions on both the training and inde-
pendent testing datasets. In particular, we focus on how well the predictions preserve
the differential expression profiles, as the list of differentially expressed genes is one of
the most important outcomes from microarray studies. For both the real and predicted
data, we perform Student’s t-test to identify the genes that are significantly differen-
tially expressed between experimental groups and analyze the overlap between the lists
of genes generated from the real and predicted data.

A common downstream task in differential expression studies is the enrichment of
differentially expressed genes into functional categories [34]. Here, we propose to use
the mRNA levels estimated from our SMLR model for downstream functional anno-
tation tasks. Considering any negative coefficient in the matrix B to indicate a targeting
interaction, we evaluate the ability of our approach to discover mRNA targets and
compare its performance to the TargetScan target prediction method [15] and to a
negative correlation method where negatively correlated miRNA-mRNA are assumed
to be targeting interactions (Pearson p < 0.01). Note that our method does not dis-
tinguish direct interactions from transitive ones or from those arising from co-
regulation. Regardless of the source of the coefficients, our approach generates esti-
mates of mRNA expression values, just as if they were obtained from a microarray
gene expression experiment study. Once we obtain these estimated gene expression
levels, we calculate a predicted list of differentially expressed genes and then perform
gene set enrichment analysis using the DAVID web service [35]. Functional annotation
is performed against OMIM, GO terms, BBID pathway, and KEGG pathway data-
bases. We evaluate the performance on the functional enrichment task by comparing
the resulting functional categories with those obtained from the real mRNA data and
those obtained using target prediction methods.
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In the following section, we first illustrate the application of SMLR to predict gene
expression levels and functional categories, using a breast cancer expression profiling
dataset. We then evaluate the ability of the model coefficients estimated from one
dataset to generalize to another dataset generated from different experimental platforms.
We compare the gene lists and functional categories predicted from miRNA data to
those obtained from the real data and from TargetScan.

3 Results

In order to evaluate the ability of the SMLR model to predict gene expression levels
from miRNA data, we first used the dataset available from a paired miRNA-mRNA
study [36, 37], in which miRNA and mRNA profiles were obtained from the same
primary breast cancer carcinomas (GSE19536, GSE22220), where the TP53 mutational
and estrogen receptor (ER) status of each sample are also available. These samples are
part of a larger cohort from the Oslo region [38].

After preprocessing, we obtained normalized expression profiles for 489 miRNAs
and 40996 genes. We then performed leave-one-out-cross-validation (LOOCV) to
evaluate the model, where we set aside one of the samples as the test sample and
calculated the interaction coefficients from the remaining 100 training samples. The
resulting model is then applied to the miRNA profiles from the training samples and the
test sample separately. This procedure is repeated with each sample in the dataset used
as the test sample.

Hierarchical clustering of the 1000 most differentially expressed mRNAs in the real
data is shown in Fig. 1 (left). For comparison, a heatmap of the predicted expression
levels are shown side-by-side (Fig. 1, right) with the same row and column arrange-
ments. The predicted data displays surprisingly similar expression patterns, supporting

Fig. 1. Hierarchical clustering of mRNA expression. Left: Hierarchical clustering of the 1000
most differentially expressed mRNAs from the GSE19536 dataset. Right: expression levels of the
same mRNAs predicted from the paired miRNA expression data, using SMLR with
leave-one-out-cross-validation strategy. Rows are mRNA probes and columns are samples.
Predicted data is shown with the same row and column arrangement as the real data. Root mean
squared error (RMSE) of all predicted values was 1.11.
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the idea that the miRNA expression alone provides a good summary of the gene
expression state of the cell.

In order to further evaluate the reliability and usefulness of the gene expressions
predicted from miRNA data, we examined whether the predicted values can identify a
similar set of differentially expressed mRNAs. A two-sampled t-test on predicted gene
expression data was performed between the ER-positive and ER-negative subgroups of
samples. The p-values of the t-test are compared to those obtained from the original
gene expression data (See Fig. 2-Left). These two set of p-values are highly correlated
(r = 0.77). The mRNAs that are differentially expressed in the real data were likely to
be found differentially expressed in the predicted data as well.

Genome-wide microarray analysis is often used to prioritize a set of genes for
follow-up wet-lab experimentation; such as reporter assays to confirm transcription,
measurement of protein levels by northern blots, or knock-out experiments to evaluate
phenotypic outcomes resulting from the absence of a gene. As such, it is important that
our predictions preserve the ranking of the differentially expressed genes. Figure 2-
Right shows the overlap between the top-k most differentially expressed gene sets
obtained from the real and predicted data. The figure also shows the amount of overlap
for gene sets obtained with the commonly used p-value thresholds of 0.01 and 0.05. At
different top-k or p-value cut-offs, about half of the genes from the predicted gene set
are in common with the real gene set.

Considering the noisy nature of gene expression data and the biological complexity
of the rules governing translation of mRNAs to different protein isoforms, differential
expression detected in microarray experiments is not conclusive for similar expression
of the encoded proteins or for regulation of a particular phenotype the genes are

Fig. 2. Left: Comparison of differentially expressed mRNAs identified from the real and
predicted expression data. Each point represents a mRNA, where the x and y axes show
the −log10 transformed p-values obtained from an unpaired t-test in real and predicted data,
respectively, comparing ER-positive and ER-negative breast cancer samples. The least-square
fitted line is shown in red. Right: Amount of overlap between the lists of differentially
expressed genes in real and predicted data. Percentage overlap between the most differentially
expressed gene sets obtained from real and predicted data is shown. Each bar shows gene sets
obtained with either a top-k or p-value criteria. After false discovery rate (FDR) correction, there
were 1923 and 3942 mRNAs with p-value <0.01 and 0.05, respectively. (Color figure online)
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involved in. Gene set enrichment is commonly utilized to find biological functions
affected by the concerted changes in a set of genes.

For a miRNA study, the functional annotations of miRNAs of interest can be
obtained by enrichment analysis with a set of their target mRNAs. Traditionally, the set
of miRNAs of interest are selected according to their differential expression patterns
and their targets are selected from sequence-based target prediction algorithms or from
experimentally validated targets. All targets of differentially expressed miRNAs are
then (falsely) assumed to also be differentially regulated, even though these target
genes are also targeted by other non-differentially expressed miRNAs. This is an
unrealistic assumption that results in thousands of genes, limiting the statistical power
of the enrichment analysis. This is demonstrated in Fig. 2-Right, where we compare the
accuracy of the genes assumed to be differentially regulated from negative correlation
and TargetScan predictions (17% and 22%, respectively) with those obtained from our
method (63% and 67% for the same number of genes). Compared to context-agnostic
target-prediction methods, we more effectively utilize the cellular context available
from the state of all miRNAs in determining whether a gene is differentially expressed.

We performed functional annotation of the gene lists using DAVID [35]. For real
data, which is used as the ground truth, and for SMLR, we used differentially expressed
genes (p < 0.01) in real and predicted expression data, respectively. For other methods,
the gene lists were formed by combining all of the targets of differentially expressed
miRNAs (p < 0.01). Overlap of the functional annotation terms obtained from different
methods with those generated from the real data are shown in Fig. 3-Right. Top-3
functional categories enriched from the real data were: Phosphoprotein, Alternative
Splicing, and Splice Variant. SMLR was able to generate the same three terms in its
top-3; whereas TargetScan and negative correlation only ranked only one of them in

Fig. 3. Left: Functional enrichment from different methods. Percent overlap of functional
annotations obtained from different methods with those obtained from real data are shown. At
each p-value cutoff from SMLR, the same number of top-k annotations from each method are
compared. Full list of enriched terms is available in the supplementary data. Right: Comparison
of functional enrichment in GSE19536 dataset. SMLR is trained using GSE22220 dataset and
differentially expressed genes from the predicted GSE19536 data are used for gene set
enrichment. Negative correlation and TargetScan methods use all the predicted targets of
differentially expressed miRNAs in GSE19536.
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their top-3 lists. For the top-10 functional annotations obtained from each method, 70%
were in common between results from real data and SMLR prediction, sharing similar
rankings in statistical significance; while 40% and 10% were in common for negative
correlation and TargetScan methods. These results support the claim that gene
expression values predicted from miRNAs alone can capture the affected biological
processes and that the functional annotations from estimated mRNA values are more
accurate than those from collection of predicted targets.

The results above were obtained by leave-one-out cross-validation within a single
experimental study, where each miRNA to mRNA mapping in a test sample was done
using a model trained on the rest of the samples. Here we also evaluate the
cross-database performance of SMLR by applying the model trained from one study to
a dataset from an independent experimental study. Specifically, we train a model on
GSE22220 dataset [36] and test its prediction performance on GSE19536 dataset [37].
Since miRNA-mRNA interactions are highly tissue-specific and development-specific,
we focus on datasets from the same cancer type here. Although both datasets were from
breast cancer samples, they used different microarray platforms for mRNA and miRNA
profiling.

In order to perform a cross-database application of the model, we first find the
mRNAs and miRNAs that are in common between the two studies. Since the studies
use different microarray platforms with different probe IDs, we convert the mRNA
probe IDs to their GeneBank accession numbers and the miRNA probe IDs to their
miRBase IDs. This results in 14873 mRNAs and 232 miRNAs that are in common
between the two studies.

The comparison of the heat maps generated from real and predicted data illustrates
that SMLR is able to predict the overall expression profiles that reflect the ER status of
the samples (See Fig. 4, top row). We observe the same behavior when the training and
test datasets were switched (Fig. 4, bottom row). Taking the differentially expressed
mRNAs from the predicted GSE22220 data (p-value < 0.01) and performing gene set
enrichment, again finds functional annotations that are in better agreement with those
obtained from the real data, when compared to the agreement of the annotations
resulting from the TargetScan or negative correlation methods (Fig. 3-Right).

Although our main focus in this study is quantitative prediction of mRNA
expression levels, some of the underlying predictors discovered by our model may be
from direct miRNA-mRNA target interactions. Specifically, some of the coefficients wi

in Eq. “1” (which make up the matrix B in Eq. 2) may represent direct miRNA-mRNA
targeting interactions. We assess the extent in which SMLR can discover such targeting
interactions by comparing these interactions with known miRNA targets in miRTar-
Base and predicted targets in TargetScan.

The SMLR model was trained on both GSE22220 and GSE19536 datasets com-
bined and the miRNA-mRNA pairs in the model with negative coefficients, repre-
senting a potential targeting effect, were collected. Here, we consider only the 248
miRNAs for which there was at least one such targeting interaction. There were on the
average 8 experimentally validated targets for each of these miRNAs, listed in miR-
TarBase. TargetScan had an average of 341 predicted targets per miRNA. Considering
miRTarBase as the ground truth, the accuracy of miRNA-mRNA target pairs predicted
by SMLR was 0.10% (41 correct out of 40,633 predictions), whereas TargetScan had
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an accuracy of 1.12% (944 out of 84,489 predictions) and the negative correlation
method had an accuracy of 0.05% (222 out of 428,048 predictions).

Although SMLR had a lower accuracy than TargetScan, we must note that the
coverage of miRTarBase is currently very limited. Consequently, these accuracy
measures are sensitive to availability of further experimentally validated target data.
Furthermore, whereas SMLR finds interactions specific to the datasets it is trained with,
namely the breast cancer samples, miRTarBase dataset and TargetScan predictions do
not provide any context-specific information for their target interactions. Regardless of
these drawbacks in the analysis, combining the predictions from SMLR and Tar-
getScan, by intersecting their miRNA-mRNA target pair lists, achieves an accuracy of
2.17% (23 correct out of 1,060 common predictions), which is better than application
of either method alone.

4 Discussion and Conclusion

In this study, we took a radically different approach to miRNA-mRNA interactions and
used a multiple linear regression model to directly estimate the mRNA expression
levels from miRNA data. Whereas traditional methods try to determine targets of
individual miRNAs and rely on these target lists for downstream functional analysis,
we estimate mRNA levels from the cellular context captured by the collection of
miRNAs. The benefits and opportunities provided by our approach are tremendous. For

Fig. 4. Hierarchical clustering of true (left) and cross-database predicted (right) mRNA
expression. Top: SMLR is trained with GSE22220 dataset and tested on GSE19536
(RMSE = 1.02). Bottom: SMLR is trained with GSE19536 dataset and tested on GSE22220
(RMSE = 1.26). Top 1000 most differentially expressed mRNAs with respect to ER-status are
shown. Hierarchical clustering is only done on the real data (left); and the same row-column
ordering is used to display the predicted data (right).
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instance, our approach makes it possible to computationally predict mRNA levels for
media, such as serum, where miRNAs are relatively stable and easy to extract and
measure with current experimental techniques but mRNAs are less stable and more
challenging to measure.

Traditionally, after identifying differentially regulated miRNAs, researchers would
sift through hundreds or thousands of targets of these miRNAs and subjectively pick
several targets of interest for further experimental validation, e.g., to test for binding of
miRNA to mRNA or for differential regulation of the mRNA. Not only are these target
lists non-specific to the tissue type, developmental stage, or environmental factors
involved in an experimental study; they also ignore the fact that these genes are
targeted by multiple miRNAs, some of which may not be differentially regulated or
may be regulated in different directions. In our approach on the other hand, we build a
model in a cell-type specific manner, connecting multiple miRNAs to each mRNA. We
believe that a prioritization of the target genes based on estimated expression levels will
result in a higher positive rate in validation experiments.

Our choice of the SMLR model for prediction of mRNA expression levels was
based on its simplicity and interpretability. We believe that the linearity assumption
used in SMLR provides an appropriate trade-off between the power and generality of
the model and the number of parameters that can be correctly estimated from the
currently available datasets. Furthermore, the interactions obtained from linear models
were previously found to be better than those generated from Bayesian models and
Neural Networks [33].

In this study, we mainly focused on breast cancer datasets and demonstrated that a
model trained in one experimental platform can be successfully applied to miRNA data
from an independent laboratory using different experimental platforms. Although it is
possible to apply a model trained on one tissue type to miRNA data from another tissue
type; the predicted gene expression values would not be as accurate as restricted the
predictions to the same tissue and comparable experimental conditions. For example,
applying the model trained on the breast cancer dataset GSE22220 to predict gene
expression values from miRNA data in a prostate cancer study GSE20161 resulted in a
mean squared error of 1.35, about 33% higher than the error when it was applied to
another breast cancer dataset GSE19536. In our future work, we will build a repository
of models for different tissue types and experimental conditions of interest. The lim-
iting factor for building such a repository will be the availability of high quality paired
miRNA and mRNA data collected from the same samples.

Although our main focus was not identification of the direct miRNA-mRNA tar-
geting interactions, we show that the interactions with negative coefficients in our
model can be indicative of direct regulation. Note that the targets from our model were
generated only from the two breast cancer studies. We expect that a large scale
modeling from all publicly available paired miRNA-mRNA datasets will provide target
predictions that are in better agreement with experimentally validated targets. Moti-
vated by the observation that targeting interactions obtained from two breast cancer
datasets can improve the accuracy of TargetScan predictions, we expect that our
approach will provide a means of improving sequence-based target predictions in a
context-specific manner.
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