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Abstract. Understanding disease-disease associations can not only help us gain
deeper insights into complex diseases, but also lead to improvements in disease
diagnosis, drug repositioning and new drug development. Due to the growing
body of high-throughput biological data, a number of methods have been pro-
posed for the computation of similarity among diseases during past decades.
Recently, the disease module theory has been presented, which states that
disease-related genes or proteins tend to interact with each other in the same
neighborhood of protein-protein interaction network. In this study, we propose a
new method called ModuleSim to measure associations between diseases by
using disease-gene association data and protein-protein interaction network data
based on disease module theory. By considering the interactions between dis-
ease modules and each module’s modularity, ModuleSim outperforms other four
popular methods for predicting disease-disease similarity.

Keywords: Disease-disease association � Disease module � Protein-protein
interaction network

1 Introduction

Quantifying the associations among diseases is now playing an important role in
modern biology and medicine, as discovering associations among diseases could be
helpful for us to get a deeper knowledge of pathogenic mechanisms of complex dis-
eases. Based on the hypothesis that similar diseases may be caused by the same or
similar genes, the measurement of disease-disease associations is widely used in the
study of disease gene prediction [1, 2, 33] and drug repositioning [3].
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A number of approaches measuring disease-disease associations have been pro-
posed during last decade [4–8]. Different approaches measures disease-disease asso-
ciations from different perspectives by taking advantage of different biological data.
These approaches can be broadly grouped into two classes: semantic-based methods
and function-based methods [9]. Semantic-based methods take advantage of the
structure of disease terminology such as Disease Ontology (DO) [10] and Medical
Subject Headings (MeSH) [11] to measure the semantic similarity of diseases [12, 13].
Function-based methods are basically based on the hypothesis that similar diseases may
have more same or similar causing genes/gene products [5, 14].

Mathur et al. proposed a method called BOG [15] which calculates disease simi-
larity by comparing the overlapping of disease-related gene sets. Further, Mathur et al.
proposed another method called PSB [16] which computes disease similarity based on
biological process terms of Gene Ontology (GO) [17] associated with disease-related
genes. By exploiting functional associations among disease-related genes based on GO,
PSB outperforms BOG. To get a better performance, many other methods take
advantage of disease-related genes’ interactions in protein-protein interaction networks
(PPIN). FunSim [9] measures disease similarity by using a weighted human PPIN in
which the weight of each interaction measures the functional association of a gene pair
[32]. However, FunSim takes only the first neighbors of each gene into account, rather
than making full use of the entire PPIN. Sun et al. [18] applied graphlet theory [19] to
calculate gene similarity in PPIN. Then they inferred disease similarity by using
disease-related genes’ graphlet similarity. Hamaneh et al. [20] proposed a method that
first assigns weights to all proteins from a disease to the PPIN and back. Then the
method calculates similarity between two diseases as cosine of the angel between their
corresponding weight vectors. NetSim [21] uses random walk with restart (RWR) [22]
to score the functional relevance between a gene and a disease. The functional rele-
vance scores are then used to measure disease similarity.

Although there have been many methods (such as Sun’s method [18], Hamaneh’s
method [20] and NetSim [21]) which take advantage of PPIN to discover disease-
disease associations, these methods rarely consider the modularity of genes related to
each disease in PPIN. According to the disease module theory, the disease-related
genes or proteins are not scattered randomly in PPIN, but tend to interact with each
other, forming one or several connected subgraphs which can be called the disease
module [23, 40]. However, as the PPIN and our knowledge of disease-related genes
remain incomplete, there also exist lots of disease modules that are not observable in
PPIN. In this study, we propose a method to relate diseases based on disease module
theory. In this method, we consider the related genes of two diseases as two modules in
PPIN. We take advantage of shortest path of each gene pair between the two modules
to measure the association of the two modules. Furthermore, for the purpose of
overcoming the incompleteness of disease modules, we also take the modularity of
each disease module into account. In the comparison with other proposed methods used
PPIN, our method shows the best performance.
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2 Materials and Methods

2.1 Materials

Disease-Gene Associations: The disease-gene association data are downloaded from
two databases: SIDD [25] and DisGeNET [24]. By integrating disease-gene associa-
tions from five databases (GeneRIF [34], Online Mendelian Inheritance in Man
(OMIM) [35], Comparative Toxicogenomics Database (CTD) [36], Genetic Associa-
tion Database (GAD) [37], and SpliceDisease [38]), SIDD contains 99658 associations
between 2423 diseases and 10527 genes in total (Fig. 1). SIDD uses DOID [10] as the
unique identifier for each disease.

DisGeNET integrates human disease-gene associations from various expert curated
databases and text-mining derived associations including Mendelian, complex and
environmental diseases [24]. DisGeNET v4.0 contains 429036 associations between
17381 genes and 15,093 diseases. Because of the low reliability of disease-gene
associations from literature in DisGeNET, a disease-gene association is adopted only if
its DisGeNET score is not less than 0.06 [24]. DisGeNET uses Unified Medical
Language System Identifier (UMLS ID) [39] as the unique identifier for each disease.
After mapping disease ids from UMLS ID into DOID, in total, we got 1511 diseases,
6929 genes and 20787 associations between them from DisGeNET.

PPIN: Two PPIN datasets were adopted. One is called hPPIN. As Li et al. [21] did,
hPPIN was built by integrating four existing protein interaction databases (BioGrid

Fig. 1. Evaluation of ModuleSim against DO classification by using different datasets (the
barplot shows similarity scores between disease pairs from the same DO categories, compared
with those from different DO categories and all disease pairs). Note that two diseases are said to
be in the same category if they have at least one common ancestor in the 3rd-level DO categories.
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[26], HPRD [27], IntAct [28], and HomoMINT [29]). In total, hPPIN contains 17506
proteins and 284476 interactions. The other is human interactome which was formed
by experimentally documented molecular interactions as Menche et al. [23] did. The
interactome integrates protein-protein and regulatory interactions, and metabolic
pathway and kinase-substrate interactions. The union of all interactions in the inter-
actome forms a network which contains 13460 proteins and 141296 physical inter-
actions between them.

2.2 Methods

In disease module theory, a disease is considered as a subgraph consisting of genes
related to the disease and the interactions between these genes in PPIN [23, 40]. In
other words, any perturbation of the nodes in a disease module can be linked to the
disease. If genes in two disease modules overlap or stay in the same neighborhood, the
perturbations leading to one disease will likely disrupt the other disease modules as
well, which results in shared clinical characteristics [23]. However, limited to the fact
that our knowledge of disease-related genes and PPIN are still incomplete, lots of
disease modules are not observable. Based on disease module theory and the frag-
mentation of disease modules, we proposed a method called ModuleSim to calculate
disease-disease associations. Firstly, we use the length of the shortest path to calculate
the strength of two genes’ relevance as follows:

sim g1; g2ð Þ ¼
1; g1 ¼ g2

A � exp�b�sp g1;g2ð Þ; g1 2 PPIN and g2 2 PPIN
0; else

8
<

:
ð1Þ

where sp(g1,g2) represents the length of the shortest path between node g1 and node g2
in PPIN, A and b are two constants. To keep the value of sim(g1,g2) within the range
[0, 1], we used A = 1 and b = 1, respectively. A higher sim(g1,g2) value represents a
closer relationship between g1 and g2. Suppose G is a disease module, which means
G is a gene set associated with a disease, we then measure a gene’s relevance to a
disease as follows:

FG gð Þ ¼ avg
X

gi2G
sim g; gið Þ

� �
ð2Þ

As in Eq. (2), the relevance score of a gene g with the disease is calculated as the
average transformed distance between g and genes in G.

Suppose G1 = {g11, g12, …, g1m} is a disease module which contains m genes,
G2 = {g21, g22, …, g2n} is another disease module which contains n genes. The relat-
edness between the two disease modules is quantified by Eq. (3).

spsim G1;G2ð Þ ¼
P

1� i�m FG2ðg1iÞþ
P

1� j� n FG1ðg2jÞ
mþ n

ð3Þ
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Our knowledge of disease-associated genes and PPIN remain incomplete [23]. This
is to say, there also exist lots of diseases of whose modularity is not obvious. To
overcome the incompleteness of disease modules, we normalize the relatedness score
between G1 and G2 by dividing the average of relatedness scores of themselves as
Eq. (4).

ModuleSim G1;G2ð Þ ¼ 2� spsim G1;G2ð Þ
spsim G1;G1ð Þþ spsim G2;G2ð Þ ð4Þ

In Eq. (4), ModuleSim(G1, G2) represents the ModuleSim of disease module G1

and G2. A higher ModuleSim value represents a closer connection between G1 and G2.

3 Experiments and Results

3.1 Correlation with Disease Classification of DO

The results obtained by ModuleSim were first evaluated against the disease classifi-
cation of DO. DO is a standardized ontology for human disease concepts with stable
identifiers organized by disease etiology [10]. DO (version: releases/2016-05-27)
contains 6930 non-obsolete disease terms and 6921 disease terms under the 3rd-level
categories. We say that two diseases are in the same class, if they have at least one
common ancestor in the 3rd-level DO categories. To investigate the correlation
between ModuleSim and the disease classification of DO, we tested whether disease
pairs from the same DO classes tends to have higher similarity scores than disease pairs
from different DO classes (Fig. 1). Our results show that for all four situations when
using different disease-gene association datasets and PPIN datasets, similarity scores of
disease pairs from the same classes are higher than those from different classes.

3.2 Evaluation of ModuleSim on the Benchmark Set

We adopted the benchmark set method [9] to evaluate ModuleSim with other methods.
70 disease pairs with high similarity derived from two manually checked datasets by
Suthram et al. [30] and Pakhomov et al. [31] were taken as the benchmark set. Receiver
operating characteristic (ROC) curves were then drawn with the benchmark set against
100 random sets. Each random set contains 700 randomly selected pairs.

We compared ModuleSim with other four popular methods which are all using
disease-gene association data and PPIN data to measure disease-disease associations:
Hamaneh [20], FunSim [9], Sun_topo [18], NetSim [21]. As shown in Fig. 2A, when
using disease-gene associations from SIDD [25] and hPPIN as the PPIN, the Hamaneh
method [20], with an average area under the ROC curve (AUC) of 93.7%, had the
worst performance. By considering the functional weights between disease-related
genes in PPIN, FunSim [9] got an AUC of 94.4%. NetSim [21] which took the entire
interaction network into account by using RWR improved the AUC to 95.1%. By using
graphlet theory [19], Sun_topo [18] got a higher AUC of 96.1%. The proposed method,
ModuleSim, got the highest AUC of 96.9%. For a further comparison, we also checked
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how many answer disease pairs out of the top-ranking disease pairs can be found by
ranking the benchmark pairs and the random pairs in descending order based on each
method. From Fig. 2B we can see that, ModuleSim always find the most answer
disease pairs in the top-ranking 150 disease pairs. Furthermore, ModuleSim find all 70
benchmark pairs by using the least top-ranking disease pairs, which showed a
quite good performance. For example, “pneumonia” (DOID:552) and “meningitis”
(DOID:9471) are two diseases which are validated to have high similarity with each
other in the benchmark set. There are only six genes related to “meningitis” based on
SIDD [25], which leads to the result that the disease module of “meningitis” is frag-
mentary. Thus, the average ranking of “pneumonia” and “meningitis” in the 770 dis-
ease pairs (70 benchmark pairs and 700 randomly selected pairs) is very low for all five
methods, as shown in Table 1. However, by considering the modularity of each dis-
eases, ModuleSim obtained an average ranking of 251 of “pneumonia” and “menin-
gitis”, which raised about 100 places compared with Hamaneh and Sun_topo.

Only 55.3% of disease-gene associations in DisGeNET [24] and 11.5% of
disease-gene associations in SIDD [25] are shared with each other, which shows that
the two databases have a big difference in quantity with each other. Similarly, different
PPIN datasets are also very different. The two PPIN datasets (interactome [23] and

Fig. 2. ModuleSim compared with other four methods on benchmark set by using SIDD [25]
and hPPIN [21]. A: average of AUC for 100 permutations. B: the number of answers with
varying the number of top-ranking disease pairs.

Table 1. The average ranking of the disease pair (“pneumonia” and “meningitis”) in 770
disease pairs, based on the datasets SIDD and hPPIN.

Hamaneh FunSim Sun_topo NetSim ModuleSim

Avg ranking 366.45 262.73 354.08 282.04 251.36
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hPPIN [21]) used in this paper only have 12560 genes and 90938 interactions in
common. To test the influence of different datasets, we further evaluated the five
methods by using these two different disease-gene association databases and two dif-
ferent PPIN datasets. As shown in Fig. 3, ModuleSim got the best performance in all
four situations, which indicated that ModuleSim have a stable and strong power for
discovering disease-disease associations.

4 Conclusion and Discussion

It is a big challenge to get a deeper insight into the mechanisms between diseases in
modern biology [41, 42]. Measuring disease-disease associations is helpful for us to
gain more knowledge about diseases. A number of methods have been proposed for
measuring disease-disease associations up to now. The methods which take advantage
of disease-gene associations and PPIN have shown a great power to infer disease-
disease associations. However, these methods rarely consider the modularity of genes
related to each disease in PPIN.

According to the disease module theory, the disease-related genes or proteins are
not scattered randomly in PPIN, but tend to interact with each other [23, 40]. In this
study, we proposed a method ModuleSim to discovering disease-disease associations
based on disease module theory. In the result of ModuleSim, similarity scores of
disease pairs from the same DO classes are higher than those from different DO classes.
Furthermore, ModuleSim outperformed other four methods (Hamaneh [20], FunSim
[9], Sun_topo [18], NetSim [21]) in the evaluation of benchmark set.

Fig. 3. Average of AUC for 100 permutations when Modulesim compared with other four
methods on the benchmark set and random sets by using different datasets.
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ModuleSim considers modularity of each disease module when measuring
disease-disease associations. However, our knowledge of disease-related genes and
PPIN remains incomplete. Therefore, lots of disease modules remain incomplete. In the
future, more disease-gene associations and gene-gene interactions with high quality
need to be discovered. In addition, the application of ModuleSim on disease-gene
prediction and drug repositioning is worthy of further investigation.
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