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Abstract. This paper introduced a probabilistic approach to the
multiple-instance learning (MIL) problem with two Bayes classification
algorithms. The first algorithm, named Instance-Vote, provides a sim-
ple approach for posterior probability estimation. The second algorithm,
Embedded Kernel Density Estimation (EKDE), enables data visualiza-
tion during classification. Both algorithms were evaluated using MUSK
benchmark data sets and the results are highly competitive with existing
methods.
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1 Introduction

Machine Learning approaches have been widely applied in drug activity pre-
diction [2,12], i.e., predicting whether an unknown drug will bind to a tar-
get (protein) based on existing knowledge of drugs-protein interactions. The
multiple-instance learning (MIL) problem arises when a drug has more than one
conformation and several of those can bind to the target. However, only the
labels of drugs in the training set are given: a drug is positive if at least one of
its conformations binds to the target, and negative otherwise. The label of each
conformation is unknown. The task is to predict the label of an unseen drug
(i.e., bag) given its conformations (i.e., instances). MIL is also applied in gene
function prediction at the isoform level [5]. In this context, a gene is considered
as a bag, which consists of multiple isoforms, referred as instances.

Of existing MIL algorithms, one class is based upon learning the labels
of instances and then labelling the bag using instance label information. The
assumption typically used is that a bag is positive if it has at least one posi-
tive instance and negative if all of its instances are negative [1,4]. A different
assumption is that all instances contribute equally and independently to a bag’s
label, and the bag label was generated by combining the instance-level proba-
bility estimates [10,11,13]. There are also many methods that convert the MIL
problem to a supervised learning problem using feature mapping [3]. However,
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feature mapping usually results in increased dimensionality, and a commonly
used approach to overcome this problem is feature selection.

In this paper, we develop two Bayes classifiers for MIL. The first approach,
named Instance-Vote, attaches the bag label to its instances for all bags in the
training set. For any new bag, we simply use a k-NN classifier to predict the label
for each instance in the bag, followed by estimating the probability of the bag
being positive via the percentage of positive instances in the bag. The second
algorithm, named as EKDE (Embedded Kernel Density Estimation) converts the
MIL to a supervised learning problem by mapping each bag into an instance-
defined space. Instead of feature selection, a non-linear dimensionality reduction
method, t-SNE (t-Distributed Stochastic Neighbor Embedding), is then used to
reduce the dimension to 1 or 2. The advantage of this approach is the capability
of data visualization. The class conditional probability densities are then esti-
mated in this low dimensional space by kernel density estimation (KDE). The
classification is based on the posterior probability according to Bayes’ theorem.

2 Methodology

2.1 MIL via Instance-Vote

A New Interpolation of Instance Label. The main challenge of MIL is
that the label of instances are unknown. The classical MIL assumption treats a
bag as negative if none of its instances is positive. Here we relax the assump-
tion by allowing negative bags to contain positive instances. In order to predict
instance labels, we assign bag label to all its instances in the training set. We
then use k-NN classifier to predict instance labels. This above process of gener-
ating instance-based training data clearly introduces noise into instance labels.
However, the noise can be accounted for by the following voting model and the
choice of threshold parameter.

Voting for Bag Label. To classify a bag, all its instances cast a vote based on
the instance label. We assume that the posterior probability of a bag being pos-
itive (or negative) is a monotonically non-decreasing function of the probability
of a randomly chosen instance from the bag being positive (or negative), i.e.,

Pr(y = +[B) = f(Pr(z; € +|B))

where y is the label of bag B, z; is a randomly chosen instance from the bag, f
is an unknown monotonically non-decreasing function. The maximum likelihood

estimate of Pr(z; € +|B) is obtained as %, where m™ is the number of positive
instances in the bag and m is the total number of instances in the bag. We use
a simple Bayes decision rule for classification, i.e.,

+ if Pr(x; € +|B) > 6,
Y= .
—  otherwise,

where 6 is the threshold parameter.
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2.2 Embedded Kernel Density Estimation

In this approach, we convert the MIL problem to supervised learning via fea-
ture mapping. We aim to find the probability distributions of the two classes
using KDE and then apply the Bayes decision rule. However, KDE does not
perform well for high dimensional data, since data points are too sparse in high
dimensional space. The solution is to learn an embedding of the data and apply
KDE in the low dimensional latent space (d = 1 or 2). Therefore, we name this
approach as Embedded Kernel Density Estimation (EKDE).

Feature Mapping. We adopt the same method described in [3] considering its
good performance. Each bag is represented by all the instances in the training
set via a similarity measurement. The similarity of a bag B; and an instance x*
is defined as:

k: 2
i — 2]

2 )a

where z;; is the j'th instance in bag B; with j = 1,...,n;, n; is the number of
instances in bag B;, and ¢ is a predefined scaling factor. Then bag B; can be
represented as: [s(B;, zt), s(B;, 2%), ... (B;,2™)], where n is the total number of
instances in the training set, i.e., Zi:l n; = n, where [ is the total number of
bags in the training set. The dimension after feature mapping is now n, which
can be considerably large. Therefore, dimensionality reduction is desired.

s(Bi, 2") = max exp(—
J g

Dimensionality Reduction and Visualization. Among all existing dimen-
sionality reduction techniques, t-SNE was chosen due to its prominent perfor-
mance [8]. Specifically, we chose the parametric t-SNE since it provides a map-
ping function from the original space to the low dimensional space [7]. The
dimension of latent space was set to 1 or 2 such that KDE can be reliably imple-
mented and visualization of the data can also be achieved. Although not required
by classification, visualization is beneficial for data analysis.

Probability Density Estimation and Classification. According to Bayes’
theorem, given a bag represented as x, the posterior probabilities can be com-
puted as

plrly=—)Pr(y=-)
p(z)

plzly =+)Pr(y =+)
p(z)

Pr(y = +|z) = ,Pr(y=—|z) = ,
where y is the bag label. Assuming bags being i.i.d., the maximum likelihood
estimates of Pr(y = +) and Pr(y = —) are Pr(y = 4) = %,Pr(y =-) =1,
where [*(I7) is the number of positive(negative) bags in training set. The class
conditional densities p(z|y = +) and p(z|y = —) can be estimated by KDE using
training data after dimensionality reduction. p(x) is a constant respect to y. The
classifier can make predictions on the bag label y by setting a threshold 6 for
the odd ratio (OR):
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_J+ ifOR>0,
Y7 - otherwise,

— Dr(y=+]x)
where OR = 50 ="15.

3 Experimental Results

3.1 Data Sets

The benchmark datasets MUSK1 and MUSK2 are used in our study. In these
two datasets, each molecule (bag) has more than one conformation (instance).
The label of the molecule is “musk” (positive) if any of its conformations is a
musk or “non-musk” if none of its conformations is a musk.

3.2 Experimental Setup

For the Instance-Vote algorithm, different values of k were tested for k-NN clas-
sifier instance classification. For the EKDE algorithm, the setup of feature map-
ping is same as [3]. We used the implementation of parametric t-SNE that is
publicly available at [9]. A Gaussian kernel was used in KDE and the optimal
bandwidth was determined by 10-fold cross validation.

3.3 Results

Both algorithms were tested using 10-fold cross-validation at the bag level. We
use area under ROC (receiver operating characteristics) curve (AUC) for evalu-
ation since it is a preferred measurement over accuracy [6]. Each experiment was
performed 10 times and the average AUC was used for comparison with other
algorithms.

In the testing of Instance-Vote algorithm, k£ = 3 gives the optimal cross-
validation result for both data sets. The AUC obtained is shown in Table 1. The
result is surprisingly good considering the simpleness of this algorithm. This
may suggest that noise introduced during labelling instances in the training set
is not significant. From the chemistry point of view, it is reasonable that many
conformations of a musk molecule can preserve the musk property.

We next present the results of the EKDE algorithm. After feature mapping,
the data dimensions are 476 (MUSK1) and 6598 (MUSK2), as determined by
the total number of instances in the training sets. The dimension is then reduced
to 1 or 2 by applying parametric t-SNE. Due to the limit of space, we only show
the visualization results in 2D (Fig.1). The two classes are separated well for
both data sets with minor overlapping in MUSK2, thanks to the superiority of
t-SNE on preserving the local structure. The AUC results are shown in Table 1.

For comparison, we also include the results of various existing MIL algo-
rithms that use AUC as the measure for evaluation (Table1). Among all of the
listed method, Instance-Vote is the simplest and has comparable results with the
others. The EKDE algorithm outperforms others on MUSK1 and is comparable
with those on MUSK2.
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Fig. 1. Visualization of MUSK1 (left) and MUSK2 (right) data sets in 2D. Positive
and negative bags are presented as red circles and blue squares, respectively. (Color

figure online)

Table 1. AUC obtained by the proposed algorithms and other methods on the MUSK
data set (All listed algorithms were evaluated by 10-fold cross-validation.).

Algorithms MUSKI1 | MUSK2
Instance-Vote | 0.921 0.856
EKDE (d=1) /0.954 |0.859
EKDE (d=2) |0.941 0.865
MI RVM [11] 0.942 0.987
RVM [11] 0.951 0.985
MI Boost [11,13] | 0.899 0.964
MI LR [10,11] 0.846 0.795
DD(1) [10] 0.895 0.903
DD(3) [10] 0.883 0.850
DD(5) [10] 0.861 0.838

4 Conclusions

In this paper, we introduced two Bayes algorithms to solve the multiple-instance
problem. The Instance-Vote algorithm acquires the label of each instance in the
training set from its associated bag and predict an unseen bag label base on
the percentage of predicted positive instances in the bag. The EKDE algorithm
performs KDE after feature mapping in the embedded low dimensional space
with the help of parametric t-SNE. In this approach, both classification and
data visualization can be achieved. We have shown that both algorithms are
competitive with other MIL algorithms on MUSK benchmark data sets.

Acknowledgements. This work was supported by the Department of Computer and
Information Science, University of Mississippi.



336 S. Zhang et al.
References
1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for

11.

12.

13.

multiple-instance learning. In: Advances in Neural Information Processing Sys-
tems, pp. 577-584 (2003)

Burbidge, R., Trotter, M., Buxton, B., Holden, S.: Drug design by machine learn-
ing: support vector machines for pharmaceutical data analysis. Comput. Chem.
26(1), 5-14 (2001)

Chen, Y., Bi, J., Wang, J.Z.: Miles: multiple-instance learning via embedded
instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1931-1947
(2006)

Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell. 89(1), 31-71 (1997)

Eksi, R., Li, H.D., Menon, R., Wen, Y., Omenn, G.S., Kretzler, M., Guan, Y.:
Systematically differentiating functions for alternatively spliced isoforms through
integrating RNA-seq data. PLoS Comput. Biol. 9(11), e1003314 (2013)

Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms.
IEEE Trans. knowl. Data Eng. 17(3), 299-310 (2005)

van der Maaten, L.: Learning a parametric embedding by preserving local struc-
ture. RBM 500(500), 26 (2009)

van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579-2605 (2008)

Matten, L.: t-SNE. https://lvdmaaten.github.io/tsne/

. Ray, S., Craven, M.: Supervised versus multiple instance learning: an empirical

comparison. In: Proceedings of the 22nd International Conference on Machine
Learning, pp. 697-704. ACM (2005)

Raykar, V.C., Krishnapuram, B., Bi, J., Dundar, M., Rao, R.B.: Bayesian multiple
instance learning: automatic feature selection and inductive transfer. In: Proceed-
ings of the 25th International Conference on Machine Learning, pp. 808-815. ACM
(2008)

Warmuth, M.K., Liao, J., Ratsch, G., Mathieson, M., Putta, S., Lemmen, C.:
Active learning with support vector machines in the drug discovery process. J.
Chem. Inf. Comput. Sci. 43(2), 667-673 (2003)

Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In:
Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS, vol. 3056, pp. 272-281.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24775-3_35


https://lvdmaaten.github.io/tsne/
http://dx.doi.org/10.1007/978-3-540-24775-3_35

	A Probabilistic Approach to Multiple-Instance Learning
	1 Introduction
	2 Methodology
	2.1 MIL via Instance-Vote
	2.2 Embedded Kernel Density Estimation

	3 Experimental Results
	3.1 Data Sets
	3.2 Experimental Setup
	3.3 Results

	4 Conclusions
	References


