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Preface

On behalf of the Program Committee, we would like to welcome you to the pro-
ceedings of the 13th edition of the International Symposium on Bioinformatics
Research and Applications (ISBRA 2017), held in Honolulu, Hawaii, May 29 to
June 2, 2017. The symposium provides a forum for the exchange of ideas and results
among researchers, developers, and practitioners working on all aspects of bioinfor-
matics and computational biology and their applications. This year we received 118
submissions in response to the call for extended abstracts. The Program Committee
decided to accept 27 of them for full publication in the proceedings and oral presen-
tation at the symposium. We also accepted 24 of them for oral presentation and short
abstract publication in the proceedings. Furthermore, we also received 18 submissions
in response to the call for short abstracts.

The technical program invited keynote talks by Prof. Michael Q. Zhang from The
University of Texas at Dallas and Tsinghua University. Prof. Zhang reviewed the
history of computational genome regulation and then introduced some new biochem-
ical (BL-Hi-C), biophysical (super-resolution imaging), and bioinformatics (MICC,
3CPET, FIND) technology developments that may be used for studying 3D genomes
and disease markers in the near future.

We would like to thank the Program Committee members and the additional
reviewers for volunteering their time to review and discuss symposium papers. We
would like to extend special thanks to the steering and general chairs of the symposium
for their leadership, and to the finance, publicity, workshops, local organization, and
publications chairs for their hard work in making ISBRA 2017 a successful event. Last
but not least we would like to thank all authors for presenting their work at the
symposium.

April 2017 Zhipeng Cai
Ovidiu Daescu

Min Li
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Copy Number Aberration Based Cancer Type
Prediction with Convolutional

Neural Networks

Yuchen Yuan1,2, Yi Shi2, Xianbin Su2, Xin Zou2, Qing Luo2,
Weidong Cai1, Zeguang Han2, and David Dagan Feng1

1 School of Information Technologies,
The University of Sydney, Sydney, NSW 2008, Australia

{yuchen.yuan,tom.cai,dagan.feng}@sydney.edu.au
2 Key Laboratory of Systems Biomedicine,
Shanghai Center for Systems Biomedicine,

Shanghai Jiaotong University, Shanghai 200240, China
{yishi,xbsu,x.zou,simonluo,hanzg}@sjtu.edu.cn

Abstract. Cancer is a category of disease that causes abnormal cell growths and
immortality. It usually incarnates into tumor form that potentially invade or
metastasize to remote parts of human body [1]. During the past decade, with the
developments of DNA sequencing technology, large amounts of sequencing
data have become available which provides unprecedented opportunities for
advanced association studies between somatic mutations and cancer types/
subtypes [2–7], which may contribute to more accurate somatic mutation based
cancer typing (SMCT). In existing SMCT methods however, the absence of
feature quantification and high-level feature extraction is a major obstacle in
improving the classification performance. To address this issue, we propose
DeepCNA, an advanced convolutional neural network (CNN) based classifier,
which utilizes copy number aberrations (CNAs) [8–10] and HiC data [11] for
cancer typing. DeepCNA consists of two steps: firstly, the CNA data is
pre-processed by clipping, zero padding and reshaping; secondly, the processed
data is fed into a CNN classifier, which extracts high-level features for accurate
classification [12].

We conduct experiments on the newly proposed COSMIC CNA dataset,
which contains 25 types of cancer. Controlled variable experiments indicate that
the 2D CNN with both cell lines of HiC data (hESC and IMR90) contributes to
the optimal performance. We then compare DeepCNA with three widely
adopted data classifiers, the results of which exhibit the remarkable advantages
of DeepCNA, which has achieved significant performance improvements in
terms of testing accuracy (78%) against the comparison methods. We have
demonstrated the advantages and potentials of the DeepCNA model for somatic
point mutation based gene data processing, and suggest that the model can be
extended and transferred to other complex genotype-phenotype association
studies, which we believe will benefit many related areas [13, 14].

Yuchen Yuan, Yi Shi—These authors contribute equally as co-first authors.
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Predicting Human Microbe-Disease
Associations via Binary Matrix Completion

Jian-Yu Shi1, Hua Huang2, Yan-Ning Zhang3, and Siu-Ming Yiu4

1 School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
jianyushi@nwpu.edu.cn

2 School of Software and Microelectronics,
Northwestern Polytechnical University, Xi’an, China

1363351294@qq.com
3 School of Computer Science,

Northwestern Polytechnical University, Xi’an, China
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4 Department of Computer Science, the University of Hong Kong,
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With the help of sequencing techniques (e.g. 16S ribosomal RNA sequencing) [1],
Human Microbiome Project has revealed that there are diverse communities of
microbes in a human intestine, which provides a nutrient-rich and temperature-fixed
habitat for microbes. The sequential works have observed that there exists a significant
mutual influence between microbes and their host. It is surprising that except for
conventional infectious diseases, a wide range of noninfectious diseases is closely
associated with microbes, such as cancer, obesity [2], diabetes, kidney stones and
systemic inflammatory response syndrome. On the one side, the tremendous amount of
microbiome genes and their products can lead a diverse range of biological activities,
which serve as a physiological complement in their host body in a wide range,
involving metabolic capabilities, pathogens, immune system, and gastrointestinal
development [3]. On the other side, the microbes can be greatly influenced by their
dynamic habitat in the human body, which undergoes frequent changes caused by
diverse environmental variables, such as season, host diet, smoking, hygiene and use of
antibiotics. Thus, this mutual association between the host and its microbiota can
further modify transcriptomic, proteomic and metabolic profiles of the human host.
However, the identification of microbe-noninfectious disease associations (MDAs)
requires time-consuming and costly experiments and always bears the limitation of
microbe cultivation. Even worse, many bacteria cannot be cultivated at all by current
culturing bio-techniques. Fortunately, the number of MDAs found in both experiments
and clinic is growing. For example, Ma et al. published the first MDA database, Human
Microbe-Disease Association Database (HMDAD) recently, by collecting a large
number of MDAs from previously published literature [4]. The growing number of
MDAs enables us to perform a systematic analysis, discovery and understanding on the
mechanism of microbe-related non-infectious diseases in a new insight. As one of the
most important steps to achieve that goal, the discovery or prediction of potential
MDAs provides an approach to understand the mechanism of non-infectious disease



formation and development and develop novel methods for disease diagnosis and
therapy. As the promising complement of experiment-based approaches, computational
approaches, especially machine learning-based approaches, are able to predict MDA
candidates among a large number of microbe-disease pairs. They cannot only reduce
the cost and time of relevant experiments, but also output the candidates, of which even
though the involving microbes cannot cultured. Nevertheless, a few of efforts have
been made to develop computational models for MDA prediction on a large scale. Very
recently, a pioneering work constructing an MDA network based on HMDAD
develops an approach KATZHMDA for predicting potential MDAs [5]. KATZHMDA
regards the prediction of MDS as link prediction on the constructed MDA network. In
this work, we first model MDA prediction as a problem of matrix completion (Fig. 1),
then propose a new approach based on Binary Matrix Completion (BMCMDA) to
predict potential MDAs. BMCMDA is able to predict new MDAs on a large scale, by
only using known microbe-disease association network. Its performance is evaluated
by both leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-CV) on
HMDAD database, where the whole procedure of 5-CV was repeated 100 times and
both the mean and the standard deviation of predicting performance over 100 rounds of
5-CVs were recorded. Finally, in terms of Area Under Receiver-Operating Charac-
teristics, BMCMDA achieves 0.9049 in LOOCV and 0.8954 ± 0.0034 in 5CV, while
the state-of-the-art KATZHMDA only achieves 0.8382 and 0.8301 ± 0.0033 respec-
tively. The significantly outperformed prediction achieved by BMCMAD demonstrates
its superiority for predicting microbe-disease associations on a large scale.

Acknowledgments. This work was supported by RGC Collaborative Research Fund
(CRF) of Hong Kong (C1008-16G), National High Technology Research and Devel-
opment Program of China (No. 2015AA016008), the Fundamental Research Funds for
the Central Universities of China (No. 3102015ZY081), the Program of Peak Expe-
rience of NWPU (2016) and partially supported by the National Natural Science
Foundation of China (No. 61473232, 91430111).
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Characterization of Kinase Gene Expression
and Splicing Profile in Prostate Cancer

with RNA-Seq Data

Huijuan Feng1, Tingting Li2, and Xuegong Zhang1,3

1 MOE Key Laboratory of Bioinformatics,
Bioinformatics Division/Center for Synthetic and Systems Biology,
TNLIST and Department of Automation, Tsinghua University,

Beijing 100084, China
fhj11@mails.tsinghua.edu.cn

2 Department of Biomedical Informatics, Institute of Systems Biomedicine,
School of Basic Medical Sciences,

Peking University Health Science Center, Beijing 100191, China
litt@hsc.pku.edu.cn

3 School of Life Sciences, Tsinghua University, Beijing 100084, China
zhangxg@tsinghua.edu.cn

Abstract. Alternative splicing is a ubiquitous post-transcriptional process in
most eukaryotic genes. Aberrant splicing isoforms and abnormal isoform ratios
can contribute to cancer development. Kinase genes are key regulators of many
cellular processes. Multiple kinases are found to be oncogenic. RNA-Seq pro-
vides a powerful technology for genome-wide study of alternative splicing. But
this potential has not been fully demonstrated on cancers yet. We characterized
the transcriptome profile of prostate cancer using RNA-Seq data on both dif-
ferential expression and differential splicing, with an emphasis on kinase genes
and their splicing variations. We identified distinct gene groups from differential
expression and splicing analysis, which suggested that alternative splicing adds
another level to gene regulation in cancer. Enriched GO terms of differentially
expressed and spliced kinase genes were found to play different roles in regu-
lation of cellular metabolism. Function analysis showed that differentially
spliced exons of these genes are significantly enriched in protein kinase
domains. Among them, we found that gene CDK5 has isoform switching
between prostate cancer and benign tissues, which may affect cancer develop-
ment by changing androgen receptor (AR) phosphorylation. The observation
was validated in another RNA-Seq dataset of prostate cancer cell lines. Our
work brings new understanding to the role of alternatively spliced kinases in
prostate cancer and demonstrates the use of RNA-Seq data in studying alter-
native splicing in cancer.

Keywords: Prostate cancer � Alternative splicing � Kinase � CDK5 � Isoform
switching



Identifying Conserved Protein Complexes
Across Multiple Species via Network

Alignment

Bo Song1, Jianliang Gao1,2, Xiaohua Hu1, Yu Sheng2,
and Jianxin Wang2

1 College of Computing and Informatics, Drexel University, Philadelphia, USA
2 School of Information Science and Engineering,

Central South University, Changsha, China
gaojianliang@csu.edu.cn

A protein complex is a bimolecular that contains a number of proteins interacting with
each other to perform different cellular functions [1]. The identification of protein
complexes in a protein-protein interaction (PPI) network [2] can, therefore, lead to a
better understanding of the roles of such a network in different cellular systems. The
protein complex identification problem has received a lot of attentions, and a consid-
erable number of techniques have been proposed to address such problem. By repre-
senting a PPI network as a graph [3], whose vertices represent proteins and edges as
interactions between proteins, these algorithms are able to identify clusters in single
PPI network based on different graph properties [4]. For example, an uncertain graph
model based method is proposed to detect protein complex from a PPI network [5].
However, they focused on finding protein complexes in a single PPI network, and
finding conserved protein complexes from multiple PPI networks still remain
challenging.

In this paper, we identify the problem of finding conserved protein complexes via
aligning multiple PPI networks. In this way, the knowledge of protein complexes in
well-studied species can be extended to that of poor-studied species. Then, we propose
an efficient method to find conserved protein complexes from multiple PPI networks.
By taking the feature of subnetwork connectivity into consideration, the proposed
method improves the coverage significantly without compromising of the consistency
in the aligned results.

Given the multiple PPI networks ðG1;G2; . . .;GnÞ and target protein complex M0

from the target PPI network Gt, the alignment process mainly includes:
(1) Generate initial candidate pools. Only those proteins that have links with given

protein complex can be selected as candidate proteins since links represent the bio-
logical similarity between proteins across PPI networks. For each aligned network Gi,
1� i� n, we construct a pool for a given protein complex M0, where M0 2 Gt. Every
vertex v 2 Gi is put into the pool of Gi if it has link with any vertex in M0. Then, the
initial subnetworks M are selected randomly from the pools.

(2) Optimal determination by simulated annealing. Simulated annealing process
adopts iteration method for global optimal solution. In each loop, a protein from the
candidate pool is chosen randomly to be determined as aligned protein in the



corresponding PPI network. There are two kinds of proteins that are possible to be
moved out from the current alignment solution. The first kind is the protein whose
score is the lowest in the current solution. The other kind is the protein whose corre-
sponding vertex in the current subnetwork is not connected with other vertices, i.e., its
degree is zero. If the new candidate solution achieves higher score, it will take place the
previous solution. If not, it still has chance to replace the prior solution with a prob-

ability of ðrandð0; 1Þ\e
DU
Ti Þ, where DU is the amount of change score, Ti is the tem-

perature of simulated annealing. Finally, the algorithm returns the best solution as the
alignment of protein complexes M ¼ fM1;M2; . . .;Mng. Overall, we utilize both the
biological similarity between proteins and the topological structure to assign scores on
subnetworks for simulated annealing process. Formally, given a protein complex of
target network M0�Gt, its match result fM1;M2; . . .;Mng in aligned networks, where
Mk�Gk, is assigned a real-valued score U:

U ¼
X

k2f1;...;ng

X
vj2VMk

a � dbioðvjÞþ ð1� aÞ � dtopoðvjÞ
� � ð1Þ

where n is the number of PPI networks, VMk is the set of proteins in Mk , a is a
coefficient to trade off biological and topological scores, dbio and dtopo are the biological
and topological scores respectively. The biological score of a protein consists of: (1) the
number of links with the subnetwork M0, (2) the number of links with the subnetwork
Mh, and (3) the number of threads among these three subnetworks which contain the
current protein. The topological score of a vertex consists of (1) the degree of current
vertex; (2) the size of the maximal component that includes the current vertex. As the
same with biological score, we adopt a transform techniques by multiplying a
coefficient.
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Constructing an Integrative MicroRNA eQTL
Network on Ovarian Cancer: A Label

Propagation Approach Utilizing
Multiple Networks
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Abstract. Expression quantitative trait loci (eQTL) network construction has
been an important task in understanding functional relationships in genomics. In
this paper, we construct an integrative microRNA eQTL network based on a
label propagation framework using TCGA ovarian cancer data. Label propa-
gation is a robust semi-supervised learning algorithm capable of handling
multiple heterogeneous networks reflecting different types of genetic interac-
tions. Elucidation of the interactions involved in multiple networks provide
more insight in the dynamics of cancer progression.

Keywords: microRNAs eQTLs � Regulatory networks � Protein protein inter-
action networks � Network expansion � Label propagation � Ovarian cancer

1 Introduction

Ovarian cancer is the fifth most deadliest cancer among cancer deaths and is respon-
sible for over five percent of cancer deaths in women [1]. MicroRNAs (miRNAs) are
small non-coding RNAs that are approximately 22 nucleotides in length and contribute
the progression of ovarian cancer through various functional roles such as cell differ-
entiation, apoptosis and tumoriogenesis. Here, we propose a robust semi-supervised
learning approach to model the complex relationships between miRNAs, eQTLs and
their regulated genes. Expression quantitative trait loci (eQTLs) are genomic regions
that can influence gene expression locally or in a distant manner. Thus, we conduct
miRNA eQTL analysis to assess the effect of miRNAs on gene expression [2–5].

2 Methods

We downloaded miRNA and gene expression data from TCGA [6], InWeb network
[7], a gene regulatory network from RegNetwork database [8] consisting of experi-
mentally verified targets. We conducted eQTL analysis between miRNAs and gene
expression and discovering correlations between miRNAs as well as correlations



between genes Lastly, we use our eQTL genes as seed nodes and expand our network
with two additional networks, the Inweb and RegNetwork using a label propagation
framework.

3 Results

We generated a multi-layered eQTL network including miRNA eQTLs, miRNA cor-
relations, gene correlations, Protein-protein interactions and a gene regulatory network.
This integrative network allowed us to capture many facets of gene regulation in ovarian
cancer. In the integrated network we have 174 miRNAs and 2,180 genes. These miR-
NAs and genes are connected through 803 regulatory edges, 1313 protein-protein edges,
9 correlated miRNAs, 18 correlated gene edges and a total of 855 miRNA eQTL edges.

4 Conclusion

We created an integrated miRNA eQTL network utilizing multiple networks. Our
integrated network included a miRNA eQTL network, a protein-protein interaction
network (InWeb), a gene regulatory network(RegNetwork), and correlation networks
on miRNAs and genes respectively. A single miRNA or target usually does not impact
the phenotypic outcome individually. To exploit the large scope of regulation, we
applied a network based learning approach to integrate multiple networks containing
multiple regulatory elements in ovarian cancer.
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Clustering scRNA-Seq Data Using TF-IDF
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Abstract. Single cell RNA sequencing (scRNA-Seq) is critical for under-
standing cellular heterogeneity and identification of novel cell types. We present
novel computational approaches for clustering scRNA-seq data based on the
TF-IDF transformation.

Introduction

In this abstract, we propose several computational approaches for clustering
scRNA-Seq data based on the Term Frequency - Inverse Document Frequency
(TF-IDF) transformation that has been successfully used in the field of text analysis.
Empirical evaluation on simulated cell mixtures with different levels of complexity
suggests that the TF-IDF methods consistently outperform existing scRNA-Seq
clustering methods.

Methods

We compared eight scRNA-Seq methods, including three existing methods and five
proposed methods based on the TF-IDF transformation. All methods take as input the
raw Unique Molecular Identifier (UMI) counts generated using 10X Genomics’ Cell-
Ranger pipeline [4]. Existing scRNA-Seq clustering methods are: the recommended
workflow for the Seurat package [3], the Expectation-Maximization (EM) algorithm
implemented in the mclust package [2], and a K-means clustering approach similar to
that implemented in the CellRanger pipeline distributed by 10X Genomics [1]. Two
types of TF-IDF based methods were explored. In first type of methods, TF-IDF scores
were used to select a subset of the most informative genes that were then clustered with
EM and spherical K-means. In the second type all genes were used for clustering, but
the expression data was first binarized using a TF-IDF based cutoff. The binary
expression level signatures were clustered using: hierarchical clustering with Jaccard
distance, and hierarchical clustering with cosine distance with or without an additional
cluster aggregation step.

Experimental Setup and Results

To assess accuracy we used mixtures of real scRNA-Seq profiles generated from FACS
sorted cells [4]. We selected five cell types: CD8+ cytotoxic T cells (abbreviated as C),



CD4+/CD45RO+ memory T cells (M), CD4+/CD25+ regulatory T cells (R), CD4+
helper T cells (H), and CD19+ B cells (B). We generated mixtures comprised of 5,000
cells sampled from all five cell types in equal proportions. Box-plots of classification
accuracy achieved by the eight compared methods are shown in Fig. 1. TF-IDF based
hierarchical clustering with cosine distance and cluster aggregation performs better
than all other methods, with a mean accuracy of 0.7418, followed by the TF-IDF based
spherical K-means, with a mean accuracy of 0.7125.

Acknowledgements. This work was partially supported by NSF Award 1564936 and a
UConn Academic Vision Program Grant.
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Fig. 1. Accuracy for the B:R:H:M:C datasets with 1:1:1:1:1 ratio.
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Circular RNA (or circRNA) is a type of RNA which forms a covalently closed con-
tinuous loop. It is now believed that circRNA plays important biological roles in some
diseases. Within the past several years, several experimental methods, such as
RNase R, have been developed to enrich circRNA while degrading linear RNA. Some
useful software tools for circRNA detection have been developed as well. However,
these tools may miss many circRNA. Also, existing tools are slow for large data
because those tools often depend on reads mapping.

In this paper, we present a new computational approach, named CircMarker, based
on k-mers rather than reads mapping for circular RNA detection as shown in Fig. 1.
The algorithm has two parts, including reference genome proprocessing and annota-
tions (part 1) and circular RNA detection (part 2).

In part 1, CircMarker creates a table for storing the k-mers within the reference
genome that are near the exon boundaries as specified by the annotations. The k-mer
table is designed to be space-efficient. We only record five types of information for
each k-mer, including chromosome index, gene index, transcript index, exon index and
part tag. The “part tag” specifies whether a k-mer comes from the head part or the tail
part of the exon.

Part 2 is divided into five steps. (1) Sequence reads processing: examine k-mers
contained in a read and search for a match in the k-mer table. (2) Filtering by hit
number: short exons should be fully covered by the reads more than one time.
Otherwise, the reads should be within both boundaries of the hit exons. (3) Filtering by
part tags: we collect part tags from start to end, and condense the tags which belong to
the same exons based on the number of hits. (4) Calling circRNA: both self-circular
case (single exon) and regular-circular case (multiple exon) are considered. In the
regular-circular case, we consider if the exon index increases/decreases monotonically
and identify the circular joint junction at the position of the first deceasing/increasing
position. (5) Refining circular RNA candidates (optional): only the candidates with
support number smaller than a predefined threshold will be viewed as correct one.

We use both simulated and real data for evaluation. We compared CircMarker with
three other tools, including CIRI [1], Find circ [3], and CIRCexplorer [4] in terms
of the number of called circular RNA, accuracy, consensus-based sensitivity, bias and
running time. The results are shown in Fig. 1.



– Simulated Data. The simulated data is generated by the simulation script released
by CIRI. The reference genome is chromosome 1 in human genome (GRCh37). The
annotation file is version 18 (Ensembl 73). Two different cases are simulated,
including 10X circRNA & 100X linear RNA, and 50X for both circular and linear
RNA.

– Real data: RNase R treated reads with public database. We choose CircBase [2]
as the standard circRNA database of homo sapiens. The reference genome and
annotation file come from homo sapiens GRCm37 version 75. The RNA-Seq reads
are from SRR901967.

– Real Data: RNase R treated/untreated Reads. The reference genome and
annotation file are from Mus Musculus GRCm38 Release79. RNase R
treated/untreated reads are from SRR2219951 and SRR2185851 respectively.

The results show that CircMarker runs much faster and can find more circular RNA
than other tools. In addition, CircMarker has higher consensus-based sensitivity and
high accuracy/reliable ratio compared with others. Moreover, the circRNAs called by
CircMarker often contain most circRNAs called by other tools in the real data we
tested. This implies that CircMarker has low bias. CircMarker can be downloaded at:
https://github.com/lxwgcool/CircMarker.
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Fig. 1. High Level Approach and Results: (1) High level approach: a fast check for finding circRNA
relevant reads, scanning k-mer sequentially from the beginning to the end for each read, and calling
circRNA using various criteria and filters. (2) Results of real data based on RNase R treated/untreated
reads. (3) Results of simulated data. (4) Results of real data based on RNase R treated reads with public
database.
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Abstract. Transcriptomic sequencing (RNA-seq) related applications allow for
rapid explorations due to their high-throughput and relatively fast experimental
capabilities, providing unprecedented progress in gene functional annotation,
gene regulation analysis, and environmental factor verification. However, with
increasing amounts of sequenced reads and reference model species, the
selection of appropriate reference species for gene annotation has become a new
challenge. In this study, we proposed a combinatorial approach for finding the
most effective reference model species through taxonomic associations and
ultra-conserved orthologous (UCO) gene comparisons among species. An online
system of multiple species selection (MSS) for RNA-seq differential expression
analysis was developed and evaluated. In the designed system, a set of 291
reference model eukaryotic species with comprehensive genomic annotations
were selected from the RefSeq, KEGG, and UniProt databases. Using the pro-
posed MSS pipeline, gene ontology and biological pathway enrichment analysis
can be efficiently and effectively achieved, especially in the case of transcrip-
tomic analysis of non-model organisms. Regarding the experimental results of
selecting appropriate reference model species by analyzing taxonomic rela-
tionships and comparing UCOs, accurate evolutionary distances are calculated
using sequence alignment and applied to compensate for indistinguishable
characteristics of the taxonomic tree. Here, we performed RNA-seq experiments
in four non-model species, and the results confirmed that evolutionary distances
between species could be ascertained using UCO gene sets. We also performed
enrichment analysis of the identified differentially expressed genes using Gene
Ontology (GO) and KEGG biological pathway approaches. For example,
though GO analysis of Corbicula fluminea under hypoxic conditions, we
identified additional significant GO terms, including the Notch signaling path-
way, cytoskeletal protein binding, and hydrolase activity. These additionally
identified GO terms have been found to be associated with hypoxia in previous
reported studies. For KEGG biological pathway analysis, additional significant



biological pathways could be also identified, such as the CAM pathway, by
increasing the number of appropriate reference species. Therefore, pertinent
selection of multiple reference species for transcriptomic analysis can reduce
required computational hours and unnecessary searches against the
non-redundant gene dataset. In addition, selecting multiple appropriate species
as reference model species helps to reduce missing crucial annotation infor-
mation, allowing for more comprehensive results than those obtained with a
single model reference species.

Keywords: RNA-seq � Reference model species � Differential expression
analysis � Ultra-conserved orthologous genes � Gene ontology � Biological
pathway
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The advent of Next Generation Sequencing (NGS) methods has popularized
sequencing in various fields of research such as medicine, pharmacy, food
technology and agriculture. Aside from DNA sequencing, NGS also enabled
RNA sequencing using sequencing-by-synthesis approach. While 3rd genera-
tion sequencing technologies are rapidly taking over their share of DNA
sequencing market, due to the fact that read length is less important for RNA
data analysis, RNA sequencing is still predominately done using NGS. How-
ever, it seems likely that at least some aspects of RNA analysis would benefit
from increased read length.

Of the currently available RNA-seq aligners BBMap [1] claims to support
both PacBio and ONT data, while PacBio GitHub pages offer instructions for
working with STAR [2] and GMap [3]. Several available DNA aligners, such as
BWA-MEM [4] have been proven to work well with PacBio and ONT data, but
they do not offer support for mapping RNA reads to a transcriptome.

In this paper we present an updated version of GraphMap [5] that uses given
annotations to generate a transcriptome, and then maps RNA reads to the
generated transcriptome using a DNA mapping algorithm. Afterwards, the
mapping results are translated back into the genome coordinates. Since initial
alignments are calculated for the transcriptome, there is no need to consider
spliced alignments and alternative gene splicing. In this way, we can leverage
the mapping quality of a proven DNA aligner designed for long and erroneous
reads without the need for additional computation to determine exon junctions.

We have compared the new version of GraphMap to three RNA aligners
claiming support for 3rd generation sequencing data: BBMap, GMap and
STAR. All aligners were tested on three synthetic datasets simulated using a
PacBio DNA simulator PBSIM [6]. Since PBSIM is a DNA simulator, to
simulate RNA reads it was applied to a transcriptome generated from gene
annotations. PBSIM model for CLR reads was used for simulations, and
parameters were set for PacBio ROI (Reads of Insert). Alignment results were
evaluated by comparing them to MAF files containing information on read
origins generated by PBSIM as a part of simulation.

This work has been supported in part by Croatian Science Foundation under the project
UIP-11-2013-7353 “Algorithms for Genome Sequence Analysis”.



The results displayed in Table 1 show that GraphMap outperforms other
aligners by all criteria successfully aligning a read to all exons from its origin
(hit all) for over 80% of reads and successfully aligning a read to at least one
exon of its origin (hit one) for over 90% of the reads. It surpasses the results of
other aligners by 5–10% on all datasets.

The research presented in this paper demonstrates that the idea to use an
appropriate DNA aligner and gene annotations to map RNA reads to a tran-
scriptome and then to transform the mapping results back to genome coordinates
is very feasible. Updated GraphMap clearly outperforms other tested splice
aware aligners on all datasets. The results suggest that by implementing splice
aware mapping logic into a DNA mapper which works well with third gener-
ation sequencing data could also work well for de novo RNA spliced mapping.

Keywords: RNA � Transcriptome � Gene annotations � RNA alignment
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Table 1. Aligner evaluation results. The table shows the percentage of reads for
which alignment overlaps all exons from read origin (hit all) and the percentage
of reads for which alignment overlaps at least one exon from read origin (hit
one).

Aligner STAR BBMap GMap Graphmap

Dataset Hit all Hit
one

Hit all Hit
one

Hit all Hit
one

Hit all Hit
one

1 46.7% 47.1% 87.0% 88.1% 84.7% 85.7% 93.5% 94.1%

2 32.1% 35.2% 54.4% 78.4% 73.0% 85.4% 82.0% 94.1%

3 33.1% 35.7% 26.8% 61.2% 70.0% 83.8% 85.7% 94.5%

RNA Transcriptome Mapping with GraphMap XXXI

http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/bti310
http://dx.doi.org/10.1038/ncomms11307
http://dx.doi.org/10.1093/bioinformatics/bts649


A Graph-Based Approach for Proteoform
Identification and Quantification Using
Homogeneous Multiplexed Top-Down

Tandem Mass Spectra

Kaiyuan Zhu1 and Xiaowen Liu2,3

1 School of Informatics and Computing, Indiana University Bloomington,
Bloomington, USA

2 School of Informatics and Computing,
Indiana University-Purdue University Indianapolis, Indianapolis, USA

xwliu@iupui.edu
3 Center for Computational Biology and Bioinformatics,
Indiana University School of Medicine, Indianapolis, USA

Although protein separation techniques have been significantly advanced, it is still a
challenging problem to separate proteoforms with similar weights and similar chemical
properties, especially those with the same amino acid sequence, but different
post-translational modification (PTM) patterns, in top-down mass spectrometry [1].
Tandem mass spectrometry analysis of two or more proteoforms that are not separated
by protein separation methods and have similar molecular masses results in a multi-
plexed tandem mass (MTM) spectrum, which is a superimposing of the tandem mass
spectra of the proteoforms [4]. There are two types of MTM spectra: heterogeneous
multiplexed tandem mass (HetMTM) spectra are generated from proteoforms of two or
more different proteins; homogeneous multiplexed tandem mass (HomMTM) spectra
from proteoforms of the same protein with different PTM patterns.

We focus on the study of the identification and quantification of modified prote-
oforms using HomMTM spectra, in which purified proteins are often analyzed and the
target protein is often known. Let P be a unmodified target protein sequence and S a
HomMTM spectrum generated from k modified proteoforms of P. Denote Q as the set
of modified proteoforms of P that match the precursor mass of S. The HomMTM
spectral identification problem is to find k proteoforms in Q and their relative abun-
dances such that the peaks (their m=z values and intensities) in spectrum S are best
explained [1].

We formulate the HomMTM spectral identification problem as the minimum error
k-splittable flow (MEkSF) problem on graphs with vertex capacities, in which each
path corresponds to a modified proteoform and the flow on the path corresponds to the
relative abundance of the proteoform. The goal is to find a k-splittable flow F with a
fixed flow value f (F can be decomposed to k or less than k paths) from the source to
the sink in a given graph G such that the sum of the errors on the vertices is minimized.

We prove that the MEkSF problem is NP-hard when k is part of the input and
propose a polynomial time algorithm for the problem on layered directed graphs when
k is a constant. The algorithm consists of two steps: for a given number k, the packing



step determines a set of flow value candidates for k flows, and the routing step finds out
the paths for the k flow values that minimize the sum of errors on vertices. When k ¼ 2,
we prove that the number of flow value candidates is limited by jV j, which is the
number of vertices in the graph, and propose an efficient dynamic programming
algorithm for solving the routing problem. The total time complexity of the algorithm is
Oðl4hjV jÞ, where l is the largest number of vertices in a layer and h is the number of
layers in the graph.

We tested the algorithm on a data set of the histone H4 protein with 3; 254
top-down tandem mass spectra. The mass spectra were deconvoluted using
MS-Deconv [3]. After searching the deconvoluted spectra against the histone H4
sequence, the proposed method identified 625 spectra with at least 10 matched frag-
ment ions, of which 441 were matched to single proteoforms and 184 matched to
proteoform pairs. For each identified proteoform pair, we computed the difference
between the number of fragment ions matched to the pair and that matched to the
higher abundance proteoform only. Compared with the higher abundance proteoform,
the proteoform pair increased the number of matched fragment ions by at least 10 for
39 of the 184 proteoform pairs. In addition, we computed the difference between the
sum of peak intensities explained by the pair and that by the higher abundance pro-
teoform only. Proteoform pairs increased explained peak intensities by at least 20% for
26 spectra compared with single proteoforms.

We also compared the proposed method with MS-Align-E [2] on the histone H4
data set. MS-Align-E identified from the data set 1; 037 spectra, of which 184 were
matched to a proteoform pair by the proposed method. For 43 of the 184 spectra, the
proposed method increased the number of matched fragment ions by at least 10
compared with MS-Align-E.
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Abstract. In shotgun proteomics, the identification of proteins is a two-stage
process: peptide identification and protein inference [1]. In peptide identifica-
tion, experimental MS/MS spectra are searched against a sequence database to
obtain a set of peptide-spectrum matches (PSMs) [2–4]. In protein inference,
individual PSMs are assembled to infer the identity of proteins present in the
sample [5–7]. Evaluating the statistical significance of the protein identification
result is critical to the success of proteomics studies. Controlling the false dis-
covery rate (FDR) is the most common method for assuring the overall quality
of the set of identifications. However, the problem of accurate assessment of
statistical significance of protein identifications remains an open question [8, 9].
Existing FDR estimation methods either rely on specific assumptions or rely on
the two-stage calculation process of first estimating the error rates at the
peptide-level, and then combining them somehow at the protein-level. We
propose to estimate the FDR in a non-parametric way with less assumptions and
to avoid the two-stage calculation process.

We propose a new protein-level FDR estimation framework. The frame-
work contains two major components: the Permutation+BH (Benjamini–
Hochberg) FDR estimation method and the logistic regression-based null
inference method. In Permutation+BH, the null distribution of a sample is
generated by searching data against a large number of permuted random protein
database and therefore does not rely on specific assumptions. Then, p-values of
proteins are calculated from the null distribution and the BH procedure is
applied to the p-values to achieve the relationship of the FDR and the number of
protein identifications. The Permutation+BH method generates the null distri-
bution by the permutation method, which is inefficient for online identification.
The logistic regression model is proposed to infer the null distribution of a new
sample based on existing null distributions obtained from the Permutation+BH
method. In our experiment based on three public available datasets, our Per-
mutation+BH method achieves consistently better performance than MAYU,
which is chosen as the benchmark FDR calculation method for this study. The
null distribution inference result shows that the logistic regression model
achieves a reasonable result both in the shape of the null distribution and the
corresponding FDR estimation result.
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Many computational methods have been developed to predict PPIs, but most of them
are intended for PPIs within a same species rather than for PPIs across different species.
Motivated by the recent increase in data of virus-host PPIs, a few computational
methods have been developed to predict virus-host PPIs, but most of them cannot be
applied to new viruses or new hosts that have no known PPIs to the methods. A recent
SVM model called DeNovo [1] is perhaps the only one that can predict PPIs of new
viruses with a shared host. Protein sequence similarity between different types of
viruses or hosts is relatively low, so predicting virus-host PPIs for new viruses or hosts
is quite challenging.

We obtained all known PPIs between virus and host from four databases, APID,
IntAct, Mentha and UniProt, which use same protein identifiers. As of December 2016,
there were a total of 12,157 PPIs between 29 hosts and 332 viruses. For negative data,
we obtained protein sequences of major hosts (human, non-human animal, plant, and
bacteria) from UniProt, and removed those with a sequence similarity higher than 80%
to any positive data.

We constructed several datasets to examine the applicability of our prediction
method to new viruses and hosts.

1. Training (TR) and test (TS) sets for assessing the applicability to new viruses
TR1: 10,955 PPIs between human and any virus except H1N1
TR2: 11,341 PPIs between human and any virus except Ebola virus
TR3: 11,617 PPIs between any host and any virus except H1N1
TR4: 12,007 PPIs between any host and any virus except Ebola virus
TS1: 381 PPIs between human and H1N1 virus
TS2: 150 PPIs between human and Ebola virus

2. Training (TR) and test (TS) sets for assessing the applicability to new hosts
TR5: 11,491 PPIs between human and any virus
TS5.1: 488 PPIs between non-human animal and any virus
TS5.2: 17 PPIs between plant and any virus
TS5.3: 143 PPIs between bacteria and any virus

We built a support vector machine (SVM) model using LIBSVM with the radial
basis function as a kernel. The SVM model uses several features of protein sequences:
the relative frequency of amino acid triplets (RFAT), frequency difference of amino



acid triplets (FDAT), amino acid composition (AC), and transition, distribution and
composition of amino acid groups. The first three features (RFAT, FDAT and AC) are
improved features developed in our previous study of single host-virus PPIs [2], and
the last three features (transition, distribution and composition) were developed by You
et al. [3] for PPIs in a single species.

The SVM model was evaluated in several ways: 10-fold cross validation on several
datasets with different ratios of positive to negative data instances and independent
testing on new viruses and hosts. In the 10-fold cross validation on three datasets of
different ratios of positive to negative data (1:1, 1:2 and 1:3), the best performance
(sensitivity = 85%, specificity = 96%, accuracy = 86%, PPV = 86%, NPV = 85%,
MCC = 0.71, and AUC = 0.93) was observed in the balanced dataset with 1:1 ratio of
positive to negative data. As expected, running the SVM model on unbalanced datasets
resulted in lower performances than running it on the balanced dataset.

The model was tested on new viruses using 2 independent datasets of PPIs of H1N1
and Ebola virus, which were not used in training the model. Proteins of H1N1 virus
have an average sequence similarity of 9.6% to those of other viruses, and proteins of
Ebola virus have a sequence similarity of 10.9% to other viruses. Despite such a low
sequence similarity of proteins in test datasets to those in training datasets, the model
showed a relatively high performance in independent testing (in datasets TR1-TS1,
TR2-TS2, TR3-TS1 and TR4-TS2, it showed accuracies of 78%, 78%, 77% and 82%,
respectively).

Likewise, we tested the model on new hosts. A model trained with human-virus
PPIs (TR5) was tested on PPIs of viruses with non-human, which include non-human
animal (TS5.1), plant (TS5.2) and bacteria (TS5.3). The average sequence similarity of
human proteins to non-human animal, plant, and bacteria is lower than 10.7%, but the
model showed accuracies of 66%, 68% and 67% in test sets of non-human animal,
plant, and bacteria, respectively.

In this study, we developed a general method for predicting PPIs between any virus
and any host. In independent testing of the model on new viruses and hosts, it showed a
high performance comparable to the best performance of other methods for PPIs
between a specific virus and its host. This method will be useful in finding potential
PPIs of a new virus or host, for which little information is available. The program and
data are available at http://bclab.inha.ac.kr/VirusHostPPI.
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1 Introduction

In industrial agricultural breeding, double haploid based generation of inbred maize
lines has accelerated the time to market of commercial seed varieties [5]. Traditionally,
haploid corn seeds are manually discriminated from the diploid seeds using visual
indications of the molecular marker system that is selectively expressed in the embryo
region of the diploid seeds. In the industrial scale, there have been two notable
automation efforts based on the R1-nj marker system [2, 4]. However due to the
extensive phenotypic variation of the marker expression [1] and heterogeneity arising
from image acquisition in the field, developing computer vision methods to classify
seed images is challenging, and approaches robust in recovering haploids are lacking.

2 Results and Discussion

Convolutional neural networks (CNN) have been used successfully for traffic sign
recognition, face verification and with autonomous driving vehicles [3]. In this work,
we investigate, to our knowledge for the first time, the application of a convolutional
network to sort maize haploid seeds from diploids using thousands of images of corn
seeds (see Fig. 1). We obtained 4731 corn seed RGB images consisting of 952 haploid
and 3779 diploid seeds from several different proprietary maize inbred lines. We train
our network using the image dataset that was randomly split into 4021 training (809
haploid and 3212 diploid seeds) and 710 test (143 haploids and 567 diploids) images
with 20% haploids in both sets. The training images were further divided into 5-folds to
assess its performance under random data splits on unseen data.

We demonstrate deep convolutional networks perform significantly better as
compared to several other classifiers that use seed texture, color, and shape features (see
Table 1). On the test data set, our network achieved the highest classification accuracy
(0.968) among all methods used in our experiments. We looked into the
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misclassifications of our method and the best performing comparative method
(SVM) to gain insight into its ability to classify haploid and diploid categories sepa-
rately in the test dataset. Out of the 567 diploids and 143 haploids in the test dataset,
CNN misclassifies 12 haploids as diploids, and 11 diploids as haploids. However, the
SVM has a higher tendency to classify haploids as diploids. It classifies 66 haploids as
diploids (and 22 diploids as haploids), possibly reflecting dataset class distribution.

Visualizations of the neuronal activations in the convolutional layers indicate the
network derives features that are discriminative of embryo regions between haploids
and diploids (results not shown here). With the advent of technological advances in
agriculture, convolutional networks and other deep learning techniques hold promise
for several applications within the agricultural industry.
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Fig. 1. Convolutional neural network architecture schematic for haploid seed sorting. Input images of
the corn seeds are convolved with 16 filter kernels in each convolutional layer, followed by two fully
connected layers and an output layer.

Table 1. Classification accuracies comparing CNN and other classifiers using texture features
(values within brackets indicate results using all features; CV:Cross Validation)

CNN SVM Random forest Logistic regression

CV 0.961 0.857 (0.836) 0.840 (0.823) 0.749 (0.777)
Train 1.000 0.911 (0.994) 1.000 (0.997) 0.751 (0.786)
Test 0.968 0.876 (0.839) 0.845 (0.824) 0.775 (0.772)
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The Human Phenotype Ontology (HPO) was constructed by Robinson et al. in 2008,
which is one of the most widely used bioinformatics resources [7]. The unified and
structured vocabulary of HPO helps to display the phenotypic characteristics, con-
structs a directly acyclic graph (DAG), and provides a convenient way to study the
phenotype similarity.

In recent years, various HPO-based semantic similarity measurements have been
proposed to measure the phenotype similarity. Most of these methods are based on the
Information Content (IC), including Resnik [6], Schlicker measure [8] and Phenomizer
[3]. Besides, PhenomeNet [2] and OWLSim [9] are further developed to calculate two
phenotype sets similarity based on simGIC [5]. HPOSim [1] provides an open source
package to measure phenotype similarity, which integrates seven widely used
HPO-based similarity measurements.

Most of the aforesaid methods are revised based on GO-based similarity mea-
surements, which mainly consider the annotations and topological informations of
phenotype terms and neglect the unique features of HPO. Therefore, we proposed a
novel method, termed as PhenoSim, to calculate the phenotype similarity [4]. Our
method consists of denoising model, which model the noises in the patient phenotype
data set, and a novel path-constrained Information Content similarity measurement.
The whole process of PhenoSim can be grouped into three steps: constructing the
phenotype network, reducing noise data in patients’ phenotype set using PageRank
algorithm, and calculating the phenotype set similarities by a novel path-constrained
Information Content.

Furthermore, the existing tools of measuring phenotype similarity mainly have two
drawbacks: Firstly, existing tools ignores the importance of phenotype text, which are
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often used to describe the symptoms of patients, and none of them allow phenotype text
as input. Secondly, none of existing tools supplies interface to visualize the similarity
results instead of listing the final similarity value directly. Thus, it is necessary to
develop an easy-to-used web application to allow researchers to type in phenotype text
and visualize the final phenotype similarity results.

In this paper, we present a novel web tool termed as PhenoSimWeb, which is
available at 120.77.47.2:8080, to measure HPO-based phenotype similarities and to
visualize the result with an easy-to-use graphical interface. Comparing with the existing
tools, PhenoSimWeb has the following advantages:

– PhenoSimWeb offers researchers a novel phenotype semantic similarity measure-
ment which considers the unique features of HPO.

– PhenoSimWeb allows researchers to type in the phenotype text that describes
phenotype features.

– PhenoSimWeb provides an easy-to-use graphical interface to visualize phenotype
semantic similarity association.
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A repeat is a segment of DNA that appears multiple times in the genome in an identical
or near-identical form. There are many types of repeats such as transposable elements
(TEs), tandem repeats, satellite repeats, and simple repeats. Among them, TEs are
perhaps the most well-known one. Even though many computational approaches have
been developed for constructing consensus repeats, it is still useful to construct repeats
directly from reads for complex genomes. Repeats usually have many copies in the
genome. For low divergent and high copy number repeats, it is highly likely that
k-mers generated from their copies will be identical at the same position. Thus, repeats
can be assembled from these high frequent k-mers. RepARK [3] and the original
REPdenovo [1] are developed based on this observation. The original REPdenovo
outperforms RepARK because it conducts a second-round assembly: it attempts to
assemble short contigs in order to form longer consensus repeats based on the reliable
prefix-suffix matches of contigs. However, REPdenovo performs less well for highly
divergent or low copy number repeats. One reason is that k-mers originated from high
divergent regions of a long repeat usually have low frequency, and thus will be filtered
out. This leads to fragmented assembled repeats. Another reason is that variations make
it difficult to merge the fragmented contigs to form complete repeats. In Fig. 1 (A) and
(B), we show two examples to illustrate the situation described above.

In this paper, we propose an improved method (with pipeline shown in Fig. 1(C))
for reconstructing repeat elements from short reads. Similar to the original REPdenovo,
our new method also finds and assembles these highly frequent k-mers to form con-
sensus repeat sequences. There are two main improvements in the improved REPde-
novo over the original REPdenovo:

– Our new method uses more repeat-related k-mers for repeat assembly, and can
assemble longer consensus repeats. Briefly, with high frequent k-mers used as a
“reference”, low frequent k-mers originated from high divergent regions will be
recruited by a “mapping-based alignment” approach.

– Our new method uses a randomized algorithm to generate more accurate consensus
k-mers. This improves the quality of the assembled repeats.

Compared to the original REPdenovo and RepARK, our new method can construct
more fully assembled repeats in Repbase on both Human and Arabidopsis data,
especially for higher divergent, lower copy number and longer repeats. Figure 1(D)
shows the comparison between the constructed repeats of the two versions in Repbase



on Human data. Figure 1(E) illustrates one case that the improved REPdenovo fully
construct the repeats while the original REPdenovo fails to. We also apply the new
method on Hummingbird data, which has no existing repeat library. Most of the repeats
constructed by our new method for Hummingbird can be fully aligned to PacBio long
reads. Many of these repeats are long. More than half of the Hummingbird repeats are
masked by RepeatMasker, which indicates our assembly works reasonably well.
Moreover, many of the assembled repeats are likely to be novel because there are no
matches in RepBase. Our new approach has been implemented as part of the
REPdenovo software package, which is available for download at https://github.com/
Reedwarbler/REPdenovo.
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Fig. 1. Observations, pipeline of the method, and results of the improved REPdenovo. (A) Obser-
vation one: k-mers from high divergent regions are filtered out and thus form gaps, which leads to
fragmented assembled sequences. (B) Observation two: variations make it difficult to assemble long
contigs. (C) Pipeline of the improved REPdenovo. (D) Comparison between the original and the
improved version of REPdenovo on constructed human repeats in Repbase. (E) One example for
comparing the assembly quality on one repeat between the original and the improved REPdenovo.
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Sorting genomic permutations by rearrangement operations is a classic problem in
studying genome rearrangements. Many tools or algorithms have been proposed for
sorting signed genomic permutations [1, 2]. In fact, given a pair of permutations, there
are often more than one optimal rearrangement scenarios, especially when the rear-
rangement distance between this permutation pair is large. And sometimes, for the same
pair of permutations, the computed rearrangement scenarios using different tools are not
consistent. Hence, how to know whether the calculated scenarios are solid and bio-
logically meaningful becomes an essential task. Up to now, several mechanisms for
genome rearrangements have been reported [3, 4]. Statistics analyzes showed that
breakpoints are often associated with repetitive elements [5, 6]. There was evidence
showing that a reversal can be mediated by a pair of inverted repeats (IRs) [7, 8]. Hence,
whether there exist repeats at the breakpoints of rearrangement events may give us a clue
on whether the calculated rearrangement scenarios are biologically meaningful.

In this paper, we describe a new tool named GRSR for deriving genome rear-
rangement scenarios from multiple unichromosomal genome sequences and checking
whether there are repeats at the breakpoints of each calculated rearrangement event.
The input of the GRSR tool is a set of unichromosomal genome sequences and the
output is pairwise rearrangement scenario which is a series of transpositions, block
interchanges and reversals. Besides, for each calculated rearrangement event, GRSR
checks whether there exist repeats which may mediate this rearrangement event.

The GRSR tool is comprised of four primary steps. Firstly, we use Mugsy [9] to
conduct a multiple sequence alignment of the input genomes and the alignment result is
in an MAF file. Secondly, as transpositions, block interchanges and reversals happen
on sequences which are shared by genomes, we extract the coordinates of core blocks
(shared by all of the input genomes) from the MAF file. Thirdly, we utilize the
coordinates of core blocks to construct synteny blocks using GRIMM [2] and each
input genome will be represented by a signed permutation describing the synteny block
order on its chromosome. Lastly, we implement a novel method to compute the
pairwise rearrangement scenario which is a series of rearrangement events involved in
transforming one genome’s permutation into another. The computed rearrangement



scenarios will only include rearrangement events which happen on a single chromo-
some, such as transpositions, block interchanges and reversals. Given a pair of signed
permutations s and d, the GRSR tool calculate rearrangement scenario from s to d by
merging blocks which are on the same order on s and d, then detecting and removing
obvious (independent) transpositions and block interchanges and finally sorting per-
mutations s and d by reversals using GRIMM. Once getting a rearrangement event, the
GRSR tool will check whether there are repeats at the breakpoints of this event using
BLAST [10]. The GRSR tool writes the rearrangement scenarios and whether there are
repeats at the breakpoints of each rearrangement event into the report.txt file.

We applied the GRSR tool on complete genomes of 28Mycobacterium tuberculosis
strains, 24 Shewanella strains and 2 Pseudomonas aeruginosa strains, respectively.
From the results generated by the GRSR tool, we observed that many reversal events
were flanked by a pair of inverted repeats so that the two ends of the reversal region
remain unchanged before and after the reversal event. We also observed that in other
rearrangement operations such transpositions and block interchanges, there exist repeats
(not necessarily inverted) at the breakpoints, where the ends remained unchanged before
and after the rearrangement operations. In the results for Pseudomonas aeruginosa
strains, we found an example in which the existence of repeats may explain breakpoint
reuse. All the above observations suggest that the conservation of ends could possibly be
a popular phenomenon in many types of genome rearrangement events.
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Introduction: Phylogenetic tree reconciliation is fundamental to understanding how
genes have evolved within and between species. Given a gene tree that depicts how a
set of genes has diverged from one another and a species tree that depicts how a set of
species has speciated, the reconciliation problem proposes a nesting of the gene tree
within the species tree and postulates evolutionary events to account for any observed
incongruence.

However, within eukaryotes, the most popular reconciliation algorithms consider
only a restricted set of evolutionary events, typically modeling only duplications and
losses [1, 2] or only coalescences [3, 4]. Recently, the DLCoal model was proposed to
unify duplications, losses, and coalescences through an intermediate locus tree that
describes how new loci are created and destroyed [5]. Here, the locus tree evolves
within the species tree according to a duplication-loss model, and the gene tree evolves
within the locus tree according to a modified multispecies coalescent model. Two
algorithms exist for reconciliations under this model: DLCoalRecon [5], which infers
the maximum a posteriori reconciliation, and DLCpar [6], which infers a most par-
simonious reconciliation. However, both methods assume that the gene tree is known
and do not account for errors that may occur during gene tree reconstruction.

To address this challenge, we present DLC-Coestimation, a probabilistic inference
method that simultaneously reconstructs the gene tree and reconciles it with the species
tree. Given as input a sequence alignment, a species tree, and model parameters
including the duplication and loss rate, the population size, and the substitution rate,
our algorithm relies on a Bayesian framework to jointly optimize the sequence like-
lihood and the reconciled tree prior. We show how each term in our inference algorithm
corresponds to one component of the underlying generative evolutionary process, and
we propose an efficient algorithm for optimizing the overall probability through an
iterative hill-climbing procedure combined with Monte Carlo integration.

Results: Our experimental evaluation demonstrates that DLC-Coestimation outper-
forms existing approaches in ortholog, duplication, and loss inference.



Using a simulated clade of 12 flies, we show that independent reconstruction of the
gene tree followed by reconciliation substantially degrades inferences compared to
using the true gene tree, even when gene trees are reconstructed with popular
top-performing methods. Interestingly, while DLC-Coestimation outperforms
DLCoalRecon for every simulation setting, it outperforms DLCpar only for data sets
with large amounts of ILS. This finding suggests that our algorithm is better able to
handle data sets with low phylogenetic signal, a problem that will become increasingly
prevalent as we sequence denser clades.

We also assessed DLC-Coestimation performance on a biological data set of 16
fungi. While all reconciliation methods recover a similar percentage of syntenic
orthologs, DLC-Coestimation infers substantially fewer duplications and losses than
DLCoalRecon and DLCpar, suggesting that our algorithm is better able to remove
spurious duplication and loss events that result from ILS. Furthermore, duplications
inferred by DLC-Coestimation are more plausible, with a higher percentage of species
overlap post-duplication.

Conclusion: This work demonstrates the utility of coestimation methods for inferences
under joint phylogenetic and population genomic models. The DLC-Coestimation
software is freely available for download at https://www.cs.hmc.edu/*yjw/software/
dlc-coestimation.
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One of the most fundamental tasks in biology is deciphering the history of life on
Earth. To achieve that goal, an important step in many phylogenomic analyses is the
reconstruction of a tree of ancestor-descendant relationships, a gene tree, for each
family of orthologous genes in a dataset. Such analyses have revealed widespread
discordance between gene trees [6]. Apart from statistical errors, various mechanisms
may lead to incongruences between gene histories, such as hybridization events,
duplications and losses in gene families, incomplete lineage sorting, and most
importantly, horizontal genetic transfers [4, 9, 11].

Horizontal gene transfer (HGT) is the non-vertical transfer of genes between
contemporaneous organisms (as opposed to the standard vertical transmission between
parent and offspring). HGT, which is largely mediated by viruses (bacteriophages),
plasmids, transposons and other mobile elements, is particularly common in prokary-
otes and has been recognized to play an important role in microbial adaptation, with
implications in the study of infectious diseases [13]. Estimates of the fraction of genes
that experienced HGT vary widely, some as high as 99% [3, 6]. These have led some
researchers to question the meaningfulness of the Tree of Life concept [1, 5, 8, 14].
However, despite HGT, that turns evolution into a network of relationships, there is
ample evidence that an underlying species tree signal can still be distilled and separated
from non tree-like events [2, 6, 7, 10].

In [12], Roch and Snir investigated the feasibility of reconstructing the phylogeny
of a four-taxa set - a quartet - using a simple plurality inference rule. Assuming that
HGT events are consistent with a Poisson process of a constant rate, they proved that
this reconstruction is achieved with high probability if the number of HGT events per
gene is Oð n

lognÞ (where n is the number of species). This implies that the number of
HGT events can be almost proportional to the number of gene tree edges without
destroying the overall tree signal.

In this work we develop the study of the quartet plurality rule, by extending it into
a complete tree reconstruction scheme. We first complement [12] by finding a lower
bound for the probability of simultaneous correct inference of a multitude of quartets,
as a function of the size of the species set, the number of gene trees, and the frequency
of HGT events. Since every phylogeny is uniquely determined by its induced quartets,
accurate reconstruction of the entire set of quartets implies accurate phylogenetic
reconstruction, that can be done in this case in polynomial time. Next, we show via
detailed simulations, that even when the number of HGT events is much larger than



what the theory of [12] dictates, the plurality inference rule still enables accurate tree
reconstruction. In the last part of the paper, we demonstrate that the plurality rule can
be a viable tool for real data phylogenetic reconstruction, by applying the above
theoretical principles to two sets of prokaryotes. The constructed phylogenies of these
two sets are shown to be comparable with (and complementary better than) other
suggested evolutionary trees in a number of tests.

Based on our analysis, some interesting questions arise. From a theoretical per-
spective, our ability to reconstruct accurate phylogenies in practice despite surprisingly
high rates of HGT, suggest that the known upper bound for HGT rates that still enable
successful tree reconstruction can be further improved. In addition, it is noteworthy that
weights were also incorporated in the reconstruction scheme used in this paper. Since
only three types of weights were tested, it would be desirable to explore new weighting
functions that may be beneficial to the accuracy of tree reconstruction.
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Duplication-Transfer-Loss (DTL) reconciliation is one of the most effective techniques
for studying the evolution of gene families and inferring evolutionary events. Given the
evolutionary tree for a gene family, i.e., a gene tree, and the evolutionary tree for the
corresponding species, i.e., a species tree, DTL reconciliation compares the gene tree
with the species tree and reconciles any differences between the two by proposing gene
duplication, horizontal gene transfer, and gene loss events. DTL reconciliations are
generally computed using a parsimony framework where each evolutionary event is
assigned a cost and the goal is to find a reconciliation with minimum total cost [1–3].
The resulting optimization problem is called the DTL-reconciliation problem.

The standard formulation of the DTL-reconciliation problem requires the gene tree
and the species tree to be rooted. However, while species trees can generally be
confidently rooted (using outgroups, for example), gene trees are often difficult to root.
As a result, the gene trees used for DTL reconciliation are often unrooted. When
provided with an unrooted gene tree, existing DTL-reconciliation algorithms and
software first find a root for the unrooted gene tree that yields the minimum recon-
ciliation cost and then use the resulting rooted gene tree for the reconciliation. How-
ever, there is a critical flaw in this approach: Many gene trees have multiple optimal
roots, and yet, only a single optimal root is randomly chosen to create the rooted gene
tree and perform the reconciliation. Here, we perform the first in-depth analysis of the
impact of uncertain gene tree rooting on DTL reconciliation and provide the first
computational tools to quantify and negate the impact of gene tree rooting uncertainty.

To properly account for rooting uncertainty, we define a consensus reconciliation,
which summarizes the different reconciliations across all optimal rootings of an
unrooted gene tree and makes it possible to identify those aspects of the reconciliation
that are conserved across all optimal rootings. We study basic structural properties of
consensus reconciliations and analyze a large biological data set of over 4500 gene
families from a broadly sampled set of 100 predominantly prokaryotic species [4]. Our
analysis focuses on several fundamental aspects of DTL reconciliation with unrooted
gene trees including prevalence of multiple optimal rootings, structure of optimal roots
in multiply rooted gene trees, impact of gene tree error and evolutionary event costs,
information content of consensus reconciliations, and conservation of event and
mapping assignments in consensus reconciliations.



Our experimental results show that a large fraction of gene trees have multiple
optimal rootings and that gene tree error significantly increases the fraction of multiply
rooted gene trees. The prevalence of multiple optimal rootings is also heavily influ-
enced by gene tree size, with smaller gene trees more likely to have multiple optimal
roots. An analysis of the placement of optimal roots shows that multiple roots often, but
not always, appear clustered together in the same region of the gene tree. This a highly
desirable property since it maximizes the information content, or size, of consensus
reconciliations and also makes it easier to estimate the “true” root position. A detailed
study of the computed consensus reconciliations reveals that most aspects of the rec-
onciliation, i.e., event and mapping assignments, remain conserved across the multiple
rootings, showing that unrooted gene trees can be meaningfully reconciled even after
accounting for multiple optimal roots. Our analysis also uncovers several interesting
patterns in the reconciliations of singly rooted and multiply rooted gene trees.

The results of our experimental analysis have important implications for the
application of DTL reconciliation in evolutionary studies, and the techniques intro-
duced in this work make it possible to systematically avoid incorrect evolutionary
inferences caused by incorrect or uncertain gene tree rooting. Our tools for computing
consensus reconciliations have been implemented into the phylogenetic reconciliation
software package RANGER-DTL, freely available from http://compbio.engr.uconn.
edu/software/RANGER-DTL/.
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The Bacteria Biotope event extraction (BB) task [1] as the one of biomedical event
extraction task has been put forward in the BioNLP Shared Task in 2016. The purpose
of the BB task is to study the interaction mechanisms of the bacteria with their envi-
ronment from genetic, phylogenetic and ecology perspectives. The methods based on
shallow machine learning methods for BB event extraction need to extract the manual
features. However, the construction of complex hand-designed features mainly relies
on preferred experience and knowledge. Furthermore, manual efforts may hurt the
generalization performance of the system and lead to over-design. Deep learning
methods provide an effective way to reduce the number of handcrafted features. But the
approaches take all words as equally important and are not able to capture the most
important semantic information in a sentence.

In this paper, we propose a novel Bidirectional Gated Recurrent Unit (BGRU)
Networks framework based on attention mechanism, using the corpus from the
BioNLP’16 Shared Task on BB task. The BGRU networks as a deep learning frame-
work can reduce the number of handcrafted features and the attention mechanism can
take advantage of the important information in the sentence. Simultaneously, we employ
a biomedical domain-specific word representation training model, which merges rele-
vant biomedical information including stem, chunk, entity and part-of-speech
(POS) tags into word embeddings. The system architecture for event extraction based
on attention-based BGRU can be summarized in Fig. 1. Firstly, the Shortest Path
enclosed Tree (SPT) between two entities is obtained by GENIA Dependency parser
(GDEP) [2] and the SPT is extended to the dynamic extended tree (DET) [3], which can
accurately encode the input information. Secondly, the DET is mapped to embeddings
which are concatenated by the word embeddings, POS embeddings and distance
embeddings. Thirdly, a recurrent neural network with attention-based BGRU is estab-
lished to acquire the hidden layer. Then, the significant information in a sentence is
obtained by a weight vector, which could learn word features automatically. Therefore, a
sentence feature can be gained by multiplying the weight vector. Lastly, we utilize a
softmax function to predict the label for classification.

The experimental results on the BioNLP-ST’16 BB-event corpus show that our
attention mechanism and word representation conditioned BGRU can achieve an



F-score of 57.42%. Without using the complex hand-designed features, our system
outperforms the previous state-of-the-art BB-event system.
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Identifying meaningful patterns (i.e., motifs) from biological sequences is an important
problem and a major challenge in bioinformatics research. A motif [1] is a nucleotide or
amino-acid sequence pattern that recurs in different DNA or protein sequences and has
a biological significance. In recent years, it has emerged a large number of computa-
tional algorithms for motif discovery which can be categorized into two groups,
including word-based (string-based) methods and probabilistic methods [1].
Word-based methods mostly exhaustive enumerate in their computation and proba-
bilistic methods employ probabilistic sequence models where the model parameters are
optimized by maximum-likelihood principle or Bayesian inference. Probabilistic
methods have the advantage of few parameters and are more appropriate for finding
longer or more general motifs especially for prokaryotes, whose motifs are generally
longer than eukaryotes.

MEME (Multiple EM for Motif Elicitation) [2] is one of the currently widely-used
algorithms based on maximum-likelihood principle for de novo motif discovery [3].
The algorithm consists of two stages: starting point searching and EM. The time
complexity of MEME is O(N2 � L2), where N is the number of input sequences and
L is the average length of each sequence. However, the high computational cost
constrains MEME for handling large datasets [4]. To accelerate motif discovery
algorithm, most of previous approaches focus on using parallelization on distributed
workstations, Graphics Processing Unit (GPU) and Field Programmable Gate Arrays
(FPGA). Farouk et al. parallelized the Brute Force algorithm targeted on FPGAs [5].
Marchand et al. scaled Dragon Motif Finder (DMF) to IBM Blue Gene/P using
mixed-mode MPI-OpenMP programming [6]. mCUDA–MEME is a parallel imple-
mentation of MEME running on multiple GPUs using CUDA programming model [7].

Kaiwen Huang, Zhiqiang Zhang, Runxin Guo, Xiaoyu Zhang, Shunyun Yang—These authors
contributed equally to this work.



Intel Many Integrated Core (MIC) Architecture [8] is the latest co-processor
computer architecture developed by Intel, which combines many Intel processor cores
onto a single chip to support the most demanding high-performance computing
applications. It is a brand-new many-core architecture that delivers massive thread
parallelism, data parallelism, vectorization, and memory bandwidth in a CPU form
factor for high throughput workloads.

In this paper, we accelerate MEME algorithm targeted on Intel Many Integrated
Core (MIC) Architecture to harness the powerful compute capability of MIC and
present a parallel implementation of MEME called MIC-MEME base on hybrid
CPU/MIC computing framework. Since the starting point searching stage is the runtime
bottleneck of the sequential MEME algorithm, our method focuses on parallelizing the
starting point searching method and improving iteration updating strategy of the
algorithm. And in EM stage, the M step and E step of EM algorithm are simply
parallelized using OpenMP. We also take advantage of the 512 bit vectorization unit to
get good performance out of the Intel MIC Architecture.

To evaluate the performance of MIC-MEME, the real datasets with different
numbers of sequences and base pairs (bps) were used. MIC-MEME produces the same
results as sequential MEME. And it has achieved significant speedups of 26.6 for
ZOOPS model and 30.2 for OOPS model on average for the overall runtime when
benchmarked on the experimental platform with two Xeon Phi 3120 coprocessors.
Furthermore, MIC-MEME shows good scalability with respect to dataset size and the
number of MICs. And MIC-MEME has been compared favorably with mCUDA-
MEME and BoBro2.0. As the result shows, MIC-MEME is average 2.2 times faster
than mCUDA-MEME and MIC-MEME absolutely outperforms BoBro2.0. Comparing
with the other methods, we can improve the efficiency of MEME algorithm without
losing accuracy and our method which makes full use of computing resources is faster
and robustness. With the increase of biological data, we hope the efficient motif dis-
covery of MIC-MEME will be able to help the bioresearch work. Source code can be
accessed at https://github.com/hkwkevin28/MIC-MEME.
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Abstract. Diabetic retinopathy (DR) was found to be a frequent comorbid
complication to diabetes. The risk factors of DR were investigated extensively in
the past studies, but it remains unknown which risk factors were more associated
with the DR than others. If we can detect the DR related risk factors more
accurately, we can then exercise early prevention strategies for diabetic
retinopathy in the most high-risk population. Thus, using computational
approaches to predict diabetes mellitus becomes crucial to support medical
decision making.

The purpose of this study is to build a prediction model for the DR in type 2
diabetes mellitus using data mining techniques. First, data consisting of 106 DR
and 430 normal patients were collected from the “Diabetes Mellitus Shared
Care” database in a private hospital in northern Taiwan. We randomly selected
160 patients were from normal group to combine with DR group, and formed a
balanced data set. Ten variables, including systolic blood pressure (SBP),
diastolic blood pressure (DPB), body mass index (BMI), age, gender, duration
of diabetes, family history of diabetes, self-monitoring blood glucose (SMBG),
exercise, and insulin treatment, were extracted. Four machine learning algo-
rithms including support vector machines (SVM), decision trees, artificial neural
networks, and logistic regressions, were used to predict diabetic retinopathy.

Among these variables, insulin treatment, SBP, DPB, BMI, age, and
duration of diabetes showed significant differences between DR and normal
groups. Experimental results demonstrated SVM achieved the best prediction
performance with 0.839, 0.795, 0.933, and 0.724 in area under curve, accuracy,
sensitivity, and specificity, respectively. The aim of this study is not only to
achieve an accurate prediction performance, but also to generate an interpretable
model for clinical practice. Table 1 and Fig. 1 demonstrated the interpretable



rules generated by logistic regression and decision tree, respectively. Use of
insulin and longer duration of DM were major predictors of DR in the decision
tree models. If duration of DM increases by 1 year, the odds ratio to have DMR
is increased by 9.3%. The odds ratio to have DR is increased by 3.561 times for
patients who use insulin compared to patients who do not use insulin. In
summary, our method identifies use of insulin and duration of diabetes as novel
interpretable features to assist with clinical decisions in identifying the high-risk
populations for diabetic retinopathy.

Keywords: Diabetic mellitus retinopathy � Machine learning � Decision support

Fig. 1. Interpretable rules for clinical practice generated by decision tress.

Table 1. Odds ratio estimates of duration and insulin variables.

Odds ratio estimates
Effect Point estimate

Duration 1.093
Insulin Y vs. N 3.561

LVIII H.-Y. Tsao et al.
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Abstract. The global maritime trade makes species get translocated through
ballast water and biofouling. We propose a biosecurity triggering mechanism to
evaluate the bioinvasion risk of ports. To that aim, we take advantage of big data
to compute the invaded risk and construct a species invasion network (SIN). The
former is used to evaluate the incoming bioinvasion risk while the latter is
employed to estimate the invasion risk spreading capability of a port through
s-core decomposition.

1 Introduction

Nowadays, people’s daily lives are heavily dependent on global maritime trade.
However, marine invasive species and viruses would cause side effects in terms of
environment and human health, which lead to huge losses of lives and economy [3].

To address the issue of aquatic bioinvasion, one mainstream countermeasure is to
propose suggestions for biomarker identification [1, 2] and bioinvasion management.
However, the existing biosecurity suggestions only considered the invaded risk of a
port and neglected its role of being a stepping-stone.

In this paper, we propose a biosecurity triggering mechanism to address the issues
of the existing work. In our biosecurity triggering mechanism, once the bioinvasion
risk of a port is larger than a given threshold, biosecurity controls should be triggered.
To that aim, we take advantage of the automatic identification system (AIS) data, the
ballast water data, and the marine ecoregion data to compute the invasion risk between
any two ports, based on which the invaded risk is calculated and a species invasion
network (SIN) is constructed. Through s-core decomposition of SIN, the ports whose s-
core are higher are identified as the ones transmit bioinvasion risks to others more
easily. We found two regions, namely the Western Europe and the Asia-Pacific, which
are estimated to be bioinvasion risk intensive regions through our big data analysis.



2 Basis for Our Analysis

For any port j, its invaded risk (i.e. PjðInvÞ) is the accumulating invasion risks over all
shipping routes passing through it [5], i.e.

PjðInvÞ ¼ 1�Pi½1� PijðInvÞ� ð1Þ
where PijðInvÞ denotes the invasion risk from port i to j.

A SIN can be depicted by a directed graph, namely S ¼ ðV ;E;WÞ, consisting of a
set V of nodes (i.e., ports), a set E of edges (i.e., shipping routes) and the weight
wij 2 W (wij ¼ PijðInvÞ of edge eij 2 E denoting the invasion risk from ports i to j.

According to the description above, both the invaded risk and SIN involve PijðInvÞ
ði; j 2 VÞ. In this paper, we use the model proposed in [5] to calculate PijðInvÞ.

To figure out the potential of a port to spread invaded species to others, we need to
dig out the transmission power of each node in SIN, which is closely related to the
topological property of each port in SIN. We think k-core decomposition is an efficient
tool to analyze the structure of complex networks. Larger values of the index k cor-
respond to nodes with larger degree and more central position. According to the
algorithm in [4], we can deduce the s-cores of SIN. Seattle, Tokyo and Lima are the top
3 ports ranked by their value of s-shell.

3 Biosecurity Triggering Method

The main idea of the proposed biosecurity triggering method is to trigger bioinvasion
treatment according to the bioinvasion risk of each port. As we introduced above, the
bioinvasion risk is estimated in light of both the invaded risk of port and its ability of
further spreading invaded species. The former is the incoming risk while the latter is the
outgoing one. Therefore, we can trigger the corresponding bioinvasion control on a
port j based on the following simple criterion:

RðjÞ ¼ aePjðInvÞþ ð1� aÞesðjÞ	 T ð2Þ

where RðjÞ is the bioinvasion risk of port j, and ePjðInvÞ and esðjÞ are respectively the
normalized PjðInvÞ (the invaded risk of port j calculated using (1)) and the normalized
s-shell value of that port; 0� a� 1 is the tradeoff weight. Smaller a means more
attention should be paid on the stepping-stone invasion and otherwise, the invaded risk
should be obtained more concern. T is the given threshold to help judging whether a
bioinvasion treatment should be triggered.

LX C. Wang et al.



We found two regions, namely the Western Europe and the Asia-Pacific, are
bioinvasion risk intensive regions. The result is consistent with the real-world data.
Hence, our analysis basically accords with the real-world marine bioinvasion status.
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The liver is made up of many different types of cells. Mutations in those cells can be
developed into several different forms of tumors known as cancers. For this reason, it is
hard to expect a single type of liver cancer treatment to have a favorable prognosis for
all cancer patients. If we can diagnose and classify the patients who are expected to
have good responses to a single therapeutic drug, it will help to reduce the time on
choosing an appropriate therapeutic drug for each patient. Therefore, building a decent
prediction model became important for an effective treatment. Up to date, several
methods such as linear/logistic regression (LR), support vector machine (SVM), ran-
dom forest (RF) have been used for building prediction models [1–3]. However,
occasionally, these methods oversight the biological pathway information with rela-
tions between metabolites, proteins, or DNAs.

In this paper, we propose building of prediction model using component based
structured equation modeling method which uses the peptide to protein biological
structure. Our peptide level data were generated by Multiple Reaction Monitoring
(MRM) mass spectrometry for liver cancer patients. MRM is a highly sensitive and
selective method for targeted quantitation of peptide abundances in complex biological
samples. The advantage of component based structured equation modeling is that it can
generate latent variables. These latent variables are not observable but can be inferred
from other observed variables. Using latent variables, we can collapse unstructured data
into structured data. These latent variables provide more feasible explanation on the
results. In our case, multiple peptides can be merged into a protein which is represented
as a latent variable. Our proposed schematic model using component based structural
equation modeling for MRM data is shown in Fig. 1.

We applied the component based structural equation model to MRM data of liver
cancer patients. In our MRM data, there are 124 proteins induced by 231 peptides
MRM data. Each protein contains at least one peptides. We identified candidate pro-
teins for a drug Sorafenib response for liver cancer patients. The selected candidate
proteins included APOC4, CD163, CD5L, JCHAIN, SERPING1, and RBP4. These
proteins were reported as possible cancer biomarkers [4, 5]. Also, CD5L was well
known as a liver cancer biomarker [6, 7]. Using these proteins, we evaluated our
proposed Sorafeib prediction model by the area under the curve (AUC) score. Also, we



compared the performance of our model with generalized linear models with and
without ridge penalty. The performance of our model showed a slightly higher AUC
score 0.96 compared to 0.949 AUC score of the generalized linear model with ridge
penalty.
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Abstract. Ovarian cancer is the most fatal gynecological malignancy
among women. Making a reliable prediction of time to tumor recurrence
would be a valuable contribution to post-surgery follow-up care. In this
paper we study three well-known data sets, known as TCGA, Tothill and
Yoshihara, and compare three sparse regression methods, two of which
(LASSO and EN) are well-known and the third (CLOT) is from our lab-
oratory. It is established that the three data sets are very different from
each other. Therefore a two-stage predictor is built, whereby each test
sample is first assigned to the most likely data set and then the corre-
sponding predictor is used. The weighted concordance of each regression
method is computed to compare the methods and select the best one.
CLOT uses a biomarker panel of 103 genes and achieves a concordance
index of 0.7829, which is higher than that achieved by the other two
methods.

Keywords: Ovarian cancer · Sparse regression · LASSO · Elastic Net ·
CLOT · Concordance index

1 Introduction

Ovarian cancer is the fourth most common cause of cancer deaths around the
world [1]. It is considered to be highly responsive to the first treatment, but it has
very low long-term survival rate because the patient develops drug-resistance [2],
which causes the tumor to recur (also called tumor regression). Recent studies
have identified several independent prognostic biomarkers such as age at diag-
nosis, histologic cell-type, stage, histologic grade, FIGO1 stage, residual tumor
size, presence of ascites, albumin, alkaline phosphatase, preoperative serum CA-
125, performance stage and other markers [3,4]. Most of the relevant studies in
the case of predicting the survival analysis of ovarian cancer have concentrated
on molecular markers. However, known ovarian cancer molecular factors are not
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predictive enough at least for clinical use. Therefore, factors that are independent
from clinical parameters are required to achieve better predictions.

Note that the time to tumor recurrence is not always precisely known and
depends on the intervals between successive check-ups. In [5], for this reason ovar-
ian cancer patients are grouped into just three categories, namely super respon-
ders, medium responders and non-responders, depending on their progression-
free survival, which is the same as the time to tumor recurrence. A panel of 25
genes is identified that can classify the patients into one of these three categories.

The present study is more ambitious in that we aim to achieve, not just
a coarse classification of patients into three groups, but an actual prediction
in terms of the number of days before the tumor recurs. This is achieved by
treating the problem as one of sparse regression and not classification. Note that
in the world of machine learning, the phrase “regression” basically means “curve-
fitting” and has nothing to do with tumor regression. We apply three different
sparse regression algorithms, namely the well-known LASSO [6] and Elastic Net
[7], together with another one due to this research group called CLOT [8], to
predict the time to tumor recurrence.

In [5], the performance of the classification algorithm was evaluated by com-
puting the P -value of the associated 3×3 contingency table. However, when the
prediction is a real number rather than just a label, it is more natural to com-
pute the so-called concordance index. The concordance index (C-index hereafter)
indicates the probability that a patient that is predicted to be at lower risk of
tumor recurrence, survives longer than the other. A C-index of 1 (unachievable
in practice or unlikely to occur with real data) indicates perfect performance,
while a C-index of 0.5 corresponds to predictions being generated at random. A
comprehensive study in [9] shows that most of the currently available predictors
for late stage ovarian cancer achieve C-indices of only around 0.6 on independent
test sets.

In the present study, we analyzed three different datasets namely the
TCGA ovarian cancer dataset, GSE9891 also known as the Tothill dataset and
GSE17260 also known as the Yoshihara data set. The usual approach to train and
test predictors across data sets is to convert all values to Z-scores. Our analysis
indicated that these three data sets are fundamentally different from each other.
Specifically, after transformation to Z-scores, for each data set we computed the
vector of median values of each gene, that is, a vector dimension 12,229 and for
each test sample, we assigned it to the nearest vector of median values in terms
of Euclidean distance. In all but three cases (3 out of 282 test samples), the test
sample was assigned to the correct data set. Therefore it is unlikely that any
predictor based on one of these sets would perform satisfactorily on the other
two. This expectation was then verified via numerical computation. Therefore
we opted to develop a two-stage prediction process. Three different training sets
were identified, one from each data set, and three predictors were developed, one
for each data set. The test set consisted of all the remaining samples from all
three data sets. To test, a pre-processor assigned each test sample to the most
likely data set, and then the corresponding predictor was applied. Through this
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approach, we are able to achieve a C-index of 0.7829 using the CLOT regres-
sor and a biomarker panel of 103 genes. The CLOT regressor outperformed the
well-known LASSO and EN approaches.

2 Materials and Methods

2.1 Datasets

In this study, gene expression datasets were downloaded from the Gene Expres-
sion Omnibus (GEO) [10] and The Cancer Genome Atlas (TCGA) websites [11].
More than 80% of ovarian cancer samples used in this study are in stage 3 and
grade 3 which indicates that they are mostly extended to the lining of pelvis and
lymph nodes and have a tendency to grow quickly [12].

In our project, there are totally three datasets that are used for the training
and the validation of the regression models. Details about these datasets are
shown in Table 1. It must be noted that samples for which time to tumor recur-
rence is less than thirty days are removed from the datasets, as these patients
were very sick and thus not representative of the overall patient population. In
addition, in the dataset GSE9891 (Tothill dataset), there are about 100 samples
with time to tumor recurrence value equal to the time of death. This suggests
that the clinicians lost track of the patient; therefore these samples were removed
from GSE9891 dataset.

According to Table 1, the number of genes is different in different datasets.
Therefore, 12249 genes that were common to all three datasets were identified
and the rest were removed. Within each dataset, 70% of the samples were used
for training and the remaining 30% were kept segregated as test samples. The
regression algorithms never see these test samples, so that they constitute an
“independent” test set.

Table 1. Details of data sets used

Datasets Platform No. of genes Total samples Train samples Test samples Pairs

TCGA Affy. HT
133A

13104 512 300 212 22366

GSE9891 Affy. U133
Plus 2.0

19816 169 119 50 1225

GSE17260 Agilent
4112a

20106 105 85 20 190

2.2 Solution Methodology

The problem under study is to predict the time to tumor recurrence in ovarian
cancer datasets by using sparse regression methods. Let m denote the number of
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tumor samples and n the number of genes whose expression levels are measured
in each tumor. Let A ∈ R

m×n denote the matrix of gene expression values, and
y ∈ R

m the vector of time to tumor recurrence for each sample. The objective
is to find a vector z ∈ R

n which is extremely sparse such that Az nearly equals
y. In biological data, the number of genes outnumbers the number of samples
(m � n). Since m � n, the equation y = Az is under-determined and has
infinitely many solutions. The best solution is achieved when the weight vector z
has the fewest number of nonzero components, or equivalently, ‖z‖0 is minimized
while satisfying the equation y = Az. However, it is shown in [13] that the
minimization of ‖z‖0 subject to y = Az is NP-hard. Hence alternate methods
based on convex optimization are used instead to find sparse solutions for x.
The most popular approach is to define a “regularizer” R(·) that penalizes large
vectors z and to minimize

ẑ = argmin
z

(‖y − Az − b‖22 + λR(z)) (1)

Different choices of the regularizer lead to different solutions. One of the most
widely used approaches is known as LASSO, introduced in [6]. Another popular
algorithm for sparse regression is the Elastic Net (EN) algorithm introduced in
[7]. The Elastic Net algorithm has the “grouping effect” property which means
that if two columns of the matrix A are highly correlated, then the corresponding
components of ẑ are nearly equal. In contrast, in such a situation LASSO chooses
one of the highly correlated features and discards the rest. Consequently the
final set of features selected is very sensitive to small changes in y. Therefore
the Elastic Net approach is particularly useful when there are many correlated
predicted variables. However, in compressed sensing applications, where y = Ax
and x is a “true but unknown” sparse vector, the LASSO formulation is able to
recover x, while EN cannot.

A recent formulation from our research group, known as CLOT is shown to
combine the desirable attributes of both LASSO and Elastic Net [8]. In other
words, it is shown that CLOT has “grouping effect” and it also achieves robust
sparse recovery if the measurement matrix satisfies the Restricted Isometry Prop-
erty (RIP) [8]. This led us to compare all of these three approaches in the pre-
diction of time to tumor recurrence in Ovarian cancer. The LASSO regularizer
is defined by

RLASSO(z) = ‖z‖1, (2)

The Elastic Net regularizer is defined by

REN (z) = (1 − μ)‖z‖1 + μ‖z‖22, (3)

where 0 < μ < 1 is an adjustable parameter. The CLOT regularizer is defined by

RCLOT (z) = (1 − μ)‖z‖1 + μ‖z‖2, (4)

where 0 < μ < 1 is an adjustable parameter.
The Elastic Net and CLOT regularizers are more robust to the variations

in the measurement vector than LASSO. Moreover, it is recommended to add a
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recursive feature elimination step to EN and CLOT algorithms in order to reduce
further the dimensionality of the weight vector. Therefore the full algorithm is
as described next: Let aj denote the j-th column of the matrix A and y denote
the time to tumor recurrence vector. Then the procedure is as follows:

1. Sort the y vector in an ascending order and sort the rows of A correspondingly.
2. Normalize A by subtracting the mean of each column then dividing by its

standard deviation.
3. Run the optimizer (LASSO, EN or CLOT) and obtain a sparse vector z and

bias b.
4. Once the predictor is obtained in this manner, validate it on the test set. For

each tumor, obtain its predicted time to recurrence by multiplying its gene
expression vector by z and adding b. Equation 5 shows how the predicted
vector p is formed by the gene expression matrix A for all tumor samples.
Note that, since z is sparse, only a few gene expression values are used in the
prediction.

p = Az + b (5)

5. To assess the performance of the predictor, compute the concordance index
of the predictions using the pseudocode in Algorithm1:

Algorithm 1. Computing the Concordance Index
Assume: p =vector of predicted values, S = 0, M = sample size
for i = 1 : M do

for j = i + 1 : M do
if p(j) > p(i) then

S = S + 1
end if

end for
end for
C-index = 2S

M(M−1)

The CLOT optimization is carried out in Matlab using the public domain CVX
optimization package.

2.3 Parameter Tuning

No matter which regularizer is used for sparse regression, the Lagrangian form
of the optimization problem to be solved is

min
z

(‖y − Az‖22 + λR(z)) (6)

where λ is a tuning parameter. It is important to notice that high sparsity of z,
low error percentage on the training data and high concordance index are the
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three most crucial criteria for assessing a predictor. The general approach is to
divide the training data into two parts via cross-validation and to use prediction
error of the cross-validation as a guide to choose the best values for regression
parameters [14]. Accordingly, in this paper, 10 fold cross-validation was used
and the parameter λ was varied over 50 different values. Then the λ value that
led to a good combination of all three parameters (high sparsity, low error and
high concordance) was chosen. Our target was to achieve around 10% training
error and to find a λ value that led to the fewest number of features for each
dataset. As λ increases, fewer features are chosen (higher sparsity), but the error
percentage value increases. It must be noted that in order to have completely
independent test samples (that were never seen before by the regressors), we
applied data splitting method to do the final training and testing.

In the case of EN and CLOT, there are two adjustable parameters, namely
μ ∈ [0, 1] and λ. In principle we could have varied both parameters over a
suitable grid. However, to reduce computation time, we fixed λ at a value close
to the optimal value generated from applying LASSO (less than 10% training
error with the selected λ) and used the same value of λ in EN as well. Then we
varied μ over [0,1] to find the best value that gives us the highest concordance
index on the training data. Figure 1 shows the concordance indices for different
μ values on GSE17260 dataset. The best μ is the one which has the greatest
concordance index among all. It must be noted that μ ≈ 0.2 has the highest
training concordance values in all datasets and 0.2 is chosen as the final value
for μ.

Fig. 1. Concordance indices for different μ values in GSE17260 dataset
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3 Experimental Results

The main challenge in applying machine learning techniques to ovarian cancer
is that there are very few validation data sets, in contrast with other forms
of cancer, such as breast cancer. We have used three datasets, namely TCGA,
Tothill (GSE9891) and Yoshihara (GSE17260). These datasets represent patient
populations from the USA, Australia and Japan, respectively.

3.1 Training on TCGA and Testing on the Rest

To assess how different these training datasets are from each other, we performed
a simple test. Specifically, we computed the median for each feature across all
samples within a dataset, leading to three different median vectors of dimension
12,229 × 1. Then each sample was compared to all three vectors using the Euclid-
ean distance. It was found that all but three samples were closest in Euclidean
distance to the median vector of the data set to which they belonged, than to
the other two median vectors. This showed that there is near complete separa-
tion between the three data sets. Consequently, we believed that it was unlikely
that a predictor trained on the TCGA dataset would perform well on the other
datasets. Nevertheless, we carried out an exercise of training a regressor using
300 TCGA samples and testing it on 212 TCGA samples and all samples from
the Tothill and Yoshihara datasets. Recall that all data vectors were converted
to Z-scores as a first step. The results are presented in Table 2, where C denotes
the concordance index.

3.2 Multiple Regressor Approach with a Front-End Pre-processor

Since, as expected, the regressors trained using only TCGA samples did not
produce good predictions when tested on other datasets, we decided to adopt a
different approach. We trained different regressors for each of the three datasets.
For testing purposes, all of the test samples were combined into one. Then the
expression values of all genes for each test sample were compared to the median
gene expression vector from each of the three datasets and the test sample was
assigned to the dataset whose median vector was the closest in terms of Euclidean
distance. Then the regressor trained on that dataset was applied. It is worth
mentioning that each test sample was assigned to the correct dataset by the
preprocessing step. This highlights that the three datasets are quite different
from each other. In this manner, we developed a multi-regressor approach with
a front-end pre-processor and tested each regressor with samples from the same
dataset. The results of this experiment are shown in Table 3.

4 Comparison of the Three Methods

According to Table 2, all of the three regression methods, LASSO, EN and CLOT
fail to have high C-indices when trained with TCGA and tested with the rest
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Table 2. C-indices and number of features in LASSO, EN and CLOT regressors trained
with 300 TCGA samples and tested with the rest of the samples

Regressors No. of features Training C TCGA C GSE9891 C GSE17260 C

LASSO 260 0.9501 0.5203 0.5421 0.5942

EN 106 0.9324 0.4851 0.5213 0.4623

CLOT 211 0.9334 0.8123 0.4733 0.4512

Table 3. C-indices, number of features and λ in LASSO, EN and CLOT regressors,
trained with 70% of each dataset and tested with the remaining part

Regressor Dataset No. of features λ Training C Testing C

LASSO 1 TCGA 260 7.6 0.9501 0.5203

2 GSE9891 110 8.9 0.9622 0.6392

3 GSE17260 74 16.6 0.9601 0.5210

EN 1 TCGA 106 10 0.9324 0.4851

2 GSE9891 241 10 0.9697 0.6122

3 GSE17260 36 10 0.9151 0.5316

CLOT 1 TCGA 211 10 0.9334 0.8123

2 GSE9891 127 10 0.9099 0.5112

3 GSE17260 50 10 0.9332 0.6123

Table 4. Comparison of C-indices and number of features in different methods

Method Weighted mean (by
no. of samples)

Weighted mean (by
no. of sample pairs)

Mean of the
no. of features

One LASSO reg. 0.5135 0.7167 260

One EN reg. 0.4898 0.4868 106

One CLOT reg. 0.5028 0.7802 65

Three LASSO reg. 0.5262 0.5074 119

Three EN reg. 0.5110 0.4920 128

Three CLOT reg. 0.7326 0.7829 103

(non-TCGA samples). Even testing with TCGA samples only has a high con-
cordance index when CLOT is used (C-index = 0.8123) but using LASSO and
EN still generates low concordance indices in this case.

Results of Table 3 indicate that Elastic Net requires fewer features when
applied to TCGA and GSE17260 datasets but if GSE9891 is used as the training
and test set, EN has the biggest number of features in comparison to LASSO
and CLOT. Overall, by considering the results in Table 3, it seems clear that
CLOT offers better results, both in terms of high sparsity (small number of
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Fig. 2. Actual vs. predicted time values using CLOT for: (a) TCGA training set, (b)
TCGA testing set, (c) GSE9891 (Tothill) testing set, (d) GSE17260 (Yoshihara) testing
set
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features selected) and high concordance index, compared to the other two meth-
ods, LASSO and EN.

In order to select the best method for the prediction of time to tumor recur-
rence in ovarian cancer, we computed the mean value of the final number of
features. In addition, we also computed the C-index of all test samples. How-
ever, we compared test samples only against others within the same dataset.
Therefore the overall C-index is just the weighted average of the C-indices on
individual datasets, where the weight equals the number of test pairs within that
dataset. It must be noted that the number of the pairs in each dataset is shown
in Table 1. Comparison of C-indices and the number of the features (sparsity
in the weight vector) in different experiments done in this paper are shown in
Table 4. It can be seen that CLOT gives a smaller number of features (103)
and a higher weighted C-index (0.7326 and 0.7829) compared to LASSO (0.5262
and 0.5074) and Elastic Net (0.5110 and 0.4920). Actual versus predicted val-
ues of time to tumor recurrence for the selected method (CLOT regression) and
different datasets are shown in Fig. 2.

Now we analyze the sets of features selected by all three CLOT regressors
across the three data sets TCGA, GSE9891 and GSE17260, to see whether there
are any genes of biological significance. BRCA2 gene is recognized as one of the
most important genes in ovarian cancer and is the only gene detected by all three
CLOT regressors. In addition, examples of cancer-related genes detected by our
CLOT regressors are: BRCA1, AAMP (which belongs to the immunoglobulin
superfamily and is functional in cell migration), AKT1 (regulating metabolism,
proliferation, cell survival and growth), MLH3 (involved in DNA mismatch
repair), PMS1 (involved in DNA mismatch repair and PMS1 mutations can
cause colorectal cancer), MSH2 (involved in DNA mismatch repair) and NBN
(involved in DNA double-strand break, DNA repair and cell cycle control) genes
[15]. Therefore the CLOT regressors have succeeded in unearthing many genes
that are known to have a role in cancer.

5 Conclusions

In this paper, we introduced a new prognostic method for predicting time to
tumor recurrence in ovarian cancer. The recurrence time has generally been
assessed on clinical biomarkers therefore novelties in this paper comprise an
improved prediction method by using genes as the independent variables. We
applied sparse regression algorithms such as LASSO, Elastic Net and CLOT
in order to predict the survival time in ovarian cancer samples. Concordance
index was computed to evaluate the survival analysis. The best method for the
prediction of survival time in ovarian cancer was training three CLOT regressors
which achieved a great weighted mean concordance index of 0.7829. This is
far higher than the concordance indices of 0.6 or thereabouts achieved in [9].
However, the indices in [9] were computed on independent datasets, whereas we
used a part of each dataset for training and the rest for testing.
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Abstract. Pathologists often deal with high complexity and sometimes
disagreement over Osteosarcoma tumor classification due to cellular het-
erogeneity in the dataset. Segmentation and classification of histology tis-
sue in H&E stained tumor image datasets is challenging due to intra-class
variations and inter-class similarity, crowded context, and noisy data. In
recent years, deep learning approaches have led to encouraging results
in breast cancer and prostate cancer analysis. In this paper, we propose
a Convolutional neural network (CNN) as a tool to improve efficiency
and accuracy of Osteosarcoma tumor classification into tumor classes
(viable tumor, necrosis) vs non-tumor. The proposed CNN architecture
contains five learned layers: three convolutional layers interspersed with
max pooling layers for feature extraction and two fully-connected layers
with data augmentation strategies to boost performance. We conclude
that the use of neural network can assure high accuracy and efficiency
in Osteosarcoma classification.

Keywords: Osteosarcoma · Convolutional neural network · Histology
image analysis

1 Introduction

Unlike other types of tumor, osteosarcoma has a high degree of heterogeneity,
as illustrated in Fig. 1 which makes it difficult in some cases to reach a common
diagnostic among pathologists [4,13]. Therefore, automating the analysis of dif-
ferent types of tumor can help to avoid observer bias, reduce diagnosis time, and
explore various options for treatment.

Majority of tumor studies rely on Haematoxylin and Eosin (H&E) stain
stained images [6], that dye the nuclei blue and background tissues pink in a his-
tology slide. Currently, pathologists must manually evaluate these slides under a
c© Springer International Publishing AG 2017
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microscope to evaluate the extent of tumor and tumor necrosis. A study on renal
cell carcinoma [5] found that there was large disagreement between pathologists,
on same data samples.

This manual analysis by Pathologists is a labor-intensive process and sub-
ject to observer bias. Hence, it is desirable to develop an automatic approach
for histopathological slide classification of Osteosarcoma. The whole slide scan-
ning systems provides the opportunity to automate the analysis process. These
systems digitize glass slides with the stained tissue at a high resolution (up to
40x). The digital whole slide images (WSIs) allow image processing and analysis
techniques by utilizing the morphological and contextual clues present in the
WSI as features for tissue classification [7,8].

However, there are several roadblocks towards a fully automatic system. The
digital image quality is effected by slide preparation and poor staining response
which can cause many tissue and cellular regions to be under-represented.

This diverse cellular morphology resulting in variability in same type of cells
(Fig. 1a) and similarity in different cellular structures (Fig. 1b) can make classifi-
cation of tumor slides challenging. Particularly in Osteosarcoma, both the tumor
cells and some types of normal cells (precursor cells) are stained the same blue
color but the tumor cells are irregular in shape whereas the precursor cells are
more round, close and regular (Fig. 1c). Moreover, each tumor type is signifi-
cantly different from other types, which makes it difficult to apply one method
developed for one tumor type to another tumor type. Osteosarcoma is one such
tumor that has a high degree of intra-tumor histological variability and thus
methods developed for lung or renal tumor types [5,17] do not work well for it.

Fig. 1. Examples showing the complexity of dataset. (a) Shows intra class variance for
Tumor class. (b) Shows inter class similarity between tumor and necrosis classes. (c)
Shows the similarity in color of tumor cells and precursor cells. (Color figure online)

In this paper, we propose a convolution neural network (CNN) architecture
to classify the H&E stained histopathology slides of Osteosarcoma. The typical
CNN architecture for image processing consists of a series of layers of convolution
filters, interspersed with pooling layers. The convolution filters are applied to
small patches of the input image to detect and extract image features. Our
neural network architecture combines features of AlexNet [9] and LeNet [10]
to develop a fast and accurate slide classification system. The proposed system
do not require nuclei segmentation which can be a difficult task due to the
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morphological and system limitations mentioned above. The proposed system
works with the annotated image label to generate features at class level. As the
paper does not aim to calculate the nuclei properties, we can focus on accurate
and efficient class label identification.

Our Contribution. Our main contribution is a new, important, practical and
efficient application of CNN, which gives promising results in Osteosarcoma
image classification. We developed an efficient CNN architecture used to clas-
sify the input images into tumor classes through the use of data augmentation
techniques that save time and space. We also provide comparative results of our
proposed architecture with existing architectures AlexNet and Lenet to show
that the proposed architecture performs better in tumor classification.

1.1 Background

Osteosarcoma is a type of bone cancer. The tumor usually arises in the long
bones of the extremities in the metaphyses, next to the growth plates. In order
to gauge the extent of treatment response and accurately calculate the percent-
age of tumor necrosis, it is necessary to consider different histological regions
such as clusters of nuclei, fibrous tissues, blood cells, calcified bone segments,
marrow cells, adipocytes, osteoblasts, osteoclasts, haemorrhagic tumor, carti-
lage, precursors, growth plates and osteoid (tumor osteoid and reactive osteoid)
with and without cellular material. The goal of this paper is to utilize CNN to
identify the four regions of interest (Fig. 2), namely, (1) Viable tumor, (2) Coag-
ulative necrosis, (3) fibrosis or osteoid, and (4) Non tumor (Bone, cartilage)
These four regions are used to extract information about the three main classes
of interest: viable tumor, necrosis (coagulative necrosis, osteiod, and fibrosis),
and other tissue (bone, blood vessels, cartilage, etc.).

1.2 Related Work

Most of the existing work for tumor classification involves thresholding with
region growing, k means, otsu, and morphological features like area and shape
structures. Arunachalam et al. [2] presented multi-level otsu thresholding fol-
lowed by shape segmentation to identify viable tumor, necrosis and no-tumor
regions in osteosarcoma histology slides. Malon et al. [12] trained a convolution
neural network to classify mitotic and non-mitotic cells using morphological fea-
tures like color, texture, and shape.

In recent years, machine learning approaches like neural networks have been
used for image classification and segmentation but majority of the tumor studies
focus on identifying a super-set of features, although not all features are relevant.
A recent study on non-small cell lung cancer [17] isolated 9000+ features from
images, that consisted of parameters extracted from color, texture, object iden-
tification, granularity, density etc. Ciresan et al. [3] was the pioneer of utilizing
Convolutional Neural Network (CNN) in mitosis counting for primary breast
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Fig. 2. The figure shows different regions of interest: viable tumor, coagulative necrosis,
osteoid, fibrosis, non-tumor (bone) regions in a slide

cancer grading. Litjens et al. [11] applied CNN for identifying breast cancer
metastases in sentinel lymph nodes and prostate cancer detection.

Many of these methods are focused on nuclei segmentation and not on image
classification as tumor or non tumor. Recent studies have proved that deep
learning methods are successful in nuclei segmentation and give promising results
for image classification. Su et al. [16] used a fast scanning deep convolution
neural network for region segmentation and classification in breast cancer and
Spanhol et al. [15] developed on existing AlexNet for different segmentation and
classification tasks in breast cancer.

In summary, deep learning algorithms have been successfully implemented in
the past for tumor detection in breast cancer and prostate cancer but the work
mentioned above is focused on nuclei segmentation whereas evaluation on the
classification into tumor classes is limited.

In this paper, we propose a deep learning approach capable of assigning tumor
classes (viable tumor, necrosis) vs non-tumor directly to input slides in osteosar-
coma, a type of cancer with significantly more variability in tumor description.
We extend the successful Alexnet proposed by Krizhevsky (see [9]) and LeNet
network architectures introduced by LeCun (see [10]) which uses gradient based
learning with back propogation algorithm.

2 Our Approach

2.1 Convolutional Neural Network

Convolutional neural networks (CNNs) are powerful tools in deep learning with
high success rate in image classification. The typical CNN architecture for image
classification consists of a series of convolution filters paired with pooling layers.
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The convolution filters are applied to small patches of the input image which
detect increasingly relevant image features like edges or shapes and texture.
The output of the CNN is one or more probabilities or class labels. According
to Sirinukunwattana et al. [14] “Mathematically, CNN can be defined as a feed
forward artificial neural network C which is composed of L layers (C1, C2, ..., CL)
which maps an input vector x to an output vector y i.e.

y = f (x;w1, w2, ..., wL) = fL (;wL) ◦ fL−1 (;wL−1) ◦ · · · ◦ f1 (x;w1) (1)

where wl is the weight and bias vector for the lth layer fl.”
Our approach is conceptually simple. It directly operates on raw RGB data

sampled from the source. It is trained to classify patches into three bins: viable
tumor, necrosis (coagulative necrosis, osteoid, fibrosis) and non-tumor. Classi-
fication in unseen images is done by applying the learned classifier as a sliding
window to the data. Because the CNN operates on raw pixel values, no human
input is needed beside the initial annotation of slides for training data, a signifi-
cant advantage over previous attempts [2]. The CNN automatically learns a set
of visual features from the training data.

We develop on existing proven networks LeNet and AlexNet because finding
a successful network configuration for a given problem can be a difficult chal-
lenge given the total number of possible configurations that can be defined. The
Lenet architectures [10] have been prototypes for many successful applications in
image processing, particularly handwriting recognition and face detection. The
data augmentation methods to reduce over-fitting on image data as described
by Krizhevsky [9] has been proclaimed for its success rate in various object
recognition applications.

2.2 CNN Architecture

CNN Design. Designing the architecture of a neural network is a complex
task. We start with a simple 3 layer network [INPUT - CONVOLUTION -
MAX POOL - MLP].

(1) INPUT [128× 128× 3] will hold the raw pixel values of the image, i.e. an
image of width 128, height 128, and with three color channels R,G,B.

(2) CONVOLUTION layer will compute the output of neurons that are con-
nected to local regions in the input image. Each neuron will compute the dot
product between their weights and a small region that they are connected to in
the input volume. This may result in volume such as [124× 124× 4] for 4 filters.

(3) MAX POOL layer will down-sample along the spatial dimensions (width,
height), resulting in volume [62× 62× 4].

(4) MLP layer will compute the class scores, resulting in volume of size
[1× 1× 4], where each of the 4 numbers correspond to a class score for the 4
tumor regions. This simple neural network is not able to identify all the features
and the output classification accuracy is very low. This leads to the requirement
of increasing the number of hidden layers in the network. But inclusion of many
hidden layers can increase the training time and memory requirements mak-
ing the network impractical. Hence a trade-off is needed between efficiency and
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Fig. 3. The figure shows the architecture of a convolution neural network for the clas-
sification of osteosarcoma. The different layers in the network are 3 Convolution layer
(C), 3 Sub-Sampling layer (P), and 2 fully connected multi-level perceptrons (M).

Table 1. Comparison of accuracy, and running time for 3 different implementation of
neural network with different number of hidden layers

Architecture Accuracy Running time (in minutes)

3 layer 0.21 3

6 layer 0.86 18

Proposed architecture 0.84 7

accuracy. We worked with different number of hidden layers to define the best
output in terms of tumor identification and computational resources needed (see
Table 1).

The detailed architecture of the five level CNN for tumor classification is
shown in Fig. 3. Our architecture combines the simplicity of Lenet architecture
with the data augmentation methods used by AlexNet architecture. The lower
3 layers are comprised of alternating convolution and max-pooling layers. The
first convolution layer has filter size 5× 5 used to detect low level features like
edges which is followed by a max pooling layer of scale 2 to down-sample the
data. This data is then sent to second layer of 5× 5 filters to detect higher order
features like texture and spatial connectivity followed by a max-pooling layer.
The last convolution layer uses a filter of size 3× 3 and max-pooling size 2 for
down- sampling to generate more higher order features. The upper 2 layers are
fully-connected multi-level perceptron (MLP) neural network (hidden layer +
logistic regression). The second layer of the MLP is the output layer consisting
of four neurons (see Table 2). The input to the first MLP layer is the set of all
features maps at the layer below and the output is a class probability distribution
from the four neurons (p1, p2, p3, p4) for each image, where p1, p2, p3, p4 are
the probability for viable tumor, coagulative necrosis, osteoid or fibrosis and
non-tumor, respectively. The sum of the output probabilities from the MLP is 1,
ensured by the use of Softmax algorithm as the activation function in the output
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Table 2. Architecture of the proposed convolutional neural network for osteosarcoma
classification. The network is built of Input (I), Convolution (C), Max-Pooling (P) and
fully connected (M) layers

Layer Type Filter size Output size

0 I 128× 128

1 C 5× 5 124× 124

2 P 2× 2 62× 62

3 C 5× 5 58× 58

4 P 2× 2 29× 29

5 C 3× 3 27× 27

6 P 2× 2 14× 14

7 M 32 1× 32

8 M 4 1× 4

layer of the MLP. The convolution and max pooling layers are feature extractors
and the MLP is the classifier.

Data Augmentation. The easiest and most common method to reduce over-
fitting of data is to artificially augment the dataset using label-preserving trans-
formations. We use two distinct data augmentation techniques both of which
allow transformed images to be produced from the original images with very
little computation, so the transformed images do not need to be stored on disk.
This is a significant saving in both space and time, since WSI images are huge in
size and disk read/write is a time consuming process. For this purpose, first we
arbitrary rotate the training images by (0◦,90◦,180◦,270◦) and flip them along
the vertical and horizontal axis to ensure that the network does not learn any
rotation dependent features. The second technique for data augmentation alters
the intensities of the RGB channels in training images [9]. We perform Principal
component analysis (PCA) on the set of RGB pixel values throughout the train-
ing set and then, for each training image, we add the following quantity to each
RGB image pixel (i.e., Ixy = [IRxy, I

G
xy, I

B
xy]

T ): [p1, p2, p3][α1λ1, α2λ2, α3λ3]T ,
where pi and λi are the i-th eigenvector and eigenvalue of the 3× 3 covariance
matrix of RGB pixel values, respectively, and αi is a random variable drawn
from a Gaussian with mean 0 and standard deviation 0.1. Data augmentation
helps alleviate over-fitting by considerably increasing the amount of training
data, removing rotation dependency and making the training images invariant
to changes in the color brightness and intensity through PCA.

Initialization and Training. The network is trained with stochastic gradient
descent. We initialized all weights with 0 mean by assigning them small, random
and unique numbers from 10−2 standard deviation Gaussian random numbers,
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so that each layer calculates unique updates and integrate themselves as different
units of the full network.

3 Experimental Setup

3.1 Data

In digital histopathology, the H&E stained microscopic slides are scanned using
powerful slidescanner software, such as Aperio, and converted to digital whole
slide images (WSIs). Each WSI supports upto 40X magnification, capturing
bones, tissues, cellular and sub-cellular structures such as nuclei and cytoplasm.
After digitization the digital slides were partitioned into smaller tiles that were
evaluated by pathologists to identify patients cases that capture the variability
in osteosarcoma. Each case consists of an average of 25 individual svs images
representing different sections of the microscopic slide. Three patient cases were
identified for training and testing purposes. The dataset used includes three
random svs slides from each of the three patient cases. From these 9 svs slides,
81 random tiles of size 1024 × 1024 that represent different tissue and cellular
regions with appearance of both normal and malignant regions were used. For
the network to learn the correct representation of tumor, it is important that
the training data contain enough information to allow discrimination between
the different tissue and cellular structures present in the tiles. As such, the
correct resolution used for tile generation was determined through discussions
with senior pathologists and was fixed at 20x, which was then used to generate
the 81 random tiles.

The pathologists then used an in-house tool that we developed to annotate
these 81 tiles as viable tumor, necrosis, non-viable tumor, and non-tumor. As it
is difficult to feed 1024× 1024 images to the neural network, we extracted small
patches from the tiles for training. Patch size was determined through initial trial
runs on the network. The 256× 256 patches limited the CNN due to memory
issues and the 64× 64 patch size had very low accuracy. Hence we decided on a
128× 128 patch size. This resulted in about 5000 image patches in the dataset.
Only 60% patches were used for training, and 20% data was used as validation
set, the remaining 20% data was use for test set. Figure 4. Shows some example
patches in the training set.

3.2 Implementation

We used existing open source libraries to implement the neural network archi-
tecture. The architecture was developed in JAVA using dl4j (deep learning for
java) libraries [1]. The training data was fed to the network in batch sizes of 100
to utilize parallelism and improve the network efficiency.
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Fig. 4. Example patches of different types of regions found in the dataset.

3.3 Results

Evaluation. The objective of the network was to classify the input images
tiles into one of the four regions (viable tumor, coagulative necrosis, osteoid
or fibrosis, non-tumor) mentioned before. The output of the neural network is
the probability distribution with sum 1. The output class is the class with the
highest probability. The regions coagulative necrosis, osteoid and fibrosis fall
into class necrosis. The performance of the neural network was monitored by
assessing the error rate on the validation set, once the error rate saturated after
10 epochs, training was stopped. The total training time for our implementation
of the network was around 7 min.

We evaluate the accuracy of the proposed method quantitatively using accu-
racy A = (True Positives + True Negatives)/(Total Sample Size), precision
P = (True Positives)/(True Positives + False Positives), recall R = (True Pos-
itives)/(True Positives + False Negatives), and F1-Score F1 = (2PR)/(P+R).
Our implementation gives F1-score of 0.86 and an accuracy of 0.84.

Comparative Results. The output of a neural network is dependent on the
architecture of the network. Different architectures, with different depths and/or
numbers of units in the hidden layers result in different output. Shallower net-
works with fewer number of hidden units are more resistant to over-fitting,
require less training data, and train faster per example but can result in loss
of precision due to lack of higher order features. A deeper network with more
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Table 3. Comparison of accuracy, precision, recall, F1-score and running time for 3
different architectures

Architecture Accuracy Precision Recall F1-score Running time
(in minutes)

AlexNet 0.73 0.81 0.0.75 0.78 14

LeNet 0.67 0.75 0.67 0.71 5

Proposed
architecture

0.84 0.89 0.84 0.86 7

Table 4. Comparison of accuracy of our method with multi-level otsu thresholding

Metric Multi-level otsu Proposed neural network

Viable tumor 100 84.5

Necrosis 100 82.6

Non-viable tumor 91 84.9

hidden units may be able to learn patterns from the training data more precisely
but could result in over-fitting of the data and loss of efficiency. In this section
we present and compare the qualitative output of three architectures: AlexNet,
Lenet, and our proposed architecture. We find that the running time of Lenet
is fastest but the accuracy and precision of our proposed architecture is better
than both AlexNet and Lenet (see Table 3).

We then proceeded to compare these results with a recent study which used
color-based multi-level segmentation [2] and found our results to be comparable
in both efficiency and accuracy. Arunachalam et al. [2] used a multi-level otsu
threshold and clustering algorithms to segment out viable-tumor, necrosis, and
non-viable tumor regions. The accuracy of the method is around 90% which is
close to the accuracy of the neural network (see Table 4).

Results Discrepancy. The method proposed by Arunachalam et al. [2]
depends on a threshold value which is derived through otsu segmentation, which
makes the results biased towards training data. It can be argued that the results
are prone to over-fitting and may not generalize well for other datasets whereas
the neural network learns the features through the input images and thus can
avoid over-fitting, while also becoming better once more data is fed in.

4 Future Work

The architecture of the CNN proposed in this paper was chosen on the basis
of datasets and resources available. Justifying any architecture through theory
is an ongoing research and is currently done only through experiments and the
output results. A deeper network architecture will allow for more variations in
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the input but will cost more resources. We can continue to explore different
architectures and strategies for the training of a neural network by changing
the hyper-parameters or pre-processing the input data like using the LAB color
space instead of RGB space or by augmenting the results of initial segmentation
(otsu segmentation) in the input data. These strategies may improve the output
results.

The next step in the development of a fully automatic classification system
is to map the output of the CNN to the whole slide images. This can be done by
applying the full convolution neural network to generate color coded likelihood
maps for the pathologists. This fully automated system can then be used for
clinical diagnosis.

5 Conclusion

In this paper, we proposed a deep learning approach using convolutional neural
network for tumor classification in osteosarcoma. The proposed method is effi-
cient and accurate and focuses on class level identification instead of nuclei level.
The training and evaluation was done on a dataset manually annotated by senior
pathologists. As far as the authors are aware, this is the first paper describ-
ing the applicability of convolutional neural networks for diagnostic analysis of
osteosarcoma. We have shown that the technique has high potential to improve
the diagnostic process and be used as a clinical tool in osteosarcoma analysis.
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Abstract. Understanding disease-disease associations can not only help us gain
deeper insights into complex diseases, but also lead to improvements in disease
diagnosis, drug repositioning and new drug development. Due to the growing
body of high-throughput biological data, a number of methods have been pro-
posed for the computation of similarity among diseases during past decades.
Recently, the disease module theory has been presented, which states that
disease-related genes or proteins tend to interact with each other in the same
neighborhood of protein-protein interaction network. In this study, we propose a
new method called ModuleSim to measure associations between diseases by
using disease-gene association data and protein-protein interaction network data
based on disease module theory. By considering the interactions between dis-
ease modules and each module’s modularity, ModuleSim outperforms other four
popular methods for predicting disease-disease similarity.

Keywords: Disease-disease association � Disease module � Protein-protein
interaction network

1 Introduction

Quantifying the associations among diseases is now playing an important role in
modern biology and medicine, as discovering associations among diseases could be
helpful for us to get a deeper knowledge of pathogenic mechanisms of complex dis-
eases. Based on the hypothesis that similar diseases may be caused by the same or
similar genes, the measurement of disease-disease associations is widely used in the
study of disease gene prediction [1, 2, 33] and drug repositioning [3].
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A number of approaches measuring disease-disease associations have been pro-
posed during last decade [4–8]. Different approaches measures disease-disease asso-
ciations from different perspectives by taking advantage of different biological data.
These approaches can be broadly grouped into two classes: semantic-based methods
and function-based methods [9]. Semantic-based methods take advantage of the
structure of disease terminology such as Disease Ontology (DO) [10] and Medical
Subject Headings (MeSH) [11] to measure the semantic similarity of diseases [12, 13].
Function-based methods are basically based on the hypothesis that similar diseases may
have more same or similar causing genes/gene products [5, 14].

Mathur et al. proposed a method called BOG [15] which calculates disease simi-
larity by comparing the overlapping of disease-related gene sets. Further, Mathur et al.
proposed another method called PSB [16] which computes disease similarity based on
biological process terms of Gene Ontology (GO) [17] associated with disease-related
genes. By exploiting functional associations among disease-related genes based on GO,
PSB outperforms BOG. To get a better performance, many other methods take
advantage of disease-related genes’ interactions in protein-protein interaction networks
(PPIN). FunSim [9] measures disease similarity by using a weighted human PPIN in
which the weight of each interaction measures the functional association of a gene pair
[32]. However, FunSim takes only the first neighbors of each gene into account, rather
than making full use of the entire PPIN. Sun et al. [18] applied graphlet theory [19] to
calculate gene similarity in PPIN. Then they inferred disease similarity by using
disease-related genes’ graphlet similarity. Hamaneh et al. [20] proposed a method that
first assigns weights to all proteins from a disease to the PPIN and back. Then the
method calculates similarity between two diseases as cosine of the angel between their
corresponding weight vectors. NetSim [21] uses random walk with restart (RWR) [22]
to score the functional relevance between a gene and a disease. The functional rele-
vance scores are then used to measure disease similarity.

Although there have been many methods (such as Sun’s method [18], Hamaneh’s
method [20] and NetSim [21]) which take advantage of PPIN to discover disease-
disease associations, these methods rarely consider the modularity of genes related to
each disease in PPIN. According to the disease module theory, the disease-related
genes or proteins are not scattered randomly in PPIN, but tend to interact with each
other, forming one or several connected subgraphs which can be called the disease
module [23, 40]. However, as the PPIN and our knowledge of disease-related genes
remain incomplete, there also exist lots of disease modules that are not observable in
PPIN. In this study, we propose a method to relate diseases based on disease module
theory. In this method, we consider the related genes of two diseases as two modules in
PPIN. We take advantage of shortest path of each gene pair between the two modules
to measure the association of the two modules. Furthermore, for the purpose of
overcoming the incompleteness of disease modules, we also take the modularity of
each disease module into account. In the comparison with other proposed methods used
PPIN, our method shows the best performance.
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2 Materials and Methods

2.1 Materials

Disease-Gene Associations: The disease-gene association data are downloaded from
two databases: SIDD [25] and DisGeNET [24]. By integrating disease-gene associa-
tions from five databases (GeneRIF [34], Online Mendelian Inheritance in Man
(OMIM) [35], Comparative Toxicogenomics Database (CTD) [36], Genetic Associa-
tion Database (GAD) [37], and SpliceDisease [38]), SIDD contains 99658 associations
between 2423 diseases and 10527 genes in total (Fig. 1). SIDD uses DOID [10] as the
unique identifier for each disease.

DisGeNET integrates human disease-gene associations from various expert curated
databases and text-mining derived associations including Mendelian, complex and
environmental diseases [24]. DisGeNET v4.0 contains 429036 associations between
17381 genes and 15,093 diseases. Because of the low reliability of disease-gene
associations from literature in DisGeNET, a disease-gene association is adopted only if
its DisGeNET score is not less than 0.06 [24]. DisGeNET uses Unified Medical
Language System Identifier (UMLS ID) [39] as the unique identifier for each disease.
After mapping disease ids from UMLS ID into DOID, in total, we got 1511 diseases,
6929 genes and 20787 associations between them from DisGeNET.

PPIN: Two PPIN datasets were adopted. One is called hPPIN. As Li et al. [21] did,
hPPIN was built by integrating four existing protein interaction databases (BioGrid

Fig. 1. Evaluation of ModuleSim against DO classification by using different datasets (the
barplot shows similarity scores between disease pairs from the same DO categories, compared
with those from different DO categories and all disease pairs). Note that two diseases are said to
be in the same category if they have at least one common ancestor in the 3rd-level DO categories.

26 P. Ni et al.



[26], HPRD [27], IntAct [28], and HomoMINT [29]). In total, hPPIN contains 17506
proteins and 284476 interactions. The other is human interactome which was formed
by experimentally documented molecular interactions as Menche et al. [23] did. The
interactome integrates protein-protein and regulatory interactions, and metabolic
pathway and kinase-substrate interactions. The union of all interactions in the inter-
actome forms a network which contains 13460 proteins and 141296 physical inter-
actions between them.

2.2 Methods

In disease module theory, a disease is considered as a subgraph consisting of genes
related to the disease and the interactions between these genes in PPIN [23, 40]. In
other words, any perturbation of the nodes in a disease module can be linked to the
disease. If genes in two disease modules overlap or stay in the same neighborhood, the
perturbations leading to one disease will likely disrupt the other disease modules as
well, which results in shared clinical characteristics [23]. However, limited to the fact
that our knowledge of disease-related genes and PPIN are still incomplete, lots of
disease modules are not observable. Based on disease module theory and the frag-
mentation of disease modules, we proposed a method called ModuleSim to calculate
disease-disease associations. Firstly, we use the length of the shortest path to calculate
the strength of two genes’ relevance as follows:

sim g1; g2ð Þ ¼
1; g1 ¼ g2

A � exp�b�sp g1;g2ð Þ; g1 2 PPIN and g2 2 PPIN
0; else

8
<

:
ð1Þ

where sp(g1,g2) represents the length of the shortest path between node g1 and node g2
in PPIN, A and b are two constants. To keep the value of sim(g1,g2) within the range
[0, 1], we used A = 1 and b = 1, respectively. A higher sim(g1,g2) value represents a
closer relationship between g1 and g2. Suppose G is a disease module, which means
G is a gene set associated with a disease, we then measure a gene’s relevance to a
disease as follows:

FG gð Þ ¼ avg
X

gi2G
sim g; gið Þ

� �
ð2Þ

As in Eq. (2), the relevance score of a gene g with the disease is calculated as the
average transformed distance between g and genes in G.

Suppose G1 = {g11, g12, …, g1m} is a disease module which contains m genes,
G2 = {g21, g22, …, g2n} is another disease module which contains n genes. The relat-
edness between the two disease modules is quantified by Eq. (3).

spsim G1;G2ð Þ ¼
P

1� i�m FG2ðg1iÞþ
P

1� j� n FG1ðg2jÞ
mþ n

ð3Þ
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Our knowledge of disease-associated genes and PPIN remain incomplete [23]. This
is to say, there also exist lots of diseases of whose modularity is not obvious. To
overcome the incompleteness of disease modules, we normalize the relatedness score
between G1 and G2 by dividing the average of relatedness scores of themselves as
Eq. (4).

ModuleSim G1;G2ð Þ ¼ 2� spsim G1;G2ð Þ
spsim G1;G1ð Þþ spsim G2;G2ð Þ ð4Þ

In Eq. (4), ModuleSim(G1, G2) represents the ModuleSim of disease module G1

and G2. A higher ModuleSim value represents a closer connection between G1 and G2.

3 Experiments and Results

3.1 Correlation with Disease Classification of DO

The results obtained by ModuleSim were first evaluated against the disease classifi-
cation of DO. DO is a standardized ontology for human disease concepts with stable
identifiers organized by disease etiology [10]. DO (version: releases/2016-05-27)
contains 6930 non-obsolete disease terms and 6921 disease terms under the 3rd-level
categories. We say that two diseases are in the same class, if they have at least one
common ancestor in the 3rd-level DO categories. To investigate the correlation
between ModuleSim and the disease classification of DO, we tested whether disease
pairs from the same DO classes tends to have higher similarity scores than disease pairs
from different DO classes (Fig. 1). Our results show that for all four situations when
using different disease-gene association datasets and PPIN datasets, similarity scores of
disease pairs from the same classes are higher than those from different classes.

3.2 Evaluation of ModuleSim on the Benchmark Set

We adopted the benchmark set method [9] to evaluate ModuleSim with other methods.
70 disease pairs with high similarity derived from two manually checked datasets by
Suthram et al. [30] and Pakhomov et al. [31] were taken as the benchmark set. Receiver
operating characteristic (ROC) curves were then drawn with the benchmark set against
100 random sets. Each random set contains 700 randomly selected pairs.

We compared ModuleSim with other four popular methods which are all using
disease-gene association data and PPIN data to measure disease-disease associations:
Hamaneh [20], FunSim [9], Sun_topo [18], NetSim [21]. As shown in Fig. 2A, when
using disease-gene associations from SIDD [25] and hPPIN as the PPIN, the Hamaneh
method [20], with an average area under the ROC curve (AUC) of 93.7%, had the
worst performance. By considering the functional weights between disease-related
genes in PPIN, FunSim [9] got an AUC of 94.4%. NetSim [21] which took the entire
interaction network into account by using RWR improved the AUC to 95.1%. By using
graphlet theory [19], Sun_topo [18] got a higher AUC of 96.1%. The proposed method,
ModuleSim, got the highest AUC of 96.9%. For a further comparison, we also checked
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how many answer disease pairs out of the top-ranking disease pairs can be found by
ranking the benchmark pairs and the random pairs in descending order based on each
method. From Fig. 2B we can see that, ModuleSim always find the most answer
disease pairs in the top-ranking 150 disease pairs. Furthermore, ModuleSim find all 70
benchmark pairs by using the least top-ranking disease pairs, which showed a
quite good performance. For example, “pneumonia” (DOID:552) and “meningitis”
(DOID:9471) are two diseases which are validated to have high similarity with each
other in the benchmark set. There are only six genes related to “meningitis” based on
SIDD [25], which leads to the result that the disease module of “meningitis” is frag-
mentary. Thus, the average ranking of “pneumonia” and “meningitis” in the 770 dis-
ease pairs (70 benchmark pairs and 700 randomly selected pairs) is very low for all five
methods, as shown in Table 1. However, by considering the modularity of each dis-
eases, ModuleSim obtained an average ranking of 251 of “pneumonia” and “menin-
gitis”, which raised about 100 places compared with Hamaneh and Sun_topo.

Only 55.3% of disease-gene associations in DisGeNET [24] and 11.5% of
disease-gene associations in SIDD [25] are shared with each other, which shows that
the two databases have a big difference in quantity with each other. Similarly, different
PPIN datasets are also very different. The two PPIN datasets (interactome [23] and

Fig. 2. ModuleSim compared with other four methods on benchmark set by using SIDD [25]
and hPPIN [21]. A: average of AUC for 100 permutations. B: the number of answers with
varying the number of top-ranking disease pairs.

Table 1. The average ranking of the disease pair (“pneumonia” and “meningitis”) in 770
disease pairs, based on the datasets SIDD and hPPIN.

Hamaneh FunSim Sun_topo NetSim ModuleSim

Avg ranking 366.45 262.73 354.08 282.04 251.36

Relating Diseases Based on Disease Module Theory 29



hPPIN [21]) used in this paper only have 12560 genes and 90938 interactions in
common. To test the influence of different datasets, we further evaluated the five
methods by using these two different disease-gene association databases and two dif-
ferent PPIN datasets. As shown in Fig. 3, ModuleSim got the best performance in all
four situations, which indicated that ModuleSim have a stable and strong power for
discovering disease-disease associations.

4 Conclusion and Discussion

It is a big challenge to get a deeper insight into the mechanisms between diseases in
modern biology [41, 42]. Measuring disease-disease associations is helpful for us to
gain more knowledge about diseases. A number of methods have been proposed for
measuring disease-disease associations up to now. The methods which take advantage
of disease-gene associations and PPIN have shown a great power to infer disease-
disease associations. However, these methods rarely consider the modularity of genes
related to each disease in PPIN.

According to the disease module theory, the disease-related genes or proteins are
not scattered randomly in PPIN, but tend to interact with each other [23, 40]. In this
study, we proposed a method ModuleSim to discovering disease-disease associations
based on disease module theory. In the result of ModuleSim, similarity scores of
disease pairs from the same DO classes are higher than those from different DO classes.
Furthermore, ModuleSim outperformed other four methods (Hamaneh [20], FunSim
[9], Sun_topo [18], NetSim [21]) in the evaluation of benchmark set.

Fig. 3. Average of AUC for 100 permutations when Modulesim compared with other four
methods on the benchmark set and random sets by using different datasets.
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ModuleSim considers modularity of each disease module when measuring
disease-disease associations. However, our knowledge of disease-related genes and
PPIN remains incomplete. Therefore, lots of disease modules remain incomplete. In the
future, more disease-gene associations and gene-gene interactions with high quality
need to be discovered. In addition, the application of ModuleSim on disease-gene
prediction and drug repositioning is worthy of further investigation.
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Abstract. Given a distance matrix M that represents evolutionary dis-
tances between any two species, an edge-weighted phylogenetic network
N is said to satisfy M if between any pair of species, there exists a path
in N with length equal to the corresponding entry in M . In this paper,
we consider a special class of networks called 1-articulated network which
is a proper superset of galled trees. We show that if the distance matrix
M is derived from an ultrametric 1-articulated network N (i.e., for any
species X and Y , the entry M(X,Y ) is equal to the shortest distance
between X and Y in N), we can re-construct an network that satisfies
M in O(n2) time, where n denotes the number of species; furthermore,
the reconstructed network is guaranteed to be the simplest, in a sense
that the number of hybrid nodes is minimized. In addition, one may eas-
ily index a 1-articulated network N with minimum number of hybrid
nodes in O(n) space, such that on given any phylogenetic tree T , we can
determine if T is contained in N (i.e., if a spanning subtree T ′ of N is a
subdivision of T ) in O(n) time.

1 Introduction

It is important to study the evolutionary history and the relationship among a
set of related species, especially for viruses and bacteria, in order to trace the ori-
gin, understand the infection path, and how they evolved. Rooted (phylogenetic)
trees have been the most popular model for decades. However, when there are
reticulation events such as hybrid speciations or horizontal gene transfers [14],
which are common in viruses and bacteria, rooted trees are not sufficient. Rooted
phylogenetic networks, which are directed acyclic graphs that may contain ver-
tices with in-degree 2, are more appropriate to capture these evolutionary events.
Nodes with in-degree 2 are referred to as hybrid nodes.

Models of Networks: There are many different phylogenetic network models
proposed in the literature. The simplest model is called galled trees. Galled trees
have the property that, when we remove the edge orientations (i.e., make them
undirected), any biconnected component contains at most 1 hybrid node [8].
There are two well-known generalizations on galled trees. One is level-k networks
allowing at most k hybrid nodes in each biconnected component [13]. Thus,
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galled trees are equivalent to level-1 networks. The other is galled networks [9].
In contrast to a galled tree, in which all cycles are edge-disjoint, a galled network
allows cycles to have shared edges.1 There are also other generalizations such as
tree-child networks [4], or other types of networks such as binary nearly stable
networks [7]. Besides the biological motivation, i.e., different models can capture
different types of reticulation events and may be based on different assumptions
(i.e., some types of articulation events may be more likely than the others),
another reason is that the problem of reconstructing a phylogenetic network with
the least possible number of reticulation events is known to be intractable (NP-
hard). Thus, it is desirable to have new models with sound biological motivation
that capture reticulation events that are not captured by existing models while
efficient algorithms exist for solving the reconstruction problem or other related
problems.

In this paper, we consider another class of networks called 1-articulated net-
works. A 1-articulated phylogenetic network is one where each vertex corresponds
to at most one hybrid node, where a vertex V is said to correspond to a hybrid
node U if there exists a pair of disjoint paths between U and V . This definition
of networks is also motivated by a biological observation that articulation events
are unlikely to occur multiple times for a species. More importantly, the class of
1-articulated networks properly contains the class of level-1 networks, i.e., galled
trees (see Fig. 1 for an example); because of this, 1-articulated networks can cap-
ture a larger set of networks that appear in real-life scenarios, and algorithms
for 1-articulated networks are directly applicable for level-1 networks. As for the
comparison between the classes of 1-articulated networks, tree-child networks
and binary nearly stable networks, neither anyone properly contains the other;
thus, if we consider all these classes of networks in a reconstruction problem, we
would have a higher chance of revealing the true evolutionary history among the
species. For 1-articulated networks, we demonstrate that we can derive efficient
linear time algorithms (see below for a more detailed description) to reconstruct
such a network, or solve the tree containment problem (TCP problem). Thanks
to the simplicity of the network structure, the TCP problem can be more easily
solved when the input network is a 1-articulated network, than the case when
the input is a tree-child network or a binary nearly stable network.

The Reconstruction Problem and the TCP Problem: Reconstructing a
phylogenetic networks with different inputs (e.g., a set of phylogenetic trees, a
set of triplets, and a distance matrix) is a fundamental computational problem
in studying phylogenetic networks, and many existing methods are proposed in
the literature. Huynh et al. [10] proposed an algorithm RGNet which constructs
a galled network in O(k2n2) time with k phylogenetic trees as input. Jansson
and Sung [12] presented an algorithm that constructs a galled network given
a dense set τ of rooted triplets in O(|τ |) time. Bryant and Moulton [3] pro-
posed the NeighborNet algorithm, which takes a distance matrix as input (a
distance matrix is a symmetric matrix which describes the evolutionary distance
1 In fact, there is no unifying definition for galled networks in the literature. In some

papers such as [5,10,12], level-1 networks are also referred as galled networks.
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Fig. 1. A galled tree. The split nodes V1, V2 correspond to the hybrid nodes VH1, VH2.
Since each split node in a galled tree corresponds to exactly one hybrid node on the
same galled loop, a galled tree is a 1-articulated network.

between any pair of species), and constructs a phylogenetic network that is pla-
nar. Chan et al. [5] considered ultrametric galled network, and proposed an algo-
rithm that runs in O(n2 log n) time given an input distance matrix. Bordewich
and Tokac [2] presented the NetworkUPGMA algorithm, which constructs a
tree-child ultrametric network in O(n4) time where the input consists of a set
of distances for each pair of species. In this paper, we focus on 1-articulated
phylogenetic network, and design algorithms to construct such kind of networks
when we are given a distance matrix as input. (The formal definition will be
given in the next section.) In particular, we present (i) an O(n2) time (which
is linear to the size of input) algorithm for constructing a 1-articulated network
satisfying a given shortest distance matrix, where all entries are assumed to
represent the correct shortest lengths of the corresponding evolutionary paths;
(ii) for the general case that the distance matrix may record lengths of non-
shortest evolutionary paths, we can still reconstruct the network in O(n5)
time under some reasonable assumptions. Compared to NetworkUPGMA, which
requires the distances of all the possible evolutionary paths for each pair of
species, our algorithm only requires the distance of the shortest one.

Another important computational problem for phylogenetic networks is
called the tree containment problem (TCP). Given a phylogenetic network N
and a particular phylogenetic tree T , one would like to know if T is contained
in N (i.e., if a spanning subtree T ′ of N is a subdivision of T ). The answer
to this problem provides important evidence whether the phylogenetic network
N is consistent with the phylogenetic tree T , where T may capture the evolu-
tion history of a subset of species which are known to be more accurate. This
tree containment problem (TCP) has been discussed in [7] and an O(n2) time
algorithm was given to solve the problem for binary nearly stable networks, and
in [11] which shows that the problem is solvable in polynomial time for level-k
networks or tree-child networks.

In this paper, we show that one can easily index a 1-articulated network N
without skewed loops in O(n) space to solve the TCP problem in linear O(n)
time. Also, for general 1-articulated network which may contain skewed loops,
we give an algorithm that solves TCP in O(mn) time, where m is the number
of nodes in the network.
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2 Preliminaries

2.1 Definitions

A phylogenetic network is a simple directed acyclic graph in which the following
properties are satisfied:

1. The in-degree and out-degree of each node can only be 0, 1, or 2.
2. There is exactly one node, the root, with in-degree 0 and out-degree 2.
3. The nodes with in-degree 2 must have out-degree 1. These nodes are referred

to as hybrid nodes.
4. The nodes with in-degree 1 can have out-degree 0 or 2. The former ones with

out-degree 0 are referred to as leaves, while the latter ones with out-degree 2
are referred to as tree nodes.

In a phylogenetic network for a set S of species, each leaf is labeled by a distinct
species in S. A node V is called a split node corresponding to a hybrid node U
if there exists a pair of edge-disjoint paths, called merge paths, from V to U ;
these two merge paths are said to form a galled loop rooted at V . A galled loop
rooted at V is said to be skewed if one of its merge paths is an edge that links
V directly to the corresponding hybrid node U .

A phylogenetic network is ultrametric if the weight of each edge is positive
real and the sum of edge weights on the directed path from the root to any
leaf (i.e., the distance from the root to any leaf) is the same. The motivation of
defining such networks is based on that the rate of genetic change is constant. [5]
by the property, the following lemma must be true:

Lemma 1. For any vertex V in an ultrametric network, the distances from V
to any of its descendant leaves are equal.

The distance between V and any of its descendant leaves is referred to as the
height of V .

For species A and B, an evolutionary path between A and B in a phylogenetic
network N is a simple path which starts from the leaf labeled by A, goes through
the edges on a path from V to A in reverse direction, where V is some common
ancestor of A and B in N , reaches V , and then goes through the edges on a path
from V to B, and finally reaches the leaf labeled by B. By Lemma 1, we have
the following corollary:

Corollary 1. Let V be the highest vertex on an evolutionary path of length d.
The height of V is equal to d/2.

One may use an |S| × |S| matrix M , called a distance matrix, to record
the evolutionary distance between any two species in S. Precisely, for species
A and B, their distance is stored in the entry M(A,B). The matrix M is thus
symmetric, and the values on the diagonal, which represent the distance from
the species to themselves, shall all be 0. Given a distance matrix M , we say a
phylogenetic network N satisfies M if for any two species A and B, the length
of the shortest evolutionary path between A and B in N is equal to M(A,B).
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Our Problem: In this paper, we want to determine, for any given input dis-
tance matrix M , whether an ultrametric 1-articulated network exists that would
satisfy M . Furthermore, if such a network exists, we want to report one whose
number of hybrid nodes is minimized. We call this problem a minimal satisfying
network (MSN) problem, and the network reported (if any) an MSN.

2.2 Properties of an MSN

Suppose that N is an ultrametric 1-articulated network, with the minimum
number of hybrid nodes, that satisfies a distance matrix M . In the following,
we show some of the important properties about N that will be useful in our
algorithm design. Due to space limitations, we defer the proofs of lemmas and
theorems to the full paper.

Lemma 2. N does not contain any skewed galled loop.

Let dmax be the maximum value in M . For the following lemmas, let Vroot

denote the root of N , and VL and VR be the left and right children of Vroot,
respectively. Further, if Vroot is a split node, let VH be the hybrid node corre-
sponding to Vroot. For convenience, we use Λ(V ) to denote the set of all leaves
reachable from a vertex V in N .

Theorem 1. If |S| > 1, the height of Vroot is dmax/2.

Assume that |S| > 1. Let SH , SL, and SR be sets of species such that

– SH = Λ(VH) if there exists some hybrid node VH corresponding to Vroot.
Otherwise, SH = ∅.

– SL = Λ(VL) \ SH .
– SR = Λ(VR) \ SH .

We say ({SL, SR}, SH) forms a root partition of N . See Fig. 2 for an illustration
of the possible forms of a root partition.

Fig. 2. The possible forms of a root partition. The dot in the first case represents a
single leaf, and the triangles represent the subnetworks.

Lemma 3. For any species A,B ∈ S, M(A,B) = dmax if and only if one of
them is in SL and the other is in SR.

Lemma 4. If SH �= ∅, M(A,X) = M(A, Y ) for any species A ∈ (SL ∪SR) and
X,Y ∈ SH .
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Lemma 5. If SH �= ∅,

max
X∈SH

M(Z,X) < min
B∈(SL∪SR)

M(Z,B)

for any species Z ∈ SH .

Based on the above lemmas, one may use the following Partition procedure
to obtain the root partition of N :

1. Pick a species A from S.
2. Find a species B where M(A,B) is maximized. B must be in SL ∪ SR by

Lemmas 3 and 5.
3. By using B and Lemma 3, find SL (or SR) and pick a species C from it.
4. Find SR (or SL) by using C and Lemma 3.
5. Put the rest of S into SH .

Indeed, we have the following theorem:

Theorem 2. Let SL, SR, and SH be the sets returned by the procedure Par-
tition. Then, for any 1-articulated ultrametric network N ′ that satisfies M ,
({SL, SR}, SH) must be the root partition of N ′.

3 The Algorithm

In this section, we will present a recursive algorithm which builds an ultrametric
1-articulated network that satisfies an input distance matrix (whenever such a
network exists). Our algorithm consists of the following parts:

1. Prepare data structure for the algorithm.
2. Perform the procedure BuildNet, which constructs a network N recursively

with all the vertices labeled with its height, but the weights of edges are not
assigned.

3. Assign weights to edges in N by a graph traversal.
4. Check if N satisfies the distance matrix M . If yes, return N as the output.

Else, report that no network satisfying M exists.

3.1 Data Structures

Each species in the input set S is associated with a unique integer between 1
and |S|. A species set is represented by a linked list, where the elements are
sorted by the integer associated with them. To perform the operations of union,
intersection, or difference of two sets, procedures based on the merging process
in the merge sort can be used. These procedures can run in O(|S1| + |S2|) time
where S1 and S2 are the input sets of these operations.

For the networks, each vertex is represented by a structure that consists of
pointers to its children and parents. The height of each vertex is also stored.
The distance matrix is represented by a 2-dimensional array of size |S| × |S|
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where each row and each column corresponds to a species in S. An array called
leafIndex which consists of |S| vertex pointers is normally used as an index to
locate a vertex created for a species; however, during the network construction
process that involves hybrid nodes, we may select a candidate species Z within a
subnetwork (under a hybrid node), and create a temporary leaf for Z to represent
this subnetwork, so that leafIndex [Z] would be an index from a candidate species
Z to its temporary leaf in the above situation. Details on how the array is used
will be discussed in the next subsection.

3.2 The Procedure BuildNet

The procedure BuildNet takes the set of species S and the distance matrix M
as input, and outputs an ultrametric 1-articulated network that satisfies M , but
with edge weights missing. The basic idea is to partition S into subsets corre-
sponding to different subnetworks, and build each of the subnetworks recursively.
The main steps are summarised as follows:

1. If S contains only one species X, return a leaf labeled by X.
2. Partition S into SL, SR, and SH with the Partition procedure.
3. If SH = ∅:

Run procedure BuildNet2:
– Construct the subnetworks NL and NR recursively with SL and SR as

input, respectively.
– Connect NL and NR.
– Return the connected network.

4. If SH �= ∅:
Run procedure BuildNet3:

– Construct the subnetwork NH with SH as input.
– Pick a species Z from SH .
– Construct the subnetworks NL and NR recursively with SL ∪ {Z} and

SR ∪ {Z} as input, respectively.
– Connect NL and NR.
– Replace the leaf labeled by Z with NH .
– Return the connected network.

Depending on the results of Partition, BuildNet invokes different methods
for construction:
(i) If the set SH is empty, then there shall be no hybrid node corresponding to
the root. In such a case, the subnetworks rooted at the children of the root are
disconnected. Therefore, the subnetworks can just be built recursively with SL

and SR as input.
(ii) Otherwise, SH is nonempty. In such a case, we may intuitively construct
the desired network by first building the networks for SL ∪SH and SR ∪SH , and
merge them. To simplify the task, we pick a species Z from SH to represent SH ,
build the networks NL for SL ∪ {Z} and NR for SR ∪ {Z}, merge these two
networks, and finally replace Z by the subnetwork NH for SH . There are two
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reasons for picking the species Z. The first is that by Lemma 4, for any particular
species A ∈ (SL ∪ SR), any species in SH will have the same distance with A;
then, to get the subnetwork for SL ∪SH , it is the same as to get the subnetwork
NL first, and later replace Z within NL by the subnetwork NH . Thus, we may
use Z as a representative for NH , and avoid considering all species in SH when
we build NL (and NR). The other reason is that the location of the hybrid
node, which links directly to NH , can be determined easily. Firstly, the species
Z has three different roles, namely as a leaf in NL, a leaf in NR, and a leaf
in NH ; we let VZ1, VZ2, and VZ3 to denote the vertices corresponding to Z in
these three cases (See Fig. 3). Once NL and NR are constructed, we can find
the parent VPL of VZ1, the parent VPR of VZ2, and obtain their heights hPL

and hPR, respectively. Moreover, once NH is built, the height hHC of its root
VHC is known. Then, we shall create the hybrid node VH , setting its height to
be (min(hPL, hPR) + hHC)/2, its parents to be VPL and VPR, and its child to
be VHC (See Fig. 4).

If there exists an ultrametric 1-articalted network N ′ that satisfies M ,
Theorem 2 implies that the constructed network N would have the same root
partition as that of N ′. Inductively, this implies that N ′ and N would have the
same structure. Moreover, the height of any corresponding tree nodes in N ′ and
N must be the same. This gives the following lemma.

Lemma 6. If there exists an ultrametric 1-articulated network N ′ with mini-
mum number of nodes satisfying M , the network N constructed by our algo-
rithm has the same topology as N ′. In addition, any corresponding tree nodes,
or leaves, in N ′ and in N have the same height.

Thus, if there exists a network N ′ satisfying M , it remains to show that the
height of the hybrid nodes in N are set properly, so that all edges have positive
edge weights. This will be the focus of the following subsection.

Fig. 3. Maintaining the leafIndex
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Fig. 4. Connecting the hybrid node

3.3 Assigning Edge Weights

Assigning the edge weights can be easily done by a simple graph traversal. When
traversing through an edge (V1, V2), assign the edge’s weight to be (h1−h2) where
h1 and h2 are the height of V1 and V2 respectively. Based on this assignment,
the following lemma is immediate.

Lemma 7. If there exists an ultrametric 1-articulated network N ′ satisfying M ,
then for any vertex V in N , the length of any path from V to any of its descen-
dant leaf is the same. Furthermore, all edge weights are positive. Thus, N is
ultrametric.

Thus, we have the following theorem:

Theorem 3. If there exists an ultrametric 1-articulated network N ′ satisfy-
ing M , the constructed network N will also be an ultrametric 1-articulated net-
work satisfying M .

3.4 Verifying the Network

Note that our algorithm may construct some network N even though there does
not exist any 1-articulated network satisfying M . Thus, we need an extra step
to check if the constructed network N indeed satisfies M . This can be done by
another graph traversal, where when visiting a degree-2 vertex V , we check for
those pairs A and B of species which take V as their lowest common ancestor,
whether M(A,B) is equal to 2 × height(V ). In other words, we only need to
check for any species A ∈ Λ(VL) and B ∈ Λ(VR) where VL, VR are the children
of V .

Theorem 4. The procedure CheckNet reports without reporting failure if and
only if the constructed network N satisfies the distance matrix M .

3.5 Time Complexity

A straightforward analysis shows that Steps 1, 2, and 3 take O(n) time in total,
while Step 4 (CheckNet) takes O(n2) time. Thus, the overall time is O(n2).
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3.6 Reconstructing Networks with More General Matrix

So far, we have assumed that the entry M(A,B) in the matrix M stores the
length of the shortest evolutionary path between species A and B. Yet, in real
applications, the entry M(A,B) may be storing the length of some evolutionary
path between A and B. Now, suppose that there exists a certain ultrametric
1-articulated network N ′ on the species, and M is a distance matrix such that
for any tree node V ′ in N ′, and any two species A and B that are reachable
from V ′, we have:

1. M(A,B)/2 ≤ height(V ′); and
2. M(A,C) = M(B,C) for any C not reachable from V ′.

Then, we can still reconstruct an ultrametric 1-articulated network N that sat-
isfies M . To do so, briefly speaking, we perform the same procedures as in the
no-skewed-loop case:

1. Find a root partition ({SL, SR}, SH) that is consistent with M .
2. Construct the networks for SL, SR, SH , recursively, and connect them to

form the complete network.

The difference here (from the previous algorithm) is that there can be at most
two possible candidates for the root partition, so that a brute force approach
would take Õ(2n) time in the worst case. Yet, we can show that if a network that
satisfies M exists, then using either root partition would lead to a network that
satisfies M , so that we can avoid exponential expansion in the running time.
As for finding a root partition, the procedure is more involved, as the entries in
M may not be shortest distances. Here, we rely on the properties of M to find
the set SH ; this can be reduced to finding a maximal cluster problem discussed
in [5], and in our case can be solved in O(n3) time. Furthermore, we can show
that our algorithm constructs a network with minimal number of hybrid nodes,
and that the total number of nodes is bounded by O(n2). As we now spend
O(n3) time in each node, the total running time is O(n5). We defer the details
to the full paper.

4 Solving TCP Problem for 1-Articulated Netowrks

In this section, we discuss how to solve the tree containment problem (TCP),
where the target is to locate an unweighted tree T within N efficiently (i.e.,
determine if T is contained in N). We first propose an algorithm for general
1-articulated networks. Then, for a network without skew loops, we show how
to build an O(n)-space index on the network, such that given any query tree T ,
the TCP problem can be solved in optimal linear time.
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4.1 Algorithm for General 1-Articulated Networks

The algorithm consists of two phases.

Phase 1: First, for each tree node V in T and N , we compute the species
set Λ(V ). This can be done by a post-order graph traversal starting from the root,
during which Λ(V ) can be computed by a union operation of Λ(VL) and Λ(VR),
where VL, VR are the children of V . If V is a vertex in N , we also compute the
set ΛH(V ) as Λ(VL) ∩ Λ(VR). The set ΛH(V ) is non-empty if and only if V is a
split node. Moreover, in case V is a split node, ΛH(V ) is the set of species which
is reachable from the hybrid node U corresponding to V .

Phase 2: Next, we compare T recursively with N . During the process, we keep
a list X (initialized as ∅) which contains the species that are removed from
further consideration. Let VT and VN be the roots of T and N , respectively. Let
VTL and VTR be the children of VT , and VNL and VNR be the children of VN .
We check if {Λ(VTL), Λ(VTR)} equals to {(Λ(VNL)−X)\ΛH(VN ), Λ(VNR)−X}
or {Λ(VNL) − X, (Λ(VNR) − X) \ ΛH(VN ))}. If not, we conclude that the tree T
is not found within the network N , and report failure. Otherwise, without loss
of generality, asume that it is the former case. Then, we set XL = X ∪ Λ(VTR)
and XR = X ∪ Λ(VTL). Next, we check, recursively, if the subnetwork rooted at
VNL contains the subtree rooted at VTL, and if the subnetwork rooted at VNR

contains the subtree rooted at VTR, using XL and XR, respectively as X. If both
subnetworks contain the desired subtrees, we report T to be found in N .

Time Complexity: Let n be the number of leaves in T or N , and m be the
number of vertices in N . The time spent in each node of T or N is O(n), so the
overall time is O(mn).

4.2 Indexing 1-Articulated Networks Without Skewed Loops

We sketch the main idea as follows.

Preprocessing: Consider a hybrid node U and its corresponding split node V .
Let ({SL, SR}, SH) be the root partition of the subnetwork NV of N rooted at V .
We may represent V by choosing one leaf from each of the sets SL, SR, and SH .
In particular, the leaves from SL or SR are chosen such that they are reachable
from V without passing through any hybrid node. As for the leaf from SH , we
will choose one that is reachable from U without passing through any hybrid
node, if it exists; otherwise, the child of U must be a hybrid node itself, and we
pick an arbitrary leaf from SH . As there are O(n) hybrid nodes in N , the total
space includes the representation of all the hybrid nodes takes O(n) extra space,
along with the O(n) space to store N itself.

Query Algorithm: Given a rooted tree T , we first construct in O(n) time
an O(n)-space data structure such that any lowest common ancestor (LCA) of
any two leaves in T can be reported in O(1) time [1]. Suppose that T can be
located within N ; then, there will be a unique spanning tree T ′ of N that is
a subdivision of T . Based on the constant-time LCA data structure, we can
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determine, for each hybrid node U , its parent node P in T ′ as follows: (i) Take
the three leaves � ∈ SL, r ∈ SR, h ∈ SH from the representation of U ; (ii) Check
the LCAs L1 of (�, r), L2 of (r, h) and L3 of (�, h) in T . (iii) Set the parent of U to
its left parent (i.e., the one closer to �) if L1 = L2, to its right parent if L1 = L3,
and remove U if L2 = L3 (which may happen only if the child of U is a hybrid
node). Once each hybrid node has determined its parent, we obtain a spanning
tree T ′ (possibly containing degree-1 internal nodes), and then we can smooth
the degree-1 nodes of T ′ in O(n) time, and check if T ′ is leaf-label-preserving
isomorphic to T using another O(n) time (say, by Day’s algorithm [6]).
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Abstract. Identifying the interaction among drugs and target proteins is an
important area of drug research, which provides a broad prospect for low-risk
and faster drug development. However, due to the limitations of traditional
experiments when revealing drug-protein interactions (DTIs), the screening of
targets not only takes a lot of time and money, but also has high false-positive
and false-negative rates. Therefore, it is imperative to develop effective auto-
matic computational methods to accurately predict DTIs in the post-genome era.
In this paper, we propose a new computational method for predicting DTIs from
drug molecular structure and protein sequence by using the stacked auto-
encoder of deep learning which can adequately extracts the raw data informa-
tion. The proposed method has the advantage that it can automatically mine the
hidden information from protein sequences and generate highly representative
features through iterations of multiple layers. The feature descriptors are then
constructed by combining the molecular substructure fingerprint information,
and fed into the rotation forest for accurate prediction. The experimental results
of 5-fold cross-validation indicate that the proposed method achieves superior
performance on golden standard datasets (enzymes, ion channels, GPCRs and
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nuclear receptors) with accuracy of 0.9414, 0.9116, 0.8669 and 0.8056,
respectively. We further comprehensively explore the performance of the pro-
posed method by comparing it with other feature extraction algorithm,
state-of-the-art classifier and other excellent methods on the same dataset. The
excellent comparison results demonstrate that the proposed method is highly
competitive when predicting drug-target interactions.

Keywords: Drug-target interactions � Position-specific scoring matrix �
Stacked auto-encoder � Deep learning

1 Introduction

Drug targets are generally those associated with disease or pathological state of bio-
logical molecules, and the identification of them is the basis for drug research and
development. Although much progress has been made over the past few decades, drug
discovery remains a long and expensive process [1–3]. In addition, new drugs typically
reach market needs for ten years, and the number of new molecular entities (NMEs)
approved annually by the US Food and Drug Administration (FDA) as new drugs is
only about 20 [4]. Therefore, researchers have intensified research into the identifica-
tion of the relationship among drugs and targets, hoping to accelerate the pace of drug
development and shorten the time to market.

Traditional drug discovery primarily followed the idea of ‘one drug-one target-one
disease’ and believes that drugs with high selectivity to be safer and more effective. In
accordance with this concept, some effective chemical molecules that affect the specific
proteins are identified. This traditional concept, however, only focuses on the indi-
vidual factors that target drug design in the disease system and ignores the complex
interactions among drugs and their target proteins, so this model does not achieve the
goal of accelerating new drug discovery [5–7]. Recently, more and more researchers
have accepted the idea that the target of drugs is not a single target protein, but multiple
target proteins [8–11]. So how to identify the complex interactions among drugs and
targets rapidly and accurately has become the key to drug development. Because
computational methods have the advantages of short time, low cost, high precision and
wide range in exploring potential drug-target interactions, researchers hope to use it to
solve this problem.

In recent years, many computational methods have been proposed to extrapolate
potential drug-target interactions on a genome-wide scale [12]. Yamanishi et al. inte-
grated the relationship among the pharmacological space, the chemical space and the
topology of drug-target interaction networks to predict the associations among drugs
and targets, and their experimental results have demonstrated that drug-target inter-
actions are more correlated with pharmacological effect similarity than with chemical
structure similarity [13]. Wang et al. employed supervised machine learning methods to
predict the relationship among drugs and targets. In order to solve the problem of
sample imbalance, they are collecting the positive samples from the database, and the
negative samples using the random selection method. [14]. Chen et al. developed a
novel method of Network-based Random Walk with Restart on the Heterogeneous

Computational Methods for the Prediction of Drug-Target Interactions 47



network (NRWRH) to predict potential drug-target interactions on a large scale. The
excellent experimental results show that the proposed method is able to discover new
potential drug-target interactions for drug development [5].

In this paper, based on the hypothesis that the interactions among drugs and target
proteins are closely related to the sequence of the target proteins and the molecular
structure of the drug compounds, a novel computational method is proposed to infer
unknown drug-target interactions on a large scale. The proposed method consists of
three steps: first, it converts the sequence of the target protein into a matrix containing
biological evolutionary information; and then apply the depth learning algorithm to
learn the hidden high-level features; finally, combines these features and drug molecule
fingerprint information and fed into the rotation forest classifier, according to the
decision tree voting results to select the most probable targets. In the experiment, we
make the predictions on the golden standard drug-target interactions datasets involving
enzymes, ion channels, GPCRs and nuclear receptors. In addition, we compared other
feature extraction method and classifier, and the experimental results show that our
approach is a promising method for predicting the mutual relationship of drugs and
targets.

2 Materials and Methods

2.1 Drug Molecules Description

A growing number of studies have shown that drugs with similar chemical structure
have similar therapeutic functions. So far, several types of descriptors have been
designed to represent drugs, including molecular substructure fingerprints, topological,
constitutional, quantum chemical properties, and geometrical. Here we use the chem-
ical structure of molecular substructure fingerprints to effectively represent the drug
[15]. In this type of representation, each molecular structure is encoded as a fingerprint
of a structural key according to a substructure pattern of a predefined dictionary, which
is described by a Boolean vector.

In this experiment, we used the chemical structure of the molecular substructure
fingerprints from PubChem database. It defines an 881 dimensional binary vector to
represent the molecular substructure. Depending on the presence or absence of sub-
structures, the corresponding bits of the vector are encoded as 1 or 0.

2.2 Position-Specific Scoring Matrix

The Position-Specific Scoring Matrix (PSSM) is introduced by Gribskov et al. for
detecting distantly related protein [16]. The structure of PSSM is a matrix of M rows
and 20 columns, where row represents the total number of amino acids in the protein
and column represents the 20 naive amino acids. Suppose R = {._(i,j): i = 1���M and
j = 1���20} and each matrix is represented as follows:
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2
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6
6
4

3

7
7
7
5

ð1Þ

where .i;j in the i row of PSSM mean that the probability of the ith residue being
mutated into type j of 20 native amino acids during the procession of evolutionary in
the protein from multiple sequence alignments. In order to obtain highly homologous
sequences, we set the number of iterations to 3, the value of e-value to 0.001, and other
parameters to the default values.

2.3 Stacked Auto-Encoder

Stacked Auto-Encoder (SAE) is a popular depth learning model, which uses auto-
encoders as building blocks to create deep neural network [17]. The auto-encoder
(AE) can be considered as a special neural network with one input layer, one hidden
layer and one output layer, as shown in Fig. 1.

Given a training sample X, the autocoder first encodes the input X 2 Rd0 into the
hidden representation Y 2 Rd1 by the mapping fc:

Y ¼ fc Xð Þ ¼ ScðWT
1 Xþ b1Þ ð2Þ

where Sc is the activation function of the encoder, and its input is called the activation
of the hidden layer. W1 and b1 is the parameter set with a weight matrix W1 2 Rd0�d1

and a bias vector b1 2 rd1 . In the second step, the decoder maps the representation of
the hidden layer Y to the output layer Z 2 Rd0 by the mapping function fd .

Z ¼ fd Yð Þ ¼ SdðWT
2 Y þ b2Þ ð3Þ

where Sd is the activation function of the decoder,W2 and b2 is the parameter set with the
weight matrix W2 2 Rd0�d1 and the bias vector b2 2 rd0 . The parameters are learned by
back-propagation through the minimizing the loss function HðX; ZÞ in the formula 4.

H X;Zð Þ ¼ Hr X; Zð Þþ 0:5s W1k k22 þ W2k k22
� �

ð4Þ

Fig. 1. Structure of auto-encoder

Computational Methods for the Prediction of Drug-Target Interactions 49



where Hr X; Zð Þ is the reconstruction error, and s is the weight decay cost. To minimize
reconstruction errors, we need to represent as much of the original input as possible on
hidden layer features. In this way, the hidden layer learns the feature information of the
original input to the maximum extent.

The combination of multiple auto-encoders together constitutes the stacked
auto-encoders, which has the characteristics of deep learning. Figure 2 shows the
structure of the stacked auto-encoder with h-level auto-encoders which are trained in the
layer-wise and bottom-up manner. The input vector is received at the first level of the
auto-coder and sent to its hidden layer after training. The second layer of the auto-encoder
receives data from the first layer, and sent to its hidden layer after training. The raw data is
transformed from layer to layer up to the top layer. The activation function is usually the
sigmoid function or tanh function. After completing these unsupervised features training,
the entire neural network can use the tagged data to fine-tune the training parameters. The
hidden layer of the highest layer auto-encoder can be used as the feature of the original
data extraction by the stacked auto-encoder and can be applied to classifiers. In this paper,
we set up a 3 layer auto-encoder, and use the rotation forest as the final classifier.

2.4 Rotation Forest Classifier

The rotation forest (RF) proposed by Rodriguez et al. [18] as a popular ensemble
classifier has been widely used in various fields. In the execution of RF, the samples are
first randomly divided into different subsets; then each subset is rotated to increase
diversity using the Principal Component Analysis (PCA); finally, the transformed
subsets are fed into different decision trees. The final result of the classification is
generated by voting on these decision trees. The steps for rotation forest are as follows

Let M denote the sample set, X ¼ ðx1; x2; . . .; xnÞT be an n � L matrix which is
composed of n observation feature vector for each training sample and Y ¼
ðy1; y2; . . .; ynÞT denote the corresponding labels. Therefore, the training samples can be
expressed as xi; yif g, wherein xi ¼ ðxi1; xi2; . . .; xiLÞ be a L-dimensional feature vector.
Suppose that the sample set is randomly divided into K subsets of the same size by an
appropriate factor and transformed by PCA. And then all the coefficients of the prin-
cipal components are rearranged and stored to form a rotation matrix to change the
original training set. In this case P decision trees in the forest can be expressed as

Fig. 2. Structure of stacked auto-encoders
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R1;R2; . . .;RP, respectively. The preprocessing steps of the training set for a single
classifier Ri are shown below:

(1) The sample set M is randomly divided into K (a factor of n) disjoint subsets, and
each subset contains the number of features is n=k.

(2) Select the corresponding column of the feature in the subset Mi;j to form a new
matrix Xi;j from the training dataset X. A new training set X

0
i;j which is extracted from

Xi;j randomly with 75% of the dataset using bootstrap algorithm. Loop K times in this
way, so that each subset is converted

(3) Matrix X
0
i;j is used as the feature transform by principal component analysis

(PCA) technique for producing the coefficient matrix Si;j, which jth column coefficient
as the characteristic component jth.

(4) A sparse rotation matrix Gi is constructed, and its coefficients which obtained
from the matrix Si;j expressed as follows:

ð5Þ

In the prediction period, provided the test sample x, generated by the classifier Ri of
to determine x belongs to class yi. And then the class of confidence is

calculated by means of the average combination, and the formula is as follows:

ð6Þ

Therefore, the test sample x easily assigned to the classes with the greatest possible.
In this experiment, the parameters of the rotation forest are optimized by the grid search
method, and finally set K to 52 and L to 5. The flow chart of the proposed method is
shown in Fig. 3.

Fig. 3. The flow chart of the proposed method
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3 Results and Discussion

3.1 Evaluation Criteria

Evaluation criteria are particularly important for measuring methods. The advantages
and disadvantages of this method can be objectively reflected by comparing with other
methods under the unified evaluation criteria. The evaluation criteria used in this paper
include accuracy (Accu.), sensitivity (Sen.), precision (Prec.), and Matthews correlation
coefficient (MCC). They are calculated as:

Accu: ¼ TPþ TN
TPþ TN þFPþFN

ð7Þ

Sen: ¼ TP
TPþFN

ð8Þ

Prec: ¼ TP
TPþFP

ð9Þ

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TN þFPð ÞðTN þFNÞp ð10Þ

where TP (true positive) denotes the number of positive samples correctly identified;
FP (false positive) denotes the number of positive samples incorrectly identified; TN
(true negative) denotes the number of negative samples correctly identified; FN (false
negative) denotes the number of negative samples incorrectly identified. The Receiver
Operating Characteristic (ROC) curve [19] is introduced to visually display the per-
formance of classifier.

3.2 Assessment of Prediction Ability

In this paper, we use 5-fold cross-validation to assess the predictive ability of our
model in the golden standard datasets involving enzymes, ion channels, GPCRs and
nuclear receptors. Cross-validation can not only prevent over-fitting, but also can test
the stability of the model. Its implementation steps are: firstly, all the samples are
randomly divided into five disjoint subsets of the equal number; then, each time one
different subset is used as test set, and the remaining four is used as training set, so that
the formation of the five models; finally, the five models are used to predict the
classification, and the average value of them is the final result.

The proposed model performs well in the golden standard datasets: enzymes, ion
channels, GPCRs and nuclear receptors. Table 1 lists the experimental results on the
enzyme dataset, it yielded an accuracy of 0.9414, sensitivity of 0.9555, precision of
0.9293, MCC of 0.8832 and AUC of 0.9425. And their standard deviations are 0.0030,
0.0064, 0.0067, 0.0058 and 0.0022, respectively. The highest accuracy of the five
models reached 0.9462, and the lowest also reached 0.9385. Table 2 shows the per-
formance of our model implementation in the icon channel dataset. The accuracy,
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sensitivity, precision, MCC and AUC of cross-validation are 0.9116, 0.9569, 0.8778,
0.8271 and 0.9107, respectively. The standard deviations for these criteria values are
0.0086, 0.0188, 0.0219, 0.0162 and 0.0074. Table 3 lists the results when the GPCRs
dataset is used to predict drug-target interactions. The average accuracy, sensitivity,
precision, MCC and AUC are 0.8669, 0.8164, 0.9102, 0.7396 and 0.8743, respectively.
The standard deviations for these criteria values are 0.0446, 0.0651, 0.0380, 0.0837 and
0.0417, respectively. The highest accuracy of the five models reached 0.9331. Table 4
summarizes the statistical results of the cross-validation of nuclear receptor dataset. We
achieved an accuracy of 0.8056, sensitivity of 0.7627, precision of 0.8410, MCC of
0.6188 and AUC of 0.8176. Their standard deviations are 0.0439, 0.1284, 0.0688,
0.0712 and 0.0676, respectively. Figures 4, 5, 6 and 7 show the ROC curves obtained
on the enzymes, ion channels, GPCRs and nuclear receptors datasets by the proposed
method.

Table 1. The 5-fold cross-validation results were generated on the enzyme dataset by using the
proposed method

Test set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 93.93 96.43 91.91 87.97 94.50
2 94.62 95.95 93.59 89.25 94.21
3 93.85 95.43 92.61 87.73 94.03
4 94.19 94.95 93.32 88.39 94.05
5 94.11 94.99 93.22 88.24 94.46
Average 94.14 – 0.30 95.55 – 0.64 92.93 – 0.67 88.32 – 0.58 94.25 – 0.22

Table 2. The 5-fold cross-validation results were generated on the icon channel dataset by using
the proposed method

Test set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 91.86 96.71 88.55 84.05 90.91
2 90.51 97.59 85.24 81.89 91.28
3 91.53 96.81 86.94 83.59 91.62
4 90.00 93.88 87.07 80.25 89.86
5 91.89 93.46 91.08 83.78 91.69
Average 91.16 – 0.86 95.69 – 1.88 87.78 – 2.19 82.71 – 1.62 91.07 – 0.74

Table 3. The 5-fold cross-validation results were generated on the GPCR dataset by using the
proposed method

Test set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 86.61 82.68 89.74 73.46 86.56
2 93.31 91.13 94.96 86.66 92.97
3 83.46 79.51 85.09 66.93 83.84
4 81.89 73.05 92.79 66.09 83.39
5 88.19 81.82 92.52 76.68 90.40
Average 86.69 – 4.46 81.64 – 6.51 91.02 – 3.80 73.96 – 8.37 87.43 – 4.17
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3.3 Comparison Between RF Classifier and Support Vector Machine
Classifier

Support Vector Machine (SVM) is a supervised learning algorithm, which has out-
standing performance on regression tasks and two-class classification problems

Table 4. The 5-fold cross-validation results were generated on the nuclear receptor dataset by
using the proposed method

Test set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 86.11 87.50 82.35 72.16 86.25
2 83.33 84.62 73.33 65.49 88.29
3 77.78 72.73 88.89 56.98 77.27
4 80.56 80.95 85.00 60.47 84.76
5 75.00 55.56 90.91 54.27 72.22
Average 80.56 – 4.39 76.27 – 12.84 84.10 – 6.88 61.88 – 7.12 81.76 – 6.76

Fig. 4. The ROC curves were generated
on the enzyme dataset by using the pro-
posed method

Fig. 5. The ROC curves were generated
on the icon channel dataset by using the
proposed method

Fig. 6. The ROC curves were generated
on the GPCR dataset by using the pro-
posed method

Fig. 7. The ROC curves were generated
on the nuclear receptor dataset by using
the proposed method
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[20–22]. In this section, we use the same features to compare the proposed classifier
with the state-of-the-art SVM classifier. After the parameters of the SVM are optimized
by the grid search method, the parameter c is set to 20, g is set to 800. The results of the
comparison between them on the enzyme dataset are summarized in Table 5. Our
method has achieved good results on all evaluation criteria including accuracy, sen-
sitivity, precision, MCC and AUC. They increased by 7.59%, 3.27%, 10.11%, 14.37%
and 1.85%, respectively. While the standard deviations decreased by 0.82%, 0.28%,
0.80%, 1.58% and 0.34%, respectively (Fig. 8).

3.4 Comparison with State-of-the-Art Methods

To test the robustness and reliability of the proposed method, we compared it with
state-of-the-art methods on the golden standard datasets. We collected the AUC values
generated by the four methods on the enzymes, ion channels, GPCRs and nuclear
receptors datasets. As shown in Table 6, our method performs best on the enzymes, ion
channels and GPCRs datasets with AUC values of 0.9425, 0.9107, and 0.8743,
respectively. On the nuclear receptors dataset, the highest value obtained by the
NetCBP method is 0.856, but our method also achieved 0.8176 results, which is only

Table 5. Comparison of cross-validation results between the RF classifier and the SVM
classifier on the enzyme dataset

Test set Accu. (%) Sen. (%) Prec. (%) MCC (%) AUC (%)

1 86.41 93.21 82.19 73.47 92.85
2 87.61 92.07 84.78 75.47 93.12
3 84.70 91.37 80.84 69.97 92.00
4 86.92 91.46 83.47 74.21 92.25
5 87.12 93.26 82.82 74.85 91.80
Average 86.55 – 1.12 92.28 – 0.92 82.82 – 1.47 73.95 – 2.16 92.40 – 0.56
Our method 94.14 – 0.30 95.55 – 0.64 92.93 – 0.67 88.32 – 0.58 94.25 – 0.22

Fig. 8. The ROC curves were generated on the enzyme dataset by using the SVM classifier
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3.84% lower than it, also reached the average level. The results of the comparison show
that the stacked auto-encoder combined with the rotation forest classifier can improve
the prediction ability on the golden standard datasets (Table 6).

4 Conclusion

In this paper, based on the idea that the relationship among drugs and targets is largely
influenced by the chemical structure of the drug and the sequence information of the
protein, we propose a novel computational method to infer potential unknown
drug-target interactions on a genome-wide scale by integrating protein amino acid
sequence and drug molecular structure. To extract more representative features, we use
deep learning technology to learn the protein sequence that is converted into the matrix
containing biological evolutionary information. And then combine with the molecular
fingerprint information to form the feature descriptor sent to the rotation forest
for classification. The proposed method is applied to four classes of target proteins,
including enzymes, ion channels, GPCRs and nuclear receptors. To evaluate the per-
formance of our method, we experimented with different feature extraction method,
classifier, and compared with other methods. Excellent experimental results show that
our method has a prominent ability in mining the hidden interactions among drugs and
targets. We have reasons to believe that the proposed method will play an important
role in promoting the research and development of drugs. In future work, we plan to
integrate more biology knowledge, using more advanced machine learning methods to
improve the ability to predict.
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Abstract. MicroRNAs are small endogenous RNAs that play important roles in
gene regulation. With the accumulation of expression data, numerous approa-
ches have been proposed to infer miRNA-mRNA regulation from paired
miRNA-mRNA expression profiles. These mainly focus on discovering and
validating the structure of regulatory networks, but do not address the prediction
and simulation tasks. Furthermore, functional annotation of miRNAs relies on
miRNA target prediction, which is problematic since miRNA-gene interactions
are highly tissue-specific. Thus a different approach to functional annotation of
miRNA-mRNA regulation that can generate context-specific expression levels is
needed. In this study, we analyzed paired miRNA-mRNA expressions from
breast cancer studies. The expression of mRNAs is modeled as a multiple linear
function of the expression of miRNAs and the parameters are estimated using
stepwise multiple linear regression (SMLR). We demonstrate that the SMLR
model can predict mRNA expression patterns from miRNA expressions alone
and that the predicted gene expression levels preserve differentially regulated
gene sets, as well as the functional categories of these genes. We show that our
quantitative approach can determine affected biological activities better than the
traditional target-prediction based methods.

Keywords: Micro-RNA � Gene expression � Co-expression � Stepwise
multiple linear regression

1 Introduction

MicroRNAs (miRNAs) are small (*22 nucleotides) non-coding endogenous RNAs
that play important roles in gene regulation by targeting the messenger RNA (mRNA)
of protein-coding genes [1]. In most cases, though not always [2], miRNAs act to
repress the expression of their target gene [3, 4]. miRNAs guide the repression by either
degrading the mRNA molecules, decreasing the translational efficiency, or both. When
a miRNA and its target mRNA are highly complementary, the pairing is extensive and
the miRNA directs the cleavage of the mRNA, which is the predominant mode of

© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 59–70, 2017.
DOI: 10.1007/978-3-319-59575-7_6



miRNA-guided repression in plants. In animals, extensive miRNA-mRNA comple-
mentary pairing and the consequent cleavage of mRNA is less prevalent. Nevertheless,
recent studies indicate that target mRNA degradation provides a major contribution to
translational repression in animals [5, 6].

miRNAs participate in a wide range of biological processes, affecting the expres-
sion of over 60% of mammalian genes [7]. Over the past decade, it has become clear
that miRNAs contribute to almost all known physiological and pathological processes,
cancer being of particular interest. Since dysregulation of miRNAs is closely linked
with dysregulation of oncogenes and tumor suppressors, studying the biological pro-
cesses of miRNAs provides unique opportunities for the development of miRNA-based
diagnostics and treatment of cancer [8, 9].

To understand the functions of miRNAs, a central goal and major challenge is to
determine their target mRNAs. There are many experimental techniques for target
identification of miRNAs of interest [10]. These experimentally identified
miRNA-mRNA interactions are collected in several repositories, such as TarBase [11]
and miRTarBase [12]. So far thousands of miRNAs have been identified in animals and
plants, but only a small fraction of targets for these miRNAs have been validated
experimentally, because of the low efficiency and high cost of experimental validation.
Sequence-based computational methods have been developed to fill this gap by gen-
erating putative lists of miRNA-mRNA pairs, which have greatly reduced the number
of interactions researchers need to validate experimentally. Widely used miRNA target
prediction methods include TargetScan [7], miRanda [13], PicTar [14], TargetScanS
[15], and DIANA-microT [16].

Currently, reliable prediction of miRNA-mRNA interactions remains a challenge.
Predictions based solely on sequence information have high false positive rates [17]. In
order to improve the performance, novel integrative approaches that combine sequence
based predictions and miRNA experimental data are needed. Genome-wide mRNA
expression measurement has become an indispensable tool in molecular biology.
Similarly, technological advances have spawned a multitude of miRNA profiling
platforms [18]. They together provide paired miRNA-mRNA expression profiles that
enable researchers to pinpoint important miRNAs and their roles in particular bio-
logical processes.

Several methods that incorporate these high throughput data have been developed
to find miRNA-mRNA regulatory pairs, including those based on correlation [19–22]
or mutual information [23]. The findings from gene-expression analysis can be inte-
grated with those from sequence-based methods by intersection [24] or weighted sum
[20]. These simple approaches are efficient in extracting potential interactions from big
datasets but they only consider independent pairwise miRNA-mRNA associations.
Since a mRNA can be targeted by several miRNAs and its expression profile is affected
by multiple miRNAs at the same time, multiple linear regression models have been
proposed [25, 26]. When the data is co-linear or the number of samples is less than the
number of regulators, the linear model is underdetermined and optimal solution is
unattainable. This can be circumvented by introducing penalty terms to the system,
such as L1 � norm, L2 � norm, or combination of both, of the coefficients of regulators
[27]. In addition to regression-based approaches, several Bayesian models have been
developed, inferring the posterior probability of real miRNA-mRNA interactions based
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on the expression data, such as implemented in GenmiR++ [28] and its variations
[29–31]. Bayesian network structure learning has also been proposed [32], in which
regulatory relationships are represented as a graph and the graph that is best supported
by the expression data is sought after.

The approaches proposed so far have focused on inference and validation of the
“structure” of the miRNA-mRNA regulatory networks from the paired miRNA-mRNA
expression data. Although knowing which genes are targeted by which miRNAs is of
great value, it is not sufficient for determining whether a gene would be differentially
expressed in a particular cellular context.

We have previously shown that a simple linear model is able to quantitatively
predict and simulate gene expression levels in time-series data [33]. In this study, we
investigate the application of a similar linear model for quantitative estimation of
mRNA expression levels from miRNA data. The present study is unique in its focus on
explicit quantitative modeling of gene expression levels, rather than just identifying
miRNA targets.

2 Methods

We infer miRNA-mRNA regulatory interactions by analyzing paired miRNA-mRNA
expression data using stepwise multiple linear regression (SMLR) [33]. Suppose there
are M mRNAs and N miRNAs of interest; the expression level of each mRNA is
modeled as a linear function of the expression levels of the miRNAs:

yi ¼ bi0 þ
XN

j¼1
bijxj þ ei ð1Þ

where yi and xj are variables representing the expression of mRNA i and miRNA
j respectively (i ¼ 1; 2; . . .;M and j ¼ 1; 2; . . .;N); ei is the error term; and bi0 is a
constant term representing the baseline mRNA expression. The bij term characterizes
the regulatory effect of miRNA j on mRNA i. We identify the coefficient weights bij
using stepwise multiple linear regression with a forward selection strategy, as described
in our previous study [33]. Briefly, the predictors for a given gene yi are identified
starting with the inclusion of the constant term. In each forward selection step, indi-
vidual predictor variables are considered for addition based on their statistical signif-
icance in the regression fitting. The p-value of an F-statistic for each variable is
calculated to determine whether to include or exclude that variable in the model, using
the null hypothesis that its weight coefficient is zero.

Suppose there are L samples; we can denote the expression of mRNA i and miRNA
j across samples as row vectors: yi ¼ yi1; yi2; . . .; yiL½ � and xj ¼ xj1; xj2; . . .; xjL

� �
. More

compactly, let X ¼ 1; x1; x2; . . .; xN½ � and Y ¼ y1; y2; . . .; yM½ �, with each row repre-
senting a mRNA or miRNA and each column representing a sample. If the data is
already normalized, the constant term 1 in X can be dropped, leaving X and Y with
dimensions ofM-by-L and N-by-L, respectively, and representing the experimental data
of M miRNAs and N mRNAs across L samples. Let bi ¼ bi0; bi1; bi2; . . .; biN½ � and
B ¼ b1; b2; b3; . . .; bM½ �. Then the SMLR model can be written in a simple matrix
form:
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Y ¼ B � X ð2Þ

The coefficient matrix B is M-by-N, which represents miRNA-mRNA regulatory
interactions from M miRNAs and N mRNAs. Note that the coefficient matrix B is
sparse, since the coefficients of insignificant interactions are set to zero.

Before estimating the interaction coefficients from training data and predicting gene
expression levels, we need to perform necessary data pre-processing. Since we want to
have a general model that works for expression datasets from different platforms and
given the fact that most expression data available on Gene Expression Omnibus
(GEO) database have already been normalized based on different assumptions
regarding the specific platform, we avoid extra normalization across each sample unless
necessary. First, we remove probes (genes) that have more than 3 missing data points
and impute the missing value of the rest using the k-nearest-neighbor method with
k = 3. Next, we center and scale the expression of each probe (gene) to have a mean
value of zero and a standard deviation of one. This transformation does not alter the
correlation between genes or the results of t-test for samples from different subgroups.
Data preprocessing ensures that expression levels from different samples are on the
same scale and that our predicted values can be directly compared with those from the
real data. After preprocessing, we estimate the interaction coefficients B using stepwise
multiple linear regression [33].

We evaluate the accuracy of the model predictions on both the training and inde-
pendent testing datasets. In particular, we focus on how well the predictions preserve
the differential expression profiles, as the list of differentially expressed genes is one of
the most important outcomes from microarray studies. For both the real and predicted
data, we perform Student’s t-test to identify the genes that are significantly differen-
tially expressed between experimental groups and analyze the overlap between the lists
of genes generated from the real and predicted data.

A common downstream task in differential expression studies is the enrichment of
differentially expressed genes into functional categories [34]. Here, we propose to use
the mRNA levels estimated from our SMLR model for downstream functional anno-
tation tasks. Considering any negative coefficient in the matrix B to indicate a targeting
interaction, we evaluate the ability of our approach to discover mRNA targets and
compare its performance to the TargetScan target prediction method [15] and to a
negative correlation method where negatively correlated miRNA-mRNA are assumed
to be targeting interactions (Pearson p < 0.01). Note that our method does not dis-
tinguish direct interactions from transitive ones or from those arising from co-
regulation. Regardless of the source of the coefficients, our approach generates esti-
mates of mRNA expression values, just as if they were obtained from a microarray
gene expression experiment study. Once we obtain these estimated gene expression
levels, we calculate a predicted list of differentially expressed genes and then perform
gene set enrichment analysis using the DAVID web service [35]. Functional annotation
is performed against OMIM, GO terms, BBID pathway, and KEGG pathway data-
bases. We evaluate the performance on the functional enrichment task by comparing
the resulting functional categories with those obtained from the real mRNA data and
those obtained using target prediction methods.
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In the following section, we first illustrate the application of SMLR to predict gene
expression levels and functional categories, using a breast cancer expression profiling
dataset. We then evaluate the ability of the model coefficients estimated from one
dataset to generalize to another dataset generated from different experimental platforms.
We compare the gene lists and functional categories predicted from miRNA data to
those obtained from the real data and from TargetScan.

3 Results

In order to evaluate the ability of the SMLR model to predict gene expression levels
from miRNA data, we first used the dataset available from a paired miRNA-mRNA
study [36, 37], in which miRNA and mRNA profiles were obtained from the same
primary breast cancer carcinomas (GSE19536, GSE22220), where the TP53 mutational
and estrogen receptor (ER) status of each sample are also available. These samples are
part of a larger cohort from the Oslo region [38].

After preprocessing, we obtained normalized expression profiles for 489 miRNAs
and 40996 genes. We then performed leave-one-out-cross-validation (LOOCV) to
evaluate the model, where we set aside one of the samples as the test sample and
calculated the interaction coefficients from the remaining 100 training samples. The
resulting model is then applied to the miRNA profiles from the training samples and the
test sample separately. This procedure is repeated with each sample in the dataset used
as the test sample.

Hierarchical clustering of the 1000 most differentially expressed mRNAs in the real
data is shown in Fig. 1 (left). For comparison, a heatmap of the predicted expression
levels are shown side-by-side (Fig. 1, right) with the same row and column arrange-
ments. The predicted data displays surprisingly similar expression patterns, supporting

Fig. 1. Hierarchical clustering of mRNA expression. Left: Hierarchical clustering of the 1000
most differentially expressed mRNAs from the GSE19536 dataset. Right: expression levels of the
same mRNAs predicted from the paired miRNA expression data, using SMLR with
leave-one-out-cross-validation strategy. Rows are mRNA probes and columns are samples.
Predicted data is shown with the same row and column arrangement as the real data. Root mean
squared error (RMSE) of all predicted values was 1.11.
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the idea that the miRNA expression alone provides a good summary of the gene
expression state of the cell.

In order to further evaluate the reliability and usefulness of the gene expressions
predicted from miRNA data, we examined whether the predicted values can identify a
similar set of differentially expressed mRNAs. A two-sampled t-test on predicted gene
expression data was performed between the ER-positive and ER-negative subgroups of
samples. The p-values of the t-test are compared to those obtained from the original
gene expression data (See Fig. 2-Left). These two set of p-values are highly correlated
(r = 0.77). The mRNAs that are differentially expressed in the real data were likely to
be found differentially expressed in the predicted data as well.

Genome-wide microarray analysis is often used to prioritize a set of genes for
follow-up wet-lab experimentation; such as reporter assays to confirm transcription,
measurement of protein levels by northern blots, or knock-out experiments to evaluate
phenotypic outcomes resulting from the absence of a gene. As such, it is important that
our predictions preserve the ranking of the differentially expressed genes. Figure 2-
Right shows the overlap between the top-k most differentially expressed gene sets
obtained from the real and predicted data. The figure also shows the amount of overlap
for gene sets obtained with the commonly used p-value thresholds of 0.01 and 0.05. At
different top-k or p-value cut-offs, about half of the genes from the predicted gene set
are in common with the real gene set.

Considering the noisy nature of gene expression data and the biological complexity
of the rules governing translation of mRNAs to different protein isoforms, differential
expression detected in microarray experiments is not conclusive for similar expression
of the encoded proteins or for regulation of a particular phenotype the genes are

Fig. 2. Left: Comparison of differentially expressed mRNAs identified from the real and
predicted expression data. Each point represents a mRNA, where the x and y axes show
the −log10 transformed p-values obtained from an unpaired t-test in real and predicted data,
respectively, comparing ER-positive and ER-negative breast cancer samples. The least-square
fitted line is shown in red. Right: Amount of overlap between the lists of differentially
expressed genes in real and predicted data. Percentage overlap between the most differentially
expressed gene sets obtained from real and predicted data is shown. Each bar shows gene sets
obtained with either a top-k or p-value criteria. After false discovery rate (FDR) correction, there
were 1923 and 3942 mRNAs with p-value <0.01 and 0.05, respectively. (Color figure online)
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involved in. Gene set enrichment is commonly utilized to find biological functions
affected by the concerted changes in a set of genes.

For a miRNA study, the functional annotations of miRNAs of interest can be
obtained by enrichment analysis with a set of their target mRNAs. Traditionally, the set
of miRNAs of interest are selected according to their differential expression patterns
and their targets are selected from sequence-based target prediction algorithms or from
experimentally validated targets. All targets of differentially expressed miRNAs are
then (falsely) assumed to also be differentially regulated, even though these target
genes are also targeted by other non-differentially expressed miRNAs. This is an
unrealistic assumption that results in thousands of genes, limiting the statistical power
of the enrichment analysis. This is demonstrated in Fig. 2-Right, where we compare the
accuracy of the genes assumed to be differentially regulated from negative correlation
and TargetScan predictions (17% and 22%, respectively) with those obtained from our
method (63% and 67% for the same number of genes). Compared to context-agnostic
target-prediction methods, we more effectively utilize the cellular context available
from the state of all miRNAs in determining whether a gene is differentially expressed.

We performed functional annotation of the gene lists using DAVID [35]. For real
data, which is used as the ground truth, and for SMLR, we used differentially expressed
genes (p < 0.01) in real and predicted expression data, respectively. For other methods,
the gene lists were formed by combining all of the targets of differentially expressed
miRNAs (p < 0.01). Overlap of the functional annotation terms obtained from different
methods with those generated from the real data are shown in Fig. 3-Right. Top-3
functional categories enriched from the real data were: Phosphoprotein, Alternative
Splicing, and Splice Variant. SMLR was able to generate the same three terms in its
top-3; whereas TargetScan and negative correlation only ranked only one of them in

Fig. 3. Left: Functional enrichment from different methods. Percent overlap of functional
annotations obtained from different methods with those obtained from real data are shown. At
each p-value cutoff from SMLR, the same number of top-k annotations from each method are
compared. Full list of enriched terms is available in the supplementary data. Right: Comparison
of functional enrichment in GSE19536 dataset. SMLR is trained using GSE22220 dataset and
differentially expressed genes from the predicted GSE19536 data are used for gene set
enrichment. Negative correlation and TargetScan methods use all the predicted targets of
differentially expressed miRNAs in GSE19536.
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their top-3 lists. For the top-10 functional annotations obtained from each method, 70%
were in common between results from real data and SMLR prediction, sharing similar
rankings in statistical significance; while 40% and 10% were in common for negative
correlation and TargetScan methods. These results support the claim that gene
expression values predicted from miRNAs alone can capture the affected biological
processes and that the functional annotations from estimated mRNA values are more
accurate than those from collection of predicted targets.

The results above were obtained by leave-one-out cross-validation within a single
experimental study, where each miRNA to mRNA mapping in a test sample was done
using a model trained on the rest of the samples. Here we also evaluate the
cross-database performance of SMLR by applying the model trained from one study to
a dataset from an independent experimental study. Specifically, we train a model on
GSE22220 dataset [36] and test its prediction performance on GSE19536 dataset [37].
Since miRNA-mRNA interactions are highly tissue-specific and development-specific,
we focus on datasets from the same cancer type here. Although both datasets were from
breast cancer samples, they used different microarray platforms for mRNA and miRNA
profiling.

In order to perform a cross-database application of the model, we first find the
mRNAs and miRNAs that are in common between the two studies. Since the studies
use different microarray platforms with different probe IDs, we convert the mRNA
probe IDs to their GeneBank accession numbers and the miRNA probe IDs to their
miRBase IDs. This results in 14873 mRNAs and 232 miRNAs that are in common
between the two studies.

The comparison of the heat maps generated from real and predicted data illustrates
that SMLR is able to predict the overall expression profiles that reflect the ER status of
the samples (See Fig. 4, top row). We observe the same behavior when the training and
test datasets were switched (Fig. 4, bottom row). Taking the differentially expressed
mRNAs from the predicted GSE22220 data (p-value < 0.01) and performing gene set
enrichment, again finds functional annotations that are in better agreement with those
obtained from the real data, when compared to the agreement of the annotations
resulting from the TargetScan or negative correlation methods (Fig. 3-Right).

Although our main focus in this study is quantitative prediction of mRNA
expression levels, some of the underlying predictors discovered by our model may be
from direct miRNA-mRNA target interactions. Specifically, some of the coefficients wi

in Eq. “1” (which make up the matrix B in Eq. 2) may represent direct miRNA-mRNA
targeting interactions. We assess the extent in which SMLR can discover such targeting
interactions by comparing these interactions with known miRNA targets in miRTar-
Base and predicted targets in TargetScan.

The SMLR model was trained on both GSE22220 and GSE19536 datasets com-
bined and the miRNA-mRNA pairs in the model with negative coefficients, repre-
senting a potential targeting effect, were collected. Here, we consider only the 248
miRNAs for which there was at least one such targeting interaction. There were on the
average 8 experimentally validated targets for each of these miRNAs, listed in miR-
TarBase. TargetScan had an average of 341 predicted targets per miRNA. Considering
miRTarBase as the ground truth, the accuracy of miRNA-mRNA target pairs predicted
by SMLR was 0.10% (41 correct out of 40,633 predictions), whereas TargetScan had

66 Y. Zhou et al.



an accuracy of 1.12% (944 out of 84,489 predictions) and the negative correlation
method had an accuracy of 0.05% (222 out of 428,048 predictions).

Although SMLR had a lower accuracy than TargetScan, we must note that the
coverage of miRTarBase is currently very limited. Consequently, these accuracy
measures are sensitive to availability of further experimentally validated target data.
Furthermore, whereas SMLR finds interactions specific to the datasets it is trained with,
namely the breast cancer samples, miRTarBase dataset and TargetScan predictions do
not provide any context-specific information for their target interactions. Regardless of
these drawbacks in the analysis, combining the predictions from SMLR and Tar-
getScan, by intersecting their miRNA-mRNA target pair lists, achieves an accuracy of
2.17% (23 correct out of 1,060 common predictions), which is better than application
of either method alone.

4 Discussion and Conclusion

In this study, we took a radically different approach to miRNA-mRNA interactions and
used a multiple linear regression model to directly estimate the mRNA expression
levels from miRNA data. Whereas traditional methods try to determine targets of
individual miRNAs and rely on these target lists for downstream functional analysis,
we estimate mRNA levels from the cellular context captured by the collection of
miRNAs. The benefits and opportunities provided by our approach are tremendous. For

Fig. 4. Hierarchical clustering of true (left) and cross-database predicted (right) mRNA
expression. Top: SMLR is trained with GSE22220 dataset and tested on GSE19536
(RMSE = 1.02). Bottom: SMLR is trained with GSE19536 dataset and tested on GSE22220
(RMSE = 1.26). Top 1000 most differentially expressed mRNAs with respect to ER-status are
shown. Hierarchical clustering is only done on the real data (left); and the same row-column
ordering is used to display the predicted data (right).
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instance, our approach makes it possible to computationally predict mRNA levels for
media, such as serum, where miRNAs are relatively stable and easy to extract and
measure with current experimental techniques but mRNAs are less stable and more
challenging to measure.

Traditionally, after identifying differentially regulated miRNAs, researchers would
sift through hundreds or thousands of targets of these miRNAs and subjectively pick
several targets of interest for further experimental validation, e.g., to test for binding of
miRNA to mRNA or for differential regulation of the mRNA. Not only are these target
lists non-specific to the tissue type, developmental stage, or environmental factors
involved in an experimental study; they also ignore the fact that these genes are
targeted by multiple miRNAs, some of which may not be differentially regulated or
may be regulated in different directions. In our approach on the other hand, we build a
model in a cell-type specific manner, connecting multiple miRNAs to each mRNA. We
believe that a prioritization of the target genes based on estimated expression levels will
result in a higher positive rate in validation experiments.

Our choice of the SMLR model for prediction of mRNA expression levels was
based on its simplicity and interpretability. We believe that the linearity assumption
used in SMLR provides an appropriate trade-off between the power and generality of
the model and the number of parameters that can be correctly estimated from the
currently available datasets. Furthermore, the interactions obtained from linear models
were previously found to be better than those generated from Bayesian models and
Neural Networks [33].

In this study, we mainly focused on breast cancer datasets and demonstrated that a
model trained in one experimental platform can be successfully applied to miRNA data
from an independent laboratory using different experimental platforms. Although it is
possible to apply a model trained on one tissue type to miRNA data from another tissue
type; the predicted gene expression values would not be as accurate as restricted the
predictions to the same tissue and comparable experimental conditions. For example,
applying the model trained on the breast cancer dataset GSE22220 to predict gene
expression values from miRNA data in a prostate cancer study GSE20161 resulted in a
mean squared error of 1.35, about 33% higher than the error when it was applied to
another breast cancer dataset GSE19536. In our future work, we will build a repository
of models for different tissue types and experimental conditions of interest. The lim-
iting factor for building such a repository will be the availability of high quality paired
miRNA and mRNA data collected from the same samples.

Although our main focus was not identification of the direct miRNA-mRNA tar-
geting interactions, we show that the interactions with negative coefficients in our
model can be indicative of direct regulation. Note that the targets from our model were
generated only from the two breast cancer studies. We expect that a large scale
modeling from all publicly available paired miRNA-mRNA datasets will provide target
predictions that are in better agreement with experimentally validated targets. Moti-
vated by the observation that targeting interactions obtained from two breast cancer
datasets can improve the accuracy of TargetScan predictions, we expect that our
approach will provide a means of improving sequence-based target predictions in a
context-specific manner.
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Abstract. High-throughput sequencing of mRNA has made the deep
and efficient probing of transcriptomes more affordable. However, the
vast amounts of short RNA-seq reads make de novo transcriptome assem-
bly an algorithmic challenge. In this work, we present IsoTree, a novel
framework for transcripts reconstruction in the absence of reference
genomes. Unlike most of de novo assembly methods that build de Bruijn
graph or splicing graph by connecting k-mers which are sets of overlap-
ping substrings generated from reads, IsoTree constructs splicing graph
by connecting reads directly. For each splicing graph, IsoTree applies an
iterative scheme of mixed integer linear program to build a prefix tree,
called isoform tree. Each path from the root node of the isoform tree
to a leaf node represents a plausible transcript candidate which will be
pruned based on the information of pair-end reads. Experiments showed
that IsoTree performs better in recall on both pair-end reads and single-
end reads and in precision on pair-end reads compared to other leading
transcript assembly programs including Cufflinks, StringTie and Bin-
Packer.

1 Introduction

Alternative splicing occurs as a normal phenomenon in eukaryotes, where it
greatly increases the diversity of proteins that can be encoded by the genome [1].
A recent study estimated that more than 95% of all multi-exon genes are alter-
native spliced [2]. Besides that, numerous researches have revealed that a great
deal of human diseases, especially cancer, are related to abnormal splicing [3,4].
Advances in RNA-seq have opened the way to efficient probing of full-length
transcriptome. RNA-seq technology can generate hundreds of millions of short
reads (50–250 bp) from expressed transcripts (complete and contiguous mRNA
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sequence from the transcription start site to the transcription end, for multi-
ple alternatively spliced isoforms). Despite the opportunities for transcriptome
assembly, great challenge emerges of how to subtly recover as many expressed
transcripts as possible at lowest cost from massive short reads. Many obstacles
remain in the trancriptome reconstruction problem such as sequencing bias or
sequencing error, variable sequence coverage, alternative transcripts from the
same locus sharing the same exons, and the existence of paralogs genes. A suc-
cessful method should address these issues, and apply a suitable data structure
to accommodate multiple transcripts per locus.

A growing number of strategies have been developed to solve the tran-
scriptome assembly problem based on RNA-seq. They can be generally divided
into two categories, genome-based and de novo assembly approaches. Genome-
based approaches, such as StringTie [5], Cufflinks [6], Scripture [7], Bayesem-
ber [8], IsoInfer [9], IsoLasso [10], Traph [11], iReckon [12], CIDANE [13], and
TransComb [14], usually first align the reads to a reference genome with align-
ment tools such as TopHat [15], TopHat2 [16], GSNAP [17], STAR [18], and
SpliceMap [19], and then merge the sequences from different loci according to
overlapping alignments and splicing junctions to build a graph representing all
possible isoform transcripts. Finally, different models are adopted to recover
the full-length transcripts from the graph. For example, Cufflinks applies the
minimum-cost path cover model, StringTie employs a network flow algorithm
originally developed in optimization theory, and Traph uses minimum-cost flow
model combined with a greedy algorithm. However, the reference genome espe-
cially a cancer genome is not always available. In these situations, de novo assem-
bly is required. In theory, a de novo assembler can reconstruct transcripts even
on regions that are missing a reference.

The field of de novo assembly developed from pioneering work on de Bruijn
graphs [20,21], in which a vertex is a k-mer and an edge exists between two
vertices u and v if and only if u and v appear consecutively in a read. Simple paths
in such graphs usually represent fragments of transcripts. However, de Bruijn
graph may be very tanglesome and therefore hard to deal with. The splicing
graph emerges at the right moment, which is more tractable than de Bruijn
graph. A splicing graph of a locus is a directed acyclic graph, whose vertices
represent exons while edges correspond to splicing junctions. To summarize,
Trinity [22], ABySS [21], and IDBA-trande [23] take the advantage of de Bruijn
graph approach, while Oases [24], Bridger [25], and BinPacker [26] apply the
splicing graph strategy.

Trinity [22] plays a milestone role in de novo transcriptome assembly. It
assembles transcripts by first extending contigs greedily, then building de Bruijn
graphs from these contigs, and then extracting sufficiently covered paths from
these graphs to construct splicing variants based on a brute-force enumeration
strategy. Binpacker is a recently developed method, which searches for an opti-
mal edge-path-cover over the splicing graph by iteratively solving a series of bin
packing problems. In this scheme, it uses a heuristic algorithm to update trajec-
tories of items (edge-path-cover), and the iteration will terminate within O(|V |)
times (where V is the node set of the splicing graph).
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So far, all the existing de novo assemblers usually extend the contigs by
connecting k-mers (a set of overlapping kbp substring rising from each read
sequence). Given that larger k values tend to perform better on higher expressed
transcripts or on longer transcripts while smaller values are more suitable for
reconstructing lower expressed transcripts and shorter transcripts, some assem-
blers apply a multiple-k strategy, such as ABySS [21], Oases-M [24], and IDBA-
Tran [23]. However, most of existing k−mer connection strategies usually could
not make full use of the information of nucleotides sequence order in each read.

In this paper, we present IsoTree, a de novo transcriptome assembler. The
central idea behind IsoTree is to subtly extract transcript-representing paths
from the splicing graph. The splicing graph is constructed with contigs that
are extended by reads directly. Each vertex as well as each edge in the splicing
graph is weighted by reads per base. IsoTree converts the splicing graph to
a prefix tree by calling |V | times mixed integer linear program modeled with
the objective to seek as few transcripts in the prediction as possible under the
coverage constraints(see Methods for details).

We tested the performance of IsoTree compared to other leading transcript
assembly programs including Cufflinks, StringTie, and BinPacker on the pair-
end reads sets and single-end reads sets. We chose these assemblers for compar-
ison because Cufflinks and StringTie performed comparably best among all the
published genome-based assemblers that could run properly while BinPacker
performed best among all the published de novo assemblers according to our
initial tests. Actually, Bridger as an early work of the authors of BinPacker
outperformed all the other de novo competitors except for BinPacker.

We employ blast+ [27] to evaluate the performance of each assembler. Our
experiments demonstrated the superior performance of IsoTree in both recall
and precision, where recall is defined as the fraction of assembled full-length
transcripts out of all reference transcripts in the experiments and the precision
is defined as the ratio of assembled full-length transcripts over all assembled
transcripts.

2 Method

Splicing graph is originally put forward by Heber et al. in 2002 [28]. IsoTree
modified Bridger’s splicing graph construction method [25]. Specifically, IsoTree
extends the contigs by reads directly while Bridger extends them by k-mers. The-
oretically, each splicing graph constructed by IsoTree corresponds to an expressed
gene: the nodes represent exons, the edges represent splicing junctions, and some
paths correspond to isoforms generated by the gene. IsoTree applies a heuristic
algorithm to convert the splicing graph into an isoform tree with each path from
the root node to a leaf node representing a transcript. The expression level of
each transcript is related to the last vertex weight in the corresponding isoform
path. The general work flow of IsoTree algorithm is given in Fig. 1.
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Fig. 1. General work flow of IsoTree. (a) Input single-end or pair-end reads. (b) Splicing
graph construction (c) Topological ordering of splicing graph and balancing splicing
graph. (d) Constructing isoform tree based on an iterative scheme of mixed integer
linear program and recovering transcripts.

2.1 Constructing Splicing Graph

IsoTree applies a hash table of k-mers to quickly determine reads that contain
a same substring. It decomposes each Lbp length read sequence into L − k + 1
overlapping k-mers. For each k-mer, the hash table takes the k-mer sequence as
key and the set of reads that contain this k-mer as value. The k-mer sequence is
stored as a 64-bit unsigned integer with 2-bit nucleotide encoding. In the process
of building a hash table, if the k-mer composed by the first k nucleotides of a
read appears at the first time, the read is seen as a seed read. The likely error
k-mer is pruned following the criteria used by Trinity [22]. While pruning k-mer,
the reads containing the wrong k-mer will also be deleted.

(1) Select an unused seed read as the main contig of the initial splicing graph.
(2) Extend the main contig in two directions by repeatedly selecting an unused

read with the highest priority in the candidate read set. A candidate read
must have x (a ≤ x ≤ b, default a = L − 1, b = k) overlaps with the current
contig terminus, and its priority is defined as x. The candidate reads with
priority x can be found in a linear time according to two k-mers in the
current contig terminus. Set k-mer1 as k suffix (or prefix) of current contig
and R1 as the set of reads that contain k-mer1. In contrast, k-mer2 is set
as x − k to x suffix (or prefix) of current contig and R2 represents the set
of reads that contain k-mer2. The algorithm to get the candidate reads
from sets R1 and R2 is described as Algorithm 1. When a contig cannot be
extended, it is used as the trunk of a splicing graph to be constructed.
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In k-mer extending strategy, the contig is extended by repeatedly selecting
the most frequent k-mer that overlaps with the current contig terminus by its
k − 1-character prefix while neglecting the importance of the reads that support
the connection. A less frequent k-mer with more reads supporting the connection
may be more reliable than a more frequent k-mer with less reads supporting the
extension. In our model, if a read spans both the current contig terminus and a k-
mer that intends to be connected to the contig, we regard the read as supporting
the connection and extend the contig through this read.

Algorithm 1. Algorithm to get candidate reads
1: int s1 = 0;
2: int s2 = 0;
3: while s1 < |R1| and s2 < |R2| do
4: if R1[s1] == R2[s2] then
5: if R1[s1].substr(L − x, x) == contig.substr(0, x) or R1[s1].substr(0, x) ==

contig.substr(contiglen− x, x) then
6: put R1[s1] to candidate read set
7: end if
8: s1 = s1 + 1
9: s2 = s2 + 1

10: else
11: if R1[s1] > R2[s2] then
12: s2 = s2 + 1
13: else
14: s1 = s1 + 1
15: end if
16: end if
17: end while

(3) For each read in the current splicing graph, check if it has an alternative
extension that has not been used. Such read is called a junction read. Once
we find a junction read, we keep extending it until encountering an already
used read or we can make no further extension by using steps (1) to (2). If the
former occurs, then a new junction read is identified, and the current splicing
graph is updated by merging their matched x nucleotides. Otherwise, the
following criteria are used to check if this potential branch can be added to
the current splicing graph: (a) the branch is long enough (≥80 bp) to be an
exon; (b) the branch is not similar with the corresponding part of the trunk;
(c) there are at least two single-end reads or pair-end reads supporting this
branch. Repeat step (3) until no junction read exists. Now, a splicing graph
is constructed.

(4) The graph is trimmed with the similar idea in Trinity: (a) for each edge,
there is a minimal number of reads (default 2) matched on each side of the
junction; (b) the coverage of each edge must exceed 0.04 times the average
coverage of two flanking nodes (twice the sequencing error rate in a read,
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the upper bound is about 2%); (c) if there is a node with several outgoing
edges, each coverage of them should be more than 5% of total outgoing edge
coverage; (d) any outgoing edge coverage should be more than 2% of total
incoming edge coverage. Edges that do not meet any one of these criteria
are removed. For each isolated vertex in the current splicing graph, it is
removed while its sequence length is shorter than the minimum transcript
length.

(5) Select a new unused seed read as a new seed, repeat steps (1) to (4) until
all seed reads have been used.

2.2 Balancing Splicing Graph

In order to facilitate building isoform tree steps, IsoTree adds a source node s
and a sink node t into the splicing graph connects s to all the nodes without
in-coming edges, and connects all the nodes without outgoing edges to t. We
assign the weight of the new edge connecting s and v to be the sum of weights
of the edges leaving v. The new edges entering t can be weighted similarly.
Considering that exons are linearly arranged in a gene, IsoTree topologically
orders the vertices.

Considering that if an exon is both the end part of a transcript and a mid-
dle part of another transcript, its incoming total weights and outgoing total
weights may differ greatly. In this case, we balanced this type of exon node by
the following rules. Let G(V,E) represent the splicing graph. For each vertex v
(vεV − {s, t}), check the edges incident with it by the following conditions:

(1 − ε)Win(v) ≤ (1 + ε)Wout(v), (1)

(1 + ε)Win(v) ≥ (1 − ε)Wout(v), (2)

where ε is an empirical value (default 0.3), Win(v) and Wout(v) represent the
weight sum of all the edges entering vertex v and the weight sum of all the
edges leaving v, respectively. If the edges incident with v can not meet the above
conditions at the same time, it means that there is a huge gap between the
incoming weights and outgoing weights of v and there needs a balancing deal.
The approach to balance vertex v is as follows:

if Win(v) > Wout(v), then set E = E
⋃

(v, t),W (v, t) = Win(v) − Wout(v);
if Win(v) < Wout(v), then set E = E

⋃
(s, v),W (s, v) = Wout(v) − Win(v);

where W (v, t) is the weight of edge (v, t).

2.3 Building Isoform Tree and Recover Transcripts

IsoTree iteratively calls a variant of mixed integer linear program model to comb
all the transcripts encoded in a splicing graph to a prefix tree, called isoform tree
(Fig. 2).

IsoTree first sets vertex s in splicing graph G(V,E) as the root node of isoform
tree T , and set v = s. Each vertex u (uεV, (v, u)εE) in graph G is set as a child
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Fig. 2. An example to build isoform tree.

node of v in Tree T , with weight WT (u) = W (v, u). Then, IsoTree deals each
topological ordered vertex of splicing graph G iteratively:

(1) For splicing graph G, set v as vR (where vR is the right node of v in topolog-
ical order), and for the edges (v, yj)εE (1 ≤ j ≤ N , N is the total number
of out-going edges of vertex v), denote an N -dimensional vector β with
component βj representing the weight of edge (v, yj).

(2) For isoform tree T , search v in leaf nodes (it is obvious that v must be in leaf
nodes), and mark the leaf nodes that represents v as x1, x2, · · · , xM (M is
the sum of leaf nodes that represent v). Denote the weight of xi (1 ≤ i ≤ M)
as αi. Obviously, αi must be the weight of an incoming edge of v in splicing
graph G or the splitting weight of an incoming edge.

(3) Expand each leaf node xi (1 ≤ i ≤ M) by yj according to α and β. IsoTree
formalizes it into an optimization problem of how to assign α1, α2, · · · , αM

to β1, β2, · · · , βN . Given M × N matrix C as the assignments matrix, with
component cij representing the value of αi assigned to βj (1 ≤ i ≤ M, 1 ≤
j ≤ N). If cij > 0, node xi in tree T will have a child node yj and the

weight of the child is set as βjcij/
M∑

t=1
ctj . The value of each cij must satisfy

the following constraints:

0 ≤ cij ≤ (1 + ε)αi 1 ≤ i ≤ M, 1 ≤ j ≤ N (3)

0 ≤ cij ≤ (1 + ε)βi 1 ≤ i ≤ M, 1 ≤ j ≤ N (4)

Here, we introduce a binary integer variable zij specifying whether a child is
added by the following constraints:

zij ≤ λcij 1 ≤ i ≤ M, 1 ≤ j ≤ N, (5)
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cij ≤ λzij 1 ≤ i ≤ M, 1 ≤ j ≤ N, (6)

where λ is a large positive number. If cij = 0, from (5), we have zij = 0 and thus
node yj is not a child of node xi in T , else if cij > 0, from (6), we have zij = 1
and node yj must be a child of node xi.

In order to avoid bias assignments and make sure that each node in
x1, · · · , xM has at least one child node and each node in y1, · · · , yN has been
added to the isoform tree, we have:

(1 − ε)αi ≤
N∑

j=1

cij ≤ (1 + ε)αi 1 ≤ i ≤ M, and (7)

(1 − ε)βj ≤
M∑

i=1

cij ≤ (1 + ε)βj 1 ≤ j ≤ N. (8)

We minimize the sum of zij(1 ≤ i ≤ M, 1 ≤ j ≤ N) following the parsimony
principle to seek as few transcripts in the prediction as possible.

minf =
M∑

i=1

N∑

j=1

zij (9)

Equations (3)–(9) form a mixed integer linear program (MILP). The isoform
tree is built after call |V | times MIP for each vertex in splicing graph G(V,E).
Each path from the root node to a leaf node in isoform tree represents a potential
transcript, and the weight of leaf node can be seen as an approximation of the
transcript expression level. If pair-end information is available, IsoTree will map
the reads to potential transcripts, and a transcript will be discarded if the number
of reads with both ends mapped to it is significantly lower than the total number
of reads mapped to it.

3 Results

We ran and tested IsoTree with other assemblers: Cufflinks (version 2.1.1),
StringTie (version 1.3.1), and BinPacker (version 1.0) both on single-end and
pair-end RNA-seq datasets. We tested IsoTree in two versions: IsoTreeI and
IsoTreeII. The difference between these two versions is that IsoTreeI constructs
splicing graph by the method mentioned above while IsoTreeII built splicing
graphs without branch extend steps (we notice that although branching may
introduce more transcript candidates, the added candidates may occupy some
portion of a real transcript and thus influence the results). These experiments
are conducted on a desktop computer with 4 Gb of RAM and Intel Core i5-
2400 CPU processor. In the following, we will give a detailed analysis of our
experiments.

In this paper, a full-length reconstructed transcript is defined as an assembled
transcript whose full-length covers a referenced transcript with at least 95%



IsoTree: De Novo Transcriptome Assembly from RNA-Seq Reads 79

sequence identity (where identity is a ratio between the matched length and the
length of referenced transcript) and at most 0.5% indels [26]. We use blast+ [27]
to align the assembled transcripts to referenced transcripts. We applied recall
(the ratio between the number of full-length reconstructed transcripts and the
number of reference transcripts) and precision (the ratio between the number of
full-length reconstructed transcripts and the number of assembled transcripts)
as the measures of prediction quality.

Mimicking the characteristic of real RNA-seq data, we generated 0.1 million
pair-end reads of length 75 bp and 0.2 million single-end reads of length 75 bp
from 100 isoform transcripts originated from 41 different genes in chromosome
1 using FluxSimulator [29]. We solved our MILP model by Lingo. Lingo is a
mathematical modeling language designed for formulating and solving optimiza-
tion problems, and it adopts the branch-and-bound method to solve the mixed
integer linear programming problems. Since the transcript sequence only con-
tains ‘A’, ‘C’, ‘G’, and ‘T’ four kinds of nucleotides, in most cases the number
of outgoing (or incoming) edges of an exon node is less than 3. Besides, the sum
of nodes in a splicing graph corresponding to one locus is less than 10 in most of
cases. Hence, the variables in our MILP model are usually less than 20 and the
MILP can be solved by Lingo in a very short time. The running times of IsoTreeI
and IsoTreeII on the pair-end reads datasets mentioned above are about 105 s
and 10 s respectively. This is because IsoTreeI spends most of its time on check-
ing and extending branches. (For large real data, branch-and-bound is usually
too time-consuming. In this case, we change the MILP to a program with linear
constraints while the objective function as the product of the variables. We then
solve the nonlinear program by a list of heuristics. We run the algorithm on a
server with 256 Gb of RAM and E5-2620V3*2 CPU processor. For the details of
the model with its solution as well as the implementation with analysis for large
real data, please refer to our later journal version.)
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Fig. 3. Comparison of recall for pair-end and single end reads.

For the recall measure, IsoTree outperforms all the other compared assem-
blers both on single-end and pair-end datasets (Fig. 3). For the data set of pair-
end reads, IsoTreeI reconstructed transcripts with a recall value of 36%, a more
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than 24.1% increase over the recall achieved by BinPacker (29%), StringTie
(18%), and Cufflinks (13%). Unfortunately BinPacker does not work on single-
end datasets. In this case, IsoTree plays an obvious superior over the other
remaining compared assemblers.
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Fig. 4. Comparison of precision for pair-end and single end reads.

For the precision measure, IsoTree has the highest precision on pair-end
dataset (Fig. 4). For pair-end dataset, IsoTreeI, IsoTreeII, Cufflinks, StringTie,
and Binpacker recovered 36, 31, 13, 18, and 29 full-length reconstructed tran-
scripts from 56, 66, 57, 59, and 77 candidates, respectively. It is worth mentioning
that, though IsoTreeI reports the minimum number of candidate transcripts,
but it produces the maximum number of full-length reconstructed transcripts
on the pair-end dataset. The precision of IsoTreeI on pair-end dataset is 64.3%,
best over all assemblers. The precision of BinPacker is 33.7%, higher than all
the other assemblers except IsoTree. For single-end dataset, the precision of
StringTie is 37.5%, highest among all the assemblers including IsoTreeI (27.7%),
IsoTreeII (28%), Cufflinks (25.3%). However, IsoTree recovered more full-length
reconstructed transcripts than other assemblers on single-end dataset. IsoTreeI
recovered 38 full-length reconstructed transcripts while IsoTreeII, Cufflinks, and
StringTie recovered 33, 18, and 21 respectively. We speculate that the reason
that IsoTree performs better on pair-end data than on single-end data is that
IsoTree prunes the candidate transcripts by pair-end information. We can also
see that except for single-end dataset IsoTreeII performs slightly better than
IsoTreeI on precision, i.e., 28% vs.27.7%, IsoTreeI always outperforms IsoTreeII.
This strongly supports the necessity for branch extension.

From Fig. 5, we conclude that IsoTree performs best on both recall and
precision, followed by BinPacker, on pair-end dataset. For single-end dataset,
StringTie is superior over IsoTree on precision with 33.9% increase, while IsoTree
is superior over StringTie on recall with more than 54.4% increase.
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Fig. 5. Transcriptome assemblers’ accuracies in detecting expressed transcripts from
data set of single-end reads and pair-end reads.

4 Conclusion

We present a novel de novo method IsoTree for transcriptome reconstruction
from single-end or pair-end RNA-seq reads. We constructed the splicing by draw-
ing the advantages of Trinity and adding our own innovation of expanding the
contig by reads directly. We applied the mixed integer linear program model
subtly to build the isoform tree which could express the potential transcripts
in a gene. In addition, the process of pruning transcripts with help of pair-end
reads information has greatly improved the precision. The experiments shows
that IsoTree always holds the best recall among all the compared assemblers
on data sets of both single-end and pair-end reads, and its precision is also the
highest on pair-end data.
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Abstract. Protein 3-D structural data is a valuable resource in computational
biology, and the comparison and interpretation of protein structural patterns have
remained scientific and computational challenges. We introduce a novel repre-
sentation of 3-D protein surface patches as 2-D images, obtained using dimension
reduction. We utilize image registration to compare these surface patches and
infer protein function and binding based on surface similarity. Our surface rep-
resentation can capture various structural and physicochemical properties,
including curvature, electrostatic potential, hydrophobicity, and evolutionary
conservation. The results we present support the use of surface images as a new
type of family-specific signatures in functional annotation and drug-binding
tasks. We demonstrate the ability of our method to detect local surface similarities
between proteins and to correctly identify functional classification of proteins.

Keywords: Protein structure � Ligand binding sites � Image processing �
Template matching � Dimension reduction

1 Introduction

Determining the functions and interactions of individual proteins is essential for
understanding their contribution to the behavior of the cell and the organism as a whole
and creates tremendous therapeutic opportunities for treating diseases. Availability of
large scale genomic and proteomic data has invited development of automated com-
putational methods for functional annotation of proteins. Traditionally, sequence
analysis has been the main source of information, where pairwise and multiple
alignments and statistical and machine learning methods have been utilized for clas-
sification of proteins into known functional families [1]. However, sequence alone
becomes insufficient for making functional inferences for distantly related proteins or
those proteins that have discovered the same biomolecular function through convergent
evolution. Protein structure is regarded as a stronger determinant of function than
sequence alone, placing structure under greater evolutionary pressure, and making
structural similarities between homologous proteins detectable even under low
sequence similarity conditions.
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Corroborating the importance of structural data, protein structure initiatives have
been established with the goal of expanding the repository of experimentally deter-
mined protein structures. As many as 26% of the structures resulting from these
Structural Genomics initiatives have unknown or putative functions [2]. Consequently,
numerous approaches have been developed for comparing and data mining protein
structures, with the hopes of finding functionally relevant similarities among both
well-studied and less characterized proteins.

Structure alignment methods make up a majority of the available protein structure
comparison approaches. In structure alignment, one seeks to find correspondences
between the residues of the proteins being compared and also a translation/rotation
matrix that best superposes these corresponding residues. Finding an optimum struc-
tural alignment is computationally difficult and available methods employ heuristics to
find near-optimal solutions within practical execution times. Available methods are
based on distance matrices, common subgraph searches, geometric hashing techniques,
and genetic algorithms. An important drawback of structure alignment methods has
been their prudent use of geometric information, and only recently methods have been
proposed to additionally utilize biochemical and evolutionary information [3].

Structure alignment methods generally represent each amino acid as a single point
in space, often using the coordinates of its alpha carbon atom. While this simplification
is sufficient for fold recognition purposes where the focus is on categorization of the
overall shape of protein domains, it may fail to detect important local arrangements of
amino acid side chain atoms. Furthermore, global structural similarity does not
necessitate the same enzymatic activity or binding interactions. TIM barrel family of
proteins provide an extreme example of this, where proteins sharing the same structural
fold can have diverse functions. Ser-His-Asp catalytic triad of serine protease family
provide an example from the other extreme, where due to chemical constraints of
enzymatic activity, proteins share highly conserved arrangement of active site residues,
while having dissimilar global structures.

The need to identify conserved local arrangements of a few amino acids, regardless
of the overall fold, has motivated development of a new class of methods for discovery
and search of structural patterns, such as LFM-pro [4] and PROMOTIF [5]. These
methods try to find spatial configuration of amino acid residues with well-conserved
inter-residue distances; and in line with their focus on function rather than structure,
they often utilize functional side chain atoms instead of backbone atoms.

It has been observed that proteins with similar active sites have similar functions
and that active sites are usually located within pockets formed on the protein surface.
These observations have prompted focus on analysis of surface pockets for identifi-
cation of ligand binding and protein function. Surface pockets have been defined as
regions of favorable interaction energies [6] or from purely geometric characteristics
[7]. Consequently, a class of structure comparison methods have been developed to
compare these surface regions.

The methods that make use of only geometric information for comparison of
proteins surfaces include those that summarize the shape by descriptors such as Zernike
moments [8] and distance-based features [9] and those that represent surfaces as point
clouds [10]. The methods based on shape descriptors generally solve the global
structure similarity problem, whereas the point cloud methods try to detect local residue

Unfolding the Protein Surface for Pattern Matching 85



or atomic arrangements. While existing approaches have been useful in comparing and
clustering known protein active sites, they are limited in their ability to locate func-
tional sites in new proteins.

In this study, we describe a novel representation and comparison method for protein
surface analysis that is able to capture various surface features in a computationally
efficient manner. Specifically, we unfold protein surfaces into two dimensional images
and perform comparisons using these images. The two dimensional image represen-
tation allows the use of fast image registration methods, as opposed to the more
demanding graph matching methods required for other surface representations.

Unlike other approaches that try to find equivalences between residues or atoms
from the proteins compared, our focus is on the surface itself without enforcing a
one-to-one correspondence of residues. This has the potential to identify similar spatial
environments created by different number of contributing residues. While other
approaches require a priori delineation of functional regions, our method is also able to
perform comparison of protein surfaces when such information is not available from
one or both of the proteins being compared. Furthermore, whereas other methods
utilize mainly the geometrical information, with some methods additionally enforcing
residue or functional atom identity, our image representation allows representation of
arbitrary surface features, such as hydrophobicity, evolutionary conservation, and
electrostatic potential.

2 Methods

The molecular surface of a protein is defined as the set of points traced by the
inward-facing part of a hypothetical probe that is rolling on the protein. We calculate
the molecular surface using the MSMS program [11] available from the Vasco package
[12], using a probe radius of 1.4 Angstrom, and a surface density of one vertex per
Angstrom-square. We exclude the water molecules and hetero atoms and consider each
peptide chain entry as a separate unit. The generated molecular surface is represented as
a point cloud and a corresponding triangular mesh.

2.1 Unfolding the Protein Surface

Once the molecular surface is obtained, we “unfold” it by mapping each surface point
to a point in 2-D space using dimension reduction methods. While the idea of mapping
protein surfaces to a 2-D space is not new, previous approaches have only explored
simple spherical and elliptical projections [13, 14]. However, proteins have more
complex shapes than these idealized geometries, and can contain voids and protrusions.

Using dimension reduction methods has allowed us to explicitly optimize the 2-D
mapping for its ability to preserve the inter-point distances, neighborhood relationships,
and the surface area of the triangular mesh. We have previously demonstrated that
dimension reduction methods can generate 2-D representations that surpass simple
projections in mapping accuracy [15]. Among the dimension reduction methods
investigated, ISOMAP [16] was found to provide an ideal performance-speed tradeoff
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[15] and was chosen for this study. In order to preserve the intrinsic geometry of the
manifold, the nonlinear dimension reduction method ISOMAP exploits the geodesic
distance, instead of straight-line Euclidean distance.

The process of mapping a surface mesh onto a 2-D surface is known in the
computer vision domain as “mesh parameterization” [17, 18]. Since it is not possible to
unfold a closed shape while preserving distance, neighborhood, and area relationships
equally for all points, mesh parameterization methods often perform segmentation of
the 3-D shape and consider mapping each segment separately. Additionally, the points
that are located in the center of a segment are the most accurately represented, and the
error in mapping increases as one moves toward the edges of the mapped mesh
structure where the original surface mesh becomes more distorted. Based on these
observations, we either generate a single segmentation around a known region of
interest to maximize the fidelity of this region; or generate multiple overlapping seg-
mentations from the entire surface, where a different part of the protein surface is best
preserved in each of the segments.

When a particular region of the protein such as a set of residues responsible for
enzymatic activity or a pocket forming a ligand binding site is of interest, we first
identify the surface points that are closest to these residues. This active site surface
patch is then extended with other points that have a geodesic distance less than 30 Å
from the active site surface points. This ensures that the active site is captured in its
entirety within a single segment and that the active site region is mapped at the center
of the 2-D image with higher fidelity than it would have had if it were on a segmen-
tation boundary. The top row in Fig. 1 shows segmentation using a region of interest,
whereas the bottom row illustrates the general segmentation into many 2-D images.

The general segmentation procedure repeatedly selects a point on the protein sur-
face to serve as the center of a segment. The points that are within rsection of this center
are used to define the new segment. Based on typical sizes of active sites, we use
rsection = 15 Å. The points that are within rexclusion are excluded from being used as a

Fig. 1. Segmentation of surface of the protein PDB: 1q8y. Top: A single segment centered on
the binding site region is obtained. Left to right images show the overall 3-D structure, the
segmented surface section, and the corresponding mapped 2-D image. The binding site is
outlined with a red polygon. Bottom: General segmentation into multiple surface patches. Only
one of the many sections is shown in the middle, and its corresponding 2-D image is shown on
the right. (Color figure online)
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new cluster center. In effect, rexclusion determines the amount of overlap between dif-
ferent segments and consequently the number of segments. We use rexclusion = 10 Å to
obtain 50–100 segments per protein. We pre-calculate all-pairs shortest paths among
surface points and use it as an approximation of the geodesic distances.

2.2 Enrichment of Surface with Additional Features

Geometric features of the protein surface are important functional determinants and
have been used by some methods as the sole source of information for comparing
protein surface regions. However, it is well-known that biochemical properties play an
essential role in determining binding interactions and enzymatic activity [19]. These
biochemical properties are often captured in the form of amino acid or atom types when
a residue-wise or atom-wise matching is performed between surfaces [20].

Without loss of generality, we consider the following properties for each surface
point: hydrophobicity (H), electrostatic potential (E), curvature (V), and evolutionary
conservation (C). These properties are commonly used in studying protein folding,
protein-protein interactions, protein-ligand binding, and enzymatic activity. At each
surface point, we calculate the hydrophobicity values using Vasco [12], the Gaussian
curvature using surface triangulation [21], and the electrostatic potential using DelPhi
[22]. In order to calculate conservation values, a PSI-BLAST search of the protein
sequence against NCBI non-redundant protein sequence database is carried out.
Multiple sequence alignments are generated using MUSCLE [23], and the conservation
scores are derived using the method described in STACCATO [24].

For visual purposes and implementation convenience, we enrich the protein with
three properties at a time, where the red, green, and blue channels encode the elec-
trostatic potential, hydrophobicity, and curvature values. Regions high or low in these
properties are still visually discernible when the three channels are combined into a
single colored surface. Since our image-based implementation is limited to representing
at most three features at a time, we consider different combinations of available
features.

When the protein surface is mapped to a 2-D mesh, the features associated with
each point are also carried over. We then convert the 2-D mapping to an image where
each pixel takes on the average values of the features for the points that map into that
pixel location. When an active site or another surface region of interest is defined, the
points in the image corresponding to that site are used to generate a minimum bounding
box enclosing all such points. Although the active site can be more precisely defined by
a polygon mask, for computational simplicity we represent the active site region using
the smallest rectangle that encloses these points.

2.3 Template Matching

The utility of the 2D representation of the protein surface and its features depends on
our ability to compare these representations and find similarities and differences that
correlate with functionalities of these proteins. Template matching is an image
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processing method that finds the region of a target image most similar to a template,
and provides a measure of similarity between these images. Available template
matching methods can be broadly categorized into feature-based and area-based
approaches. Feature-based approaches [25] are successful in detecting similarities when
the images have sharp features, such as edges and corners. Area-based methods are
more appropriate for images that do not have such strong features but contain regions
unique in their color composition and pixel intensity patterns. The protein surface
images we generate are smooth and lack sharp features, hence we utilize area-based
template matching methods in this study. Specifically, we use the square root difference
measure (SQDIFF) between registered pixel values to evaluate the similarity of two
sub-images.

Using a sliding window, we consider each local region from the template protein
and search for the most similar local region in the target protein. We rely on the
efficient image registration implementation available from OpenCV [26]. We repeat the
search for different rotations of the template window, at 1º rotational resolution. In the
case where a binding site of the template protein is being searched within the target
protein, we use the bounding box of the active site as the only sub-window, rather than
searching for all sub-windows of the template.

In the following section, we evaluate the result of the template matching in finding
functionally related regions from the target protein and also its ability to differentiate
functional categories of multiple proteins.

3 Experiments and Results

The applications of our surface representation and comparison approach can be clas-
sified based on whether or not a region of interest is a priori defined in one or both of
the proteins being compared. In the following subsections, we present case studies that
represent different types of applications of our approach.

3.1 Comparison of Known Binding Sites

We use proteins from the Aldehyde dehydrogenase (ALDH) superfamily to demon-
strate the application of our approach to comparison of known active sites. ALDH
superfamily of enzymes play a crucial role in aldehyde detoxification by catalyzing
aldehydes to carboxylic acids. ALDH active sites have been highly conserved over
evolution, and share a number of conserved residues for catalysis, including Cys-302,
Glu-268, and Asn-169 [27].

Two proteins are chosen from the superfamily: rat liver ALDH3 (PDB: 1ad3) and
sheep ALDH1 (PDB: 1bxs). These two proteins share 29% sequence identity, but their
binding sites for the ligand NAD are highly conserved. The binding site surface of each
protein is segmented and the 2-D binding site images are computed using the EHC
color code (electrostatic potential, hydrophobicity, conservation).

Figure (2). The bounding box enclosing the 1ad3 binding site points in 2D is used
as the template and searched in the target image of 1bxs. By finding the location in the
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target image that has the minimum square difference in pixel values compared with the
template bounding box, the image registration method correctly identifies the binding
site region of 1ad3. The overlap between the correct binding site and the one predicted
from image registration is 76.5%. The binding regions in both of these proteins have a
characteristic positive charge (red color channel) and high conservation (blue color
channel).

3.2 Locating a Known Binding Site in an Unknown Protein

In a second case study, we take a binding site section extracted from one protein to
search against all sections segmented from another protein. This task represents
functional annotation of a new protein using a previously characterized binding site.
For this case study, we use two serine proteinase proteins: human trypsin 1 (PDB: 1trn)
and bovine trypsin (PDB: 2ptn). The catalytic residues of are extracted from the
Catalytic Site Atlas database [28].

Serine proteinases form a classic example of convergent evolution where the cat-
alytic triad responsible for the enzymatic activity has a very well-defined spatial
configuration. Human and bovine trypsin proteins share 38% sequence similarity and
are highly similar in their active site, including the catalytic triad residues serine,
histidine and aspartate.

In this case study, we extract and map the active site region of human trypsin 1
protein (1trn) and use the bounding box enclosing this active site region as the template
image. We assume the active site of the bovine trypsin protein (2ptn) is unknown and
segment this protein using general segmentation, which results in 62 overlapping
segments. The template image from 1trn is then searched on each of the 62 images and

Fig. 2. Template matching of binding site sections between protein 1ad3 and 1bxs. Left: 3-D
structures of protein 1ad3 and 1bxs, with their binding sites outlined with a red polygon. Right:
the mapped sections as 2-D images. The bounding box encloses all of the points that were within
the binding site in 3D. Image registration searches for the 1ad3 binding site within 1bxs image
and the located target region is shown with a green rectangle. The amount of overlap between the
bounding box enclosing 1bxs binding site and the target bounding box identified from image
registration is 76.5%. (Color figure online)
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the segment resulting in the smallest SQDIFF is assumed to contain the target binding
site. Figure 3 demonstrates this segmentation and search process.

The template search correctly identifies the segment containing the binding site
from among the 62 candidate segments and locates the binding site within the target
image segment. The overlap between the predicted binding site region and the correct
binding site enclosing the catalytic triad is 66%.

3.3 Different Feature Enrichment Combinations

The success of the template matching in identifying similar binding site regions
depends on the features being represented in the 2D images. For some protein families,
conservation may be sufficient to locate an active site that has a specific spatial
arrangement of highly conserved residues; whereas for other protein families additional
features may be required to more accurately locate an active site.

In this case study, we investigated the effect of using different feature combinations
on correctly locating binding sites of proteins from the Ras superfamily. Human Rac1
protein (PDB: 1mh1) is used as a template to search for the binding site of HRas (PDB:
4g3x). Rac1 is a member of Rho family and downstream effector of Ras. HRas is a
member of Ras that operates as molecular switch on the inner surface of the plasma
membrane. These proteins have 31% sequence identity and share a common GNP
binding sites, but they function on different targets. General segmentation of 4g3x
surface resulted in 53 overlapping segments. The binding site template extracted from
1mh1 is used to search against each of these segments using different feature combi-
nations (See Fig. 4).

For the first three feature combinations, template matching was able to correctly
identify the segment of 4g3x containing the binding site from among the 53 segments.
However, the EHC feature combination, which omits the curvature information per-
forms significantly worse than other color combinations in accurately locating the

Fig. 3. Searching for a binding site on target protein surface. Top: The active site of human
trypsin 1 (PDB: 1trn) is extracted and mapped using electrostatic potential, hydrophobicity, and
conservation (EHC) color channels. Bottom: The surface of bovine trypsin (PDB: 2ptn) is
segmented using the general segmentation method, resulting in 62 overlapping segments. The
template binding site image from 1trn is searched against each of these 62 segments and the
match with the smallest SQDIFF measure is reported as a hit (only the segment resulting in
smallest SQDIFF is depicted here).
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binding site, indicating curvature (V) to be an important geometric characteristic of this
active site. We expect different feature combinations to be appropriate for different
protein families. Note that we only investigated an unweighted SQDIFF measure for
image registration in this study; a more general image representation with multiple
color channels and a corresponding weighted SQDIFF measure are left as future work
and are expected to provide higher accuracy in locating the binding sites.

3.4 Functional Annotation Using Database Search

While the previous case studies investigated pairwise comparison of proteins to locate a
binding site of a target protein, here we investigate the ability of our approach to
identify the functional category of a target protein by comparison to a number of
available protein families. For this purpose, we constructed a benchmark dataset from
Metapocket [29], which contains 198 drug-target complexes. The proteins in
Metapocket are non-redundant, with at most 40% pairwise sequence identity.

For a database retrieval task, we select only the ligands that contain at least 10
proteins in the dataset, resulting in the three ligand groups: Adenine (ADE, DB00173)
with 10 proteins, Glutathione (GSH, DB00143) with 10 proteins, and Pyridoxal
Phosphate (PLP, DB00114) with 15 proteins. The surface points within 30 Å from the
ligands are considered as the binding site. The binding sites from each of the 35
proteins are mapped into 2D images and a binding site database of these template
images is constructed for each feature combination.

EHV (100%) CHV (99.1%)

ECV (100%) EHC (50.5%)

Fig. 4. Searching for 1mh1 binding site in 4g3x segments using different feature combinations.
Left: binding site images of protein 1mh1, with each row showing a different feature
combination. The red bounding box encloses the surface points of the binding site residues.
Right: the detected binding site hits from 4g3x, where the red and green bounding boxes show
the correct and predicted binding sites (amount of overlap shown under each color code). The
correct segment was identified in all feature combinations except for EHC. Only the segment of
4g3x that contain the binding site are shown here. (Color figure online)
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The proteins that bind to Adenine are used as query and searched against the
binding sites in the database (excluding the binding site generated from the query
protein itself). The query protein is segmented using general segmentation, and the
segment with the smallest SQDIFF to a template is used for scoring for that template.
As a result, each query protein is associated with a numerical vector of 34 distance
scores. These scores are sorted and at different score thresholds, the true and false
positive rates are calculated. True positive rate is defined as the proportion of ADE
binding sites that are correctly predicted as such, and the false positive rate is the
proportion of other binding sites that are incorrectly predicted as an ADE binding site.
The receiver operating curve (ROC) showing the true and false positive rates at dif-
ferent score thresholds is shown in Fig. 5.

The database retrieval performance were similar for EHV, ECV, and EHC feature
combinations, and the CHV feature combination performed worse than others. Unlike
the previous case studies that compared evolutionarily related proteins from the same
protein family or superfamily, the proteins in the Metapocket database are categorized
based on the ligands they bind to, without enforcing any homology relationship. The
Adenine-binding proteins in this dataset have an average pairwise sequence identity of
15%. Consequently, conservation alone is not sufficient to characterize and relate these
Adenine binding proteins and the accuracy of database retrieval is not adversely
affected when conservation feature is excluded. On the contrary, excluding the elec-
trostatic potential feature significantly reduces the accuracy of identifying
Adenine-binding sites. This is in line with the observation that electrostatics is an
important contributing factor for binding Adenine and is sufficient for distinguishing
between Adenine and Guanine binding sites [30].

Fig. 5. Receiver Operating Curves (ROC) for retrieval of Adenine binding sites using SQDIFF
scores. The areas under the curves for EHV, CHV, ECV, and EHC color combinations are 76%,
63%, 79%, and 74%, respectively.
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4 Conclusion

In this paper, we reported a novel representation of protein surfaces as feature-enriched
2D images and a corresponding image registration algorithm to compare these images
in order to find similar surface patches. The case studies demonstrate that our approach
can successfully locate active sites on protein surfaces and that this ability can be
utilized in functional annotation of protein structures. Note that our surface represen-
tation does not try to correspond individual residues from proteins and consequently
our approach is not directly comparable to traditional protein structure comparison
methods that focus on residue-by-residue correspondences.

Although our approach can be used to represent other features of interest, we
considered electrostatic potential, evolutionary conservation, hydrophobicity, and cur-
vature properties at protein surface points. For visual and computational convenience,
we only used three of these features at a time. The performance of image registration
depended on the features used and different protein families and ligand binding sites
were best characterized by different feature combinations. Our future work will include
encoding all of the features within a single high-dimensional image and using weighted
SQDIFF measure to better tune the contribution of individual features.

Because different protein functions are characterized by different physicochemical
and evolutionary characteristics, the contributions of different features need to be
adjusted for each protein family and ligand type. We also expect the functional anno-
tations to not reflect a uniform characterization of these features. We therefore propose
re-categorization of binding sites using unsupervised clustering methods. A protein
active site database can then be compiled, along with feature weights optimized for each
family, and utilized for large scale comparison and annotation of protein structures.
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Abstract. Electron transfer dissociation (ETD) is a versatile technique
used in mass spectrometry for the high-throughput characterization of
proteins. It consists of several competing reactions triggered by the trans-
fer of an electron from its anion source to the sample cations. One can
retrieve relative quantities of the products from mass spectra.

We present a method to analyze these results from the perspective of
the reaction kinetics. A formal mathematical model of the ETD process
is introduced and parametrized by intensities of the occurring reactions.
Also, we introduce a method to estimate the reaction intensities by solv-
ing a nonlinear optimization problem. The presented method proves
highly robust to noise on in silico generated data. Moreover, the pre-
sented model can explain a considerable amount of experimental results
obtained under various experimental settings.

1 Introduction

Motivation. One of the principal fragmentation methods used in top-down
mass spectrometry is Electron Transfer Dissociation, ETD, which is based on
the interaction of a multiply charged, non-radical protein/peptide cation and a
radical reagent anion [1,2]. However, while this method is becoming ever more
ubiquitous in MS-based proteomics analyses, important questions remain regard-
ing the precise reaction mechanism, and which level(s) of protein structure can
be probed using ETD [3,4]. Therefore, shedding more light on the nature of
ETD can lead to optimization of instrumental settings and improvement of the
identification of peptide sequences and post-translational modifications.

There are several other fragmentation techniques, most importantly the
Collision-Induced Dissociation, CID, where the cleavage is induced by colliding
ions with non-reactive gas molecules [5]. A major disadvantage of the CID is that
c© Springer International Publishing AG 2017
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it often leads to loss of posttranslational modifications, particularly phosphory-
lation [6]. Electron Transfer Dissociation has also been found to provide more
uniform fragmentation than CID, which preferentially cleaves the weakest bonds
[2,6]. However, a notable amount of work has been devoted to analyzing and math-
ematically modelling the CID process [7–9], while ETD has received less attention.

The fragmentation in ETD is induced by transfer of an electron from a radical
anion to the sample peptide/protein cation and results in cleavage of one of the
peptide bonds N−Cα in the proteins backbone. The sample cations are positively
charged during the electrospray ionization (ESI) step [10], leading to the formation
of [M + nH]n+ ions, i.e. adding both charge and mass to the analyte molecule M.

Anions and cations may interact in several ways (see Fig. 1):

1. in the default reaction, ETD, the cation accepts the electron and, after rapid
neutralization of charge and a series of electron rearrangements, a backbone
N−Cα bond breaks leading to the formation of so-called c and z fragments
where the c-ion contains the N-terminus and the z-ion the C-terminus.

2. the cation accepts the electron but no fragmentation is observed, and the
electron stays on the analyte. As no dissociation occurs, it is called ETnoD.

3. one of the cations’ protons is transferred to the anion; a situation referred to
as a proton transfer reaction, or PTR.

ETD [M + nH]n+ + A•– −−→ [c + xH]x+ + [z + (n-x)H](n –x –1)• + A

PTR [M + nH]n+ + A•– −−→ [M + (n-1) H](n –1)+ + AH

ETnoD [M + nH]n+ + A•– −−→ [M + nH](n –1)+• + A

Fig. 1. Studied chemical reactions.

The appearance of the ETnoD fragments in the experimental data can be
traced to the folding of proteins: although backbone cleavage occurs, noncova-
lent interactions keep the resulting fragments from separating, see [11,12]. The
ETnoD can also be caused by accommodation of an electron, e.g. in an aromatic
side chain. It is assumed that, regardless of the precise reaction mechanism,
the electron obtained by ETnoD causes neutralization of one ESI-generated
proton [13], referred to as the quenched proton further on. In all of the reac-
tions described above, one charge is neutralized. The mass of electrons can be
neglected, falling beyond the resolving power of most modern instruments.

Cations can undergo several reaction events, being approached multiple times
by different anions. However, the so-called internal fragments of proteins, i.e.
resulting from two backbone cleavage events, are usually not observed suggest-
ing, that double ETD scarcely ever occurs. On the other hand, there is a lot
of evidence of multiple ETnoD and PTR occurring on one analyte molecule
[14]. Note that only ions and not neutral molecules are observed in the mass
spectrometer. The isotope distributions of reaction products show considerable
overlap, especially for large molecules, as illustrated in Fig. 2.
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Fig. 2. The deconvolution of isotopic structures performed by MassTodon: the mix-
ture of two distributions is represented by a convex combination of two theoretical
isotopic patterns.

The peptide bond cleavage induced by ETD is believed to be fairly uniform
[15]. A notable exception from this rule is the peptide bond of proline: due to the
ring structure of this amino acid, the c- and z-ions are held together even after
the N−Cα bond cleavage. A specific type of N−Cα bond cleavage occurs on the
N-terminus, leading to a loss of one ammonia molecule. The precise mechanism
of this reaction is not known. However, in the current work we assume this
reaction to be an ETD, and the ammonia molecule is treated as a c fragment.
Therefore, the number of possible ETD cleavage sites is equal to the number of
amino acids other than proline in the protein/peptide sequence.

Related Research. Various approaches have been taken to model different
protein fragmentation techniques [2,16–18]. A similar approach was presented by
Zhang [7,8] who studies CID fragmentation using a kinetic model. In [19], Zhang
adapts the model to ETD mass spectra. The model relies upon 280 parameters
and its derivation is grounded in the theory of statistical mechanics. The model
was fitted to a training data set consisting of more than 7000 ETD spectra
simultaneously.

A notable amount of literature has been built up around the idea of purely
data-driven prediction of the intensity of peptides in tandem MS experiments
[20–22]. A more exploratory approach targeted at studying fragmentation pat-
terns was taken by Li et al. [15]. That said, the above approaches have been
applied mainly to study CID.

To the best of our knowledge, none of the existing approaches allows esti-
mating reaction intensities directly from a single mass spectrum.

Our Contribution. We propose a formal model of the electron-driven reac-
tions occurring inside the mass spectrometer. We follow a modeling strategy
first developed by Gambin and Kluge [23] to study the degradation of proteins
induced by various peptidases. The solution to the problem of ETD reaction can
be obtained conceptually in the same way: the stochastic description based on
Markov Jump Process, MJP, can be transformed to a populational description
of a large number of molecules based on a system of Ordinary Differential Equa-
tions, ODEs. Given the intensities of transitions in the process, one can solve the
ODEs with a recursive algorithm to obtain the expected number of molecules.
The space of possible intensitities has to be searched for the best possible set of
parameters by some optimization algorithm.
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We study mass spectra gathered in controlled experiments, obtained for
highly purified compounds. The identity of the precursor ion and all fragments
obtained given a set of possible reactions is known and the quantities of these
fragments can be established using our in-house developed identification tool
called MassTodon [13,24]. Given a mass spectrum, MassTodon outputs a
list of reaction products together with their estimated intensities (that are usu-
ally assumed to be proportional to the actual number of ions). MassTodon
merges peaks that can be traced to originate from different isotopologues of the
same molecule and also deconvolves isotope clusters into their sources or origin,
see Fig. 2. The obtained information is more compact, but the observed products
can rarely be attributed to only one specific reaction.

Here, we propose a method that can further reduce the dimensionality of the
data obtained by MassTodon. It represents MassTodon’s outcomes in terms
of (relative) reaction rates – the key notion in the theory of reaction kinetics.

The model we propose lets us express the mass spectrum in terms of para-
meters such as the total intensity of reactions and the probabilities of the three
studied reactions: ETD, PTR, and ETnoD. A process described by a handful of
parameters can be easily visualized and thus easily understood. Also, the com-
parison of different spectra, e.g. coming from different instrument settings, is
highly simplified.

Organization of the Paper. First, we introduce the theoretical considerations
behind our model. Then, we describe the procedures used to obtain our data
sets (experimental and in silico). Then, we assess the performance of the model.
Finally, we discuss existing problems and possible extensions.

2 Formal Model of the ETD Reaction

Following the ideas outlined in [23], we model ETD as a continuous time Markov
Jump Process, MJP, which is a well-established approach to modeling chemical
reactions. To describe the state space for our model we introduce the reaction
graph: a bipartite directed graph with two types of nodes which we call molecular
species and reactions. The molecular species correspond to cations that are sub-
strates or products of the studied reactions, see Fig. 3. Each molecular species u
can be uniquely described by (1) the sequence of amino acids s, (2) the charge
of the cation q, and (3) the number of quenched protons g, u = (s, q, g). All
molecules that cannot be observed, e.g. the internal fragments or ions in which
all charges have been neutralized, are merged into one molecular species called
the cemetery. We assume to know only the numbers of protons and not their
positioning. We also assume that ESI-generated protons can only be attached
to basic amino acids: lysine, arginine, and histidine.

The molecular species are occupied by tokens that represent their numbers.
Denote the number of tokens at place u by xu. The state x of the MJP is defined
as a collection of all such counts at a given moment in time so that x = (xu).
From a state x, the system can evolve to another state following one of the
possible reactions, see Fig. 3(B).
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Fig. 3. A fragment of the reaction graph for triply charged precursor. The molecular
species are depicted in black and the reactions in orange. The dagger symbolizes the
cemetery. The reaction graph serves as a board for tokens that represent the number of
molecules of a given species. Counts of tokens are plotted in red in panel (B). During
each reaction a token disappears on the substrate side and product tokens appear: one
in case of ETnoD and PTR, two in case of ETD, as seen in (B). (Color figure online)

We investigate L fragmenting reactions, where L equals the number of amino
acids of the protein being studied minus the number of prolines (which ETD
cannot fragment). We also consider two reactions corresponding to ETnoD and
PTR, which convert one substrate into one product.

We model the time of experiment as an interval [0, 1], where 0 is the beginning
of the process and 1 corresponds to the moment of observation. The probability
that the process ends up in state x at a given time t is denoted by pt

x. The
derivative of this quantity follows the master equation,

ṗt
x =

∑

y �=x

pt
yQyx − pt

x

∑

y �=x

Qxy,

Above, Qxy is the intensity of the reaction leading from state x to state y. The
intensity is zero if y cannot be obtained from x. Otherwise, the intensity is
proportional to the number of the substrate molecules, Qxy = cRxsR

. Here, cR

(described later on) is the rate of reaction R and sR is its substrate species.
The average numbers of cations at that place u is Et

u =
∑

x xupt
x. At t = 0,

the process is deterministic: all tokens can be found only in the precursor node
with maximal charge state, denoted q0. We call this state the root, r. Thus,
E0

r = N and E0
u = 0 if u �= r. Differentiating the expressions for averages we

arrive at
Ėt

u =
∑

x

xu

∑

y �=x

pt
yQyx −

∑

x

xupt
x

∑

y �=x

Qxy.

We rewrite the above in terms of reactions R and their substrate states to get

Ėt
u =

∑

R

cR

∑

x:∃yx=Ry

xu(xsR
+ 1)pt

R−1x −
∑

R

cR

∑

x

xuxsR
pt

x,

where Ry denotes the state obtained from y after reaction R, and R−1x is the
substrate state of x given R. Note that the minuend enumerates only states x
for which R−1x is properly defined. We can rephrase the sum in terms of the
source states y and then retag them to x,

∑

x:∃yx=Ry

xu(xsR
+ 1)pt

R−1x =
∑

y

(Ry)uysR
pt

y =
∑

x

(Rx)uxsR
pt

x.
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Thus, Ėt
u =

∑
R cR

∑
x [(Rx)u − xu] xsR

pt
x. Denote [(Rx)u − xu] by KR. It

equals one if place u is a product of reaction R, minus one for substrate, and
zero otherwise. It is a value dependent on R and not on particular state x. It
results in

Ėt
u =

∑

R

cRKR

∑

x

xsR
pt

x =
∑

R

cRKREt
sR

=
∑

R:u∈PR

cREt
sR

− Et
u

∑

R:u=sR

cR,

where PR are the products of reaction R. It follows that the average inflow
of molecules in place u is proportional to the average numbers of the parent
molecules of u. Their proportionality constants are equal to reaction rates. All
reactions are enumerated in the outflow, while some might lead directly to the
cemetery, e.g. in the case of the second fragmentation. This technical assumption
is also needed to correctly solve the resulting ODEs, as described later on.

The last formula can be rewritten as Ėt
u =

∑
v→u λvuEt

v − λuuEt
u. This

underlines the dependence of the average amount of u upon respective average
levels of species it originates from, v. We call v a parent of u. The presented
system of ODEs is recursive and can be solved from the root r downwards. For
the root, Ėt

r = −λrrE
t
r. The function Et

r = Ne−λrrt solves this ODE. Knowing
solutions for all the ancestors of u, we explicitly solve the corresponding ODE.
First, consider the ODE of any child u of the root species r, Ėt

u = λruEt
r−λuuEt

u.
Applying the integrating factor eλuut (provided λrr �= λuu) one obtains

Et
u = e−λuut

∫ t

0

eλuusλruEs
rds =

Nλru

λrr − λuu
(e−λuut − e−λrrt).

In general, instead of λruEt
r, one has to consider a linear combination of solu-

tions to the ODEs of u’s ancestors, f>u. Then, Et
u = e−λuut

∫ t

0
eλuusf>u(s)ds.

Et
u can be shown to be equal to

∑
v>u bvue−λvvt − buue−λuut, with parameters

bvu = 1
λuu−λvv

∑
w:v≥w→u λwubvw and buu = −∑

v bvu.
The above is true only if λvv �= λuu for all parents v of u. These inequal-

ities are satisfied if we make a natural assumption that the intensities can be
factorized so that λuv = Iq2i PRuv

, where I is the overall intensity of all reac-
tions, qu is the charge of molecules in place u, and PRuv

is the probability
of reaction Ruv, where u is the substrate and v one of the products. Then
λvv − λuu = I

∑
R PR(q2v − q2u) > 0, because u has a lower charge state than

any of its ancestor (as all reactions reduce the charge state by at least one).
The quadratic dependence on the charge, q2u, can be motivated by theoretical
considerations [25].

For ETnoD and PTR respectively, PRu
= PPTR and PRu

= PETnoD, which
are both parameters of the model. The case of ETD is more complex, as it can
cleave different bonds. We denote the probability of the cleavage of the lth bond
by PETDl

—another parameter of the model. Additionally, one has to distribute
the q−1 protons and g quenched protons between both the c and z fragments, so
that qc + qz = q −1 and gc +gz = g. The division of remaining q −1 protons and
g quenched protons depends on the available number of basic amino-acids on
both fragments, denoted by Bc and Bz. It is assumed to occur with probability
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Pl(qc, gc) =

(
Bc

qc

)(
Bz

qz

)
(
Bc+Bz

q−1

)
(
Bc−qc

gc

)(
Bz−qz

gz

)
(
Bc+Bz−q+1

g

) ,

which corresponds to placing the qc charges on the basic sites of the fragment
peptide followed by placing gc quenched protons on the remaining free basic
sites. Placing quenched protons first would result in the same formula.

To conclude, the probability of the ETD on the lth amino acid with a given
proton distribution among fragments equals PRu

= PETDl
Pl(qc, gc). The prob-

ability of observing any ETD reaction, PETD, can be obtained by summing
PETDl

over possible cleavage sites. The model is parametrized by the total reac-
tion intensity I, two reaction probabilities (PPTR, PETnoD) and L different ETD
reaction probabilities PETDl

.
For a given set of model parameters θ we can calculate the average number

of cations for all molecular species u at observation time, E1
u(θ). On the other

hand, MassTodon provides the estimates yu of the percentual content of u
in the experimental mass spectrum. For a given θ, we measure the difference
between these quantities using the logarithm of their euclidean distance. The
error minimizer, θ∗, is our estimate of the true reaction intensities. To get it we
use the BFGS algorithm that evaluates all E1

u(θ) for all species u and compares
them to respective yu and updates θ iteratively until reaching convergence. The
cost of evaluating Et

u is O(Lq50). To see this, note that there are O(Lq20) nodes in
the reaction graph, each with links to O(q20) parents. Moreover, reaction inten-
sities can be obtained in constant time, except for ETD which is obtainable in
O(q0) because of the Pl(qc, gc) term.

3 Validation and Results

Numerical Simulations. Numerical simulations of ETD process were per-
formed to assess the quality of the fitting procedure under fully controlled con-
ditions. The simulation was performed as follows: we start with a given num-
ber of substance P (amino acid sequence RPKPQQFFGLM) precursor cations.
We simulate the electrospray ionization by placing a given number of protons
on randomly chosen basic amino acids. Then, we simulate the Markov Jump
Process using standard simulation techniques [26], noting that our process can
be simulated as if the cations reacted independently of each other. Ions that find
themselves in the same state at the end of the simulation are aggregated. The
resulting counts of ions simulate results obtainable with MassTodon.

We also analyze the robustness of the fitting procedure to noisy or missing
data. The random noise is modeled by adding gaussian noise to the counts,
with zero mean and standard deviation expressed as a given percentage of the
count. Missing data is modeled by randomly removing a given proportion of the
peaks. Finally, the counts obtained in this way are normalized to sum to one.
Altogether, the simulation was repeated 100 times for 20 different values of data
distortion parameters, see Fig. 4.
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Fig. 4. Relative errors of the fitting procedure on in silico Substance P data. The known
true values of parameters are respectively PETD = 30%, PETnoD = 25%, PPTR = 45%.
Cleavage probabilities were assumed to be uniform (proline being the obvious excep-
tion). Each boxplot summarizes the results of 100 independent simulations: whiskers
denote the first and ninth decile and the box lids - the first and third quartiles. The
left panel presents the response of the relative error of the estimates to the increasing
amount of noise in the intensities reported by MassTodon. On the right panel, we
study the impact of the random removal of information on the molecular species, both
in noiseless conditions (in gold) and with a modest amount of noise (standard deviation
set to 20% of the intensity of the simulated molecule).

Experimental Data. Mass spectra have been acquired for purified Substance P.
The precise experimental setting is described in detail in [27].

We have tested the model and the fitting procedure on both simulated
and experimental data to assess their robustness and to estimate real reaction
intensities.

Fitting to Simulated Data. The fitting procedure turned out to be fairly
robust toward moderate noise and missing data, see Fig. 4. The results of the
fitting procedure are unbiased. On noiseless data and data with a moderate
amount of noise (up to 50% of variation in simulated intensities), the model
was able to predict the reaction intensities with very high accuracy (only after
introducing more than 25% of peak variation do the estimates start to surpass
the limit of 50% relative error in more than 20% of cases).

Fitting to Experimental Data. The model has been fitted to 53 substance P
spectra, obtained at various travelling-wave height/velocity combinations (design
of the instrument and physical meaning of these parameters are described in
detail in [27]). After fitting the model to the data, the validity of the model was
further investigated by computing the percentage of the experimental spectrum
accounted for by the theoretically predicted spectrum. We call this value the
Explanation Percentage (EP) and define it to be the common part of the theoret-
ical and experimental spectrum. Since both spectra are normalized so that they
sum to one, the Explanation Percentage can be expressed in a simple formula,
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EP =
∑

u min{yu, enormu }. Note that because of normalization, 0 ≤ EP ≤ 1. We
present the Explanation Percentage calculated for considered data sets in Fig. 5
(two panels in the upper left corner): the values are between 40% and 98%,
mostly around 80%. These results are very promising given that the assumption
that process intensities are constant in time is rather strict, as discussed later on.
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Fig. 5. Results of fitting to experimental data preprocessed by the MassTodon soft-
ware. Two plots in the top left corner report the Explanation Percentages calculated
for the input data. Below, we present results of fitting the model to the fragments
obtained at Wave Height = 1.5 and Wave Velocity = 2250. Intensities of the c fragments
are plotted to the left of the black division line. The intensities of their corresponding
z fragments are plotted to the right. The figure aggregates results for different charges
and quenched protons. The right side of the panel presents estimates of intensities (top
and bottom) and estimates of reaction probabilities (middle).

The predicted total intensity of all reactions, I, can be found between 10−3

and 10, see Fig. 5. In regions of low reaction intensity, the explanation percent-
age approaches 100%; however, in these conditions mass spectra contain mostly
unreacted precursors and so the fitting is relatively easy to perform. In regions
of high reaction intensity (wave height between 0 and 0.3) the spectra are much
more informative and even then the model can explain around 70% of the input
information. Similar results are obtained for different values of wave velocity.
In the regions of high intensity (wave velocity above 1750) the model explains
around 75% of the input.

In the bottom left corner of Fig. 5 we present the comparison of peak heights
obtained with MassTodon and those fitted by described procedure. The frag-
ments have been aggregated over protons and quenched protons to simplify the
plot. Note that in the input data there are more c fragments than z fragments,
with the exception of the z11 fragment, corresponding to the loss of NH3 from the
N-terminus. This lack of symmetry is stronger than that expected in the current
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setting but likely related to the electrostatic repulsion and the asymmetric dis-
tribution of basic sites within the substance P sequence, as all the basic residues
are located in the proximity of the N-terminus.

4 Discussion and Conclusions

We present a kinetic model of electron transfer driven reactions. The obtained
results are promising for future work, as the model can explain around 80% of the
observed intensities of the molecular species. The model is based on stochastic
foundations and so the estimated parameters have a probabilistic interpretation,
such as the probability of a given cleavage or reaction.

Due to its simplicity, the model described here can be used in further fun-
damental research into the ETD mechanism, as a discrepancies between exper-
imental observations and the model predictions is expected to have a relatively
straightforward physical interpretation. For instance, the underestimation of the
asymmetry of corresponding c and z fragment intensity in the current results
might indicate that a more sophisticated model of protonation sites should be
used (e.g. one that accounts for electrostatic repulsion, see [28]). Similarly, using
the MassTodon software, it has been recently shown [24] that the observed ratio
of PTR to ETnoD depends on protein conformation for intermediate charge
states of ubiquitin and, thus, on the reaction history. A more detailed analy-
sis could be easily performed (and similar dependencies thus revealed) using
ETDetective.

As mentioned in the Introduction, our kinetic model is somewhat similar
to that of Zhang [19]. However, there are many differences in the conceptual
approach to the problem. The earlier model is derived from first principles of
statistical physics, whereas that proposed by us is much more phenomenologi-
cal: the physical content is reflected only in the construction of possible states
and enumeration of ways of how one state can be modified into another state.
Knowing this, we cast the problem into the well-studied setting of continuous
time Markov Jump Processes. Because of that, the number of parameters that
describe our model is fairly limited, in contrast to the approach described in [19].
Another difference is that we do not estimate any parameters common to more
than one dataset: we can fully estimate our model based on one spectrum alone.
This allows us to compare reaction intensities for different experimental condi-
tions. As shown in the Results section, this allows us to compare many mass
spectra acquired under different experimental conditions and summarize the
results in a convenient way using just a few dimensions. Note that in precisely
the same way one can compare spectra acquired using different instruments,
which is important to properly design the experiment, see [13].

A natural way for this work to proceed is to explain the influence of the
instrumental settings and experimental conditions on the reaction intensity and
cleavage preferences. This can be investigated using statistical methodology, like
the generalized linear models, Dirichlet regression in particular.
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The code used in this work is available at https://github.com/mciach/
ETDetective under the 2-clause BSD license.
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Abstract. The protein fragment libraries play an important role in a wide variety
of structural biology applications. In this work, we present the use of a spectral
clustering algorithm to analyze the fixed-length protein backbone fragment sets
derived from the continuously growing Protein Data Bank (PDB) to construct
libraries of protein fragments. Incorporating the rank-revealing randomized
singular value decomposition algorithm into spectral clustering to fast approxi-
mate the dominant eigenvectors of the fragment affinity matrix enables the
clustering algorithm to handle large-scale fragment sample sets. Compared to the
popularly used protein fragment libraries developed by Kolodny et al., the
fragments in our new libraries exhibit better representability across diverse
protein structures in PDB. Moreover, using much larger fragment sample sets,
libraries of longer fragments with length up to 20 residues are also generated. Our
fragment libraries can be found at http://hpcr.cs.odu.edu/frag/.

1 Introduction

Local interactions play an important role in stabilizing a protein structural conformation
[1, 2]. Therefore, in any short amino acid sequence segment, the molecular interactions
constrain the structure into limited number of possible conformations. These confor-
mations are often modeled as protein fragments, which are distributed across many
protein structures from different families and allow the study of local interactions in
isolation from the protein context. Libraries of these protein fragment have applications
in a wide variety of structural biology problems. Giving a few examples, de novo
protein structure predictions rely on accurate fragment libraries to generate good
structural models [3, 4]; in homology-based modeling, protein loop fragments can be
used to generate scoring functions [5, 24] and build up loop structures [6, 7]; fragment
patterns are also helpful in interpreting experimental electron-density map for protein
structure determination [8, 9]; and furthermore, using fragment libraries to represent
protein structural features enables effective protein databases search and data mining
[10, 11].
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The protein fragments are often constructed from the protein structures stored in the
Protein Data Bank (PDB). Typically, the construction process [12] involves steps of
protein selection, measuring fragment similarities, clustering, refinement, and extrac-
tion. In the selection step, a subset of high resolution protein chains covering diverse
structural conformations is chosen and for each structure, every structural segment
containing fixed-length, consecutive residues is taken as a fragment sample. An affinity
matrix is built where each entry measures pair-wise similarity among these fragment
samples. Then, a clustering algorithm is carried out on the affinity matrix to group the
fragment samples with high similarity into k clusters. The refinement step is taken to
filter, merge, and optimize these clusters. Finally, the most representative fragment
from each cluster is selected to make up the fragment libraries.

One of the well-known protein fragment libraries is developed by Kolodny et al.
[12] in 2003. These fragment libraries contain backbone fragments ranging from 5–7
residues, which are generated from a set of 145 protein chains. The sizes of the
fragment sample sets are less than 10,000. These libraries are later extended to include
fragments of length 5–12 in 2009 [10]. Nevertheless, in recent years, the number of
experimentally determined protein structures steadily grows in PDB, with over 10,000
per year. By Feb. 10, 2017, 117,479 protein structure entries are recorded in PDB. The
continuously increasing number of experimentally determined protein structures pro-
vides rich information sources that enable us to gain important insights into protein
structures and their relationship to sequences and functions in a scale and at a level that
has never been possible before. Moreover, the protein structure universe tends to be
complete with high percentage [13]. All these motivate us to take advantage of the
large-scale protein structure information available in PDB to generate high-quality
protein backbone fragments. However, one of the main challenges is the clustering
algorithms. The popularly used k-means algorithms often have difficulty to scale to
handle very large fragment sample sets. Also, k-means algorithms are unable to find
clusters with concave boundaries. Moreover, the k-means algorithms are sensitive to
the initial randomly picked cluster centers [12], which often generate different results
with different initial settings.

In this paper, we present the use of a spectral clustering algorithm to cluster large-
scale protein fragment sample sets generated from a large number of protein structures
covering diverse conformations in the protein structure universe. Spectral clustering is
a graph-cut based algorithm aims at extracting the global patterns of the fragment
sample sets [14]. Compared to the commonly used clustering algorithms such as
k-means, the graph-cut based clustering algorithms such as normalized cuts have the
advantages of generating stable clusters with non-convex boundaries, achieving the-
oretical optimum, and providing an efficient way to estimate the number of clusters.
A rank-revealing randomized singular value decomposition (R3SVD) technique [19] is
employed to fast approximate the dominant eigenvectors of the fragment affinity
matrices, which allows the spectral clustering method to scale up to large fragment
sample sets. With fragment sample sets of significantly larger sizes, we are able to
generate new protein backbone fragment libraries up to length 20. Finally, we analyze
the new fragment libraries we generate and compare their representability with the
existing ones [10, 12].
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The rest of the paper is organized as follows. In Sect. 2, the randomized spectral
clustering method to cluster the large-scale fragment sample sets is described and
discussed. We analyze our fragment libraries in Sect. 3. Finally, Sect. 4 summarize our
work and future research directions.

2 Methods

2.1 Datasets

We use the Protein Sequence Culling Server (PISCES) [15] to extract a non-redundant
and non-homologous set of protein chains from PDB. This set contains 2,491 high
resolution protein chains with at most 20% sequence identity, 1.6 A resolution cut-off,
and 0.25 R-factor. Approximately 70% (1,757) of protein chains are selected as the
training set to generate the fragment libraries and the remaining 30% (734) are des-
ignated as the testing set for validation.

For each chain in the training set, we use a fixed-length sliding window to con-
secutively segment the protein sequence into overlapping fragments. We use sliding
window sizes ranging from 7 to 20 residues to generate fragment samples from 7–20 in
length. Fragments with gaps are excluded. A reduced fragment representation is
employed such that each residue in a fragment sample is encoded by the spatial
coordinates of heavy backbone atoms while side chains are removed. Residue identities
in each fragment are also ignored. Table 1 lists the total numbers of the generated
protein fragment samples for each length.

2.2 Fragment Affinity Matrices

For a given pair of fragments fi and fj of the same length, we calculate the Root Mean
Square Deviation (RMSD) of the corresponding Ca atoms to measure the distance
score between these two fragments. An undirected, weighted fragment affinity graph
G ¼ ðV ;E; aÞ is created where fi 2 V , ðfi; fjÞ 2 E if the RMSD value between frag-
ments fi and fj is within the RMSD cutoff s, and the corresponding connection affinity
a fi; fj
� �

is calculated by applying the Gaussian kernel to convert the RMSD value into
the affinity score such that

Table 1. Total numbers of fragment samples with respect to fragment lengths in the training
data set

Length # of samples Length # of samples

7 490044 14 461217
8 485766 15 457295
9 481540 16 453421
10 477375 17 449583
11 473266 18 445785
12 469210 19 442018
13 465188 20 438295
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a fi; fj
� � ¼ exp � rmsd fi;fjð Þ

r2

� �
; rmsd fi; fj

� �
\s

0; rmsd fi; fj
� �� s

8<
: ;

where r2 is the standard deviation of the RMSD distribution of the fragment sample set
and s varies with respect to fragment length. Then, the fragment affinity graph G is
converted into a fragment affinity matrix A, where Aij ¼ a fi; fj

� �
. Due to the positive

RMSD values and the commutative property of RMSD calculation, A is symmetric
positive definite (SPD). Moreover, A is sparse when an efficient RMSD cutoff is
applied.

2.3 Spectral Clustering

Spectral clustering [16] is a graph-based clustering technique [14] that can be views as
finding partitions of a graph that minimizes the graph cut property. The fundamental
idea of spectral clustering [17] is to make use of the spectrum (eigenvalues/
eigenvectors) of the affinity matrix with respect to graph G to perform dimensionality
reduction before clustering in lower dimensions. Starting from the fragment affinity
matrix A, a diagonal degree matrix D is defined as

Dii ¼
Xn
j¼1

Aij:

Then, a normalized Laplacian matrix is obtained such that

L ¼ D�1=2AD�1=2:

Afterwards, the largest eigenvector of L is used to bipartition the graph G ¼
ðV ;E; aÞ into two complementary partitions S and S, where S; S � V ; Sþ S ¼ V ; and
S\ S ¼ ;. Define the normalized cut property ncut S; S

� �
of G as

ncut S; S
� � ¼ wðS; SÞ

wðS;VÞ þ
wðS; SÞ
wðS;VÞ ;

where wð:Þ is the weight function summing all weights between two partitions.
According to the theoretical analysis of spectral clustering in [14], ncut S; S

� �
, which

measures the balanced similarity between S and S, is minimized.
Unlike the classical clustering techniques such as the k-means approaches, the

spectral clustering method is able to produce clusters with concave cluster boundaries
due to the nonlinear separation hyper surfaces obtained. As a result, spectral clustering
does not need any priori information on the shapes of the clusters. Moreover, spectral
clustering often yields more robust clustering results because it does not rely on the
initial, randomly selected cluster centers.
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2.4 Randomized Singular Value Decomposition

The most computationally costly operation in the spectral clustering method described
above is the calculation of the bipartitioning eigenvector from the large fragment affinity
matrix to bipartition G as well as the subsequent big subgraphs, particularly when the
training set includes a large number of fragment samples. Fortunately, we only need the
dominant eigenvectors and thus there is no need to calculate the whole spectrum
information from the affinity matrix [18]. Notice that because the normalized Laplacian
matrix is SPD, its eigenvalue decomposition and SVD coincide. Therefore, we adopt a
rank-revealing randomized singular value decomposition (R3SVD) algorithm [19] to
fast approximate the dominant eigenvector of the normalized Laplace matrix.

The R3SVD algorithm includes four major steps: Gaussian sampling, QB decom-
position, error estimation, and SVD. First of all, given an n� n Laplacian matrix L, an
n� k Gaussian matrix X is randomly generated and an n� k matrix Y is obtained by
projecting L onto X such that

Y ¼ LqX;

where k is the guessed rank and q is the number of power iterations. Here, we adopt
q ¼ 2 as recommended by [20]. Then, a QB decomposition is generated by

Q;R½ � ¼ qr Yð Þ

B ¼ QTL

where qr Yð Þ is a QR decomposition of Y and QT denotes the transpose of Q. Then
QB � L is a k-rank approximation of L. The error percentage of the QB decomposition
can be computationally efficiently estimated by calculating the squares of the Frobenius
norms of L and B such that

jjL� QBjj2F
jjLjj2F

¼ jjLjj2F � jjBjj2F
jjLjj2F

:

The mathematical proof of this property can be found in [20]. Our empirical results
show that when the error percentage is less than 20%, the QB decomposition can lead
to a high-quality approximation of the dominant eigenvector of L. If the error per-
centage is over 20%, the Gaussian sampling step is repeated with an increased k value
until the error percentage drops below 20%. Due to the fact that there are limited
number of independent factors that determine the formations of structures of short
protein fragments, the Laplacian matrix L is of low rank. Typically, k \ 100 can
capture most of the actions of L. Afterwards, the low-rank approximated SVD of L,
ULRLVT

L , is obtained by carrying out SVD on the “short-and-wide” matrix B by

U;R;V½ � ¼ svd Bð Þ

UL ¼ QTU;RL ¼ R;VL ¼ V :
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Finally, the dominant eigenvector of L can be extracted from the obtained
approximated SVD.

The R3SVD algorithm is able to adaptively estimate the appropriate rank of the
approximated SVD to calculate the dominant eigenvector of L. In the randomized
algorithm, most numerical linear algebraic operations are carried out on “skinny” block
matrices, which are both computation and memory efficient. This allows the spectral
clustering method to scale up to handle the large sample sets in this study with close to
half million protein fragments.

2.5 Generation of Fragment Libraries

We adopt an iterative bipartitioning approach to generate the fragment libraries given a
predefined RMSD clustering cutoff. Starting from the graph G generated from all
fragments in the training set, we bipartition it into two complementary subgraphs using
the spectral clustering approach described above. The bipartitioning process is repeated
on the subgraphs until all RMSD values between fragments in the subgraph fall below
a RMSD cutoff. By applying the spectral clustering and iterative bipartitioning tech-
niques, we are able to generate protein backbone fragment clusters of different lengths
(7–20 residues) as well as under different RMSD cutoffs. For specific length and
RMSD cutoff, these clusters are ranked according to their size, i.e., the number of their
member fragments.

Instead of calculating the member-wise mean which may generate unrealistic
structural conformation, given a cluster and its RMSD cutoff, the centroid of the cluster
is determined by the fragment that has most friend fragments in the cluster within the
RMSD cutoff. The conformation of the fragment corresponding to the centroid of the
cluster is then deposit into the fragment library. The fragments of the same length are
ranked in the fragment library according to the sizes of the clusters that they are
generated from.

3 Results

3.1 Analysis of Fragment Libraries

In this work, we have generated protein backbone fragment libraries of length ranging
from 7 to 20 under Ca RMSD cutoffs from 0.5 A to 3.0 A. We use the testing set
described in Sect. 2.1 to validate our fragment libraries. Figure 1 shows the percentage
of chains in the testing set (overall 734 protein chains) that a fragment can be found for
the top-100 fragments in the fragment libraries of length 10–20 with 1.0 A cutoff. We
define a fragment in the fragment library is found in a protein chain if there exists a
same length segment in this chain whose Ca RMSD is less than 1.0 A. One can find
that the top 100 fragments in these libraries of different lengths are well represented in
the testing set and the ranks of the fragments are mostly preserved. Even the
100-ranked 20-residue fragment can be found in about 5% of the protein chains in the
testing set.
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3.2 Comparison with Existing Fragment Libraries

We compare the representability of the top-200 12-residue fragments in the fragment
library generated by our randomized spectral clustering method with that of the top-200
ones from fragment libraries developed by Kolodny et al. [10, 12] in the testing set.
Both fragment libraries have minimum 0.9 A RMSD cutoff. The comparisons mea-
sured by the number of fragments matched and percentage of chains found are shown
in Figs. 2 and 3, respectively. Two fragments are considered a match if their RMSD is
less than 1.0 A. If a fragment in the fragment library can match with a segment in the
protein chain, we consider this fragment is found in the protein chain. From Figs. 2 and
3, one can find that except for the first several fragments that are a-helix like, the rest of
the top-ranked fragments in our 12-residue fragment library can find significantly more
matches, both in terms of the number of fragments and the number of chains, in the
testing set. The similar observations are also found in fragment libraries of other
lengths.

The conformations of the top-200 12-residue fragments generated by randomized
spectral clustering are displayed in Fig. 4. New fragments that have RMSD over 1 A to
all top-200 12-residue fragments in the fragment libraries developed by Kolodny et al.
are found and are highlighted. As shown in Figs. 2 and 3, these fragments are well
representative in the protein chains in the testing set. This indicates that with a much
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Fig. 1. The percentage of chains that a fragment can be found in the testing set (overall 733
protein chains) for the top-100 fragments in the fragment libraries of length 10–20, 1.0 A cutoff.
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top-200 fragments in the 12-residue fragment library by randomized spectral clustering and the
fragments in the fragment library developed by Kolodny et al. [10, 12]. The testing set contains
734 protein chains.
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Fig. 4. Top-200 12-residue fragments generated by randomized spectral clustering. The
highlighted fragments in orange, green, and blue indicate that the RMSD distances between
these fragments and the top-200 12-residue ones in the fragment libraries developed by Kolodny
et al. [10, 12] are at least 1 A, 2 A, and 3 A, respectively. (Color figure online)
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larger scale fragment data set and a more powerful clustering algorithm, we are able to
find more representative backbone fragment conformations across different protein
structural conformations.

3.3 Libraries of Long Fragments

For longer protein fragments, the degree of freedom is higher. When the fragment
sample set was small, the libraries for long fragments were difficult to obtain because
they are sparsely distributed in the high dimensional space. Generated from signifi-
cantly more structures deposited in the PDB, the large-scale fragment sample sets also
allow us to derive libraries for longer fragments. Figure 5 displays the top-100
20-residue fragments in the fragment library with 3.0 A RMSD cutoff generated by our

Fig. 5. Top-100 20-residue fragments with 3.0 A RMSD cutoff generated by randomized
spectral clustering.
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randomized spectral clustering method. Many super secondary structure motifs [22],
such as b-hairpins, short b-sheets, helix-loop-helix, and helix-turn-helix, are found and
listed.

4 Conclusions

In this paper, we revisit the problem of constructing representative protein backbone
fragment libraries from PDB. The continuous growth of experimentally determined
protein structures in PDB provides rich information to construct high quality protein
backbone fragments libraries that contain common fragments shared across diverse
protein structural conformations. We used the spectral clustering method to bipartition
the fragment samples to obtain stable fragment clusters potentially with non-convex
boundaries. A rank-revealing randomized SVD algorithm is employed to enable the
spectral clustering method to scale up to handle large-scale datasets with nearly half
million fragment samples. Compared to the existing protein backbone fragment
libraries [10, 12], our new fragment libraries exhibit better representability across
diverse protein structures. Libraries for long fragments up to 20 residues are also
generated.

Our fragment libraries are deposited at http://hpcr.cs.odu.edu/frag/. Our future work
will include using these new fragment libraries for investigating interactions between
fragments [23], studying motif formations in protein families, and de novo protein
structure design.
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Modeling and Simulation Fellowship.

References

1. Munoz, V., Serrano, L.: Local versus nonlocal interactions in protein folding and stability –

an experimentalist’s point of view. Fold. Des. 1(4), R71–R77 (1996)
2. Chikenji, G., Fujitsuka, Y., Takada, S.: Shaping up the protein folding funnel by local

interaction: lesson from a structure prediction study. Proc. Natl. Acad. Sci. 103(9), 3141–
3146 (2006)

3. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures
from fragments with similar local sequences using simulated annealing and Bayesian
Scoring functions. J. Mol. Biol. 268, 209–225 (1997)

4. de Oliveira, S.H.P., Shi, J., Deane, C.M.: Building a better fragment library for de novo
protein structure prediction. PLoS ONE 10(4), e0123998 (2015)

5. Rata, I., Li, Y., Jakobsson, E.: Backbone Statistical Potential from Local Sequence-Structure
Interactions in Protein Loops. J. Phys. Chem. B 114(5), 1859–1869 (2010)

6. Li, Y., Rata, I., Jakobsson, E.: Sampling multiple scoring functions can improve protein loop
structure prediction accuracy. J. Chem. Inf. Model. 51(7), 1656–1666 (2011)

7. Li, Y.: Conformational sampling in template-free protein loop structure modeling: an
overview. Comput. Struct. Biotechnol. J. 5(6), e201302003 (2013)

118 W. Elhefnawy et al.

http://hpcr.cs.odu.edu/frag/


8. Di Maio, F., Shavlik, J., Phillips, G.: A probabilistic approach to protein backbone tracing in
electron density maps. Bioinformatics 22(14), 81–89 (2006)

9. Terwiliger, T.C.: Automated main-chain model building by template matching and iterative
fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59(1), 38–44 (2003)

10. Budowski-Tal, I., Nov, Y., Kolodny, R.: FragBag, an accurate representation of protein
structure, retrieves structural neighbors from the entire PDB quickly and accurately. Proc.
Natl. Acad. Sci. 107, 3481–3486 (2010)

11. Keasar, C., Kolodny, R.: Using protein fragments for searching and data-mining protein
databases. In: Proceedings of AAAI workshop of Artificial Intelligence and Robotics
Methods in Computational Biology (2013)

12. Kolodny, R., Koehl, P., Guibas, L., Levitt, M.: Small Libraries of Protein Fragments Model
Native Protein Structures Accurately. J. Mol. Biol. 323, 297–307 (2005)

13. Denise, C.: Structural GENOMICS exploring the 3D protein landscape. Simbios (2010)
14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 22(8), 888–905 (2000)
15. Wang, G.L., Dunbrack, R.L.: PISCES: a protein sequence culling server. Bioinformatics 19,

1589–1591 (2003)
16. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
17. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv.

Neural. Inf. Process. Syst. 14, 849–856 (2001)
18. Ji, H., Weinberg, S., Li, Y.: A revisit of block power methods for finite state markov chain

applications. arXiv:1610.08881 (2016)
19. Ji, H., Yu, W., Li, Y.: A rank revealing randomized singular value decomposition (R3SVD)

algorithm for low-rank matrix approximations. arXiv:1605.08134 (2016)
20. Gu, Y., Yu, W., Li, Y.: Efficient randomized algorithms for adaptive low-rank factorizations

of large matrices. arXiv:1606.09402 (2016)
21. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288
(2009)

22. Chiang, Y.S., Gelfand, T.I., Kister, A.E., Gelfand, I.M.: New classification of supersec-
ondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage.
Proteins 68(4), 915–921 (2007)

23. Elhefnawy, W., Chen, L., Han, Y., Li, Y.: ICOSA: a distance-dependent, orientation-specific
coarse-grain contact potential for protein structure modeling. J. Mol. Biol. 427(15), 2562–
2576 (2015)

24. Li, Y., Liu, H., Rata, I., Jakobsson, E.: Building a knowledge-based statistical potential by
capturing high-order inter-residue interactions and its applications in protein secondary
structure assessment. J. Chem. Inf. Model. 53(2), 500–508 (2013)

Construction of Protein Backbone Fragments Libraries on Large Protein Sets 119

http://arxiv.org/abs/1610.08881
http://arxiv.org/abs/1605.08134
http://arxiv.org/abs/1606.09402


Mapping Paratope and Epitope Residues
of Antibody Pembrolizumab via Molecular

Dynamics Simulation

Wenping Liu1 and Guangjian Liu2(&)

1 School of Bioscience and Bioengineering,
South China University of Technology, Guangzhou 510006, China

liuwenp@mail3.sysu.edu.cn
2 Division of Birth Cohort Study,

Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangzhou 510623, China

liugjcn@163.com

Abstract. Blocking the programmed death receptor 1 (PD-1)/programmed
death ligand 1 protein (PD-L1) interaction has come up as a promising cancer
immunotherapy. Pembrolizumab is a therapeutic monoclonal antibody targeting
PD-1 and received widespread attention. However, the messages for the para-
tope and epitope residues of pembrolizumab are insufficient. Here molecular
dynamics (MD) simulation was used to map epitope on PD-1 to paratope
residues on pembrolizumab. A total of twenty-nine key residues were predicted
in the PD-1/pembrolizumab interaction. Of the fourteen epitope residues, three
(i.e., ASN66, LYS78 and ALA132 on PD-1) were found to play critical roles in
the interaction of PD-1 and PD-L1. Therefore, pembrolizumab prevents PD-L1
from interacting with PD-1 through steric hindrance, and the key residues sorted
out here were potential hotspots for the optimization of pembrolizumab.

Keywords: Epitope � Paratope � Molecular dynamics simulation � PD-1 �
Pembrolizumab � PD-L1

1 Introduction

Cancer immunotherapy has great achievements in cancer treatment in past few years. It
comprises a variety of treatment approaches and the blockade of the interaction
between programmed death receptor 1 (PD-1) and its ligand programmed death ligand
1 protein (PD-L1) is the most promising [1, 2]. PD-1 is a 288 amino acid type I
transmembrane protein expressed on tumor and immune cells and PD-L1 is a 290
amino acid type I transmembrane protein belonging to the B7 family [3, 4]. several
therapeutic monoclonal antibodies targeting PD-1 or PD-L1 have come up, such as
MDX-1106, MK3475, CT-011, AMP-224 and MDX-1105 [5].

Pembrolizumab, also known as KEYTRUDA, is a humanized IgG4 antibody
blocking PD-1. It was approved for the treatment of advanced melanoma and meta-
static non-small-cell lung cancer by FDA in 2015 [6]. Mapping paratope to epitope of

© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 120–127, 2017.
DOI: 10.1007/978-3-319-59575-7_11



pembrolizumab is an essential step to increase its efficacy to better meet the clinical
demands [7]. The PD-1/pembrolizumab complex was crystallized in 2016 and provided
us with the information of the interface at atomic level [8]. However, protein-protein
interaction is a dynamic process, and that conformational transformation is missed in
frozen structure, which might results in loss of key residues [9, 10]. Besides, the
blocking mechanism of pembrolizumab is not clear.

Here, molecular dynamic (MD) simulations were used to map paratope to epitope
residues of pembrolizumab, as well as the key residues in the interface of PD-1/PD-L1
complex. Altogether fourteen epitope and fifteen paratope residues were sorted out and
three epitope residues (i.e., ASN66, LYS78 and ALA132 on PD-1) were also found to
be critical for the binding between PD-1 and PD-L1. Therefore, pembrolizumab pre-
vents PD-L1 from interacting with PD-1 through steric hindrance, and the key residues
sorted out here were potential hotspots for the optimization of pembrolizumab.

2 Materials and Methods

2.1 MD Simulations

The crystal structures of the PD-1/pembrolizumab and PD-1/PD-L1 complexes were
downloaded from Protein Data Bank with accession code of 5GGS and 4ZQK.
The VMD program was used for modeling [11]. Residues 85 to 92 of PD-1 were
missing in the crystal structure and modeled by the SWISS-MODEL server [12, 13].
Two complexes were first solvated with TIP3P water molecules in rectangular boxes,
respectively. Then, Na+ and Cl− ions were added to neutralize two systems at a
150 mM salt concentration.

The NAMD 2.11 program [14] with CHARMM36 all-atom force field [15, 16]
were used for the simulations. Two systems were energy-minimized for 5,000 steps
with all protein atoms fixed and for another 5,000 steps with all atoms free. After that,
equilibrium of 20 ns was performed thrice (I, II and III) for each complex, respectively,
during which the temperature was held at 310 K using Langevin dynamics and the
pressure was held at 1 atmosphere by the Langevin piston method.

2.2 Survival Ratio of H-Bonds or Salt Bridges

The H-bonds and/or salt bridges across the complex interface were detected through the
VMD software. An H-bond was defined if the donor–acceptor distance and bonding
angle were smaller than 3.5 Å and 30°, respectively. But only the bond-length cutoff of
4 Å was applied to examine the salt bridges in binding site. The survival ratio of an
H-bond (or salt bridge) was defined as the percentage of bond survival time. The
maximum value of the survival ratios with the initial equilibrated conformations I, II,
and III was considered the survival ratio of a bond (Tables 2 and 4).
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3 Results

3.1 Mapping Paratope to Epitope Residues of Pembrolizumab/PD-1
Complex via Molecular Dynamics Simulation

Mapping paratope to epitope is an essential step to increase the efficacy of antibody
pembrolizumab. The crystal structure of the pembrolizumab/PD-1 complex provides us
that information at atomic level, which could be downloaded from the PDB database
with accession code 5GGS. H-bonds and salt bridges at the complex interface were
believed to mainly contribute to the binding and they were analyzed with VMD to
obtain information on paratope to epitope residues [8]. The crystal structure of
pembrolizumab/PD-1 complex had five H-bonds and two salt bridges in its interface,
involving four residues (i.e., ASN66, ASP85, LYS131 and ALA132) on PD-1 and
three residues (i.e., H99ARG, H102ARG, and L59GLU) on pembrolizumab (Table 1).

Above analysis provided us binding residues in the crystal structure. But protein-
protein interaction is a dynamic progress [9] and protein flexibility also plays a sig-
nificant role in predicting locations of interacting interface [17]. That information was
lost in static structure analysis. Therefore, MD simulations were performed on
pembrolizumab/PD-1 complex because it is a useful tool to studying the dynamics of
proteins at atomic level [18]. System equilibrium process of 20 ns was conducted thrice
after energy minimization of 10,000 steps for pembrolizumab/PD-1 complex.

Table 2 showed all detected bonds in equilibriums with survival ratios above 0.2
(Methods, Table 2). Altogether twenty-five bonds were detected in simulations,
involving fourteen residues (i.e., SER62, PHE63, ASN66, THR76, ASP77, LYS78,
GLU84, ASP85, ARG86, SER87, GLY90, LEU128, LYS131 and ALA132) on PD-1
and fifteen residues (i.e., H35TYR, H54SER, H55ASN, H58THR, H99ARG,
H101TYR, H102ARG, H104ASP, H108ASP, L32SER, L34TYR, L36TYR, L53TYR,
L57TYR and L59GLU) on pembrolizumab (Fig. 1a and b). Compared with the results

Table 1. Interaction residue between PD-1 and pembrolizumab in the crystal structure

Bond no. Bond type* PD-1 Pembrolizumab#

Residue Atom Residue Atom

1 H ASN66 ND2 H102ARG O
2 H ASP85 OD1 H99ARG NH1
3 H ASP85 OD2 H99ARG NH2
4 H ALA132 O H102ARG NH1
5 S ASP85 H99ARG
6 S LYS131 L59GLU
*H denotes the hydrogen bond and S denotes the salt bridge.
#The name of the residues with H or L indicating that the
residues are on the heavy or the light chain of pembrolizumab,
respectively, and with the number indicating the position of the
residue.
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of structure analysis, additional ten residues (i.e., SER62, PHE63, THR76, ASP77,
LYS78, GLU84, ARG86, SER87, GLY90 and LEU128) on PD-1 and twelve residues
(i.e., H35TYR, H54SER, H55ASN, H58THR, H101TYR, H104ASP, H108ASP,
L32SER, L34TYR, L36TYR, L53TYR and L57TYR) on pembrolizumab were sorted
out. It implied that PD-1/pembrolizumab complex had conformational transitions in
water and new interaction residues in the interface were found.

Table 2. Survival ratios of bonds detected from MD simulations for pembrolizumab/PD-1
complex

Bond no. Bond type PD-1 Pembrolizumab# Survival ratio
Residue Atom Residue Atom I II III Max

1 S LYS131 L59GLU 0.99 0.99 0.98 0.99
2 H ASP85 OD2 H99ARG NH2 0.99 0.98 0.99 0.99
3 H ASP85 OD1 H99ARG NH1 0.96 0.95 0.97 0.97
4 S ASP85 H99ARG 0.96 0.95 0.95 0.96
5 H LEU128 O L53TYR OH 0.93 0.88 0.83 0.93
6 H SER87 O H35TYR OH 0.84 0.89 0.87 0.89
7 H SER62 OG L57TYR OH 0.71 0.80 0.52 0.80
8 H LYS131 O H102ARG NH2 0.28 0.73 0.67 0.73
9 H SER87 OG H99ARG NH1 0.68 0.59 0.71 0.71
10 H LYS78 NZ H101TYR O 0.71 0.58 0.66 0.71
11 H SER87 OG H104ASP OD2 0.19 0.67 0.50 0.67
12 H SER87 OG H104ASP OD1 0.62 0.14 0.36 0.62
13 H ASP77 OD1 H54SER OG 0.13 0.17 0.50 0.50
14 H ASN66 ND2 H102ARG O 0.15 0.45 0.50 0.50
15 H LYS131 NZ L59GLU OE2 0.42 0.43 0.33 0.43
16 H GLY90 N H58THR O 0.37 0.22 0.42 0.42
17 H LYS131 NZ L59GLU OE1 0.35 0.31 0.41 0.41
18 H ASP77 OD2 H55ASN ND2 0.40 0.02 0.03 0.4
19 H THR76 O H101TYR OH 0.00 0.35 0.18 0.35
20 H LYS131 NZ H108ASP OD2 0.19 0.31 0.19 0.31
21 H LYS131 NZ H108ASP OD1 0.27 0.00 0.10 0.27
22 H GLU84 O L36TYR OH 0.21 0.24 0.00 0.24
23 H ALA132 O H102ARG NH1 0.00 0.23 0.13 0.23
24 H PHE63 O L34TYR OH 0.07 0.22 0.10 0.22
25 H ARG86 NH2 L32SER OG 0.02 0.09 0.21 0.21

The headings I, II, and III denote three equilibrations. H denotes the hydrogen bond and
S denotes the salt bridge in Column 2.
#The name of the residues with H or L indicating that the residues are on the heavy or
the light chain of pembrolizumab, respectively, and with the number indicating the
position of the residue.
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3.2 Identify Key Residues in the Interface of PD-1/PD-L1 Complex

Although paratope to epitope residues were identified via MD simulations, we also
need the information of the key residues in the interface of PD-1/PD-L1 complex to
better understand how pembrolizumab blocks the interaction between PD-1 and
PD-L1. The crystal structure of PD-1/PD-L1 was obtained from the PDB database with
accession code 4ZQK. H-bonds and salt bridges was also suggested to mainly donate to
the binding and they were detected through VMD software [19]. Five H-bonds and one
salt bridge, involving four residues (i.e., ASN66, GLN75, ALA132, and GLU136) on
PD-1 and four residues (i.e., ASP26, GLN66, ALA121, and ARG125) on PD-L1
(Table 3) were sorted out. But those interactions might not be stable when the complex
was in solution.

Therefore, system equilibrium process of 20 ns was performed thrice after energy
minimization of 10,000 steps for PD-1/PD-L1 complex. Stable bonds with survival
ratios above 0.2 were listed in Table 4. Altogether seventeen bonds were detected in

Fig. 1. The predicted key residues on the PD-1/pembrolizumab complex interface: (a) the key
residues on PD-1 and (b) the key residues on pembrolizumab are shown in red licorice. PD-1 is
shown in silver, the heavy chain of pembrolizumab is shown in green and the light chain of
pembrolizumab is shown in yellow. (Color figure online)

Table 3. Residue interactions between PD-1 and PD-L1 in crystal structure

No. Hydrogen bond Salt bridge

PD-1 PD-L1 PD-1 PD-L1
Residue Atom Residue Atom Residue Residue

1 ASN66 ND2 ALA121 O GLU136 ARG125
2 GLN75 OE1 ARG125 N
3 GLN75 NE2 ASP26 OD1
4 GLN75 NE2 ARG125 O
5 ALA132 N GLN66 OE1
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simulations, involving six residues (i.e., ASN66, TYR68, GLN75, LYS78, ALA132,
GLU136) on PD-1 and seven residues (i.e., ASP26, GLN66, ARG113, ALA121,
ASP122, TYR123, ARG125) on PD-L1. Additional two residues (i.e., TYR68,
LYS78) on PD-1 and three residues (i.e., ARG113, ASP122, TYR123) on PD-L1 were
sorted out compared with the results of crystal structure analysis, which again proved
the flexibility of interface (Fig. 2a and b).

Table 4. Survival ratios of bonds detected from MD simulations for PD-L1/PD-1 complex

Bond
no.

Bond
type

PD-1 PD-L1 Survival ratio
Residue Atom Residue Atom I II III Max

1 H GLU136 OE2 TYR123 OH 0.54 0.97 0.97 0.97
2 H TYR68 OH ASP122 OD1 0.40 0.95 0.95 0.95
3 S GLU136 ARG125 0.73 0.91 0.94 0.94
4 H GLU136 OE1 ARG125 NH1 0.45 0.91 0.92 0.92
5 H LYS78 NZ ASP122 OD1 0.41 0.58 0.91 0.91
6 H GLU136 OE2 ARG125 NH2 0.66 0.91 0.89 0.91
7 S LYS78 ASP122 0.83 0.52 0.78 0.83
8 H ALA132 N GLN66 OE1 0.47 0.66 0.75 0.75
9 H GLN75 OE1 ARG125 N 0.38 0.61 0.73 0.73
10 H GLN75 NE2 ARG125 O 0.66 0.68 0.64 0.68
11 H TYR68 OH TYR123 N 0.12 0.51 0.51 0.51
12 H ASN66 ND2 ALA121 O 0.25 0.49 0.37 0.49
13 H LYS78 NZ ASP122 OD2 0.43 0.43
14 H GLU136 OE1 TYR123 OH 0.43 0.43
15 H GLU136 OE2 ARG113 NH2 0.3 0.3
16 H GLU136 OE1 ARG125 NE 0.25 0.25
17 H GLN75 NE2 ASP26 OD1 0.23 0.01 0.23

The headings I, II, and III denote three equilibrations. H denotes the
hydrogen bond and S denotes the salt bridge in Column 2.

Fig. 2. The predicted key residues on the PD-1/PD-L1 complex interface: (a) the key residues
on PD-1 and (b) the key residues on PD-L1 are shown in red licorice. PD-1 is shown in silver,
whereas PD-L1 is shown in cyan. (Color figure online)
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3.3 Pembrolizumab Prevents PD-L1 from Interacting with PD-1
Through Steric Hindrance

Our results showed that fourteen residues (i.e., SER62, PHE63, ASN66, THR76,
ASP77, LYS78, GLU84, ASP85, ARG86, SER87, GLY90, LEU128, LYS131 and
ALA132) on PD-1 were responsible for the binding between PD-1 and antibody
pembrolizumab while six residues (i.e., ASN66, TYR68, GLN75, LYS78, ALA132,
GLU136) on PD-1 were critical for its binding with PD-L1. Three of them (ASN66,
LYS78, ALA132) were the same, indicating that pembrolizumab could occupy about
50% of the binding site of PD-L1. Therefore, pembrolizumab prevents PD-L1 from
interacting with PD-1 through steric hindrance.

4 Discussion

Mapping paratope to epitope residues is an essential step in therapeutic antibody design
and optimization. Here we used MD simulations to find the paratope and epitope
residues of antibody pembrolizumab and altogether twenty-nine residues were sorted
out. The key residues in the interface of PD-1/PD-L1 complex were also predicted by
MD simulations to further study the block mechanism of pembrolizumab. Our residues
showed that three of fourteen epitopes (ASN66, LYS78 and ALA132) also played
important roles in the recognition of PD-1 and PD-L1. Therefore, pembrolizumab
prevents PD-L1 from interacting with PD-1 through steric hindrance, and the left three
residues on PD-1(TYR68, GLN75, GLU136) that critical for the binding with PD-L1
were potential hotspots for the optimization of pembrolizumab.

Protein flexibility was demonstrated to play important roles in protein-protein
recognition. From the crystal structure of PD-1/pembrolizumab and PD-1/PD-L1
complexes, we only got seven and eight key residues. But additional twenty-two and
five residues were sorted out for two complexes through MD simulations, respectively.
The reason lies in that molecular recognition and drug binding are dynamic processes
and the conformation transforming is missed in crystal structure [9]. MD simulation is a
useful tool to mimic the atomic fluctuations and conformational changes of biomole-
cules, although the newly found residues need further tested by mutagenesis experi-
ments [18].
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Abstract. Due to hybridization events in evolution, studying two
different genes of a set of species may yield two related but different
phylogenetic trees for the set of species. In this case, we want to mea-
sure the dissimilarity of the two trees. The rooted subtree prune and
regraft (rSPR) distance of the two trees has been used for this pur-
pose. The problem of computing the rSPR distance of two given trees
has many applications but is NP-hard. The previously best approxima-
tion algorithm for rSPR distance achieves a ratio of 2 in polynomial
time and its analysis is based on the duality theory of linear program-
ming. In this paper, we present a cubic-time approximation algorithm
for rSPR distance that achieves a ratio of 2. Our algorithm is based on
the notion of key and several structural lemmas; its analysis is purely
combinatorial and explicitly uses a search tree for computing rSPR dis-
tance exactly. Our experimental results show that the algorithm can be
implemented into a program which outputs significantly better lower
and upper bounds on the rSPR distance of the two given trees than the
previous best.

Keywords: Phylogenetic tree · rSPR distance · Approximation algo-
rithm · Fixed-parameter algorithm

1 Introduction

When studying the evolutionary history of a set X of existing species, one can
obtain a phylogenetic tree T1 with leaf set X with high confidence by looking at a
segment of sequences or a set of genes [13,14]. When looking at another segment
of sequences, a different phylogenetic tree T2 with leaf set X can be obtained
with high confidence, too. In this case, we want to measure the dissimilarity of T1

and T2. The rooted subtree prune and regraft (rSPR) distance between T1 and
T2 has been used for this purpose [12]. It can be defined as the minimum number
of edges that should be deleted from each of T1 and T2 in order to transform
them into essentially identical rooted forests F1 and F2. Roughly speaking, F1

and F2 are essentially identical if they become identical forests (called agreement
c© Springer International Publishing AG 2017
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forests of T1 and T2) after repeatedly contracting an edge (p, c) in each of them
such that c is the unique child of p (until no such edge exists).

The rSPR distance is an important metric that often helps us discover retic-
ulation events. In particular, it provides a lower bound on the number of retic-
ulation events [1,2], and has been regularly used to model reticulate evolution
[15,16].

Unfortunately, it is NP-hard to compute the rSPR distance of two given
phylogenetic trees [5,12]. This has motivated researchers to design approxima-
tion algorithms for the problem [3,4,12,17]. Hein et al. [12] were the first to
come up with an approximation algorithm. They also introduced the important
notion of maximum agreement forest (MAF) of two phylogenetic trees. Their
algorithm was correctly analyzed by Bonet et al. [3]. Rodrigues et al. [17] mod-
ified Hein et al.’s algorithm so that it achieves an approximation ratio of 3
and runs in quadratic time. Whidden et al. [21] came up with a very simple
approximation algorithm that runs in linear time and achieves an approxima-
tion ratio of 3. Although the ratio 3 is achieved by a very simple algorithm in
[21], no polynomial-time approximation algorithm had been designed to achieve
a better ratio than 3 before Shi et al. [11] presented a polynomial-time approx-
imation algorithm that achieves a ratio of 2.5. Schalekamp et al. [18] presented
a polynomial-time 2-approximation algorithm for the same problem. However,
they use an LP-model of the problem and apply the duality theory of linear
programming in the analysis of their algorithm. Hence, their analysis is not
intuitively understandable. Moreover, they did not give an explicit upper bound
on the running time of their algorithm. Unaware of Schalekamp et al.’s work [18],
we [9] presented a quadratic-time 7

3 -approximation algorithm for the problem;
the algorithm is relatively simpler and its analysis is purely combinatorial.

In certain real applications, the rSPR distance between two given phyloge-
netic trees is small enough to be computed exactly within reasonable amount of
time. This has motivated researchers to take the rSPR distance as a parameter
and design fixed-parameter algorithms for computing the rSPR distance of two
given phylogenetic trees [5,8,19–21]. These algorithms are basically based on the
branch-and-bound approach and use the output of an approximation algorithm
(for rSPR distance) to decide if a branch of the search tree should be cut. Thus,
better approximation algorithms for rSPR distance also lead to faster exact algo-
rithms for rSPR distance. It is worth noting that approximation algorithms for
rSPR distance can also be used to speed up the computation of hybridization
number and the construction of minimum hybridization networks [6,7].

In this paper, we sketch how to improve our 7
3 -approximation algorithm in

[9] to a new 2-approximation algorithm. Our algorithm proceeds in stages until
the input trees T1 and T2 become identical forests. Roughly speaking, in each
stage, our algorithm carefully chooses a dangling subforest S of T1 and uses S to
carefully choose and remove a set B of edges from T2. B has a crucial property
that the removal of the edges of B decreases the rSPR distance of T1 and T2 by
at least 1

2 |B|. Because of this property, our algorithm achieves a ratio of 2. As
in [9], the search of S and B in our algorithm is based on our original notion of
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key. However, unlike the algorithm in [9], the subforest S in our new algorithm
is not bounded from above by a constant. This difference is crucial, because the
small bounded size of S in [9] makes for a tedious case-analysis. Fortunately,
we can prove a number of structural lemmas which enable us to construct B
systematically and hence avoid complicated case-analysis. Our analysis of the
algorithm explicitly uses a search tree (for computing the rSPR distance of two
given trees exactly) as a tool, in order to show that it achieves a ratio of 2. To
our knowledge, we were the first to use a search tree explicitly for this purpose.

Unfortunately, our new algorithm and its analysis are so complicated that
it is impossible to include the details here. In this paper, we only sketch the
algorithm and the details can be found in [10]. We also implement our algorithm.
Like Schalekamp et al.’s implementation of their 2-approximation algorithm for
rSPR distance [18], our implementation can output both a lower bound and an
upper bound on the rSPR distance of the input trees. Our experimental results
show that our implementation gives much better lower and upper bounds than
Schalekamp et al.’s.

The remainder of this paper is organized as follows. Section 2 reviews the
rSPR distance problem and states our main theorems. Section 3 first gives the
basic definitions that will be used thereafter, then shows how to build a search
tree for computing the rSPR distance exactly, further defines the important
notion of key, and finally sketches how to compute a good key or cut. The final
section states our experimental results.

2 The rSPR Distance Problem

A phylogenetic forest is a rooted forest F in which each vertex has at most two
children, each root has zero or two children, and the leaves are distinctively
labeled but the non-leaves are unlabeled. A non-leaf v of F is unifurcate (respec-
tively, bifurcate) if the number of children of v in F is 1 (respectively, 2). F is a
phylogeny if it is connected and has no unifurcate vertices. Figure 1 shows two
phylogenies T and F .

Fig. 1. (1) A phylogeny T , (2) another phylogeny F , (3) F↑{x1,...,x4}.

For a phylogenetic forest F and a set or sequence U of vertices, �F (U) denotes
the lowest common ancestor (LCA) of the vertices in U if the vertices in U are in
the same connected component of F , while �F (U) is undefined otherwise. Let C
be a set of edges in F . F −C denotes the forest obtained from F by deleting the
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edges in C. F −C may not be phylogenetic, because it may have unlabeled leaves
or unifurcate roots. F � C denotes the phylogenetic forest obtained from F − C
by first removing all vertices without labeled descendants and then repeatedly
removing a unifurcate root until no root is unifurcate. Note that both F − C
and F � C are subgraphs of F . C is a cut of F if each connected component of
F − C has a labeled leaf. If in addition every leaf of F − C is labeled, then C
is a canonical cut of F . For example, if F is as in Fig. 2(1), then the 4 dashed
edges in F form a canonical cut of F . It is known that if C is a set of edges in
F , then F has a canonical cut C ′ such that F � C = F � C ′ [4].

Fig. 2. (1) A TF-pair (T, F ) and (2) an induced sub-TF pair (T ′, F ′) of (T, F ).

Let F1 and F2 be two phylogenetic forests with the same set of leaf-labels.
A leaf x1 of F1 is agreed with a leaf x2 of F2 if the labels of x1 and x2 are the
same. We can extend this agreement between the leaves of F1 and F2 to (some
of) their bifurcate non-leaves recursively as follows. Suppose that two non-roots
v1 and v′

1 in F1 are agreed with two non-roots v2 and v′
2 in F2, respectively.

Further assume that �Fi
(vi, v

′
i) is defined and bifurcate for each i ∈ {1, 2}. Then,

�F1(v1, v
′
1) in F1 is agreed with �F2(v2, v

′
2) in F2 if for each i ∈ {1, 2}, every

vertex of the path between vi and v′
i in Fi other than vi, v′

i, and �Fi
(vi, v

′
i) is

unifurcate. This finishes the extension. A vertex of F1 (respectively, F2) is agreed
if it is agreed with a vertex of F2 (respectively, F1). F1 and F2 are identical if
the roots of F1 are agreed and so are the roots of F2.

The rSPR Distance Problem: Given a pair (T, F ) of phylogenies with the same set
of leaf-labels, find a cut CT in T and a smallest cut CF in F such that T � CT

and F � CF are identical.

For example, if T and F in Fig. 1 are the input to the rSPR distance problem,
then the dashed edges in T and those in F together form a possible output. In
the above definition, we require that the size of CF be minimized; indeed, it is
equivalent to require that the size of CT be minimized because the output CT

and CF have the same size.
To solve the rSPR distance problem, it is more convenient to relax the prob-

lem by only requiring that T be a phylogenetic tree (i.e., a connected phylogenetic
forest) and F be a phylogenetic forest. Hereafter, we assume that the problem
has been relaxed in this way. Then, we refer to each input (T, F ) to the problem
as a tree-forest (TF) pair. In the sequel, we assume that a TF-pair (T, F ) always
satisfies that no leaf of F is a root of F . This assumption does not lose generality,
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because we can remove x from both T and F if x is both a leaf and a root of
F . We also emphasize that for each TF-pair (T, F ), T and F have the same set
of leaf-labels. The size of the output CF is the rSPR distance of T and F , and
is denoted by d(T, F ). It is worth pointing out that to compute d(T, F ), it is
required in the literature that we preprocess each of T and F by first adding a
new root and a dummy leaf and further making the old root and the dummy be
the children of the new root. However, the common dummy in the modified T
and F can be viewed as an ordinary labeled leaf and hence we do not have to
explicitly mention the dummy when describing an algorithm.

To compute d(T, F ) for a given TF-pair (T, F ), it is unnecessary to compute
both a cut CT in T and a cut CF in F . Indeed, it suffices to compute only CF ,
because a cut in F forces a cut in T . To make this clear, we define the sub-TF
pair of (T, F ) induced by a (possibly empty) cut C of F to be the TF pair (T ′, F ′)
obtained as follows.

1. Initially, T ′ = T and F ′ = F � C.
2. While F ′ has a connected component K whose root is agreed with a vertex

r in T ′, delete K from F ′ and delete all descendants of r (including r) from
T ′.

3. While T ′ has a non-leaf agreed with a non-leaf of F ′, first find a non-leaf u
in T ′ such that u is agreed with a non-leaf v of F ′ but no proper ancestor
of u in T ′ is agreed with a non-leaf of F ′, next modify T ′ (respectively, F ′)
by contracting the subtree rooted at u (respectively, v) into a single leaf ũ
(respectively, ṽ), and finally assign the same new label to ũ and ṽ.

We can view T ′ (respectively, F ′) as a subgraph of T (respectively, F ), by viewing
ũ (respectively, ṽ) as u (respectively, v). For example, if C consists of the 4 dashed
edges in Fig. 2(1), then the sub-TF pair induced by C is as in Fig. 2(2).

Let ⊥ denote the empty forest. If (T ′, F ′) = (⊥,⊥), then C is an agreement
cut of (T, F ) and F � C is an agreement forest of (T, F ). If in addition, C is
canonical, then C is a canonical agreement cut of (T, F ). The smallest size of an
agreement cut of (T, F ) is actually d(T, F ).

To compute an approximation of d(T, F ), our idea is to look at a local struc-
ture of T and F and find a cut within the structure. A cut C of F is good if
d(T, F �C) ≤ d(T, F )− 1

2 |C|. Theorem 1 is hard to prove and its proof is detailed
in [10]. Section 3 outlines the proof. Theorem2 follows from Theorem 1.

Theorem 1. [10] Given a TF-pair (T, F ), we can find a good cut of F in
quadratic time.

Theorem 2. Given a TF-pair (T, F ), we can compute an integer d in cubic
time such that d ≤ 2d(T, F ) and there is an agreement cut of (T, F ) with size d.

3 Finding a Good Cut

3.1 Definitions and Notations

Throughout this subsection, let F be a phylogenetic forest. We view each vertex
v of F as an ancestor and descendant of itself. For brevity, we refer to a connected
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component of F simply as a component of F . We use L(F ) to denote the set of
leaves in F , and use |F | to denote the number of components in F . A dangling
subtree of F is the subtree rooted at a vertex of F . If a vertex v of F has a
bifurcate proper-ancestor, then eF (v) denotes the edge whose tail is the lowest
bifurcate proper-ancestor of v in F ; otherwise, eF (v) is undefined. For example,
if F is as in Fig. 1(3), then eF (x1) is the bold edge. Also, if (T, F ) is a TF-pair,
then eF (x) is defined for all x ∈ L(F ) because no leaf of F is a root of F .

Let u1 and u2 be two vertices in the same component of F . If u1 and u2

have the same parent in F , then they are siblings in F . We use u1 ∼F u2 to
denote the path between u1 and u2 in F . Note that u1 ∼F u2 is not a directed
path if �F (u1, u2) �= u1 and �F (u1, u2) �= u2. For convenience, we still view each
edge of u1 ∼F u2 as a directed edge (whose direction is the same as in F )
although u1 ∼F u2 itself may not be a directed path. Each vertex of u1 ∼F u2

other than u1 and u2 is an inner vertex of u1 ∼F u2. A dangling edge between
u1 and u2 in F is an edge in F but not in u1 ∼ u2 whose tail is an inner
vertex of u1 ∼F u2. DF (u1, u2) denotes the set of dangling edges between u1

and u2 in F . Moreover, if �F (u1, u2) �∈ {u1, u2}, then D+
F (u1, u2) denotes the

set consisting of the edges in DF (u1, u2) and all defined eF (v) such that v is
a vertex of u1 ∼F u2 but eF (v) �= eF (ui) for each i ∈ {1, 2} with ui ∈ L(F );
otherwise D+

F (u1, u2) = ∅. For convenience, if w1 and w2 are two vertices in
different components in F , we define DF (w1, w2) = ∅ and D+

F (w1, w2) = ∅.
For example, in Fig. 1(2), DF (x1, x9) = {eF (x7), eF (u), eF (v), eF (x3)}, while in
Fig. 2(2), D+

T ′(u, x11) consists of the five dashed edges. For each e ∈ DF (u1, u2),
the subtree of F rooted at the head of e is a dangling subtree between u1 and
u2 in F . If �F (u1, u2) �∈ {u1, u2}, and ui is not unifurcate in F but each inner
vertex of �F (u1, u2) ∼F ui is unifurcate in F for each i ∈ {1, 2}, then u1 and u2

are semi-siblings in F and the semi-children of �F (u1, u2) in F , and �F (u1, u2)
is the semi-parent of u1 and u2 in F . For example, if F is the tree in Fig. 1(3),
then x2 and x4 are semi-siblings and their semi-parent is v.

Let X be a subset of L(F ), and v be a vertex of F . A descendant x of v in
F is an X-descendant of v if x ∈ X. XF (v) denotes the set of X-descendants of
v in F . If XF (v) �= ∅, then v is X-inclusive; otherwise, v is X-exclusive. If v is
bifurcate and both children of v are X-inclusive, v is X-bifurcate. Similarly, if
exactly one child of v in F is X-inclusive, then v is X-unifurcate. An edge of F
is X-inclusive (respectively, X-exclusive) if its head is X-inclusive (respectively,
X-exclusive). For an X-bifurcate v in F , an X-semi-child of v in F is a vertex
u such that each edge in DF (v, u) is X-exclusive and either u ∈ X or u is X-
bifurcate; we also call v the X-semi-parent of u in F ; note that v has exactly
two X-semi-children in F and we call them X-semi-siblings. In particular, when
X = L(F ), X-semi-parent, X-semi-children, and X-semi-siblings become semi-
parent, semi-children, and semi-siblings, respectively. For example, if F is as in
Fig. 2(1) and X = {x1, . . . , x4}, then u is X-unifurcate, but v is X-bifurcate and
its X-semi-children are x2 and z. F↑X denotes the phylogenetic forest obtained
from F by removing all X-exclusive vertices and all vertices without X-bifurcate
ancestors. See Fig. 1 for an example.
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For two phylogenetic forests F1 and F2 with the same set of leaf labels, we
always view two leaves of F1 and F2 with the same label as the same vertex
although they are in different forests.

3.2 Search Trees

A simple way to compute d(T, F ) for a TF-pair (T, F ) is to build a search tree Γ
as follows. The root of Γ is (∅, ∅). In general, each node of Γ is a pair (CT , CF )
satisfying the following conditions:

– CT and CF are canonical cuts of T and F , respectively.
– Each root of T � CT except one is agreed.
– If (CT , CF ) is left as a leaf in Γ , then each root of T � CT is agreed.

Now, suppose that a node (CT , CF ) of Γ has been constructed but should
not be left as a leaf in Γ . For convenience, let T ′ = T � CT and F ′ = F � CF .
To construct the children of (CT , CF ) in Γ , we first select a pair (u1, u2) of
semi-siblings in T ′ such that �T (u1, u2) is still not agreed but ui is agreed with
a vertex vi in F � CF for each i ∈ {1, 2}. The children of (CT , CF ) are then
constructed by distinguishing three cases as follows:

Case 1: v1 or v2 is a root of F ′. If v1 is a root of F ′, then (CT ∪ {eT ′(u1)}, CF )
is the only child of (CT , CF ) in Γ ; otherwise, (CT ∪ {eT ′(u2)}, CF ) is the only
child of (CT , CF ) in Γ .
Case 2: v1 and v2 fall into different components of F ′ but Case 1 does not occur.
In this case, (CT , CF ) has two children in Γ , where for each i ∈ {1, 2}, the i-th
child of (CT , CF ) in Γ is (CT ∪ {eT ′(ui)}, CF ∪ {eF ′(vi)}).
Case 3: v1 and v2 fall into the same component of F ′. In this case, (CT , CF ) has
three children in Γ . The first two are constructed as in Case 2. The third child
is (CT , CF ∪ DF ′(v1, v2)).

This finishes the construction of Γ (see Fig. 3 for an example). The path from
the root of Γ to a leaf is a root-leaf path in Γ . Let P be a root-leaf path in Γ . We
use CT (P ) (respectively, C(P )) to denote the canonical cut of T (respectively,
F ) contained in the leaf of P . Clearly, C(P ) is a canonical agreement cut of
(T, F ).

(T, F ) may have multiple search trees. Nonetheless, it is known that for each
search tree Γ of (T, F ), d(T, F ) = minP |C(P )|, where P ranges over all root-leaf
paths in Γ [20]. Basically, this is true because the root-leaf paths in a search tree
represents an exhaustive search of a smallest agreement cut of (T, F ).

3.3 Keys

Throughout this subsection, let (T, F ) be a TF pair. Instead of cuts, we consider
a more useful notion of key. Intuitively speaking, a key contains not only a cut B
within a local structure of F but also possibly two leaves in F �B to be merged
into a single leaf. Formally, a key of (T, F ) is a triple κ = (X,B,R) satisfying
the following conditions:
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Fig. 3. A search tree for the TF-pair (T ′, F ′) in Fig. 2(2).

1. X is a set of leaves in T such that each component of T ↑X is a dangling
subtree of T .

2. B ⊆ EX is a cut of F , where EX is the set of all defined eF (v) such that v
is a vertex of F ↑X . Moreover, either {eF (x) | x ∈ X} ⊆ B or |{eF (x) | x ∈
X} \ B| = 2.

3. If {eF (x) | x ∈ X} ⊆ B, then R = ∅; otherwise, for the two vertices x1 and
x2 in X with {eF (x1), eF (x2)} = {eF (x) | x ∈ X} \ B, we have that x1 and
x2 are semi-siblings in F � B, R is the edge set of x1 ∼F x2, and B ∩ R = ∅.
(Comment: By Condition 1, x1 and x2 are semi-siblings in T � {eT (x) | x ∈
X \{x1, x2}} as well. So, when we compute the sub-TF pair of (T, F ) induced
by B, x1 and x2 will be merged into a single leaf.)

For example, if (T, F ) is as in Fig. 2(1), then κe = (X,B,R) is a key of (T, F ),
where X = {x2, x3, x4}, B = {eF (x1), eF (x2), eF (u)}, and R is the edge set of
x3 ∼F x4.

If R = ∅, then κ is normal and we simply write κ = (X,B) instead of
κ = (X,B,R); otherwise, it is abnormal. In essence, only normal keys were
considered in [11].

In the sequel, let κ = (X,B,R) be a key of (T, F ). The size of κ is |B| and is
also denoted by |κ|. The sub-TF pair of (T, F ) induced by κ is the sub-TF pair
of (T, F ) induced by B. Let P be a root-leaf path in a search tree of (T, F ), and
M = C(P ) \ R. An edge e ∈ B is free with respect to (w.r.t.) P if e ∈ M or
the leaf descendants of the head of e in F − (M ∪ B) are all unlabeled. We use
fe(κ, P ) to denote the set of edges in B that are free w.r.t. P . A component K
in F − (M ∪ (B \ fe(κ, P ))) is free if the leaves of K are all unlabeled and there
is at least one edge e ∈ B \ fe(κ, P ) whose tail is a leaf of K. We use fc(κ, P ) to
denote the set of free components in F − (M ∪ (B \ fe(κ, P ))). The lower bound
achieved by κ w.r.t. P is b(κ, P ) = |fe(κ, P )| + |fc(κ, P )| + |C(P ) ∩ R|.

The lower bound achieved by κ is b(κ) = max
Γ

min
P

b(κ, P ), where Γ ranges

over all search trees of (T, F ) and P ranges over all root-leaf paths in Γ . We call
b(κ) the lower bound achieved by κ. The next lemma shows why we can call b(κ)
a lower bound.

Lemma 1. [10] For a key κ = (X,B,R) of (T, F ), d(T, F ) − d(T ′, F ′) ≥ b(κ).

A key κ of (T, F ) is good if |κ| ≤ 2b(κ), while κ is fair if |κ| ≤ 2b(κ) + 1. If
κ = (X,B,R) is a good key of (T, F ), then by Lemma 1, B is a good cut of F .
So, in order to find a good cut of F , it suffices to find a good key of (T, F ).
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3.4 Outline of the Algorithm

Throughout this subsection, fix a TF-pair (T, F ) such that for each pair (x1, x2)
of semi-sibling leaves in T , DF (x1, x2) �= ∅.

For a vertex β in T , let Lβ denote the set of leaf descendants of β in T . β
is consistent with F if either β is a leaf, or β is a bifurcate vertex in T such
that F ↑Lβ

is a tree and the root in T ↑Lβ
is agreed with the root in F ↑Lβ

. For
example, if (T, F ) is as in Fig. 2, then β is consistent with F but α is not.

Let A be a (possibly empty) set of edges in F , and X be a subset of L(T ).
An X-path in F − A is a directed path q to an x ∈ X in F − A such that each
vertex of q other than x is either unifurcate or X-bifurcate in F − A. For each
vertex v of F − A, let NA,X(v) denote the number of X-paths starting at v in
F − A. When A = ∅, we write NX(v) instead of NA,X(v).

Example: Let T and F be as in Fig. 2(1), and X = {x2, x3, x4}. Then, w ∼F x4

is an X-path in F but v ∼F x3 is not; indeed, NX(v) = 0, NX(w) = 1. However,
if A = {eF (x1)}, then v ∼F x3 is an X-path in F − A, NA,X(v) = 1, and
NA,X(w) = 2.

Our algorithm finds good cuts within several types of local structures, called
stoppers for (T, F ), defined as follows. Let β be a vertex in T . β is a close stopper
for (T, F ) if it is consistent with F , NLβ

(�F (Lβ)) ≥ 2, and NLβ
(v) ≤ 1 for all

proper descendants v of �F (Lβ) in F . β is a semi-close stopper if it contains
two vertices x1 and x2 (called the anchors of β) such that �F (x1, x2) = �F (Lβ),
|A| ≤ 2, and β becomes a close stopper for (T, F � A), where A consists of X-
exclusive edges in DF (x1, x2). For example, if T and F are as in Fig. 2(1), then
β is not a close stopper but is a semi-close stopper for (T, F ), while γ is neither.

β is a root stopper for (T, F ) if it is consistent with F , no descendant of β
in T is a semi-close stopper for (T, F ), and �F (Lβ) is a root in F , For example,
if T and F are as in Fig. 2(1), then δ is a root stopper for (T, F ), but λ is not
because it is a semi-close stopper.

β is a disconnected stopper for (T, F ) if �F (Lβ) is undefined, no descendant of
β in T is a semi-close stopper or a root stopper for (T, F ), and both semi-children
of β in T are consistent with F . For example, if T and F are as in Fig. 2(1), then
μ is a disconnected stopper for (T, F ).

β is an overlapping stopper for (T, F ) if �F (Lβ) is defined, no descendant of β
in T is a semi-close stopper, a root stopper, or a disconnected stopper for (T, F ),
and both semi-children λ1 and λ2 of β in T are consistent with F but β is not.
For example, if T and F are as in Fig. 1(1), then both α and β are overlapping
stoppers for (T, F ). The next lemma is easy to prove.

Lemma 2. There always exists a semi-close, root, disconnected, or overlapping
stopper for (T, F ).

Now, our algorithm for finding a good cut of F proceeds as follows.

1. Find a bifurcate vertex β in T such that β is not consistent with F but both
semi-children of β are.
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2. If some proper descendant γ of β in T is a semi-close stopper β for (T, F ),
then use γ to find a good abnormal key κ = (Lγ , B,R) of (T, F ) and return
B.

3. If some semi-child γ of β in T is a root stopper for (T, F ), then use γ to find
a good normal key κ = (Lγ , B) of (T, F ) and return B.

4. If β is a disconnected stopper for (T, F ), then use β to find a good normal
key κ = (Lβ , B) of (T, F ) and return B.

5. Use β to find and return a good cut C. (Comment: β is an overlapping stopper
for (T, F ).)

Step 1 can be easily done in quadratic time. However, the other four steps
are very complicated and their details can be found in [10]. Roughly speaking,
to perform the four steps, we process the vertices of the subtree of T rooted
at β in a bottom-up fashion as follows. First, we construct a fair normal key
κx = ({x}, {eF (x)}) of (T, F ) for each x ∈ Lβ . Once we have constructed fair
normal keys κα1 = (Lα1 , Bα1) and κα2 = (Lα2 , Bα2) of (T, F ) for two semi-
siblings α1 and α2 in T , we then try to combine κα1 and κα2 into a fair normal
key κα = (Lα, Bα) of (T, F ) for the semi-parent α of α1 and α2 in T . Indeed, if
α is a root or disconnected stopper for (T, F ), then κα will be good, basically
because |κα| = |κα1 | + |κα1 | and b(κα) ≥ b(κα1) + b(κα2) + 1. However, we may
fail to construct κα when α is a semi-close or overlapping stopper for (T, F ). In
case α is a semi-close stopper for (T, F ), we instead use the anchors x1 and x2

of α to construct a good abnormal key κα = (Lα, Bα, R) of (T, F ) for α, where
R is the edge set of x1 ∼F x2 and Bα is the union of DF (x1, x2) and all Bγ

such that for some ë = (v̈, ü) ∈ DF (x1, x2), γ is the Lα-semi-child of v̈ that is a
descendant of ü in F . This abnormal κα is good, basically because Bα contains
neither eF (x1) nor eF (x2) and in turn x1 and x2 will be merged into a single
leaf in F � Bα.

The most difficult case is when α is an overlapping stopper for (T, F ). This
case is split into three subcases which are handled separately. In two of the
subcases, there exist x1 ∈ Lα1 and x2 ∈ Lα2 such that x1 and x2 are semi-
siblings in F ; we construct a cut C of F with {eF (x) | x ∈ Lα} ⊆ C and
d(T, F � C) ≤ d(T, F ) − |C|−1

2 . A crucial point is that we can merge x1 and x2

into a single leaf in F � C and hence can modify C so that |C| decreases by 1
but d(T, F � C) remains the same. So, the modified C is a good cut of F . In
the other subcase, such x1 and x2 do not exist and we can find û in F such
that for some i ∈ {1, 2}, (1) û is Xi-inclusive but X3−i-exclusive in F , (2) û has
at least two leaf descendants in F , and (3) the edge entering û in F belongs to
DF (x1, x2) for some vertices x1 and x2 in X3−i. We can require that the fair
normal key καj

= (Lαj
, Bαj

) with j = 3− i satisfy eF (û) ∈ Bαj
, and can further

prove that κα = (Lαj
∪ Lγ , Bαj

∪ Bγ) is a good normal key of (T, F ), where γ
is the Lα-semi-child of the parent of û in F that is a descendant of û in F .

4 Experimental Results

Since the algorithm in [18] has been implemented by its authors, we have also
implemented our new algorithm. Both algorithms output not only an upper
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bound but also a lower bound on the rSPR distance of the two given trees.
In order to compare the real performance of the two algorithms, we use the
program of [2] to generate three datasets. Each dataset consists of 120 pairs of
trees. Each tree in the first dataset has 100 leaves, while each tree in the second
and third has 200 leaves. Moreover, to generate a tree pair (T1, T2) in the first
(respectively, second or third) dataset, we first generate T1 randomly and then
obtain T2 by applying 50 (respectively, 80 or 100) random rSPR operations on
T1. Our experimental result for the first (respectively, second or third) dataset
is shown in the left (respectively, center or right) in Fig. 4. As seen from the
figure, our algorithm outputs significantly better lower and upper bounds than
the algorithm in [18].
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Fig. 4. Comparing the lower and the upper bounds for the three datasets, where our
results are shown in black while Schalekamp et al.’s in gray.
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Abstract. DNA tandem repeats (TRs), and in particular, variable num-
ber of tandem repeat (VNTR) loci, can have functional effects on gene
regulation and disease mechanisms and are useful for forensics studies.
The need to quickly analyze high volumes of sequencing data for TRs
and VNTRs has motivated the search for a more efficient sequence align-
ment algorithm for tandem repeats. Alignment of a pattern to a sequence,
which may contain zero or more tandem copies of the pattern, can be
accomplished using wraparound dynamic programming (WDP). This
paper presents the use of Single Instruction, Multiple Data (SIMD) com-
puter instructions as well as a parallel scan to accelerate WDP, extending
earlier SIMD algorithms for global alignment. The SIMD data types and
intrinsics store data in 128 bit computer words partitioned into 16 1-byte
blocks. Operations are performed on the bytes separately and simulta-
neously. We allow either single values for match and mismatch, or a
substitution scoring scheme that assigns a potentially different substitu-
tion weight to every pair of alphabet characters. Additionally, for indels,
we allow either a simple linear gap penalty or an affine gap penalty.
Benchmarking demonstrated that SIMD tandem alignment runs over 3
times faster than standard wraparound dynamic programming.

1 Introduction

Tandem repeats (TRs), often subclassified as microsatellites and minisatellites,
are a common genomic feature [6]. At some TR loci, the number of pattern
copies, within the TR array, is variable among members of the population, and
these loci are termed variable number of tandem repeats (VNTRs). VNTRs
are useful in DNA fingerprinting [14] and bacterial strain identification [9,11,
15,18,27]. They have also been implicated in a large number of neurological
diseases, including Fragile-X syndrome [28], Friedreich’s ataxia [4], Alzheimer’s
disease [24], myotonic dystrophy, [10], Huntington’s disease [13], and certain
psychiatric disorders [5,16,17]. VNTRs are also known to have important effects
on chromatin structure [1,25,26,30] and gene expression [29].

c© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 140–149, 2017.
DOI: 10.1007/978-3-319-59575-7 13
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Our programs, Tandem Repeats Finder [2], which identifies TRs in genomic
sequences, and VNTRseek [12], which detects VNTRs in whole genome sequenc-
ing data, make extensive use of tandem alignment, i.e., the aligning of a pattern
to multiple adjacent copies in a text. The large and growing volume of DNA
sequencing data makes methods to speed up tandem alignment, and as a conse-
quence, these and other programs, highly desireable.

Wraparound dynamic programming (WDP, Fig. 1) [8,22], an extension of
standard global alignment [23], efficiently solves the tandem alignment problem
by using a single copy of the pattern versus the text. Here we present a new
method that adapts our bit-parallel alignment techniques [19–21] to WDP.

Fig. 1. The WDP scoring matrix (1 copy of the pattern aligned to the text) showing
the wraparound computation from the right most cells to the left most cells.

The remainder of this paper is organized as follows. In Sect. 2, we define
the problem and give necessary definitions and notation. In Sect. 3, we describe
our new algorithm for tandem alignment. In Sect. 4 we give the complexity of
both algorithms, and in Sect. 5 we give results of experiments comparing our
algorithm with standard WDP alignment.

2 Problem Description

Given:

• a text sequence a = a1a2 . . . am and pattern sequence b = b1b2 . . . bn, of length
m and n respectively,

• a similarity scoring function, S, with substitution score defined by either
- a single match weight and a single mismatch weight, or
- a table of integer substitution weights, subst(x, y), one weight for each

character pair (x, y) from the alphabet Σ,
• and with indel score defined by either
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- a negative, per position integer gap penalty, G, or
- a negative integer gap opening penalty α and a negative, per position gap

extension penalty β (affine gap)

Calculate: a global or semi-global alignment score for one copy of a versus
an unknown number of tandem copies of b, that is the maximum of the global
alignments of a versus b, a versus bb, and so on, using bit operations, addition,
and max/min comparisons on computer words of length w.

For semi-global alignment, an initial or final gap in the alignment occurs
without penalty. That is, a gap spanning a proper prefix or suffix of a, or a gap
spanning a proper prefix of the first copy of b or a proper suffix of the last copy
of b, is allowed without penalty.

For the remainder of this abstract, we assume that the problem choices are
a per position gap penalty, G, a substitution scoring table subst(), and global
alignment. All other variants are computed similarly. We do not restrict the size
of the alphabet, although the time complexity depends, in part, on the alphabet
size as a result of required pre-processing of the subst() table.

2.1 Definitions and Notation

Let S be the recursively defined WDP scoring matrix:

Row zero (1 ≤ j ≤ n):

S[0, 0] = 0
S[0, j] = S[0, 0] + j · G

Column zero (1 ≤ i ≤ m):

S[i, 0] = S[0, 0] + j · G

First pass (i ≥ 1, j ≥ 1):

S[i, j] = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S[i − 1, 0] + subst(ai, b1) \\diagonal
S[i − 1, n] + subst(ai, b1) \\wraparound diagonal
S[i, 0] + G \\from left
S[i − 1, 1] + G \\from above

if j = 1

⎧
⎪⎨

⎪⎩

S[i − 1, j − 1] + subst(ai, bj) \\diagonal
S[i, j − 1] + G \\from left
S[i − 1, j] + G \\from above

if j > 1

(1)
Second pass (i ≥ 1, 1 ≤ j < n):

S[i, j] = max

⎧
⎪⎨

⎪⎩

S[i, j]
{

S[i, n] + G if j = 1
S[i, j − 1] + G if j > 1

(2)
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For our new algorithm, we two define sets of horizontal and vertical score
differences for a given row i, one based on S after the first pass and one based
on S after the second pass. For row i > 0, we have for pass l ∈ {1, 2}:

Δvl[i, j] = S[i, j] − S[i − 1, j]
Δhl[i, j] = S[i, j] − S[i, j − 1]

For row 0 there is no prior row, so we only have the horizontal differences, which
in the case of global alignment reduce to:

∀j > 1, Δh1[0, j] = Δh2[0, j] = G.

To simplify algorithmic explanation, for the remainder of this paper we map
Δvl, and Δhl, l ∈ {1, 2}, into new variables ΔVl and ΔHl using the formulas:

ΔVl = Δvl − G, ΔHl = G − Δhl

For a fixed letter x in sequence a and any position j in pattern b, we define a
lower bound on the value of ΔV1 and ΔV2, that is the value of ΔV1 or ΔV2 from
a substitution.

L[j] = subst(x, yj) − 2G.

Finally, we define the second pass sum SPSi, as the sum of Δh2 values in
row i − 1:

SPSi =
n∑

2

Δh2[i − 1, j].

and for row zero, SPS0 = 0.

3 Algorithm

In our bit-parallel approach, we calculate score differences rather than actual
scores in the alignment scoring matrix. We start with the ΔH2 values in row
zero, which are known, and proceed row by row to calculate new ΔH2 values.
At the end, we use the ΔH2 in the final row to calculate the alignment score.
Our goal then is to calculate the ΔH2 values in row i from:

• ΔH2 values in row i − 1,
• SPSi,
• L[j] values for row character xi.

The L values are computed in a pre-processing step (outlined in Sect. 4) so that
for any given row character x, we have the appropriate L values available.
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3.1 Data Structure

Our data structure stores individual ΔH, ΔV , and L values in blocks of k
bits within a single computer word of length w. Each computer word holds
W = �w/k� values. Due to the limitations of SIMD instructions, 8 bit blocks are
used. Within the SIMD words, we use a ‘striped’ data format.

Definition 1. ‘Striped’ data format [7] – For a given data set of n consecutive
values, and SIMD words that store W values, the data is stored in g = �n/W �
words such that the zeroth value is in the zeroth position of the zeroth word, the
first value in the zeroth position of the first word, ..., the gth value is in the first
position of the zeroth word, and so on such that the kth value is in the k modulo
g word in the �k/g	 position (Fig. 2).

Fig. 2. Left: The representation of consecutive Δ values. Here a block is 4 bits long.
Right: An example of how values are stored across SIMD words in the striped format.

3.2 Method of Tandem Alignment by Partial Sums

We examine the algorithm for computing the ΔVl and ΔHl in a single row. First,
we calculate the ΔVl values, after which we can calculate the ΔH2 values from
the ΔV2 values in the current row and ΔH2 values of the previous row. The
process is repeated for each successive row. We split the operation on a row into
two categories. First, the wraparound cases where the values ΔVl[i, 1] depend
on the values at position n, then the remaining cases.

Due to the possibility of a wraparound, each row is computed in two passes,
the first calculates ΔV1 and the second calculates ΔV2. The algorithm for cal-
culating ΔV1[i, j] and ΔV2[i, j] for j > 1 in both passes is very similar to our
previously described SIMDParSum algorithm [19]. In order to compute the wrap-
around values, we introduce the variable SPSi that contains the sum of Δh2 val-
ues. Note that SPSi does not need to be fully recomputed for each row (which
would be O(n) work), it only requires knowing the previous row’s SPS value
and a pair of operations as outlined below. (Proofs and additional theorems are
omitted due to space constraints.)
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Lemma 1. In row i > 0, given the values ΔV2[i, 1] and ΔV2[i, n], SPSi+1 for
row i + 1 can be calculated as

SPSi+1 = SPSi + ΔV2[i, n] − ΔV2[i, 1].

First pass: Using SPSi to compute the diagonal wraparound, we compute
ΔV1[i, 1]:

Lemma 2. ΔV1[i, 1] can be computed as:

ΔV1[i, 1] = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SPSi + L[j] + G \\diagonal wraparound
substitution

subst(ai, b1) + ΔH2[i − 1, 1] \\diagonal substitution
0 \\vertical gap

Given ΔV1[i, 1], ΔH2[i − 1, j] and L, the remaining values of ΔV1[i, j] for j > 1
and ΔH1[i, j] can be computed according to the following theorems.

Theorem 1. ∀j > 1, ΔV1 and ΔH1 are computed by the following formulas:

ΔV1[i, j] = max
(

0, max
(
ΔV1[i, j − 1], L[j]

)
+ ΔH2[i − 1, j]

)

(3)

ΔH1[i, j] = min
(

0, min
( − L[j],ΔH2[i − 1, j]

)
+ ΔV1[i, j − 1]

)

. (4)

By application of a parallel scan, [3], these operations can be performed in
O(n/W + log(W )) time for all j.

Second pass: We compute ΔV2[i, 1] from SPSi, ΔV1[i, 1], and ΔV1[i, n].

Lemma 3. In row i > 0, given the values ΔV1[i, 1], ΔV1[i, n], and SPSi,
ΔV2[i, 1] can be calculated as

ΔV2[i, 1] = max(ΔV1[i, 1], SPSi + ΔV1[i, n] + G).

ΔV2[i, j] and ΔH2[i, j] can be computed from ΔV2[i, j − 1], ΔV2[i, j], and
ΔH2[i − 1, j] for all j just as ΔV1 and ΔH1 were.

Theorem 2. ∀j > 1, ΔV2 and ΔH2 are computed by the following formulas:

ΔV2[i, j] = max
(

0, max
(
ΔV2[i, j − 1], L[j]

)
+ ΔH2[i − 1, j]

)

(5)

ΔH2[i, j] = min
(

0, min
( − L[j],ΔH2[i − 1, j]

)
+ ΔV2[i, j − 1]

)

. (6)

By application of a parallel scan, [3] these operations can be performed in
O(n/W + log(W )) time for all j.
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4 Complexity and Space

The preprocessing costs when storing a subst() table consist of computing the
L[j] values for each possible row character x. The pattern sequence Y is scanned
one character, yj , at a time and for each x ∈ Σ, we store L(x, yj) in the appro-
priate position of the L variables for x. The time required is O(|Σ|n). When
using match, mismatch scoring, each alphabet character x has a two-valued L[j]
vector. The collection of vectors can be computed more simply in time O(n+Σ)
(details omitted).

Excluding the pre- and post-processing, the time complexity is

O
(
m

[ n

W
+ log W

])
,

where m is the number of rows, and the scans are proportional to (n/W + log W )
as stated in Theorems 1 and 2. (The upsweep and downsweep parts of the scan
are linear in the number of words, n/W , and the final step of the upsweep, which
occurs in the final word, is logarithmic, log W , in the number of values, W , in that
word.) Deciding if a wraparound update of a row is required takes constant time
and every wraparound means computing a row twice, which is just a constant
multiple of the number of operations and does not change the time complexity.
All variations of WDP, described in Sect. 2, have the same complexity as that
discussed above.

Post-processing involves retrieving the alignment score from the final ΔH2

values and intermediate ΔV2 values. This is an extension of the method described
in [20]. The time required is O(m + n), since one operation is required for each
row and for each column.

5 Experimental Results

We compared the running time of our tandem alignment algorithm against a
standard WDP algorithm, as described in Appendix B of [2]. The algorithms
are designated: (1) SIMDTandem (our new algorithm) and (2) WDP (standard
algorithm).

For all experiments, we performed 250 thousand alignments, using randomly
generated nucleic acid pattern sequences and text sequences built from concate-
nated pattern copies. The length of the pattern sequence Y (along the top of the
alignment scoring matrix which defines the number of columns) was 120. At this
length, SIMDTandem uses eight words. Five lengths were used for text sequence
X (along the left side of the alignment scoring matrix which defines the number
of rows), |X| = 120, 240, 360, 480, 600.

All programs were compiled with GCC using optimization level O3 and march
= native (for SIMD commands) and run on an Intel Core i7-4710HQ CPU 2.50
- 3.5GHz CPU running Ubuntu Linux 14.04. Results are shown in Fig. 3. As can
be seen, our new algorithm SIMDTandem is significantly faster than WDP at
all but very short sequence X lengths. When X is 5 times the pattern length,
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Fig. 3. Comparison of algorithm run times for 250 thousand alignments. Top: Shown
are averages over three trials, with pattern length, |Y | = 120, and text length, |X| =
integer multiples of the pattern length from 1 (120 characters) to 5 (600 characters).
Bottom: Table of run times.

the speedup factor is 3.2. Also apparent from the graph is that the a major cost
is the preprocessing since the growth in time for SIMDTandem is very slow with
increasing text length.

6 Discussion

We have presented a new algorithm for wraparound tandem alignment. Our algo-
rithm is significantly faster than the standard iterative dynamic programming
solution. It illustrates the flexibility of our SIMD algorithm for global alignment
and will be useful for the analysis of tandem repeats done in our lab and oth-
ers. Future work will improve the preprocessing performance of the algorithm.
Expected updates to the Intel SSE instruction set will lead to greater flexibility
in use of larger register sizes (256 bits and 512 bits) and will further enhance
our algorithm’s performance.



148 J. Loving et al.

References

1. Alleman, M., Sidorenko, L., McGinnis, K., Seshadri, V., Dorweiler, J.E., White,
J., Sikkink, K., Chandler, V.L.: An RNA-dependent RNA polymerase is required
for paramutation in maize. Nature 442, 295–298 (2006)

2. Benson, G.: Sequence alignment with tandem duplication. J. Comput. Biol. 4,
351–367 (1997)

3. Blelloch, G.E.: Vector Models for Data-parallel Computing, vol. 356. MIT Press,
Cambridge (1990)

4. Campuzano, V., Montermini, L., Molto, M., Pianese, L., Cossee, M.: Friedreich’s
ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expan-
sion. Science 271, 1423–1427 (1996)

5. Clarke, H., Flint, J., Attwood, A., Munafo, M.: Association of the 5-HTTLPR
genotype and unipolar depression: a meta-analysis. Psychol. Med. 40, 1767–1778
(2010)

6. de Koning, A.P., Gu, W., Castoe, T.A., Batzer, M.A., Pollock, D.D.: Repetitive
elements may comprise over two-thirds of the human genome. PLoS Genet. 7(12),
e1002384 (2011)

7. Farrar, M.: Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics 23(2), 156–161 (2007)

8. Fischetti, V.A., Landau, G.M., Schmidt, J.P., Sellers, P.H.: Identifying periodic
occurrences of a template with applications to protein structure. In: Apostolico,
A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1992. LNCS, vol. 644, pp.
111–120. Springer, Heidelberg (1992). doi:10.1007/3-540-56024-6 9

9. Frothingham, R., Meeker-O’Connell, W.A.: Genetic diversity in the Mycobacterium
tuberculosis complex based on variable numbers of tandem DNA repeats. Micro-
biology 144(5), 1189–1196 (1998)

10. Fu, Y.-H., Pizzuti, A., Fenwick, R., King, J., Rajnarayan, S., Dunne, P., Dubel, J.,
Nasser, G., Ashizawa, T., DeJong, P., Wieringa, B., Korneluk, R., Perryman, M.,
Epstein, H., Caskey, C.: An unstable triplet repeat in a gene related to myotonic
muscular dystrophy. Science 255, 1256–1258 (1992)

11. Gascoyne-Binzi, D., Barlow, R., Frothingham, R., Robinson, G., Collyns, T.,
Gelletlie, R., Hawkey, P.: Rapid identification of laboratory contamination with
Mycobacterium tuberculosis using variable number tandem repeat analysis. J. Clin.
Microbiol. 39, 69–74 (2001)

12. Gelfand, Y., Hernandez, Y., Loving, J., Benson, G.: VNTRseek - a computational
tool to detect tandem repeat variants in high-throughput sequencing data. Nucleic
Acids Res. 42(14), 8884–8894 (2014). http://dx.doi.org/10.1093/nar/gku642

13. Huntington’s disease collaborative research group: A novel gene containing a trin-
ucleotide repeat that is expanded and unstable on Huntington’s disease chromo-
somes. Cell 72, 971–983 (1993)

14. Jobling, M.A., Gill, P.: Encoded evidence: DNA in forensic analysis. Nat. Rev.
Genet. 5(10), 739–751 (2004)

15. Keim, P., Pearson, T., Okinaka, R.: Microbial forensics: DNA fingerprinting of
Bacillus anthracis (anthrax). Anal. Chem. 80(13), 4791–4800 (2008). doi:10.1021/
ac086131g

16. Lasky-Su, J.A., Faraone, S.V., Glatt, S.J., Tsuang, M.T.: Meta-analysis of the asso-
ciation between two polymorphisms in the serotonin transporter gene and affective
disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 133B, 110–115 (2005)

http://dx.doi.org/10.1007/3-540-56024-6_9
http://dx.doi.org/10.1093/nar/gku642
http://dx.doi.org/10.1021/ac086131g
http://dx.doi.org/10.1021/ac086131g


An SIMD Algorithm for Wraparound Tandem Alignment 149

17. Lesch, K.P., Bengel, D., Heils, A., Sabol, S.Z., Greenberg, B.D., Petri, S., Benjamin,
J., Muller, C.R., Hamer, D.H., Murphy, D.L.: Association of anxiety-related traits
with a polymorphism in the serotonin transporter gene regulatory region. Science
274, 1527–1531 (1996)

18. Lindstedt, B.-A.: Multiple-locus variable number tandem repeats analysis for
genetic fingerprinting of pathogenic bacteria. Electrophoresis 26(13), 2567–2582
(2005)

19. Loving, J.: Bit-parallel and SIMD alignment algorithms for biological sequence
analysis. Ph.D. thesis, Boson University (2017)

20. Loving, J., Hernandez, Y., Benson, G.: BitPAl: a bit-parallel, general integer-
scoring sequence alignment algorithm. Bioinformatics 30(22), 3166–3173 (2014)

21. Loving, J., Becker, E., Benson, G.: Bit-parallel alignment with substitution scor-
ing. In: Proceedings of the 8th International Conference on Bioinformatics and
Computational Biology (BICoB), pp. 149–154 (2016)

22. Miller, W., Myers, E.: Approximate matching of regular expressions. Bull. Math.
Biol. 51, 5–37 (1989)

23. Needleman, S., Wunsch, C.: A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453
(1970)

24. Pritchard, A.L., Pritchard, C.W., Bentham, P., Lendon, C.L.: Role of serotonin
transporter polymorphisms in the behavioural and psychological symptoms in
probable Alzheimer disease patients. Dement. Geriatr. Cogn. Disord. 24, 201–206
(2007)

25. Stam, M., Belele, C., Dorweiler, J.E., Chandler, V.L.: Differential chromatin struc-
ture within a tandem array 100 kb upstream of the maize b1 locus is associated
with paramutation. Genes Dev. 16, 1906–1918 (2002)

26. Teixeira, F.K., Colot, V.: Repeat elements and the Arabidopsis DNA methylation
landscape. Heredity 105, 14–23 (2010). http://dx.doi.org/10.1038/hdy.2010.52

27. Van Belkum, A.: Tracing isolates of bacterial species by multilocus variable number
of tandem repeat analysis (MLVA). FEMS Immunol. Med. Microbiol. 49(1), 22–27
(2007)

28. Verkerk, A., Pieretti, M., Sutcliffe, J., Fu, Y., Kuhl, D., Pizzuti, A., Reiner, O.,
Richards, S., Victoria, M., Zhang, F., Eussen, B., van Ommen, G., Blonden, A.,
Riggins, G., Chastain, J., Kunst, C., Galjaard, H., Caskey, C., Nelson, D., Oos-
tra, B., Warren, S.: Identification of a gene (FMR-1) containing a CGG repeat
coincident with a breakpoint cluster region exhibiting length variation in fragile X
syndrome. Cell 65, 905–914 (1991)

29. Vinces, M.D., Legendre, M., Caldara, M., Hagihara, M., Verstrepen, K.J.: Unstable
tandem repeats in promoters confer transcriptional evolvability. Science 324, 1213–
1216 (2009)

30. Walker, E.L.: Paramutation of the r1 locus of maize is associated with increased
cytosine methylation. Genetics 148, 1973–1981 (1998)

http://dx.doi.org/10.1038/hdy.2010.52


PhAT-QTL: A Phase-Aware Test for QTL
Detection

Meena Subramaniam1,2,3,4,5, Noah Zaitlen2,5, and Jimmie Ye3,4,5(B)

1 UCSF Biological and Medical Informatics Graduate Program, San Francisco, USA
2 UCSF Department of Medicine, San Francisco, USA

3 UCSF Department of Biostatistics and Epidemiology, San Francisco, USA
jimmie.ye@ucsf.edu

4 UCSF Department of Bioengineering and Therapeutic Sciences,
San Francisco, USA

5 UCSF Institute for Human Genetics, San Francisco, USA

Abstract. Next generation sequencing based molecular assays have
enabled unprecedented opportunities to quantitatively measure genome
function. When combined with dense genetic data, quantitative trait
loci (QTL) mapping of molecular traits is a fundamental tool for under-
standing the genetic basis of gene regulation. However, standard compu-
tational approaches for QTL mapping ignore the diploid nature of human
genomes, testing for association between genotype and the total counts
of sequencing reads mapping to both alleles at each genomic feature. In
this work, we develop a new phase-aware test for QTL analysis (PhAT-
QTL) leveraging the inherent single nucleotide resolution of sequencing
reads to associate the alleles of each marker with the allele-specific counts
(ASC) at a genomic feature. Through simulations, we show PhAT-QTL
achieves increased power relative to standard genotype-based tests as a
function of the number of heterozygotes for a given marker, the noise cor-
relation between haplotypes, and the number of samples with detectable
allele-specific counts at a genomic feature. Simulations further show that
phasing error and error in quantifying ASC results in a loss of power as
opposed to bias. Read simulations on varying haplotype structures (sim-
ulated from 1000 Genomes phased genomes) demonstrate that PhAT-
QTL is able to detect 20% more QTLs while maintaining the same false
positive rate as previous approaches. Applied to RNA-sequencing data,
PhAT-QTL achieves similar performance as previous phase-aware meth-
ods in detecting cis expression QTLs (cis-eQTLs) but at a fraction of
the computational cost.

Keywords: Statistical genetics · Next-generation sequencing · QTL
detection

1 Introduction

Mapping quantitative trait loci (QTLs) of molecular traits is a fundamental
tool for identifying and interpreting genetic variants that affect gene regulation.
c© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 150–161, 2017.
DOI: 10.1007/978-3-319-59575-7 14
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Recently, next generation sequencing has emerged as a compelling approach to
quantitatively measure molecular traits, enabling the mapping of QTLs associ-
ated with gene expression [1–4] and alternative splicing [5] (both measured by
RNA-sequencing), translation [6] (measured by ribosomal footprinting), chro-
matin accessibility [7] (measured by ATAC-seq), and cis-regulatory element
activity [8,9] (measured by ChIP-seq). These studies have yielded dense maps of
genetic variants associated with variability in gene regulation, shed new light on
the genetic architecture of molecular traits in humans, and aided the annotation
of disease-associated variants, particularly those located in non-coding regions
of the genome.

Despite the initial success of sequencing-based QTL mapping studies, stan-
dard methods based on linear regression, associating genotypes with the total
counts of sequencing reads mapping to both alleles of each genomic feature (e.g.
isoform, region of open chromatin) are underpowered to detect QTLs. This is
because these methods were developed for mapping non-sequencing-based mole-
cular quantitative traits (e.g. gene expression measured by microarrays) that do
not inherently contain allele-specific information. Phase-aware approaches could
significantly improve the power of sequencing-based QTL mapping by leverag-
ing allelic-specific reads in heterozygous individuals, effectively increasing the
sample size, and concomitantly, the power of the study.

Recent strategies that utilize allele-specific reads including WASP [10], Tre-
CASE [11] and RASQUAL [12] have shown promise but several challenges
remain. One, for genomic features larger than the read length (e.g. isoform), not
all methods correctly account for the dependencies between allele-specific and
non-allele-specific reads in estimates of allele-specific counts from each chromo-
some. Two, current methods use generative models that are not easily extended
to include additional covariates and variance components for modeling confound-
ing effects from population structure or assay heterogeneity. Finally, current
methods are computationally intensive thus prohibiting their application to real
world datasets.

Here we introduce a novel computational strategy called phase-aware test for
QTL (PhAT-QTL) mapping that utilizes a fast and flexible linear mixed model
framework to model allele-specific counts. We implement two versions of the
model, PhAT-QTL-joint and PhAT-QTL-meta trading off inference accuracy
and computational performance. We also develop a new pipeline that leverages
the latest phasing information from large-scale population genetic studies (1000
Genomes) and annotated gene structures to estimate allele-specific counts of
gene expression. We demonstrate the performance and computational properties
of PhAT-QTL using both extensive simulations and by mapping cis expression
QTLs (cis-eQTLs) in lymphoblastoid cell lines derived from the 1000 Genomes
cohort. Because PhAT-QTL uses a fast linear mixed model framework to detect
QTLs, it is scalable to thousands of individuals unlike some previous phase-
aware methods. PhAT-QTL is freely available for download at https://github.
com/meenasub/phatqtl.

https://github.com/meenasub/phatqtl
https://github.com/meenasub/phatqtl
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2 Methods

The goal of a QTL study is to detect associations between genetic markers
and the abundance of genomic features. Consider the illustration of an RNA-
sequencing based cis-expression QTL (cis-eQTL) study presented in Fig. 1. In
panel A, the alleles of the tested genetic marker (A/C) and the reads mapping
to the exons of a gene are shown for a heterozygous individual in the study. Tra-
ditional approaches such as linear regression examine the relationship between
the genotype and total read counts (Fig. 1B), which is the sum of reads mapping
to both haplotypes. However, each haplotype in a cell can act independently
of the other and so this approach does not take full advantage of all available
information. Figure 1A shows how a genetic variant in one of the exons (T/G)
can be used to assign reads to a haplotype. Namely that all sequencing reads
overlapping the variant will either contain a T or G. These reads can be used to
estimate allele-specific counts (ASC) of each haplotype, which can then be used
to test for association with the noncoding genetic variant A/C. In Fig. 1C, we see
a phase-aware analysis in which allele-specific counts are tested for association
with the alleles of each haplotype.

Fig. 1. A. Sequencing reads containing exonic variants are used to estimate the expres-
sion coming from each haplotype. B. cis-eQTL model for individuals without detectable
ASC. C. cis-eQTL model for individuals with detectable ASC.

Formally, the standard linear regression method for QTL mapping tests for
association between a genotype (sum of alleles at a given marker) and overall
abundance of a genomic feature with the underlying model:

y = βg + ε (1)



PhAT-QTL: A Phase-Aware Test for QTL Detection 153

where y is the total read counts and g is the genotype. When using such a
test, the power of the method is determined by the genetic effect size β, the
number of individuals N , and the residual noise ε. While this model has been
successfully employed in multiple QTL studies, it is not optimally powered for
sequencing-based QTL studies. In particular, for each individual it combines the
reads coming from both haplotypes, which may be differentially regulated in the
cell.

We first estimate the allele-specific counts for each individual by aligning
reads containing variants overlapping a genomic feature (e.g. exonic variants for
gene expression) to a diploid reference genome with phased variant information
(Fig. 1A) [13]. The underlying model of PhAT-QTL uses phased haplotypes h1

and h2, and the allele-specific counts corresponding to each haplotype y1 and y2
to increase the effective sample size.

yi1 + yi2 = yi (2)

hi1 + hi2 = gi (3)

To detect a genetic effect, one possibility is to test for association between
each haplotype and its corresponding ASC with standard linear regression. How-
ever, shared genetic and environmental factors will induce correlation between
allele-specific counts from the two haplotypes for each individual. This violates
the independence assumption of linear regression and will result in biased test
statistics. To account for this, we propose the following model:

yi1 = βhi1 + ui1 + εi1 (4)

yi2 = βhi2 + ui2 + εi2 (5)

where ui is the random effect that accounts for the shared noise between ASC
from the two haplotypes of the same individual and εi is the independent residual
error. We assume that cov(ui1, ui2) = σ2

u for allele-specific counts coming from
the same individual, and cov(ui, uj) = 0 in all other cases.

To run a statistical test with this model, allele-specific counts from every
individual in the cohort are required. While this may be possible with future
technological advancements, current allele-specific mapping methods rely on the
presence of sequencing reads from heterozygous individuals overlapping SNPs
in the feature [13]. When sequencing data are unavailable, for small genes, or
genes undergoing strong purifying selection, there may not be any heterozygous
individuals for SNPs in the features of interest. We therefore develop a method
that can jointly model allele-specific counts from individuals where ASC can be
estimated and total counts from individuals where ASC cannot be estimated. In
the PhAT-QTL-joint method, we estimate the genetic effect size jointly across
individuals with and without ASC, and allow for separate error components for
the two groups of individuals,

⎛
⎝

y1
y2

yadj

⎞
⎠ = β

⎛
⎝

h1

h2

g

⎞
⎠ + u + εasc + εnoasc (6)
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yadj = log2(y/2) (7)

Here εiasc ∼ N(0, σ2
εasc) if individual i has detectable ASC, and εinoasc ∼

N(0, σ2
εnoasc) if there is no detectable ASC. For the individuals without ASC,

the total counts yadj is adjusted to be on the same scale as the allele-specific
counts. We estimate σ2

u, σ2
εase, and σ2

εnoasc jointly for each gene-SNP pair.
In practice we find that fitting a model with three variance components

is slower than a model with two variance components. Additionally, there are
faster methods for modeling variance components which can further decrease
the overall runtime of the method [14]. For this reason, we sought to develop a
method that tests the association in ASC and non-ASC individuals separately. In
a meta-analysis version (PhAT-QTL-meta), we first estimate genetic effect sizes
from the ASC and linear regression components separately, and then use an
inverse-variance weighted meta analysis to estimate a global beta and standard
error. (

y1
y2

)
= βasc

(
h1

h2

)
+ εasc (8)

y = βnoascg + εnoasc (9)

βmeta = (βasc(1/SEasc) + βnoasc(1/SEnoasc))/((1/SEasc) + (1/SEnoasc)) (10)

SEmeta =
√

1/((1/SEasc) + (1/SEnoasc)) (11)

We use the average information Restricted Maximum Likelihood (ai-REML)
method to estimate all of the variance components in the joint model and the
ASC portion of the meta analysis model [15]. Because the meta analysis model
estimates one fewer variance component, the method is faster than the joint
model.

3 Simulation Framework

3.1 Simulation of Genotypes and Allele-Specific Counts

To compare the power of PhAT-QTL to the standard QTL detection method
(linear regression), we simulated QTL effects with simulated genotypes and
allele-specific counts. We simulated correlated allele-specific counts according
to the model described in Eqs. 4 and 5. Specifically, we simulated haplotypes
from a binomial distribution where p was set to the minor allele frequency. The
associated allele-specific counts were simulated with a specified β and correlated
noise terms were drawn from a multivariate normal distribution. We fixed the
number of individuals to N = 200, and assessed the power of PhAT-QTL-joint
and standard linear regression to detect genetic associations as a function of σ2

u.
Here we define power as the fraction of tests with a p-value <0.05. We show that
the power of PhAT-QTL-joint increases as σ2

u increases, and it outperforms lin-
ear regression for a range of minor allele frequencies at a fixed β = 0.3 (Fig. 2A).
Similarly, at a fixed minor allele frequency of 0.15, the power of PhAT-QTL-
joint increases relative to linear regression as β increases from 0.2–0.4 (Fig. 2B).
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Fig. 2. A. Power as a function of noise correlation (varying MAF), B. Power as a
function of noise correlation (varying β), C. Power as a function of ASE fraction, D.
Power as a function of phasing error

Notably, in this simulation where each individual has ASC, PhAT-QTL-joint
and PhAT-QTL-meta have exactly the same performance.

Next, we incorporated known biases in ASC estimation for genomic fea-
tures into this simulation framework. Because the number of individuals with
detectable ASC varies across genomic features, we simulated different fractions
of ASC with β = 0.3 and minor allele frequency (MAF) = 0.15, and compared
the power between the two implementations of PhAT-QTL and linear regression
(Fig. 2C). PhAT-QTL-joint and PhAT-QTL-meta matched the performance of
linear regression in cases where there is no allelic imbalance (difference in allele-
specific counts), and outperformed linear regression when there is any allelic
imbalance. We also examined the power of PhAT-QTL as a function of phas-
ing error, which here we define as the expected fraction of individuals in which
the causal variant is incorrectly phased with respect to the variants we use to
estimate ASC. This would cause the estimation of ASC to be swapped with
respect to the causal variant. Although the power of PhAT-QTL-joint decreases
as the phasing error increases, we find that PhAT-QTL-joint outperforms linear
regression when the phasing error <40% (Fig. 2D). The switch error rate of cur-
rent phasing methods ranges from 0.28% to 5.57%, suggesting that PhAT-QTL
should be robust to most computational phasing errors [16]. In summary, phas-
ing error and ASC quantification error result in decreased power as opposed to
bias.

3.2 Simulation of Gene Expression over Real Haplotypes

We next assessed the performance of PhAT-QTL by simulating gene expression
over real haplotypes from 1000 Genomes. We simulate allele-specific reads with
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respect to a causal variant chosen within 200 kb of the gene in a random subset
of 100 individuals. Allele-specific counts for each gene were simulated according
to the previously described model, and sequencing reads were simulated from the
phased haplotypes in proportion to the simulated ASC values. We then applied
PhAT-QTL-joint, PhAT-QTL-meta, RASQUAL (the leading phase-aware QTL
detection method), and linear regression and compared their performances.

Fig. 3. A. ROC Curves for FPR <0.1 with the AUC scores for each method, B. TPR
and FPR at different FDR cutoffs, C. QQ plot with observed p-values under the null,
D. Run time for each method across different numbers of individuals

For estimating allele-specific counts, simulated reads were aligned using
individual-specific diploid transcriptomes that included exonic variants, and
reads were allocated to each haplotype using RSEM at the transcript level
[17]. For linear regression (LR) and RASQUAL, reads were aligned to the stan-
dard Hg19 reference genome, and either total read counts (LR) or total read
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counts and allele-specific reads (RASQUAL) were used to test the performance.
Adjusted p-values using the qvalue package [18] were used to assess performance.

Out of the 2000 randomly chosen genes in the human genome, 50% of those
genes were simulated to have no QTL effect (β = 0). The other 50% of genes were
simulated to have genetic effect sizes inversely proportional to the minor allele
frequency of the causal variant, consistent with the distribution of effect sizes in
the human genome. Comparing the performance of all four methods using the
known true positives, we find that PhAT-QTL-joint (AUC = 0.890) and PhAT-
QTL-meta (AUC = 0.895) outperformed both linear regression (AUC = 0.776)
and RASQUAL (AUC = 0.880) (Fig. 3A). Furthermore, at a false discovery rate
(FDR) of <0.005–0.1, we show that the true positive rate of PhAT-QTL-joint is
almost doubled compared to linear regression, detecting a total of 582 eQTLs at
an FDR cut-off of 0.05 (Fig. 3B). Although RASQUAL has a higher true positive
rate than PhAT-QTL-joint at different FDR cut-offs, it also has a higher false
positive rate, thus decreasing its overall performance. While PhAT-QTL-joint
and PhAT-QTL-meta have a higher false positive rate than linear regression, we
note that the p-values are controlled in the simulated null eQTLs (Fig. 3C).

We also compared the time taken to run all methods across different numbers
of individuals, showing that PhAT-QTL-joint and PhAT-QTL-meta are faster
than RASQUAL across the range of 25–100 individuals (Fig. 3D). At N = 100
individuals, PhAT-QTL-meta is 6.5x faster than RASQUAL, making it compu-
tationally feasible to run on larger cohorts.

4 Detecting cis-eQTLs from RNA-seq Data Using
PhAT-QTL

In order to compare PhAT-QTL to the leading QTL detection method
RASQUAL while accommodating the increased computational burden, we
applied PhAT-QTL-joint and PhAT-QTL-meta to a reduced dataset consisting
of 50 individual from the GEUVADIS dataset [3].

4.1 Data Acquisition and Processing

We downloaded phased haplotypes and RNA-sequencing data for a random sub-
set of 50 EUR individuals from the GEUVADIS portal [19]. Reads were aligned
to individual-specific transcriptome references with the same procedure as pre-
viously described. For cis-eQTL detection, we filtered out lowly expressed genes
by requiring at least 10% of the individuals to have at least 10 transcripts per
million (TPM) counts. We used the log2 median-normalized TPM counts as
inputs to PhAT-QTL-joint, PhAT-QTL-meta and linear regression, and the raw
expected counts as inputs to RASQUAL. For each gene, we tested all variants
with MAF >0.05 that satisfy Hardy-Weinberg Equilibrium (HWE) with p-value
>0.05 within a 200 kb window of the transcription start site.
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Fig. 4. True positive rates and false positive rates for each method at different FDR
cutoffs.

4.2 Comparison of Methods

To assess performance, cis-eQTLs were identified as true positives if they were
in the GEUVADIS published list of cis-eQTLs, and false positives if they were
not present in the published list. We then examined true positive rates and
false positive rates at different FDR cutoffs (0.005–0.1) for each method (Fig. 4).
Consistent with the simulations, the true positive rates of PhAT-QTL-joint and
PhAT-QTL-meta are much higher than the true positive rate of linear regression.
However, the false positive rates of PhAT-QTL-joint and PhAT-QTL-meta are
much higher in the real dataset compared to the simulated dataset, suggesting
that there are biases in the allele-specific quantification that are resulting in false
cis-eQTL discoveries.

5 Discussion

Here we propose a fast linear mixed model framework to detect QTLs from
functional genomic sequencing data. By leveraging allele-specific reads, we
can increase the power to detect QTLs relative to linear regression and pre-
vious phase-aware mapping methods. PhAT-QTL-joint and PhAT-QTL-meta
are robust to biases in phasing error and haplotype structure, and have well-
calibrated p-values under the null. We eliminate the challenge of mapping bias
by aligning all reads to an individual-specific reference that contains variant
information overlapping genomic features. In the case where the genomic fea-
tures are isoforms and genes, we applied an expectation-maximization algorithm
to use all allele-specific and non allele-specific reads to obtain robust estimates
of allele-specific counts for each isoform or gene. PhAT-QTL-joint and PhAT-
QTL-meta have the potential to discover isoform-specific QTLs, which cannot
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be achieved with methods that model allele-specific counts at each exon and do
not account for shared exon usage between isoforms.

Our approach is not without shortcomings. In this work we assume that the
relationship between haplotype and log-normalized allele-specific counts is lin-
ear. However, raw counts of genomic features from functional genomic sequenc-
ing data are over-dispersed, suggesting that a negative binomial model may be
more suited to testing the association. In application to real data (GEUVADIS
RNA-seq), we observed an inflated type I error rate for all phase-aware meth-
ods relative to linear regression at a given false discovery rate (FDR) threshold.
Depending on the purpose of the study, researchers may prefer the well-calibrated
distribution of linear regression to that of our approach and previous approaches.

By decoupling estimating allele-specific counts from testing the association
between a genotype and allele-specific counts, we can apply PhAT-QTL-joint
and PhAT-QTL-meta across a number of quantitative traits measured by next
generation sequencing (e.g. chromatin accessibility and transcription factor bind-
ing). In addition to increasing power, PhAT-QTL-joint and PhAT-QTL-meta
can detect associations that are undetectable via linear regression such as auto-
regulated genes. In this work we used computational phasing and existing map-
ping methods to estimate allele-specific counts. Going forward we will explore
alternative phasing and mapping methods as well as changes to the underly-
ing statistical model that directly incorporate phasing, mapping, and genotype
errors. Additionally, as experimental techniques are being developed to capture
haplotype specific reads through linked reads [20] and long-reads [21,22], we can
obtain more accurate estimates of allele-specific counts to further improve the
performance of PhAT-QTL-joint and PhAT-QTL-meta.
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J., Rivas, M.A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P.G.,
Barann, M., Wieland, T., Greger, L., van Iterson, M., Almlöf, J., Ribeca, P.,
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Abstract. The classification of reads from a metagenomic sample using
a reference taxonomy is usually based on first mapping the reads to
the reference sequences and then, classifying each read at a node under
the lowest common ancestor of the candidate sequences in the reference
taxonomy with the least classification error. However, this taxonomic
annotation can be biased by an imbalanced taxonomy and also by the
presence of multiple nodes in the taxonomy with the least classification
error for a given read. In this paper, we show that the Rand index is a
better indicator of classification error than the often used area under the
ROC curve and F -measure for both balanced and imbalanced reference
taxonomies, and we also address the second source of bias by reducing the
taxonomic annotation problem for a whole metagenomic sample to a set
cover problem, for which a logarithmic approximation can be obtained
in linear time.

Keywords: Metagenomics · Classification · Taxonomic annotation ·
Correlation · Set cover

1 Introduction

Next generation sequencing technologies have moved forward the development
of metagenomics, a new field of science devoted to the study of microbial com-
munities by the analysis of their genomic content, directly sequenced from the
environment [15,20,21]. A sequenced metagenomic sample consists of a large
number of relatively short DNA or RNA fragments, called reads, and one of the
first steps in the computational analysis of a metagenomic sample is the identifi-
cation of the organisms present in the sequenced environment and their relative
abundance, that is, the classification of the metagenomic sample.

In this paper, we focus on the taxonomic annotation problem, that is, the
classification of the reads from a metagenomic sample using a reference tax-
onomy, for which we adapt some basic notions from statistical classification in
c© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 162–173, 2017.
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Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN )
Negative class False Positive (FP) True Negative (TN )

Fig. 1. Confusion matrix for a binary classification problem

machine learning. We abstract away from the computational problem of map-
ping reads to reference sequences, and assume that a set of candidate sequences
in a reference taxonomy is given for each read in the metagenomic sample to
be classified. These candidate sequences are usually obtained either by sequence
composition methods (those reference sequences with oligonucleotide frequen-
cies within a given distance threshold to the oligonucleotide frequencies of the
read) or by sequence similarity methods (those reference sequences that the read
can be aligned to within a given threshold of sequence similarity, or those refer-
ence sequences that the read can be mapped to with at most a given number of
mismatches).

In a statistical binary classification problem, the confusion matrix (Fig. 1)
shows the number of correctly and incorrectly classified instances of each class.
True positives (TP) are the correctly classified positive instances, true negatives
(TN ) are the correctly classified negative instances, false positives (FP) are the
misclassified negative instances, and false negatives (FN ) are the misclassified
positive instances. The true positive rate, sensitivity, or recall R of a classification
is the ratio TPR = TP/(TP + FN ) of true positives to the total number of
positive instances, the false positive rate is the ratio FPR = FP/(FP + TN ) of
false positives to the total number of negative instances, the true negative rate
or specificity is the ratio TNR = TN /(FP + TN ) of true negatives to the total
number of negative instances, and the false negative rate is the ratio FNR =
FN /(TP + FN ) of false negatives to the total number of positive instances.
Further, the precision of a classification is the ratio P = TP/(TP +FP) of true
positives to the total number of positive predictions. They are usually combined
into a single indicator of classification error as either the area under the ROC
curve AUC = (TPR − FPR + 1)/2 or the F -measure, which is the harmonic
mean F = 2/(1/P + 1/R) of precision and recall [18].

In a metagenomic classification problem, the annotation of a read as coming
from a particular sequence in a reference taxonomy often involves solving the
ambiguity of multiple candidate sequences, caused among other factors by reads
being not long enough to ensure a unique identification of the reference sequences
they come from. Reference taxonomies are rooted trees, with the leaves labeled
by sequences at the taxonomic rank of species or strain, and these ambiguities
are solved by annotating reads as coming from internal nodes, at higher taxo-
nomic ranks in the reference taxonomy. When classifying a read as coming from
an internal node in a reference taxonomy (Fig. 2), the leaves under the internal
node are true positives if they are labeled by candidate sequences, otherwise
they are false positives, and the remaining leaves under the lowest common
ancestor (LCA) of the candidate sequences are false negatives if they are labeled
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Fig. 2. Classifying a read using a reference taxonomy. The grayed leaves are the candi-
date sequences for the classification of the read, and node i is their LCA in the reference
taxonomy. The taxonomic annotation of the read at node i implies the absence of true
negatives and false negatives. With a taxonomic annotation of the read at node j,
which is the LCA in the reference taxonomy of the true positives, however, the remain-
ing grayed leaves are the false negatives, the remaining leaves under node j are the
false positives, and the still remaining leaves under node i are the true negatives of the
metagenomic classification problem

by candidate sequences, otherwise they are true negatives. Annotating a read as
coming from the LCA of the candidate sequences in a reference taxonomy [12]
maximizes precision, as in that case there are no true negatives and no false
negatives, but at the expense of specificity, because the number of false posi-
tives in a reference taxonomy can be very large. Annotating a read as coming
from an internal node with the largest F -measure value [1,3,8,9] minimizes the
classification error as a combination of precision and sensitivity.

However, there are at least two sources of bias in the taxonomic annotation of
a metagenomic sample. One the one hand, reference taxonomies are imbalanced,
that is, the instances of one class significantly outnumber the instances of the
other classes, and this can be observed at any taxonomic rank. For example, the
NCBI Taxonomy [5,6], which is the most comprehensive taxonomic reference to
date, includes as of 13 March 2017 an imbalanced number of sequences for Bacte-
ria (1,412,065), Eukaryota (685,380), and Archaea (27,322). Within the Bacteria,
for example, there is also an imbalanced number of sequences for the Actinobac-
teria (593,837), Proteobacteria (440,315), Firmicutes (245,632), Bacteroidetes
(77,866), Planctomycetes (8,899), Fusobacteria (7,789), and others (37,727). In
a statistical binary classification problem, imbalanced datasets result in a good
coverage of the positive instances and a frequent misclassification of the nega-
tive instances, since most of the standard machine learning algorithms consider
a balanced training set [16]. In a metagenomic classification problem, an imbal-
anced reference taxonomy may also yield an imbalance between the positive and
negative classes, because the larger the clade of the LCA in a reference taxon-
omy of the candidate sequences for a read, the larger the negative class for the
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classification of the read. In Sect. 2, we show that this is in general not the case,
and we also show that the Rand index is a better indicator of classification error
than the often used area under the ROC curve and F -measure, when the reference
taxonomy is imbalanced and also for balanced reference taxonomies.

Another source of bias in the taxonomic annotation of a metagenomic sample
lies in the existence of multiple candidate nodes in a reference taxonomy with
the least classification error for a given read, one of which is usually chosen
arbitrarily for the taxonomic annotation of the read [1,3]. Instead of breaking ties
independently for each read in a metagenomic sample, we show in Sect. 3 that the
shift from a one-sequence-read-at-a-time view to a whole-set-of-sequence-reads
view yields a better resolution of any remaining ambiguities in the taxonomic
annotation of a metagenomic sample.

2 Taxonomic Annotation Using Imbalanced Reference
Taxonomies

Recall from Sect. 1 that in a metagenomic classification problem, an imbal-
anced reference taxonomy yields an imbalance between the positive and negative
classes. Let us define the balance ratio of a classification problem as the ratio of
the size of the positive class to the size of the negative class.

Definition 1. Let TP, TN , FP, and FN be the number of true positives, false
positives, true negatives, and false negatives in a binary classification problem.
The balance ratio of the classification problem is (TP + FN )/(FP + TN ).

Recall also from Sect. 1 that the reference taxonomies used in metagenomic
classification are highly imbalanced. It turns out that balanced and imbalanced
reference taxonomies yield exactly the same metagenomic classification prob-
lems, as long as they have the same number of internal nodes. Some evidence
supporting this observation follows.

The topology of the most possible balanced binary reference taxonomy is a
complete binary tree, as every internal node (and also the root) has two descen-
dant clades of exactly the same size. On the other hand, the topology of the
least possible balanced binary reference taxonomy is a degenerate binary tree,
as every internal node (and also the root) has one big descendant clade and one
small (with only one node) descendant clade.

Now, in a metagenomic classification problem, any subset of the leaves of a
reference taxonomy may be labeled by the candidate sequences for the classifi-
cation of a given read. For a given subset of the leaves of a reference taxonomy,
each candidate internal node (at or under the LCA of the subset of the leaves)
for the taxonomic annotation of the read yields a certain number of true pos-
itives, false positives, true negatives, and false negatives. For example, for the
reference taxonomy in Fig. 2, the subset of grayes leaves yields, for the candidate
internal node j, a metagenomic classification problem with TP = 3, FP = 1,
TN = 3, FN = 1 and thus, balance ratio (3 + 1)/(1 + 3) = 1. Table 1 shows
the distribution of the number of true positives, false positives, true negatives,
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Table 1. Distribution of TP , FP , TN , FN values (left) and distribution of TP + FN
values (right) in metagenomic classification problems for different taxonomic reference
topologies: complete (C) and degenerate (D) binary trees with 8 leaves

TP FP TN FN C D

0 2 0 6 4 1
0 2 1 5 24 6
0 2 2 4 60 15
0 2 3 3 80 20

· · · · · · · · · · · · · · · · · ·
7 0 1 0 0 1
7 1 0 0 8 8
8 0 0 0 1 1

TP + FN Count

1 56
2 196
3 392
4 490
5 392
6 196
7 56
8 7

and false negatives for all subsets of the leaves of a reference taxonomy and for
every candidate internal node for the taxonomic annotation of a read having as
candidate sequences the subset of the leaves, for both a complete binary tree
and a degenerate binary tree with 8 leaves.

The resulting distribution of TP + FN values (Table 1, right) is exactly the
same in both cases and thus, a complete binary tree and a degenerate binary tree
with the same number of leaves have the same balance ratio. In fact, any two
reference taxonomies for the same taxa have the same balance ratio as long as
they have the same number of internal nodes, because they yield a metagenomic
classification problem for any subset of the leaves and for any candidate internal
node, and TP + FN equals the number of leaves in the subset.

Let us assume that the reads in a metagenomic sample to be classified come
from known sequences in a reference taxonomy, as it is usually the case in the
taxonomic annotation of metagenomic samples, whereas reads coming from novel
sequences are annotated by using clustering methods instead. Given a read and
a set of candidate sequences in a reference taxonomy, the taxonomic annotation
of the read at a certain node in the clade of the LCA in the reference taxonomy
of the set of candidate sequences can then be taken to be correct if, and only if,
the candidate sequence that the read comes from lies in the clade of the node at
which it is annotated.

Based on this observation, we have studied the performance of some of the
most often used indicators of classification error: the Yule φ [23], also known as
Matthews correlation coefficient [17], the area under the ROC curve, the Youden
J [22], the F -measure [18], the Jaccard similarity coefficient [13], and the Rand
index [19], in the taxonomic annotation of metagenomic samples.

Definition 2. Let TP, TN , FP, and FN be the number of true positives, false
positives, true negatives, and false negatives in a binary classification problem.

– The Yule φ is given by

φ =
TP TN − FP FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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– The Youden J is given by

J =
TP TN − FP FN

(TP + FN )(FP + TN )

– The area under the ROC curve is given by

AUC =
1
2

(
TP

TP + FN
+

TN
FP + TN

)

– The F -measure is given by

F =
2TP

2TP + FP + FN

– The Jaccard similarity coefficient is given by

C =
TP

TP + FP + FN

– The Rand index is given by

R =
TP + TN

TP + FP + TN + FN

If the denominator in any of these formulas is zero, the value of the indicator is
arbitrarily set to zero.

We have computed the value of all these indicators of classification error for
each possible set of candidate sequences in a reference taxonomy and for each
possible candidate node for the taxonomic annotation of a read coming from
each of the candidate sequences, for different taxonomic reference topologies:
complete binary trees, that have the largest possible balance but yield the least
balanced metagenomic classification problems, and degenerate binary trees, that
have the smallest possible balance but yield the most balanced metagenomic
classification problems. For these classification problems, we have counted the
number of times the taxonomic annotation is correct, that is, the number of times
a read is annotated to a node in the reference taxonomy whose clade includes
the reference sequence that the read comes from.

The results (Table 2) show that the worst indicator of classification error
is the Yule φ, followed by AUC and the Youden J (which are equivalent, as
J = 2AUC − 1), the F -measure and the Jaccard similarity coefficient C (which
are also equivalent, as C = F/(2 − F )), and that the Rand index R is the best
indicator of classification error for the taxonomic annotation of metagenomic
samples. This can be explained by the fact that in a metagenomic classification
problem, we focus on the correct classification of a correct taxonomic annotation
while in a statistical classification problem in machine learning, where both pos-
itive and negative instances are taken into account, correlation measures such as
the Yule φ (which is equivalent to the Pearson correlation coefficient for binary
classification problems) often are the best indicators of classification error.



168 B. Fosso et al.

Table 2. Total number of correct taxonomic annotations under the Yule (φ), the area
under the ROC curve (A) or the Youden J , the F -measure (F ) or the Jaccard similarity
coefficient, and the Rand index (R) for reads coming from known sequences, for different
taxonomic reference topologies (complete binary tree and degenerate binary tree) with
n leaves

Complete binary tree

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

φ 4 14 40 70 262 306 824 1,450 4,318 6,156 17,064 28,158 63,378 118,292 270,448

A 4 14 40 70 262 306 920 1,530 4,726 6,316 22,056 29,528 79,322 138,477 352,496

F 4 12 32 78 220 407 984 2,234 5,188 10,251 24,844 49,019 112,812 235,322 493,856

R 4 12 48 90 344 485 1,544 2,742 8,308 11,845 37,764 54,757 154,012 239,147 672,416

Degenerate binary tree

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

φ 4 14 38 80 203 388 945 1,961 4,344 8,592 20,152 39,474 88,063 183,603 398,700

A 4 14 38 80 211 384 973 1,952 4,628 8,346 22,230 38,088 94,962 188,986 421,697

F 4 12 32 79 195 441 1,024 2,270 5,104 10,994 24,491 51,959 113,305 241,277 518,937

R 4 12 36 89 222 512 1,191 2,652 5,949 12,971 28,459 61,189 132,263 281,547 602,076

Now, the taxonomic annotation of a metagenomic sample involves obtaining
the candidate nodes in a reference taxonomy with the least classification error
(for a given indicator) for each of the reads in the metagenomic sample. We
have proved in [3] that, when the F -measure is taken as indicator, it suffices to
consider candidate nodes that are either candidate sequences themselves, or the
LCA of two or more candidate sequences in the reference taxonomy. That is, it
suffices to consider as candidate nodes the LCA skeleton tree [7] of the set of
candidate sequences for a given read.

We prove below that it also suffices to consider the LCA skeleton tree when
the Youden J , the area under the ROC curve, or the Jaccard similarity coefficient
is taken as indicator of classification error. The proof for the Yule φ is left to the
reader.

Let T be a reference taxonomy, let Mi be the set of candidate sequences for
the classification of read i, and let Ti be the subtree of T rooted at the LCA of
Mi. See Fig. 2 for a schematic view.

Definition 3. A node j in Ti is called relevant if it is equal to a candidate
sequence in Mi or equal to the LCA of two or more candidate sequences in Mi.

Also, for every node j in Ti, let Ti,j be the subtree of Ti rooted at j, let
Li be the set of all candidate sequences in Ti, and let Ni be the set of all
candidate sequences in Ti that do not belong to Mi (hence, Li = Mi ∪ Ni).
Similarly, let Mi,j be the set of all candidate sequences in Ti,j that belong to
Mi, let Ni,j be the set of all candidate sequences in Ti,j that do not belong
to Mi,j , and let Li,j = Mi,j ∪ Ni,j . Using this notation, for the taxonomic
annotation at node j of a read i with candidate sequences Mi (see Fig. 2),
the true positives are TP i,j = Mi,j , the false positives are FP i,j = Ni,j , the
true negatives are TN i,j = Ni \ Ni,j , and the false negatives are FN i,j =
Mi \Mi,j . Let Ci,j be the Jaccard correlation coefficient for node j in Ti, that is,
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Ci,j = TP i,j/(TP i,j + FP i,j + FN i,j). Similarly, let Ji,j and Ai,j , and Fi,j be
the Youden J and the area under the ROC curve for node j in Ti, respectively.
We have:

Theorem 1. For each node j in Ti, there exists a relevant node j′ such that
Ji,j′ � Ji,j, Ai,j′ � Ai,j, and Ci,j′ � Ci,j.

Proof. Suppose that j is a node in Ti that is not relevant. Let j′ be the LCA
of the candidate sequences in Mi,j . Clearly, j′ is relevant and, furthermore,
|Mi,j | = |Mi,j′ | while |Ni,j | � |Ni,j′ | since Ti,j′ is a subtree of Ti,j .

Let TP = |Mi,j |, FP = |Ni,j |, FN = |Mi| − |Mi,j |, TN = |Ni| − |Ni,j |
and, similarly, let TP ′ = |Mi,j′ |, FP ′ = |Ni,j′ |, FN ′ = |Mi| − |Mi,j′ |, TN ′ =
|Ni| − |Ni,j′ |. We have that TP ′ = TP , FP ′ � FP , FN ′ = FN , TN ′ � TN , and
TN ′ + FP ′ = TN + FP .

– Youden J : It has to be proved that

TP ′ TN ′ − FP ′ FN ′

(TP ′ + FN ′)(FP ′ + TN ′)
� TP TN − FP FN

(TP + FN )(FP + TN )

We have that (TP ′ + FN ′)(FP ′ + TN ′) = (TP + FN )(FP + TN ). Then,
it suffices to prove that TP ′ TN ′ − FP ′ FN ′ � TP TN − FP FN , that is,
TP(TN ′ − TN ) � FN (FP ′ − FP). But TP � 0, (TN ′ − TN ) � 0, FN � 0,
(FP ′ − FP) � 0 and thus, the inequality follows.

– Area under the ROC curve: It has to be proved that

TP ′(FP ′ + TN ′) + TN ′(TP ′ + FN ′)
(TP ′ + FN ′)(FP ′ + TN ′)

� TP(FP + TN ) + TN (TP + FN )
(TP + FN )(FP + TN )

We have that (TP ′ + FN ′)(FP ′ + TN ′) = (TP + FN )(FP + TN ) and
TP ′(FP ′ +TN ′) = TP(FP +TN ). Then, it suffices to prove that TN ′(TP ′ +
FN ′) � TN (TP + FN ). But TP ′ = TP , FN ′ = FN , TN ′ � TN and thus,
the inequality follows.

– Jaccard similarity coefficient: It has to be proved that

TP ′

TP ′ + FP ′ + FN ′ � TP
TP + FP + FN

We have that TP ′ = TP , FP ′ � FP , FN ′ = FN and thus, the inequality
follows.

– Rand index: It has to be proved that

TP ′ + TN ′

TP ′ + FP ′ + TN ′ + FN ′ � TP + TN
TP + FP + TN + FN

We have that TP ′ = TP , FN ′ = FN , TN ′ � TN , FP ′ + TN ′ = FP + TN
and thus, the inequality follows.

��
Corollary 1. The Youden Ji,j, the area under the ROC curve Ai,j, the Jaccard
correlation coefficient Ci,j and the Rand index Ri,j only need to be computed for
nodes j in Ti that are relevant.
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3 A Set Cover Approach to Taxonomic Annotation

Let us recall from [10] that an instance of the set cover problem is a collection
C of subsets of a finite set X whose union is X, and a solution to the set cover
problem is a subset C ′ ⊆ C such that every element in X belongs to at least
one member of C ′. The set cover problem is NP-complete, but a logarithmic
approximation can be computed in linear time [2,14].

Recall also that in a metagenomic classification problem, the are often mul-
tiple candidate nodes in a reference taxonomy with the least classification error
for a given read. As a set cover problem, the set of elements X is the set of
candidate nodes in a reference taxonomy with the least classification error for
the reads in a metagenomic sample, and the collection C of subsets of X is the
collection of sets of candidate nodes in the reference taxonomy with the least
classification error for each read.

The following example is adapted from [4, Sect. 35.3]; see Fig. 3.

Example 1. Consider a metagenomic sample with reads x1, . . . , x12 and candi-
date nodes in a reference taxonomy with the least classification error as follows:
{y1, y3} for x1, {y1, y4} for x2, {y1, y5} for x3, {y1, y3} for x4, {y1, y2, y4} for x5,
{y1, y2, y5} for x6, {y3, y4} for x7, {y2, y4} for x8, {y2, y5} for x9, {y3, y6} for x10,
{y4, y6} for x11, and {y5} for x12. Then, as an instance of the set cover problem,
X = {x1, . . . , x12} and C = {y1 . . . , y6}, where y1 = {x1, x2, x3, x4, x5, x6},
y2 = {x5, x6, x8, x9}, y3 = {x1, x4, x7, x10}, y4 = {x2, x5, x7, x8, x11}, y5 =
{x3, x6, x9, x12}, and y6 = {x10, x11}.

X

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

C

y1 = {x1, x2, x3, x4, x5, x6}

y2 = {x5, x6, x8, x9}

y3 = {x1, x4, x7, x10}

y4 = {x2, x5, x7, x8, x11}

y5 = {x3, x6, x9, x12}

y6 = {x10, x11}

X

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

C′

y3

y4

y5

Fig. 3. (left) A metagenomic classification problem viewed as a set cover problem. X is
the set of reads from a metagenomic sample, and C is the collection of candidate nodes
in the reference taxonomy with the least classification error for some read from the
metagenomic sample. (right) The smallest solution to the set cover problem instance.
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In a solution C ′ to a metagenomic classification problem viewed as a set
cover problem (X,C), each read in X is annotated to a node in C ′ ⊆ C. Such a
taxonomic annotation is not necessarily unique, and there may still be ambigu-
ities in the classification of the metagenomic sample. For the problem instance
from Example 1, the smallest solution is {y3, y4, y5}, which implies the taxonomic
annotation of reads x1, x4 and x10 to node y3, reads x2, x5, x8 and x11 to node
y4, reads x3, x6, x9 and x12 to node y5, and read x7 to either node y3 or node y4
in the reference taxonomy. The greedy algorithm of [14] yields the approximate
solutions {y1, y4, y5, y3} and {y1, y4, y5, y6}.

The taxonomic annotation of a metagenomic sample can thus be seen as the
reduction, and ideally the removal, of ambiguity in the identification of the reads
in the metagenomic sample, where a read is ambiguous if it is annotated to more
than one node in a reference taxonomy. Viewing the metagenomic classification
problem as a set cover problem, an element of X is ambiguous if it belongs to
more than one subset of the collection C ′ ⊆ C. The subsets of a set cover overlap
on ambiguous elements.

Definition 4. Let X be a finite set and let C be a collection of subsets of X
whose union is X. The overlap of a set cover C ′ ⊆ C is the total size of the
subsets minus the size of X.

Let the size of a set cover be the number of subsets of X that it contains,
and let the total size of a set cover be the total size of the subsets of X that it
contains. This corresponds to set cover problems I and II in [14]. It turns out
that a set cover of smallest size does not necessarily have the least overlap, while
a set cover of smallest total size always has the least overlap.

Proposition 1. A set cover with the least number of subsets does not necessarily
have the least overlap.

Proof. Let X = {1, . . . , n} and assume, without loss of generality, that n = 2k
for k � 3. Let S be the following collection of subsets of X:

{1, 2}, {3, 4}, . . . , {n − 1, n}, {1, . . . , n − 1}, {2, . . . , n}

The set cover {1, . . . , n − 1}, {2, . . . , n} has size 2, which is the smallest possible
for S and X, and overlap n. The set cover {1, . . . , n−1}, {n−1, n} also has size 2,
but it has overlap 1. Same for the set cover {1, 2}, {2, . . . , n}, and S and X have
no other set cover of size 2. However, the set cover {1, 2}, {3, 4}, . . . , {n − 1, n}
has size n/2 and overlap 0, which is the least possible overlap.

The following result follows directly from Definition 4.

Corollary 2. A set cover with the least total size of subsets has the least overlap.

Based on the solution of a set cover problem with the least total size of sub-
sets, the abundance profile of a metagenomic sample is given by the proportion
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of reads mapped to each node in the set cover, adjusted by a uniform distrib-
ution of any still ambiguous reads among all the nodes in the set cover which
they are mapped to.

We have implemented the set cover approach to taxonomic annotation in
a next release of the TANGO software [1,3], which belongs in the BioMaS [9]
and MetaShot [8] pipelines. The new implementation of TANGO consists of a
Python script for taxonomic annotation using the NCBI Taxonomy [5,6], based
on the ETE Toolkit [11], along with another Python script for resolving any
remaining ambiguities by finding an approximate solution to a set cover problem
with the least total size of subsets. While the first script processes the input
metagenomic sample one-sequence-read-at-a-time, the second script processes
the output of the first script for the whole set of reads, and produces both a
taxonomic annotation of the reads and an abundance profile of the metagenomic
sample.

4 Conclusion

We have addressed two potential sources of bias in the taxonomic annotation of
metagenomic samples, which is usually done by first mapping the reads to the
reference sequences and then, classifying each read at a node in the clade of the
LCA of the candidate sequences in the reference taxonomy with the least clas-
sification error. On the one hand, we have shown that the reference taxonomy
being balanced or imbalanced does not affect the balance of the metagenomic
classification problem, and we also shown that the Rand index is a better indica-
tor of classification error for metagenomic classification problems than the often
used area under the ROC curve and F -measure. On the other hand, we have
reduced the taxonomic annotation problem for a whole metagenomic sample to
a set cover problem, for which a logarithmic approximation can be obtained in
linear time, and we have shown that a solution to the set cover problem with the
least total size of subsets minimizes the ambiguity in the taxonomic annotation
of the reads in a metagenomic sample.

Future work includes extending the computation of balance ratio and total
number of correct taxonomic annotations from Sect. 2 to the NCBI Taxonomy,
taking ancestry relationships among the nodes in the reference taxonomy into
account in the set cover formulation of the taxonomic annotation problem from
Sect. 3 and last, but not least, extending the set cover problem formulation of the
taxonomic annotation problem to a non-taxonomic metagenomic classification
problem, with reference sequences but without a reference taxonomy.

Acknowledgements. Partially supported by Spanish Ministry of Economy and Com-
petitiveness and European Regional Development Fund project DPI2015-67082-P
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Abstract. Cryo-electron microscopy (Cryo-EM) is a technique that produces
three-dimensional density maps of large protein complexes and enables the
study of the interactions and structures of those molecules. Identifying the
secondary structures (a-helices and b-sheets) located in proteins using density
maps is vital in identifying and matching the backbone of the protein with the
cryo-EM density map. The b-barrel is a unique b-sheet structure commonly
found in proteins, such as membranes and lipocalins. We present a new
approach utilizing a genetic algorithm and ray tracing to automatically identify
and extract b-barrels from cryo-EM density maps. This approach was tested
using ten simulated density maps at 9 Å resolution and six experimental density
maps at various resolutions. The results suggest that our approach is capable of
performing automatic detection and extraction of the b-barrels from medium
resolution cryo-EM density maps.

Keywords: Protein � Secondary structures � Genetic algorithm � Ray tracing �
Cryo-electron microscopy � Beta-barrel � Density map � Feature detection �
Pattern recognition

1 Introduction

Cryo-electron microscopy (cryo-EM) is an experimental technique that allows for the
study of the structure of large molecules and protein complexes [1]. In cryo-EM, the
molecule being studied is frozen and millions of two-dimensional images are taken at
numerous different angles, and then used to generate a three-dimensional density map
of the molecule being studied [2]. Although the technique has improved recently to the
point of being able to resolve to near-atomic resolutions, there still exists a significant
amount of data that are resolved at medium resolutions between 5–10 Å [3, 4]. These
resolutions are relatively too low to be able to differentiate between individual atoms
within the protein and an alternative approach must be used to discover the structure
and mechanism of the protein.

Although individual atoms cannot be seen at medium resolution cryo-EM data, the
secondary structures of a protein are still prominent and visible [5, 6]. Secondary
structures, local structures within proteins that help form the overall structure, generally
consist of either a-helices or b-sheets. a-helices have a very regular and distinct shape
at medium resolutions as they tend to appear as a thick rod of density within the
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cryo-EM density maps. Because of this, a-helices are much easier to identify and
detect. Much work has already been done in attempting to identify a-helices within
cryo-EM density maps and are quite successful in doing so [6, 7, 9, 10, 12, 13].

b-sheets, on the other hand, are formed when two or more b-strands line up side by
side to form the characteristic sheet-like structure and tend to appear as a thin layer of
density within the cryo-EM density maps. Work has been done to attempt to identify
the position and location of the individual b-strands within some b-sheets [7, 8, 11,
14–16]. However, as b-strands can line up, twist, and combine to form vastly different
geometries, this means that one method is rarely capable predict the position of
b-sheets/strands for all possible b-sheet structures (Fig. 1).

The b-barrel is a specific type of b-sheet structure where the first b-strand in the
sheet is hydrogen bonded to the last b-strand in the b-sheet. This results in a distinct
hollow cylindrical structure. Because of this unique cylindrical structure, b-barrels are
generally found as part of a cell membrane, in porins, and in lipocalins [17, 18].

In Si [16], a random sample consensus (RANSAC) based approach, BarrelMiner,
was developed to find and detect b-barrels from cryo-EM density maps. BarrelMiner
attempts to fit an ideal cylinder template to the b-barrel. However, BarrelMiner
assumes that the b-barrel’s shape is that of an ideal cylinder. In this paper, we propose
an alternative approach towards the automatic detection of b-barrels from medium
resolution cryo-EM density maps. Like BarrelMiner, we attempt to fit an ideal cylinder
into the b-barrel region. Instead of RANSAC, we use a genetic algorithm to fit an ideal
cylinder inside the b-barrel region. Additionally, we utilize a ray tracing algorithm to
attempt to detect the true shape of the b-barrel using the fitted cylinder. Our algorithm
can also suggest if there exists a b-barrel in the cryo-EM density map or not.

2 Method

The method described in this paper utilizes a genetic algorithm to fit an ideal cylinder to
the center of the b-barrel in a density map. Ray tracing is then applied using the fitted
ideal cylinder to attempt to discover the true shape of the b-barrel (Fig. 2).

Fig. 1. Examples of various b-sheet structures
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This approach can be separated into three main components:

Preprocessing Component. The goal of this component is to reduce the size of the
search space and to subdivide it into smaller sections.
Genetic Algorithm. Agenetic algorithm is performed to search each section to detect
the location of the b-barrel and fit an ideal cylinder to it.
Postprocessing Component. The goal of this component is to utilize ray tracing
technique to discover the true shape of the b-barrel.

2.1 Preprocessing

The purpose of preprocessing in our method is to remove as many background noise
and non b-barrel voxels to reduce the amount of computation time needed. A global
density threshold was selected to filter and remove all voxels in the density map with a
lower density than the selected threshold. This should remove the voxels associated
with background noise, as these voxels tend to have very small density values. For all
density maps tested, it was loaded into Chimera [19] and a global threshold was
selected such that most of the non-secondary structure voxels were eliminated, while

Fig. 2. Flowchart describing the major steps of our method
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still retaining the general cylindrical shape of the b-barrel. To further decrease the
number of non b-barrel voxels in the density map, the voxels associated with a-helix
secondary structures were also removed from the density map. This was done using
Gorgon and SSETracer [15, 20]. Any voxel found within 2.0 Å of a detected a-helix
using SSETracer would be removed from the density map. The last step in prepro-
cessing involves subdividing the entire density map into clusters of voxels. A cluster is
defined as a group of voxels that are at least 2.0 Å away from another cluster. Once the
clustering is completed, all clusters that contain a population below a pre-defined
threshold were removed. These removed clusters are assumed to be background noise.
The genetic algorithm is then performed on each remaining cluster to attempt to
discover the location and shape of b-barrels, if any, located within the cluster.

2.2 Genetic Algorithm

The genetic algorithm is an extremely efficient algorithm at searching and optimizing
solutions within a search space by mimicking natural selection [21, 22]. The purpose of
the genetic algorithm in our method is to attempt to fit an ideal cylinder into the center
of the b-barrel region within the density map. The main axis of the cylinder (the axis
between the centers of the two circles at the end) should align with the axis of the
b-barrel. Additionally, the entire cylinder should fit within the empty region within the
b-barrel and avoid contact with the b-barrel walls (Fig. 3).

The individual used in our genetic algorithm method is an ideal cylinder. Each ideal
cylinder is defined by a 1 by 7 vector containing seven parameters, [x1, y1, z1, x2, y2, z2,
r]. These parameters represent the two points at the center of the two circles at the two
ends of the cylinder along with radius of the two circles. Each cylinder is assumed to be
hollow to match the b-barrel. Each cylinder has a fitness score that describes how likely
a cylinder is fit to the center region of a b-barrel. The lower the fitness score, the more
likely the cylinder is fit correctly to a b-barrel. The initial population of ideal cylinders
is randomly generated. For each randomly generated cylinder, two random 3D points
are selected within the confines of the density map and a random radius, between 3 Å
and 10 Å, is chosen. For all the cryo-EM density maps tested, a population size of 200
ideal cylinders was used. For all density maps, the genetic algorithm was run for 100
generations.

Fig. 3. General flowchart describing the genetic algorithm process
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Fitness Score
The fitness score describes how likely an ideal cylinder candidate is fit to a b-barrel
region. The fitness score, F, is given by:

F ¼ MSEþBP ð1Þ

where MSE is the mean-squared error and BP is a penalty for voxels located inside the
cylinder. The mean-squared error, MSE, is calculated by:

MSE ¼
PN

i ðdiÞ2
N

ð2Þ

where N is the number of voxels in the density map remaining after preprocessing and
di is the shortest distance between the i-th voxel in the density map and the surface of
the cylinder. The BP is a penalty for when voxels are located inside the candidate
cylinder. In a b-barrel, there should not be any voxels/density located inside of it and
this BP attempts to account for this. The BP is calculated by:

BP ¼
XM

j
ðdjÞ3 ð3Þ

where M is the number of voxels located inside the volume of the cylinder and dj is the
shortest distance between the j-th internal voxel and the surface of the cylinder. The BP
is not averaged as we wanted it to make more weight compared to MSE when cal-
culating F.

Crossover
The crossover function is used to create new “child” cylinders from the most fit
cylinders in the current generation [22]. This is done to introduce variation to the
genetic algorithm so that it is capable of better searching the entire search space. For
each generation, the most fit half of the population are designated as parents. Each
parent is paired up in order of their fitness (i.e. most fit with the second most fit) and
two child cylinders are created from each pair. The first child cylinder will randomly
select one cylinder end-point from each parent and the second child will select the two
unpicked ones. The radius for both child cylinders consists of the average radius
between the two parent cylinders. The parent and child cylinders are then combined to
form the next generation for the genetic algorithm.

Mutation
The mutation function is used to introduce new “genes” to the population, so that the
search can avoid becoming trapped within local minima/maxima. During crossover,
every child cylinder has a chance of undergoing mutation. When mutating, one of the
three parameters defining the cylinder will be changed by a mutation factor. The
mutation factor is determined using a non-uniform mutation strategy, where the
mutation factor starts off large in early generations of the genetic algorithm and
decreases as generations pass by [23].
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2.3 Postprocessing

The postprocessing step in our method is used to discover the true shape of the
b-barrel. As the shape of b-barrels is rarely regular, it is difficult to fit any single regular
shape to all possible b-barrels. Our method avoids this by using ray tracing to trace the
true shape of the b-barrel. Ray tracing is a computer graphics technique that attempts to
imitate how light rays work [24]. We leverage ray tracing by shooting rays around the
fitted cylinder to find the voxels that make up the walls of the b-barrel. The fitted
cylinder is split up into evenly divided circular slices along the axis of the cylinder.
Within each slice, rays are shot from the axis of the cylinder every 1° towards the
surface of the cylinder (Fig. 4).

For each ray, all voxels within 1.0 Å from the casted ray are added to a set. If there
are no voxels in the set, it is assumed that the ray was casted into empty space.
Otherwise, the scalar projection onto the casted ray is calculated for every voxel in the
set. Any voxels with a negative scalar projection are removed. The voxel with the
smallest scalar projection is determined to have “intersected” the ray. The ratio of
intersecting rays over the total number of rays casted is calculated for every cylinder
slice. Starting from the two ends, slices that do not achieve a ratio of at least 0.6 are
removed until a slice with at least a 0.6 ratio is reached. If all the slices were removed,
then our method suggests that there is no b-barrel. This step is done to remove non
b-barrel voxels located above and below the b-barrel. Lastly, as some b-barrels have
gaps in its walls, rays may be casted through these gaps and intersect with the sur-
rounding non b-barrel voxels. To remove these voxels, voxels that are at least 1.5 r
from the mean distance between all the voxels in the b-barrel voxel set and the axis of
the fitted cylinder are removed.

2.4 Accuracy

To quantify the accuracy of our method, we calculated the sensitivity and specificity
based on the a-carbons (Ca) of each amino acid detected. A Ca is determined to be
detected if there are detected voxels 2.0 Å away from it. Sensitivity indicates
the percentage of b-barrel Ca correctly detected (true positives) [25]. Sensitivity is
given by:

Fig. 4. Ray Tracing for a single slice of the fitted cylinder. The red dot is a point on the axis of
the fitted cylinder. The orange lines represent the rays being casted from the axis. (Color figure
online)
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Sensitivity ¼ # b�barrel Ca detected=total # b�barrel Ca ð4Þ

Specificity indicates the percentage of non b-barrel Ca correctly detected (true nega-
tives) [25]. Specificity is given by:

Specificity ¼ # non b�barrel Ca detected=total # non b�barrel Ca ð5Þ

3 Results

3.1 Simulated Density Maps

Ten simulated density maps were tested using our method. Each density map was
generated using the program pdb2mrc from EMAN [26] at a resolution of 9 Å and a
sampling of 1 Å per pixel. These ten proteins were all obtained from the CATH
database (http://www.cathdb.info/) under “Beta Barrel” architecture section.

In Fig. 5, we show an example of one of the simulated density map tested, protein
1AJZ chain A. All the b-barrel Ca were detected on the 1AJZ protein using our
method. However, a specificity of only 80.0% was obtained. In Fig. 5C, we can see the
non b-barrel voxels detected above the b-barrel. This is because the fitted cylinder
extends above the b-barrel and our method includes some of these non b-barrel voxels
near the cylinder in the final voxel set. Although some of these outlier voxels are
removed, the voxels right above and below the b-barrel seem to surround the fitted
cylinder enough to manage at least a 0.6 ratio of ray hits to avoid being removed by our
postprocessing method.

In Table 1, we describe the results of this method on the ten simulated density
maps. The average sensitivity among the ten simulated density maps is 97.7% which

Fig. 5. b-barrel detection from simulated density map. (A) Simulated density map of 1AJZ
chain A at 9 Å resolution. (B) The fitted cylinder (red) (C) the detected b-barrel surface
(red) (D) the detected b-barrel surface (red) superimposed over the true PDB structure. The top
view (first row) and a side view (second row) are shown in (A), (B), (C), and (D) (Color figure
online)
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suggests that our method is very good at finding the general shape of the b-barrel.
However, the specificity is only 77.4%. This is due to all the non b-barrel (loop and
turn) Ca that are located very close to the two ends of b-which is very challenging to
detect and remove from the final set of voxels for the b-barrel.

3.2 Experimental Density Maps

Six experimental density maps, obtained from EMDB [4], were tested. All six had
corresponding PDB files that gave us the true protein structure. In Fig. 6, we show the

Table 1. Accuracy of b-barrel detection on simulated density maps

PDB IDa TLb Barrelc TPd FPe Sens.f Spec..g

1AJZ_A 282 37 37 49 1.000 0.800
1AL7_A 350 34 33 56 0.971 0.823
1JB3_A 127 46 45 10 0.978 0.877
1NNX_A 93 45 45 10 1.000 0.792
1TIM_A 247 50 50 52 1.000 0.736
4HIK_A 136 45 43 23 0.956 0.747
1Y0Y_A 335 35 35 100 1.000 0.667
3GP6_A 166 93 89 25 0.957 0.657
3ULJ_A 96 55 54 7 0.982 0.829
2DYI_A 162 41 38 23 0.927 0.810

Average 0.977 0.774
aPDB_chain
bTotal number of Ca in the protein chain
cTotal number of Ca on the b-barrel
dTrue positive Ca detected
eFalse positive Ca detected
fSensitivity of b-barrel detection, see Eq. 4
gSpecificity of b-barrel detection, see Eq. 5

Fig. 6. b-barrel detection from experimental density map. (A) Experimental density map of
4CSU chain K. (B) The fitted cylinder (red) (C) The detected b-barrel surface (red) (D) The
detected b-barrel surface (in red) superimposed over the true PDB structure. The top view (first
row) and a side view (second row) are shown in (A), (B), (C), and (D) (Color figure online)
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results of one of the experimental cryo-EM density maps, EMD 2605 aligned with
protein 4CSU chain K. For this density map, a sensitivity of 89.3% (25 of 28 b-barrel
Ca detected) and a specificity of 92.5% were obtained. The b-barrel a-carbons that
were not detected were ones that were at the top end of individual b-strands and were
positioned just far enough away from the barrel wall so that it fell outside our 2.0 Å
threshold. The detected non b-barrel Ca were located right above the actual b-barrel
where it is challenging to detect and remove as outliers.

In Table 2, we can see the results of this method on the six experimental density
maps. The average sensitivity among the six experimental density maps is 82.8%,
which is significantly lower than the sensitivity for the simulated maps. Due to the
noisy and incomplete nature of experimental cryo-EM data, this is not surprising and
reflects the difficulty of automatic b-barrel detection from experimental density maps.

3.3 Comparison with BarrelMiner

In Fig. 8, we show a comparison between the results produced using our method and
the results produced using BarrelMiner on density map EMD 2605. BarrelMiner was
able to achieve 100% sensitivity and our method was able to achieve 89.3%. However,
as seen above, BarrelMiner suffers from low specificity as it includes much of the non
b-barrel density located above and below the actual b-barrel. BarrelMiner achieved
66.7% specificity, while our method was able to achieve 92.5%. These results were
calculated using the metrics and methods described in this paper.

3.4 Density Maps with No b-Barrels

To further test our method, two protein chains that are known to not contain any
b-barrels were tested. These two were tested to determine if our method could predict

Table 2. Accuracy of b-barrel detection on experimental density maps

EMDB_PDB_ID (Res)a TLb Barrelc TPd FPe Sens.f Spec.g

1657_2WWQ_W (5.8 Å) 94 30 23 17 0.767 0.734
1780_3IZ5_M (5.5 Å) 140 28 22 24 0.786 0.786
1849_3IZU_L (8.25 Å) 123 31 24 1 0.774 0.989
1849_3IZU_W (8.25 Å) 94 40 34 9 0.850 0.833
2605_4CSU_K (5.5 Å) 121 28 25 7 0.893 0.925
6396_5A9Z_AL (6.4 Å) 122 30 27 25 0.900 0.728

Average 0.828 0.833
aEMDB_PDB_chain (resolution)
bTotal number of Ca in the protein chain
cTotal number of Ca on the b-barrel
dTrue positive Ca detected
eFalse positive Ca detected
fSensitivity of b-barrel detection, see Eq. 4
gSpecificity of b-barrel detection, see Eq. 5
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the presence of b-barrels. In Fig. 7, you can see the results for the two non b-barrel
protein chains tested, PDB 1COS chain A and 4R80 chain A. For both protein chains, a
cylinder was fitted as best as possible using the genetic algorithm, but neither cylinder
had slices able to achieve the ray hit ratio of at least 0.6 and our method correctly
determined that no b-barrel exists.

4 Conclusion and Future Work

In this paper, we describe a new approach that attempts to automatically and accurately
detect and extract the b-barrel region from cryo-EM density maps. It utilizes a genetic
algorithm to fit an ideal cylinder to the center of the b-barrel region before applying ray
tracing identify the voxels that make up the b-barrel region of the density map. Our
approach has been tested on both experimental and simulated cryo-EM density maps.
The results from these tests have proven that our proposed approach is capable of
automatically identifying the b-barrel from cryo-EM density maps. However, the
accuracy was significantly lower when applied to experimental density maps. This was
due to the noise and incompleteness inherent in experimental cryo-EM density maps.
Further work needs to be done on improving this method to enable better detection of

Fig. 7. Comparison of BarrelMiner and our method using 4CSU chain K. (A) Detected b-barrel
surface using our method (red) superimposed over PDB. (B) BarrelMiner b-barrel surface
(yellow) superimposed over PDB. (C) b-barrel surfaces (yellow) using BarrelMiner and our
method (red) superimposed over PDB. (Color figure online)

Fig. 8. b-barrel detection for simulated density maps containing no b-barrels. (A) Density map
and fitted cylinder for 1COS chain A. (B) Density map and fitted cylinder for 4R80 chain A.
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b-barrels from less than ideal density maps. Additionally, as the ray tracing portion
consumed the bulk of the computation time, optimizations to speed up the ray tracing
algorithm should be looked into in future work.

Our method was coded in C++ and all tests were performed on a desktop machine
with an Intel i7-4790k @ 4.0 GHz processor and 16 GB memory. The execution time
needed to obtain the results varied between five seconds and two minutes depending on
the number of voxels contained in the input density maps.

Acknowledgement. This work was supported by the Graduate Research Award from the
Computing and Software Systems division of University of Washington Bothell and the startup
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Abstract. Counting the occurrence frequency of each k-mer in a bio-
logical sequence is an important step in many bioinformatics applica-
tions. However, most k-mer counting algorithms rely on a given k to
produce single-length k-mers, which is inefficient for sequence analysis
for different k. Moreover, existing k-mer counters focus more on DNA
sequences and less on protein ones. In practice, the analysis of k-mers
in protein sequences can provide substantial biological insights in struc-
ture, function and evolution. To this end, an efficient algorithm, called
VLmer (Various Length k-mer mining), is proposed to mine k-mers of
various lengths termed vl-mers via inverted-index technique, which is
orders of magnitude faster than the conventional forward-index method.
Moreover, to the best of our knowledge, VLmer is the first able to mine
k-mers of various lengths in both DNA and protein sequences.

Keywords: Sequential pattern mining · K-mer counting · K-mers of
various lengths · Biological sequence analysis

1 Introduction

K-mer counting, which identifies frequent contiguous subsequences of length-k
in a sequence database, is a fundamental data-mining problem with broad appli-
cations, including genome assembly [1], error correction of sequencing reads [2],
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protein-protein interaction prediction [3], finding mutations [4], sequence classifi-
cation [5], sequence alignment [6]. Many previous studies contributed to efficient
k-mer counting, such as Tallymer [7], Jellyfish [8], BFCounter [9], KMC [10],
DSK [11], KAnalyze [12], KMC 2 [13] and KCMBT [14]. In recent years, k-
mer counting is gaining momentum and has become an active topic in sequence
analysis community.

The k-mer counting algorithms developed so far have good performance.
Unfortunately, almost all of the previous algorithms rely on a fixed k to split the
given sequence(s) and output all possible contiguous subsequences along with
their frequencies. This leads to the inefficiency during the sequence analysis
for various values of k, since a user usually have to perform the k-mer counting
algorithm many times. For example, as shown in [15,16], at least 6 sizes (17-mer,
21-mer, 25-mer, 41-mer, 55-mer and 77-mer) are selected to count the k-mers.
In addition, Kurta et al. [7] used k-mers ranging from 10 to 500 to annotate
the plant genomes, which needs to manually run the k-mer counter 491 times.
Currently, there is no method that is able to automatically generate k-mers of
various lengths.

The frequent k-mers in protein sequences are often the conserved composi-
tion patterns reflecting structural and functional features [17]. Miranda et al. [18]
deeply analyzed the sequence specificity of pentatricopeptide repeat (PPR) pro-
teins by enriched k-mers. However, previous work on k-mer counting focuses
more on DNA sequences and less on protein ones, which hinders the identifica-
tion of conserved regions in protein sequences. Consequently, a major challenge
is how to design an effective algorithm to ensure that the k-mer counter outputs
all k-mers of various lengths and meanwhile such counter is suitable for both
DNA and protein sequences.

K-mer counting has been studied extensively, yet still efficient implementa-
tions take several hours or even days on large sequence databases. The inverted
index, in computer science, is an important data structure that stores a mapping
from content to its locations in a database file. Compared to the forward index
structure, the inverted index restructures the representative format of files and
contributes to a high efficiency of information retrieval, especially on large data-
bases. Inspired by the well applications of inverted index [19], this technique can
be explored to alleviate the efficiency problem encountered by previous k-mer
counting methods.

In this paper, we propose VLmer that has four steps to efficiently mine k-
mers of various lengths (i.e., vl-mers) in both DNA and protein sequences. In
the first step, the initial biological sequences are transformed to structure like
“(vl-mer, positions)” by the inverted index technique. In the second step, VLmer
uses a pattern-growth scheme to generate the candidates of frequent vl-mers. In
the third step, a few pruning techniques are explored to prune the unpromising
vl-mers. In our experiments, we compare VLmer to ConSpan, which is a modified
version of both CCSpan [20] and ConSgen [21] algorithms that are most related
to our work, in terms of mining efficiency.
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2 Methods

2.1 Preliminaries

The term “k-mer” typically refers to the fixed-length contiguous subsequences.
Unfortunately, it’s quite difficult to pre-specify a proper length k to count k-
mers which have the promise to provide biological insights. We introduce an
alternative term “vl-mer” to extend the traditional definition of k-mer as follows.

Definition 1 (vl-mer). Given two sequences S1 = a1a2 · · · ai and S2 = b1b2 · · ·
bj, where |S1| ≤ |S2|, S1 is a vl-mer of S2 if S1 is a contiguous subsequence (i.e.,
substring) of S2.

Based on this definition, the term vl-mer refers to all the possible contiguous
subsequences (i.e., all the k-mers of various lengths) of a given sequence. Note
that, this extended definition of k-mer uses non-fixed-length instead of fixed-
length adopted in traditional definition to constraint the subsequences.

For a vl-mer s, it can be represented by a tuple (s, idx), where idx is the index
(i.e., position) of s in sequence database D. For example, assume the database D
consists of only a sequence S = CCTCCCGCCTCA, the tuple representation
of vl-mer s = CCTC is set {(CCTC, 0), (CCTC, 7)}.

Definition 2 (frequent vl-mer). Given a minimum support threshold σ, a
vl-mer s is frequent in sequence database D if SupD(s) ≥ σ.

For simplicity, we use notation vl-mer to denote frequent vl-mer if not explic-
itly stated.

We are now ready to formulate our problem. Given a sequence database D
and a support threshold σ, discover a complete set of vl-mers such that each of
which is frequent.

2.2 Inverted Projection

As we discussed earlier, the inverted index data structure is preferable to the
forward index one in terms of the speed of the query in information retrieval
domain, which motivates us to utilize such inverted index technique to transform
the input sequence for vl-mer mining. For clarity, we call inverted index data
structure inverted projection and revise the notion of it in sequence analysis
community as follows.

Definition 3 (inverted projection). Given a single sequence S as the input
sequence database D, suppose all distinct characters of S be a set I =
{i1, i2, · · · , im}. The inverted projection of S is a set R expressed in tuples,
denoted as (f,<f indexes>) such that (1) each tuple consists of a character
f (f ∈ I) and its position index(es) appearing in S, and (2) there is a one-
to-one correspondence between the f of tuple (f,<f indexes>) in R and the
element ik ∈ I, where 1 ≤ k ≤ m.
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Note that, unlike the forward index data structure, the inverted projec-
tion uses a set of (f,<f indexes>) pairs to equivalently represent the input
sequence. The element <f indexes> is a list consisting of one or more non-
negative integers, each of which corresponds to a position number of vl-mers f
in the original sequence. Table 1 shows the inverted projection of the sequence
S = CCTCCCGCCTCAGTTCGCGCCGCGCCTCGGCTTGGAACGC.
The shift of input sequence significantly reduces the number of scans of the
sequence, so as to minimize the computation cost during the mining process.

Table 1. An inverted projection of sequence S

Character Index list

C 0, 1, 3, 4, 5, 7, 8, 10, 15, 17, 19, 20, 22, 24, 25, 27, 30, 37, 39

T 2, 9, 13, 14, 26, 31, 32

G 6, 12, 16, 18, 21, 23, 28, 29, 33, 34, 38

A 11, 35, 36

2.3 Candidate Generation of vl-mers

Most k-mer counting algorithms, due to the forward index data structure, need
to split all single-length contiguous subsequences as k-mers and compute their
occurrence frequencies, rendering the counting operation to be costly. To the best
of our knowledge, instead of the forward index, an alternative but clever data
structure is the inverted projection. Therefore, we propose a pattern-growth app-
roach based on the inverted projection to generate candidates so as to efficiently
mine vl-mers. Based on this approach, each length-k candidate is easily produced
by the original sequence, frequent (k − 1)-mers and their indexes, rather than
using a n-gram model [22,23] to enumerate all the possible snippets of input
sequences.

2.4 Pruning Techniques

Upon generating a new candidate by the pattern-growth approach based on
the inverted projection, we want to immediately check whether or not it is a
distinct yet frequent vl-mer. We study some properties of frequent vl-mers in
this subsection, which underpin the design of pruning scenarios.

Definition 4 (max-suffix). Given two sequences s1 = a1a2 · · · ai and s2 =
b1b2 · · · bj, s1 is a max-suffix of s2, denoted as s1 �suf s2, if (1) |s1| � 1,
|s2| − |s1| = 1; and (2) a1 = b2, a2 = b3, · · · , ai = bj.

Theorem 1. Given a sequence s (|s| � 2), suppose s is frequent in sequence
database D, then the max-suffix of s is frequent in D.
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Proof (PROOF). Letting F be a set consisting of all subsequences of s, then each
element of F , i.e., ∀s′ ∈ F is frequent by virtue of Theorem 1 in [21]. Letting
the max-suffix of s be ssuf , then ssuf satisfies ssuf ∈ F . Thus, ssuf is frequent.
The theorem holds immediately.

Lemma 1. Given a sequence s (|s| � 2) and a sequence database D, if there
exists no frequent max-suffix of s, i.e., SupD(ssuf ) < σ holds, then s can be
safely pruned.

Proof (PROOF). The proof of the above lemma is obvious according to
Theorem 1, and thus it is omitted here.

By exploring some properties of vl-mers above, three effective pruning tech-
niques, repeated candidate pruning, max-suffix pruning, and support pruning,
are introduced to prune the unpromising vl-mers.

2.5 VLmer Algorithm

For delineating VLmer, we first introduce two data structures. First, the inverted
index data structure, namely (f,<f indexes>) is employed for storing the tem-
porary output vl-mers, where f is a vl-mer itself and f indexes represent its
indexes in original sequence database. The size of f ’s indexes indicates the fre-
quency of f . Second, the triple data structure (f, f.count,B) from [21] formalizes
the final output vl-mers, where f is also a vl-mer, f.count is the actual support
of f , and the last attribute variable “B” takes on the value “Y ” by default. The
vl-mers of F can be organized into a set {{F1}, {F2}, · · · , {Fi}} consisting of i
different partitions, each of which is a subset of vl-mers.

Algorithm 1. VLmer(S, σ)
Input: sequence S, support threshold σ

Fk−1 ← ∅; // initialize Fk−1 to store (k − 1)-mers
Fk ← ∅; // initialize Fk to store k-mers
Fsta ← ∅; // initialize Fsta to store all vl-mers
F ← ∅; // initialize F to store all patterns

1: Fk−1 ← 1-mer-gen(S, σ); // inverted projecting
2: Fsta ← sta-gen(Fk−1); // standard 1-mers
3: F ← Fsta; // add 1-mers
4: while Fk−1.count > 0 do
5: Fk ← k-mer-gen(S, Fk−1, σ); //generate k-mers
6: if Fk.count > 0 then
7: Fsta ← sta-gen(Fk); // standard k-mers
8: F ← ∪kFsta; // add standardized k-mers
9: end if

10: Fk−1 ← Fk;
11: end while
Output: F ;
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Algorithm 1 sketches VLmer that performs the frequent vl-mer mining. As
shown, two parameters include a sequence S as the input database and a sup-
port threshold σ. Global variable Fk−1 and Fk store the frequent (k − 1)-mers
and k-mers respectively. Each pattern of both Fsta and F is represented by the
inverted index structure (f,<f indexes>), while Fsta and F store vl-mers with
the triple data structure (f, f.count,B). During the mining process, Fsta is the
currently generated single-length vl-mers, and F saves all output vl-mers. Func-
tion 1-mer-gen() first produces an inverted projection by projecting the origi-
nal input sequence, and then generates the frequent 1-mers conforming to the
(f,<f indexes>) structure (line 1). Such 1-mers are transformed into the stan-
dard triple structure (f, f.count,B) (line 2), and then delivered to set F (line
3). Those generated 1-mers are viewed as frequent (k − 1)-mers to feed func-
tion k-mer-gen() for checking the longer k-mers (2-mers). For each non-empty
set Fk−1, i.e., Fk−1.count > 0 (line 4), k-mer-gen() produces a set of length-
specified frequent k-mers based on S, σ, and the generated (k −1)-mers (line 5).
Function k-mer-gen() continues its scan until the output set Fk is empty. When
a non-empty Fk is generated, each k-mer of them is transformed into the above
triple data structure and such a set Fk as a whole is added into set F (line 8).
The output of VLmer is such a pattern set F = {(f, f.count,B)|f.count ≥ σ}.
The main ideas of the above functions are detailed in Subsects. 2.2 to 2.4, and
thus we do not recount them here.

3 Results

3.1 Datasets

In our experiments, we used both DNA and protein sequences to study the
performance of the VLmer algorithm.

3.2 Effectiveness Study

Unlike previous k-mer counting algorithms, we can conveniently obtain all k-mers
of various lengths (i.e., all vl-mers) by performing VLmer algorithm only once.
Figure 1 depicts the characteristics of the vl-mers on DNA sequence AL607040.
Figure 1(a) shows the distribution of vl-mers against their length for support
thresholds (σs) varying from 2 to 6. Note that the smaller σ we choose, the more
vl-mers will be generated, which is consistent with previous k-mer counting or
sequential pattern mining. From Fig. 1(a), we can see that the number of vl-mers
equals or is close to 4l when the vl-mer-length l ≤ 5 for all test values of σ. These
vl-mers are almost the exhaustive enumeration of all possible combinations of the
four base-pares. Intuitively, such vl-mers may be impossible to reveal any bio-
logical significance and can be discarded during some sequence analysis, such as
sequence classification and TFBS identification. The peak values of the number
of vl-mers mainly locate at length 6 (σ ≥ 3) and length 7 (σ = 2), while they are
far less 46 and 47 respectively. These frequent vl-mers with enough lengths may
reflect some biological significance that has been demonstrated [24].



192 J. Zhang et al.

(a) Distribution of vl-mers (b) Maximal and mean lengths

Fig. 1. vl-mer analysis on DNA sequence AL607040.

(a) Distribution of vl-mers (b) Maximal and mean lengths

Fig. 2. vl-mer analysis on protein sequence XP 011987916.

The maximal and mean lengths of vl-mers generated by our algorithm are
also presented for varied support thresholds. From Fig. 1(b), the maximal length
of mined vl-mers increases from 20 to 91, with the support thresholds lowering
from 6 to 2. An interesting point is that when we set the support threshold as
σ = 2, the maximal length of vl-mers reaches 91. These long frequent snippets are
often the conserved regions. Figure 1(b) also shows the mean length of vl-mers
at each σ value, from which one can see that most mean lengths are consistent
with their corresponding σ positions of the curve-vertexes.

We also use protein sequence XP 011987916 as the test dataset, to report the
characters of mined vl-mers. Figure 2(a) shows the distribution of vl-mer with
varied support thresholds. Except for the snippets of σ = 2, all protein vl-mers
are relatively short at 16 and below, while the lengths of DNA vl-mers as shown
in Fig. 1(a) are far greater than 18. It is easy to see that most protein vl-mers fall
in the spectrum of 3-mers to 6-mers while DNA vl-mers at the range of 6-mers to
10-mers. Like the trend in Fig. 1(b), when the support threshold tends towards
a low value, for example, at σ = 2 as shown in Fig. 2(b), the length of protein
vl-mers increases dramatically.
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3.3 Efficiency Study

We assessed VLmer efficiency in both runtime and memory usage for the two real
datasets in terms of the support threshold. We compare our approach with Con-
Span, which is a modified version of both CCSpan [20] and ConSgen [21] algo-
rithms that are most related to our work. Figure 3(a) presents the running time of
the two algorithms at different support thresholds on dataset AL607040. The exe-
cution time of ConSpan increases from 52.02 to 356.85 s, while VLmer only takes
from 1.26 to 11.15 s. At a low support (σ = 2), VLmer can be 32 times faster than
ConSpan. When we raise the σ, for example, at σ = 6, our algorithm obtain a
better performance that reaches 41 times compared to ConSpan.

Figure 3(b) shows the comparison of the memory consumption between the
two algorithms on DNA dataset AL607040 shared with the above experiments.
In most cases, VLmer and ConSpan have very similar performance in memory
usage, while our algorithm requires a smaller memory space in comparison with
ConSpan when the σ value is lowered to 2.

(a) Runtime (b) Memory usage

Fig. 3. Runtime and memory usage comparison on DNA sequence AL607040.

(a) Runtime (b) Memory usage

Fig. 4. Runtime and memory usage comparison on protein sequence XP 011987916.
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We also compare the running time and memory consumption between VLmer
and ConSpan on protein sequence XP 011987916. In Fig. 4(a), the execution time
of the two algorithms is illustrated. One can see that, the time consumption of
ConSpan ranges from 52.02 (σ = 6) to 356.85 (σ = 2) s, while VLmer only from
1.03 to 6.63 s. Obviously, VLmer is significantly faster than ConSpan. As shown
in Fig. 4(b), the two algorithms occupy a similar memory space.

From the above efficiency study, we conclude that VLmer has better overall
performance for both DNA and protein sequences compared to ConSpan.

4 Conclusion

In this paper, we introduced the problem of mining k-mers of various lengths,
i.e., vl-mers, in biological sequences. We presented a novel algorithm, VLmer,
which efficiently mines all distinct vl-mers. VLmer first utilizes the inverted
index technique to project the original sequences. Then, a pattern-growth app-
roach is adopted to generate potential vl-mers, each of which accurately records
their occurrence positions in the original sequences. Three pruning techniques,
i.e., repeated candidate pruning, max-suffix pruning, and support pruning, are
explored to remove the unpromising candidate vl-mers. All possible vl-mers
are generated by running VLmer only once. We used both DNA and protein
sequences to evaluate the the performance of VLmer. Our experimental results
demonstrated that VLmer is able to analyze both DNA and protein sequences.
In the future, we plan to study how to push gap constraint into VLmer in order
to mine conserved patterns.
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Abstract. Accurate gene tree-species tree reconciliation is fundamental
to understanding evolutionary processes across species. However, within
eukaryotes, the most popular algorithms consider only a restricted set
of evolutionary events, typically modeling only duplications and losses
or only coalescences. Recent work has unified duplications, losses, and
coalescences through an intermediate locus tree; however, the associated
reconciliation algorithms assume that the gene tree is known and do not
account for gene tree reconstruction error. Here, we demonstrate that
independent reconstruction of the gene tree followed by reconciliation
substantially degrades accuracy compared to using the true gene tree.
To address this challenge, we present DLC-Coestimation, a Bayesian
method that simultaneously reconstructs the gene tree and reconciles
it with the species tree. We have applied our method on two clades of
flies and fungi and demonstrate that it outperforms existing approaches
in ortholog, duplication, and loss inference. This work demonstrates the
utility of coestimation methods for inferences under joint phylogenetic
and population genomic models.

Keywords: Phylogenetics · Reconciliation · Coalescence · Incomplete
lineage sorting · Gene duplication and loss

1 Introduction

Phylogenetic tree reconciliation is fundamental to understanding how genes have
evolved within and between species. For a gene family, or a set of genes with
detectable common ancestry, the reconciliation problem takes as input two trees: a
gene tree that depicts the evolutionary relationships among genes within the gene
family, and a species tree that depicts the evolutionary relationships among a set
of species. We can think of a gene tree as evolving “inside” a species tree, with the
reconciliation between a gene tree and a species tree explaining this nesting and
postulating evolutionary events to account for any observed incongruence.
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For eukaryotic species, the two most popular reconciliation methods allow
for only gene duplication and loss (which we refer to as duplication-loss mod-
els; Fig. 1A; [1–9]) or only coalescence (which we refer to as coalescent models;
Fig. 1B; [10–18]). While duplication-loss models can address paralogous families,
they assume that incomplete lineage sorting, in which polymorphisms survive
several rapid speciations then eventually fix or go extinct in a pattern incon-
gruent with the species tree, is negligible. In contrast, while coalescent models
can address such population-related effects, they assume only orthologous genes.
Thus, each class of models provides only a partial view of gene family evolution.

Fig. 1. Different views of gene trees and species trees. (A) In the duplication-loss
model, incongruence between the gene tree (black) and species tree (blue) indicates the
presence of gene duplications (yellow star) and gene losses (red ×). (B) In a multispecies
coalescent model, incongruence between the gene tree and species tree indicates the
presence of incomplete lineage sorting (ILS). (Color figure online) [This figure and
caption are adapted with permission from Wu et al. [19] and Rasmussen and Kellis [20].]

Recently, Rasmussen and Kellis [20] presented a generative model, DLCoal,
for studying duplications, losses, and coalescence and how they interact with one
another. In addition to the gene tree and species tree, this model postulated an
intermediate locus tree that describes how new loci are created and destroyed.
Given an input gene tree and species tree, the corresponding algorithm DLCoal-
Recon estimates the maximum a posteriori reconciliation. More recently, Wu et
al. [19] introduced the labeled coalescent tree (LCT), which describes the species
tree, locus tree, gene tree, and the reconciliations between them in a single struc-
ture. The associated reconciliation algorithm DLCpar infers a most parsimonious
LCT, that is, one that minimizes the total cost of inferred duplications, losses,
and deep coalescence. Both DLCoalRecon and DLCpar showed improved accu-
racy for inferring evolutionary events compared to duplication-loss methods. And
by allowing for paralogs, they were more applicable than coalescent methods.

However, both DLCoalRecon and DLCpar assume that the gene tree and
species tree are known and do not account for reconstruction error. In practice,
both trees must be estimated, and any reconstruction error is propagated into
the reconciliation problem. Gene tree reconstruction is particularly susceptible
to error as, unlike species tree reconstruction methods, it cannot benefit from
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the use of well-behaved gene families or multigene phylogeny methods [21,22].
For duplication-loss models, gene tree reconstruction error has been shown to
decrease the accuracy of inferred events [7], motivating several approaches for
mitigating error. One class of methods relies on Bayesian inference to simul-
taneously reconstruct the gene tree topology and its reconciliation with the
species tree [3,9]. Another class of methods relies on gene tree error correc-
tion; that is, they consider local rearrangements of an initial gene tree to find
an error-corrected gene tree with minimum reconciliation cost [4,23,24]. But so
far, gene tree reconstruction error has not been considered under a duplication-
loss-coalescence model.

To address this shortcoming, we consider evolution under this unified model
in which we assume the species tree is fixed and known but allow for errors in
the gene tree. We present DLC-Coestimation, a Bayesian method that seeks the
maximum a posteriori estimate of the gene tree and its reconciliation with the
species tree. Finally, we apply DLC-Coestimation to simulated data set of 12 flies
and biological data set of 16 fungi and demonstrate its improved performance
compared to existing DLC-reconciliation methods. The DLC-Coestimation soft-
ware is freely available for download at https://www.cs.hmc.edu/∼yjw/software/
dlc-coestimation.

2 Methods

2.1 Unified Model of Gene Family Evolution

In this section, we review the DLCoal model that unifies the duplication-loss
and coalescence models for gene family evolution (Fig. 2; [20]). We then extend
it to incorporate sequence evolution. The DLCoal model makes the following
assumptions:

1. Any incongruence between the gene tree and species tree topologies can be
explained through duplication, loss, and coalescence. Each duplication creates
a unique new locus that is unlinked with the original locus, allowing coales-
cence within the original and new loci to occur independently, and there is
no gene conversion between duplicated loci.

2. Duplication and loss events do not fix differently in descendant species; that
is, they do not undergo hemiplasy [25]. Equivalently, all duplications and
losses either always go extinct or fix in all descendant lineages, allowing us to
separate the duplication-loss process from the coalescent process.

3. Each extant species is represented by a single haploid sample; that is, within
each gene family, multiple genes from the same extant species are sampled
from multiple loci in a single individual as opposed to being sampled from
the same locus across multiple individuals.

Assumption 1 is applicable to evolution within eukaryotic species, and assump-
tion 2 was shown to affect only a small number of gene trees in simulation with
biologically realistic parameters [20]. We are currently investigating a relaxation
of assumption 3 in a separate work.

https://www.cs.hmc.edu/~yjw/software/dlc-coestimation
https://www.cs.hmc.edu/~yjw/software/dlc-coestimation
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Fig. 2. Generative process. Given a species tree S with known topology and divergence
times, a top-down duplication-loss process generates a locus tree TL. The locus tree
contains duplication nodes (star) and daughter nodes δL. From the locus tree, a bottom-
up coalescent process generates a gene tree TG. Mappings between the trees represented
by RG and RL indicate how one tree “fits inside” the other. From the gene tree,
sequences evolve to generate an alignment A. [Parts of this figure and caption are
adapted with permission from Rasmussen and Kellis [20].]

In addition to the usual gene tree and species tree, the DLCoal model intro-
duces a third kind of tree, the locus tree. Whereas the gene tree represents how
gene lineages evolve over time, the locus tree represents how loci are created
and destroyed. In brief, the locus tree evolves within the species tree according
to the duplication-loss model, and the gene tree evolves within the locus tree
according to a modified multispecies coalescent model known as the multilocus
coalescent model. We now describe the technical details of the generative process
that relates these three trees. Parts of the next three paragraphs are reproduced
verbatim, with permission, from Rasmussen and Kellis [20].

We start with a species tree with topology S and branch lengths tS expressed
in units of time (generations). The topology S is rooted, full, and binary with a
set V (S) of nodes and a set E(S) of directed branches (u, v). For node v ∈ V (S),
we let p(v) denote its parent and e(v) denote the branch (p(v), v). We assume
that the effective population sizes N are given, and we let N(v) represent the
constant population size for branch e(v).

The locus tree is generated by a top-down birth-death process within the
species tree [3,9,20,26,27]. We assume a constant rate of gene duplication λ and
gene loss μ expressed in events/gene/generation. The locus tree has topology TL

and branch lengths tL expressed in units of time (generations). The birth-death
process also generates an associated reconciliation RL that maps each node in
TL to a node (in the case of speciation) or a branch (in the case of duplication)
in the species tree S. For simplicity, we often consider RL as a node-to-node
mapping in which, for v ∈ V (TL) and u ∈ V (S), RL(v) = e(u) is equivalent to
RL(v) = u. For each duplication node, one of the children is randomly selected
to evolve in the new locus; the set of such daughter nodes is denoted δL. We
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define the population sizes NL for the locus tree using the population sizes of
the species tree, that is, for v ∈ V (TL), NL(v) = N(RL(v)). As a postprocessing
step, we prune all doomed lineages, that is, lineages with no extant descendants.

Next, the gene tree is generated bottom-up within the locus tree according
to a multilocus coalescent process, which is similar to a multispecies coalescent
process except that the gene tree evolves within the locus tree rather than the
species tree, and further, complete coalescence is required at each daughter edge
of the locus tree (that is, only one gene lineage is present at the top of each edge
leading to a daughter node). The gene tree has topology TG and divergence times
tG expressed in units of time (generations). The multilocus coalescent process
also generates an associated reconciliation RG that maps each node in TG to a
branch in the locus tree TL.

Finally, in addition to the three-tree model, we introduce a fourth object, the
alignment data A, which evolves along the gene tree according to a substitution
model (e.g. JC [28], HKY [29], GTR [30]). For simplicity, we consider only a
substitution rate of μs in substitutions/site/generation here though our model
allows for more complexity.

2.2 Coestimation of Gene Trees and Reconciliations

Along with this unified model, Rasmussen and Kellis [20] developed the recon-
ciliation algorithm DLCoalRecon that, given a gene tree topology TG, a species
tree topology S, and model parameters θ = (tS , N, λ, μ), infers the maximum
a posteriori reconciliation between the gene tree and species tree as captured
by the three-tree reconciliation structure R = (TL, RG, RL, δL). DLCoalRecon
assumed that the gene tree topology was previously inferred from a sequence
alignment A using existing phylogenetic methods.

In contrast, we now describe our DLC-Coestimation algorithm for simultane-
ously estimating the gene tree topology and reconciliation. Our algorithm takes
as input a sequence alignment A, a species tree topology S, and model parame-
ters θ = (tS , N, λ, μ, μs). Our goal is to infer the maximum a posteriori gene
tree topology TG and reconciliation R = (TL, RG, RL, δL):

T̂G, R̂ = argmax
TG,R

P (TG,R|A,S, θ) (1)

As a reminder, TL is the locus tree topology, RG the reconciliation between the
gene tree and the locus tree, RL the reconciliation between the locus tree and
the species tree, and δL the set of daughter nodes.

Because the alignment A is given, maximizing the above posterior prob-
ability is equivalent to maximizing the joint probability P (TG,R, A|S, θ) =
P (TG, TL, RG, RL, δL, A|S, θ). Next, we introduce the gene tree and locus tree
branch lengths tG and tL and take into account conditional independencies to
separate the variables for the locus tree, gene tree, and alignment (Supplemental
Sect. S1):
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P (TG,R, A|S, θ) =
∫∫

P (TL, tL, RL, δL|S, θS)

× P (TG, RG, tG|TL, tL, δL,NL)

× P (A|TG, tG, μs) dtG dtL

(2)

That is, we approach our optimization problem using Bayesian inference, in
which we decompose the joint probability into a prior and a likelihood. Our
model prior is further factored into two terms: the reconciled locus tree prior
and the reconciled gene tree prior. Thus, each term of (2) corresponds to one
component of the generative evolutionary process presented in Sect. 2.1:

– P (TL, tL, RL, δL|S, θS), where θS = (tS , N, λ, μ), captures the duplication-
loss process that generates the locus tree from the species tree. We decompose
this probability using the factorization of Rasmussen and Kellis [20] into

P (δL|TL, RL, S) × P (TL, RL|S, θS) × P (tL|TL, RL, S, θS). (3)

The first term P (δL|TL, RL, S) captures the fact that there are two ways to
choose a daughter node for each duplication in the locus tree. The second
term P (TL, RL|S, θS) captures the process of generating a reconciled locus
tree topology from the species tree, and the third term P (tL|TL, RL, S, θS)
captures the distribution of locus tree branch lengths. Each of these terms
has been previously derived (see [3,9,20,31,32]).

– P (TG, RG, tG|TL, tL, δL,NL) captures the multilocus coalescent process that
generates the gene tree from the locus tree. We decompose this into

P (TG, RG|TL, tL, δL,NL) × P (tG|TG, RG, TL, tL,NL). (4)

Similar to above, the first term P (TG, RG|TL, tL, δL,NL) captures the
process of generating a reconciled gene tree topology from the locus tree and
has been previously derived [20]. The second term P (tG|TG, RG, TL, tL,NL)
captures the distribution of gene tree branch lengths and is derived in Sup-
plemental Sect. S2.

– P (A|TG, tG, μs) captures the process that generates the sequence alignment
from the gene tree. This probability is the likelihood under a specific sub-
stitution model and can be computed efficiently using Felsenstein’s prun-
ing algorithm [33]. We compute this term using the Phylogenetic Likelihood
Library [34].

2.3 Efficient Implementation

Putting the above components together, we factor (2) into

P (TG,R, A|S, θ) =
∫∫

P (δL|TL, RL, S) × P (TL, RL|S, θS)

× P (TG, RG|TL, tL, RL, δL,NL) × P (A|TG, tG, μs)

× P (tG|TG, RG, TL, tL,NL)

× P (tL|TL, RL, S, θS) dtG dtL.
(5)
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We perform the integration using the Monte Carlo method by sampling from
P (tG|TG, RG, TL, tL,NL) and P (tL|TL, RL, S, θS). We sample over tG as
described in Supplemental Sect. S2, and and we sample over tL as described
in Arvestad et al. [3] and Rasmussen and Kellis [9].

Using (5), we can compute the probability of any proposed gene tree topol-
ogy TG and reconciliation R = (TL, RG, RL, δL). To estimate the maximum a
posteriori TG and R, we heuristically search over the space of possible solutions
using an iterative hill-climbing approach. We initialize our search similarly to
DLCoalRecon, with an initial gene tree topology TG obtained using any exist-
ing phylogenetic method and a reconciliation R that has locus tree topology TL

congruent with the gene tree TG, mappings RG and RL that are Last Common
Ancestor (LCA) mappings [2], and, if needed, randomly chosen daughter nodes
δL. Next, we iteratively improve the locus tree and gene tree components. That
is, we fix the gene tree components and optimize for the locus tree components;
then, we fix the locus tree components and optimize for the gene tree compo-
nents. We repeat this process for a user-specified number of iterations, and our
algorithm outputs the proposed gene tree and reconciliation with the highest
posterior probability.

When optimizing for the locus tree components, we fix the gene tree topology
TG and search for the reconciliation R that maximizes P (TG,R, A|S, θ). Since
TG is fixed, this problem reduces to the three-tree model of Rasmussen and
Kellis [20], in which we maximize P (R|TG, S, θ), and can be solved using the
associated DLCoalRecon algorithm.

When optimizing for the gene tree components, we fix the locus tree topology
TL, the locus tree-species tree reconciliation RL, and daughter nodes δL and
search for the gene tree topology TG and the gene tree-locus tree reconciliation
RG that maximize the joint probability

∫∫
P (TG, RG|TL, tL, RL, δL,NL) × P (A|TG, tG, μs)

× P (tG|TG, RG, TL, tL,NL) × P (tL|TL, RL, S, θS) dtG dtL.

(6)

By comparing (6) with (5), we see that P (δL|TL, RL, S) and P (TL, RL|S, θS) are
not needed because we have fixed TL, RL, and δL. To maximize this probability,
we search over the space of possible TG and RG, again using a hill-climbing
approach. For each proposal, we either propose a new gene tree topology TG

using subtree pruning and regrafting (SPR) or propose a new reconciliation RG

by rearranging the mapping [35]. Finally, we use the standard approach of log
probabilities to prevent underflow in our calculations and additionally allow for a
regularization parameter β (default β = 0.01) to weight the relative contributions
of the prior and likelihood. Specifically, when optimizing (6), we evaluate the
expected value of log(P (TG, RG|TL, tL, RL, δL,NL)) + β log(P (A|TG, tG, μs))
using the Monte Carlo method over tG and tL.
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3 Results

3.1 Simulated Data Set of 12 Flies

We applied our algorithm to a simulated 12 Drosophila data set that has been
previously used to evaluate DLC-reconciliation algorithms [19,20]. This data set
used the species tree (Supplemental Fig. S1A) of the Drosophila 12 Genomes
Consortium [36] with estimated divergence times [37], gene duplication and loss
rates of 0.0012 events/gene/million years [38], a generation time of 10 gener-
ations/yr [39,40], and effective population sizes of 1–100 million individuals.
While Drosophila melanogaster is estimated to have an effective population size
of ∼1.15 million [41], the data set includes a wide range of population sizes to
induce various levels of incongruence. For each population size, 500 gene trees
were simulated.

To introduce gene tree error, for each gene tree, we simulated alignments of
1000 nucleotides under a HKY model [29] with a substitution rate of 5 × 10−9

substitutions/site/generation [42,43] and using seq-gen [44]. We then recon-
structed gene trees using RAxML [45] and TreeFix [24] and either reconciled
gene trees with the species tree using DLCoalRecon [20] and DLCpar [19], or
using DLC-Coestimation with the different reconstructed trees as initial esti-
mates (Fig. 3).

We find that reconciling reconstructed gene trees instead of true gene trees
substantially degrades performance. For example, for an effective population size
of 25 million, our 500 simulated gene trees contain 232 duplications, 216 losses,
and 33, 182 pairs of orthologous genes. DLCoalRecon applied to true (simulated)
gene trees yields similar numbers of events and orthologs at high sensitivity and
precision, with 242 duplications (90.5% sensitivity, 86.8% precision), 216 losses
(98.6%, 98.6%), 33, 285 ortholog pairs (99.7%, 99.4%), and 96.0% locus tree topo-
logical accuracy. In contrast, DLCoalRecon applied to reconstructed (TreeFix)
gene trees yields decreased metrics across every dimension, with 239 duplications
(69.0%, 66.9%), 339 losses (98.1%, 62.5%), 32, 298 ortholog pairs (96.8%, 99.4%),
and 90.8% topological accuracy. Though impressively, DLCoalRecon is able to
achieve these metrics despite poor gene tree topological accuracy (8.8%), and
performance across these metrics does not decrease substantially even as gene
tree reconstruction degrades with population size. While DLCpar outperforms
DLCoalRecon for both true and reconstructed gene trees, the performance gap
between reconciliations on true and reconstructed gene trees remains.

By simultaneously reconstructing and reconciling gene trees, DLC-
Coestimation improves over existing DLC-reconciliation methods. For exam-
ple, for the same data set above, DLC-Coestimation slightly increases gene tree
topological accuracy (10.2%). More impressively, across other metrics, its per-
formance exceeds DLCoalRecon and either exceeds or is comparable to DLCpar,
with 237 duplications (77.6%, 75.9%), 231 losses (98.1%, 91.8%), 33, 029 ortholog
pairs (98.8%, 99.3%), and 93.2% locus tree topological accuracy.

While DLC-Coestimation outperforms DLCoalRecon for every population
size, it underperforms DLCpar for small populations and outperforms DLCpar
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Fig. 3. Evaluation on a simulated fly data set. DLC-Coestimation was used to recon-
struct and reconcile gene trees given simulated alignments and initialized with recon-
structed (TreeFix) gene trees. DLCpar and DLCoalRecon were also used to recon-
cile reconstructed gene trees. DLC-Coestimation improves over DLCoalRecon in both
(A, B) the accuracy of reconstructed gene tree and locus tree topologies and (C, D) the
precision of inferred duplications and losses. DLC-Coestimation performance against
DLCpar varies with population size. For comparison, DLCpar and DLCoalRecon were
also used to reconcile simulated (true) gene trees. Note that, to highlight differences
between programs, y-axes for these plots may not start at 0. Additional results can be
found in Supplemental Fig. S2. [Simulated data sets and True+DLCoalRecon results
are from Rasmussen and Kellis [20]. True+DLCpar results are from Wu et al. [19].]

for large populations. As the population size increases with a constant generation
time, ILS rate increases. So our finding suggests that DLC-Coestimation is better
able to handle data sets with low phylogenetic signal, a type of data set that
will become increasingly prevalent as we sequence denser clades. DLCpar relies
on a parsimony framework, so its performance may increase with different event
costs. However, choosing appropriate event costs remains a challenge.

For increased ILS rates, DLC-Coestimation is more robust than DLCoal-
Recon to gene tree reconstruction errors (Supplemental Fig. S2). For example,
for the same data set above, DLCoalRecon applied to RAxML trees yields 574
duplications (25.4%, 10.3%), 3425 losses (65.7%, 4.1%), 19, 407 ortholog pairs
(57.9%, 99.0%), and 22.0% locus tree topological accuracy. (DLCpar is NP-
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hard [46], so we did not apply it to RAxML trees as the amount of incongruence
between RAxML gene trees and the known species tree makes the algorithm
too inefficient.) In contrast, DLC-Coestimation initialized with the same gene
trees yields 232 duplications (67.7%, 67.7%), 254 losses (96.3%, 81.9%), 32, 798
ortholog pairs (97.8%, 99.0%), and 90.2% topological accuracy. That is, despite
starting from a worse initial gene tree estimate, DLC-Coestimation performs
comparably to DLCoalRecon applied to better TreeFix gene trees.

DLC-Coestimation errors could be attributed either to a limit in the power
of our model to identify the correct reconciliation or to limitations in our
present implementation of a heuristic search strategy. However, while we find
that increasing the number of searches increases performance for a population
of 25 million, it has minimal effect on performance for a population of 1 million.
This finding suggests that better search heuristics could lead to performance
increases in some cases but also that our model may not always be able to
identify the correct reconciliation.

3.2 Biological Data Set of 16 Fungi

We also assessed the performance of DLC-Coestimation on a biological data set
of 5351 gene trees across 16 fungal genomes (Supplemental Fig. S1B; [47]). This
data set has been used extensively by ourselves and others to evaluate several
phylogenetic algorithms [9,19,20,24,48].

For this comparison, we ran DLC-Coestimation using parameters previously
estimated for DLCoalRecon and a substitution rate of 3.3 × 10−10 substitu-
tions/site/generation [49]. Additionally, as we have previously found that DLC-
reconciliation methods outperform non-ILS-aware methods, we focus here on
comparing DLC-Coestimation to DLCpar and DLCoalRecon. As the truth is
not known for real data, we used several informative metrics to assess the qual-
ity of our inferences (Table 1, Supplemental Table S1).

Table 1. Evaluation on a real fungal data set.

Programa % orthsb # orthsc # dupsc # lossesc DCSd

DLC-coestimation 99.1 583,943 4,375 4,992 0.944

DLCpar 99.1 590,113 4,535 5,535 0.899

DLCoalRecon 99.0 583,490 4,472 5,378 0.927
aDLC-reconciliation methods were applied to reconstructed TreeFix trees. Additional
results can be found in Supplemental Table S1. [DLCpar and DLCoalRecon results are
from Wu et al. [19].]
bPercentage of 183,374 syntenic orthologs recovered.
cNumber of pairwise orthologs, duplications, and losses inferred across all gene trees.
dAverage duplication consistency score. Scores range from 0 to 1, with a higher score
indicating more consistent duplications.

Our first metric assesses the ability to recover syntenic orthologs (one-to-one
homologs with conserved gene order that are highly likely to be orthologous).
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We find that all DLC-reconciliation programs recover a similar percentage of
syntenic orthologs (99.0–99.1%) and infer similar number of orthologs (0.1–1.1%
difference).

Our second metric evaluates the total number of inferred duplications and
losses. We find that DLC-Coestimation infers substantially fewer duplications
(2.2–3.6% difference) and losses (7.8–10.8%) than DLCpar and DLCoalRecon,
suggesting that DLC-Coestimation is better able to remove spurious duplication
and loss events that result from ILS.

Our third metric considers the duplication consistency score [50], which mea-
sures the plausibility of inferred duplications. For each duplication node, this
score computes the percentage of species overlap in the two child subtrees; the
assumption is that erroneous duplications are often followed by compensating
losses and therefore yield a low score. We find that DLC-Coestimation slightly
outperforms DLCpar and DLCoalRecon, with a higher average score and a con-
sistently higher score distribution (Supplemental Fig. S3).

4 Discussion

In this work, we have presented a new method DLC-Coestimation for simul-
taneously reconstructing and reconciling gene trees under a duplication-loss-
coalescent-model. Our analysis shows that DLC-Coestimation yields improved
inferences compared to applying existing DLC-reconciliation methods on gene
trees reconstructed with popular and top-performing methods.

We envision several possible future improvements to DLC-Coestimation. One
limitation of our approach is that it currently performs substantially slower than
independent reconstruction and reconciliation (Supplemental Table S2). There-
fore, we might reasonably question whether the increased accuracy of DLC-
Coestimation is worth the additional computational effort. However, we note
that because DLCpar relies on an exhaustive search over the space of reconcil-
iations, it is NP-hard and in particular does not scale well as gene tree-species
tree incongruence increases. In contrast, though DLC-Coestimation relies on a
heuristic search, its hill-climbing approach is guaranteed to complete, and our
experiments demonstrate that the search often finds an accurate solution in
practice. Additionally, we have not implemented many optimizations so far; for
example, although we use optimized libraries, computing the sequence likelihood
is orders of magnitude slower than computing the gene tree and locus tree topol-
ogy prior. As our heuristic search makes local rearrangements to the gene tree,
locus tree, and reconciliations between these and the species tree, we should be
able to reuse many of our computations between proposals.

Furthermore, we have yet to investigate the effect of our regularization hyper-
parameter that trades-off sequence likelihood with the topology prior. While we
believe that hyperparameter tuning could further improve performance, one chal-
lenge is that properly selecting a hyperparameter would require several manually-
curated gene trees for validation. Alternatively, we are currently investigating
whether a hyperparameter exists that works well across a range of data sets.
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In our study, we have also made several assumptions, for example, that model
parameters can be estimated accurately by other methods. While in most cases
these existing methods [15,51] would suffice, another research direction would be
to simultaneously optimize model parameters along with the gene tree and rec-
onciliation. There has also been recent work on jointly inferring species trees and
gene trees [52] and gene trees and sequence alignments [53] under the duplication-
loss-only model, indicating that incorporating further coestimation may be pos-
sible under the duplication-loss-coalescence model.
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Abstract. Genome rearrangement is known as one of the main evolu-
tionary mechanisms on the genomic level. Phylogenetic analysis based
on rearrangement played a crucial role in biological research in the past
decades, especially with the increasing availability of fully sequenced
genomes. In general, phylogenetic analysis tries to solve two problems:
Small Parsimony Problem (SPP) and Big Parsimony Problem (BPP).
Maximum parsimony is a popular approach for SPP and BPP which
relies on iteratively solving a NP hard problem, the median problem.
As a result, current median solvers and phylogenetic inference methods
based on the median problem all face serious problems on scalability and
cannot be applied to datasets with large and distant genomes.

In this paper, we propose a new median solver for gene order data
that combines double-cut-and-join sorting with the Simulated Anneal-
ing algorithm (SAMedian). Based on the median solver, we built a new
phylogenetic inference method to solve both SPP and BPP problems.
Our experimental results show that the new median solver presents an
excellent performance on simulated datasets and the phylogenetic infer-
ence tool built based on the new median solver has a better performance
than other existing methods.

Keywords: Simulated annealing · Phylogenetic inference · Median
problem · Small phylogeny problem · Big phylogeny problem

1 Introduction

A genome is used to represent the complete set of DNA (genes) in an organ-
ism. Different features and characteristics from genes have been used to recon-
struct phylogenetic trees and ancestral genomes, including gene sequence, copy
number [1] and rearrangement events [2–5]. The most common rearrangement
events include reversal, fission, fusion, transposition, and translocation. Sankoff
and Blanchette [6] proposed the first algorithm to reconstruct phylogeny from
genome rearrangement events. Since then, genome rearrangement analysis is
widely used by biologists, mathematicians, and computer scientists. Various
methods [7] have been developed to reconstruct phylogenetic trees and ances-
tral genomes from gene order, including parsimony-based methods such as
c© Springer International Publishing AG 2017
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GRAPPA [8] and GASTS [9], as well as likelihood-based methods such as
MLGO [10]. The core of most existing methods is to solve the median problem,
which is defined as given three genomes, find the median genome (ancestor) that
minimizes the sum of distances from the median to the three given genomes.
Yancopoulos et al. [11] proposed a simplified model which uses the universal
double-cut-and-join (DCJ) operation to account for all rearrangement events and
the median problem can be seen as DCJ median problem. Later, several methods
are proposed to solve the DCJ median problem. Among these parsimony-based
methods, the ASMedian [12] tool outperforms all others. ASMedian iteratively
searches Adequate Subgraphs and decomposes the median problem into smaller
sub-problems. This method dramatically reduces the solution space and is very
efficient when the genomes are closely related. However, it becomes quite slow
when the genomes are distant. Given the number of genes as N and the average
number of events is r, ASMedian becomes extremely time consuming and the
accuracy rate drops significantly when the ratio r/N is over 0.5.

In this paper, we propose a method using simulated annealing algorithm
(SAMedian) to solve the median problem based on DCJ-sorting between two
genomes. We build a new phylogenetic inference method (SA GRAPPA) by
introducing our median solver into GRAPPA. Experimental results show that
our phylogenetic reconstruction method produces a more accurate result than
existing tools especially when the input data are large and distant.

2 Background

2.1 Genome Rearrangements

Given a set of n genes {1, 2, · · · , n}, a genome can be represented by these genes
following an order. To state the strandedness of genes, each gene is assigned
with an orientation that is either positive, written i, or negative, written −i.
Two genes i and j are said to be adjacent in genome G if i is immediately
followed by j, or, equivalently, −j is immediately followed by −i.

Define the head of a gene i by ih and its tail by it. We refer +i as an indication
of direction from head to tail (ih → it) and otherwise −i as (it → ih). There
are a total of four scenarios for two consecutive genes a and b in forming an
adjacency : {at, bt}, {ah, bt}, {at, bh}, and {ah, bh}. If gene c is at the first or last
place of a linear chromosome, then we have a corresponding singleton set, {ct}
or {ch}, called a telomere.

Assign G as a genome with signed ordering {g1, g2, · · · , gn}, an inversion
between indices i and j (i ≤ j) of produces a new genome with linear ordering

g1, g2, · · · , gi−1,−gj ,−gj−1, · · · ,−gi, gj+1, · · · , gn

There are additional operations for multi-chromosomal genomes, such as translo-
cation (one end segment in one chromosome is exchanged with one end segment
in the other chromosome), fission (one chromosome splits and becomes two),
and fusion (two chromosomes combine to become one).
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Genome graph is consisted of vertices and edges to represent a genome. The
vertices are the telomeres and adjacencies while the edges are the connection
between gene tail and head. Figure 1 gives a detailed example.

Fig. 1. Genome graph for
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2.2 Adjacency Graph and DCJ Distance

The DCJ operation has been widely used because of its mathematical simplicity
and robustness in practice. The DCJ operation acts on two vertices u and v of
a graph by cutting two vertices and rejoining four ends in a new way. There are
three ways for the DCJ operation:

– If both u = {p, q} and v = {r, s} are internal vertices, they could be replaced
by the two vertices {p, r} and {q, s} or by two vertices {p, s} and {r, q}.

– If u = {p, q} is internal and v = {r} is external, they could be replaced by
{p, r} and {q} or by {q, r} and {p}.

– If both u = {q} and v = {r} are external, they could be replaced by {q, r}.
An inverse case, a single internal vertex {q, r} it also can be replaced by two
external vertices {q} and v = {r}.

Lemma 1. Applying a single DCJ operation changes the number of circular or
linear components by at most one.

Given two genomes A and B, the DCJ sorting is to find the shortest sequence of
DCJ operations that transform A into B. The length of such sequence is called
the DCJ distance between A and B, denoted by dDCJ (A,B).

The adjacency graphAG(A,B) is a bipartite multi-graph whose set of vertices
are the adjacencies and telomeres of A and B. For each u ε A and v ε B there are
| u ∩ v | edges between u and v. Let A and B be the two genomes defined on the
same set of N genes, which we also call equal content, then we have

dDCJ(A,B) = N − (C + I/2)

where C is the number of cycles and I is the number of odd paths in AG(A,
B). The application of a single DCJ operation changes the number of odd paths
in the adjacency graph by −2, 0, 2. and the number of the circle in adjacency
graph by −1, 0, 1.
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2.3 The Median Problem

Given three genomes (leaves) G1, G2, G3 and a genome M, the median score is
defined as d(G1,M) + d(G2,M) + d(G3,M), where d(Gi,M) represents the DCJ
distance from Gi to M. The DCJ Median Problem is to find the median genome
which has the minimum median score (sum of the distances from the median
to the three given genomes). Two of the best median solvers are ASMedian [12]
and GAMedian [13]). ASMedian becomes really slow when the genomes are
large and distant and also tends to severely underestimate the true number of
evolutionary events. GAMedian combines genetic algorithm (GA) with genomic
sorting to solve the DCJ median problem in a limited time and space. Since the
GA method needs to generate a large population during each generation, it is
too slow to converge for distant genomes, despite its great accuracy.

2.4 Simulated Annealing

The primitive idea of SA comes from Metropolis et al. [14]. He proposed the
algorithm to simulate the cooling of material in a heat bath, which is known as
annealing. If we heat a solid up to a melting point and then cool it, the cooling
rate would determine the structural properties of the solid. Metropolis’s algo-
rithm simulates the cooling process by gradually lowering the temperature of the
system until it converges to a steady state. In 1982, Kirkpatrick et al. [15,16]
applied Metropolis’s algorithm to solve the optimization problems. Finding an
optimal solution for certain optimization problems could be an incredibly dif-
ficult task for the reason that when a problem gets sufficiently large we need
to search through an enormous number of possible solutions to find the opti-
mal one. Simulated annealing works greatly in searching for feasible solutions
and converges to an optimal solution. It is now viewed as a generic probabilis-
tic metaheuristic for the global optimization problem. Applying the Simulated
Annealing algorithm to solve the DCJ median problem needs to overcome some
major obstacles: obtaining the initial state and the neighbor state, selecting the
best-fit approach of cooling schedule, inducing an acceptance function that the
system can avoid falling into local optimal.

3 Methods

In this section, we present our SA-based algorithm for the median problem.
Our algorithm design contains four phases. (1) we start our SA system with an
initial state and temperature: the initial state is generated by DCJ sorting and
the temperature will be cooled by Exponential Multiplicative Cooling method.
(2) we use two different settings to develop the neighbor of the current state,
one is by a certain number of random DCJ operations while the other is by
DCJ sorting. (3) we check the new neighbor with the acceptance function: if this
neighboring state is better than the current, we accept it directly; otherwise,
the acceptance probability is associated with the current temperature and the
difference between these two states. (4) the system repeats step one to step three
iteratively until it meets the termination condition.
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3.1 SA Median

Initialization. Given three (leaf) genomes, for any pair of the given genomes
Gi and Gj , the median genome might be at the sorting path from Gi to Gj .
Based on this idea, we design the initial stage to sort each of the three original
genomes towards the other two with a random number of steps, which generates
six candidate genomes. The state (candidate median genome) for the current
generation is randomly picked from the six genomes and is used as the input
median for the next generation.

Neighbors of a State. The neighbors of a genome are produced by altering
the current genome in a certain way. We developed two different approaches
to find neighboring genomes. The simplest way is to randomly apply a certain
number of DCJ operations on the current genome (näıve approach), which is very
unlikely to converge as the search space is very large (there are 2nn! possible
genomes for n genes). The other more complex approach is to apply DCJ sortings
(sorting approach) to better direct the search, an approach successfully used in
the GAMedian.

This approach works as follows: from the second generation, as the current
median genome G is given, it will generate three candidate genomes by sorting
m steps from G to the three original leaf genomes; we randomly pick one from
these three candidates as the potential input median for the next generation.

We then compare the potential median to the current median based on their
median scores to accept or reject the new genome, using the reliable acceptance
criteria defined as follows.

Acceptance Function. First, we check if the neighboring state is a better
choice which has lower median score than the current state. If it is better, we
accept it unconditionally. Otherwise, we need to consider two factors: how bad
is the neighboring state and how high is the current temperature. We employ
the standard acceptance formula so that our algorithm which is more likely to
accept worse neighbor state at high temperatures.

Acceptance =
{

exp −ΔE/T if ΔE ≥ 0
1 if ΔE < 0 (1)

where the Δ E is the difference from the energy of the neighbor to that of the
current state. T is the temperature of the current generation and exp is the
exponential. The principle is that the possibility to accept will depend on the
value of T and ΔE in the exponential function.

Initial Temperature and Cooling Scheme. The initial temperature and
cooling schedule play critical roles in SA algorithms. Based on our experimen-
tal observations, the results greatly depend on the values of temperature T in
each generation, while T depends on the initial temperature T0 and the cooling
schedule α.
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The procedures we use to pick a reasonable estimate value of T0 are as
follows: Given P0 and average ΔCost, the equation to compute T0 is

P0 = exp(−ΔE)/T0.

At the first several states, we want to accept worse candidates as much as pos-
sible. We set up the initial acceptance percentage as P0, and estimate the ΔCost
from experiment result, then we can obtain T0 by formula (lnP0)/(−ΔCost).

For the cooling schedule, there are multiple different cooling approaches for
different specific problems. After our experiments, we select the approach of
Exponential Multiplicative Cooling, which is proposed by Kirkpatrick et al. [17].
T0 is the initial temperature, Tn is the temperature after n iterations, and α is
the cooling rate.

Tn = T0 · αn (0.8 ≤ α ≤ 0.9)

The maximum number of iterations for our SAMedian solver was set as G
but it could be terminated early if it reached the perfect median score. The
detailed description of our algorithm is shown in Algorithm1.

Input: three genomes as leaf genomes
Output: bestS as a genome which have the smallest DCJ sum distance to the
three leaf genomes.
Initialization: S0: one genome which is one DCJ sorting distance from a leaf
genome, T0: initialized temperature, G = Maxgen as left over cycle number, α:
cooling rate, bestS = S0, current temperature T , current solution currentS = S0.
While: G > 0

generate new genome newS by DCJ sorting from currentS
δCost = (newS − CurrentS);
If δCost < 0 Then;

currentS = newS;
If δnewS < bestS Then;

bestS = newS;
Else if (Random(0,1) < exp−ΔE/T) Then

currentS = newS;
T = αT ;
G = G - 1 ;

Return bestS ;

Algorithm 1: Simulated Annealing algorithm

GRAPPA is one of the parsimony-based methods to infer ancestral gene
orders and phylogenies simultaneously. It searches the tree space and scores
potentially good trees to find the best tree. To obtain the score of a tree, it
iteratively solves each median problem defined on an internal node until there is
no improvement. Currently, Caprara’s [18] reversal median solver and the DCJ
median solver (ASMedian) are included in GRAPPA. We replace the current
median solvers in GRAPPA with the new median solver to build our own phylo-
genetic inference and ancestral genome reconstruction method (SA GRAPPA).
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4 Experimental Results

We use simulated datasets to evaluate accuracy and efficiency of our tools which
is widely used to assess the quality of phylogenetic methods. Our model tree
simulation follows Lin’s et al. [19] birth-death model. Following the model tree,
We first initialize a permutation of n genes as root. From the root permutation,
we generate the rest internal and leaf genomes by conducting r random double-
cut-and-join (DCJ) events along corresponding branches. r is an average branch
length (event number) for each dataset, and we used diameter (d) to represent
the ratio r/n. We use m to represent the total number of genomes generated.
For each parameter setting, we run 20 trials to get the average result.

4.1 Comparison with ASMedian and GAMedian

To show the performance of our median solver SAMedian, we set the simulation
data generation parameters leaf nodes number as 3, n as 200 and d ranges from
0.1 to 1 for our simulation data. To evaluate the accuracy of our sorting-based
approach, we compare our method with ASMedian and GAMedian, and the
result is presented in Fig. 2.

Our result shows that the computation time of ASMedian increases dramat-
ically as r increases. Since GAMedian has to maintain a large genome pool to
obtain the optimal solution, the time usage is the longest among all the meth-
ods. On the other hand, our SA method keeps at a consistent speed, even when
r becomes quite high. Table 1 shows the comparison of time usage. Meanwhile,
the accuracy of median scores is very close to that obtained by ASMedian and
GAMedian. Figure 2 lists the median score comparison result (lower is better).
Since ASMedian applies the parsimony approach, its median score is optimal in
each case. GAMedian obtains a similar result after an excessive amount of time.
Our method returns a score very close to that of ASMedian and GAMedian for
each dataset, most cases are the same. Because our method is a meta-heuristic,
it is capable of solving more complicated datasets than ASMedian could.

SAMedian has a great improvement over speed compared with GAMedian.
The running time of GAMedian is determined by the time it spends in each
generation. For the number of genes (n), if n is 200, the running time in each
generation costs about 2.5 s; as the maximum number of generation is set at 500,
therefore the total amount of running time is over 1000 s. Meanwhile, we find
out that if n is larger than 1000 and diameter r is over 0.6, it needs more than
1200 generations to obtain the optimal, and each generation costs more than
60 s–as a result, the total running time is over 20 h. Even though the GAMedian
presents an excellent performance on the median problem, it costs too much
time, especially when the gene number is large.

On the other hand, SAMedian is much faster than GAMedian: it only takes
0.2 s to solve one median problem with 200 genes, and takes 3 s with 1000
genes. Therefore, the SAMedian solver is a better solution to explore phylogeny
reconstruction and ancestral inference problem, which requires iteratively solving
many instances of the median problems.
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Fig. 2. Comparison of median scores between ASMedian and GAMedian on genomes
with 200 genes. The x-axis is the expected distance from a leaf to the median, diameter
is ranged from 0.1 to 1. The y-axis is the median score for the resulted median.

Table 1. Comparison of time usage among our Median method, ASMedian and GAMe-
dian. Each genome has 200 genes. (second)

r/n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ASMedian 1.2 1.3 1.1 260.0 610.5 613.6 620.3 670.0 660.4 675.3

GAMedian 1100 1178 1187 1146 1175 1151 1114 1101 1201 1298

SAMedian 0.20 0.22 0.20 0.21 0.23 0.20 0.20 0.22 0.24 0.25

We evaluate SAMedian with the other two by calculating how similar the
inferred median genome and the true genome are, using two measurements: how
far away the inferred median are from the true, and how accurate the inferred
median is in term of genomic structure. Figure 3 shows the average DCJ distance
from the inferred median to the true ancestor. Our method generates the median
genomes closer to the true scenario, which is comparable to ASMedian. Our
method has slightly longer branches than that of the GAMedian.

The accuracy of the genomic structure of the median genome can be measured
by comparing the adjacencies presented in both the inferred median and the true
ancestor. Suppose the set of adjacencies in the inferred median genome is A and
the set of adjacencies in the true ancestor is B. The accuracy of adjacency is
defined as the proportion of the adjacencies in both A and B to all the adjacencies
either in A or B, as the expression |A ∩ B|/|A ∪ B|. Therefore, based on the
adjacency Fig. 4, we could obtain a similar result as ASMedian and our method
outperforms ASMedian when diameter goes bigger (r ≥ 80). The result from
SAMedian is slightly worse than the GAMedian.
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Fig. 3. Distance between the inferring median genome and true ancestor under different
event number. The results for ASMedian, GAMedian and our SAMedian are shown in
red, green and blue. X-axis represents the event number, the y-axis is the distance.
(Color figure online)

Fig. 4. Adjacency accuracy of the inferred median genome to true ancestor under
different number of events. The results for ASMedian, GAMedian and our SAMedian
are shown in red, green and blue, respectively. X-axis represents the number of events,
the y-axis is the accuracy of adjacency. (Color figure online)

4.2 Phylogeny Reconstruction and Ancestor Inference

To show the ability of our method for phylogeny and ancestral genome recon-
struction, we compare our result with the powerful tool, GASTS, by using sim-
ulation data. The parameter setting for our simulation data generation is m as
12, n as 500 or 1000 while d is 1, 2, 3 or 4 correspondingly.

GASTS is a tool to find the most parsimony tree from gene-order data.
Both methods are able to infer accurate phylogenies and ancestral genomes by
comparing to true scenarios. We also compare our method with Intermediate
Genomes [20] method, which uses the concept of intermediate genomes, arising
in optimal pairwise rearrangement scenarios, to reconstruct the ancestral gene
orders by reading a given phylogeny (i.e. solves the SPP problem).
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Table 2. False Positive and False Negative bipartition number of the inferred tree
topology to true tree for dataset with 500 and 1000 genes with 12 leaf genomes.

diameter m = 12, n = 500 m = 12, n= 1000

1n 2n 3n 4n 1n 2n 3n 4n

SA GRAPPA 0 0.6 2.1 2.4 0 1.0 1.6 1.8

GASTS 0 0.6 3.6 6.9 0 1.6 2.4 6.3

Fig. 5. Adjacency accuracy of the inferred internal genome to true ancestor for 500
(top) and 1000 (bottom) genes with 12 leaf genomes.

For big phylogeny problem (BPP), we compare the inferred tree topology
with the true scenario as shown in the Table 2 by getting false positive and
negative rate. Here we can see our SA GRAPPA is able to infer tree topologies
closer to the true tree than GASTS on both 500 and 1000 genes dataset.



A Median Solver and Phylogenetic Inference Based on DCJ Sorting 221

For small phylogeny problem (SPP), we compare the adjacency accuracy of
the inferred internal genome to true nodes as shown in Fig. 5, which shows that
our SA GRAPPA outperforms the current the Intermediate Genome method
and obtains much more correct adjacencies on both 500 and 1000 genes dataset.

5 Conclusions

In this paper, we introduce a DCJ sorting based Simulated Annealing algo-
rithm to solve the well-known three-genome median problem. Our median solver,
SAMedian, presents a great potential in approximating the optimal solution for
the three-genome problem. DCJ sorting is essential for our SA median method
for the reason that SimpleSA fails to converge. We can see that our SA median
solver is much more efficient than ASMedian and GAMedian, especially when
the input has a big event and/or gene number. The median inferred from our
method approximates better to true scenario than ASMedian and worse than
GAMedian. Since ASMedian tends to underestimate evolutionary distance, the
result from ASMedian is likely to have a lower median score but far from the
true ancestor. Although the GAMedian frequently gives the best result, it is
quite limited by its speed and scalability. Meanwhile, our method presents an
excellent performance on phylogeny reconstruction, better than other existing
reconstruction methods, such as Intermediate Genome and GASTs.

Although our method shows a great performance in our experiment, several
adapted changes are needed in our future work. First, to extend our work to
unequal content by considering insertion, deletion, and duplication. As distance
estimation under unequal content has been considered by earlier work [21–23],
our method is easy to extend to handle unequal content. Second, on the imple-
mentation level, we can apply parallel programming to speed up our application.
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Abstract. The decreasing cost of DNA-sequencing empowers high
availability of genetic-oriented services, which further promote growing
number of genomes and traits of individuals being accessible online.
Notoriously, these data are sensitive and may further lead to more
sensitive data leakage. In this paper, we formulate the trait and geno-
type inference problem and develop an efficient inference method based
on factor graph and belief propagation. An adversary then can infer the
potential traits and genotypes of the victims whose portions of data are
observed, depending on trait/SNP associations available from GWAS
catalog. To protect against such inference attacks, we detail privacy and
utility metrics then propose a genomic data-sanitization method that
can effectively tradeoff genomic data openness and privacy.

Keywords: SNP/trait associations · Belief propagation · Factor graph ·
Data-sanitization

1 Introduction

Rapidly growth of technology in DNA sequencing had been offering significant
genetic-oriented services, from genetic diagnosis to specifical genomic medicine
to the test of genetic compatibilities. For example, a DNA sequencing platform
was recently authorized by Food and Drug Administration to expand the use of
genomes in genetic medicine [8]. Furthermore, Genome-wide association stud-
ies (GWAS) are making efforts to uncover the associations between genomes
(i.e., Single Nucleotide Polymorphism (SNP)) and human traits (like diseases).
As a consequence, geneticists need to collect large scale of human genomes and
traits to boost the progress of research and services. Recent years have wit-
nessed the massive growth in genomes, shared by individuals in order for genetic
services, which offered great potential. Furthermore, a large body of genetic trait-
related websites (e.g., patientslikeme.com [1]), genomic data sharing platforms
c© Springer International Publishing AG 2017
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(e.g., OpenSNP [2]), and social networks, in which individuals release their traits
and genomes, are emerged to enable significant amount of valuable data to be
available.

Although the vast individual data hold significant benefit, they also raise
stringent privacy concerns. Genomes are associated with sensitive SNPs in which
some ones are closely related to diseases. Once such SNPs are identified, the
owner would be placed into discrimination risk (from insurance company or job
market) [6]. For instance, GWAS catalog reported massive diseases that are
associated with a set of SNPs [5]. Furthermore, individual genomes also encode
complex correlations with their relatives’ DNA sequences. Consequently, an indi-
vidual who discloses its genomes without any relatives’ consent, will also place
their relatives into risk. For example, the publishing of Henrietta Lacks’s genomes
sparks controversy regarding the potential reveal of private information about
the relatives [3]. Therefore, in order for realizing the full benefit of genomes,
effective tradeoff between data openness and privacy is necessary.

Unfortunately, massive publicly available auxiliary information further aggra-
vates this threat. For example, case-control studies in GWAS report SNPs and
associated traits, risk allele frequency and corresponding statistics to GWAS
catalog [5]. Associated such auxiliary information with the huge amount of indi-
vidual genomes available online, an adversary can launch significant inference
attacks to infer the traits and genotypes of individuals and their relatives. As
a consequence, some individuals determine to just release portions of genomic
data and traits. Releasing a portion of both cannot, however, completely pro-
tect against inference attacks for the unreleased portions. Unreleased parts of
traits and genotypes could be reconstructed with the help of released portions
and massive auxiliary information. For example, James Watson shared his full
DNA sequence expect for Apolipoprotein E, known as main squeeze for the pre-
dictor of Alzheimer’s disease. However, James Watson becomes an unsuccessful
example that reminds the correlations among SNPs (i.e., linkage disequilibrium)
could be employed to infer such sensitive SNPs [23].

In this paper, we explore how to launch inference attacks to infer target traits
and genotypes with known SNPs of individuals and publicly available statistics,
namely, GWAS catalog [5]. Then, we propose a data-sanitization method that
can effectively sanitize known SNPs to protect against such inference attacks,
while do not much degrade the benefit of shared genomic data. To explore how to
infer target traits and genotypes by adversaries, we construct an effective recon-
struction method by representing the SNPs, traits and SNP/trait associations
on a probability graphical model and operate belief propagation for inference.
Previous reconstruction methods generally have high computational complexity
which grows with the scale of SNPs and individuals. Considering the SNPs are
in the order of tens of millions, which prevents the existing methods from obtain-
ing precise inference results. Our work does consider the magnitude property of
SNPs and empower the inference method on target traits and genotypes in linear
complexity. To protect against such inference attacks, we formalize the genomic
privacy and utility metrics of individuals and develop a data-sanitization method
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to realize privacy/utility tradeoff. Compared with previous contributions, our
data-sanitization method can optimally balance the genomic data privacy and
openness.

2 Preliminaries

This section briefly introduces two concepts used latterly, namely, SNPs and
GWAS catalog.

2.1 Single Nucleotide Polymorphism

In human beings, 99.9% of their NDA are same, the remaining 0.1% makes
one individual unique. SNP is the common DNA variation making the genetic
variation significant. SNPs carry significant information about an individual,
such as disease predisposition, phenotype change.

There are two nucleotides on a SNP locus: (1) a major allele (if allele
frequency is larger than 50%), and (2) a minor allele (if allele frequency is less
than 50%). Both major allele (represented by B) and minor allele (represented
by b) take values from nucleotides (A, T, G, C). On a SNP locus, one allele is
inherited from mother and the other one is inherited from father. Thus, one SNP
locus’ content could be: BB (both nucleotides are major alleles), Bb (one major
allele and one minor allele) or bb (both nucleotides are minor alleles).

2.2 GWAS Catalog

GWAS catalog is a series of statistics regarding case-control studies under
GWAS. Case-control studies are performed by analyzing the genotypes between:
case group (participants with traits) and control group (participants without
traits). After conducting statistical test over the SNPs of these two groups, two
alleles in an SNP locus can be identified: one risk allele and one non-risk allele.
Risk allele is the one that is more frequently carried by individuals in case group
compared with in control group. Furthermore, for an arbitrary allele, the ratio
of its frequency in case group and that in control group is also reported as
odds ratio. Then, SNPs that are associated with traits and significant statistical
indicators such as Risk Allele Frequency (RAF) (the frequency of individuals
carrying such risk allele), non-Risk Allele Frequency (nRAF), odds ratio, etc,
are reported to GWAS catalog.

3 Problem Formulation

3.1 Genomic Data Model

For an arbitrary individual, the set of SNPs are defined as S, |S| = n. si is defined
to be the content of SNP i (i ∈ S), si ∈ {0, 1, 2} (for simplicity, we denote the
genotype BB, Bb or bb as 0, 1, 2, respectively). Some SNPs of an individual
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are known by adversary (some individuals or their relatives share full or part
of their SNPs for obtaining services or helping genetic research) while others do
not. We denote the set of publicly available SNPs as SK , while unknown SNPs
as SU .

As auxiliary information obtained from GWAS catalog, the set of potential
traits are represented by T . tj is defined to be the trait j (j ∈ T ) of an individual.
For each trait tj , there are a set of associated SNPs in GWAS catalog. For each si
associated with tj , the risk allele rji of si can be extracted. Furthermore, the odds
ratio of rji , Oj

i and the RAF in control group f j
i

o
can be extracted. Although

the RAF in case group f j
i

a
is not given directly, it can be easily determined by

f j
i

o
and Oj

i [26]. Similarly, the known traits shared by individuals are denoted
as TK and the unknown ones are denoted as TU .

3.2 Adversary Model

The objective of an adversary is to infer target traits and genotypes in XU ,
XU = TU ∪ SU of an individual. A powerful adversary is assumed to launch
inference attacks with extensive available knowledge: (i) the known SNPs from
individuals who share part or full their SNPs (i.e., SK), (ii) the known traits
shared by individuals (i.e., TK), (iii) the GWAS catalog which contains the
interdependent information among traits and SNPs and statistical information
(i.e., C(T, si, r

j
i , O

j
i , f

j
i

o
)).

4 Inference Attack

We formulate the inference attack as calculating the Marginal Probability Distri-
bution (MPD) of target SNPs in SU or target traits in TU , given the known SNPs
SK , known trait set TK , statistical information from GWAS catalog C. Then,
the joint probability distribution of all unknown variables XU , XU = TU ∪ SU ,
is p(XU |SK , TK , C), conditioned on the available knowledge. Then, the MPD of
an unknown variable xi ∈ XU can be derived from:

p(xi|SK , TK , C) =
∑

XU\xi

p(XU |SK , TK , C) (1)

where XU\xi is to sum out over all variables in XU except xi.
Unfortunately, the scale of summing terms presents exponential increase with

the growth of the number of SNPs and traits. Considering individual genomes
includes tens of million of SNPs, calculating MPD of an SNP directly is unfeasi-
ble. Hence, we consider factorizing the joint probability distribution into a set of
local functions, and each function describes the dependency relationships among
SNPs and traits, by taking a subset of SNPs and traits as variables.

By operating belief propagation over factor graph, the joint probability dis-
tribution can be factorized and then the MPD can be calculated with linear
complexity. We construct a factor graph which includes two types of variable
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nodes: (i) SNP variable node: taking each SNP as a variable node, and (ii) trait
variable node: taking each trait as a variable node. And one type of factor node:
representing the association between SNPs and traits. The factor graph is con-
structed in following way:

– Trait variable node tj and SNP variable node si connect to factor node fji if
si is one of the SNPs associated with trait tj .

By operating belief propagation over factor graph, the global conditional
distribution p(XU |SK , TK , C) is factorized into several local functions and each
function takes a subset of SNPs and traits as variables:

p(XU |SK , TK , C) =
1
Z

∏

i∈S

∏

j∈T

fji(si, tj , C) (2)

where Z is a constant normalization factor.
A factor graph with 2 traits T = {t1, t2}, 3 SNPs S = {s1, s2, s3} for an

individual, is shown in Fig. 1. As shown in Fig. 1, for trait t1 and t2, the associated
SNP sets are {s1} and {s1, s2, s3}, respectively.

1s 2s 3s

11f 21f 22f 23f

1t 2t

Fig. 1. A factor graph with 2 traits T = {t1, t2} and 3 SNPs S = {s1, s2, s3}.

Given a factor graph structure, we next need to specify the probability depen-
dency between factor node and variable node. We first treat the prevalence rate
of each trait p(tj) as prior knowledge, which can be acquired from internet or
public statistics (such as CDC [4]). Then, given each associated trait, the con-
ditional probability of si is necessary to be determined. With this goal, we first
turn to figure out conditional probability of allele, given each associated trait.
The conditional probability of each allele given associated trait can be specified
by RAF and nRAF, as shown in Table 1 for SNP si with one of neighbor factor
nodes tj .

Based on the conditional allele probability, the next step is to calculate con-
ditional genotype probability. With allele rji and ρji , the genotype of si for trait
tj can be one of the following: rji r

j
i , rji ρ

j
i and ρjiρ

j
i . Therefore, the genotype
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Table 1. Conditional probability of risk allele rji and non-risk allele ρj
i , given one of

neighbor factor nodes tj of si

tj t̄j

rji f j
i

a
f j
i

o

ρj
i 1 − f j

i

a
1 − f j

i

o

frequency can be easily obtained by transforming Table 1, as shown in Table 2.
Similarly, the probability of trait conditional on one of associated SNPs can be
easily derived from Table 2 based on Bayesian posterior probability.

Table 2. Genotype probability of rji r
j
i , rji ρ

j
i and ρj

iρ
j
i , given one of si’ neighbor factor

nodes tj

tj t̄j

rji r
j
i

√
f j
i

a
√

f j
i

o

rji ρ
j
i f j

i

a
(1 − f j

i

a
) f j

i

a
(1 − f j

i

o
)

ρj
iρ

j
i

√
1 − f j

i

a
√

1 − f j
i

o

Belief propagation is a massage-passing algorithm that iteratively passes mes-
sages between variable nodes and factor nodes. Hence, we define the massages
passing from variable node (si or tj) to factor node as μ, the massage passing
from factor node to variable node as λ. We next take variable nodes t2 and s1,
factor node f21 in Fig. 1 as example to illustrate the massage-passing between
variable and factor nodes. The massage μ

(n)
v→f (s1(n)) passing from variable node

s1 to factor node f21 denotes the probability of s1 = κ, (κ = 0, 1, 2) in n-th iter-
ation. The message λ

(n)
f→v(s1

(n)) passing from factor node f21 to variable node s1
denotes the probability of s1 = κ, (κ = 0, 1, 2) in n-th iteration, given trait/SNP
associations.

A variable node v sends massage to neighbor factor node f by multiplying
all messages from neighbor factor nodes except f . Taking the factor graph in
Fig. 1 as an example, the message from s1 to f21 (denoted as s → f) is:

μ
(n)
s→f (s1(n)) =

1
Z

×
∏

f∗∈N(s1)\f21
λ
(n−1)
f∗→s (s1(n−1)) (3)

where N(s1)\f21 is all neighbor factor nodes of s1 except f21 (in Fig. 1,
N(s1)\f21 = {f11}).

The message from t2 to f21 can be formulated similarly.
Then, according to the principle of belief propagation, factor node f sends

message to neighbor variable node v by multiplying all massages from f ’ neigh-
bors except v, and then multiplying the obtained product with the factor, and
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then summing out all the neighbor variable nodes of f except v. The massage
from f21 to variable node s1 (denoted as f → s) is

λ
(n)
f→s(s1

(n)) =
∑

t2

f21(s1, t2)
∏

v∗∈N(f21)\s1
μ
(n)
v∗→f (v∗) (4)

Note that f21(s1, t2) ∝ p(s1|t2) and it can be obtained from Table 2.
The message from f21 to t2 can be formulated similarly.
The massage-passing iteration starts with passing massage by variable nodes.

We now specify the boundary conditions in the above iterations. At the first
iteration (i.e., n = 1), for any SNP variable node si ∈ SU , since no massages are
sent from si’ neighbor factor nodes, μ

(1)
s→f (si(1)) = 1 for each potential values

of si. On the other hand, for any SNP variable node si ∈ SK and si = κ,
μ
(1)
s→f (si(1) = κ) = 1 and μ

(1)
s→f (xi

j
(1) = κ′) = 0 for other potential SNP values,

where κ′ ∈ {{0, 1, 2}\κ}. The massages for trait variable node tj are set with
same ways. Until all unknown variables are converged (or the passing massages
are converged), the iterations can be stopped.

Finally, the MPD of each unknown variable in TU is obtained by multiplying
all massages to each variable.

5 Genome Privacy-Utility Tradeoff

In this section, our objective is to propose a data-sanitization method that can
optimize the tradeoff between genome privacy and utility. As a consequence,
releasing the sanitized genomic data can protect against inference attacks on
target traits and genotypes, while do not much degrade the data benefit. We
first introduce privacy and utility metrics to measure the genome privacy and
utility due to sanitization method executed. Then, a data-sanitization method
to sanitize genotypes is developed that can optimally balance data openness and
privacy.

5.1 Privacy and Utility Metrics

For any SNP sharer, it is expected that adversary cannot effectively infer his/her
target traits and genotypes. Here, privacy is measured by the ambiguity of infer-
ence results; namely, the larger ambiguity of inference results is, the larger is the
uncertainty of adversary. The ambiguity of inference results can be quantified
by the entropy of p(xi|SK , TK , C):

Hi =
−∑

xi
p(xi|SK , TK , C) log p(xi|SK , TK , C)

log(3)
(5)

where xi is either target SNP (xi ∈ {0, 1, 2}) or trait (xi ∈ {0, 1}). The larger
the entropy is, the larger is the ambiguity of p(xi|SK , TK , C).

Then, a parameter δ is introduced to bound Hi as privacy metric:
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Definition 5.1 δ-privacy. The released SNPs satisfy δ-privacy if Hi ≥ δ for
each SNP si.

For data utility, it is expected that as many actual SNPs are released as
possible, while guaranteeing δ-privacy.

Definition 5.2 Utility. The utility of a set of SNPs is measures as the expected
number of released SNPs.

5.2 Data-Sanitization Method

To protect against inference attacks on xi, we propose a data-sanitization method
based on sanitizing the neighbor SNPs of xi. For an arbitrary SNP sj , if there
exists a path from sj to xi in factor graph, sj is one of the neighbor SNPs of xi.
For example, s3 is one of the neighbor SNPs of t1, because there exists a path
from si to t1: s3 → t2 → s1 → t1.

Our objective is to find a subset of neighbor SNPs of each xi so that sanitizing
them can maximize data utility while guaranteeing privacy constraint. For this
purpose, the concept of vulnerable neighbor SNP is introduced:

Definition 5.3 Vulnerable neighbor SNP. The vulnerable neighbor SNP of
xi is a neighbor SNP of xi, whose sanitizing will decrease the prediction accuracy
on xi.

Considering obfuscated SNPs (replace actual SNP content with another one)
brings uncontrollable results when making genetic analysis, we sanitize SNPs
by taking removing method. The privacy of xi upon removing its vulnerable
neighbor SNP xk is Hi(Ni − xk), where Ni is the neighbor SNPs of xi.

With Definition 5.3, the problem of realizing privacy/utility tradeoff can be
stated as identifying a subset of vulnerable neighbor SNPs of each xi to san-
itize, who are responsible for maximizing data utility of released SNPs while
guaranteeing privacy constraints of each SNP and trait.

To solve the above problem, we first prove the ambiguity of inference results,
i.e., Eq. (5) has monotonicity and submodularity property, when the increasing
number of SNPs are sanitized. Monotonicity property means that if we sanitize
more SNPs, we can only improve privacy.

Theorem 5.1 Monotonicity. The privacy function of an arbitrary variable
xi ∈ XU , Hi : Ni → R

∗ is monotonically nondecreasing, i.e., Hi(Ni ∪ sk) ≤
Hi(Ni), where sk ∈ Ni and Ni is vulnerable neighbor SNPs of xi.

Theorem 5.2 Submodularity. The privacy function of an arbitrary variable
xi ∈ XU , Hi : Ni → R

∗ has submodularity property, i.e., Hi(Ui ∪ sk)−Hi(Ui) ≤
Hi(Vi ∪ sk) − Hi(Vi), where Ui ⊆ Vi ⊆ Ni, sk ∈ Ni, and Ui, Vi are the set of
vulnerable neighbor SNPs of xi.

Theorems 5.1 and 5.2 shows that the problem of finding a SNP sanitization
method is transformed to the minimization of submodular, nondecreasing, non-
negative function with constraints that is knapsack-like. Then, we can utilize the
greedy algorithm proposed in [25] to solve this problem.
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6 Related Works

Several algorithms have been proposed for inference attacks on genotypes, hap-
lotype, or phenotypes (e.g., disease) based on probability graphical models.
Bayesian networks are generally utilized in order for mapping the association
between phenotypes and genes [11,26,28], or the association between disease
genes and genetic maps [10,21]. Factor graph are also proved to be an effective
model in mapping the association among genetic relations, linkage disequilibrium
and genes, in the context of kin privacy [18]. [10,21] are proposed to infer target
genotypes when phenotypes are given. Based on the constructed factor graph,
[18] aims to infer the genotypes given genomes released by relatives and LD val-
ues among SNPs. Another work based on Markov chain Monte Carlo (MCMC)
sampling to infer genotype given genotypes with large scale of phenotypic and
lifestyle knowledge if individuals [24]. Moreover, genotype imputation [16] is also
an significant technique utilized by geneticists to infer unknown SNPs based on
known genotype data. [22] reviews the statistical techniques for imputing geno-
types and describes the factors which are correlated to imputation performance.
None of these works proposes an effective privacy preserving method to address
privacy. Recent works have proved that individual privacy can be easily breached
by inference attacks and significant countermeasures have also been proposed for
location privacy, social networks [7,13,15], or mobile networks [14,27,29].

For preserving genome privacy, several contributions have proved that data
anonymization is inefficient to preserve genomic privacy [9,12,19]. [19] proves
that an individual’s genotype can be de-anonymized since it is linked to auxiliary
information such as phenotypic traits, by which individuals can be re-identified.
[12] demonstrated that surnames could be inferred based on individual’s genomes
by investigating short tandem repeats on the Y chromosome. Moreover, encryp-
tion and differential privacy is popularly used to promoting genome openness
while preserving privacy [9,17,20].

In contrast with the previous works, in this work, we not only propose an effi-
cient inference model for inferring individual’s traits given released traits, SNPs,
and publicly available GWAS catalog. Furthermore, we tradeoff data openness
(utility) and genome privacy by introducing the utility and privacy metrics and
proposing an effective data-sanitization method, which can maximize data open-
ness while preserving genome privacy.

7 Conclusions

In this work, we have proposed an inference method for predicting the traits and
genotypes of individuals, relying on portions of observable genomic data. Mean-
while, we have proposed privacy and utility metrics to quantify privacy and
utility, based on which a data-sanitization method has been proposed to realize
privacy/utility tradeoff. The proposed inference method can launch inference
attacks with linear complexity relying on factor graph and belief propagation,
considering massive SNPs and traits. To protect against such inference attacks,
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we quality trait and genotype privacy based on adversary uncertainty and pre-
diction error, and sanitize neighbor SNPs of traits and genotypes to tradeoff
genomic privacy and data openness.
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Abstract. Phylogenetic tree reconciliation is a widely used approach
for analyzing the inconsistencies between the evolutionary histories of
genes, and the species through which they have evolved. An important
aspect of tree reconciliation are the cost functions involved that are the
minimum number of evolutionary events explaining such inconsistencies.
Mean values for these functions are fundamental when analyzing tree
reconciliations. Here we describe mean value formulas when a history of
genes is fixed for the cost functions for the events gene duplication, gene
loss and gene duplication-loss, under the uniform model of species trees.
We show that these formulas can be efficiently computed, and finally
analyze the mean values using empirical and simulated data.

Keywords: Tree reconciliation · Duplication-loss model · Deep coales-
cence · Speciation · Gene duplication · Gene loss · Bijectively labelled
tree · Uniform model of trees · Mean value

1 Introduction

Phylogenetic tree reconciliation is a powerful tool for analyzing the inconsisten-
cies between the evolutionary histories of genes, and the species through which
they have evolved. Through algorithmic advances in tree reconciliation such ana-
lyzes have become common practice in various biological research areas, such
as molecular biology and microbiology [21]. For example tree reconciliation is
used to illuminate the dynamics of gene family evolution in terms of complex
evolutionary processes [5,20]. Reconciling trees is also one of the most reliable
approaches for identifying truly orthologous genes [1,2], which is a fundamental
task in understanding the evolution of genetic function [19].

Tree reconciliation is a process that takes two trees as input, a gene tree that
is the evolutionary history of genes, and a species tree that is the evolutionary
history of the species hosting the genes. It seeks an embedding of the gene tree
into the species tree (i.e., the evolution of the gene tree along the branches of
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the species tree) that explains possible inconsistencies between the two trees by
inferring the minimum number of evolutionary events, such as gene duplication,
gene loss, the combination of gene duplication-loss, and deep coalescence.

An important aspect of tree reconciliation is its associated cost that is the
(minimum) number of evolutionary events inferred by the process. This, for
example, allows the comparative analysis of gene trees in the context of their
corresponding species trees [25,26], which is a standard approach for synthesizing
large-scale species trees from collections of discordant gene trees [3,6].

The widespread usage of tree reconciliation in practice has led to a growing
interest in analyzing reconciliation cost functions. This includes analyzing the
diameters of such functions that are the maximum costs when one or both tree
topologies are given [11–14]. More recently, the mean values of reconciliation cost
functions have been studied when either a gene tree or a species tree is given.
The mean value for a gene tree for a reconciliation cost function is the mean of
the costs between the gene tree and all of its corresponding species trees. The
mean value of a species tree is defined similarly. These mean values have been
studied under two classic probability models for phylogenetic trees that are the
uniform model and the Yule-Harding model [18,24,28].

Here we study the mean values for a gene tree under the uniform distribution
for the reconciliation functions for each of the events, gene duplication and loss,
gene duplication, and gene loss.

Previous Work. The pioneering work of Goodman et al. [9] introduced the app-
roach for reconciling a gene tree with a corresponding species tree, where both
of these trees are rooted and full binary. This approach is embedding the gene
tree into the species tree using a mapping that relates every gene in the gene tree
to its host species that is the most recent species that could have contained the
gene. Consequently, the mapping is relating every leaf-gene of the gene tree to
the species from which it has been sampled. When restricted to the leaf-genes,
the mapping is referred to as leaf-labeling. Based on this mapping the evolution-
ary events, gene duplication, gene loss, and the combination of gene duplication
and subsequent loss (in short, duplication-loss) are identified. A gene is a gene
duplication when it has a child with the same host species, and a gene loss is
accounted for by a maximum subtree in the species tree that has no host species
(i.e., no mapping from the gene tree). While other embeddings are possible [15]
the mapping describes the most parsimonious embedding in terms of the num-
ber of gene duplication and loss events [4,7,15]. The reconciliation cost function
associated with each of these events counts the number of their occurrences in
terms of gene duplications, gene losses, and gene duplications plus losses, and
are termed duplication, loss, and duplication-loss cost functions respectively. The
deep coalescence cost function, introduced by Maddison [22], is also based on
the reconciliation approach. Edges in the species tree may have embedded edges
from the gene tree, which are called lineages. The deep coalescence cost func-
tion counts for every edge in the species tree the number of lineages minus one,
which are thought to be caused by deep coalescence events. From the mathe-
matical point of view, the gene loss cost function is a linear combination of gene
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duplication and deep coalescence cost functions [16,31], and therefore, any prop-
erty derived for these two functions can naturally be translated into gene loss and
gene duplication-loss cost functions. All of the described reconciliation functions
have been defined for general leaf-labelings and for bijective leaf-labelings.

The focus of this work are the mean values of the described reconciliation
cost functions for bijective leaf-labelings under the uniform distribution of phy-
logenetic trees. Mean value formulas have been described for a given species tree
for the deep coalescence cost function [29]. More recently such formulas have
also been described for the gene duplication, gene loss, and gene duplication-loss
cost functions [17]. For the computation time to obtain these mean values let n
be the size of the given species tree. The mean values for a given species tree
under the uniform model can be computed in O(n) time for the deep coalescense
cost function, and in time O(n3) for the gene duplication, gene loss, and gene
duplication-loss cost functions [17]. Mean value formulas for a given gene tree
have only been described for the deep coalescence cost function [29], and this
value is computable in O(n) time, where n is the size of the given gene tree.

Our Contributions. In this article we develop the formulas to compute the mean
values for the reconciliation cost using gene duplication and loss, gene duplica-
tion, and gene loss events when the gene tree is given under a uniform distri-
bution for the species trees. We show that these formulas can be computed in
time O(n3) for a given gene tree of size n. Finally, we conducted comparative
studies for fixed gene and fixed species tree means for our reconciliation costs
and performed an analysis of an empirical dataset consisting of thousands of
gene family trees.

2 Basic Definitions

We follow the basic definitions and notation from [16,31]. Let X be a non-empty
set of n species (taxa). The set of all full binary and rooted trees whose leaves
are bijectively labeled by the species in X is denoted by R(X). Trees in R(X)
are denoted by using the standard nested parenthesis notation. Given a tree
T ∈ R(X), we denote its node and edge sets by VT and ET respectively. The
root of T is denoted by root(T ) and the parent of a non-root node v is denoted
by par(v). We denote the least common ancestor of nodes v, w ∈ VT in tree T
by lcaT (v, w). A cluster (or also called clade) of a node v ∈ VT is the set of all
leaf labels of the subtree of T rooted at v.

In phylogenetic tree reconciliation a gene tree is embedded into its corre-
sponding species tree. In this work we assume that both types of trees have the
same bijective labelling of leaves. Therefore, we assume that every gene tree and
every species tree is an element of R(X). For a (gene) tree G ∈ R(X) and a
(species) tree S ∈ R(X) the least common ancestor mapping between G and S,
or lca-mapping, M : VG → VS , is defined as M(g) = s if g and s are leaves with
the same label, and M(g) = lcaS(M(g′),M(g′′)) if g has two children g′ and g′′.
An internal node g is called a duplication, or an S-duplication, if M(g) = M(a)
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for a child a of g. Every internal non-duplication node is called a speciation.
The duplication cost, denoted by D(G,S), is the total number of S-duplications
in G [25]. The deep coalescence cost function [22,23,31] can be expressed by
DC(G,S) :=

∑
g∈VG\{root(G)}(‖M(g),M(par(g))‖ − 1), where ‖a, b‖ is the num-

ber of edges on the simple path connecting nodes a, b ∈ SV . The reader is referred
to [29] for alternative definitions of DC. Finally, we can provide formulas for the
loss and duplication-loss cost functions [31]: L(G,S) := 2D(G,S)+DC(G,S) and
DL(G,S) := D(G,S) + L(G,S). For a more detailed introduction to the model
please refer to [15,22,25].

3 Results

In the uniform model of binary trees an equal probability is assigned to each
possible leaf labeled binary tree with n leaves. In this model rooted trees can be
generated by uniform and random insertions of one edge to any edge including
the rooting edge at each step. For example, given a rooted tree (a, (b, c)), the
following five four-labelled trees can be created by inserting a new edge with a leaf
d: (((a, d), b), c), ((a, (b, d)), c), (((a, b), d), c), ((a, b), (c, d)), and (((a, b), c), d).

We analyse the mean of the duplication cost in the uniform model of rooted
leaf-labeled trees. Let R(X) denote the set of all bijectively labeled rooted trees
over a non-empty set X. Then, the mean of duplication cost for a fixed gene tree
G ∈ R(X) under a probabilistic model of species trees is:

Du(G) =
∑

S∈R(X)

P(S)D(G,S). (1)

Recall that size of R(X) is b(n) = (2n − 3)!!, where k!! is the double factorial,
i.e., k!! = k · (k−2)!! and 0!! = (−1)!! = 1. Hence, in the uniform model for every
tree T ∈ R(X) has probability P(T ) = 1

b(n) .
Now we introduce a notion of a (rooted) split. Every non-leaf node v ∈ VT ,

induces a split A|B, where A and B are the clusters of children of v. The set
of all splits in T is denoted by Spl(T ). As an example, Spl(((a, b), (c, d))) =
{{{a, b}, {c, d}}, {{a}, {b}}, {{c}, {d}}}, which we describe by using the simpli-
fied split notation: {ab|cd, a|b, c|d}.

For a split A|B induced by a node v from a fixed gene tree G ∈ R(X), by
ξDup
n (A,B) we denote the number of species trees S from R(X) such that v is

an S-duplication node. Similarly, we define ξSpecn (A,B) for speciation nodes.

Lemma 1. For a gene tree G with n leaves,
∑

A|B∈Spl(G)

ξDup
n (A,B) + ξSpecn (A,B) = b(n) · (n − 1).

Now, the mean (1) is equivalent to

Du(G) =
1

b(n)

∑

A|B∈Spl(G)

ξDup
n (A,B) = n − 1 − 1

b(n)

∑

A|B∈Spl(G)

ξSpecn (A,B). (2)
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Similarly to [17], it is more convenient to count directly the number of speciation
nodes rather then duplications.

Lemma 2. For a species tree G with n leaves and a split A|B present in G

ξSpecn (A,B) =
m∑

i=0

m−i∑

j=0

(
m

i

)(
m − i

j

)

b(|A| + i)b(|B| + j)b(m − i − j + 1).

where m = n − |A| − |B|.
Proof. Let v ∈ G has the split A|B. A species tree S that induces a speciation
node v mapped into a node s from S can be constructed as follows. Let z be
an element not in X. Let A′ and B′ be two disjoint supersets of A and B,
respectively. Then, a species tree S ∈ R(X) such that s has split A′|B′ can be
constructed by replacing the leaf z in a tree R((X \ (A′ ∪ B′)) ∪ {z}) by a tree
(SA, SB) such that SA ∈ R(A′) and SB ∈ R(B′). Then, v is a speciation node
mapped to the root of (SA, SB) in S. On the other hand note that every S such
that v from G is a speciation node mapped to a node in S, is inferred exactly
once in the above procedure. ��

Now, we can state the main result that follows from Lemma 2 and Eq. 2.

Theorem 1 (Fixed gene tree mean of D under the uniform model).
For a given gene tree G with n leaves

Du(G) = n− 1− 1

b(n)

∑

A|B∈Spl(G)
m=n−|A|−|B|

m∑

i=0

m−i∑

j=0

(m
i

)(m− i

j

)
b(|A|+ i)b(|B|+ j)b(m− i− j + 1).

To obtain the mean formula for DL cost we recall the result from [29] (see
Corollary 13) on the deep coalescence cost. For a gene tree G with n leaves:

DCu(G) = −(2n − 1) + 2n
(2n − 2)!!

b(n)
− (2n − 2)!!

b(n)

∑

v∈VG

(2|Cv| − 3)!!
(2|Cv| − 2)!!

,

where Cv denotes the cluster of a node v.
Finally, we have the result for DL and L (see also similar results for fixed

species tree from [17]).

Theorem 2 (Fixed gene tree mean of DL and L). For a gene tree G we
have DLu(G) = 3 · Du(G) + DCu(G) and Lu(G) = 2 · Du(G) + DCu(G).

Proof. It follows from the definition of gene loss and duplication-loss functions
and the properties of mean values. ��
Given the mean formulas for DC and D it is now straightforward to obtain the
exact formulas for the means of DL and D. We omit these details for brevity. See
an example of mean values depicted in Fig. 1.
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Fig. 1. Embeddings (scenarios) of G = ((a, b), (c, d)) into every species four-leaf species
tree [15]. Each scenario is summarized with two numbers denoting the number of gene
duplications (D) and the number of gene losses (L). We have 14 gene duplications,
31 speciation nodes and 52 gene losses in total. In this example, Du(G) = 14/15,
L(G) = 52/15 and DLu(G) = 66/15.

Computing the mean of deep coalescence for a fixed gene tree can be com-
pleted in O(n) steps under assumption that double factorials are memorized and
the required size of clusters is stored with the nodes of the standard pointer-like
implementation of trees. For the mean of the remaining cost functions, how-
ever, we need two additional loops. Therefore, the time complexity of computing
Du(G), Lu(G) and DLu(G) is O(n3).

4 Experimental Evaluation

4.1 Mean Values for Tree Shapes

Here we analyze the mean values of our analyzed reconciliation cost functions for
all tree shapes with 3, 4, . . . 9 leaves ordered by their Furnas rank [8], which are
depicted in Table 1. We observe that tree shapes with the same number of splits
induce the same mean values (e.g., the two red colored tree shapes) which follows
directly from the mean value formulas for deep coalescence and duplication cost
functions. This property also holds for the mean values when a species tree is
fixed [17]. Note, while in [17] the mean value of the duplication cost function for
a fixed species tree was conjectured to grow monotonically with the Furnas rank,
this is not the case for the corresponding mean values when a gene tree is fixed
as indicated in Table 1. Moreover, we can observe that the mean value of the
duplication cost function is maximum for caterpillar trees while it is minimum
for the most balanced once.

Moreover, we compared the mean values for fixed species tree shapes from [17]
with their corresponding values when the gene tree is fixed. Therefore, we com-
puted the mean values for all gene tree shapes with up to 20 leaves, e.g., for
n = 20 there are 293547 trees. Figure 2 depicts two diagrams which represent
the means for a fixed species tree shapes [17] and the corresponding means for a
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Fig. 2. Top: frequency diagram of mean values of duplication, duplication-loss and deep
coalescence costs for all fixed gene tree shapes for n = 3, 4, . . . 20 under the uniform
model of species trees. For each n, mean values for every cost were grouped into bins
of size 0.01. The width of each bin is proportional to log2 K, where K is the number of
gene tree shapes having the mean value in this bin. Bottom: the same type of diagram
for means of fixed species tree taken from [17]. (Color figure online)

fixed gene tree shapes, respectively. While we are expecting that the blue ovoids
and the red ovoids will increasingly overlap with an increasing number of taxa,
we observe that this occurs earlier (i.e., for smaller sizes of taxa) for species tree
shapes. For the duplication cost function we observe a broader range of means
in the upper diagram, while the range for the other cost functions appears to
be broader for the species tree shapes. In combination with our previous obser-
vations from Table 1, we conclude that the properties of the duplication cost
function differs significantly when comparing the two types of fixed tree means.

4.2 Empirical Study

In this section we study the distribution of mean values for the duplication and
duplication-loss cost functions for gene trees obtained from a baseline empirical
dataset. Additionally, we evaluate how the duplication and duplication-loss costs
compare to the respective mean values.
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Empirical Dataset. To evaluate the distributions of mean values on empirical
phylogenetic datasets we analyzed the classic TreeFam ver.9 dataset [27] consist-
ing of gene family trees of 109 mostly animal species (with 71 taxa in the gene
family trees on average). Among around 15 thousand rooted gene trees in the
dataset, the 4070 bijectively labeled and strictly bifurcated trees were selected.
We further filtered the trees based on their size; that is, we removed all trees
with less than 10 leaves in order to eliminate otherwise arising outliers due to
insufficient tree size.

Given that the best-known species tree for the TreeFam dataset is not com-
pletely refined (contains many large multifurcations), we estimated the species
tree using a popular supertree tool, duptree2 [30]; the tool approximates a species
tree that minimizes the duplication cost for the given set of gene trees.

Experimental Setting. In order to compare mean values for gene trees of
different sizes and topologies we need to bring them up to the same scale. We
achieve this by normalizing the mean values by respective diameters. Note that
diameters under fixed gene tree topologies can be computed exactly, both for
the duplication and duplication-loss cost functions [10,13].

To assess the mean value distributions for trees taken from the empirical
dataset, we compare them to complete distributions for trees of fixed size. That
is, for a fixed number of leaves, t, we compute mean values for all possible
tree topologies with t leaves. This is repeated for t = 10, 12, 14, and 16. Apart
from serving as a complete distribution reference, these data also allows us to
empirically observe how the mean-value distributions progress with the increase
of taxa.

Results and Discussion. Figure 3 illustrates that the mean values under the
duplication cost function for the TreeFam gene trees are concentrated around
the value 0.9. That is, the mean values are very close to respective cost diam-
eters, which implies that for all the trees under consideration, most of possible
species trees have a very high (close to the maximum) duplication cost. It also
suggests that the proximity of a duplication cost (normalized by the diameter)
to 0 indicates a high confidence in the species tree.

Further, the complete distributions of duplication means for all possible tree
topologies over varying taxa size are shown on Fig. 4 (left hand side) closely
resemble the distribution on empirical datasets. The figure also demonstrates
that the duplication-mean distribution does not seem to change much with the
increase of taxa.

The empirical distribution for the duplication-loss means on Fig. 3 (left-hand
side, red histogram) is rather spread on the interval from approximately 0.25
to 0.7 with multiple picks. Figure 4 (right hand side) additionally shows that
duplication-loss mean values (normalized by the respective diameters) gradually
decrease with increasing taxa number. Given that the TreeFam dataset contains
trees of varying size, the shifts in mean values for gene trees of larger size, explain
the wide range of duplication-loss means on Fig. 4.
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Fig. 3. Comparison of (i) mean values normalized by diameters and (ii) costs nor-
malized by mean values for the duplication (D) and the duplication-loss (DL) cost
functions (TreeFam dataset). (Color figure online)
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Fig. 4. Left : distribution of duplication-mean values normalized by respective diame-
ters. The frequencies of the histogram were scaled by a square root to achieve a more
comprehensive visualization. Right : distribution of duplication-loss-mean values nor-
malized by respective diameters. Distributions are shown for all possible tree topologies
over 10, 12, 14, and 16 taxa respectively.

Further, the mean values play an important role in the normalization of
reconciliation costs, since it allows us to relate reconciliation costs that are oth-
erwise significantly affected by topologies of the gene trees. The histogram on the
right-hand side of Fig. 3 shows duplication and duplication-loss costs normalized
by respective mean values. While the majority of trees are concentrated below
the value 0.5 (i.e., the cost is significantly smaller than the respective mean),
there are some outliers for which the cost is close to the mean or even exceeds it.
Such trees can be thought of as not strongly correlating with the corresponding
species tree (or even correlating negatively), and they can represent gene families
of interest for a researcher. Alternatively, when the reconciliation cost between
a gene tree and a species tree exceeds the mean value, it might indicate possible
errors in the gene tree.
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5 Conclusions

In this work we have developed the mean value formulas for a fixed gene tree for
the gene duplication, gene loss and gene duplication-loss cost functions under the
uniform model of species trees. We have also shown that these mean values can
be efficiently computed. Our comparative experiments demonstrate that there
can be fundamental differences between fixed species tree and fixed gene tree
means. This motivates further analyzes that may establish deeper mathematical
insights into mean values and the relations between them. Our future research
in mean values of tree shapes will dovetail with these ideas.
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12. Górecki, P., Eulenstein, O.: Maximizing deep coalescence cost. IEEE-ACM Trans.
Comput. Biol. Bioinform. 11(1), 231–242 (2014)
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Abstract. The recent availability of serial block face scanning electron
microscopy has permitted researchers to reconstruct cells and neurons by
manually identifying and coloring objects. This technique was instrumental in
work such as uncovering the anatomical basis for direction selectivity of vision
[1]. Unfortunately, reconstruction involves an expenditure of time which can be
expensive or prohibitive. We have developed the Computer Assisted Segmen-
tation Tool (CAST), which produces results that appear similar to manual
segmentation with reduced personnel time requirements. Results are shown for
serial block face electron micrograph (SBEM) images of Mus musculus retinal
axons; however, CAST is capable of operation on other image types. CAST is
available under an open source license in a modified version of the TrakEM2
plugin for the popular Fiji image analysis suite. Usage and installation
instructions can be found at http://isoptera.lcsc.edu/segmentation_tool/.

Keywords: Machine learning � Image segmentation � Neural network � Fast
marching algorithm � Fiji � Track EM2 � Trainable Weka Segmentation � Neuron

1 Introduction

Since the invention of the electron microscope in 1926, Electron Microscopy
(EM) technology has advanced to the point that a scanning electron microscope can be
combined with a microtome to create Sequential Block-Face Scanning Electron
Microscopy (SBEM or SBFSEM). Using SBEM, a stack of high-resolution images can
be created, with sufficient detail to reconstruct neural structures [1]. Reconstructed
neural structures can be used to study conditions affecting neurons. For example,
Briggman et al. used 3D reconstruction to discover how direction selectivity in the
retina is mediated by the anatomical arrangement of synapses [1]. Reconstruction of 3D
structures in SBEM imagery has been performed in a manual manner by outlining the
structure of interest in each image of a stack. Once outlines are complete, the structure
can be visualized in 3D [2].
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Since available person-hours are always in high demand, some attempt must be
made to maximize the quality and quantity of manual image segmentation produced on
a fixed budget. For example, touch screen technology can be used to allow coloring of
structures using a stylus instead of a mouse [3]. As another example, automated
detection of neural boundaries has been pursued to improve outlining efficiency [4].
This latter strategy, of automated boundary detection, has been tested in several works
[4–9]. As part of our work understanding how retinal neural circuits are organized, we
propose the Computer Assisted Segmentation Tool (CAST) to fill the need for a
readily-available segmentation tool. Some tools such as Raveler [10], Ilastik [11],
Rhoana [12], and Knossos [13] are available for segmentation of EM imagery. While
each one of these tools does some kind of image segmentation, none of the tools
mentioned solves the targeted neuron segmentation problem, as described previously.
CAST is designed to aid in studying neural connectivity in a targeted area, so the
segmentation of an entire image is unnecessary when trying to identify one or two
specific neurons. Eyewire is an interactive online game which allows users to assist in
mapping neural connectivity through the process of semi-automatically outlining
neurons. CAST is designed to do the same thing, but locally with user specific data
sets. CAST is also designed to be a more general outlining tool, offering
semi-automatic outlining for more than just neurons. A Fast Marching tool has been
integrated into the Fiji Image Analysis suite; however, it has not proven suitable in
some cases (see Results section). Integrating CAST into the TrakEM2 Fiji plugin
allows a hybrid workflow involving both manual and semi-automatic segmentation.
Availability of both tools enables manual segmentation of any part of any structure that
cannot be segmented automatically. Using this hybrid workflow, CAST performance
that is imperfect yet largely correct can be utilized for improved efficiency. Integration
with TrakEM2 also allows semi-automatic segmentation within partially-segmented
data sets to preserve and build upon existing work. Finally, integrating CAST into
TrakEM2 avoids the need to re-train manual segmentation personnel to use different
software.

In our previous work we performed reconstruction of rod spherules from SBEM
imagery [14]. Since reconstruction of the Mus musculus retina is ongoing, we have
focused development of CAST on segmentation of Mus musculus retinal neurons,
specifically retinal bipolar cells. Results are presented on Mus musculus axons, and
comparison is made with the previous fast marching approach. To assess the accuracy
of the tool, an in-depth comparison is made to manual outlines.

Denk and Horstmann [15] have explained the importance of visualizing and
reconstructing 3D structures in electron microscope images, and CAST is intended to
reduce the time cost of this reconstruction and visualization. The following sub sections
discuss the different platforms this tool was built for, and previous work done in the
field of image segmentation.

1.1 Implementation

Fiji is an open source software suite for image processing. “Fiji uses modern software
engineering practices to combine powerful software libraries with a broad range of
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scripting languages to enable rapid prototyping of image processing algorithms” [16].
Fiji is the base software package that many other plugins are built to interact with.

The popular neural circuit reconstruction program, TrakEM2, is a plugin written for
Fiji that allows the user to reconstruct, measure, and visualize neural structures in 3D.
The 3D morphological reconstructions are created by outlining structures of interest
throughout the sequence of EM images. TrakEM2 then creates a 3D representation of
the structure using the outlines. The CAST tool has been built directly into TrakEM2,
and is accessible through the toolbar just like the freehand tool. This makes it possible
for someone who is previously familiar with the TrakEM2 program to start using this
tool without any kind of specialized training.

1.2 Materials

EM images used in this work were acquired by briefly perfusing mice with saline. The
retinas were then removed and fixed in a cacodylate buffer. Retinas were embedded for
EM and imaged by Renovo Inc. For a more detailed description see the description that
was previously stated in [14].

2 Algorithms

CAST uses Multi-Layer Perceptron (MLP), a type of artificial neural network
(ANN) that is often applied to classification problems [17]. An ANN consists of nodes
called neurons, and learns based on how the information is passed through the network.
Information comes into a MLP through the input layer, is passed through a series of
hidden layers, and produces a classification based on which neurons are activated.

The training set used for CAST was created using Trainable Weka Segmentation in
Fiji [18]. Each pixel that is outlined in Trainable Weka Segmentation is used as an
example to train the neural network. The retina training set is comprised of 5,891 pixel
examples. The accuracy of the training set was tested using Weka Explorer, which
calculated the accuracy of correctly classifying pixels to be 96.4013% [19]. Trainable
Weka Segmentation provides many different filters to choose from for feature
extraction. To best optimize the results of the tool the following filters were used:
Gaussian blur, Hessian, Membrane projections, Sobel filter, difference of Gaussians,
and derivatives. These are all of the default filters with the exception of the derivatives
filter. Gaussian blur performs n individual convolutions with Gaussian kernels using
the normal n variations of r. Sobel filter calculates the gradient at each pixel and is
commonly used for boundary detection. This is helpful because there is a change in
gradients between the borders and inside area of retinal neurons. Hessian creates a
matrix at each pixel and generates features based on the different matrix operations.
Difference of Gaussians calculates two Gaussian blur images from the original image
and subtracts one from the other. Membrane projections use six different kernels to find
the sum, mean, standard deviation, median, maximum, and minimum of the pixels in
the image. The derivatives filter was added to the default settings because the contrast
between pixels is a key feature. With these filters selected ninety-seven
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features/attributes were produced. For more information on the filters refer to the Fiji
website [20]. The network used consisted of 97 input nodes, 1 hidden layer with 49
nodes, and 2 output nodes. To determine the number of nodes used in the hidden layer
the following formula was used, b attributesþ classes

2 c.

The network was trained using ten-fold cross validation. The learning method used
was the standard method of backpropagation (gradient decent). An image is given to
the network as input, and the network produces a binary image based on its classifi-
cations. This can be seen above in Fig. 1. The pixels the network classifies as a
boundary are white, and the pixels it classifies as not a boundary are black.

The Expand Area algorithm was used to explore outward from a single point.

The stopping function in Expand Area is an intensity threshold function [21].
Expand Area would stop if the difference of intensities is greater than a predefined
threshold value. However, the intensity threshold function proved to be insufficient at

Fig. 1. ANN image processing. Left: Electron micrograph of the retina. Right: The ANN
converts the image into one in which continuous features are consistently colored.
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finding boundaries, because a single misclassified pixel in a boundary can result in a
leak. Algorithm 2 prevents leaks of this nature by checking for a difference over a
number of pixels.

Using Algorithm 2, leaks are reduced; however, detecting boundaries based on
intensity gradient is sensitive to imaging parameters, cell type, etc. In some cases, a
thick membrane poorly stained may not present an adequate gradient to trigger the
stopping condition. Therefore, as a further refinement, an ANN was used to detect
boundaries and generate a binary image showing boundary and non-boundary. Expand
Area operates using the binary image produced by the neural network. When operating
on a binary image, m and M in Algorithm 2 are either 0 or 1.

Each pixel, assuming the pixel is not on the edge of an image, has eight neighbors
or eight possible directions of travel. Expand Area works by exploring each of these
neighbors. Once the algorithm runs into a boundary, a white pixel, it stops exploring in
that direction. This process is then shifted to a neighbor and repeated until there are no
neighbors left to explore, or it has reached a predefined stopping point. The process is
initiated with a single point supplied by the user via the mouse.

3 Results

3.1 Comparison with Fast Marching Method

In order to develop CAST we utilized an artificial neural network (ANN) and tested its
ability against fast marching. The fast marching algorithm has previously been used to
solve boundary value problems. Fast marching works similarly to Dijkstra’s algorithm,
using a travel time function [22]. The algorithm starts at one or more points. All the
neighbors of the starting points are initially labeled as far away or unvisited. Each
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neighbor is then explored, and considered using the travel time function or “the
propagation of the interface is done via the construction of the arrival time function”
[22]. Once all of the neighbors have been evaluated and when all fronts propagating in
opposite directions have met, fast-marching segmentation is finished [22]. The appli-
cations of the fast marching method range from fluid interactions to noise reduction and
image segmentation. The fast marching method and its applications to image seg-
mentation have been integrated into TrakEM2. Fast marching is used in TrakEM2 to
provide semi-automatic segmentation of structures. This method does well finding
boundaries when the contrast between the inner area and the boundary is high.
However, fast marching does have trouble with structures that have a lower contrast
between the boundary and inner area. The fast marching algorithm also has the problem
of leaking into adjacent structures. This happens if there is a gap in the boundary. Even
if there is a perceived one-pixel gap in the boundary, fast marching will leak into the
adjacent structure. Once fast marching leaks into the adjacent structure, it will continue
until it finds another boundary or it has reached its predefined stopping bounds.
Figure 2 shows a graphical representation of the leak problem.

3.2 Image Segmentation Using Neural Networks

Classifiers such as perceptrons, the basic component of neural networks, have been
found useful for identifying membranes in EM images [6]. There have been many
different approaches to image segmentation, including graphs and Random Forest
classifiers [8], but most of these involve an ANN. One kind of neural network that has
been widely used for image segmentation is the Convolutional Neural Network (CNN).
The CNN can compute the probability of a pixel being a boundary based on the pixels
around it [6]. The Sliding Window Network (SW-net) works by taking a sample of
pixels around a center pixel, classifying the center pixel, and then moving over by one
pixel [7]. The product of these methods can be a classification of the input image. The
accuracy of this classification is dependent on the training data, the features that were
selected, and the method of classification that was used. This method of image
segmentation takes a variable amount of time to produce accurate classifications.

Fig. 2. Fast Marching vs. ANN. Left: Fast marching results in mistaken identification of
continuous areas (red arrows). Right: The ANN is better able to predict continuous areas with
less leakage (green arrows; note absent leakage). (Color figure online)
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ANNs require significant computing power, which can be an important factor if the
data set is large. However, once the initial training process is complete far less com-
puting power is needed to classify images. Use of ANNs has become common in image
processing due to generally high performance, and our results do not differ in that we
also find classification by ANN to provide superior performance.

Fast marching works well with sharp contrast and solid boundaries. However, it
does not perform well with low contrasts and fragmented boundaries, as demonstrated
(Fig. 2A and B). This is due to the nature of the fast marching algorithm, its reliance on
the travel time function, and the fact that fast marching only considers part of the
selected area. This makes fast marching prone to leaks and missing low contrast
boundaries. The artificial neural network examines each pixel in the selected area. This
allows the neural network to make an accurate classification despite low contrasts and
fragmented boundaries. While leaks do occasionally occur using this method, the total
number of leaks is much smaller relative to the fast marching method. Fast marching
also tends to miss areas that the neural network would not. Outlines made using the
neural network are subjectively much more accurate than those made using fast
marching.

3.3 Comparing CAST to Manual Outlines

To determine the accuracy of the outlines made by CAST compared to those made by a
person, the following process was used: two different structures from the same image
stack were selected, structure A (blue) and structure B (yellow) as shown below in
Fig. 3.

To obtain a sample for comparison, structure A was outlined by three different
people (Outliners 1-3), and Structure B was outlined by four different people (Outliners
4-7). Both structures were then outlined using CAST. A direct comparison of pixel to
pixel would not show accuracy, but would instead show the different methods by which
structures were outlined. For example, some of the people who outlined the structures
followed the outside or went on top of the membranes, whereas CAST outlined the
inner area of a structure and stopped at the inside of a membrane. So, to compare the

Fig. 3. Left: Sample outline of structure A with 3D visualization. Right: Sample outline of
structure B with 3D visualization. (Color figure online)
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outlines a method was created where the outside edges of each outline were compared.
By comparing the outside edges of the outlines, or more specifically the distance
between them, an accurate comparison between the manual outlines and those made by
the ANN could be made. The reason for choosing the outside edges is because that is
where the 3D reconstruction would start.

This method of comparison is done on an image by image basis, but is averaged
over the entire stack. The process starts by filtering out everything except for the
outlines which turns the original images into binary images. Once there is nothing in
the images but the outlines, the points on the outside edges of each outline are added to
a list. Now that there are two lists of edge points, the distance is taken from an edge
point in the first list to an edge point at the same position in the second list. There is a
specific order in which the pixels are inserted into the list which means that a pixel at
the same position in the other list is the closest comparable point. After averaging all of
the distances between the edge points, an average slice distance is calculated. This
distance represents how far away the two outlines are from each other on average for
that slice. Then, an overall distance is made by averaging all of the slice distances over
the entire stack, which represents how far away the two outlines are from each other on
average throughout the entire stack. This entire process can be seen below in Fig. 4.

The CAST outlines were compared to manual outlines, and the manual outlines
were compared to one another. These outlines were all made using the same image set.
This shows the level of consistency of manual outlines, and provides a basis for
comparison with CAST. The comparison for structure A is first shown for manual
outlines (See Table 1) and then for the comparison of manual outlines to CAST out-
lines (See Table 2). The same thing was done with the second structure, structure B.
The manual outlines compared with manual outlines can be seen in Table 3 and the
comparison between the manual outlines and CAST outlines can be seen in Table 4.

Fig. 4. A visualization of how two different outlines are compared.
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As can be seen from the data above, the manual outlines and CAST outlines were
marginally close when comparing averages and standard deviation. Structure A had
more vesicles close to the border of the membrane which caused CAST to slightly leak.
This explains why the averages and standard deviation of structure A were further apart
than with structure B. Even though the averages may be off by approximately 10 pixels,

Table 1. Comparison of manual outlines for structure A.

Comparison Distance in pixels Distance in nano meters

Outliner #1 vs. Outliner #2 76.76753277844435 575.7564958383326
Outliner #1 vs. Outliner #3 73.02362443244613 547.677183243346
Outliner #2 vs. Outliner #3 102.0939481056508 765.704610792381
Average 83.9617 629.71276
Standard deviation 15.81417 118.60628

Table 2. Comparison of manual outlines of structure A versus CAST outlines.

Comparison Distance in pixels Distance in nano meters

Outliner #1 vs. CAST 95.30304500232596 714.7728375174447
Outliner #2 vs. CAST 97.11740386593159 728.3805289944869
Outliner #3 vs. CAST 111.86170045630398 838.9627534222799
Average 101.42738 760.70537
Standard deviation 9.08181 68.11355

Table 3. Comparison of manual outlines for structure B.

Comparison Distance in pixels Distance in nano meters

Outliner #4 vs. Outliner #5 64.57552124532171 484.3164093399128
Outliner #4 vs. Outliner #6 53.47594360350234 401.06957702626755
Outliner #4 vs. Outliner #7 63.33462374830779 475.00967811230845
Outliner #5 vs. Outliner #6 33.71191018709654 252.83932640322408
Outliner #5 vs. Outliner #7 28.71861934427826 215.38964508208696
Outliner #6 vs. Outliner #7 42.745693634818196 320.5927022611365
Average 47.76039 358.20289
Standard deviation 15.11998 113.39985

Table 4. Comparison of manual outlines of structure A versus CAST outlines.

Comparison Distance in pixels Distance in nano meters

Outliner #4 vs. CAST 79.95801682574454 599.685126193084
Outliner #5 vs. CAST 47.629824959831716 357.2236871987379
Outliner #6 vs. CAST 49.84039086063373 373.802931454753
Outliner #7 vs. CAST 51.11915791771337 383.3936843828503
Average 57.13685 428.52636
Standard deviation 15.28223 114.61676
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the pixels are very small which makes it an insignificant number. This shows that the
outlines made by CAST are still comparable to manual outlines.

In this study, we produced an application, CAST, to speed up manual recon-
struction of images gathered from multiple different media. Future work on the project
will continue with the same objective, streamlining the process of neural circuit
reconstruction. Simplifying this process can be achieved through further automation.
Currently the tool presents a method for semi-automatically outlining objects in two
dimensions. This two-dimensional limitation results from Expand Area’s reliance on a
neural network. Expand Area works in three dimensions [21], but the current neural
network only works in two dimensions. At this time the role of the user is to move
through an image stack manually and identify the structure of interest from one slice to
the next. Since there are upwards of six hundred images in a given stack, this task by
itself is extremely time consuming.

4 Conclusions and Future Work

The original purpose of this tool was to increase the productivity of researchers
working on neural circuit reconstructions. In an attempt to improve upon previous work
and increase accessibility, the tool was integrated into the Fiji/TrakEM2 platform.
Utilizing an artificial neural network, the tool can accurately recognize and fill a
structure. This tool is an improvement over the existing fast marching tool due to its
accuracy. This improved accuracy comes from the integration of machine learning.
Even though this tool was developed for EM images of retinal neurons, the tool can
still be used on other image data.

Future work will focus on automating this task. The main problem in attempting to
automate this process, is identifying the same structure from one slice to the next. There
are two reasons this problem is such a challenge. First, the structure of interest will not
look exactly the same from one slice to another. Since each slice is at a different depth,
each slice can be expected to have a slightly different look than the slices above or
below. This results from the voxels in an image stack looking more like vertical
rectangles than cubes. Second, the structure of interest is not always in the same place
from one slice to another even if the stack is aligned. This could be due to inconsis-
tency in the image data, or the structure could be in such a position that it appears to
move from slice to slice. A possible solution could be reached through expanding upon
previous work that involved recursive training of a neural network to classify
boundaries on three-dimensional images [4]. However, structures moving from slice to
slice could cause a problem. If part of the structure of interest shifted out of the area
being examined by the neural network somewhere in the stack, the results produced by
the network would be off.

One possible solution would be to move the region being examined by the neural
network on a slice-to-slice basis. The shift would be based on where the structure of
interest is located on the current slice. If the movement of a structure can be predicted
from one slice to another, the neural network could follow the structure through the
stack and make an accurate classification. Following a structure through the stack could
be accomplished by following the structures trajectory and drift, where trajectory refers
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to the direction of the structure, and drift refers to the distance that a structure moves
from one slice to another. Using trajectory and drift as a guide, an educated guess can
be made on where to look for the structure of interest in the next slice. The ultimate
goal of all this being the ability to outline an entire neuron in three dimensions with
only one click.

Acknowledgments. We would like to thank the students of the Fall 2016 CS492 Bioinformatics
class at Lewis-Clark State College for providing the manual outlines referenced in this study.
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1 Introduction

Electron tomography (ET) is an important method for studying three-
dimensional cell ultrastructure [1,2]. Combining with a sub-volume averaging
approach [3], ET provides new possibilities for investigating in situ structures
and conformational dynamics of macromolecular complexes in sub-nanometer
resolution [4]. However, because of the physical restriction of the sample stage
and the specificity of the biological samples, the sampling angles are usually
limited within −70◦ to 70◦ leading to missing information, also called ‘missing
wedge’ problem [5]. Thus, traditional ET methods, such as WBP [6], SIRT [7],
INFR [8] usually suffer from the ‘missing wedge’ artifacts, which severely weaken
the further biological interpretation [9].

Recent years, the topic of solving ‘missing wedge’ problem in ET has been
widely discussed and many algorithms have been proposed. FIRT [10] and DART
[11] apply prior constrains, including density smoothness, density non-negativity,
etc., to the reconstructed tomogram to compensate the ‘missing wedge’ problem.
Compressed sensing electron tomography tried to solve the reconstruction prob-
lem as an underdetermined problem based on a theoretical framework called
‘compressed sensing’ (CS) [12] and demonstrated certain success for the data
with a high signal to noise ratio (SNR) (e.g., material science data) [13–15]. To
cope with the low SNR case (e.g., biological cryo-ET data), Deng et al. [16] pro-
posed ICON by combining CS and non-uniform fast Fourier transform (NUFFT)
together. ICON not only can restore the missing information but also can mea-
sure the fidelity of the information restoration using a validation procedure.

Although ICON has demonstrated its power in restoring validated missing
information for low SNR biological ET dataset, the huge computational demand
becomes a bottleneck for its wide application. As the high performance com-
puting platforms becoming more and more popular, many ET reconstruction
algorithms have been ported to the heterogeneous system containing accelera-
tion units (graphics processing units (GPU) [17], many integrated core (MIC)
[18], field-programmable gate array (FPGA), and so on). Moreover, these ET
reconstruction algorithms will be more efficient if they are implemented on super-
computers such as Tianhe-2 [19] which is one of world’s Top5 supercomputer.

In this work, we developed the strategies of parallelization for ICON and
implemented them on a Xeon Phi 31SP coprocessor to generate the parallel pro-
gram ICON-MIC. In this step, to achieve high acceleration, we developed parallel
versions of NUFFT and adjoint NUFFT on MIC. And then we proposed a hybrid
task allocation strategy (TLLB) and extended ICON-MIC on multiple Xeon
Phi cards on Tianhe-2 supercomputer to generate program ICON-MULT-MIC.
Experimental results show that ICON-MIC has high accuracy and exhibit sig-
nificant acceleration factors compared to the CPU version ICON (ICON-CPU)
and ICON-MULT-MIC has good weak and strong scalability efficiency. Both
ICON-MIC and ICON-MULT-MIC are developed into software packages which
can be downloaded from our homepage: http://ear.ict.ac.cn.

http://ear.ict.ac.cn
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2 Related Work

2.1 Iterative Compressed-Sensing Optimized NUFFT
Reconstruction (ICON)

ICON is an iterative reconstruction algorithm based on the theoretical frame-
work of ‘compressed sensing’ and the complete workflow of ICON can be divided
into 4 steps: ‘Pre-processing’, ‘Gray value adjustment’, ‘Reconstruction
and pseudo-missing-validation’ and ‘Verification filtering’ [16]. A series of
tests show that ‘Reconstruction and pseudo-missing-validation’ accounts
for at least 95% of the execution time of ICON. Thus, the major task for accel-
erating ICON is paralleling this step effectively on MIC. The parallelization
of ‘reconstruction’ and ‘pseudo-missing-validation’ are similar and only
‘reconstruction’ will be discussed in this paper. The major steps of ICON
‘reconstruction’ can be briefly described as followed.

Step 1. Fidelity preservation step using steepest descent method [20].

r = AhWAxk − AhWf (1)

α =
rT r

rT AhWAr
(2)

yk+1 = xk + α ∗ r (3)

where xk is the two dimensional (2D) reconstructed image of the kth iteration. A
is the projection operation, we here define A as a nonuniform Fourier sampling
matrix, which performs Fourier transform on the non-integer grid points. Ah

stands for the conjugate transpose of A. W follows INFR’s description [8] and
contains the weights that account for the non-uniform sampling in the Fourier
space (similar to the ramp filtering in WBP). f is the Fourier transform of
acquired projections. r is the residual. α is the coefficient used to control the step
of updating. yk+1 is the intermediate updating result of the (k + 1)th iteration.

Step 2. Prior sparsity restriction step.

xk+1 = H(yk+1) =
{

0, if yk+1 < 0
yk+1, if yk+1 ≥ 0 (4)

where yk+1 is the intermediate updating result of the (k + 1)th iteration. H(·)
is a logic function. xk+1 is the 2D reconstructed slice of the (k + 1)th iteration.

We classified the operations of these two steps into three types: a. Element-
wise operations of matrices; b. The summation of a matrix; c. The NUFFT and
the adjoint NUFFT. For each type of operation, a strategy for parallelization is
proposed in Sect. 3.
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2.2 Non-uniform Fast Fourier Transform (NUFFT)

First, we give a brief description of NUFFT. Given the Fourier coefficients f̂k ∈
C,k ∈ IN and IN = {k = (kt)t=0,...,d−1 ∈ Z

d : −Nt

2 ≤ kt < Nt

2 , t = 0, . . . , d −
1} as input, NUFFT tries to evaluate the following trigonometric polynomial
efficiently at the reciprocal points xt ∈ [− 1

2 , 1
2 ), t = 0, ...,M − 1:

fj = f(xj) =
∑

k∈IN

f̂ke−2πikxj , j = 0, ....,M − 1 (5)

Correspondingly, the adjoint NUFFT tries to evaluate Eq. (6) at the frequen-
cies k:

ĥk =
M−1∑
j=0

fje
2πikxj (6)

NFFT3.0 [21] is a successful and widely used open source C library for
NUFFT and adjoint NUFFT. However, to our knowledge, no corresponding
library on MIC is available yet. Thus, we parallelled the NUFFT and the adjoint
NUFFT based on the algorithms described in NFFT3.0 and the algorithm of 2D
NUFFT is displayed in Algorithm 1 for deep analysis.

Algorithm 1: NUFFT
Input: M,N = {N1, N2} ,σ = {σ1, σ2} ,m, xj ∈ [− 1

2 , 1
2

)2
, j = 0, . . . , M − 1, f̂k

∈ C,k ∈ INn = σN = {n1, n2} = {σ1N1, σ2N2}
1: For k ∈ IN compute

ĝk = f̂k

|In|ck(ϕ̃)

ck (ϕ̃) = ϕ̂ (k1) ϕ̂ (k2)
2: For l ∈ In compute by 2-variate FFT

gl =
∑

k∈IN

ĝke−2πik(n−1�l)

3: For j=0, . . .,M-1 compute
fj =

∑
l∈In,m(xj)

glψ̃
(
xj − n−1 � l

)
In,m (xj) = {l ∈ In : n � xj − m1 ≤ l ≤ n � xj + m1}
ψ̃ (x) = ϕ (x1) ϕ (x2)

ϕ (x) and ϕ̂ (k) are the window functions. In this work, the (dilated) Gaussian
window functions (Eqs. (7) and (8)) are used.

ϕ (x) = (πb)− 1
2 e− (nx)2

b (b =
2σ

2σ − 1
m

π
) (7)

ϕ̂ (k) =
1
n

e−b(πk
n )2 (8)

where x is a component of the reciprocal points x. k is a component of the
frequencies k. σ is a component of the oversampling factors σ with σ > 1. n is
one component of n = σN . m ∈ N and m � n. In this work, σ = 2 and m = 6.
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The operations of NUFFT can be classified into three types: a. Element-wise
operations of matrices; b. Two dimensional fast Fourier transform (FFT); c.
Calculation of window functions.

3 Acceleration of ICON Using MIC Coprocessors

3.1 Parallel Element Wise Matrix Operations

In ET reconstruction, the size of a matrix is usually lager than the number of
processing units on MIC, so we need to select a proper number of processing
units (threads) to balance the control and computing resources. According to
our experiments on the Xeon Phi 31SP card, if the thread number is close or
equal to 228 (57 cores with each core having 4 hardware threads), all threads
joining in the computation will cause performance degradation. So we use 200
threads when parallelizing the element wise operations and we divide a matrix
into 200 parts and assign each part to one thread for calculation. Experiments
show that the matrices constituted large arrays in ICON has high allocation
cost using 4 KB pages. In order to reduce the allocation cost, we use 2 MB pages
in offload mode which also reduces the TLB misses and page faults. We take
advantage of the 512-bit vector processing unit (VPU) [22] on each core which
means 16 single-precision or 8 double-precision operations can be executed at
one time in order to achieve a high computational throughput for element-wise
matrix operations.

3.2 NUFFT and Adjoint NUFFT Parallelization

As mentioned in Sect. 2.2, there are three classes of operations in NUFFT and
adjoint NUFFT. The strategy for the parallelization of element-wise matrix oper-
ations in NUFFT and adjoint NUFFT is the same as the strategy described in
Sect. 3.1. To achieve a high performance of FFT, we take advantage of the FFT
library named Intel MKL FFT [23]. Thus, we use Intel’s FFT interface with mak-
ing memory alignment and changing the layout of multi-dimensional data in the
coprocessor memory to achieve high efficiency. We make memory alignment and
change the layout of multi-dimensional data in the coprocessor memory [24] to
achieve high efficiency.

For calculation of window functions, since ICON is an iterative algorithm,
NUFFT and adjoint NUFFT will be repeated many times. To cut down the time
of calculation and memory transfer, we use data persistence technology showed
in Fig. 1 by pre-computing the window functions, and storing them in device
memory. We used a resin embedded ET dataset (see Sect. 4.1 for detail) to test
the performance of parallel NUFFTs on MIC comparing to NFFT3.0. NFFT3.0
ran on one core (thread) of an Intel R© XeonTM CPU E5-2620 v2 @ 2.1 GHz
(6 cores per CPU), parallel NUFFTs ran on a Xeon Phi 31SP coprocessor of
Tianhe-2. The test datasets include the image sizes of 512 * 512, 1k * 1k, 2k * 2k,
4k * 4k. Experiments results show that parallel NUFFTs are 10 times faster than
the library NFFT3.0 in Fig. 2.
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Fig. 1. NFFT Pre-computing using data persistence

Fig. 2. The speedups of parallel NUFFTs compared to NFFT3.0.

3.3 Efficient Summation of a Matrix

Commonly, CPU program will execute the summation using one single thread.
However, for MIC, the computational capability of one thread is too weak to
sum up a whole matrix in a reasonable time.

Fig. 3. Summation of a matrix

OpenMP reduction clause is usually used to avoid executing the summation
on one core of MIC. However, it cannot take advantage of the 512-bit vector
processing unit on MIC. We use array notation which is part of Intel Cilk Plus
[25] to help the compiler with vectorization in order to achieve an efficient utiliza-
tion of all available processing resources. We compared these three summation
strategies mentioned above in Fig. 3. Using Intel Cilk Plus reduction with VPU
consumes the least running time, and thus it is used in ICON-MIC.
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3.4 Extend ICON-MIC on Multiple Xeon Phi Cards on Tianhe-2

To further satisfy the huge amount of computational requirements, we extended
the ICON-MIC on multiple Xeon Phi cards on Tianhe-2 to generate ICON-MULT-
MIC. To make ICON-MULT-MIC compatible for the architecture of Tianhe-2,
we proposed a hybrid task allocation model named Two-Level Load Balancing
(TLLB) by taking advantage of Message Passing Interface (MPI). TTLB combines
the static allocation (for the level on Xeon Phi cards) with dynamic allocation (for
the level on CPU nodes) and it can be described as Fig. 4.

In ET, the reconstruction of a 3D volume can be divided into a series of
similar tasks. Since each node on Tianhe-2 has three Xeon Phi cards, we separate
all tasks into a series of task subsets and each task subset contains three tasks.
During reconstruction, each node will dynamically request for one task subset
at one time after the previous task subset is finished. Within one node, each of
those three tasks will be statically assigned to one Xeon Phi card and ICON-MIC
is used to process them.

Fig. 4. TLLB for ICON on Tihanhe-2

4 Results and Discussion

4.1 Resin Embedded ET Dataset

We test ICON-MIC on a resin embedded ET dataset of MDCK cell section. The
tilt angles of the dataset originally range from −68◦ to +68◦ with 1◦ increment.
In order to verify ICONs’ ability of restoring miss information, we extract every
two projections from the original dataset to generate a new tilt series with 2◦

increment for the following experiments. The tilt series are aligned using atom-
align [26]. The original image size is 4k * 4k with a pixel size of 0.72 nm. We also
binned the tilt series with factors of 2, 4, 8 to generate datasets of 2k * 2k, 1k * 1k
and 512 * 512, respectively.

4.2 Reconstruction Precision

Firstly, we evaluate the numerical accuracy of ICON-MIC using the root-mean-
square relative error (RMSRE) ε, as Eq. (9).
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ε =

√√√√∑N*N
i=1

(
Pi−Ci

Ci

)2

N*N
(9)

where N ∗ N is the size of one slice; C is the slice reconstructed by ICON-CPU;
Ci is the value of the ith pixel in C; P is the slice reconstructed by ICON-MIC;
Pi is the value of the ith pixel in P ; ε is the root-mean-square relative error. All
reconstructed slices are first normalized into (0,1] using Eq. (10).

Inorm =
I − minI

maxI − minI
+ c (10)

where Inorm is the normalized slice; I is the originally reconstructed slice; minI
is the minimum value of I; maxI is the maximum value of I; c is a small constant
to avoid 0 in Inorm, in this work, c = 10−7. The RMSREs of ICON-MIC increase
slowly with the image size, but they are in the range of (10−6, 10−5) yielding a
reasonable numerical accuracy as showed in Fig. 5.

Fig. 5. The RMSREs of ICON-MIC

We further investigate the reconstruction accuracy by the pseudo-missing-
validation procedure [21]. Here, the −0.29◦ tilt (the minimum tilt) projection
was excluded as the omit-projection (‘ground truth’), see Fig. 6(a). We re-project
the reconstructed tomograms at −0.29◦. The re-projections of ICONs (Fig. 6(c,
d)) are identical with each other and the NCCs between each other are all 1.
The re-projections of ICONs are clearer in detailed structures and more similar
to the ‘ground truth’, compared to WBP (Fig. 6(b)). Such visual assessments
are further verified quantitatively by comparing the FRC curves between the
re-projections and the ’ground truth’. The FRCs of ICONs coincide with each
other, and they are better than that of WBP (Fig. 6(e)). The coincident FRCs
of ICONs further demonstrate the accuracy of ICON-MIC from the perspective
of restoring miss information.

4.3 Speed Up

We evaluate the acceleration of ICON-MIC by comparing the running time of
reconstructing one slice under 200 iterations. We reconstruct the datasets with
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Fig. 6. Evaluate ICON-MIC by the pseudo-missing-validation procedure. (a) The omit-
projection (‘Ground truth’); (b–d) the re-projections of the omit-tomograms recon-
structed by WBP, ICON-CPU and ICON-MIC respectively; (e) the pseudo-missing-
validation FRCs of WBP, ICON-CPU and ICON-MIC.

sizes of 512 * 512, 1k * 1k, 2k * 2k, 4k * 4k, respectively. ICON-CPU run on one
core (thread) of an Intel R© XeonTM CPU E5-2620 v2 @ 2.1 GHz, ICON-MIC
run on a Xeon Phi 31SP coprocessor of Tianhe-2. The acceleration of ICON-
MIC improves when the slice size increases (Fig. 7 and Table 1). The maximum
speedups are 13.3x for ICON-MIC in the reconstruction of a 4k * 4k slice. With
the efficient acceleration, the reconstruction time of one 4k * 4k slice is reduced
from hours to minutes.

Fig. 7. The comparison of time-consuming of ICON-CPU and ICON-MIC

4.4 ICON-MULT-MIC on Tianhe-2 Supercomputer

We tested the weak scalability and the strong scalability of ICON-MULT-MIC
on Tianhe-2 supercomputer. In weak scalability test, we fix the number of tasks
assigned to one processor, and in the strong scalability test, we fix the total
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Table 1. The speedups of ICON-MIC compared to ICON-CPU

Image size 512 ∗ 512 1024 ∗ 1024 2048 ∗ 2048 4096 ∗ 4096

ICON-MIC 5.2x 9.4x 10.9x 13.3x

number of tasks in all nodes; and then we valuate how the executing time varies
with the number of processors.

Firstly, we tested the weak scalability with image sizes of 1024 * 1024 and
2048 * 2048. We gradually increase the number of Xeon Phi cards from 3 to 48.
As the node gradually increases, the total number of image being processed also
increases. The executing time showed in Fig. 8(a) increases from 875 s to 900 s,
which indicated that the developed parallelization strategy is good for weak
scalability.

Secondly, we tested the strong scalability. We fix the test image size to be
1024 * 1024 and the total number of images to be 48 which equal to the biggest
number of Xeon Phi cards. We only increase the number of Xeon Phi cards
from 3 to 48. From the Fig. 8(b), we can observe that the parallel efficiency
decreases to 92% when using 12 Xeon Phi cards and further to 83% when using
48 Xeon Phi cards. The observed degradation of the strong scalability efficiency
is acceptable.

Fig. 8. Scalability results on Tianhe-2

5 Conclusion

In the present work, we analyze the iterative framework of ICON and classify
the operations of ICON’s major steps into three types. Accordingly, we design
the strategies of parallelization for ICON and implement them on single MIC
card to generate parallel program ICON-MIC. We also develop a parallel version
of NUFFT and adjoint NUFFT on MIC. To satisfy the huge amount of com-
putation requirements, we proposed the hybrid task allocation strategy (TLLB)
and expanded the ICON-MIC on multiple Xeon Phi cards to generate ICON-
MULT-MIC.
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We test ICON-MIC on a resin embedded ET dataset of MDCK cell section.
The RMSREs of ICON-MIC are about 10e-6 yielding an reasonable numeri-
cal accuracy. The high reconstruction accuracy demonstrates that ICON-MIC
have the same ability of restoring miss information as ICON-CPU. Experimental
results also show ICON-MIC have a good acceleration, 13.3x for ICON-MIC in
the reconstruction of one 4k * 4k slice and ICON-MULT-MIC has good weak and
strong scalability efficiency. Experimental results indicate that ICON-MULT-
MIC can use the heterogeneous computational resources of Tianhe-2 supercom-
puter effectively.
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Abstract. An alternative formulation based on dihedral angles to the
molecular distance geometry problem with imprecise distance data is
presented. This formulation considers the additional hypothesis of a par-
ticular ordering such that all distances ||xi − xj || = dij , |i − j| < 3,
are known. Considering that bond length and angles are given a priori
in a protein backbone, there is always at least one of such ordering in
instances involving real protein data. This hypothesis reduces by 2/3 the
number of variables of the problem and allows us to calculate the deriv-
atives of the standard Cartesian coordinates representation with respect
to the dihedral angles. Numerical experiments illustrate the correctness
and viability of the proposed formulation.

Keywords: Distance geometry · Modeling · Dihedral angles · Opti-
mization

1 Introduction

In its more general formulation, the molecular distance geometry problem
(MDGP) with imprecise distances consists of determining a configuration x =
(x1, . . . , xn) ∈ R

3n satisfying the inequalities

lij ≤ ||xi − xj || ≤ uij ,∀(i, j) ∈ E ⊂ {1, . . . , n} × {1, . . . , n}, (1)

where lij and uij are given positive real numbers [7].
Out of necessity, mathematical models are based on simplifications of reality.

The greater the abstraction, the more extensive the scope of results. However,
sometimes, additional hypotheses do not restrict the number of practical appli-
cations. The present work explores one of these cases, where we consider the
additional hypothesis of existence of a particular order {k1, . . . , kn} such that
all distances ||xki

− xkj
|| for |ki − kj | < 3 are known. As we shall see in Sect. 2,

this additional hypothesis does not exclude real instances, since there is always
at least one such order in instances involving real protein data [2].

In Sect. 3, we will show that the ordering hypothesis allows to reformulate
the MDGP in terms of dihedral angles instead of Cartesian coordinates. With
this, we reduced by 2/3 the number of variables of the original problem.
c© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 270–278, 2017.
DOI: 10.1007/978-3-319-59575-7 24
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A natural approach to solve the MDGP is to turn it into an optimization
problem and apply a standard optimization algorithm or some specialized heuris-
tic [6]. The standard optimization formulation defined by Crippen et al. [3] is
the global optimization problem

(P ) min
x

⎧
⎨

⎩
f(x) ≡

∑

(i,j)∈E

pij(xi − xj)

⎫
⎬

⎭
, (2)

where the penalty function pij : R3 → R is given by

pij(x) = max(lij − ||x||, 0) + max(||x|| − uij , 0). (3)

It is easy to see that f(x) ≥ 0 and f(x) = 0 if, and only if, x is a solution of the
problem.

In general, the algorithms for the optimization formulation of the MDGP
make use of derivatives [8,11]. With this motivation, we present the explicit form
of the derivatives of the parametrization with respect to the dihedral angles in
Sect. 4.

In Sect. 5, we present some numerical experiments validating the formulation
and its derivatives.

2 Biological Motivation

One of the most important applications of the MDGP is the determination of pro-
tein structures using data from nuclear magnetic resonance (NMR) spectroscopy.
As is well known, there is a direct connection between the three-dimensional
structure of proteins and the functions they perform. Proteins are composed
of amino acids and, although there are more than 500 amino acids, only 22
variations of them occur naturally [1,5]. Therefore, each naturally synthesized
protein can be represented as a string, where each character represents one of 22
different amino acids. Unfortunately, there is no sufficiently precise and robust
method to obtain the geometry and therefore the function of a protein from the
knowledge of the sequence of the amino acid residues that comprise it. Instead,
current experimental techniques analyze samples from each individual protein
[10].

Experimental techniques for determining protein geometries differ by preci-
sion (resolution) and by the environments in which they can be applied. Despite
the relatively low resolution, NMR is one of the most applied techniques in
determining protein structures (see Table 1). One of the appeals of NMR is the
possibility of applying it in aqueous media normally found in living organisms.
This advantage is important because it allows analyzing dynamic aspects as the
ones related to the temperature variation [4]. NMR does not directly provide the
positions of the atoms. Instead, it gives the distances between pairs of hydrogen
atoms whose distances are less than 5–6 Å [10].

Not all interatomic distances need to be estimated by resonance. In fact, some
interatomic distances are typical and do not vary with the specific geometry of
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Table 1. Number of protein structures in Protein Data Bank (PDB) obtained by
different experimental techniques (From: PDB - Accessed in 01/30/2017).

Method #Proteins

X-Rray 105,656

NMR 10,257

Electron microscopy 993

Hybrid 97

Other 181

Total 117,184

the protein, since they depend only on the type of chemical bonding and the
elements involved [10]. Thus, the interatomic distances can be divided into two
groups. The first formed by approximately exact distances

||xi − xj || = dij (4)

which do not rely on conformation. And the second group,

lij ≤ ||xi − xj || ≤ uij , (5)

formed by imprecise distances (inequalities) estimated experimentally.
In the original formulation of the MDGP, there is no differentiation between

these two groups. However, considering that bond lengths and bond angles are
fixed [10], we can define an atomic ordering {k1, . . . , kn} such that

||xki
− xkj

|| = dkikj
∈ R, ∀(ki, kj) such that |ki − kj | < 3. (6)

In other words, there is always an enumeration that guarantees the existence
of exact distances connecting a given atom to its two immediate successors. For
simplicity, we will consider without loss of generality that the ordering {1, . . . , n}
has this property.

3 Parametrization via Dihedral Angles

Despite simplicity, this hypothesis of ordering has very sophisticated implica-
tions. One is that, from the knowledge of the distances dij , |i − j| < 3, we can
uniquely determine, except for translations and rotations, triangle Tk involving
the triple (k, k+1, k+2) of consecutive atoms. This implication may be extended
to an arbitrary number of atoms. For example, for each quadruple of consecutive
atoms, say, (k, k+1, k+2, k+3), we can associate a structure formed by the trian-
gles Tk and Tk+1 having the edge (k+1, k+2) in common (see Fig. 1). In general,
a sequence {1, 2, . . . , n} will determine an ordered structure T = {T1, . . . , Tn−2}
formed by n− 2 triangles, where each triangle Tk shares the edge (k, k +1) with
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its predecessor Tk−1 and the edge (k+1, k+2) with its successor Tk+1. Note that
the only possible relative movement between two triangles that share an edge
is a rotation around this same edge. Thus, the degrees of freedom or flexibility
of the structure T are given by the dihedral angles ωk between the successive
triangles Tk and Tk+1. In other words, the protein backbone structure can be
characterized exclusively by the dihedral angles ωk.

k+1

k

k+2

k+3

kTk

Tk+1

Fig. 1. Each triple of consecutive atoms defines a single triangle except for translations
and rotations. Each pair of consecutive triangles with a common edge defines a dihedral
angle ωk.

If we want to modify only the relative distance between the triangles Tk

and Tk+1, we simply rotate all the triangles Tj from j > k around the edge
(k + 1, k + 2) since, in this way, the only pair of neighboring triangles that will
exhibit relative motion will be (Tk, Tk + 1). Note that rotating the triangles Tj

for j > k around the edge (k + 1, k + 2) means simply rotating the vertices
j for j > (k + 2) around this same edge. That is, we can explore the entire
space of possible configurations by using rotations around the edges shared by
neighboring triangles.

We conclude that the ordering hypothesis reduces the MDGP to the prob-
lem of finding a configuration T = {T1, T2, . . . , Tn−2} of triangles with vertices
xj ∈ R

3 that satisfy the inequality constraints of Eq. (5), since the equality
equations are automatically satisfied by the definition of triangles Tk. Since the
configurations T are characterized exclusively by the dihedral angles ωk, the
solution x of the MDGP is determined by ω = (ω1, . . . , ωn−3). In other words,
we get a new problem, called MDGPω, in the variable x(ω).

Definition 1 (MDGPω). Determine ω ∈ R
n−3 (vector of dihedral angles) such

that

lij ≤ ||xi(ω) − xj(ω)|| ≤ uij ,∀(i, j) ∈ E ⊂ {1, . . . , n} × {1, . . . , n}, (7)

where lij and uij are given positive real numbers.
The MDGPω formulation has some advantages. The first one is the reduction

in the number of variables. Instead of 3n real coordinates, we use n − 3 dihedral
angles. Additionally, in real instances there may be restrictions for the dihedral
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angles formed by certain chemical bonds which would be much more complicated
to characterize in terms of the Cartesian coordinates. However, these advantages
are obtained at the cost of increasing the complexity of the representation and,
consequently, the increase of the time required to evaluate the model function
and its derivatives.

4 Calculating Rotations

We can explicitly write x(ω) using rotations. Obtaining an explicit representation
of x(ω) will be fundamental in order to define the objective function of the
optimization formulation of the MDGPω and to calculate the derivatives required
by the most efficient optimization algorithms.

As discussed earlier, the relative motion of the triangle Tk+1 with respect
to the triangle Tk is given by the rotation of the vertex xk+3 around the edge
(k + 1, k + 2) shared by Tk and Tk+1. Moreover, if we want to modify only
the angle ωk, then we have to apply the same rotation at all vertices xj for
j > (k + 2).

Since rotations play an important role in argumentation, it will be useful to
adopt a synthetic representation for them. Therefore, define R(θ, p, u, v) as being
the result of the rotation of point p ∈ R

3 by the angle θ around the axis given
by the line containing points u, v ∈ R

3. The analytic expression for the point
y = R(θ, p, u, v) ∈ R

3 is given by

y = (1 − cos(θ))

⎡

⎣
z1(w2

2 + w2
3) − w1(κ − z1w1)

z2(w2
1 + w2

3) − w2(κ − z2w2)
z3(w2

1 + w2
2) − w3(κ − z3w3)

⎤

⎦

+ sin(θ)

⎡

⎣
−z3w2 + z2w3 − w3p2 + w2p3
z3w1 − z1w3 + w3p1 − w1p3

−z2w1 + z1w2 − w2p2 + w1p2

⎤

⎦ + cos(θ)p, (8)

where w = (u − v)/||u − v|| is the normalized direction and κ = w · (u − p) [9].
The idea is to represent x(ω) using successive rotations. For this, we need

an initial configuration x0 = (x0
1, . . . , x

0
n) ∈ R

3n that satisfies the constraints
of Eq. (4) and has dihedral angles ωk = 0. Finally, starting from the reference
configuration x0, we will construct a sequence x1(ω), . . . , xn−3(ω) ∈ R

3n and we
will assign x(ω) = xn−2(ω).

The iterative step in constructing the sequence {xi}n−2
i=1 is given by

xi
j = xi

j(ω) =
{

xi−1
j (ω), if j < (i + 3)

R(ωi, x
i−1
j (ω), xi−1

i+1(ω), xi−1
i+2(ω)), otherwise,

(9)

where xi
j ∈ R

3 represents the position occupied by the j-th vertex after the
application of the rotation associated with ωi. By definition, the configuration
x1 is obtained from x0 applying the rotation by angle ω1 and axis (x0

2, x
0
3) on all

triangles Tk for k > 1. With this, all triangles but T1 are rotated and, moreover,
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the dihedral angle between T1 and T2 will be ω1. Note that this rotation modifies
(updates) all coordinates x0

j for j ≥ 4. In the second step, the configuration x2

is obtained from x1, but now rotating the triangles Tk for k > 2. In this way,
only the dihedral angle between T2 and T3 is modified and, even more, its value
becomes exactly ω2. The process is repeated successively until all the dihedral
angles have been fixed (i = n − 2). It is important to note that this procedure
allows to arbitrarily define each of the dihedral angles.

The derivatives σi
jk = ∂xi

j(ω)/∂ωk can be calculated directly from Eq. (9).
Note that the rotation of angle ωk only affects the index points j > (k + 2) of
the configurations xi for i ≥ k. Therefore, using the chain rule, we get

σi
jk =

∂xi
j(ω)

∂ωk
= ∇tR(ωi, x

i−1
j , xi−1

i+1, x
i−1
i+2)(δik, σi−1

jk , σi−1
i+1,k, σi−1

i+2,k), (10)

if j > (k + 3) with i ≥ k, and σi
jk = 0 otherwise.

Although laborious, the derivative (Jacobian) of the rotation R can be calcu-
lated from Eq. (8). We can thus apply any of the MDGP optimization methods
in the MDGPω formulation.

5 Numerical Experiments

In this section we will present some computational results validating the MDGPω

formulation. Our objective is to illustrate the validity of the formulas presented
in the previous section and the applicability of the proposal. We will consider
the formulation

(Pω) min
ω

f(x(ω)), (11)

derived from Eq. (3), where x(ω) = (x1(ω), . . . , xn(ω)) ∈ R
3n is given by Eq. (9)

and the control variables are the dihedral angles ω = (ω1, . . . , ωn−3) ∈ R
n−3.

The functions ||x|| and max{α, 0} with α ∈ R on the formulation (Pω) are
not differentiable. Thus, to verify the validity of the derivatives of x(ω), we will
use the hyperbolic approximations

θτ (y) =

√
√
√
√τ2 +

3∑

k=1

y2
k and φτ (α) = (α +

√
α2 + τ2)/2, (12)

where the parameter τ controls the approximation quality [11,12]. In fact, we
have that θτ (y) = ||y|| and φτ (α) = max{y, 0}, when τ → 0 (see Fig. 2).

With these substitutions, we obtain a differentiable and arbitrarily close for-
mulation (Pτ,ω) to the problem (Pω). In addition to differentiability, the θτ and
φτ functions reduce the number of local minima by convexifying the parcels of
the objective function of the problem (Pτ,ω). However, the convexification is
achieved with values τ relatively high causing the smoothed problem (Pτ,ω) to
be very different from the original problem. To remedy this situation, the paper
[11] proposes a heuristic, called SPH, where a sequence of problems (Pτi,ω) is
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Fig. 2. Hyperbolic smoothing versions of max(α, 0) and ||x||. The parameter τ controls
the approximation degree.

solve for τ0 > τ1 > . . . > τm with τm → 0. The solution of the problem (Pτi,ω)
is taken as the starting point of the next problem (Pτi+1,ω). Thus, as experi-
mentally exemplified in that paper, trajectories that converge to less interesting
local minimizers are generally avoided.

The SPH heuristic and the ideas expressed in Eqs. (8)–(10) were imple-
mented in Matlab. We called SPHω the application of the SPH routine on the
modified problem (Pω).

The developed codes were tested on 100 instances of 8 randomly generated
points. In each of these instances, we consider all equality distances dij = ||xi −
xj || for |i − j| < 3 and set the limits lij = (1 − ε)dij and uij = (1 + ε)dij with
ε = 0.1 for the distances dij < 5 with |i − j| ≥ 3.

In our computations results, a set of coordinates x(ω) ∈ R
3n solves the

MDGP if

(1 − μ)lij ≤ ||xi(ω) − xj(ω)|| ≤ (1 + μ)uij , ∀(i, j) ∈ E (13)

for tolerance parameter μ = 0.1.
Table 2 presents the results of the experiments comparing the performance

of the SPHω heuristic with Quasi-Newton (QN) algorithm used by the Matlab
local minimization routine fminunc. We considered the same randomly generated
initial points in both alternatives. As we can see, the SPHω proposal is effective
in obtaining solutions in 90% of the instances against 67% of the QN algorithm.
This results corroborate the hypothesis of correctness of both the formulation
and the derivatives of MDGPω model.

Table 2. Computational results.

ns nf Time (sec)

QN 67 328.18 0.35

SPHω 90 101.56 0.98

However, these promising results are attenuated by the time required to solve
the problem (Pω). In fact, the time of an evaluation of the function f(x(ω)) was
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on average 10x higher than that of the function f(x). Despite the use of a
interpreted language environment as Matlab, this performance is mainly due to
the recursive calls used in the implementation of the derivatives with respect to
the dihedral angles.

6 Conclusions and Future Works

We presented a new formulation for the molecular distance geometry problem
based on dihedral angles. Instead of the traditional approach that makes use of
the Cartesian coordinates, this formulation uses an specific ordering to reduce
the problem to the dihedral angles defined by each quadruple of consecutive
atoms. This formulation reduces by 2/3 the number of variables of the original
formulation.

We also presented the calculations of the derivatives of the Cartesian coordi-
nates as a function of the dihedral angles. Finally, we illustrate through numerical
experiments that our proposal can be used in conjunction with heuristics based
on Cartesian coordinates.

The current version of the code makes intensive use of recursive calls which
demands high computational time. We plan to explore opportunities for paral-
lelism and scalability in future work. Note that there is no mandatory reason to
use xi−1 and xi−2 as the axis of xi(ω) rotation. In fact, any given pair (xj , xk)
related to already fixed points could be used to define the rotations of xi such
that ||xi − xj || and ||xi − xk|| are known. In this case, each of these rotations
could be applied in parallel once they are independent. Another advantage of
this improvement would be the reduction of recursive calls because xi would not
necessarily depend on xi−1.

The instances and source codes used in this work can be obtained from the
GitHub repository https://goo.gl/BnrMNZ.
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Abstract. Scientists exploring a new area of research are interested to
know the “hot” topics in that area in order to make informed choices.
With exponential growth in scientific literature, identifying such trends
manually is not easy. Topic modeling has emerged as an effective app-
roach to analyze large volumes of text. While this approach has been
applied on literature in other scientific areas, there has been no formal
analysis of bioinformatics literature.

Here, we conduct keyword and topic model-based analysis on bioinfor-
matics literature starting from 1998 to 2016. We identify top keywords
and topics per year and explore temporal popularity trends of those
keywords/areas. Network analysis was conducted to identify clusters of
sub-areas/topics in bioinformatics. We found that “big-data”, “next gen-
eration sequencing”, and “cancer” all experienced exponential increase in
popularity over the years. On the other hand, interest in drug discovery
has plateaued after the early 2000s.

Keywords: Bioinformatics · Scientific literature · Data mining · Topic
modeling · Text analysis · Temporal mining

1 Introduction

Scientific literature holds a rich record of the ever-changing landscape of thought
and observations in a wide variety of domains. Within a particular domain,
researchers are increasingly interested in exploring scientific literature to gain
insights on how research develops and evolves over time [24]. For instance, this
kind of analytical data-driven insight can benefit researchers as they delve into
new areas by providing knowledge of current popular topics and how the focus
on different topics has shifted through time [1,24]. While the advent of digital
publishing and open access science have led to greater access to scientific content,
the sheer volume has made it very difficult for researchers to analyze literature
at a high level and identify temporal trends in the evolution of research areas.
[24]. This problem is particularly relevant in the thriving field of bioinformatics
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that encompasses several sub-areas garnering interest from biologists, computer
scientists, and mathematicians.

Several approaches have been developed for analyzing text to identify seman-
tic content, the most notable being topic modeling. Topic modeling is a text min-
ing technique that identifies the hidden thematic/latent structure in collections
of documents thereby allowing us to efficiently summarize large volumes of text
[6]. Topic modeling algorithms take documents in a corpus and identify salient
words grouping them to form ‘topics’. Each document in a corpus is represented
as a probabilistic mixture of topics while each topic consists of a mixture of
words. In this manner, topic modeling algorithms discover patterns in textual
data via topic generation and use those topics to connect documents with similar
content [1]. This approach of analyzing text has been used in disparate domains
such as social sciences, business analytics, and computer science.

While there are several topic modeling algorithms [6,10,11], Latent Dirichlet
Allocation (LDA) [6] is one of the most widely used approaches and has been
shown to be effective at finding distinct topics from a corpus [7,24]. In LDA, the
topic distribution is assumed to have a Dirichlet prior unlike other algorithms
such as LSA [10] and pLSA [11].

Fig. 1. LDA model representation for W words over D documents with K topics [6].
The two boxes represent replicates with the outer box representing documents and the
inner box representing topics and words within a document.

LDA is a generative statistical model that models each of D documents in a
corpus as a mixture of K topics where each topic corresponds to a multinomial
distribution of W words [6] (Fig. 1). Other parameters in the model are defined
as follows:

– α: Dirichlet prior on the topic distributions of each document
– β: Dirichlet prior on the word distributions of each word,
– θd: Topic distribution for document d,
– ϕk: Word distribution for topic k,
– zij : Topic for the ith word in document j, and
– wij : A particular word.
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One of the input parameters of the LDA algorithm is the number of topics
(K) to be identified from the corpus. Several studies have developed approaches
to determine the optimal number of topics [4,22]. While there are likelihood
based measures that help determine the right number of topics, these measures
cannot be used alone to find the best model [3].

Here, we present our work on analyzing decades of Bioinformatics scientific
literature to identify broad research themes and how those themes evolve across
time. The goal of this work is to provide an exploration of different research areas
within bioinformatics, identify “hot” areas and show how these areas interact
with one another. We conduct a two-pronged analysis to achieve this goal. First,
we analyze keywords and their popularity in each year to understand trends in
popular research. A network of top keywords is built to identify clusters within
these popular areas to observe interactions. Next, we apply topic modeling on
abstracts to identify salient research themes at greater detail than keywords.
These themes are complementary to themes identified from keywords. A network
of topics is created to show how these research themes overlap and interact with
each other. We explore temporal analysis of 10 curated topics to identify how
research topics trend over time.

2 Related Work

Several studies have demonstrated the use of topic modeling to analyze scientific
literature. Paul and Girju conducted analysis of literature in Computational
Linguistics, and Education [17]. Their work shows how topics change over time
in each field and how topics across fields are related. Similarly, Bolelli and Gilesb
analyzed publications to identify research topics in computer science, influential
authors, and trends related to those topics [7]. In a recent study, Kane et al. used
topic models to compare the development of research on crops such as wheat,
rice, sorghum, etc. [13]. Results from the topic models revealed interesting trends
on how research on perennial crops was advancing and that is different from the
progress on individual crops.

Much closer to our work is Altena et al.’s study on understanding the term big
data from a text analysis of bio-medical literature [3]. While there are similarities
in the literature corpus and techniques being applied, Altena et al.’s work differs
from this study in that they restrict their study to big data literature in the bio-
medical field while we analyze all areas of bioinformatics literature. In addition,
we aim to search for over-arching patterns and trends in bioinformatics rather
than focusing on one particular concept such as big data. Lastly, Suominen et al.
performed topic modeling using LDA on scientific literature from Web of Science
to compare how latent topics identified by LDA correlate with human assigned
keyword categorization. The only use of topic models relating to bioinformatics
to the best of our knowledge has been to answer specific research questions such
as cluster analysis on medical, biological genotyping data [23] and toxicogenomics
data analysis [15]. There is a notable lack of topic modeling based text analysis
aimed at the wide corpus of bioinformatics literature to identify salient research
topics and their evolution over time. Our work here aims to fill this gap.
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3 Methods

3.1 Data Collection - Creating the Corpus

Scientific literature for this study was obtained by searching the Scopus data-
base (https://www.scopus.com/) using the search term “bioinformatics”. Sco-
pus adds relevant index terms selected from controlled vocabularies to all pub-
lications (https://www.elsevier.com/ data/assets/pdf file/0007/69451/scopus
content coverage guide.pdf). In addition to author keywords and titles, these
index terms are used for searching. A list of publications matching the search
term were retrieved using the Scopus API. Next, Scopus was queried to retrieve
additional data such as authors, keywords, abstract, year of publication, and
other metadata corresponding to the publication. For each publication, a doc-
ument was created by concatenating the corresponding title, keywords, and
abstract. A corpus of scientific literature was created by putting together docu-
ments corresponding to each publication.

3.2 Keyword-Based Analysis

Publications were analyzed based on their keywords in the following ways:

1. The number of publications per year was examined to identify any significant
trends in research output across years.

2. The number of unique keywords observed in each publication year was
extracted to explore correlations with the distribution of publication output.

3. A list of 25 keywords selected from the top keywords per year was curated
and temporal analysis of their popularity across years was conducted. The
popularity of a keyword computed using its occurrence frequency across doc-
uments per year was normalized to the [0, 1] range using min-max scaling.
This analysis identified research areas experiencing upward spikes and rise in
popularity and those experiencing decline.

4. A network of the top 25 keywords per year was built to explore relation-
ships, inter-connectivity, and to identify clusters among these keywords. The
network arranges the set of keywords into clusters and identifies intra- and
inter-cluster interactions. Keywords in the network are weighted based on
the prominence of their association with different publications. The larger
the proportion of publications a keyword is associated with, the larger the
keyword appears on the network. The network was constructed using Gephi
(https://gephi.org/), an open source tool for network building and analysis.
Clusters/communities in the keyword network are detected and optimized
using the Louvain method [9]. After initial clusters are formed, the modular-
ity optimization component further optimizes the clusters.

3.3 Topic Model Based Analysis

Latent Dirichlet Allocation was applied on the literature corpus - a collection of
documents, one corresponding to each publication. 6 topic models were created

https://www.scopus.com/
https://www.elsevier.com/__data/assets/pdf_file/0007/69451/scopus_content_coverage_guide.pdf
https://www.elsevier.com/__data/assets/pdf_file/0007/69451/scopus_content_coverage_guide.pdf
https://gephi.org/
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using K (number of topics) in the range of 25 to 150 at increments of 25. These
topic models were evaluated through manual examination. For each model, 20
top words per topic were examined to assess scientific coherence of the words as
a set, overlap in topic words across topics, and human understandability. The
selected model was used for all subsequent analyses.

After model selection, publications were analyzed based on their topics in
the following ways:

1. The top 10 salient words relevant to 10 curated topics in the model were
extracted and reported. This report provides a descriptive view of the topic
model and verifies if topics identified by the model match natural human
perception of the sub-areas of research within biology/bioinformatics.

2. A topic similarity network of all topics was built to identify topic clusters
and their interplay. This allows for the identification of exciting clusters of
research areas within bioinformatics.

4 Results

Searching for the term “bioinformatics” on the Scopus database resulted in
85,106 publications between the years of 1998 and 2016. When grouped by year,
we see an upward trend in the number of publications per year (Fig. 2) except
for years 2012 and 2013. Surprisingly, there appears to be a noticeable drop in
publications in those two years.

4.1 Keyword-Based Analysis

We found 100,754 unique keywords across the 85,106 publications spanning
across 18 years with an average of about 3 keywords per publication. The trend
in the distribution of unique keywords in publications per year (Fig. 2) is very
similar to the distribution of yearly publication numbers.

Temporal Keyword Trends. We manually curated 25 interesting keywords
from top keywords in each year. Figure 3 shows the popularity trends of these
25 curated keywords. “big data”, “proteomics”,“rna seq”, “cancer”, “next gen-
eration sequencing”, and “transcriptomics” are among the areas that exhibit an
increasing presence in publications over the last decade. It is interesting to see
the emergence of big data applications within bioinformatics around 2010 accom-
panied by an exponential increase in relevant publications. “rna seq”, or rna
sequencing, is another area that emerged during the later parts of the past decade
and has emerged as a very popular research area. Unsurprisingly, the trend of
“next generation sequencing” is similar to “rna seq”. Overall, “next generation
sequencing techniques”, “cancer informatics”, “biomarkers”, “metabolomics”,
“mirna”, “machine learning”, and “big data” are promising areas of research
based on these trends. The emphasis on “cancer”, “biomarkers”, and “big data”
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indicate that health informatics is a sought after specialization. However, sur-
prisingly, the same positive trend is not observed in the area of “drug discovery”
which has plateaued over time. “functional genomics”, “ontologies”, and “neural
networks” show mixed trends.

Fig. 2. Distribution of publications and unique keywords per year

Fig. 3. Temporal trends of popularity of keywords over time.

Keyword Network. The network built using the top 25 keywords per year
comprises 6 clusters shown in blue, pink, purple, green, brown, and grey (Fig. 4).
It is evident that the blue cluster is central to the network with substantial
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overlap with other clusters. For lack of space, we only show the central blue
and the green cluster in greater detail (Figs. 5 and 6). The blue cluster (Fig. 5)
is largely focused on health informatics - in particular the study of different
types of cancer such as “colorectal”, “prostate”, “breast”, etc. The cluster accu-
rately identifies that microarray and gene expression analyses have been signif-
icant contributors to the study of cancer in the past decades [8,12,18]. It also
hints at more recent approaches to cancer analytics which include using “gene
ontology”, “text mining”, and machine learning approaches such as “clustering”,
etc. [14,20].

Fig. 4. Network of the top 25 keywords per year from 1998–2016 (Color figure online)

The green cluster (Fig. 6) focuses largely on sequence analysis and alignment
using algorithms and techniques from graph theory. The green cluster contains
certain nodes that are a bit distant from the rest of the cluster. These words
include “MPI”, “hadoop”, “mapreduce”, “cuda”, and “membrane”, “cloud com-
puting”. Interestingly, all these words pertain to big-data approaches that have
recently come into play to analyze high throughput data from next generation
sequencing approaches [19,21]. As sequencing data becomes more and more com-
plex and voluminous, we can expect these words to become more central to this
cluster over time.

The brown cluster focuses on computational techniques such as data min-
ing, machine learning, feature selection for drug design and discovery, protein-
structure prediction, pattern recognition, structural bioinformatics, etc. Moving
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Fig. 5. Cancer informatics cluster (Color figure online)

Fig. 6. Sequence analysis cluster (Color figure online)

on to the pink cluster, we see “data integration”, “database”, “semantic web”,
and ontologies being used for the study of phenotypes, evolution, and phyloge-
nies. This cluster points to the increasing applications of ontologies and data
integration for the study of evolutionary phenotypes [16]. The grey cluster is
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largely related to proteomics, systems biology, functional genomics, analysis of
microrna etc. The purple cluster is related to next generation sequencing, gene
expression analyses, genomics, transcriptome, and genetics.

5 Topic Model-Based Analysis

Six topic models were created using number of topics (K) ∈ [25, 50, 75, 100,
125, 150]. After careful manual evaluation of the topics and their top words, the
model built using 50 topics was selected based on topic coherence and human
understanding. Increasing the number of topics would make each individual topic
more specific and might increase overlap between topics. Decreasing the number
of topics, would result in more high-level abstract topics. A snapshot of the 50
topic model is shown in Table 1 by illustrating salient words in 10 curated topics.

Table 1. Salient words of the 10 selected topics

Topic 15 Patients, cancer, early, treatment, biomarkers,
molecular, gene, expression studies, diagnosis

Topic 21 Cancer, gene, expression, mirna, association, studies,
tumor, microarray, disease, cells

Topic 1 parallel, sequence, alignment, algorithm, performance,
rna, gpu, implementation, memory, speedup

Topic 17 Medical, human, imaging, techniques, segmentation,
algorithm, features, detection, information, gene

Topic 22 Cell, rna, transcription, infection, viruses,
host, molecular, systems, dna, replication

Topic 14 large, species, phylogenetic, tree, sequence,
gene, network, evolutionary, algorithms, performance

Topic 36 Biological networks, understanding, complex, functional, pathways,
metabolic, processes, protein, microarray

Topic 37 Proteomics, peptides, mass, spectrometry, genome,
clinical, variants, identification, genome, sequence

Topic 34 Snps, genetic, methods, sequencing, variants,
association, single, haplotype, gwas, algorithm

Topic 9 Biological, database, web framework, scientific, workflows
knowledge, management, cloud, computational

Topic Similarity Network. Next, we built a topic similarity network of all
topics. In this network, nodes indicate topics represented by topic number and
edges represent similarity between topics computed using the complement of
Hellinger distance [5] between the probability distributions of two topics. The
topic similarity network reveals four clusters (shown in blue, green, purple, and
brown) (Fig. 7).
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Fig. 7. A network of the 50 topic model (Color figure online)

Topics in the purple cluster correspond mainly to health informatics, clin-
ical informatics, specifically focusing on cancer informatics. The topics in this
cluster are characterized by words such as “drug discovery”, “tumor”, “mirna
studies”, “gene expression”, “association studies”, “target cells”, “differentially
expressed”, “phage”, “genetic variants”, “biomarkers”, “early treatment”, “clin-
ical diagnosis”, etc. The topics hint at ontologies, pathways, networks, text min-
ing, and association studies as some of the computational tools used in this area
of research.

Sequence alignment, sequence similarity, and other related applications are
seen prominently in the green cluster. Other top areas in this cluster include phy-
logenetic trees, evolutionary algorithms, protein structure and prediction, pro-
tein interactions, and distributed computing. The blue cluster represents research
in proteomics, genome sequencing, annotation, and assembly tools. Other areas
represented in this cluster include metabolomics, protein structures, mass spec-
trometry, community software, and genome databases. Interestingly, the brown
cluster which contains only two topics representing studies on water quality and
treatment, is an outlier to the other clusters. Prominent words in these two top-
ics include ph level, removal, water quality, nanoparticles, adsorption, iron, and
concentration indicating work on water treatment advances using adsorption [2].
It is not surprising that these topics have little similarity with the other areas.

Overall, these topics indicate research areas such as health and cancer infor-
matics, proteomics, genome annotation and assembly, sequence alignment, and
the computational techniques used in each of these areas.
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6 Conclusion

In this study, we conducted scientific literature analysis of bioinformatics pub-
lications from 1998 to 2016 using keyword and topic modeling based analysis.
We discovered research areas within bioinformatics that are experiencing a rise
in popularity and those witnessing waning interest. The trends show that there
is increasing research in cancer informatics and that cancer research has shifted
towards using big data techniques in recent years. The presence of big data tech-
niques can also be seen in other areas such as sequence alignment and genome
annotation. Machine learning, feature selection, network analysis, ontologies,
data mining, distributed computing, parallel computing, hadoop, web appli-
cations, and community databases are some of the prominent computational
techniques seen in bioinformatics.

References

1. Alghamdi, R., Alfalqi, K.: A survey of topic modeling in text mining. Int. J. Adv.
Comput. Sci. Appl. (IJACSA) 6(1) (2015)

2. Ali, I., Gupta, V.: Advances in water treatment by adsorption technology. Nat.
Protoc. 1(6), 2661–2667 (2006)

3. Altena, A.J., Moerland, P.D., Zwinderman, A.H., Olabarriaga, S.D.: Understand-
ing big data themes from scientific biomedical literature through topic modeling.
J. Big Data 3(1), 23 (2016)

4. Arun, R., Suresh, V., Veni Madhavan, C.E., Narasimha Murthy, M.N.: On finding
the natural number of topics with latent dirichlet allocation: some observations.
In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol.
6118, pp. 391–402. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13657-3 43

5. Beran, R.: Minimum hellinger distance estimates for parametric models. Ann. Stat.
5, 445–463 (1977)

6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

7. Bolellia, L., Gilesb, S.: What is trendy? generative models for topic detection in
scientific literature

8. Cheang, M.C., van de Rijn, M., Nielsen, T.O.: Gene expression profiling of breast
cancer. Annu. Rev. Pathmechdis. Mech. Dis. 3, 67–97 (2008)

9. De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Generalized louvain method
for community detection in large networks. In: 2011 11th International Conference
on Intelligent Systems Design and Applications (ISDA), pp. 88–93. IEEE (2011)

10. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. soc. Inf. Sci. 41(6), 391 (1990)

11. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in infor-
mation retrieval, pp. 50–57. ACM (1999)

12. Hoopes, L.: Genetic diagnosis: DNA microarrays and cancer. Nat. Educ. 1(1), 3
(2008)
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Abstract. Schizophrenia (SZ) is a severe manifesting psychiatric neural disor-
der with abnormal behavior, disorganized speech and figment of the imagination.
The Synapsin II (SYN2) and Trace Amine Associated Receptor (TAAR6) genes
has direct association with SZ. In the current study, the 3-dimensional structure of
SYN2 and TAAR6 protein is proposed and the protein-protein docking analysis
was applied to explore the binding interactions of the candidate proteins. The
comparative modeling was performed with the suitable template (Q86VA8 for
SYN2 and H0YF79 for TAAR6) which represents the query coverage (71%,
87%), sequence identity (67%, 34%) and the e-value (0.0, 1e-43) respectively.
The structure quality of the predicted model of SYN2 and TAAR6 presents
90.7%, and 96.5% residues in the favored region of Ramachandran plot analysis
respectively, suggests the good quality models construction. The phylogenetic
analysis suggests that the TAAR6 sequence is conserved in chimpanzee and
gorilla (>80% homology) whereas the SYN2 is closely related with macaque.
The protein docking analysis of SYN2 shows five ionic interactions with
Lys-256, Lys-539, Arg-475, Gln-536 and Gln-529 with His-121, Glu-467,
Glu-472, Arg-458 and Asp-477 of CAPON. The TAAR6 have two interactions
of Glu-33 and Gly-171 with Arg-85 and Lys-52 of the PPP3CC. Current com-
putational study may play a significant role to recruit, analyze and cure the
mysteries of schizophrenia neurodegenerative disorder.
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1 Introduction

Schizophrenia is a chronic neurological disorder with serious social and personal
impact [1]. The severe symptoms of SZ may also include affective flattening, avolition,
alogia. The SZ symptoms usually starts affecting in the late teens to early twenties of
patient life and occur in 1% of total population [2]. The meta-data analysis suggests
that the risk of SZ in males are 40% higher as compare to the females [3]. Several
candidate genes are considered for the SZ susceptibility [4]. Positional cloning, linkage
analysis and candidate gene approaches are successfully used to explore the disease-
causing genes [5].

Pearlson and Foley [6] suggests that copy number variant (CNVs) and single
nucleotide polymorphism (SNPs) within the population or mutations like deletion/
insertion can alter cellular/multiple or single processes may leads to the occurrence of
schizophrenia disease. It takes a lot of efforts and time to collect large samples for the
SZ patients, which is one of the factor that causes a delay in publishing the SZ data on
disease genotype and phenotype. The phenotypic observation of the patients with SZ
shows heterogeneity which are responsible for the major obstacle in the research. The
small number of candidate genes which potentially controls the homogeneous phe-
notypes of SZ may facilitate to dissect the disease pathogenicity [7]. The gene linkages
and meta-analysis of genome scan [8] suggests highly susceptible candidate genes for
schizophrenia are present on chromosomes 1q, 3p, 5q, 6p, 8p, 11q, 14p, 20q and 22q
[9–11].

The trace amine receptor family 6 (TAAR6) was first reported as a schizophrenia
susceptible gene and belongs to the trace amine receptor family. The TAAR has super
family of G-protein-coupled receptors and have a core interest in depression and
schizophrenia. These are endogenous amine and chemically similar to the classic
biogenic amines like serotonin, dopamine, histamine and norepinephrine and are
widely expressed in the brain cells [12].

The synapsin2 (SYN2) is a strong candidate gene for the SZ and mapped on
chromosome 3p2. This gene plays a major role in the neurotransmission regulation,
neural plasticity and the synaptogenesis [13, 14]. Three synapsin genes of human
(SYN1, SYN2 and SYN3) have been reported [15]. These phosphoproteins are central
regulators of transmitter release vesicle fusions [16]. In current study, 3D structures and
protein-protein docking analysis of SYN2 and TAAR6 were performed to elucidates
the connection of SYN2 and TAAR6 candidate proteins with SZ.

2 Materials and Methods

The methodology used in the current study is described below.

2.1 Comparative Modeling

The amino acid sequence of SYN2 and TAAR6 proteins (582aa and 318aa) were used
for the comparative modeling analysis. The sequences in FASTA format were retrieved
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from UniProt Knowledgebase [17] with accession number Q86VA8 and H0YF79
respectively. The canonical sequences of SYN2 and TAAR6 were subjected to
PSI_ BLAST [18] search by using Protein Data Bank (PDB) [19]. The protein structure
prediction software MODELLER [20] was used to predict the candidate proteins 3D
structure. The reliability of predicted 3D model was further evaluated by Rampage [21]
and ERRAT [22]. Rampage generated Ramachandran plot and ERRAT evaluated the
quality factor of the predicted structures.

2.2 Phylogenetic Analysis

The molecular evolutionary genetic algorithm (MEGA 5) [23] was applied on SYN2
and TAAR6 candidate proteins to investigate their ancestral relationship. Distance
based approach were utilized by exploring the Neighbor-Joining method. The bootstrap
value was subject to 1000 replication to construct the phylogenetic tree.

2.3 Protein-Protein Docking

For protein- protein interactions, the STRING [24] server was used to find the direct
(physical) and indirect (functional) relationship of SYN2 and TAAR6. The PatchDock
[25] and Gramm-X server [26] were employed to demonstrate the protein-protein
docking for both candidate proteins. Post docking analysis were performed by PyMol
[27]. The methodology followed in current study is represented in Fig. 1 and the
bioinformatics techniques used in this study are mentioned in Table 1.

Fig. 1. The flowchart represents the overall strategy used in the current study
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3 Results and Discussions

The consideration was given to the literature survey to explore the most likely can-
didate genes in schizophrenia disorder. Human protein reference database (HPRD) [28]
was used to extract the information based on molecular function, biological process and
cellular location of both candidate proteins. SYN2 shows catalytic activity and ATP
binding site as a molecular function and it biological processes include synaptic
transmission and Neurotransmitter secretion. On the other hand, TAAR6 is responsible
for G-protein couple receptor activity, therefore play an active role in G-protein cou-
pled receptor signaling pathway. Both SYN2 and TAAR6 are present in synaptic
vesicle and plasma membrane respectively as shown in Table 2.

3.1 Comparative Modeling

The MODELER 9v10, homology modeling program was implemented for the candi-
date proteins model construction. The five templates were chosen based on query
coverage, e-value and sequence identity by PSI-BLAST analysis as shown in Table 3.
The selected template for the SYN2 (PDB ID, 1PK8) has 71% query coverage, 67%
identity score, and E-value 0.0. The PDB ID of 2VT4 shows 34% identity score, 87%
query coverage and E-value 1e-87 for TAAR6. Table 4 represents the appropriate
template selection for SYN and TAAR6. A total of 50 predicted models were generated

Table 1. Bioinformatics analysis tool used in the current study

Tools/databases Output/function

BioGPS Expression profiling
UniProt Amino acid sequence retrieval
MODELLER 3D Structure prediction
Chimera Visualization, Superimposition, Interaction
ERRAT 3D Structure evaluation
ENSEMBL Phylogenetic Sequences Retrieval
MEGA Phylogenetic Analysis
STRING Protein-Protein Physical Interactions
GRAMM-X Protein-Protein Docking
PyMol Binding interactions of docked Protein-

protein complexes

Table 2. Cytogenetic location from Ensembl Genome Browser and gene expression profiling of
SYN2 and TAAR6 candidate genes involved in SZ.

Gene Genomic
location

Start and
End BP

Molecular
function

Biological Function

TAAR6 Chr 3 12045862–
12232907

Catalytic and ATP
binding activity

Synaptic transmission and
Neurotransmitter secretions

SYN2 Chr 6 132891461–
132892498

G-protein coupled
receptor activity

G-protein coupled receptor
signaling pathways
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by MODELLER. The 10 predicted models were selected by using the object function
value (DOPE). The best 3D models with lowest DOPE value was picked as the final
predicted protein model and subjected to the model assessment.

The predicted models were superimposed to observe the structure relevance. The
Figs. 2 and 3 illustrates the predicted model structures, superimposition and protein
structure evaluation of SYN and TAAR. Ramachandran plot and ERRAT was used to
analyzed the overall quality and the protein reliability of the predicted models.
Ramachandran plot showed the distribution of amino acids in favored, allowed and
outlier regions. The higher residues (>90%) present in favored regions represents the
good quality model.

3.2 Phylogenetic Analysis

The paralogs of TAAR6 and SYN2 were retrieved from ENSEMBL and confirmed from
the UCSC Genome database. The three paralogs of TAAR6 (TAAR2, TAAR5 and
TAAR6) and SYN (SYN1, SYN2, and SYN3) were used as an input to predict the
phylogenetic history. The ciona first mutate and produced three clusters and each
cluster represents a gene topology. Rodents, teleosts and birds are at their specific
positions in clusters in bifurcations. The SYN of human has conserved sequence with
primates with indels. The ciona first mutate and formed SYN3 then SYN2 and SYN1
were bifurcate. SYN3 showed two main clusters of teleosts and mammals. Human is
closely related with macaque. SYN2 gene is only predicted in rodents, tetrapods and
primates and represents in tree at their concerning position. SYN1 also showed same
results like SYN2 (Fig. 4).

Table 3. The selective five templates of SYN and TAAR 2 candidate proteins

Gene Accession ID Total score Query coverage E-value Max-identity

SYN2 1PK8 569 71% 0.0 67%
1I7L 659 53% 0.0 97%
1AUX 536 52% 0.0 77%
1AUV 508 52% 2e−177 74%
2P0A 507 58% 1e−176 68%

TAAR6 2VT4 154 87% 1e−43 34%
2Y00 151 88% 3e−42 34%
2R4S 150 87% 1e−41 31%
2R4R 149 88% 2e−41 31%
3KJ6 149 88% 2e−44 31%

Table 4. The suitable template selection for SYN and TAAR2 candidate proteins for the
comparative modeling analysis

Protein Accession number Template Amino acids Query coverage E-value Identity

SYN2 Q86VA8 1PK8 582 aa 71% 0.0 67%
TAAR6 H0YF79 2VT4 318 aa 87% 1e−43 34%
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3.3 Protein-Protein Docking

The protein functional interactors of SYN2 and TAAR were extracted from the
STRING database. The C-Terminal PDZ Domain Ligand of Neuronal Nitric Oxide

(A)  (B)

 (C)

 (D)

Fig. 2. (A) The 3D structure of SYN2 (template 1PK8) with 71% query coverage (B) The
superimposition of SYN2 (blue colour) and 1PK8 (brown colour) (C) Rampage and ERRAT
(D) evaluation structure server showed 90.7%, residues lied in favoured region, 5.7% in the
allowed region with 3.6% in outlier region (Color figure online)
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Synthase (CAPON) shows high interacting score of 0.945 with SYN2 and therefore
selected for SYN II protein docking analysis.

The TAAR has a score of 0.802 with the Protein Phosphatase 3 Catalytic Subunit
Gamma (PPP3CC) for protein docking. The 3D structure of CAPON protein was not
reported in PDB therefore, it was constructed by the MODELLER program. The 3D
structure of PPP3CC for TAAR2 was retrieved from Swiss Model accession number
1M63A.

(A)                                                                      (B) 

                                                                             (C) 

                                                                               (D) 

Fig. 3. (A) The 3D structure of TAAR6 generated by 2VT4 template with 87% query coverage.
(B) Superimposition of TAAR6 with 2VT4. Blue colour representing template and brown color
shown predicted model. (C) Ramachandran plot showed 96.5% residues in favoured region,
2.5% in allowed region and 0.9% in outlier region for TAAR6 candidate gene structure analysis
(D) TAAR6 predicted structure showed 84.488% quality factor by ERRAT evaluation tool.
(Color figure online)
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Both SYN2 and TAAR6 shows ionic interaction with their functionally interactive
proteins, CAPON and PPP3CA respectively. The SYN2 and CAPON have five ionic
interactions. Oxygen atom of lys256 and Gln536 amino acids of SYN2 interacted with
the nitrogen atoms of His121 and Arg458 with bond distance 2.0 and 3.2 respectively.
Lys539, Arg475, Gln539 interacted with Glu467, Glu472, Asp477 with bond distance
2.6, 2.5, 2.9 respectively. The TAAR6 and PPPCC3 proteins have two ionic interac-
tions. Oxygen atoms of Glu33 and Gly171 amino acids of TAAR6 interacted with the
nitrogen atoms of Arg85 and lys52 of ligand protein (PPP3CC) with bond distance 2.2
and 2.2 respectively. The PyMol visualization of SYN with CAPON and TAAR6 with
PPP3CC is shown in Fig. 5 and Table 5.

Fig. 4. Evolutionary history of (A) TAAR6 and (B) SYN gene was inferred by using
Neighbour-joining method. Numbers represents on branches is bootstrap values of 1000
replications. Uncorrected p-distance parameter was used. Scale bar represents amino acid
substitution per site. Phylogenetic analysis of TAAR indicates that human is closely related to
Gorilla, Macaque and Chimpanzee. The human from gorilla bifurcates 100 mya. Teleosts and
rodents are closely related among their respective organisms. The SYN gene of human is closely
related to vertebrates and rodents. Organisms with feathers (Chicken and Zebra finch) are closely
related to each other. Tetrapods are present in their respective branch in species tree. Teleosts are
shown at close branches
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Fig. 5. (A) The SYN2 functional protein partner generated by STRING database (B) The
protein-protein docking of SYN2 with CAPON (C) TAAR2 protein interaction network and
(D) shows the PPP3CC interaction with TAAR2. Red circles indicate the functional amino acid
with partner protein. Brown circle shows the selective functional partner for each candidate
protein (Color figure online)

Table 5. The active binding residues analysis for SYN2 and TAAR with CAPON and PPP3CC

Receptor Interacting
protein

Functional amino acid Bond
distance

Interactions
type

SYN2 CAPON Lys-256/O ! His-121/NE2 2.0 Ionic Bonding
Lys-539/N2 ! Glu-467/OE1 2.6 Ionic Bonding
Arg-475/NH1 ! Glu-472/OE2 2.5 Ionic Bonding
Gln-536/OE1 ! Arg-458/NH2 3.2 Ionic Bonding
Gln-529/N ! Asp-477/OD2 2.9 Ionic Bonding

TAAR6 PPP3CC Glu-33/OE2 ! Arg-85/NH2 2.2 Ionic Bonding
Gly-171/O ! Lys-52/NH2 2.2 Ionic Bonding
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4 Conclusions

The predicted 3D structures of SYN and TAAR2 may assist to understands the 3D
conformational changes of the protein SYNS2 and TAAR6 in schizophrenia. The
successfully identified protein-protein interactions with key binding residues may play
a potential role to examine the diseases pathogenicity. Site-directed mutagenesis can
further help to investigates the in-vitro impact of identified key residues on wild type
and mutant protein.
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Abstract. An important problem in Bioinformatics is Haplotype Infer-
ence (HI), that consists of computationally inferring haplotype sequences
from genotype data. Haplotype data is highly informative for illness
propensity detection, but it is much costly and time consuming to
acquire; that gives the HI Problem an overwhelming relevance. In this
paper, we formally demonstrate that specific genomic data features can
be very strong indicators of error propensity in each one of four well-
known HI methods studied. We apply Statistical analyses to explore the
relevance of biologically meaningful properties extracted from the geno-
type sequences, and develop models to predict the accuracy expected
in the haplotype inference results, for different methods and error met-
rics. The quality and the stability of our models are demonstrated by
statistical evidence. One of our estimated models presents nearly perfect
accuracy for all four methods studied. Our results provide useful insights
to help develop more effective HI methods.

Keywords: Haplotype inference · Genotype data · Statistical analyses ·
Sequences

1 Introduction

Haplotype information is valuable in understanding species evolution, as well
as in association studies that try to correlate the propensity to certain diseases
with patterns inherited through the haploid cells [1]. Since capturing haplotypes
directly from experiments is both difficult and expensive [2], it is highly desirable
to determine haplotypes from genotypes (available on large scale at low cost)
through computational approaches.

A genotype (haplotype) g(h) is a sequence over the alphabet {0, 1, 2} ({0, 1}),
each position of which is called a site. It can be computationally represented by
a vector of symbols {0, 1, 2} ({0, 1}), where symbol 2 represents an heterozygous
site (meaning that the nucleotides at this site, in the corresponding haplotypes,
are different), while 0 and 1 represent homozygous sites (the nucleotides in the
corresponding haplotypes are the same).
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Inferring haplotype from genotypic data can be formally described as follows.
A matrix H(2n)m with n individuals and m single nucleotide polymorphisms
(SNPs) contains 2n haplotypes. Each haplotype pair (h(2i−1), h(2i)), 1 ≤ i ≤ n,
generates genotype g with m SNPs. Then a genotype vector g, with m sites, can
be explained (resolved) by two haplotype vectors h1 and h2, where sites h1(i)
and h2(i), 1 ≤ i ≤ m, follow the rule given by Eq. 1.

{
h1(i) = h2(i) = g(i), if g(i) ∈ {0, 1};
h1(i) = 1 − h2(i), if g(i)=2.

(1)

Several computational methods have been proposed for Haplotype Inference
(HI), such as ShapeIt [3], Impute2 [4], Beagle [5], Haplorec [6], fastPHASE [7],
PTG [8], among others. These approaches usually consider one of the main
biological models, called Parsimony Principle. Computationally speaking, in the
Parsimony model, the HI Problem is NP-Hard, which means that, to this day,
there is no algorithm that can solve this problem in a exact fashion within
reasonable time. Therefore, one must resort to heuristics that can offer results
with acceptable accuracy within viable amount of time.

In a previous study, Rosa and Guimarães [9] showed that, although different
algorithms for HI may present similar error scores, most of those errors occur
in different loci along the genotype sequence. Identifying regions of the geno-
type where each method has a higher propensity to make mistakes could help
improve existing methods, and could also shad some light on unfavorable sce-
narios, eventually leading to an ensemble approach, based on biological features
of the sequences. In this paper, we seek to reveal features of the data that could
be associated with inference errors in the different methods. We assess, based on
different error metrics, the inference errors of four HI methods. Methods Hap-
lorec and fastPHASE were selected for their widespread use. Method Beagle was
included because it is a more recent and very competitive tool. Method PTG
was also included because it is a strongly parsimony principle-based tool.

Linkage Disequilibrium and Heterozygosity are important genomic features
that have long been associated to haplotyping (e.g. [10]). In this work we present
an extensive analysis of the behavior of those methods in regions with different
LD and HTZ values. Different computational choices for estimating the LD of a
given SNP are assessed. The influence of shorter and longer stretches of upstream
and downstream neighboring SNPs in each method’s error is investigated, and
Multiple Linear Regression (MLR) models are developed to predict the error in
each haplotype inference method, based on several genomic features. Statistical
tests and residual analysis are used to validate those models. We also considered
methods ShapeIt [3] and Impute2 [4], but they have not been included in this
study because they require additional input, bringing the need of specific vari-
ables and also adding a clear bias to the models. A comparative analysis of the
models developed unveils a number of interesting features.
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2 Predicting Errors in HI Methods

Since it is well known that haplotyping is strongly related to different genomic
features, studying possible associations between features of the genomic data and
the occurrence of errors in haplotype inference can help understand the behavior
of the current HI methods and perhaps lead in the design of better techniques,
more resilient to the impact of those features.

When a certain genomic sequence is shared by a large number of elements of
a given population, it is said that the sequence is conserved, because it passes
from generation to generation without suffering many changes. From a com-
putational point of view, it means that there is a higher similarity among the
sequences considered. Based on the Parsimony Principle, HI methods search for
the smallest number of haplotype sequences that explain a given set of genotypes
(a parsimonious solution), hence the conservation level of the dataset is a most
valuable feature.

Another feature that is central to this problem is the Linkage Disequilibrium
(LD), which measures the correlation level of a given SNP (a column in the
genotypes matrix) and its neighbors (neighboring columns). We scrutinize the
influence of SNPs to the left and/or right, at different ranges.

We also assess the influence of several classic genomic features, including
allele frequency, endogamic level, and Hardy-Weinberg equilibrium. We make
an effort to translate those features into more straightforward indicators, based
on the presence and distribution of symbols 2 (bases to be inferred by the HI
methods) in the dataset, in order to optimize the computational time.

The pipeline illustrating the several steps involved in the analysis is presented
in Fig. 1-A. Initially, several features are extracted from the dataset (regressor
variables and HI solutions by the different methods). Then, for each combina-
tion of HI method and error metric, a subset of regressor variables (features)
with stronger prediction power is selected. The MLR models are estimated and
validated, generating the prediction performance statistics.

Feature extraction is the crucial basis for the regression analysis performed,
since the features extracted through that process will be used to predict the
propension of each HI method to generate wrong answers. Figure 1-B shows the
blow-up for the feature extraction and construction of the data bases used in
the actual analysis process. The genotype datasets collected from the HapMap
Project [11] were processed by four HI methods: fastPHASE, Haplorec, Beagle,
and PTG, creating an HI Solutions Base.

The errors of the Haplotype Inference, as well as the genotype features were
computed considering two distinct views of the HI Solutions Base: (1) A set of
individuals (solution matrix lines), which we call Individuals Base, and (2) A set
of SNPs (solution matrix columns), which we call SNPs Base.

For the SNPs Base the features collected from the genotype datasets are:

1. Heterozygosity (HTZ), given by the number of symbols 2 in a given SNP
column;

2. Linkage Disequilibrium (LD), given by the correlation described in Sect. 3.
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Fig. 1. (A) Pipeline of prediction analysis, and (B) blow-up of feature extraction
process.

The LD of a given SNP is computed based on the correlation of that SNP with
its neighbors, considered in different numbers. Location of neighboring SNPs
relative to a given SNP (that is, upstream (or preceding) versus downstream (or
following) SNPs, since that is a genomically important detail. Another variation
considered was exclusion of non-informative SNPs. (For more details on that,
see Sect. 3). All these filtering processes and parameters choices were done in
order to capture the LD impact more effectively.

For the Individuals Base the features collected from the genotype dataset
that capture the information of ambiguity were the following:

1. Number of symbols 0 (NS0);
2. Number of symbols 1 (NS1);
3. Heterozygosity (HTZ), similar to SNPs Base;
4. Density of Heterozygosity (DHZ), represented by the number of neighbors

with symbol 2 paired with symbols 2 in each individual;
5. Number of blocks of symbols 2 (NB2), where a block is a sequence of identical

symbols in an individual;
6. Average length of blocks of symbols 2 (LB2); and
7. Conservation level (CSV).

Extensive experiments were done in order to assess the impact of such fea-
tures to the occurrence of inference errors. The inference error metrics (response
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variables for the MLR models) are different for the Individuals and the SNPs
bases. In the Individuals base, we consider two measures, Error Rate (ER) and
Switch Error (SE), while for the SNPs Base, we use Switch Distance (SD).
A more detailed technical explanation can be found in the next section. The
results of the MLR models designed for prediction of the errors in HI methods
fastPHASE, Haplorec, Beagle, and PTG are presented in Sect. 4.

3 Methods and Experiments Design

3.1 Feature Extraction

Genotype Database: The dataset used in our experiments were collected from
different populations in the HapMap Base. It is comprised of sets of haplotypes/
genotypes from Chromosome 20 of five different ethnic populations. Each seg-
ment of genotype collected has 1000 SNPs. The Chromosome positions from
where the sequences were taken were randomly selected.

Errors Extraction: The error metrics more frequently used for the HI Problem
are Error Rate (ER) [12] and Switch Error (SE) [13]. For the Error Rate, the
correct haplotypes are aligned to the inferred ones, the number of mismatches
is computed, and the Error Rate is given by the ratio between the number
of mismatches and the total number of sites in the dataset. The Swith Error is
calculated as (N −1−SD)/(N −1), where N denotes the number of heterozigous
loci, and SD (Switch Distance) denotes the minimum number of block exchanges
required between the two inferred haplotypes, in order to make them identical
to the original ones. Since SE is applied on genotype fragments, and here we are
analyzing specific SNPs, we use the intermediate metric SD.

LD-Window Selection: This step is necessary for SNPs Base only. Given a
genotype matrix Hn with n SNPs, and a window of width w, the correlation
score for a SNP k, LD(k, w), is the average correlation between SNP k and
its w neighbors, it is computed for left (LD(k, w) = 1

w

∑w
i=1 cor(Hk, Hk−i)),

right (LD(k, w) = 1
w

∑w
i=1 cor(Hk, Hk+i)) and left-right window (LD(k, w) =

1
2w

∑w
i=1 cor(Hk, Hk−i) + cor(Hk, Hk+i)).

For each neighbor SNP Hk−i (Hk+i) of correlation (Pearson’s coefficient)
cor(Hk, Hk−i) (cor(Hk, Hk+i)) when the Exact Fisher’s Test, with 95% of con-
fidence, indicates no evidence of dependency between Hk and Hk−i (Hk and
Hk+i), then SNP Hk−i (Hk+i) is discarded.

The procedures for identifying the more informative SNP window were orga-
nized as follows:

1. The LD patterns in each dataset was computed considering different window
widths, including or not, SNPs without correlation evidence, as described
above. For analysis the LD values were partitioned into four ranges: [0, 0.25],
for low LD; (0.25, 0.5], for mid-low LD; (0.5, 0.75), for mid-high LD, and
[0.75, 1.0], for high LD, thus creating LD mosaics.
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2. For each population in the dataset, HTZ patterns were computed, considering
the mosaics constructed in Step (1) above;

3. For each genotype dataset resolved by each of the four Haplotype Inference
methods considered (fastPHASE, Haplorec, Beagle, and PTG), two error
measures were computed (Switch Error/Switch Distance and Error Rate),
and the error average of the four methods were taken, for each dataset
separately;

4. For each LD mosaic, for each of the four LD ranges previously defined, two
measures are taken: (1) h = HTZlocal

HTZtotal
, where HTZlocal denote HTZ computed

only for SNPs of one LD range, and HTZtotal is HTZ computed for the full
dataset considered, (2) error = SDlocal

SDtotal
, where SDlocal denote SD computed

only for SNPs of one LD range, and SDtotal is SD computed for the full
dataset considered, and (3) A quality indicator given by the ratio error/h.

SNPs Features Extraction: For the SNPs Base the features collected from
the genotype datasets were: HTZ and LD, given by the correlation as described
previously in this Section, obtained by mosaic W10 L WITH FISHER. SNPs
base contains 6 attributes: 4 results for SD and the regressors HTZ and LD.

Individuals Features Extraction: For the Individuals Base the features col-
lected from the genotype dataset that capture the information of ambiguity.
Features NS0 and NS1 represent the number of homozygous sites in a given
Individual. HTZ is given by the ambiguity level of the individual, i.e., the num-
ber of symbols 2 that must be resolved by the haplotyping method. DHZ is
indicated by the number of symbols 2 that are next to another 2 on the same
SNP. NB2 represents the number of contiguous sequences of two or more sym-
bols 2 in the individual. LB2 is the average length of the sequences represented
in NB2. For a fragment of genotype F with m SNPs of an individual, CSV is
represented by probability p given by p(F ) = p(F (1))

∏m
i=2 p(F (i)|F (i − 1)).

3.2 Feature Selection, Validation and Performance

A MLR model is composed by p regressor variables x, p regression coefficients
β, a response variable y, and a noise ε (y = ε + β1x1 + ... + βpxp), where p is
the number of regressors. In our models, for the SNPs Base, p = 2, and for the
Individuals Base, p = 7.

Twenty four MLR models were estimated, eight for the Individuals Base
(four methods with two error metrics each), and sixteen for the SNPs Base (four
methods with four LD levels each). The Step-Wise method [14] was applied to
select among the explanatory variables (feature attributes) a suitable model for
each one of the response variables (error attributes).

The training and test schemes were done with the following steps. (1) 15%
of the samples for each population was randomly selected for testing, and the
remaining samples were used for training; (2) For each answer variable, a MLR
model was estimated using the training dataset; (3) The models constructed in
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Step (2) were used to predict the errors in the test data; (4) Steps (1) through
(3) were repeated 120 times, in order to generate a set of predicted samples large
enough to execute t-tests with confidence greater than 95%; (5) Hypothesis tests
were done with paired samples.

4 Results

4.1 Selecting the More Informative LD Window

Genotype datasets present different LD patterns along the SNPs sequence [6,7].
Estimation of those patterns is the core of methods Haplorec and fastPHASE,
which apply Markov models to create LD mosaics. While Haplorec uses that
technique to estimate windows with different LDs, excluding non-informative
SNPs from the inference process, fastPHASE uses it to create groups of individ-
uals and SNPs with similar LD patterns, in order to solve those genotypes in
separate sets.

A given SNP may present different correlation levels (high, low, non-existing)
with different sets of neighboring SNPs. With that concern in mind, we seek
to assess what would be a more informative or appropriate window width for
neighbors, and also to analyze the impact of using, within a given window,
SNPs without statistical evidence of correlation with neighboring SNPs. In our
experiments, three window width values were used: 1, 5, and 10, considering
neighbors only to the left, neighbors only to the right, and neighbors from both
sides. We also analyzed the behavior of the models including all SNPs within the
window, and including only those SNPs with evidence of correlation, according
to the Exact Fisher’s Test.

For each LD mosaic and each of the four LD ranges previously defined, two
measures are taken: (1) h, the total relative HTZ frequency, considering the
entire dataset, (2) error, relative frequency of total errors, considering the entire
dataset and the four inference methods, and (3) A quality indicator given by the
ratio error/h.

The ratio error/h falls in one of three scenarios, with the following interpre-
tation: (1) Values close to zero indicate low error concentration with respect to
the HTZ frequency (or “easy to resolve” regions); (2) Values close to 1 indicate
a proportion of error frequency with respect to the HTZ frequency in a given
region (or “expected error occurrence” regions); and (3) Values that are strictly
greater than 1, indicate a high error frequency with respect to the HTZ con-
centration (or “hard to resolve” regions). These hard/easy to resolve regions are
with respect to the haplotype inference methods.

Table 1 presents the results of our analysis considering all four methods, with
the Switch Distance metric, where each line represents the average of the ratios
error/h obtained with a given LD mosaic estimation, stratified by LD level. An
LD mosaic is denoted by Wx d test FISHER, where x ∈ {1, 5, 10} (window
width); d ∈ {L, R, L R} (SNPs considered on the Left, on the Right or both);
test ∈ {WITH,WO} (considering or not considering the Exact Fisher’s Test).
The ratios for all mosaics are not shown due space limitations in this paper. The
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last line presents the average ratio obtained by all mosaics estimated by LD level.
Independently of the criteria (window size and direction) used, methods tend to
present similar behavior in regard to their response (ratio) within each particular
LD concentrations region. In our experiments, all the LD mosaics presented
ratios strictly greater than 1 in regions of low LD (Column Low in Table 1),
indicating that all mosaics reported the occurrence of more errors in regions of
low LD. For almost all mosaics, in all LD regions, ratios called considering the
Exact Fisher’s Test presented values higher or equal to the corresponding ratios
taking all SNPs within the window, which indicates that this is a good filter
for noisy SNPs. We note that mosaic W10 L WITH FISHER presented the best
behavior; it has the highest ratio in the low LD regions and a ratio close to the
smallest observed in high LD regions. Hence, this is the mosaic of choice for the
LD extraction.

Table 1. Average ratios quality obtained by each LD mosaic for Switch Distance,
considering the four LD ranges (Low, Mid-Low, Mid-High and High).

Mosaic rule - LD range Low Mid-Low Mid-High High

W10 L WITH FISHER 4.50 1.05 0.33 0.17

Average(a) 2.54 1.03 0.54 0.31
(a)Average for 18 mosaics considered.

All insights gathered through this LD window analysis suggest that, in order
to attain better results, the SNPs Base should have MLR models estimated in
a LD-stratified fashion.

4.2 MLR Models with Selected Regressors

The MLR models were estimated with the variables selected using the Step-
Wise method, which applies Akaike Information Criterion (AIC) to choose an
optimal subset of regressors. To avoid the introduction of bias, the bidirectional
elimination was chosen.

The results of Step-Wise and the coefficients of estimated models for the
Individuals Base are shown in Table 2. Our results show that for this base, the
most important features are CSV and NS0, selected for all estimated models.
The second most important feature is NS1, considered for all models except SE-
PTG. DHZ and LB2 are selected for one model each, ER-PTG and SE-PTG,
respectively.

Table 3 presents the MLR models estimated for the SNPs Base, considering
the four different LD levels and the regressors selected by the Step-Wise Method.
The combination of features HTZ and LD was selected for most models. For
method PTG, HTZ was the only feature selected in three of the four LD levels,
providing evidence that the accuracy of PTG depends heavily on the distribution
of ambiguous sites in the dataset (expressed by HTZ).
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Table 2. MLR models estimated for Individuals Base using the Step-Wise Method.

Method Model

ER-fastPHASE 3.214 × 10−3 + 2.078 × 10−6CSV − 3.499 ×
10−6NS0 − 3.696 × 10−6NS1

ER-Haplorec 2.776 × 10−3 + 2.559 × 10−6CSV − 3.046 ×
10−6NS0 − 2.712 × 10−6NS1

ER-PTG 4.619 × 10−3 + 1.173 × 10−6CSV − 6.689 ×
10−7NB2 + 1.112 × 10−7DHZ − 4.716 ×
10−6NS0 − 5.157 × 10−6NS1

ER-Beagle 3.985 × 10−3 + 2.731 × 10−6CSV − 4.020 ×
10−6NS0 − 5.564 × 10−6NS1

SE-fastPHASE 1.150 × 10−2 − 3.456 × 10−6CSV − 1.072 ×
10−6NB2−1.731×10−6NS0−1.458×10−6NS1

SE-Haplorec 1.226 × 10−2 − 3.384 × 10−6CSV − 2.292 ×
10−6NB2−2.626×10−6NS0−2.493×10−6NS1

SE-PTG 8.798 × 10−3 − 6.357 × 10−6CSV − 3.129 ×
10−6NB2−2.752×10−4LB2−2.321×10−6NS0

SE-Beagle 1.225 × 10−2 − 4.237 × 10−6CSV − 2.753 ×
10−6NB2−2.379×10−6NS0−2.615×10−6NS1

Table 3. MLR models estimated for the SNPs Base considering different LD levels,
using features selected by the Step-Wise Method.

LD Level Method Model

Low SD-fastPHASE 0.095 + 0.271HTZ − 10.698LD

SD-Haplorec 0.089 + 0.275HTZ − 10.312LD

SD-Beagle 0.066 + 0.305HTZ − 11.134LD

SD-PTG 0.015 + 0.4775HTZ

Mid-Low SD-fastPHASE 3.112 + 0.0499HTZ − 8.881LD

SD-Haplorec 3.687 + 0.059HTZ − 10.489LD

SD-Beagle 3.803 + 0.062HTZ − 10.964LD

SD-PTG 1.539 + 0.478HTZ − 4.660LD

Mid-High SD-fastPHASE 0.811 + 0.012HTZ − 1.291LD

SD-Haplorec 0.827 + 0.014HTZ − 1.320LD

SD-Beagle 0.856 + 0.010HTZ − 1.140LD

SD-PTG 0.045 + 0.444HTZ

High SD-fastPHASE 0.547 + 0.003HTZ − 0.556LD

SD-Haplorec 0.835 − 0.742LD

SD-Beagle 0.718 + 0.0044HTZ − 0.651LD

SD-PTG 0.320 + 0.436HTZ
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The coefficients (contribution) of HTZ were positive in all models, indicating
that there is a positive correlation between this feature and inference error. LD
presented negative coefficients in all models in all LD Levels, however in a smaller
degree. The results show that, as the LD level increases, the absolute value of
the LD coefficient decreases.

An important observation is that the noises (indicated by the intercept) are
greater for Mid-Low LD than for the other LD levels. That characterizes these
regions as a “hard scenario” for predicting errors in Haplotype Inference methods
(not for the HI methods themselves), which is consistent with the average ratio
1.05 found for the W10 L WITH FISHER mosaic in the Mid-Low LD level (See
Table 1).

4.3 MLR Models Accuracy

The accuracy of the HI error prediction models was analyzed for each one of
the MLR models estimated. A set of hypothesis tests was designed to assess
the closeness between the values predicted (P ) by each MLR model and the
corresponding actual (A) response values of the HI method. Since there is no
t-test for alternative hypothesis A = P , we apply the three t-tests below, none
of which had the null hypothesis rejected. The three Null (H0) and Alternative
Hypothesis (Ha) were: (1) H0 : A ≥ P , Ha : A < P ; (2) H0 : A ≤ P , Ha : A > P ;
and (3) H0 : A = P , Ha : A �= P . These t-tests had 95% of confidence, with the
p-values for the hypothesis ranging from 0.4037 to 0.5585 (hence much higher
than 0.05). Since the null hypothesis cannot be rejected, the p-values are high,
and the number of samples is sufficiently large, there is evidence that the actual
values are statistically equal to the corresponding average predicted value.

5 Discussion

We demonstrate that the correlation between LD level and the occurrence of
HI errors varies along the genotypes. We also present evidence that consider-
ing a window with the 10 SNPs immediately to the left, and eliminating the
non-informative SNPs through Fisher’s Test is more suitable when seeking a
correlation between LD and Inference Errors. It is known that eliminating non-
informative SNPs is a promising strategy for haplotype inference, since it reduces
noise. But, as far as we know, a quantitative assessment of the impact of that
filtering on the correlation between LD and the occurrence of errors in the hap-
lotype inference results has never been reported in the literature. The fact that
SNPs in the window to the left of a SNP are apparently more informative than
the SNPs on the window to the right suggests that the direction in which the
methods proceed during the resolution process impacts the occurrence of errors.
Hence, it would be wise to attempted to reduce the errors caused by the choice
of direction in the resolution process.

We delineate scenarios, based on LD measures, that reveal a higher or smaller
propensity of the HI methods to present inference errors. The absence of corre-
lation between SNPs in a given region (low LD) translates into less information
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for the HI methods, which tend to present more errors in these regions. In this
work we show that, within low LD level regions, the relative error frequency is
more than four times bigger than the relative frequency of HTZ. We also show
that when a SNP has LD-value between 0.25 and 0.5, the error frequency is pro-
portional to the HTZ level (concentration of sites to be resolved), an evidence
that in those regions the LD-value is not informative, hence new alternative
approaches for HI in these regions are necessary. For regions where LD level >
0.5, a smaller number of errors occur, characterizing these regions as easy to
resolve (the detailed results of the analysis are shown in Table 1).

Due to the correlation between LD levels and the occurrence of HI errors, spe-
cific MLR models were estimated for each particular LD interval (low, mid-low,
mid-high and high), which considerably improved the prediction performance of
models estimated without LD levels. We identify the Low LD regions as the easy
to predict scenario, and the Mid-Low LD regions as a hard to predict scenario
for MLR models based on SNPs data. It is important to stress that the error
that is being discussed here is the Haplotype Inference error by the methods
included in our study, not errors in our prediction models.

Considering individuals (genotypes) to predict inference errors showed to be
far more promising than considering SNPs. Although the SNPs Base produced
good results, the Individuals Base presented more accurate results in most sce-
narios. It is important to note that, based on the Switch Error metric, all models
for the Individuals base were highly, almost perfectly accurate. In this context,
information on conservation and locality (HTZ blocks), which pertains only to
individuals, seem to have considerable impact on the accuracy observed in the
results, suggesting that these features should have a more central role in the
development of new techniques.

The MLR models were developed based on seven biologically relevant fea-
tures, and also for features selected using the Step-Wise method. From these
models, NS0 was selected as the most relevant variable, being used in all models
for the Individuals base. The second most important feature was NS1, used in all
but one of the models. Considering only the Individuals Base, CSV was selected
for all models. CSV tries to capture conservation information on the sequences,
which is an important evidence in favor of the known biological parsimony prin-
ciple. The experiments show statistical evidence that almost all the MLR models
in Individuals can efficiently infer errors in the HI algorithms studied, although
in some specific cases high relative error and deviation measures can be observed.

6 Conclusion

In this work we present the results of extensive statistical analyses of the influ-
ence that features of the genotype sequences may have on the errors of haplo-
type inference methods. We show that SNPs to the left (upstream region) of a
given SNP are more informative than SNPs on the right (downstream region)
to estimate LD and to predict HI error, which is compatible with well known
transcription regulatory (Genetics) models.
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We also build precise MLR models to predict Switch error for the four HI
methods studied. A particularly exciting result for prediction of SE in the known
and popular method fastPHASE; this model has a median of relative error of
0.9, meaning that 50% of the predictions for this model had relative error at
most 0.9%.

We believe that the insights provided by our analysis can be used for a more
effective choice of algorithms, and can also be exploited in the design of better
approaches for the Haplotype Inference Problem.
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Abstract. Dynamic functional connectivity detection in fMRI has been
recently proved to be powerful for exploring brain conditions, and a variety of
methods have been proposed. This paper mainly investigates the field of change
point detection based on Bayesian inference and genetic algorithm. We define
different indicator vectors as different individuals, which represent some pos-
sible change point distributions, and use Bayesian posterior probability to
evaluate their fitness. Accordingly, we also present an improved genetic algo-
rithm, which is applied to evolve the individuals toward the best one. Then, the
most possible change points distribution could be resolved. The method has
been applied to several synthesized data and simulation results reveal that the
proposed method can detect change points in fMRI datasets with higher pre-
cision and lower time consumption.

Keywords: fMRI � Change point detection � Genetic algorithm � Bayesian
inference

1 Introduction

Functional magnetic resonance imaging (fMRI) is a functional neuroimaging method
that measures human brain activities by quantifying the blood flow using MRI tech-
nology [1]. Multiple recent researches on neuronal network-level activities using fMRI
dataset have invoked increasing number of attentions [2–4].

Recently, several neuroscience studies reflect that moment-by-moment functional
switching is commonly involved in brain dynamic interactions between connections
from higher to lower-order cortical areas and intrinsic cortical circuits, and the brain
may undergo a series of state-change while performing a task [2, 5]. Therefore,
exploring functional dynamics may be very useful for revealing the mechanism of the
human brain since a task is performed in cortical areas.
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Functional dynamics detection in fMRI has been proved to be powerful for exploring
brain conditions. It is an ongoing challenge in the area of neuroscience. To solve this
problem and some relative tasks, a variety of methods have been proposed [2–9].

In order to detect the temporal boundary, an abrupt change of multivariate func-
tional interactions in the fMRI (also called change point), Lian et al. proposed a
Bayesian connectivity change point model (BCCPM) based on Markov Chain and
Monte Carlo (MCMC) scheme (called MCMC-Based-BCCPM) [2]. This method has
been successfully applied to detect change points in fMRI dataset. Unfortunately, the
MCMC scheme is a high consuming method. It’s a sequential algorithms and not easy
to be speeded up with GPU or multi-processor computers. In [7, 8], Bayesian mag-
nitude change point model (BMCPM), dynamic Bayesian variable partition model
(DBVPM), Bayesian connectivity bi-partition change point model (BCBCPM) were
proposed, respectively. However, all of these methods use MCMC scheme or a hier-
archical two-level Metropolis-Hastings scheme as their optimization or search strategy.

To develop an algorithm that may be parallelized in GPU or multi-processor
computers, we investigate the field of most Bayesian inference based change point
detection methods [2, 3, 7, 8]. For the fact that genetic algorithm could be a good
performance parallel algorithm and is very fit for optimization problems [10, 11], we
choose it as our optimization strategy.

We define different indicator vectors to represent different distributions of change
points, use these indicator vectors as different individuals in genetic algorithm, and then
calculate the Bayesian posterior probability to evaluate their fitness. Finally, an
improved specific evolutional procedure is applied to evolve the individuals toward the
best one. The best individual then represents the most likely change point distribution
in the corresponding fMRI dataset.

The rest of this paper is organized as follows. Section 2 describes the main theory
and method, including Bayesian connectivity change point model (BCCPM) and
improved genetic algorithms, which are applied to calculate posterior probability and to
solve optimization and search problems, respectively. Section 3 shows our experimental
results, with some comparisons between MCMC-Based-BCCPM [2] and the proposed
method. Section 4 concludes our method and discusses further work in the future.

2 Theory and Method

2.1 Bayesian Connectivity Change Point Model [2, 3, 7, 8]

Given an R� T dataset X ¼ (x1,x2; � � � ; xT ), in which T is the number of observations
and R is the number of ROIs, we are interested in if there are some differences in the
joint probabilities within these ROIs between different time periods.

We define a block indicator vector as,

~I ¼ ðI1; I2; � � � ; ITÞ; ð1Þ

where Ik ¼ 1 if the k-th observation xk is a change point of the start of a temporal
block, Ik ¼ 0 otherwise.
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Now, suppose a set of vectors x1; x2; � � � ; xT i.i.d. (independent and identically
distributed) from R-dimensional multivariate normal distribution, i.e., x�Nðl;PÞ
t = 1, 2, …, T, where T denotes the number of vectors, R denotes the dimension of
vectors x1; x2; � � � ; xT , µ denotes the R-dimensional mean vector, and

P
denotes the

R � R covariance matrix. The conjugate prior distribution of (µ,
P

) is N-Inv-Wishart
ðl0;K0=j0; m0;K0Þ [12], and the posterior distribution of (µ,

P
) based on the data

X ¼ ðx1; x2; � � � ; xTÞ is also N-Inv-Wishart ðlT;KT=jT; mT;K0Þ [12]. Therefore, we can
calculate the probability of x1; x2; � � � ; xT as follows,

pðx1; x2; � � � ; xTÞ ¼ pðx1; x2; � � � ; xS; l;
PÞ

pðl;P; x1; x2; � � � ; xTÞ
¼ ð 1

2p
ÞmT=2ðK0

KT
ÞR=2 CRðVT

2 Þ
CRðV0

2 Þ
ðdetðK0ÞÞV0=2
ðdetðKTÞÞVT=2

2RT=2 ð2Þ

where CRðzÞ is the multivariate gamma function:

CRðzÞ ¼ pRðR�1Þ=4 P
R

j¼1
Cðzþð1� jÞ=2Þ ð3Þ

Consider the block indicator vector in Eq. (1), the likelihood of the data matrix
X ¼ ðx1; x2; � � � ; xTÞ is:

pðX ~I
�
� Þ ¼ P

P
Ik

b¼1
pðXbÞ ð4Þ

where, Xb is the temporal observations that belong to b-th block and pðXbÞ can be
calculated according to Eq. (2). The temporal blocks are independent from each other;
therefore, the posterior distribution of the configuration is:

pð~I Xj Þ / pð~IÞpðX ~I
�
� Þ; where pð~IÞ ¼ P

T

t¼1
pð~ItÞ and pð~ItÞ is Bern ð0:5Þ:

It is worth noting that Eq. (4) will be regarded as the fitness function of the
proposed genetic algorithm to calculate the fitness of every new individual generated
by the evolutional operators.

2.2 Genetic Algorithm

Genetic algorithm (GA) is one kind of evolutionary method inspired by the process of
natural selection. It is commonly used to solve optimization and search problems by
relying on bio-inspired operators such as selection, crossover, and mutation (Liu 2016).
Genetic algorithm is a self adaptive search algorithm and can automatically achieve the
optimal solution of the problem.

As aforementioned, in the field of change point detection, a possible distribution of
the change points in fMRI dataset can be represented as an indicator vector.We can define
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different indicator vectors as different individuals of genetic algorithm, and use Bayesian
posterior probability to evaluate their fitness. Then, by performing some evolutionary
operators such as selection, crossover, and mutation to evolve the individuals toward the
best one, which represents the most possible change points distribution.

(1) Algorithm framework

The proposed genetic algorithm is more general but has some extra steps which is very
different from it. All steps are described as follows:

Algorithm 1

Step 1 Initialize all parameters which may be used in the algorithm, and randomly 
produce a given number of indicator vectors, which represent different individuals. 
These individuals are regarded as the 0-th generation.

Step2 If maximal iterative number is reached, save all the results of our algorithm, 
else perform step 3.

Step3 Calculate fitness values of the individuals in current generation using 
Bayesian posterior probability, then sort them from high to low according to the 
fitness values.

Step 4 Copy a few individuals with highest fitness values directly into the next 
generation.

Step 5 Randomly select some individuals with relative higher fitness values, and 
select two arbitrary positions to perform crossover operation. Some new individuals 
are produced.

Step 6 Randomly select a portion of new individuals and mutate some random 
indicators from 1 to 0, or from 0 to 1.

Step 7 Go to Step 2.

Figure 1 shows the structure and pipeline of the proposed algorithm, and the
flow-chart of the program is illustrated with “black” solid line. Additionally, in order to
demonstrate how the data flows in our processing procedure, its directions are illus-
trated with “green” solid line.

(2) Excellent individuals’ survival strategy

Commonly, the general genetic algorithm may select some excellent individuals to
produce the next generation by using evolutionary operators such as crossover and
mutation. However, in our method, we copy a few best individuals directly to the next
generation. This strategy could make sure the optimal solution will not be changed by
the coming evolutional operators and also could make them exert more influence on
generating the new individuals. In fact, we think this strategy is fair because the
excellent individuals may have long life or survive long in the natural world.

(3) Selection, crossover, and mutation strategies

The selection operator maybe very important for genetic algorithm since the next
generation seriously rely on the selection strategy. In order to make those good
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individuals have more chance to be selected, we propose a selection method based on
sorted individuals.

Crossover operator is usually simple. In fact, two points crossover strategy can
work well in most situations. Therefore, we will explore this design. The mutation
operation is also very simple. However, which individual and which position in this
individual should mutate may be the two main aspects involved into our consideration.

Our selection, crossover, and mutation strategies can be summarized as follows:

Algorithm 2
(some details of Algorithm 1)

Selection and crossover:
Step 1 Randomly produce an integer n 1~n0. 
Step 2 Randomly produce two different integers a1 and a2 n, and select the a1-th 
and a2-th individuals in the sorted generation i.
Step 3 Randomly produce two different integers b1 and b2
Step 4 Crossover the selected individuals at the selected positions.
Mutation:
Step 5 Randomly produce a float number u [0,1].
Step 6 if u>u0, go to step 8.
Step 7 Randomly produce s integers c1,c2,…,cs [0,N]
Step 8 Change the c1-th, c2-th,…, and cs-th position from 1 to 0 or from 0 to 1.
Step 9 If all the individuals have been generated, end; otherwise, go to Step1.

Fig. 1. Flowchart of the proposed Genetic algorithm. (Color figure online)
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As mentioned in Fig. 1, Algorithms 1 and 2, we can easily see that the sorted
individuals with fitness values exert very important influence on the whole procedure
of our method. Figure 2 illustrated the influence more intuitively. Carefully inspect
Fig. 2(b) to (c), we can see that all the evolutional operators used to produce indi-
viduals from the i-th generation to (i + 1)-th generation should use the sorted fitness
results.

3 Experimental Results

In this section, several simulation datasets are generated to evaluate and validate the
GA-Based-BCCPM and MCMC-Based-BCCPM proposed in [2].

3.1 Simulation Datasets

In order to verify that the proposed method can effectively find the change points, six
different structure of dynamic networks (Fig. 3(a–f)) are generated [2]. These six dif-
ferent structure of dynamic networks include little amount of change point distribution
mode (such as Fig. 3(a)–(c)), and also include the mode with a lot of change point
distribution (such as Fig. 3(d)–(f)). We do several experiments to validate the proposed

...

...

...

fitness values of the i-th generation

fitness values of the (i+1)-th generation

sorted i-th generation

sorting

selection, crossover and mutationsurvive

(a)

(b)

(c)

Fitness
Fitness

Fitness

Fig. 2. The fitness values’ influence: sorted fitness values exert more influence on evolutional
operators in each iteration.
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model (GA-Based-BCCPM), and also compare it with MCMC-Based-BCCPM. In
Fig. 3, the real positions of all the change points of six different dynamic networks are
shown by using a vertical solid line with a position number below it.

3.2 Simulation Results and Comparison

We perform several experiments between MCMC-Based-BCCPM and GA-Based-
BCCPM for network (a)–(f) illustrated in Fig. 3. We repeat every simulation experi-
ments for 5 times and save all results to calculate their average performance. For the
purpose of fairness, all parameters of BCCPM are set as same values. The iterative
number of GA-Based-BCCPM is set as 100 while GA-Based-BCCPM is set as 20000
to synchronously achieve good convergence and detection results for both the two
methods.

Figure 4 illustrates the convergence curve of the MCMC-Based and GA-Based-
BCCPM. Figure 4(a)–(f) denote the convergence curves of network (a)–(f), respec-
tively; and the results of MCMC-Based and GA-Based-BCCPM are listed on the left
and right column, respectively. Carefully observe the results of left and right columns,
we can see the convergence curve of MCMC-Based-BCCPM vibrates even when it has
reached its highest peak, while GA-Based-BCCPM only climbs for the highest peak.
Obviously, the good results of proposed method may benefit from step 4 in Algo-
rithm 1, since this step will always copy individuals with highest fitness values directly
into the next generation.

Fig. 3. Six different structure of dynamic networks and their change-point-distributions.
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Figure 5 illustrates Change point detection results for network (a)–(f) of the
MCMC-Based and GA-Based-BCCPM. Figure 5(a)–(f) denote the detected positions
of change points of network (a)–(f), respectively; and the results of MCMC-Based and
GA-Based-BCCPM are listed on the left and right columns, respectively. Carefully
check all the detected change point position of left and right columns in Fig. 5 and real

Fig. 4. Convergence curve for network (a)–(f) (Left column is results of MCMC-Based-
BCCPM. Right column is results of GA-Based-BCCPM)
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positions in Fig. 3, we can conclude that GA-Based-BCCPM outperforms MCMC-
Based-MCCPM for all six networks in detection precision. Even more, GA-Based-
BCCPM does not miss or mistake change points in any network, while MCMC-Based-
MCCPM mistake some positions in network (a), (c), (e), and (f); and miss some change
points in network (d).

Fig. 5. Change point detection results for network (a)–(f) (Left column is results of
MCMC-Based-BCCPM. Right column is results of GA-Based-BCCPM)

322 X. Xiao et al.



Finally, we take the time consumption into our consideration, the running time of
MCMC-Based and GA-Based-BCCPM are listed in Table 1. The environment of our
experiment is as follows: operating system: Windows 10 Pro; system type: 64-bit
operating system x64-based processor; CPU: Intel(R) Core(TM) i7-6600U CPU@2.6
GHz 2.81 Hz; memory: 12 GB. The last row of Table 1 is the average running time and
the other rows are networks (a)-(f). It is very easy to see that GA-Based-BCCPM is better
than MCMC-Based-BCCPM in all networks, and of course the average time
consumption.

4 Conclusion and Future Work

This paper mainly presents a new change point detection method for fMRI data based
on Bayesian inference and genetic algorithm. We define different indicator vectors as
different individuals and use Bayesian posterior probability to evaluate their fitness.
Then, an improved genetic algorithm is applied to evolve the individuals toward the
best one. The simulation experiments show that our method can detect the change
points with higher precision and lower time consumption on several simulated datasets.

In the future, we will apply our method on real fMRI dataset, and combine it with
other Bayesian inference model, such as BMCPM, DBVPM, and BCBCPM. Fur-
thermore, for the potential parallel realization of the genetic algorithm, the proposed
method could be easily realized in a parallel mode and run efficiently within GPU or
multi-processors computers, thus, we will also investigate the GPU or multi-processors
version of it.
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Abstract. Accurate depression diagnosis is a very complex long-term research
problem. The current conversation oriented depression diagnosis between a
medical doctor and a person is not accurate due to the limited number of known
symptoms. To discover more depression symptoms, our research work focuses
on extracting entity related to depression from social media such as social
networks and web blogs. There are two major advantages of applying text
mining tools to new depression symptoms extraction. Firstly, people share their
feelings and knowledge on social medias. Secondly, social media produce big
volume of data that can be used for research purpose. In our research, we collect
data from social media initially, pre-process and analyze the data, finally extract
depression symptoms.

Keywords: Depression symptoms � Social media � Text mining � Word
clustering � Word embedding � NLP

1 Introduction

Mental illness has been prevalent in the world, depression is one of the most common
psychological problem. Untreated depression increases the chance of dangerous
behaviors. The significant challenge of detecting depression is the recognition that
depressive symptoms may differ from patients’ behavior and personality [1]. For clinic
depression, doctors may evaluate the patient via the depression test taken by patients.
Apparently, these clinical records are restricted due to many factors, such as age, sex;
moreover, they are private and expensive. To overcome such limitations of clinical
data, it would be beneficial to use text mining tools to extract and analyze depression
symptoms from social media, such as Twitter. Social media generates countless data
every day because of millions of active users share and communicate in entire com-
munity, it changes human interaction [2, 3]. Other than the traditional data, such as
literatures, social media data is richer and more accessible [4]. However, investigating
this new fast-growth of data requires advanced development tool to discover useful
insights. These advanced technologies include Natural Language Processing (NLP) [5],
data mining, machine learning, social media analysis and so on. In our research, the
goal is to extract and summarize the uncommon but potentially helpful factors that
depressive symptom performed from the social media data. Finally, the extracted
depression symptoms will be used as references when manually recognizing the
clinical depression by humans.
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Earlier work for driving the depression symptoms on literatures help people learn
the knowledge of depression detection. Wang et al. [6] applied the Latent Dirichlet
Allocation (LDA) [7] as the topic categorizing tool to many of texts on adolescent
substance use. Through separating the collections of articles into distinct themes by
LDA, the known depressive facts were captured. To extract the key entities, Ma et al.
[8] has proposed a hybrid method to group entities that share sematic similarities.
Wang and Ma’s work show their methods performed well on structured data, our work
introduces an unsupervised learning approach that could be used for unstructured data.

The rest of this paper is organized as follows: The second section introduces the
method for data collection. The next section illustrates how to preprocess raw data. The
forth section discusses the experiment on the result analysis. The last section concludes
our work and introduces the future research.

2 Data Collection

2.1 Tweets (TW)

Twitter rapidly has become one of the most popular social media since it launched, it
advises 313 million active users who produce 6,000 tweets on Twitter every second as
June, 20161. In favor of gathering the depression related data, we keep monitoring each
streaming tweet that includes the word “depression” in entire Twitter community.
Totally, we roughly have gathered 54-million of tweets that discussed the depression
relevant field.

2.2 Professional Twitter Accounts (PTA)

Another extension of Twitter data collection is that we gather each tweet that has been
posted by professional mental health account. The purpose of collecting these specific
tweets is that PTAs are more knowledgeable and professional on mental health field,
especially in the depression fields. Starting to web scraping the initial webpage2,
thousands of professional mental health tweets have been accumulated at the end.

2.3 Depression Blogs (DB)

Other than collecting data from the professional Twitter accounts and active Twitter
users, extra data resource comes from the depression related web blogs. Similarly, web
scraping begins at the specific webpage3 to gather data. These blogs and their deep
links are almost referring to the depressive symptoms and relative treatments.

1 https://about.twitter.com/company.
2 http://treat-depression.com/top-mental-health-accounts-to-follow-on-twitter.
3 http://www.healthline.com/health/depression/best-blogs-of-the-year.
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3 Methods

3.1 Data Preprocessing

Because the data we have collected from the tweets and web blogs are biased and
noisy, cleaning data is our first task. Generally, the special characters, such as retweet
tags “@RT: xxx” and link address “http://www.”, contain less information, they are
removed at the beginning. In the next step, stop words and punctuations are removed
by stop word list that has been aggregated online. Non-words are very common in
social media data due to any types of typo or acronyms, for instance, “hrt”, “lmao”.
These words are filtered by the NLTK toolkit [9]. Finally, we had the raw data cleaned.
Table 1 shows the number of words have left after each step of data preprocessing
procedure.

3.2 Data Analysis

3.2.1 Word Frequency
The basic approach to analyze data is to calculate the word frequency in the documents.
In the traditional text mining research, the frequent words are considered as the
important words in the nature language analysis. The collected data includes many
common words that are semantically related to the depressive symptoms that we are
familiar with, e.g. words “anxiety” and “disorder” are universal in the data set.

3.2.2 Word Embedding
To learn the relationships among words in the documents, words should be transformed
into vectors. Currently, there are two common strategies to generate word vectors:
one-hot encoding and the word embedding. The essential idea of one-hot encoding [10]
is to study to associate each word in the vocabulary with vector representation.
Building a vocabulary of the size N from the whole collection of corpus, each word is
mapped to a vector with length N, where the Nth digit indicates this word’s existence or
index, e.g. 00001…00, 01000…00. Therefore, words are represented in a high and
sparse dimension and every word corresponds to a point in the vector space, as a result,
it is difficult to capture the “relationship” among words. However, Bengio et al. [11]
developed a neural network language model (NNLM) that learns a probability distri-
bution over words in the corpus and the model is trained to produce the vector
representations of word. In contrast to the one-hot encoding, the NNLM generates
word vectors with low and dense vector, it is easier to capture the word’s property.

Table 1. Word counts

Steps TW PTA DB

Raw data 54 M 18 M 46 M
Special character removal 7 M 2.6 M 8 M
Stop words removal 3 M 1.2 M 3.4 M
Non-words removal 0.72 M 0.2 M 0.74 M
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Mikolov et al. [12] extended the Bengio’ work and built a new neural network lan-
guage leaning model, Word2Ve, using different learning methods: Continues Bag of
Words (CBOW) and Skip-gram. The CBOW predicts the current word given the
neighboring words in the surrounding window, while, the Skip-gram learns the context
words by giving a word in the input layer and predict its surrounding words in the
output layer. The reason that we use the Word2Vec due to it consume less time than
Benhio’s NNLM while training.

3.2.3 Word Clustering
We applied the Word2Vec to generate the good quality of word vectors through
training the whole data set. After that, each word has multiple degrees of similarity and
it can be computed via a linear calculation. For instance, vector (“Pairs”) – vector
(“France”) + vector (“Italy”) produces a word vector that is assumed as similar as
“Rome”. In our work, we could find the similar depression facts by given a depression
symptom or a similar word. Similar words tend to be close to each other, to group
semantic similar words, we use the K-means [13] to partition the N objects into
K (K << N) clusters depends on their geometric locations. Thus, the word clustering
technique could help us understand the relationship between two words.

4 Experiments

4.1 Word Frequency

We calculate the word frequency on three data sets individually. Table 2 displays the
portion of results of the 50 most frequent words in each data set. The most frequent
words might not reveal enough depressive symptoms as we expected, but we found
many useful facts about depression that are not very common in data. We exhibit the
portion of these depression facts in the Table 3.

4.2 Word Similarity

Semantic similar words are extracted via given a word from the vocabulary. For
example, given a word “depression”, the Table 4 shows the sample of the depression’s
similar words and corresponding cosine similarities. The larger value of cosine simi-
larity, the closer between two words.

Table 2. Word counts

TW PTA DB

Depression Depression Depression
Anxiety Risk Family
Suicide Environment Paranoia
Stress Treatment Race
Postpartum Season Business
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4.3 Word Clustering

In our experiment, the value of K is defined as 5. To illustrate the word clustering in our
data sets, we show one word group and its contents on three data sets in the Fig. 1. It is
easy to find semantic similar words are accumulated to the same cluster. This approach
is helpful to discover some unfamiliar but truly depression relevant symptoms. More
data we collected, more information could be captured in on social medias.

5 Conclusion

Clinic depression has been a serious mental illness since past decades which negatively
affects human’s health. it is difficult to confirm human’s depression symptoms from
their behaviors via restricted clinic records. Our proposed methods and experiments
illustrate that social network and web blogs provide rich information for depression
symptoms extraction from a distinctive perspective. Current advanced natural language
processing approach, like Word2Vec, can be helpful for medical uses. In the future, we
will collect other types of data, e.g. image and video from other social networks.
Additionally, advanced entity selection technique would be used to select more
accurate and meaningful depression symptoms.

Table 3. Frequent facts

Data sets Frequent facts

TW Lupus, bipolar, autism, jealousy, marijuana
PTA Discomfort, fear, inability, strategist, army
DB Sensitivity, darkness, rainy, Japan, drunk

Table 4. Similar words of “depression”

TW PTA DB
Similar
words

Cosine
similarity

Similar
words

Cosine
similarity

Similar
words

Cosine
similarity

Anxiety 0.566 Disorder 0.969 Stress 0.965
Asthma 0.285 Family 0.904 Heroin 0.919
Narcissism 0.279 Anxiety 0.897 Abuse 0.891
Hysteria 0.178 Pain 0.858 Vaccine 0.883

Fig. 1. Word clusters and contents on TW, PTA, DB respectively
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Abstract. This paper introduced a probabilistic approach to the
multiple-instance learning (MIL) problem with two Bayes classification
algorithms. The first algorithm, named Instance-Vote, provides a sim-
ple approach for posterior probability estimation. The second algorithm,
Embedded Kernel Density Estimation (EKDE), enables data visualiza-
tion during classification. Both algorithms were evaluated using MUSK
benchmark data sets and the results are highly competitive with existing
methods.

Keywords: Multiple-instance learning · Non-linear dimensionality
reduction · Data visualization

1 Introduction

Machine Learning approaches have been widely applied in drug activity pre-
diction [2,12], i.e., predicting whether an unknown drug will bind to a tar-
get (protein) based on existing knowledge of drugs-protein interactions. The
multiple-instance learning (MIL) problem arises when a drug has more than one
conformation and several of those can bind to the target. However, only the
labels of drugs in the training set are given: a drug is positive if at least one of
its conformations binds to the target, and negative otherwise. The label of each
conformation is unknown. The task is to predict the label of an unseen drug
(i.e., bag) given its conformations (i.e., instances). MIL is also applied in gene
function prediction at the isoform level [5]. In this context, a gene is considered
as a bag, which consists of multiple isoforms, referred as instances.

Of existing MIL algorithms, one class is based upon learning the labels
of instances and then labelling the bag using instance label information. The
assumption typically used is that a bag is positive if it has at least one posi-
tive instance and negative if all of its instances are negative [1,4]. A different
assumption is that all instances contribute equally and independently to a bag’s
label, and the bag label was generated by combining the instance-level proba-
bility estimates [10,11,13]. There are also many methods that convert the MIL
problem to a supervised learning problem using feature mapping [3]. However,
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feature mapping usually results in increased dimensionality, and a commonly
used approach to overcome this problem is feature selection.

In this paper, we develop two Bayes classifiers for MIL. The first approach,
named Instance-Vote, attaches the bag label to its instances for all bags in the
training set. For any new bag, we simply use a k-NN classifier to predict the label
for each instance in the bag, followed by estimating the probability of the bag
being positive via the percentage of positive instances in the bag. The second
algorithm, named as EKDE (Embedded Kernel Density Estimation) converts the
MIL to a supervised learning problem by mapping each bag into an instance-
defined space. Instead of feature selection, a non-linear dimensionality reduction
method, t-SNE (t-Distributed Stochastic Neighbor Embedding), is then used to
reduce the dimension to 1 or 2. The advantage of this approach is the capability
of data visualization. The class conditional probability densities are then esti-
mated in this low dimensional space by kernel density estimation (KDE). The
classification is based on the posterior probability according to Bayes’ theorem.

2 Methodology

2.1 MIL via Instance-Vote

A New Interpolation of Instance Label. The main challenge of MIL is
that the label of instances are unknown. The classical MIL assumption treats a
bag as negative if none of its instances is positive. Here we relax the assump-
tion by allowing negative bags to contain positive instances. In order to predict
instance labels, we assign bag label to all its instances in the training set. We
then use k-NN classifier to predict instance labels. This above process of gener-
ating instance-based training data clearly introduces noise into instance labels.
However, the noise can be accounted for by the following voting model and the
choice of threshold parameter.

Voting for Bag Label. To classify a bag, all its instances cast a vote based on
the instance label. We assume that the posterior probability of a bag being pos-
itive (or negative) is a monotonically non-decreasing function of the probability
of a randomly chosen instance from the bag being positive (or negative), i.e.,

Pr(y = +|B) = f(Pr(xi ∈ +|B))

where y is the label of bag B, xi is a randomly chosen instance from the bag, f
is an unknown monotonically non-decreasing function. The maximum likelihood
estimate of Pr(xi ∈ +|B) is obtained as m+

m , where m+ is the number of positive
instances in the bag and m is the total number of instances in the bag. We use
a simple Bayes decision rule for classification, i.e.,

y =

{
+ if Pr(xi ∈ +|B) > θ,

− otherwise,

where θ is the threshold parameter.
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2.2 Embedded Kernel Density Estimation

In this approach, we convert the MIL problem to supervised learning via fea-
ture mapping. We aim to find the probability distributions of the two classes
using KDE and then apply the Bayes decision rule. However, KDE does not
perform well for high dimensional data, since data points are too sparse in high
dimensional space. The solution is to learn an embedding of the data and apply
KDE in the low dimensional latent space (d = 1 or 2). Therefore, we name this
approach as Embedded Kernel Density Estimation (EKDE).

Feature Mapping. We adopt the same method described in [3] considering its
good performance. Each bag is represented by all the instances in the training
set via a similarity measurement. The similarity of a bag Bi and an instance xk

is defined as:

s(Bi, x
k) = max

j
exp(−

∥∥xij − xk
∥∥2

σ2
),

where xij is the j’th instance in bag Bi with j = 1, . . . , ni, ni is the number of
instances in bag Bi, and σ is a predefined scaling factor. Then bag Bi can be
represented as: [s(Bi, x

1), s(Bi, x
2), . . . (Bi, x

n)], where n is the total number of
instances in the training set, i.e.,

∑l
i=1 ni = n, where l is the total number of

bags in the training set. The dimension after feature mapping is now n, which
can be considerably large. Therefore, dimensionality reduction is desired.

Dimensionality Reduction and Visualization. Among all existing dimen-
sionality reduction techniques, t-SNE was chosen due to its prominent perfor-
mance [8]. Specifically, we chose the parametric t-SNE since it provides a map-
ping function from the original space to the low dimensional space [7]. The
dimension of latent space was set to 1 or 2 such that KDE can be reliably imple-
mented and visualization of the data can also be achieved. Although not required
by classification, visualization is beneficial for data analysis.

Probability Density Estimation and Classification. According to Bayes’
theorem, given a bag represented as x, the posterior probabilities can be com-
puted as

Pr(y = +|x) =
p(x|y = +)Pr(y = +)

p(x)
,Pr(y = −|x) =

p(x|y = −) Pr(y = −)
p(x)

,

where y is the bag label. Assuming bags being i.i.d., the maximum likelihood
estimates of Pr(y = +) and Pr(y = −) are Pr(y = +) = l+

l ,Pr(y = −) = l−
l ,

where l+(l−) is the number of positive(negative) bags in training set. The class
conditional densities p(x|y = +) and p(x|y = −) can be estimated by KDE using
training data after dimensionality reduction. p(x) is a constant respect to y. The
classifier can make predictions on the bag label y by setting a threshold θ for
the odd ratio (OR):
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y =

{
+ if OR > θ,

− otherwise,

where OR = Pr(y=+|x)
Pr(y=−|x) .

3 Experimental Results

3.1 Data Sets

The benchmark datasets MUSK1 and MUSK2 are used in our study. In these
two datasets, each molecule (bag) has more than one conformation (instance).
The label of the molecule is “musk” (positive) if any of its conformations is a
musk or “non-musk” if none of its conformations is a musk.

3.2 Experimental Setup

For the Instance-Vote algorithm, different values of k were tested for k-NN clas-
sifier instance classification. For the EKDE algorithm, the setup of feature map-
ping is same as [3]. We used the implementation of parametric t-SNE that is
publicly available at [9]. A Gaussian kernel was used in KDE and the optimal
bandwidth was determined by 10-fold cross validation.

3.3 Results

Both algorithms were tested using 10-fold cross-validation at the bag level. We
use area under ROC (receiver operating characteristics) curve (AUC) for evalu-
ation since it is a preferred measurement over accuracy [6]. Each experiment was
performed 10 times and the average AUC was used for comparison with other
algorithms.

In the testing of Instance-Vote algorithm, k = 3 gives the optimal cross-
validation result for both data sets. The AUC obtained is shown in Table 1. The
result is surprisingly good considering the simpleness of this algorithm. This
may suggest that noise introduced during labelling instances in the training set
is not significant. From the chemistry point of view, it is reasonable that many
conformations of a musk molecule can preserve the musk property.

We next present the results of the EKDE algorithm. After feature mapping,
the data dimensions are 476 (MUSK1) and 6598 (MUSK2), as determined by
the total number of instances in the training sets. The dimension is then reduced
to 1 or 2 by applying parametric t-SNE. Due to the limit of space, we only show
the visualization results in 2D (Fig. 1). The two classes are separated well for
both data sets with minor overlapping in MUSK2, thanks to the superiority of
t-SNE on preserving the local structure. The AUC results are shown in Table 1.

For comparison, we also include the results of various existing MIL algo-
rithms that use AUC as the measure for evaluation (Table 1). Among all of the
listed method, Instance-Vote is the simplest and has comparable results with the
others. The EKDE algorithm outperforms others on MUSK1 and is comparable
with those on MUSK2.
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Fig. 1. Visualization of MUSK1 (left) and MUSK2 (right) data sets in 2D. Positive
and negative bags are presented as red circles and blue squares, respectively. (Color
figure online)

Table 1. AUC obtained by the proposed algorithms and other methods on the MUSK
data set (All listed algorithms were evaluated by 10-fold cross-validation.).

Algorithms MUSK1 MUSK2

Instance-Vote 0.921 0.856

EKDE (d = 1) 0.954 0.859

EKDE (d = 2) 0.941 0.865

MI RVM [11] 0.942 0.987

RVM [11] 0.951 0.985

MI Boost [11,13] 0.899 0.964

MI LR [10,11] 0.846 0.795

DD(1) [10] 0.895 0.903

DD(3) [10] 0.883 0.850

DD(5) [10] 0.861 0.838

4 Conclusions

In this paper, we introduced two Bayes algorithms to solve the multiple-instance
problem. The Instance-Vote algorithm acquires the label of each instance in the
training set from its associated bag and predict an unseen bag label base on
the percentage of predicted positive instances in the bag. The EKDE algorithm
performs KDE after feature mapping in the embedded low dimensional space
with the help of parametric t-SNE. In this approach, both classification and
data visualization can be achieved. We have shown that both algorithms are
competitive with other MIL algorithms on MUSK benchmark data sets.

Acknowledgements. This work was supported by the Department of Computer and
Information Science, University of Mississippi.
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Abstract. Although many machine learning algorithms have been pro-
posed to identify cancer-related genes, their prediction accuracy is still
limited due to the complex relationship between cancers and genes. To
improve the prediction accuracy, many deep learning based tools have
been developed, and they have shown their efficiency to handle com-
plex relationships. To use those tools, a deliberate data representation
method is indispensable, since majority tools only take those image-like
data as inputs. In this study, we propose a novel network representation
method, called Net2Image, to transfer topological networks into image-
like datasets. The local topological information of individual vertices
from six biomolecular networks and one DNA methylation dataset are
encoded as 80 ∗ 6 matrices. They are then employed as inputs to train
the model for identifying cancer-related genes using TensorFlow. The
numerical experiments show that the proposed method can achieve very
high prediction accuracy, which outperforms many existing methods.

Keywords: Deep learning · Biomolecular network · Cancer-related
gene · Multiple data integration

1 Introduction

The identification of cancer-related genes plays essential roles in understanding
the mechanism of cancer pathogenesis. To achieve this, many machine learn-
ing methods have been proposed from various computational aspects by using
the assumption of “guilty-by-association” [1] and the strategy of multiple data
integration [2], such as those regression methods [3], the global network based
method (PRINCE [4]), the combining gene expression and protein interaction
method (CGI [5]), the random walk with restart (RWR [6]), the Markov random
field based method (MRF [2]), and data integration rank based method (DIR
[7]) etc. Although those algorithms have achieved big improvement for under-
standing the pathogenic mechanism of many genetic diseases, their prediction
accuracy is still limited, and novel efficient and powerful algorithms need to be
further developed.

B. Chen and Y. Jin—Equally contributing authors.
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Deep learning based methods have gained big success in many areas. They
can model the complex relationship between diverse variables by using the com-
bination of multiple nonlinear functions. However, deep-learning based studies
in computational biology areas still mainly follow the basic strategy of those
image processing methods. They either focus on medical image process directly,
such as the skin cancer image process [8], or use a method to transfer various
sequential data into images, such as the DeepBind method [9].

In this study, we propose a novel network representation method to transfer
the local topological information of individual vertices into encoded matrices.
Six biomolecular networks and one DNA methylation dataset are integrated to
generate those matrices. They are then been used as inputs of TensorFlow to
train the model of for identifying cancer-related genes in this study.

2 Materials and Methods

2.1 Problem Formulation

The problem of cancer-related gene identification is to prioritize all unknown
genes in terms of their associations with cancers. This can be described as a
two-class classification problem (i.e., taking the value of 1 or 0 to indicate if the
gene is related to cancers or not). Suppose human genome consists of a set of
N genes G = {g1, g2, . . . , gN}, where let g1, g2, . . . , gn be genes that we do not
know their associations with any genetic disorders, gn+1, gn+2, . . . , gn+m be genes
that we know their associations with cancers, and gn+m+1, gn+m+2, . . . , gn+m+k

be genes that we know their associations with other genetic disorders except
cancers. Obviously, we have N = n + m + k.

A typical machine learning method usually takes genes in gn+1, gn+2, . . . , gn+m

as positive instances, and randomly select roughly equal number of genes in
g1, g2, . . . , gn as the negative instances. However, we argue that it makes more
sense if the negatives instances are selected from gn+m+1, gn+m+2, . . . , gn+m+k.
Since those genes have been well studied by many researchers, and no association
relationship has been found between any of them and cancers. They are more likely
to be non-cancer-related genes compared with those unknown genes.

2.2 Network Representation

A typical deep learning framework, such as the TensorFlow, usually takes pixels
of individual images as inputs. Hence, the objective of network representation is
to find a reasonable set of local topological features for individual vertices.

Given a configuration for all genes, let N1(gi) denote the neighbor set of gene
gi in a network, and N+

1 (gi) and N−
1 (gi) denote the subset of N1(gi) whose

elements are labelled with 1 and 0, respectively. Several topological indices can
be employed to conduct the network representation. Take the degree d(gi) and
the direct neighborhood information N1(gi) for example. We use the following
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elements to represent the part features of gene gi.

x1(gi) = d(gi) = |N1(gi)|
x2(gi) = min{d(gj)}, where gj ∈ N1(gi)
x3(gi) = median{d(gj)}, where gj ∈ N1(gi)
x4(gi) = ave{d(gj)}, where gj ∈ N1(gi)
x5(gi) = max{d(gj)}, where gj ∈ N1(gi)

(1)

We can similarly get x6(gi) to x10(gi) by using the set of N+
1 (gi), and x11(gi) to

x15(gi) by using the set of N−
1 (gi). Hence, we obtain 15 raw features by using

the degree and the direct neighborhood information. Similarly, we can further
generalize this idea by using the degree and the second-order of neighbors, the
clustering coefficient and the direct neighbors, and the clustering coefficient and
the second-order of neighbors to generate the raw features of x16(gi) to x30(gi),
x31(gi) to x45(gi) and x46(gi) to x60(gi), respectively.

Moreover, we would like to describe the location of individual vertices within
a network using the farthest neighbor set. In [10], Goh et al. have shown that
disease-related genes tend to locate at the peripheral position but rather those
central positions. For the set of Nf (gi), we let

x61(gi) = dist(gi, gj), where gj ∈ Nf (gi)
x62(gi) = min{dist(gj , gk)}, where gj ∈ Nf (gi) and gk ∈ Nf (gj)
x63(gi) = median{dist(gj , gk)}, where gj ∈ Nf (gi) and gk ∈ Nf (gj)
x64(gi) = ave{dist(gj , gk)}, where gj ∈ Nf (gi) and gk ∈ Nf (gj)
x65(gi) = max{dist(gj , gk)}, where gj ∈ Nf (gi) and gk ∈ Nf (gj)

(2)

where dist(u, v) represents the length of shortest path between the vertex u and
v. The reason we use dist(gj , gk), but rather dist(gi, gj) is due to the fact that
the value of dist(gi, gj) between gi and any gj ∈ Nf (gj) is a constant. There is
no different among the value of min(·), median(·), ave(·) and max(·) under this
situation. However, the furthest neighbors of Nf (gj), where gj ∈ Nf (gi) confess
the location information of gi. It should have obvious difference between x61

and x62 to x65 if it locates in the central position, while the difference would be
tiny if it locates in the peripheral area. Similarly, the raw features of x66(gi) to
x70(gi), and x71(gi) to x75(gi) can be obtained by using the N+

f (gi) and N−
f (gi),

respectively.
In addition, DNA methylation level of individual genes also contribute to the

features related to cancers [11]. We randomly selected five methylation sites for
each gene, and calculated the rest raw features as follows.
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x76(gi) = meth1(gi)
x77(gi) = meth2(gi)
x78(gi) = meth3(gi)
x79(gi) = meth4(gi)
x80(gi) = meth5(gi)

(3)

2.3 The Evaluation Process Based on TensorFlow

To evaluate the prediction accuracy of M0, we use the leave-one-out cross valida-
tion paradigm as follows. Suppose gt1, gt2, . . . , gtk are those genes in the training
set, including both positive instances and negative instances. The leave-one-out
experiment leaves one gene gtj out per time, and uses the rest genes to train the
model using TensorFlow. The fine trained model can be denoted as Mj when
gtj is left out in such experiment. The receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC) are employed to demonstrate
the performance of the proposed method.

The close similarity between M0 and each M1,M2, . . . ,Mk makes it possible
to use the pretrained result of M0 as the initial value to train M1,M2, . . . ,Mk

in the evaluation stage. This does not mean that a gene’s information is used
in the experiment when the gene is left out. We only select the initial values as
close to the true values as possible, thereby increasing the training speed.

3 Experiments and Results

3.1 Data Sources

In this study, six biomolecular networks and one DNA methylation dataset are
employed to construct the raw features of individual genes, which include four
PPI networks, one pathway co-occurrence network and one gene co-expression
network. The availability of those datasets are described in Table 1.

Table 1. The summarized information of the integrated datasets

Database Node no. Version URL

HPRD 9465 Release 9 http://hprd.org/download

BioGrid 16085 3.4.143 http://thebiogrid.org/download.php

IntAct 14214 4.2.3.2 http://www.ebi.ac.uk/intact/downloads

InWeb IM 17653 2016 09 12 https://www.intomics.com/inbiomap

Pathways 16007 c2.all.v5.2 http://software.broadinstitute.org/gsea/msigdb

Expressions 15484 E-TABM-305 http://www.ebi.ac.uk/arrayexpress/

Methylation 21227 GSE36064 -

http://hprd.org/download
http://thebiogrid.org/download.php
http://www.ebi.ac.uk/intact/downloads
https://www.intomics.com/inbiomap
http://software.broadinstitute.org/gsea/msigdb
http://www.ebi.ac.uk/arrayexpress/
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The node entries in different datasets are not the same. In this study, we
selected genes appear in at least six datasets and resulted in 9189 identical
vertices as the candidate genes. After taking the intersection with individual
datasets, we obtained the valid number of entries as shown in Table 2.

Table 2. The number of valid entries of the integrated datasets

HPRD BioGrid IntAct InWeb IM Pathway Expression Methylation

Node no. 7933 9156 8967 9184 9015 6108 7765

Edge no. 31794 146831 76019 107242 1465417 103447 -

The known gene-disease associations are obtained from the paper of Goh,
et al. [10] and the OMIM database (downloaded on Dec 13, 2016). The former
dataset in [10] gives a very good classification for known genetic disorders. To
keep updating this classification list, we manually checked each new entry from
the OMIM database, and obtained a set of 2550 disease genes related to known
genetic disorders. Among them, 263 genes are related to individual cancers.

3.2 The Performance of the Proposed Method and the Comparison
with Previous Methods

The performance of the proposed method is evaluated using the ROC curve and
the AUC value. Figure 1 gives the comparison between the proposed Net2Image
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Fig. 1. The cross-validation results of four methods. The magenta line represents the
ROC curve of the proposed Net2Image method. The green line represents the ROC
curve of the logistic regression (LR) method. The cyan line represents the ROC curve of
the random work with result (RWR) method. The red line represents the ROC curve of
the data integration rank (DIR) method. AUC values are listed in parentheses. (Color
figure online)
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method and several existing algorithms, where the ROC curves of those exist-
ing methods are adopted from [3]. We can see from the figure that Net2Image
significantly outperform those algorithms, such as (1) logistic regression (LR),
(2) random walk with restart (RWR), and (3) data integration rank (DIR) in
terms of the AUC values. The AUC value of Net2Image is 0.943, which is very
promising for identifying cancer-related genes.

4 Conclusions

In this paper, we have proposed a novel network representation method to
transfer network topological information into image-like matrices. Our proposed
method has the following three technical innovations. (1) It gives a method to
handle network inputs for various deep learning based tools. (2) The raw features
of individual vertices is related to all genes, but rather only those genes in the
training set. It is more reliable than normal machine learning based methods.
(3) The initial labels of unknown genes are estimated together with mode in the
pretraining stage. Prior information is not necessary for those unknown genes.

Compared with previous algorithms, the proposed Net2Image method also
achieve a very high AUC value. It can predict the cancer-related genes with the
accuracy at 0.934, which is very promising comparing with exist methods.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China under Grant Nos. 61602386 and 61332014 and the Foundation of top
university visiting for excellent youth scholars of Northwestern Polytechnical Univer-
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Abstract. Recent outbreaks of highly pathogenic influenza have highlighted
the need to develop novel anti-influenza therapeutics. Neuraminidase has
become the most important target for the treatment of influenza virus. In this
study, classification models were developed from a large training dataset con-
taining 457 neuraminidase inhibitors and 358 non-inhibitors using random forest
and support vector machine algorithms. Recursive feature elimination (RFE)
method was used to improve the accuracy of the models by selecting the most
relevant molecular descriptors. The performances of the models were evaluated
by five-fold cross-validation and independent validation. The accuracies of all
the models are over 86% in both validation methods. This work suggests
machine learning algorithms combined with RFE method can be used to build
useful models for predicting influenza neuraminidase inhibitors.

Keywords: Machine learning � Neuraminidase inhibitor � Feature selection

1 Introduction

The flu continues to be a serious public health threat that causes severe morbidity and
mortality throughout the world every year. In recent years, the emerging of new avian
influenza virus [1] and drug-resistant strains [2] have exacerbated this threat.

The neuraminidase (NA) of the influenza virus removes sialic acid from the gly-
coprotein on the surface of the host cell, resulting in the release of the virion from the
infected cells, which makes NA a key protein in the life cycle of the virus, and has
become the most important anti-influenza drug target [3]. Many NA inhibitors have

© Springer International Publishing AG 2017
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been developed, such as oseltamivir and zanamivir. Unfortunately, the strains with
oseltamivir resistance have been widely spread around the world, and the use of
zanamivir has been limited by its poor oral bioavailability [1].

In recent years, computer-aided drug design (CADD) has been widely used in the
development of various new drugs. Many new methods, such as molecular docking
[4, 5], pharmacophore modeling [6], quantitative structure-activity relationships
(QSAR) [7], and machine learning [8, 9], have been applied to screen or design new
potential anti-influenza molecules. To date, several machine learning models have been
built to discriminate NA inhibitors and non-inhibitors [8, 9].

Feature selection methods can improve the accuracy, reduce the complexity and
increase the generalization ability of the classification model generated with machine
learning models. Recursive feature elimination (RFE) has been used in many bioin-
formatics studies [10]. However, in the recent studies of prediction of NA inhibitors
using machine learning methods, feature selection methods dose not used to select the
most relevant features from a large poll of molecular features [8, 9].

The aim of this study is to build machine learning models for classification of
inhibitor and non-inhibitor of influenza A virus neuraminidase using the most relevant
features selected by recursive feature elimination and other feature selection methods.

2 Materials and Methods

2.1 Dataset

The molecules with known inhibitory activity (IC50 values) for influenza A virus
neuraminidase were collected from search of literatures and bindingDB [11] database.
As the inhibition assays were not exactly identical, there may be some deviations in the
IC50 values. Therefore, we categorized the molecules with IC50 < 10 µM as inhibi-
tors, and those with IC50 > 50 µM as non-inhibitors. The molecules in the grey area
(10 µM < IC50 < 50 µM) were winkled out, which may reduce the possible influence
on the accuracy of the model [12]. The dataset were then split into a training set and an
independent validation set by the ratio of 4:1 using stratified sampling. The training set,
containing 366 inhibitors and 286 non-inhibitors, was used to develop prediction
models. The independent validation set, containing 91 inhibitors and 72 non-inhibitors,
was used to evaluate the performance of the final model.

The 3D structures of the molecules were generated by Corina. Then, a total of 1845
molecular descriptors were generated by the PaDEL-Descriptor [13] software (version
2.21). Salt was also removed using this software.

2.2 Methods for Model Building

Three machine learning algorithms (k-nearest neighbors (kNN), random forest
(RF) and support vector machine (SVM)) were used to develop classification models
for prediction of NA inhibitors. The kNN, RF, and SVM algorithms were all executed
in R (version 3.3.1). Important parameters for the algorithms were tuned using grid
search method implemented in R package caret [14] (version 6.0–71).
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2.3 Feature Selection

The descriptors with zero variation in the training set and the highly correlated
descriptors (Pearson’s correlation coefficients > 0.75) were removed using the R
package caret. And then the recursive feature elimination (RFE) method was used to
further remove the redundant features.

2.4 Evaluation of Prediction Performance

The performance of the models was evaluated by five-fold cross-validation and inde-
pendent validation methods [15–17]. The performance of the models was assessed by
the quantity of accuracy (Q), specificity (SP), sensitivity (SE), and Mathew’s corre-
lation coefficient (MCC). The definitions and equations can be found in [18, 19]. In
addition, the area under the ROC (receiver operating characteristic) curve (AUC) was
also used to assess the performance of the models [20–24].

3 Results and Discussion

3.1 Performance of the Models

Based on the training set, three machine learning models, namely kNN-All, RF-All, and
SVM-All, were built with all molecular descriptors generated by PaDEL-Descriptor.
The five-fold cross-validation results are shown in Table 1. The accuracy of kNN-All,
RF-All, and SVM-All are 80.7%, 86.3% and 87%, respectively. It was observed that the
specificity of these models needs to be improved.

As the accuracy of the model produced by kNN is low, the models built by RF and
SVM were further refined by feature selection methods. After removing the zero vari-
ation descriptors and the highly correlated descriptors, 215 molecular descriptors were
remained. Two models, namely RF-215 and SVM-215, were built based on these
selected descriptors. As shown in Table 1, the overall accuracy of the models built by
RF and SVM are 86.7% and 87.2%, which are all improved. The specificity of the two
models also improved, although the sensitivity has declined.

After applying the RFE feature selection method, two optimal models (RF-RFE and
SVM-RFE) were obtained. As shown in Table 1, the accuracy of the RF model was

Table 1. Performance of the models as evaluated by five-fold cross-validation.

Model Descriptors Q (%) SE (%) SP (%) MCC AUC

kNN-All 1845 80.7 85.5 74.5 0.606 0.866
RF-All 1845 86.3 89.4 82.3 0.722 0.940
SVM-All 1845 87.0 88.7 84.7 0.737 0.929
RF-215 215 86.7 88.3 84.6 0.731 0.937
SVM-215 215 87.2 86.6 88.1 0.745 0.933
RF-RFE 58 87.0 88.1 85.6 0.737 0.942
SVM-RFE 28 86.4 87.2 85.5 0.726 0.920

346 L. Zhang et al.



improved from 86.7% to 87.0%, but the accuracy of the SVM model was reduced from
87.2% to 86.4%. The specificity of the RF model was also improved. It can be seen that
the RFE method reduces the number of molecular descriptors in the SVM and RF
models to 58 and 28 in cases where the model accuracy is less affected.

The results of external validation are given in Table 2. The overall accuracy of
these models ranges from 90.2–92.6%, indicating that these models was not over-fitted,
and could be applied to new compounds for screening new NA inhibitors.

As demonstrated in a series of recent publications [18, 19] in developing new
prediction methods, user-friendly and publicly accessible web-servers will significantly
enhance their impacts, we shall make efforts in our future work to provide a web-server
for the prediction method presented in this paper.

3.2 Relevance Molecular Descriptors for Predicting Neuraminidase
Inhibitors

In this study, a total of 58 and 28 molecular descriptors are selected for the RF-RFE and
SVM-RFE model by various feature selection methods. There are 24 molecular
descriptors both included in RF-RFE and SVM-RFE model. The normalized mean
value and their standard errors of 24 selected molecular descriptors of NA inhibitors

Table 2. Evaluation of the models using an independent validation set.

Model TP FN TN FP SE (%) SP (%) Q (%) MCC AUC

RF-215 85 6 66 6 93.4 91.7 92.6 0.851 0.977
SVM-215 83 8 66 6 91.2 91.7 91.4 0.827 0.973
RF-RFE 86 5 65 7 94.5 90.3 92.6 0.851 0.974
SVM-RFE 82 9 65 7 90.1 90.3 90.2 0.802 0.952

Fig. 1. Comparison of the 24 selected molecular descriptors. The values of the molecular
descriptors are normalized to the range of 0–1 using Min-Max normalization technique.
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and non-inhibitors are represented in Fig. 1. It can be found that the descriptor has a
significant difference between the inhibitor and the non-inhibitor, indicating that these
descriptors may be related to the mechanism of action of the inhibitors.

4 Conclusion

In this work, machine learning models capable of discriminate NA inhibitors and
non-inhibitors, were developed from a large training set containing 457 NA inhibitors
and 358 non-inhibitors using random forest and support vector machine algorithms and
various feature selection methods. The models were validated by five-fold cross-
validation and independent validation. The results shown that machine learning algo-
rithms can used to predict NA inhibitor with a high accuracy. Feature selection
methods are found to be useful in improving the accuracy and reduce the complexity of
the models. The molecular descriptors selected by RFE method can provide clues to
interpret the mechanism of the known NA inhibitors. The models are potentially useful
tools for screening new NA inhibitors from large chemical libraries.
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Abstract. Privacy preserving data releasing is an important problem
for reconciling data openness with individual privacy. The state-of-the-
art approach for privacy preserving data release is differential privacy,
which offers powerful privacy guarantee without confining assumptions
about the background knowledge about attackers. For genomic data with
huge-dimensional attributes, however, current approaches based on dif-
ferential privacy are not effective to handle. Specifically, amount of noise
is required to be injected to genomic data with tens of million of SNPs
(Single Nucleotide Polymorphism), which would significantly degrade the
utility of released data. To address this problem, this paper proposes a
differential privacy guaranteed genomic data releasing method. Through
executing belief propagation on factor graph, our method can factorize
the distribution of sensitive genomic data into a set of local distributions.
After injecting differential-privacy noise to these local distributions, syn-
thetic sensitive data can be obtained by sampling on noise version distri-
bution. Synthetic sensitive data and factor graph can be further used to
construct approximate distribution of non-sensitive data. Finally, sam-
ples non-sensitive genomic data from the approximate distribution to
construct a synthetic genomic dataset.

Keywords: Differential privacy · SNP/trait associations · Belief
propagation · Factor graph · Data releasing

1 Introduction

With the developing of DNA-genotyping technology, more and more individuals
tend to genotype their DNA, in order for genetic services. For example, 23andMe
[1], one of the most popular DNA-sequencing service providers, has provided such
services for more than 900,000 individuals. With genotyped DNA, individuals can
learn about their predispositions to disease. Meanwhile, massive DNA sequences
are significantly beneficial to searchers to develop new genetic diagnostic methods
or medicines. Furthermore, more and more research groups release the uncovered
associations among genotypes, haplotypes, or phenotypes (such as GWAS catalog
[3], DisGeNET [2]), which further enrich genetic services and researches.
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However, individuals privacy are increasingly threaten with more and more
genomic data are available online, although significant benefit are brought by
them. In this paper, we propose an effective method to address the problem
of releasing differentially private kin-genomic data. Focusing on the genotype
and trait privacy, we start from exploring factorize the joint conditional dis-
tribution of sensitive genomes into sets of local probability distributions by
executing belief propagation on factor graph which captures the dependency
relationship among family members, SNPs and traits due to family genetic rela-
tionship and SNP/trait associations. To guarantee differential privacy, noise is
injected to these local probability distributions to construct approximate dis-
tribution for sensitive genomes and then synthetic sensitive genomes can be
sampled. Then, synthetic sensitive genomes and factor graph are further used to
construct approximate distribution of non-sensitive genomes. Finally, synthetic
nonsensitive genomes can be sampled and released. Compared with large body
of previous works, which mainly focused on improving the output of differential
privacy mechanism (such as optimizing specific query results), we study how to
factorize a huge-dimensional distribution into a set of local distributions, so that
scale of noise can be reduced by injecting into local distributions.

2 Genomic Data Model

Suppose the number of individuals in the target family is m. The SNP set of an
individual is denoted as S with size |S| = n. The content of an arbitrary SNP
i(i ∈ S) is denoted as si, where si takes value from: (i) BB (both alleles inherited
from parents are major alleles), (ii) Bb (alleles inherited from parents are major
allele and minor allele) or (iii) bb (both alleles inherited from parents are minor
alleles). We assume some individuals in a target family intend to release their
part of SNPs or traits (such as diseases, hair color, height, etc.) in order for
genetic services or research purpose. However, privacy concerns drive them just
to release part of SNPs or non-sensitive traits whereas sensitive part is kept
private. We denote the set of non-sensitive variables (including SNPs and traits)
as XK , while sensitive variables as XU .

For SNP/trait associations reported by GWAS catalog, the trait set consid-
ered are denoted as T , with size |T | = r. tj is defined to be the trait j (j ∈ T )
of an individual.

3 Solution

3.1 Solution Overview

This section sketches an overview of our method for releasing genomic data with
ε-differential privacy guarantee. The proposed method runs in five phases:

Phase 1: Construct a factor graph G incorporating all variables X, X = XU ∪XK

for target family, the Mendelian inheritance probabilities F(sFi , sMi , sCi ), and
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SNP/trait associations A. Calculate the joint conditional distribution of sensitive
variables p(XU |XK ,F ,A) by executing belief propagation on factor graph G.

Phase 2: Construct ε-differential privacy algorithm to generate the noise version
of p(XU |XK ,F ,A) constructed in Phase 1. We denote the noise joint conditional
distribution of sensitive variables as p∗(XU |XK ,F ,A).

Phase 3: Sample sensitive variables from the noise joint conditional distribution
p∗(XU |XK ,F ,A) generated in Phase 2 to generate synthetic sensitive variables
XU

∗.

Phase 4: Calculate the joint conditional distribution of non-sensitive variables
p(XK |XU

∗,F ,A) by executing belief propagation on factor graph G that has
incorporated synthetic sensitive variables XU

∗ generated in Phase 3.

Phase 5: Sample non-sensitive variables from the joint conditional distribution
p(XK |XU

∗,F ,A) calculated in Phase 4 to generate synthetic sensitive variables
XK

∗.

Finally, the target family releases the synthetic genomic data X∗, X∗ =
XK

∗ ∪ XU
∗. In short, our method is to use synthetic SNPs and traits X∗ of

individuals to approximate the real SNPs and traits X. Relatively, the joint
conditional distribution computation (Phase 1 and Phase 4) and sampling (Phase
3 and Phase 5) are straightforward. However, constructing ε-differential privacy
algorithm in Phase 2 is non-trivial. In the following subsections, we detail these
phases and prove our method satisfies ε-differential privacy.

3.2 Generation of Joint Conditional Distribution

According to belief propagation, the joint conditional distribution p(XU |XK ,
F ,A) in Phase 1 and p(XK |XU

∗,F ,A) in Phase 4 in prior section can be trans-
formed into the products of several local functions and each function supports a
subset of variables. For example, p(XU |XK ,F ,A) can be factorized into

p(XU |XK ,F ,A) =
1
Z

∏

i∈S

∏

j∈T

fi(sCi , sFi , sMi ,F)gij(si, tj ,A) (1)

where Z ia a constant normalization factor. Note that fi(sCi , sFi , sMi ,F) ∝
p(sCi |sFi , sMi ,F), which can be obtained from public statistics, and
gij(si, tj ,A) ∝ p(si, tj), which can be obtained from SNP/trait association
reported by GWAS catalog. p(XK |XU

∗,F ,A) can be factorized similarly.

3.3 Generation of Noise Joint Conditional Distribution

Given the joint conditional distribution p(XU |XK ,F ,A), to construct approxi-
mate distribution p∗(XU |XK ,F ,A), we need to inject ε-differential privacy noise
to such n × r items, as shown in Eq. (1), where n is the number of SNPs of an
individual and r is the number of traits. The calculation of p(XK |XU

∗,F ,A)
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based on XU
∗ in Phase 4 in Sect. 3.1, however, does not need any additional

information from the original data; namely, the joint conditional distribution of
XK can be derived from XU

∗ directly.
To drive p(XU |XK ,F ,A) in an ε-differential privacy manner, for any i ∈

S, Laplace noise can be injected into fi(sCi , sFi , sMi ,F) directly, with scale of
6n/mε, which guarantees that the noise version of fi(sCi , sFi , sMi ,F), represented
as f∗

i (sCi , sFi , sMi ,F), satisfies (ε/2n)-differential privacy since fi(sCi , sFi , sMi ,F)
has sensitivity 3/m, where n is the number of SNPs of an individual and m is
the number of individuals in the target family.

For any j ∈ T , Laplace noise is injected to gij(si, tj ,A), with scale of
4r/mε, which guarantees that the noise version of gij(si, tj ,A), represented as
g∗
ij(si, tj ,A), satisfies (ε/2r)-differential privacy since fi(sCi , sFi , sMi ,F) has sen-

sitivity 2/m, where r is the number of traits.

3.4 Privacy Guarantee

According to composition property [6], our method satisfies ε-differential privacy.
Specifically, noise injected to all family factor nodes and all trait factor nodes
are ε/2, respectively.

4 Related Works

Privacy preserving genomic data release has received much attention in recent
years. [17] proposes methods for differential privacy preserving release of GWAS
catalog statistics, including χ2-statistics, minor allele frequency and p-values. [18]
proposes a method sharing data with differential privacy manner by splitting
original genomes in a top-down way, and then add noise to each block. [16]
states that current methods for identifying high scoring SNPs with differential
privacy guarantee have low accuracy and high computational complexity, so that
the authors proposed a new neighbor distance definition for performing private
GWAS. [13] proposes privacy preserving algorithms for supporting exploratory
analysis, including the location of SNPs with strong association with specific
disease, correlations among SNPs.

In addition to differential privacy, [15] states how to combat against the sta-
tistical analysis attack (Homer’s attack [11]), by restricting data release scale.
Existing works have shown that personal information is threaten by attackers
that usually launch attacks by exploiting data correlations and effective privacy
preserving methods have also been proposed, such as location, social attributes
[5,7,8,10], or mobile wireless networks [9,19,20]. [4] releases certain number of
most crucial SNPs. However, their method makes several unfeasible assumptions,
such as taking only χ2 into consideration, fixed individual size, and the attacker
knows the number of SNPs to release as background knowledge. For example,
[14] proposes privacy preserving algorithms in order for calculating the statisti-
cal information about SNPs involving number and location which significantly
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imply the association between SNPs and diseases. [12] proposes two privacy met-
rics, adversary incorrectness and uncertainty, to quantify the privacy loss due to
inference attacks on released genomic data.

5 Conclusions

We have proposed a differential-privacy preserving kin-genomic data releasing
method. Based on factor graph, which has been proven an effective model to
incorporate high-dimensional data and multiple correlations among them, our
method can factorize the joint conditional distribution of sensitive genomes into
sets of local probability distributions by executing belief propagation on factor
graph which captures the dependency relationship among family members, SNPs
and traits due to family genetic relationship and SNP/trait associations. A key
part of our method is that, to ensure differential privacy, noise can be directly
injected into low-dimensional local distributions rather than huge-dimensional
genomic data, which significantly improve data utility.

Acknowledgments. This work is partly supported by the National Science Founda-
tion (NSF) of China under grant 61632010, 61602129.
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Abstract. Inferring novel findings from known biological knowledge is one of
the ultimate goals in systems biology. However, the observation of system-level
responses to a given perturbation has not been thoroughly explored due to the
lack of proper large-scale inference models. We developed a novel expert
system that can be applied to conventional biological networks based on the
production rule system which works by transforming networks into a knowl-
edgebase. Testing on large-scale multi-level biomedical networks confirmed the
applicability of our system and revealed that hundreds of molecules are affected
by the cascades of given signals, thereby activating or repressing key pathways
in a cell.

Keywords: Network simulation � Expert system � Production system

1 Introduction

One key application of biological system analysis is to predict the molecular- and
system-level responses to a given perturbation; a typical form the question is “What
happens if a protein A is activated?” This analysis is a good substitute for in vivo or
in vitro knock-in/knock-out experiments. Based on the accumulated knowledge, every
rule that is relevant to protein A is regarded to calculate the direct effects of the per-
turbation; for instance, A inhibits gene B and phosphorylates protein C. Subsequently,
signal cascades from B and C are inspected to find further effects. The signals are
propagated through the network edges, possibly triggering the same molecules
repeatedly and finally reach a steady state. Once performed accurately, this simulation
can be a much faster, less costly and more efficient way to test multiple hypotheses.
More importantly, there are also many perturbations that cannot be tested in a living
organism due to certain technical or ethical issues. Therefore, developing a reliable
knowledgebase and predicting system-level changes are highly practical goals in current
biomedical sciences, demanding faster and more efficient models for application.
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An expert system is an artificial intelligence system initially developed to enhance
decision-making abilities when starting with a pile of knowledge. Expert systems
consist of two major sub-systems: a knowledgebase and an inference engine. The
expert system’s knowledgebase stores facts and rules that form the basis of inference.
The inference engine checks the current facts to determine if there are rules to be met
when deducing novel facts. With a slight transformation, expert systems can be effi-
ciently used to answer biomedical questions, providing several benefits. First, they can
deal with a very large-scale knowledgebase and are relatively free from biological
complexity. Unlike quantitative analysis, a genome-scale investigation can be easily
undertaken, which is essential to track system-level behavior. Second, the final answer
reflects a final steady state from the initial perturbation. Because biological systems are
densely inter-connected, a change in a single gene or protein may propagate to the
entire system. Thus, observing a few directly affected entities is insufficient and may
lead to an inaccurate conclusion. Third, multiple and complex perturbations can be
tested when setting initial facts differently and repeatedly. We can also set the direction
of inference as either forward or backward to uncover the effects of a perturbation or to
find factors that consequently cause a perturbation, respectively. Taken together,
rule-based expert systems can be a good alternative to other network analysis models,
especially for the monitoring of system-level effects.

In this study, we developed a production-based expert system that works on general
biological networks. We initially constructed a knowledgebase in the form of an
integrated network. Based on the knowledgebase, we designed an actionable produc-
tion rule system to represent biological networks and implemented it with the Jess rule
engine. We applied our system to the artificial switching on and off of the two major
oncogenes of the Kirsten rat sarcoma viral oncogene (KRAS) and the epidermal growth
factor receptor (EGFR). A more complex example of the administration of a targeted
cancer drug, Lapatinib, on an in silico EGFR-mutated model is shown. Finally, we
show the overall effects on multiple genes are mixtures of positive and negative signals
whose intensity should be regarded by a qualitative manner.

2 Brief Methods

2.1 Production System for a Biomedical Network

A production system is a set of rules that confer the core behavior of an expert system.
Given a set of facts, it is the rule that determines how to deal with the fact, how to react
to incoming triggers, and how to modify the knowledge as the initial perturbation
propagates.

Basic Definitions. A fact refers to a unit of knowledge in an expert system. Facts
describe a single instance of a template, which is an abstract cast that defines the
properties of objects. A rule is an “IF … THEN …” style of definition of a behavior in
a given condition. The ‘IF’ part is located at the left-hand side (LHS) of a rule.
Likewise, the ‘THEN’ part is called the right-hand side (RHS) and the contents are a set
of actions. Based on the knowledgebase, each rule is tested as to whether its LHS is
satisfied. Once there is a match, the corresponding RHS part is triggered to execute
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predefined actions. For such a case, we consider a rule as having been fired. Given a set
of facts and rules, an inference engine continuously checks the current status of the
system. When there are no more rules to be applied or when no fact has been changed,
the engine stops and the system overall becomes stable again.

Design of an Expert System for Biomedical Inference. Designing a production rule
system for biomedical inference requires a proper transformation of biological net-
works into rule-based knowledge. Notably, there is an essential discrepancy between
the two forms (Fig. 1). In biological networks, an edge connecting two nodes describes
a general status: a relationship between two molecules in a normal, unperturbed
environment (Fig. 1A). Conversely, a rule in a rule-based system describes how a
perturbed signal is transmitted. For example, “X activates Y” in a conventional bio-
logical network implies (normally) that “X activates Y,” whereas it is interpreted as “IF
X is perturbed to be activated (or repressed), THEN Y is also activated (or repressed)”
in a rule-based system (Fig. 1B). To implement such a rule and its conditional prop-
agation, two types of information are needed for each fact: one to determine whether
the rule satisfies all of the conditions and is ready to be triggered and the other for
describing the types of incoming signals (agonistic or antagonistic).

Fig. 1. Conceptual design of the production rule system for biological networks. A. Conven-
tional node and edge view of networks. The relationship between two entities (here, ‘X’ and ‘Y’)
describes the general state of the system. B. Rule-based view of the same relationship. Unlike the
conventional view, the rule-based system is only triggered when a perturbation occurs. There are
six possible signal cascades between two entities depending on the type of the incoming signal
(triggered up or down) and the type of relationship
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2.2 Implementing the Expert System

Based on this design, we implement an expert system that works on a large-scale
biomedical network. The actual implementation, however, requires the management of
the status of all facts and rules as well as the monitoring of rules which are ready to be
fired. Because all rules must be re-evaluated for firing every time any changes arise
with regard to facts, the overall calculation is considered infeasible, especially for a
real-time simulation. In this study, we use the Jess expert system [1], which implements
the Rete algorithm [2]. This system provides an efficient means of matching facts
against rules in a pattern-matching production system to overcome the heavy com-
putational burden.

3 Results and Discussions

We applied the developed expert system to a system-level simulation. First, two known
oncogenes (KRAS and EGFR) were artificially activated and repressed to monitor the
effects on the entire genome. Secondly, multiple perturbations were simulated by
mimicking the administration of an anti-cancer drug to a pre-perturbed (EGFR acti-
vated) model. Finally, semi-quantitative traits were analyzed by measuring the number
of triggering events for the affected gene set.

Oncogene Activation and Repression. The system-level response to the artificial
switching on and off of KRAS is shown in Fig. 2A. The simulation shows that the
up-regulation of KRAS affected 640 genes (189 activated, 422 inhibited and 29 neutral)
due to the single initial perturbation; genes that are visualized as larger in size and with a
denser color are strongly affected by the initial perturbation. Likewise, the down-
regulation of KRAS affected 572 genes (Fig. 2A right, 245 activated, 283 inhibited and
44 neutral). We found that the JAK/STAT pathway is strongly up-regulated by KRAS
activation (STAT1 is activated 13 times in the simulation), while only a partial increase
of STAT1 activity is observed despite the continuous JAK2 activation in the KRAS
repression model. STAT1 is activated only once, but no further stimulation is observed.
The complex crosstalk between JAK/STAT and the receptor tyrosine kinase (RTK)/
Ras/MAPK signaling pathways depicts the stochastic nature of the system-level
response to the single perturbation. Notably, a well-known mechanism of the RTK
pathway is the JAK-independent tyrosine phosphorylation of STATs [3].

Similarly, the epidermal growth factor receptor (EGFR) gene was also tested in the
same manner (Fig. 2B). EGFR is a well-known receptor tyrosine kinase and an onco-
gene. The aberrant activation of EGFR is frequently shown in multiple types of cancer
including lung cancer [4] and breast cancer [5], especially in the form of gene amplifi-
cation and DNA mutation. Many cancer drugs, such as gefitinib, erlotinib and lapatinib,
have been developed to target the mutant form of EGFR. In our simulation of EGFR
activation, 544 genes are affected (382 activated, 134 inhibited and 28 neutral). We found
that many other oncogenes were activated as well, including MAPK1, MAPK3 (both
activated 32 times), SRC (26 times) and PIK3CA (22 times). When down-regulated,
however, most of the previously activated genes were dramatically repressed, including
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PIK3CA (inhibited 48 times), MAPK1/3 (42 times), HRAS (36 times), KRAS (35 times)
and NRAS (35 times). The simulation results hold a clue as to how the targeted therapies
on a single EGFR gene could be successful compared to the down-regulation effects of
KRAS, which is widely known as an undruggable oncogene [6].

4 Conclusion

We developed an expert system that can be used for simulating system-level cascades
of a given signal. With the efficient algorithm and the applicability to complex
biomedical networks, we expect our system can be a good substitute to other
biomedical systems analysis methods when in vivo/in vitro experiments are not
available to test multiple hypotheses.

Fig. 2. Responses to the switching on and off of KRAS and EGFR oncogenes. A. KRAS was
artificially either up-regulated (left) or down-regulated (right). When up-regulated, STAT1 is
positively affected (green color), implying activation of the JAK/STAT pathway. When
down-regulated, JAK-STAT was still activated but SRC and CRK were strongly down-regulated
(red color). B. EGFR activation (left) leads to the up-regulation of the ADCY and MAPK gene
families. The MAPK pathway is closely related to cancer and is frequently targeted as a potential
therapeutic marker. Switching off EGFR (right) leads to the repression of many oncogenes,
including MAPK genes, HRAS and SHC1 (Src homology 2 domain containing a protein). (Color
figure online)
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Abstract. The purpose of the study is to investigate why acute aerobic exercise
will cause the difference of ambulatory blood pressure for middle-aged women
at different time. (1) Methods: There are fifteen middle-aged women volunteered
for the study. Each participant receives three experimental interventions: (1) a
non-exercise control trail; (2) at 06:30 am and (3) 16:30 p.m. 30 min of aerobic
exercise with the mean exercise intensity at 60% of heart rate reserve. The
experimental order is random and each participant will wear an automated ABP
device to monitor the ABP and heart rate changes for 24 h; (2) Results: The
systolic blood pressure, diabolic blood pressure, mean arterial pressure after
aerobic exercise in the afternoon as well as the daytime DBP and daytime MAP
is significantly lower than the systolic blood pressure, DBP and MAP after
aerobic exercise in the morning and non-exercise control trail. Especially, sys-
tolic blood pressure can continually reduce for 2 h after acute aerobic exercise in
the afternoon; and (3) Conclusion: Aerobic exercise in the afternoon can inhibit
the rise of 24 h-ABP and morning blood pressure significantly, which can
decrease the incidence of cerebrovascular and cardiovascular events.
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1 Introduction

It is well known that hypertension is a very common and serious disease [1]. According
to the statistics of WHO [2], hypertension impacts about 1 billion people worldwide.
For example, the death of about 8 million people results from hypertension induced
chronic disease for each year. Thus, hypertension is considered to be an important and
urgent public health problem of this world. Previously, Zanchetti and Weber consider
[3] that only about 31% of patients being able to rely on antihypertensive drugs to
control blood pressure. Suggested by the American College of Sports Medicine
(ACSM) [4], regular exercise can prevent and treat high blood pressure. However, there
are still 25%–35% of patients whose blood pressures have no decline after exercise
training [5], although the basic exercise prescription for hypertension prevention and
treatment has been established. For this reason, the purpose of this study is to under-
stand the relationship between time of day for exercise and the degree of daily blood
pressure, and then we can improve the formulation of exercise prescriptions.

Currently, several hypertension scientists are doing pilot research work in this area.
For example, Fairbrother et al. [6] reported that aerobic exercise in the morning is the
most effective time to improve nighttime blood pressure and sleep quality, compared
with noon and evening hours. However, it does not strictly specify the exercised time
of the participants. Park et al. [7] reveal that if the people whose blood pressure will not
fall down in the night have 30 min of moderate intensity exercise in the afternoon, their
SBP decrease rate is significantly greater than the people whose blood pressure will fall
down in the night. However, the experimental design lacks the simulated non-exercise
control conditions. Jones et al. reveal [8] that if the people carry out the excise in the
afternoon, their SBP, DBP and MAP decreasing rate are significantly greater than
carrying out the excise in the morning. The study design employs casual blood pressure
to monitor short-term changes in blood pressure after exercise. However, there are
some problems with casual blood pressure measurement itself, such as terminal digit
preference, the observation bias and white-coat hypertension, etc. To overcome the
shortcomings of the previous research, this study propose the following three inno-
vations: First, it strictly specify the length of the exercise intervention and the duration
of the exercise intervention to reduce the impact of the participants’ exercise inter-
vention differences on the results; Second, it employs self-control model and the
interval between two interventions are more than two days which greatly reduce the
impact of the previous excise on the next excise interventions; Finally, 24-h ambulatory
blood pressure (ABP) monitoring is used to increase the accuracy of the results.

Fifteen middle-aged women volunteered for the study. Participants completed three
randomly assigned conditions: a non-exercise control trail, and 30 min of aerobic
exercise at different time of day, with the mean exercise intensity at 60% of heart rate
reserve. After all three sessions, participants underwent 24 h ABP and heart rate moni-
toring with an automated ABP device. A repeated measure analysis of variance
(ANOVA) [9] was used to assess the effect of acute aerobic exercise varies with time of
day on 24-h ABP and heart rate. The study demonstrates if the participants carry out the
oxygen excise in the afternoon, their average 24 h SBP, DBP and MAP are significantly
less than the participants carrying out the aerobic exercise and non-exercise in the
morning.Moreover, if the participants do aerobic exercise in the afternoon, SBP can keep
decreasing for 2 h.
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2 Materials and Methods

This section is detailed in the supplementary file.

3 Results

3.1 Diurnal Rhythm Changes of 24 h-SBP, 24 h-DBP and 24 h-MAP
After Aerobic Exercise

All the data in this study follow the normal distribution, demonstrated by Shapiro-wilk
Test, Fig. 1 and Table 2 of the supplementary file show three experimental interven-
tions: (a) a non-exercise control trail; (b) aerobic exercise in the afternoon; (c) aerobic
exercise in the morning. For 06:00 SBP, 07:00 SBP, 08:00 SBP, 17:00 SBP, 18:00
SBP, case (c) is statistically less than case (a). For 17:00 SBP, 18:00 SBP, case (b) is
statistically less than case (a). Figure 2 and Table 3 of the supplementary file show
three experimental interventions: (a) a non-exercise control trail; (b) aerobic exercise in
the afternoon; (c) aerobic exercise in the morning. For 06:00 DBP, 08:00 DBP, 16:00
DBP, case (c) is statistically less than case (a). For 14:00 DBP, case (b) is statistically
less than case (a). Figure 3 and Table 4 of the supplementary file show three experi-
mental interventions: (a) a non-exercise control trail; (b) aerobic exercise in the
afternoon; (c) aerobic exercise in the morning. For 06:00 MAP, 07:00 MAP, 8:00
MAP, 9:00 MAP, 14:00 MAP, 17:00 MAP case (c) is statistically less than case (a).

Fig. 1. 24 h systolic blood pressure change of different duration aerobic exercise. (a) * indicate
simulation group (SG) and afternoon’s exercise group (AEG) are significantly different
(p < 0.05); (b) # indicate morning exercise group (MEG) and afternoon’s exercise group
(AEG) are significantly different (p < 0.05).

Fig. 2. 24 h diastolic blood pressure change of different duration aerobic exercise. (a) * indicate
SG and AEG are significantly different (p < 0.05); (b) # indicate MEG and AEG are significantly
different (p < 0.05).
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4 Discussion and Conclusion

The study is to explore the mechanism why acute aerobic exercise will cause the
difference of ambulatory blood pressure (ABP) for middle-aged women at different
time. And then, we can improve the formulation of exercise prescriptions based on this
explored mechanism.

Table 1 and 4 of the supplementary file and Figs. 1, 2 and 3 show three experi-
mental interventions: (a) a non-exercise control trail; (b) aerobic exercise in the
afternoon; (c) aerobic exercise in the morning. For average value of 24 h-SBP
24 h-DBP, 24 h-MAP,06:00 SBP, 07:00 SBP, 08:00 SBP, 17:00 SBP, 18:00 SBP,
06:00 DBP, 08:00 DBP, 16:00 DBP, 06:00 MAP, 07:00 MAP, 8:00 MAP, 9:00 MAP,
14:00 MAP, 17:00 MAP case (c) is statistically less than case (a) and (b). These results
turns out those aerobic exercises can effectively decrease the blood pressure on day-
time. We consider since the overall sympathetic keep high activity in the day time, it
will greatly reduce the sympathetic nerve system activity after exercise. And then, it
reduces peripheral vascular resistance and BP [13]. Thus, this result has potential
clinical advantages in preventing CVD and hypertension. It is also consistent with the
previous reports of the Pinto et al. [14] and Whelton et al. [15], which indicate that even
blood pressure has slightly decreased, it can dramatically improve the health of par-
ticipants as well as when the SBP drops 3–5 mmHg, it will reduce the incidence of
coronary artery disease by 5–9% percent and the risk of myocardial infarction by
8–14% and all-cause mortality by 4–7%. Also, Fung et al. [16] demonstrate that
exercise is a non-pharmacological treatment to decrease the blood pressure and reduce
the risk factors of CVD. Furthermore, the proper exercise time can improve antihy-
pertensive effect [17]. Tables 2 and 4 of the supplementary file show three experi-
mental interventions: (a) a non-exercise control trail; (b) aerobic exercise in the
afternoon; (c) aerobic exercise in the morning. For an hour after exercise SBP, two
hours after exercise SBP, three hours after exercise SBP, 17:00 MAP, case (c) is
statistically less than case (a). For eleven hour after exercise SBP, twelve hours after
exercise SBP, three hours after exercise SBP, case (c) is statistically less than case
(a) and (b). Those results turn out that the fall of SBP can last more than two hours after
aerobic exercise in the afternoon, whereas it has no post-exercise hypotension
(PEH) phenomenon after aerobic exercise in the morning. The results imply that the
total peripheral resistance (TPR) is the main reason for the difference in blood pressure
response caused by various time periods of exercise and doing exercise in the afternoon

Fig. 3. Mean 24 h arterial blood pressure change of different duration aerobic exercise.
(a) * indicate SG and AEG are significantly different (p < 0.05); (b) # indicate MEG and AEG
are significantly different (p < 0.05).
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can decrease the TPR than doing exercise in the morning. Thus, doing the aerobic
exercise in the afternoon can reduce the risk of cerebrovascular and cardiovascular
events [18]. Our research results are consistent with the previous reports of Jones et al.
[19] and Ciolac et al. [20] which indicate that the PEH phenomenon only occurs in the
afternoon session of exercise. In addition, the PEH response is usually caused by a
persistent decrease in vascular resistance. Hamer [21] demonstrate that the afternoon
session of exercise can improve antihypertensive effect. Though this research turns out
that aerobic exercises can effectively decrease the blood pressure on daytime and the
fall of SBP can last more than two hours after aerobic exercise in the afternoon, but it
still has several shortcomings. For example, it does not screen out the prehypertension
patient, when we choose the candidates of the participant. Also, we do not develop a
predictive model to prevent the occurrence of the hypertension. Therefore, our further
study will develop such a prediction model that can investigate the relation between
time of day for exercise and the degree of daily blood pressure. And then, we can
improve the formulation of exercise prescriptions by using the model. Furthermore, it is
important for us to locate the response of patients with different blood pressure levels
(hypertension, prehypertension or normal blood pressure) after exercise accurately, as
well as use the data as a reference for blood pressure prevention and treatment in the
future.

References

1. Kjeldsen, S.E.: 2003 European society of hypertension-European society of cardiology
guidelines for the management of arterial hypertension. J. Hypertens. 31(28), 2159–2219
(2013)

2. Whitworth, J.A.: 2003 World Health Organization (WHO)/International Society of
Hypertension (ISH) statement on management of hypertension. J. Hypertens. 21(11),
1983–1992 (2003)

3. Zanchetti, A., Waeber, B.: Hypertension: which aspects of hypertension should we impact
on and how? J. Hypertens. 24, S2–S5 (2006)

4. Pescatello, L.S., Franklin, B.A., Fagard, R., Farquhar, W.B., Kelley, G.A., Ray, C.A.:
American college of sports medicine position stand. Exercise and hypertension. Med. Sci.
Sports Exerc. 36(3), 533–553 (2004)

5. Alley, J.R., Mazzochi, J.W., Smith, C.J., Morris, D.M., Collier, S.R.: Effects of resistance
exercise timing on sleep architecture and nocturnal blood pressure. J. Strength Cond. Res.
29(5), 1378–1385 (2015)

6. Fairbrother, K., Cartner, B., Alley, J.R., Curry, C.D., Dickinson, D.L., Morris, D.M., Collier,
S.R.: Effects of exercise timing on sleep architecture and nocturnal blood pressure in
prehypertensives. Vascul. Health Risk Manag. 10, 691–698 (2014)

7. Park, S., Jastremski, C., Wallace, J.: Time of day for exercise on blood pressure reduction in
dipping and nondipping hypertension. J. Hum. Hypertens. 19(8), 597–605 (2005)

8. Jones, H., Pritchard, C., George, K., Edwards, B., Atkinson, G.: The acute post-exercise
response of blood pressure varies with time of day. Eur. J. Appl. Physiol. 104(3), 481–489
(2008)

366 W. Zhou et al.



9. Cardoso Jr., C.G., Gomides, R.S., Queiroz, A.C.C., Pinto, L.G., Lobo, F.D.S., Tinucci, T.,
Mion Jr., D., Forjaz, C.L.D.M.: Acute and chronic effects of aerobic and resistance exercise
on ambulatory blood pressure. Clinics 65(3), 317–325 (2010)

10. Quinn, T.J.: Twenty-four hour, ambulatory blood pressure responses following acute
exercise: impact of exercise intensity. J. Hum. Hypertens. 14(9), 547–553 (2000)

11. Pescatello, L.S., Guidry, M.A., Blanchard, B.E., Kerr, A., Taylor, A.L., Johnson, A.N.,
Maresh, C.M., Rodriguez, N., Thompson, P.D.: Exercise intensity alters postexercise
hypotension. J. Hypertens. 22(10), 1881–1888 (2004)

12. Wang, Y., Wang, Q.J.: The prevalence of prehypertension and hypertension among US
adults according to the new joint national committee guidelines: new challenges of the old
problem. Arch. Intern. Med. 164(19), 2126–2134 (2004)

13. Lehmkuhl, L.A.A., Park, S., Zakutansky, D., Jastremski, C.A., Wallace, J.P.: Reproducibility
of postexercise ambulatory blood pressure in Stage I hypertension. J. Hum. Hypertens. 19(8),
589–595 (2005)

14. Pinto, A., Di Raimondo, D., Tuttolomondo, A., Fernandez, P., Arna, V., Licata, G.:
Twenty-four hour ambulatory blood pressure monitoring to evaluate effects on blood
pressure of physical activity in hypertensive patients. Clin. J. Sport Med. 16(3), 238–243
(2006)

15. Whelton, S.P., Chin, A., Xin, X., He, J.: Effect of aerobic exercise on blood pressure: a
meta-analysis of randomized, controlled trials. Ann. Intern. Med. 136(7), 493–503 (2002)

16. Fung, M.M., Peters, K., Redline, S., Ziegler, M.G., Ancoli-Israel, S., Barrett-Connor, E.,
Stone, K.L., Osteoporotic Fractures in Men Research Group: Decreased slow wave sleep
increases risk of developing hypertension in elderly men. Hypertension 58(4), 596–603
(2011)

17. Pescatello, L.S., Kulikowich, J.M.: The aftereffects of dynamic exercise on ambulatory
blood pressure. Med. Sci. Sports Exerc. 33(11), 1855–1861 (2001)

18. Giles, T.D.: Circadian rhythm of blood pressure and the relation to cardiovascular events.
J. Hypertens. 24, S11–S16 (2006)

19. Jones, H., George, K., Edwards, B., Atkinson, G.: Effects of time of day on post-exercise
blood pressure: circadian or sleep-related influences? Chronobiol. Int. 25(6), 987–998 (2008)

20. Ciolac, E.G., Guimarães, G.V., Bortolotto, L.A., Doria, E.L., Bocchi, E.A.: Acute aerobic
exercise reduces 24-h ambulatory blood pressure levels in long-term-treated hypertensive
patients. Clinics 63(6), 753–758 (2008)

21. Hamer, M.: The anti-hypertensive effects of exercise. Sports Med. 36(2), 109–116 (2006)

Using the Precision Medicine Analytical Method 367



Understanding Protein-Protein Interface
Formation Mechanism in a New Probability

Way at Amino Acid Level

Yongxiao Yang and Xinqi Gong(&)

Institute for Mathematical Sciences, Renmin University of China,
Beijing 100872, China

{yongxiaoyang,xinqigong}@ruc.edu.cn

Abstract. Although many studies about near native protein-protein interface
recognition have been done in the past thirty years, the formation mechanism of
protein-protein interface is still ambiguous. Here, we propose a new probability
way to understand protein-protein interface formation mechanism at amino acid
level. The probability of two surface residues from different monomers as a true
interface residue pair in the complex is estimated by their geometric and
physicochemical properties in the structures of protein monomers. The residue
pairs with different probabilities combine together to form a protein-protein
interface. The probabilities of residue pairs on candidate interfaces are integrated
for near native interface recognition. Five simple probability based discriminants
are constructed based on the distances and contact areas between residues. The
performances are comparable to the ones of the sophisticated methods devel-
oped previously. The idea proposed in this work will make positive influence on
the future study of protein-protein interactions.

Keywords: Protein-protein interface formation mechanism � Probability way �
Amino acid level � Geometric features � Neural network

1 Introduction

Protein-protein interactions play an important role in many cellular processes. Inter-
acting protein monomers can be associated in protein-protein complexes by the
interfaces. The structures of protein-protein complexes are the key to understand the
mechanism behind the cellular processes. The principle of interface formation is the
core to obtain the structures of protein-protein complexes from their known compo-
nents [1].

The ways to understand the interface formation mechanism vary with the per-
spectives. From the geometric view, Fischer and Koshland proposed the key-lock
theory and the induced fit theory for protein-ligand interaction in 1890 and 1958
respectively [2–4]. From the physical perspective, the native interface is the one with
the lowest binding free energy. Additionally, different knowledge-based potentials
were developed and employed to calculate the interaction potential on the interface of
protein-protein complex [5]. From the view of data mining, the principle of interface
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formation can be extracted from the known structures of protein-protein complexes
determined by biologists.

Despite of the remarkable endeavor to elucidate the formation mechanism of
protein-protein interface, there is still no perfect or universal theories which can be used
to predict all the protein-protein complex correctly. Protein-protein interfaces are
composed of many different interface residue pairs. These residue pairs make different
contributions to the interface stability. The residue pairs are usually transformed from
the surface residues of different protein monomers. The surface residues may make
interface residues pairs with different probabilities. If the probabilities can be estimated
based on the properties of the surface residues, the interface stability could be also
assessed by integrating these probabilities.

In this work, nine features are adopted to characterize the surface residues. The
performances of different feature combinations on interface residue pair prediction are
investigated by neural networks to look for the best ones. The predicted values are used
to evaluate the possibilities of the surface residues as true interface residue pairs. Five
mathematical expressions are constructed by integrating the predicted values and used
to assess the candidate interfaces generated by docking algorithm.

2 Materials and Methods

2.1 Datasets and Features

In protein-protein docking benchmark version 5.0 [6], there are 67 dimers satisfy our
request at unbound state. These dimers are divided into three subsets (training,
validation and test sets) according to the version of benchmark. Five geometric and
four physicochemical descriptors are used to characterize the surface residues of pro-
tein monomer. The five geometric features are absEA (absolute Exterior solvent
accessible Area), relEA (relative Exterior solvent accessible Area), EC (Exterior
Contact area with other residues), EV (Exterior Void area, which don’t contact the
other residues and water molecules), and IC (Interior Contact area between the atoms of
surface residue). The four physicochemical features are H1 (Hydropathy index 1), H2
(Hydropathy index 1), pKa1 (standard) and pKa2 (computation) [7–9]. Additionally, we
use ftdock [10] to generate 10000 candidate interfaces using the monomer structures at
unbound state for every dimer respectively. There are 30, 20, and 12 dimers for which
near native interface are generated by docking in the training, validation, test set
respectively.

2.2 Neural Network Models and Discriminants

In order to explore the performances of different combinations of the nine features, we
trained 5621000 pattern recognition neural networks [11]. 45667 models were selected
to test the new discriminants for near native protein-protein interface recognition
according to the performances for interface residue pair prediction.
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The five discriminants are constructed as follows:

D1 ¼
X

Aij 6¼0
pij ð1Þ

D2 ¼
X

ðAij � pijÞ ð2Þ

D3 ¼
X

pij ð3Þ

D4 ¼
X pij

rij
ð4Þ

D5 ¼
X pij

r2ij
ð5Þ

where Aij is the contact area between the ith and jth interface residues from the receptor
and ligand respectively; pij is the predicted value of them as a true interface residue pair
which is calculated using the trained neural network models and the features of the two
residues; rij is the distance between this interface residue pair, it is represented by the
minimum distance between any two atoms from the ith and jth interface residues
respectively.

3 Results

3.1 The Overall Results of the Five Discriminants

When the mean percentages of positive dimers (those have at least one near native
interfaces among the retained candidate interfaces) in the three sets are equal or greater
than 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 respectively, and the standard deviations
of the percentages are equal or less than 5, the minimum numbers of retained interfaces
are recorded. This minimum number (n) of retained candidate interfaces (MNRCI) is
recorded when the mean percentage is equal or greater than p.

Table 1. The overall results of the five discriminants

Discriminant MNRCI (p)a

5 10 15 20 25 30 35 40 45 50

D1 1 2 5 7 10 22 28 46 55 –

D2 1 1 4 7 9 15 20 65 65 –

D3 2 7 11 16 26 40 44 63 78 –

D4 1 3 7 9 15 25 29 37 46 –

D5 1 3 6 9 11 25 25 46 52 99
aMNRCI (p): Minimum Number of Retained Candidate
Interfaces when the mean percentage of positive dimers
in the three datasets is equal or greater than p.
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As shown in Table 1, when the mean percentage is less than 40, D2 is the best
discriminants; when the mean percentage is equal and greater than 40, D4 is the best
one. The reason may be that D2 considers the contact areas which focus on “short
range interaction” and D4 considers the distances which incorporate “short and long
range interaction”.

3.2 The Best Discriminants for Near Native Interface Recognition

The discriminants are constructed and not trained. The near native interface recognition
capability can be evaluated by the number of positive dimers when the number of
retained candidate interfaces is N. The performances of the best discriminants and
ZDOCK3.0.2 [12] are compared in the whole set.

As shown in Table 2, the result of D2 is a little worse than the one of ZDOCK3.0.2
when the top 10 candidate interfaces are retained. In consideration of the discriminants
at amino acid level and the scoring items adopted by ZDOCK3.0.2 at atom level [12], it
could be accepted. D2 represents the effective interface area of the candidate interface.
The features adopted in the model are EC, EV, IC and H1. The three different areas
could reflect the flexibility of an amino acid; H1 reflects the hydrophobic ability of
amino acid, what is more, it is the only one feature that can discriminate different amino
acid types. The probability of a surface residue pair as a true interface one is calculated
based on the flexibility and hydrophobic ability of the two surface residues. This is a
new way for understanding the mechanism of residue-residue interaction. The effective
interface area may be taken as a criterion for judging the stability of an interface. D1 is
the sum of probabilities of strictly contacting interface residue pairs in the decoys as
true interface residue pairs in the experimental structure. The features used here are
relEA, EC, IC, H1, pKa1 and pKa2, which indicates that the electrostatics is not
ignorable when the high percentage of positive complexes is obtained. The result of D1
is comparable to the one of ZDOCK3.0.2.

4 Conclusions

In this work, we propose a new way to understand the protein-protein interface for-
mation mechanism at amino acid level. The surface residues are described by nine
simple features. The features reflect the flexibility, hydrophobic ability, amino acid type
and electrostatics of the surface residues. They are used to estimate the possibilities of
surface residue pairs as true interface ones. The estimated values are integrated to

Table 2. The comparison of the results of the best discriminants, ZDOCK3.0.2

Method Features NRCIa NPDb

ZDOCK3.0.2 Shape complementarity, electrostatics,
knowledge-based pair potentials

10 25
100 39

D2 EC, EV, IC, H1 10 20
D1 relEA, EC, IC, H1, pKa1, pKa2 100 38
aNRCI: Number of Retained Candidate Interfaces; bNPC: Number of Positive Dimers.
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evaluate the interfaces and discriminate the near native interfaces from non-near native
ones. The effective interface area and the possibility of the candidate interface as a near
native one are estimated by D2 and D1 respectively. The results of the two best models
can be bracketed to the ones reported before. More effective descriptors, more accurate
estimated values and more powerful integrative ways will give better results. The
results will give some new perspective for near native protein-protein interface
recognition. The way to understand the interface formation mechanism of protein-
protein interaction will make positive influences on the future research.

Acknowledgments. This research was supported by National Natural Science Fundation of
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Abstract. Adverse drug reactions (ADRs) may occur following a single dose or
prolonged administration of a drug or result from the combination of two or more
drugs. Given the restrictions of the traditional methods like clinical trials, it’s
difficult to detect the ADRs in a timely manner. Many countries have built
spontaneous adverse drug event reporting systems, which provide a large amount
of adverse drug event reports for research purpose. In this paper, we utilize the
association rule mining to reconstruct the data from adverse drug event reports,
and apply modified embedding models to calculate the relevance of the drug and
adverse reactions to detect potential ADRs. We examine the effectiveness of
methods by conducting experiments on two drugs: Gadoversetamide and Rofe-
coxib, finding 6 potential drug reactions, which can be further verified by
biomedical data.

Keywords: Adverse drug reactions � Embedding model � Association rules

1 Introduction

Adverse drug reactions (ADRs) have been one of the most important reasons which
harm the public health. Given the restrictions of the clinical trials before drugs sold to
the public, it cannot find all the ADRs for drugs. Adverse Drug Event Systems have
been established to collect adverse drug event reports and supply important data for the
researchers. This way bears substantial significance to break the limit of time and
money cost, and accelerates the progress of adverse drug reactions mining.

Most of the researches about adverse effect events are based on electronic medical
records and adverse effect event reports. For example, Yang et al. [1] applied the asso-
ciation rules to mining the adverse drug reactions from spontaneous reporting system.
Harpaz et al. [2] mined the adverse effect between drugs on the FDA data by association
rules. Kuo et al. [3] adopted Apriori association analysis algorithm for the detection of
adverse drug reactions in health care data.

In this work, we propose a novel method to detect ADRs using association rules and
embedding models, which have been prove effective in many other text mining tasks. In
our method, association rules are used to measure the similarity between drug mentions
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and potential adverse reactions for reconstructing the data, and modified embedding
models are used to representation terms of the mentions and reactions, which could
capture much semantic and syntactic information for producing a good performance.
Experimental results show that our method is effective to detect ADRs for drugs.

2 Method

2.1 Pre-processing

OpenFDA [4] provides the adverse drug event reports, which contain the drug and other
medical information. We clean the data by dropping the non-alphabetic characters like
*+&/ and removing the words in bracket to improve the accuracy of the experiment.

MetaMap can map biomedical text to the UMLS Metathesaurus and discover
Metathesaurus concepts referred to in text. We apply this tool to get the standard format
of the drug names. MetaMap can recognize 133 kinds of semantic types, but only 22
kinds of them are drug-related.

Due to the linguistic features or other errors, the same entity may have a variety of
expression, for example “rash skin”, “spots” and “exanthemas” are match to “rash”.
We utilize the database of SIDER (Side Effect Resource) [5] as the dictionary to
recognize the side reactions, and expand ADRs terms rely on CHV (The Consumer
Health Vocabulary) [6], Data Reconstruction based on Association Rules.

2.2 Data Reconstruction Based on Association Rules

An adverse reaction report may contain multiple drugs with a variety of ADRs, so
one-to-one relationships between the drug and adverse reaction tend to be uncertain.
Therefore, we propose to refine the adverse reactions using association rules.

Let X = {x1, x2, x3…xm} be a set of items, association rules can be defined as
A ) B, and A � X, B � X, A\B = , where both A and B are the subset of X, and
there’re two basic measures used in associations mining: support and confidence. The
support and confidence of Drug-A ) Adverse-B can be defined as the frequency of the
items appears in the dataset:

support A ) Bð Þ ¼ P A [Bð Þ ¼ countðAUBÞ
totalcount

ð1Þ

confidence A ) Bð Þ ¼ supportðAUBÞ
supportðAÞ ¼ countðAUBÞ

countðAÞ ð2Þ

count (AUB) is the number of threads that contain Drug-A and Adverse-B, the total
count is the total number of threads in the dataset, and support (A) is number of Drug-A
in the whole dataset, so support measures the probability of the threads. We filter the
drug and ADRs entity with the value of support lower than 100, side reaction with the
value of support lower than 50. According to the support and confidence, we can
measure the importance of the result of association rules, and process the data in
accordance with the threshold value.
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According to the results of the process above, each report has been divided into
small adverse reaction reports, and each of them is made up of one drug A and adverse
reaction B. For example, 3 kinds of drugs and 4 kinds of adverse reactions can be
divided to 12 kinds of relations. We can calculate the value of support and confidence
for every relationship, the part of results shown in Table 1.

We reconstruct the dataset for the next step of experiment according to the con-
fidence value of drug and adverse reaction, and filters the tuple which has the value of
confidence lower than 0.1, if the threshold is too low, the noise data can’t be dropped
completely, and the higher threshold will filter some valuable data.

And the number of tuples is proportional to their value of confidence, this method
of data building greatly expands range of adverse reactions mining, breaks the limit of
the ordinary way which only goals to the certain kinds of drugs or adverse reactions.

2.3 Detecting Potential ADRs Using Modified Embedding Model

It’s difficult to reveal the potential relations between drugs and adverse using the
traditional methods. As the open source tools released by Google, word2vec [7] has
been used widely in many fields as an efficient method for learning high quality
distributed vector representations that capture a large number of precise syntactic and
semantic word relationships. In this paper, word2vec is applied in the field of potential
adverse drug reaction mining to identify potential unknown relationship to expand the
scope of recognition.

We regard the tuple of one drug and one adverse reaction as an item set, and
training the distributed vector on it without the information of sequence. Before the
training, every entity is represented as a vector generated randomly, and the model
tunes the vector to change the inner product of the two vectors depending on the
co-occurrence relationship, and then generates the distributed vector at last. It was
found that if an entity occurs only in a certain kind or several kinds of drugs, there are
few opportunities for tuning this vector, and leads to a bad performance. So we filter
this kind of adverse reaction to approve the result. The objective function used in this
paper is:

max
X

rm2R
X

di2Vm

X

di 6¼dj
log pðdijdjÞ ð3Þ

the conditional probability and the relevance of drug di and dj is defined as

Table 1. The confidence value of drug and adverse reaction

Drug, adverse reaction Confidence

Gadoversetamide, nephrogenic systemic fibrosis 0.8377
Trasylol, anxiety 0.7192
Propoxyphene napsylate, arrhythmia 0.6223
Ivermectin, asthenia 0.5261
Iletin, blood glucose increased 0.5074

Detecting Potential ADRs Using Association Rules and Embedding Models 375



pðdijdjÞ ¼
exp vTdi � vdj

� �

P
d2Vm

expðvTd � vdiÞ
ð4Þ

relevance ðdi; djÞ ¼ cosðdi; djÞ ¼
vTdi � vdj

jjvdi jj � jjvdj jj
ð5Þ

3 Result

To examine the effectiveness of the method proposed in this paper, we conduct
experiments on two kinds of drugs: Gadoversetamide and Rofecoxib, and confirmed
the detected ADRs by biomedical literatures. Since our method is general, it can also be
applied to detect ADRs for other kinds of drugs.

3.1 Result Based on Gadoversetamide

Gadoversetamide is a gadolinium-based MRI contrast agent, particularly for imaging of
the brain, spine and liver. We detect top-10 poteintial adverse reactions of Gadover-
setamide based on the proposed method, and report the results in Table 2, where the
column “SIDER“indicates whether the corresponding adverse reacions have been
recorded in SIDER database.

Stress refers to a sense of tension and mental stress in patients which is a common
adverse reaction. According to the result calculated by this paper, Gadoversetamide
may have a strong correlation with the Stress, and this result also been confirmed by a
report published in the eHealthMe, this report studied 2,590 people who have side
effects while taking Gadoversetamide, and 1,182 of them have Stress (Tension),
especially for people who are female, 50–59 old.

Diarrhea as another potential adverse reaction mined by this paper, also confirmed
in related biomedical report. Broome [8] points out that Nephrogenic Systemic Fibrosis
is a common adverse reactions associated with Diarrhea, and it has been verified that
Gadoversetamide has a strong correlation with Nephrogenic System Fibrosis. We can
confirmed that Diarrhea is the potential adverse reaction of Gadoversetamide.

As the result, the method proposed in this paper mined 6 kinds of ADRs which
have been recorded in the SIDER, which can prove the effectiveness of this method for

Table 2. Gadoversetamide’s potential adverse reactions

Adverse reaction Relevance SIDER Adverse reaction Relevance SIDER

Nausea 0.9717 Yes Nephrogenic system fibrosis 0.8921 Yes
Rash 0.9696 Yes Diarrhea 0.8911 No
Stress 0.9472 No Atrial fibrillation 0.8593 No
Vomiting 0.9326 Yes Abdominal pain 0.8378 Yes
Pneumonia 0.9286 Yes Postural dizziness 0.8114 No
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adverse reaction mining. More importantly, 2 kinds of ADRs which are not recorded in
SIDER have been proved as potential adverse reactions.

3.2 Result Based on Rofecoxib

Rofecoxib is a nonsteroidal antiinflammatory drug (NSAID) was marketed by Merck &
Co. to treat osteoarthritis and acute pain conditions,. We detect top-10 poteintial
adverse reactions of Rofecoxib based on our method, and report the results in Table 3.

Acute Renal Failure also called acute kidney injury, generally it occurs because of
damage to the kidney tissue. Previous study in [9] indicates that Celecoxib and Rofe-
coxib have a strong correlation with Renal Failure through a detail experimental study.

Atrial Dilatation refers to enlargement of the heart. According to the research,
Atrial Dilatation is a common complication of Atrial Fibrillation, and Atrial Fibrillation
is an adverse reaction of Refecoxib, so we can indicate that Atrial Dilatation is a
potential sider reaction of Refecoxib, this conclusion also been confirmed by the
biomedical literatures. Campbell et al. [10] in the study of patient with Acute
Congestive Heart Failure caused by Rofecoxib, indicated that this patient also has the
symptoms of Atrial Dilatation. Therefore, we can determine Atrial Dilatation is one of
the potential adverse reaction of Refecoxib.

Oral Pain is a common symptom, and we can know that Oral Lesion is an adverse
reaction of Refecoxib. Because the Oral Pain is a common complication of Oral Lesion,
we can confirm that Oral Pain is a potential adverse reaction.

In conclusion, among the 10 kinds of potential adverse reactions mined by the paper,
6 of them have been recorded by the SIDER, and the other 3 of them can be confirmed
by the biomedical literatures, while remaining one of them have not been confirmed
temporary, still need be analyzed in the future work. As a result, we can indicate that the
combing of Apriori and distributed vector can effectively identify potential unknown
relationship to expand the scope of recognition, and have good performance in the field
potential adverse reaction mining, but still has room for improvement.

4 Conclusion and Future Work

In the paper, we propose to detect potential adverse drug reactions using assioation
rules and embeding models. In the method, we utilize biomedical tools to extract and
clean the data from adverse events reports, reconstruct the data based on the association

Table 3. Rofecoxib‘spotential adverse reactions

Adverse reactions Relevance SIDER Adverse reactions Relevance SIDER

Acute renal failure 0.7239 No Mental depression 0.7019 No
Nausea 0.7188 Yes Pneumonia 0.6952 Yes
Rash 0.7064 Yes Atrial fibrillation 0.6822 Yes
Vomiting 0.7063 Yes Atrial dilatation 0.6632 No
Peripheral edema 0.7054 Yes Oral pain 0.6587 No
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rules, and build the trainning data with the weights of each sample. Then we train the a
modified word2vec model based on biomedical data and calculate the relevance
between the vectors of drugs and reactions to effectivly mine the potential adverse
reactions. Experimental results show our method can effectively detect potential
adverse reactions.
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Abstract. Using whole genome - wide analysis, we identified 40 response reg-
ulator (RR) genes in Solanum lycopersicum. They can be divided into 7 subgroups
according the structure characteristics and the sequence similarity and topology.
The analyses of gene structure, protein motif, chromosome distribution, gene
duplication and comparative phylogenetic analysis are performed in detail. The
transcription levels of SlRRs in biotic stresses are further analyzed to obtain the
functions information of these genes. Furthermore, qRT - PCR analysis shows 11
SlRRs which may be involved in tomato - Phytophthora infestans interaction,
played different roles between resistant and sensitive tomato. Our systematic
analyses provide insights into the characterization of SlRRs in tomato and basis for
further functional studies of these genes.

Keywords: Genome-wide analysis � Tomato � Response regulator � Gene
expression � Phytophthora infestans

1 Introduction

The two-component system (TCS), also known as the histidyl-aspartyl (His-Asp)
phosphorelay systems is involved in cytokinin signal transduction and plays important
roles in various biological process [1]. A simple TCS involves a histidine (His) sensor
kinase and a response regulator (RR) [2]. Studies have demonstrated that plants RRs
are involved in various stresses. For example, RRs are also involved in drought or
water stress as demonstrated in Arabidopsis and soybean [3, 4]. Arabidopsis RR2 can
be interacted with the salicylic acid response factor TGA3, and the expression of PR1
was induced, which resisted to Pseudomonas syringae pv. tomato DC3000 [5].

Solanum lycopersicum is either a major crop plant or, a model system for plant -
pathogen interaction, whose genome project was initiated by the Tomato Genome
Consortium in 2012 [6]. Tomato genome also is important and useful resource to study
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the evolution and tomato- pathogen interaction. Although quite a few studies have been
reported on RRs in the model and crop plants [4, 7, 8], the reports on tomato RR (SlRR)
are extremely rare and their functions remain unclear. To gain the characterization of the
SlRR family and their functions on response to Phytophhora infestans stress, whole
genome - wide analysis was conducted to identify the SlRRs. The detailed analyses of the
gene structure, protein motif, genomic distribution and comparative phylogenetic
analysis were performed. 11 SlRRs might be involved in tomato-P. infestans interaction
and played different roles in between resistant and sensitive tomato.

2 Materials and Methods

2.1 Identification of SlRRs in Tomato

32 Arabidopsis thaliana RR (ARR) protein sequences were downloaded from TAIR
(http://www.arabidopsis.org/) and used as queries to search against the Tomato
Genome SL 2.40 by BLAST. The candidate SlRRs were identified with an e-value
cutoff of 1e-5. The reciprocal BLASTP searches were conducted by using the candidate
SlRRs as queries to verify the veracity of candidate proteins. The putative SlRRs were
examined for the receiver domain using PROSITE (http://prosite.expasy.org/). The
theoretical isoelectric point and molecular weight of SlRRs were identified by Prot-
Param tool (http://web.expasy.org/protparam/).

2.2 Chromosomal Location, Sequence Analysis and Phylogenetic
Analysis

The SlRRs were located on tomato chromosome according to their positions given in
the database with the Mapchart software [9]. The gene structures were generated based
on the information of cDNA sequences, genomic sequences and intron/exon distri-
bution patterns. Protein motifs of SlRRs were identified using MEME with an e-value
� 1e-10 [10]. To compare the evolutionary relationship and identify the subgroup, the
maximum likehood (ML) tree was constructed using MEGA 6.0 [11].

2.3 Expression Profiles of SlRR Genes in Tomato

The expression profiles were determined by analyzing the RNA-Seq data. The
RNA-Seq data came from our previous works including resistant tomato (S.
pimpinellifolium L3708), sensitive tomato (S. lycopersicum Zaofen No. 2) and tomato
challenged with P. infestans. Others were from tomato challenged with P. syringae
[12] and tomato yellow leaf curl virus [13]. The calculation of fold change was per-
formed according to the method of Cui et al. [14].
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2.4 Plant Materials, Treatment and qRT - PCR Analysis

Inoculated tomatoes (S. pimpinellifolium L3708 and S. lycopersicum Zaofen No. 2)
with Phytophthora infestans were performed according to the method of Cui et al. [14].
The extraction of total RNA, synthetization and qRT - PCR were performed using
RNAiso Plus (TaKaRa, China) TransStart®Top Green qPCR SuperMix kit (Trans,
China), respectively.

3 Results

3.1 The SlRR Gene Family in Tomato

A total of 40 SlRR sequences were obtained from S. lycopersicum genome, which were
identified to contain receiver domain. The 40 SlRR genes were subsequently renamed
from SlRR0 to SlRR39 according to their order on the chromosomes, respectively.
The ORF lengths of SlRR ranged from 426 bp to 2193 bp, encoding peptides ranges
from 141 to 730 amino acids. Their molecular weights ranged from 15.8 kDa to
79.8 kDa and the isoelectric points ranged from 4.83 to 9.06.

Fig. 1. The subgroup, intron pattern and conserved protein motifs of SlRRs.
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3.2 Chromosomal Distribution and Phylogenetic Analysis of SlRR Gene
Family

Genome chromosomal location analyses revealed that SlRRs were unevenly distributed
across all 12 chromosomes, except SlRR0. Chromosome 11 had the largest number
(8) of SlRRs. Based on structure characteristics and sequence similarity and topology,
we subdivided the 40 SlRRs into 7 subgroups (S1–S7) except for 2 members (SlRR0
and SlRR36) using ML method (Fig. 1). Analysis of the evolutionary relationship
between tomato and Arabidopsis RRs revealed that there was not equal representation.
S6, SlRR0 and SlRR36 were not clustered together with ARRs. While, subgroup S2
and S4 fit into the same clade with A - type ARRs, subgroup S3 with B - type ARRs,
and subgroup S1, S5 and S7 with pseudo - type ARRs.

3.3 Gene Structure and Motif Composition of SlRRs

The exon-intron organizations of 40 SlRRs were identified based on their number and
distribution. A detail illusion of exon-intron structures is shown in Fig. 1. The coding
sequences were disrupted by introns, and the intron numbers ranged from 0 to 11.
SlRR17 and SlRR23 each contained a maximum of 11 introns and SlRR0 had no intron.

12 conserved motifs were identified in SlRRs using the MEME tool (Fig. 1). The
motifs 4, 3, 5 and 2 constitute the receiver domain. It is very interesting to find that most
members in the same subgroup shared similar motifs. Besides, most subgroups also
shared the motifs 6 and 1 except subgroup S1 and subgroup S2. In a word, this suggested
that these motifs might be conserved among all subgroup, but there are some of the other
motifs were variable and might be subgroup-specific. For example, subgroup S1 did not
shared any motifs except motif 4, 3, 5and 2; S6 shared motif 10, 7 and 11; subgroup S7
and SlRR20 (among subgroup S5) shared motif 12 (Fig. 1).

3.4 SlRRs Involved in Tomato - Phytophthora infestans Interaction

With further analysis of RNA-Seq data, we identified 11 differential expression SlRRs
based on | foldchange | >2 and p-value < 0.01. To gain insight into the comprehensive
roles of these SlRRs in response to P. infestans, their expression levels were detected at
the indicated times by qRT-PCR from P infestan- resistant and - sensitive tomatoes. All
SlRRs was significantly induced after P. infestans stress (Fig. 2). For example, the
expression level of SlRR31 was down-regulated after P. infestans infection in both
resistant and sensitive tomato. However, most of SlRRs have differential expression
trends between resistant and sensitive - tomato. SlRR5 was expressed down-regulated
with the time-dependent change in resistant tomato after P. infestans infection. While,
its expression level in sensitive tomato was up-regulated gradually, then moderately
down-regulated.
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4 Discussion

4.1 RRs in Tomato Genome

In this study, the members of subgroup S2 was divided into the same clade with A -
type RRs. - type RRs, ARR4 and ARR5 were also found to be induced by drought, salt,
and low temperature [3], suggesting A - type RRs should be as a molecular link
between stress and cytokinin signaling. We found that subgroup S3 belonged to B -
type ARRs. In previous studies, B-type ARRs showed their nuclear localization in
Arabidopsis, which was an indication that they are transcriptional factors [7]. Subgroup
S1 and S5 belonged pseudo-type RRs by protein structure and comparative phyloge-
netic analysis. The previous research showed that APRRs might be related to Ara-
bidopsis circadian clock because expressions of several APRRs were controlled by
circadian rhythm [7].

4.2 Expression Profiling of RR Genes Under P. infestans Infection

In Arabidopsis, drought significantly induced the expression of A-type ARRs, ARR5,
ARR7, and ARR15, whereas almost all A - type RRs in rice genes were suppressed by
drought stress [15]. Compared with intensive studies on the functions of RR in abiotic
stresses, studies on biotic stresses were very limited. In plants, the cytokinin could be
changed after some pathogen infection, which induced the differential expression of RR
genes because cytokinin signal transduction was performed though two-component
system involved RRs [5]. Meanwhile, in Arabidopsis-P. syringae interaction, the
quantity of cytokinin-activated transcription factor ARR2 was up-regulated and the
salicylic acid response factor TGA3 specifically interacted with ARR2 and recruited it
to the PR1 promoter, which induced expression of PR1. These resisted to

Fig. 2. Expression patterns of SlRRs involved in response to P. infestans attack in tomato. X -
Axis represents different time point; Y - axis represents corresponding relative expression (n = 3
per each time point). Tomato actin expression was used as a control.
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P. syringae [5]. In this study, 11 SlRRs were identified as differential expression SlRRs
after further analysis of these RNA-Seq data. The qRT-PCR results indicated that the
expression levels of these SlRRs were changed after P. infestans infection and these
expression showed a time-dependent response. Notably, most of them had difference
overall expression trends between resistant and sensitive tomato (Fig. 2).
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Abstract. Electron tomography (ET) is a promising technique for
investigating in situ three-dimensional (3D) structure of proteins and
protein complexes. To obtain a high-resolution 3D ET reconstruction,
alignment and geometric parameters determination of ET tilt series
are necessary. However, the common geometric parameters determin-
ing methods depend on human intervention, which are not only fairly
subjective and easily introduce errors but also labor intensive for high-
throughput tomographic reconstructions. To overcome these problems,
in this paper, we presented a fully automatic geometric parameters deter-
mining method. Taking advantage of the high-contrast reprojections of
ICON and a series of image processing and edge recognition techniques,
our method achieves a high-precision full automation for geometric para-
meters determining. Experimental results on the resin embedded dataset
show that our method has a high accuracy comparable to the common
‘manual positioning’ method.

Keywords: Electron tomography · Geometric parameters determina-
tion · Human intervention · Full automation · Comparable accuracy

1 Introduction

Electron tomography (ET) is a promising technique for investigating in situ
three-dimensional (3D) structure of proteins and protein complexes [1,2]. In ET,
a series of two-dimensional (2D) projection micrographs (tilt series) are taken
in different orientations and then used to reconstruct the 3D density of the
c© Springer International Publishing AG 2017
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ultrastructure based on the projection-slice theorem [3]. Usually, the mechan-
ical instability, and inevitable transformation and deformations of the sample
occur during data collection will affect the projection environment, leading to
the mismatch of tilt series. To obtain a high-resolution 3D reconstruction, the
projection parameters of the tilt series should be calibrated accurately first.

Recent years, the topic of alignment in ET has been widely discussed
and many high-precision alignment algorithms have been proposed. A problem
related to the alignment is the determination of geometric parameters, which
describe the geometry of the 3D reconstruction with respect to a fixed coordi-
nate system, including the direction of the tilt axis (azimuthal angle), the tilt
angle offset, the thickness of sample and the z-shift of reconstruction [4]. The
most common way to determine the geometric parameters depends on human
intervention, refer to as ‘manual positioning’ in this paper, such as in IMOD (a
successful and widely used ET tool) [4]. In manual positioning, three 2D recon-
structed slices (from top, middle and bottom of the 3D reconstruction) will be
selected first and then a boundary model, containing manually selecting position
features of the 3D reconstruction, will be created accordingly and used to calcu-
late the geometric parameters. Although manual positioning has a high accuracy,
two key issues remain to be solved. Firstly, as high resolution sub-volume aver-
aging demands on high-throughput tomographic reconstructions [2], the need
of human intervention in manual positioning will become a bottleneck of high
efficient automatic ET alignment and reconstruction; secondly, manual selecting
position features is fairly subjective and easily introduces errors especially for
Cryo-ET reconstruction, in which the extremely low SNR and the ray artifacts
caused by missing wedge will make the position features hard to identify.

To overcome these problems, we propose a fully automatic ET geometric
parameters determining method. Based on high contrast reprojections of ICON
[5], our method has two advantages. Firstly, the reconstruction of ICON suffers
less from ray artifacts and has a higher SNR. Taking advantage of the reprojec-
tions of ICON, position features selected by our method are much clearer, which
is essential for high-precision fully automatic geometric parameters determina-
tion. Secondly, ICON can partially restore the unsampled information in ET
reconstruction. Thus, our method can generate a clear 90-degree reprojection of
the reconstructed volume (such 90-degree reprojection is normally too blurred to
identified for traditional ET reconstruction algorithms), and then the azimuthal
angle can be directly determined.

2 Method

2.1 Geometry

The geometry of ET reconstruction is defined as Fig. 1. The projection coordi-
nate system (X,Y,Z) is fixed with respect to the microscope; Y -axis is the tilt
axis and Z-axis is the optical axis. Volume V is the 3D density of the specimen
with thickness T , reconstructed from the aligned tilt series. The alignment pro-
cedure will align the tilt axis of tilt series perpendicular to X-axis [6]. Thus, the
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reconstructed specimen coordinate system (X ′, Y ′, Z ′) can be defined relative to
(X,Y,Z) by a rotation about X-axis by an angle θaz (azimuthal angle) (Y ′-axis
is the actual tilt axis), a rotation about Y ′-axis by an angle θto (tilt angle offset)
and a shift dz along Z-axis (z-shift). Usually, the azimuthal angle and the tilt
angle offset are small for an aligned tilt series, so we approximately regard the tilt
angle offset as a rotation about Y -axis. Here, we define a 90-degree reprojection
as the reprojection obtained by rotating the reconstruction around Y -axis by
90◦ and define a X90-reprojection as the reprojection obtained by rotating the
reconstruction around X-axis by 90◦. All 90-degree reprojections presented in
this paper are rotated in-plane by −90◦ and only the central areas are displayed.

Fig. 1. The geometry of ET reconstruction.

2.2 Geometric Parameters Determination

There are four geometric parameters to be determinated, including z-shift, thick-
ness, tilt angle offset and azimuthal angle.

We model the determination of z-shift and thickness as an optimization prob-
lem (see Eqs. (1) and (2)).

f(x, z, t) =
{

1, z − � t
2� <= x <= z + � t

2�
0, otherwise

(1)

maxz,tcorrcoef(reprojection1D, f(z, t)) s.t. z, t < s (2)

where reprojection1D is the 1D reprojection of a X90-reprojection along X-axis;
corrcoef(reprojection1D, f(z, t)) calculates the normalized correlation coeffi-
cient (NCC) between reprojection1D and f(z, t); s is the size of reprojection1D;
z and s are used to calculate z-shift and t is thickness.

To determine the tilt angle offset, we first generate a template according to
the thickness and rotate it with a certain angular step to generate a series of
templates, representing different tilt angles. And then we calculate the NCCs
between the X90-reprojection and templates. Instead of using the tilt angle with
the maximum NCC as the tilt angle offset, we calculate the tilt angle offset
using Eq. (3).

To determine the azimuthal angle, we use the 90-degree reprojection instead
of the X90-reprojection and the same procedure is used.

θto =
∑
t∈Ψ

θt · NCCt∑
k∈Ψ NCCk

, Ψ = {z|NCCz > mean(NCC)} (3)
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where NCCt is the NCC of tilt angle θt; θto is the tilt angle offset; mean(NCC)
is the mean value of all NCCs.

3 Results and Discussion

We tested our method using the resin embedded ET dataset downloaded from
IMODs website [4]. The geometric parameters determination module TOMO-
PITCH in IMOD is used to illustrate the performance of our method.

The boundary model used in TOMOPITCH are shown in Fig. 2(A–C) and the
reprojections used in our method are shown in Fig. 2(D, E). Although the sample
is slightly bent, the correction of reprojections by our method is good (Fig. 2(F,
G)), which demonstrates the robustness of our method to the deformation of
sample. And the absolute differences between TOMOPITCH and our method
are small (Table 1) which demonstrates the comparable accuracy of our method
to TOMOPITCH.

Fig. 2. Test our method using resin embedded ET dataset. (A–C) the boundary model
used in TOMOPITCH; (D) X90-reprojection used in our method; (E) 90-reprojection
used in our method; (F) corrected X90-reprojection by our method; (G) corrected 90-
reprojection by our method.

Table 1. The geometric parameters of resin embedded ET dataset determined using
TOMOPITCH and our method.

θaz θto Thickness z-shift

TOMOPITCH 2.39 0.17 64 0.8

Our method 2.66 0.5 66 2

Abs (difference) 0.27 0.33 2 1.2

For visual validation, we reconstructed the tilt series using WBP and then
corrected the reconstruction using the geometric parameters from TOMOPITCH
and our method, respectively. Figure 3(A) shows the 281th XY-slice (256th XY-
slice is the central slice) of uncorrected tomogram, because of the azimuthal
angle, the bottom part of slice is out of the sample. Figure 3(B–C) show the same
XY-slices of corrected tomograms, both corrections generate flat reconstructions
and our method is visually identical with TOMOPITCH.
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Fig. 3. The corrected reconstruction of TOMOPITCH and our method. (A) the 281th
XY-slice of uncorrected reconstruction; (B) the 281th XY-slice of corrected recon-
struction by TOMOPITCH; (C) the 281th XY-slice of corrected reconstruction by our
method.

4 Conclusion

We proposed a fully automatic ET geometric parameters determining method to
solve two key issues of the common manual positioning method by introducing
ICON reprojections and a series of image process techniques. The experimental
results demonstrate that our method has a high accuracy, which is comparable
to TOMOPITCH.
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Abstract. Deep Neural Networks show their promise over traditional
neural network on DNA genomic analysis. However, due to the uncer-
tainty of DNA sequence data, it performs differently in various encoding
schemes. In this article we focus on the comparison of different schemes
on various auto-encoder algorithms in DNA annotation and analyze their
impacts on deep learning. We also aim to find the best encoding schemes
used on deep auto-encoder algorithms for DNA annotation.

Keywords: Deep neural network · Auto-encoders · Encoding schemes ·
DNA genomic analysis

1 Introduction

Data representation is an important component in current deep learning
research, such as natural language processing, language translation and genome
analysis [1]. Letter/character based representation of genome sequence is read-
able and understandable for human being [2,3] but a problem for a machine,
especially for numeric machine learning. We can easily quantify man-made quan-
titative factors such as voltage, current, pixel and coordinate but we indeed
have some problems in quantifying human biological particles such as DNA
nucleotides. Although many encoding schemes have been developed for bioinfor-
matics, encoding those DNA nucleotides on deep learning has not been discussed.
We cannot avoid the numeric representations for those biological units. Inappro-
priate encoding schemes can directly lead to numeric bias and signal loss. Data
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representation problems of DNA sequences have emerged as an important issue
when the deep learning technology is highlighted.

In this article, we study the impacts of encoding schemes on several variant
algorithms in auto-encoders by applying deep neural networks to gene anno-
tation. Four variant auto-encoder algorithms include orthodox auto-encoder,
denoising auto-encoder, hidden-layer denoising auto-encoder and double denois-
ing auto-encoder. Nine typical encoding schemes are studied, typically repre-
senting the three categories. These encoding schemes are DAX [2], Arbitrary
[2], EIIP [4], Neural [5], Complementary [5], Enthalpy [6], Entropy [7], Statistic
[7], and Galois [8]. Basically, DAX, Arbitrary, Neural and Galois are binary
linear code; EIIP, Enthalpy, Entropy and Statistic are bio-chemical mapping;
Complementary is Cartesian coordinate coding. For DNA genome analysis in
deep neural networks, direct mapping schemes such as DAX, EIIP and Com-
plementary have the better performance than those pre-processed schemes such
as Enthalpy, Entropy and Galois. It is perhaps because direct mapping does
not wrap any information of DNA sequences while pre-processed schemes have
hidden some information by encoding them together. Experiments show that
Complementary can beat other schemes in more than half of cases and it is
regarded as one of the best encoding schemes in genomic data representation.

The rest of the paper is organized as follows. Section 2 presents the details of
auto-encoder and its variants. Section 3 provides the comparison and evaluation
results on different encoding schemes and auto-encoder algorithms, and Sect. 4
gives the conclusion.

2 Auto-Encoder and Variants

Auto-encoder is an artificial neural network that can be used to constitute
a multiple-layer percetron architectures for deep learning machine shown in
Fig. 1(a). The hidden layer h and the iterative estimation x∗ can be calculated
through weights. The iteration becomes stable when it has the minimum dis-
tance between x and x∗. The preliminary ideas of shallow/deep neural network
had been discussed for long time since 90s, however, mature concepts of deep
learning including deep neural network were proposed in mid-2000s [9–11]. Since
then, it has been applied to life sciences and shown tremendous promise [12–15].

The simplest auto-encoder is based on a feedforward, non-recurrent neural
network similar to the multiple-layer perceptron (MLP). The difference is that
the output layer of auto-encoder has the same number of nodes as the input
layer and an auto-encoder is trained to reconstruct their own inputs instead of
being trained to predict the output value. Thus, training the neighboring set of
two layers minimizes the errors between layers and eliminates the problem of
error propagation that often occurs in conventional neural network.

A denoising auto-encoder partially corrupts input data and uses the cor-
rupted data for training in order to recover the original undistorted input. This
technique can robustly obtain a corrupted input that will be useful for recover-
ing the corresponding clean input. To train an auto-encoder for denoising data,
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it is necessary to perform preliminary stochastic mapping in order to corrupt
the data and use as input for a normal autoencoder, with the only exception
being that the loss should be still computed for the initial input instead of the
corrupted one. Different from input-layer denoising, hidden-layer denoising auto-
encoder model (HDAE) corrupts the units in hidden layer instead of input-layer
and reconstructs the hidden layer.

Figure 1(b) illustrates the architecture of double denoising auto-encoder. An
example x is stochastically corrupted to x̃. The auto-encoder then maps it to hid-
den representation h via encoding and attempts to reconstruct x via decoding,
producing reconstruction x∗. Reconstruction error is measured by loss L(x, x∗).
Meanwhile, the hidden representation h is also stochastically corrupted to h̃ and
then h̃ is mapped to an intermediate reconstructed input x̄ via decoding and
attempts to reconstruct h via encoding, producing reconstruction h∗. Recon-
struction error is also measured by loss L(h, h∗).

Fig. 1. Auto-encoders. (a) Auto-encoder. (b) Double denoising auto-encoder.

3 Comparison and Evaluation

The data sets are the standard benchmark from fruitfly.org for predicting gene
splicing sites on human genome sequences [16]. The data set I is the Acceptor
locations containing 6,877 sequences with 90 features. The data set II is the
Donor locations including 6,246 sequences with 15 features. The Acceptor data
sets have 70bp in the intron (ending with AG) and 20bp of the following exon.
The Donor data sets have 7bp of the exon and 8bp of the following intron
(starting with GT). The standard data sets contain real and fake splice sites
and a window of upstream/downstream 40bp around the actual splice sites D
(Donor) A (Acceptor). The data set of cleaned 269 genes is divided into a test
and a training data set [16].

Figure 2(a), (b) shows the performance of an auto-encoder. Complementary
scheme shows the superiority over other schemes in Fig. 2(a) where the data set
has more features than those in Fig. 2(b). DAX scheme shows the best perfor-
mance in Fig. 2(b).

http://fruitfly.org/
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Fig. 2. Comparative results. (a) and (b) Auto-encoder on acceptor and donor data
set; (c) and (d) denoising auto-encoder on acceptor and donor data set; (e) and (f)
hidden-layer auto-encoder on acceptor and donor data set; (g) and (h) double denoising
auto-encoder on acceptor and donor data set.
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Figure 2(c), (d) shows the performance of denoising auto-encoder. Denois-
ing auto-encoder seems not fit to the application of DNA structure prediction
because corrupted input data (DNA features) at each location may have a high
dependency with others such that denoising makes the prediction messed.

Figure 2(e), (f) shows the performance of hidden-layer denoising auto-
encoder. Compared with the performance of input-layer denoising auto-encoder
in Fig. 2(c), (d), in hidden-layer denoising auto-encoder model, corrupting some
nodes on hidden layers makes a less impact than corrupting nodes on input layer.
It is probably because in hidden layer some correlations/nodes may be so triv-
ial to be denoised. Complementary scheme manifests its superiority over other
schemes on more-feature data set while DAX and arbitrary schemes share the
top rank on less-feature data set.

Figure 2(g), (h) shows the performance of double denoising auto-encoder.
Complementary encoding scheme continues keeping its superiority over other
schemes in large-feature data set while DAX and arbitrary schemes share the
best performances on measurement in Fig. 2(h).

On the other side, it shows that auto-encoder method without denoising is
better than other three variants. It is probably because the nucleotides along
DNA sequence have mutual interactions and the removal of noising nucleotides
causes the loss of these importantly mutual relations. Particularly, the denois-
ing on input layer can generate more harms than that on hidden layer. The
over-fitting issues occur in Denoising Auto-encoder more frequently than others.
The over-fitting occurrence is correlated to the auto-encoder algorithm and the
encoding schemes. The DAE shows the poorest performance among the auto-
encoder algorithms.

4 Conclusion

Data representation in genome analysis plays an important role due to the uncer-
tainty of bio-chemical properties along DNA sequences. Unlike other man-made
quantitative factors, uncertainty and imprecision have long existed in quantify-
ing human biology such as DNA sequences. We summarize the existing encoding
schemes of DNA sequences and discuss several auto-encoder algorithms that can
be applied in DNA genomic analysis. By experiments on DNA gene annota-
tion, we compare and analyze those typical encoding schemes. Eventually, we
find direct mapping schemes such as DAX, EIIP and Complementary have the
better performance than pre-processed schemes such as Enthalpy, Entropy and
Galois. It is perhaps because direct mapping does not wrap any information of
DNA sequences while pre-processed schemes have hidden some information by
encoding them together. Experiments also show that Complementary can beat
other schemes in more than half of cases and it is regarded as one of the best
encoding schemes in genomic data representation. The evaluation and assess-
ment provide the important evidence to choose the proper data representation
for using deep learning methods on DNA genome data analysis.
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Abstract. This paper describes an enhanced method for analyzing
microbial metatranscriptomic (community RNA-seq) data using Expec-
tation - Maximization (EM)-based differentiation and quantification
of predicted gene, enzyme, and metabolic pathway activity. Here, we
demonstrate the method by analyzing the metatranscriptome of plank-
tonic communities in surface waters from the Northern Louisiana Shelf
(Gulf of Mexico) during contrasting light and dark conditions. The analy-
sis reveals that the level of transcripts encoding proteins of oxidative
phosphorylation varys little between day and night. In contrast, tran-
scripts of pyrimidine metabolism are significantly more abundant at
night, whereas those of carbon fixation by photosynthetic organisms
increase 2-fold in abundance from night to day.

1 Introduction

RNA-seq is a standard method for comparative analysis of gene transcription
across different conditions. It supplanted a widely used microarray approach,
enabling analysis of a much larger number of genes, including those represented
in pools of transcripts from complex multi-species communities (metatranscrip-
tomes). RNA-seq allows researchers to determine and compare gene transcrip-
tion levels, as well as the transcriptional activity of distinct metabolic pathways.
Diverse bioinformatic tools have been developed to facilitate comparisons of
RNA-seq data [1–10]. Such tools include web-based services with automated
pipelines that allow assessment of the metabolic properties represented in RNA-
seq datasets. For example, the MAP platform [11] predicts genes expressed in
samples, while also provides information about gene classification into orthology
groups (see Fig. 1). Unfortunately, such pipelines fail to quantify transcripts in
concert with the annotation step. We therefore propose an enhanced pipeline
that combines the biochemical annotation with quantification analysis. For this
purposes, we propose to use an expectation-maximization (EM) technique sim-
ilar to one from IsoEM2 [12]. We tested our algorithm using metatranscriptome
c© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 396–402, 2017.
DOI: 10.1007/978-3-319-59575-7 41
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data from marine bacterioplankton sampled during both the day and nighttime,
and therefore likely exhibiting predictable variation in community transcription
patterns.

2 Methods

In this section we describe the procedure of inferring metabolic pathway activ-
ity levels from RNA-Seq data for naturally occurring microbial communities.
We also apply differential pathway activity level analysis similar to the non-
parametric statistical approach described in [13], which was successfully applied
for gene differential expression.

A general meta-omic pipeline is described on Fig. 1. Several metatranscrip-
tomic samples are sequenced on an Illumina Hi-Seq (2 × 150 bp) and the result-
ing reads are assembled into a set of contigs. Genes detected on the contigs
are mapped against protein databases and enzymatic functions are inferred.
Finally, the representation of metabolic pathways is inferred based on the pres-
ence/absence of enzymes within each pathway. The above generic pipeline has
been described in [11]. This paper proposes to enhance the above pipeline with
the inference of metabolic pathway activity levels using repeated maximum like-
lihood inference and resolution by the Expectation - Maximization (EM) algo-
rithm. The proposed inferences are depicted in red on Fig. 1.

Inference of Pathway Activity Levels. The first step is to estimate the
abundances of the assembled contigs. The abundances can be inferred by any
RNA-seq quantification tool. Here, we suggest using IsoEM2 [12], as this method
is sufficiently fast to handle Illumina Hiseq data and more accurate than kallisto
[14]. The next proposed step is to estimate the abundance of enzymes based
on contig abundances. For this step we propose so-called 1-st EM. The 2-nd
EM is used to infer metabolic pathway activity levels based on inferred enzyme
abundances and databases of metabolic pathways. The 1-st and the 2-nd EM’s
can be also integrated into a single direct EM that directly infers pathway activity

Fig. 1. The pipeline MAP and the enhanced pipeline for quantification and differential
analysis of the metabolic pathway activity. The quantification enhancements are drawn
in red. (Color figure online)
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levels from contig abundances. All componentsm (1-st EM, 2-nd EM and direct
EM) are built with similarities to IsoEM2 methodology.

Differential Analysis of Pathway Activity. Using the estimates of pathway
activity levels in the differential pathway activity analysis requires estimating
uncertainty. The extension of our bootstrapping approach introduced in [15]
is useful for the direct maximum likelihood model since the pathway activity
levels are inferred directly from RNA-seq reads that can be resampled. The
current version of IsoEM2 allows the user to generate bootstrapped samples from
the RNA-Seq reads and to infer abundance estimates, based on Fragments Per
Kilobase of transcript per Million mapped reads (FPKM). We estimate pathway
activity level for each of the bootstrapped samples and then run a differential
expression (DE) analysis similar to the one described in [13].

3 Results

In this section we apply our analysis pipeline to two conditions (day. night) of
a planktonic marine microbial community. We describe a subset of the most
abundant pathways and conduct a differential pathway activity level analysis
that highlights statistically significant functional features from the repertoire of
metabolic processes occurring in the community.

Datasets. The samples were collected from surface waters (2 m depth) at 12:30
and 23:55 (local time) at a station on the Northern Louisiana Shelf (Gulf of
Mexico) in July 2015. Seawater (∼1 L) was pumped directly onto a 0.22 um
Sterivex filter, preserved in 1.8 ml of RNA-later and flash frozen. Samples were
stored a −80◦ C until extraction. RNA was isolated from the samples by a
phenol-chloroform method following the Mirvana RNA kit protocol. Samples
were treated with DNase to remove residual DNA signal from the metatranscrip-
tome. The RNA-Seq data were generated via Illumina HiSeq 2500 sequencing
at the Department of Energy - Joint Genome Institute (DOE-JGI). Detailed
information about the two samples is provided in the Table 1.

Table 1. Dataset description

Sample Reads Contigs

Name Depth Code Time Length Count Insert size Total Total length

Day 2m 177 2m 12:30PM 2× 151 bp 89.4 M 195± 49 94.7 k 58.3MB

Night 2m 240 2m 11:55PM 2× 151 bp 91.4 M 187± 49 108 k 68.1MB

MAP Pipeline. A preliminary annotation of RNA-seq data was obtained using
the DOE-JGI Metagenome Annotation Pipeline (MAP v.4) (JGI portal) [11].
The MAP processing consists of feature prediction including identification of
protein-coding genes. In this pipeline, the MEGAHIT metagenome assembler
is used to first assemble RNA-Seq reads into scaffolds. Further, several soft-
ware suites (GeneMark.hmm, MetaGeneAnnotator, Prodigal, FragGeneScan)
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are used to predict genes on assembled scaffolds. The MAP pipeline also anno-
tates genes according to EC numbers, which are a necessary input in our max-
imum likelihood model. The annotations are obtained via homology searches
(using USEARCH) against a non-redundant proteins sequence database (max-
hits = 50, e-value = 0.1) where each protein is assigned to a KEGG Orthology
group (KO). The top 5 hits for each KO, with the condition that the identity
score is at least 30% and 70% of the protein length is matched, are used. The
KO IDs are translated into EC numbers using KEGG KO to EC mapping.

The Enhanced Quantification Pipeline. Our enhanced pipeline is depicted
in red on Fig. 1. We start our analysis from the RNA-Seq metatranscriptomic
reads. First, we find the abundance estimates (frequencies) for each metatran-
scriptomic gene/transcript by applying Maximum Likelihood abundance estima-
tion. For this purpose we use IsoEM2. The custom GTF annotation file needed
for supplying each run of IsoEM2 was prepared by using the fastaToGTF script
from the same software suite. Next, we use FPKM estimates as the weights of
each transcript for inferring abundances of each EC number. We use transcripts
to EC notation alignments as provided by the MAP pipeline.

Highly Active Pathways. Table 2 shows the 10 most active pathways in the
Day sample sorted in descending order of their activity level, i.e., the number of
reads attributed by the proposed maximum likelihood model. The 11th pathway
listed (ko0061) is among the 10 most active at night but is not among the 10
most active in the day. Similarly, the pathway ko00195 is among the most 10
active at night but is not among the 10 most active in the day. All other 9
pathways are among the most active during both night and day.

Differential Pathway Analysis. In Table 3 there is a list of all metabolic
pathways which are up-regulated at noon with at least 1.7 fold change, 95%
confidence and at least 1000 reads assigned by EM. The values of abundances
are given at 95% confidence interval upper boundary (therefore, they are slightly
greater than in the Table 2). In Table 4 there is a list of all metabolic pathways

Table 2. 10 most abundant pathways in the day and night samples.

Pathway Abundance

reads ×103

Code Description Day Night

ko00190 Oxidative phosphorylation (Energy metabolism) 2260 2700

ko00710 Carbon fixation in photosynthetic organisms (Energy metabolism) 837 422

ko00240 Pyrimidine metabolism (Nucleotide metabolism) 644 1110

ko00270 Cysteine and methionine metabolism (Amino acid metabolism) 568 176

ko00020 Citrate cycle - TCA cycle (Carbohydrate metabolism) 525 411

ko00900 Terpenoid backbone biosynthesis (Metabolism of terpenoids and polyketides) 508 261

ko01230 Biosynthesis of amino acids 333 471

ko00195 Photosynthesis (Energy metabolism) 327 63

ko00230 Purine metabolism (Nucleotide metabolism) 318 618

ko00630 Glyoxylate and dicarboxylate metabolism (Carbohydrate metabolism) 299 530

ko00061 Fatty acid biosynthesis (Lipid metabolism) 37 179
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which are up-regulated at noon with at least 1.7 fold change, 95% confidence
and at least 1000 reads assigned by EM.

Discussion. The results in Tables 2, 3 and 4 are reflective of planktonic microbial
communities driven by a diurnal cycle. During the daytime, pathways mediating
photosynthesis, carbon fixation, and the building blocks for amino acid biosyn-
thesis are the most abundant. At night there is an increase in nucleotide and
lipid generation, probably for new cell production. In general, the community
appears to be gaining energy and substrates during the day and expending them
at night by generating crucial cellular components. This is supported by the dif-
ferential expression between the day and night transcript pools, with energy
(photosynthesis) and small organic molecule synthesis (e.g., fructose, glutamine-
glutamate, glycosaminoglycan, etc.) being up-regulated during the day and the
synthesis of larger biomolecules at night (e.g. lipid metabolism, amino acids,
and carotenoids). There is a clear shift in energy sources between day and night.
While oxidative phosphorylation is highly transcribed at both time points, it is
clear that photosynthesis elevates some of this energy requirement. This is evi-
denced by a slight decrease of oxidative phosphorylation and increase of TCA-
related transcripts during the day, potentially replenishing the NADH/NADPH
reserves for the use of the electron transport chain at night. As predcited, these
results indicate a community undergoing diel cycling, thereby providing vali-
dation of our proposed EM-based pipeline and suggesting this method as an
valuable tool for coupled annotation and quantification of metabolic pathways
in community RNA-seq data.

Table 3. Up-regulated pathways in the day sample

Pathway Reads in 103

Code Description Day Night

ko00051 Fructose and mannose metabolism (Carbohydrate metabolism) 326 34.1

ko00195 Photosynthesis (Energy metabolism) 488 93.1

ko00261 Monobactam biosynthesis (Biosynthesis of other secondary metabolites) 237 44.5

ko00410 beta-Alanine metabolism (Metabolism of other amino acids) 10.0 0.01

ko00471 D-Glutamine and D-glutamate metabolism 6.79 0

ko00532 Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate 28.8 3.65

ko00533 Glycosaminoglycan biosynthesis - keratan sulfate 22.9 0.609

ko00604 Glycosphingolipid biosynthesis - ganglio series 4.17 0

ko00660 C5-Branched dibasic acid metabolism (Carbohydrate metabolism) 4.39 0.01

ko00930 Caprolactam degradation (Xenobiotics biodegradation and metabolism) 3.80 0.883

ko00332 Carbapenem biosynthesis (Biosynthesis of other secondary metabolites) 10.3 1.54

ko00565 Ether lipid metabolism (Lipid metabolism) 10.4 0.682

ko00590 Arachidonic acid metabolism (Lipid metabolism) 51.8 19.4

ko00270 Cysteine and methionine metabolism (Amino acid metabolism) 787 246

ko00514 Other types of O-glycan biosynthesis (Glycan biosynthesis and metabolism) 7.75 2.96

ko00450 Selenocompound metabolism (Metabolism of other amino acids) 201 80.2

ko00710 Carbon fixation in photosynthetic organisms(Energy metabolism) 1000 487

ko00983 Drug metabolism - other enzymes (Xenobiotics biodegradation & metabolism) 58.3 16.5

ko00520 Amino sugar and nucleotide sugar metabolism (Carbohydrate metabolism) 265 123
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Table 4. Up-regulated pathways in the night sample

Pathway Reads in 103

Code Description Day Night

ko00053 Ascorbate and aldarate metabolism (Carbohydrate metabolism) 0 1.88

ko00061 Fatty acid biosynthesis (Lipid metabolism) 55.9 270

ko00120 Primary bile acid biosynthesis (Lipid metabolism) 2.75 116

ko00140 Steroid hormone biosynthesis (Lipid metabolism) 0 4.11

ko00232 Caffeine metabolism (Biosynthesis of other secondary metabolites) 0 1.05

ko00260 Glycine, serine and threonine metabolism (Amino acid metabolism) 49.3 227

ko00311 Penicillin and cephalosporin biosynthesis 0 2.74

ko00365 Furfural degradation (Xenobiotics biodegradation and metabolism) 0 2.12

ko00430 Taurine and hypotaurine metabolism (Metabolism of other amino acids) 3.19 62.3

ko00472 D-Arginine and D-ornithine metabolism (Metabolism of other amino acids) 0 1.25

ko00780 Biotin metabolism (Metabolism of cofactors and vitamins) 7.05 48.6

ko00906 Carotenoid biosynthesis (Metabolism of terpenoids and polyketides) 0 26.2

ko00984 Steroid degradation (Xenobiotics biodegradation and metabolism) 0 2.07

ko00362 Benzoate degradation (Xenobiotics biodegradation and metabolism) 3.58 16.7

ko00592 alpha-Linolenic acid metabolism (Lipid metabolism) 0.19 2.89

ko00072 Synthesis and degradation of ketone bodies (Lipid metabolism) 2.67 11.6

ko00364 Fluorobenzoate degradation (Xenobiotics biodegradation and metabolism) 0.180 2.96

ko01051 Biosynthesis of ansamycins (Metabolism of terpenoids and polyketides) 0 3.38

ko00760 Nicotinate and nicotinamide metabolism (Mcofactors and vitamins) 30.2 103

ko00281 Geraniol degradation (Metabolism of terpenoids and polyketides) 1.57 170

ko00627 Aminobenzoate degradation (Xenobiotics biodegradation and metabolism) 0.949 4.06

ko00730 Thiamine metabolism (Metabolism of cofactors and vitamins) 10.4 35.4

ko00643 Styrene degradation (Xenobiotics biodegradation and metabolism) 0.958 22.6

ko01200 Carbon metabolism 13.7 86.9

ko00220 Arginine biosynthesis (Amino acid metabolism) 3.53 11.0

ko00440 Phosphonate and phosphinate metabolism 1.30 5.33

ko00905 Brassinosteroid biosynthesis (Metabolism of terpenoids and polyketides) 2.00 35.6

ko00941 Flavonoid biosynthesis (Biosynthesis of other secondary metabolites) 2.84 6.03

ko00720 Carbon fixation pathways in prokaryotes (Energy metabolism) 1.36 15.9

ko00290 Valine, leucine and isoleucine biosynthesis (Amino acid metabolism) 68.0 193

ko00403 Indole diterpene alkaloid biosynthesis 0 2.68

ko01053 Biosynthesis of siderophore group nonribosomal peptides 0 1.16

ko00920 Sulfur metabolism (Energy metabolism) 47.7 135

ko00625 Chloroalkane and chloroalkene degradation 24.3 51.8
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reconstruction and quantification from RNA sequencing data. Genome Anal.: Curr.
Proced. Appl. 39 (2014)

http://dx.doi.org/10.1186/s12864-016-2823-y


NemoLib: A Java Library for Efficient Network
Motif Detection

Andrew Andersen(B) and Wooyoung Kim(B)

Division of Computing and Software Systems, School of Science, Technology,
Engineering, and Mathematics, University of Washington Bothell, 18115 Campus

Way NE, Bothell, WA 98011-8246, USA
{drewda,kimw6}@uw.edu

Abstract. A network motif is defined as an overabundant subgraph
pattern in a network and has been applied in various biological and
medical problems. Various network motif detection algorithms and tools
are currently available. However, most existing software programs are
outdated, incompatible with modern operating systems, or do not pro-
vide sufficient operation instructions. Furthermore, most tools provide
limited information regarding network motifs, which necessitates post-
processing program to apply to real problems. Consequently, the lack of
usability brings a certain amount of skepticism about the relevance of
network motifs in investigating real biological problems. Therefore, this
paper introduces NemoLib (network motif library) as a general purpose
tool for detection and analysis of network motifs. NemoLib is highly
programmable Java library which provides for extensibility.

Keywords: NemoLib · ESU · Biological network · Network motif

1 Introduction

Rapid technological development in molecular biology has led to an explosion of
omics research and a subsequent need to model the omic data in a useful way.
Biological networks have been proven to be useful to model biological systems,
with graph nodes representing molecules in the system and edges representing
the interactions between those molecules [7].

Various graph theory topics are applied to resolve real biological problems
[2], but this paper focuses on network motifs as one of the graph theory meth-
ods: unique and frequent subgraph patterns that appear in a particular network.
Analysis of network motifs have led to practical uses to predict protein-protein
interactions [1], to determine protein functions [4], to detect breast-cancer sus-
ceptibility genes [22], to investigate evolutionary conservation [19], and to dis-
cover essential proteins [11]. Furthermore, a broad spectrum of applications has
been explored: ‘motif clustering’ [5], ‘motif themes’ [21], ‘relative graphlet fre-
quency distances’[15], ‘motif modes’ [12], and ‘MotifScores’ [20].
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However, discovering and classifying network motifs are computationally
expensive, requiring nonpolynomial time to perform. The process involves enu-
merating or searching for millions of subgraphs in the input graph and classifying
them through canonical labeling or isomorphic testing. Then, a network motif’s
uniqueness is established through rigorous statistical testing in a large pool of
randomly-generated networks of the same order and size. Consequently, various
heuristic methods and parallel algorithms have been proposed that alleviate the
performance concerns of exhaustive search methods [10].

Many motif search programs are also available [16]: MFinder [9], FANMOD
[18], Kavosh [8], Mavisto [17], NeMoFinder [3], Grochow’s [6], and MODA [14].
However, most of them are not functional. Some of these programs are unable
to execute on modern operating systems, or there are no explanations of how
to use them. Furthermore, most tools fail to provide the instances of network
motifs that are often necessary to discover biological significance, thus requiring
the more expensive post-processing. In sum, none of the existing systems pro-
vide efficient frameworks for network motif detection. Therefore, we present the
Network Motif Library (NemoLib), a modern network motif detection library
designed for extensibility and sustainability.

2 NemoLib: Network Motif Library

2.1 NemoLib Overview

The NemoLib library intends to abstract away much of the complexity of
building a network motif detection tool while allowing for customizability. The
design of the library follows the object-oriented principle of “open for extension,
closed for modification” by exposing an API of common tools used for network
motif detection in the form of Java classes. Additionally, NemoLib is available
through a public GitHub repository where it can be accessed and updated by the
open-source community, and it uses Apache Maven as a build tool and depen-
dency management system to ensure all NemoLib dependencies are up to date.
Presently the NemoLib library has been tested to work in Linux and Windows
environments.

2.2 NemoLib Design and Components

The library includes some standard classes one might expect in a network motif
detection library, such as Graph to represent a target network and Subgraph
to represent instances of subgraphs appearing in a network. However, it also
includes a host of additional classes to reduce the redundancy of rewriting com-
mon network motif detection tasks.

The TargetNetworkAnalyzer class executes a subgraph enumeration algo-
rithm on the target network and produces a mapping of each size-k subgraph
label to its relative frequency in the target network. Additionally, the Tar-
getNetworkAnalyzer class can produce a SubgraphEnumerationResult object,
described below.
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The RandomGraphAnalyzer class generates a pool of random graphs of the
same size and order as the target graph. Each of those graphs is then enumerated,
and the relative frequency of each size-k subgraph label is appended to a list
which is mapped to the corresponding label name. The resulting map of relative
frequency lists is returned to the client.

Finally, the RelativeFrequencyAnalyzer class takes as parameters the maps
produced by the TargetNetworkAnalyzer and RandomGraphAnalyzer classes
and determines the p-value and z-score for each label in the target network. The
p-value is used to determine whether any label should be identified as a network
motif based on a threshold set by the user.

The library also includes two Java interface classes: SubgraphEnumerator
and SubgraphEnumerationResult. The SubgraphEnumerator interface can be
applied to any enumeration algorithm. Presently, both the ESU and RandESU
algorithms have been implemented in the library using the SubgraphEnumer-
ator interface. An object implementing the SubgraphEnumerator is passed as
a parameter to each of the TargetGraphAnalyzer and RandomGraphAnalyzer
classes and is used to enumerate the subgraphs. The SubgraphEnumerationRe-
sult stores the results of enumeration in a manner specified by the client. Some
examples of classes implementing the SubgraphEnumerationResult included in
the library are SubgraphCount, which maps subgraphs to absolute subgraph
frequencies; SubgraphProfile, which maps labels first to target network vertices
then to absolute subgraph frequencies; and SubgraphCollection, which maps
Subgraph objects to label frequencies.

3 Conclusion and Future Study

The NemoLib library fills a void in the network motif detection software commu-
nity by applying modern software engineering techniques to existing algorithms.
Its combination of programmability and flexibility should make it an ideal tool
for testing novel network motif detection algorithms and for learning about net-
work motif detection.

One limitation of the library at present is the reliance on the nauty program
developed by McKay [13]. While nauty executes perfectly well on most environ-
ments, it is not written in Java and must be called externally from the library,
creating a dependency that cannot be managed by Maven. Development of a
Java version of the nauty algorithm would eliminate this concern.

A primary area of future study we plan to focus on is parallel and multi-
threaded client programs implementing the library. We would also like to add a
GUI or create a web application that utilizes the library as a service, allowing
researchers to upload a file containing a description of a network, select config-
uration parameters, and receive the results. Finally, we would like to add the
option for execution results to be produced in a modern, portable data format
like XML or JSON.

The NemoLib library can be accessed at https://github.com/drewandersen/
nemolib.

https://github.com/drewandersen/nemolib
https://github.com/drewandersen/nemolib
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Abstract. Long non-coding RNAs (lncRNAs), each with >200 nucleotides in
length, constitute a large portion of the human transcriptome. Although recent
studies indicate that lncRNAs play key roles in gene regulation, development
and disease, the RNA functional motifs are still poorly understood. Most of the
existing algorithms for motif finding are severely limited in scalability with
regards to sequence and motif size. In this study, we propose a novel genetic
algorithm for discriminative motif identification capable of handling large input
sequences and motif sizes by utilizing genetic operators to learn and evolve in
response to the input sequences. We utilize our method on long non-coding
RNA (lncRNA) transcripts as a test case to identify functional motifs associated
with subcellular localization. Our methodology shows high accuracy and the
ability to identify functional motifs associated with subcellular localization in
lncRNAs, which recapitulates a previous experimental study.

Keywords: Genetic algorithm � Pattern discovery � Functional motif �
LncRNA

1 Introduction

The identification and subsequent functional annotation of short reoccurring motifs
within molecular sequences has been integral for the field of genetics. Generally, the
first step regarding functional annotation of a novel protein or RNA sequence is the
identification of known functional motifs within the primary sequence. Once identified,
these motifs allow the functional inference of the previously uncharacterized sequence.
Initially, functional motifs were identified assuming a random uniform background
nucleotide model, however the nucleotides within a gene have structure; therefore, the
utilization of real sequences as a background set is advantageous. The use of a positive
and negative sequence set is known as discriminative motif identification. Popular
algorithms for discriminative motif discovery include discriminative regular expression
motif elicitation (DREME) [1]. However, the DREME algorithm suggests input
sequences are less than 500 nucleotides and that the motif width is less than or equal to
8 nucleotides.

Recently, tens of thousands of long non-coding RNAs (lncRNAs) have been dis-
covered in primates, the vast majority of which are functionally uncharacterized.
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LncRNAs are poorly conserved across species and can perform a myriad of diverse
functions, adding to the complexity of their functional annotation. Unlike mRNAs,
lncRNAs can localize in many different places within the cell, which can provide
insights into their functionality. Localization motifs have been identified in lncRNA
transcripts which regulate subcellular localization. Thus it may be possible to identify
motifs within lncRNA transcripts, genome-wide, associated with subcellular localiza-
tion, providing a valuable first step in the functional annotation of human lncRNAs.
One method to do this would be to identify two distinct sets of lncRNAs, one enriched
in the cytoplasm and the other enriched in the nucleus, followed by finding motifs
overrepresented in one set of transcripts but not the other. However, there are tens of
thousands of human lncRNAs, which have a median transcript length of 592 bp and
could possibly contain long functional motifs [2]. Due to these issues and limitations,
previous approaches are unsuitable for our purposes of the identification of functional
motifs in full length lncRNAs genome-wide.

Genetic algorithms, which mimic biological evolution to stochastically evolve a
population of solutions over time, for motif finding have been utilized previously, such
as MDGA [3]. MDGA represents a solution as a vector of indices which indicate the
starting position of the motif in each sequence and therefore fail to utilize all the
information present in a sequence, such as multiple motif occurrences. Furthermore, all
the methods mentioned previously were developed for the identification of transcrip-
tion factors binding sites, which are small motifs and are contained in very short
sequences, such as ChIP-Seq peaks (<100 nucleotides). We propose to create a novel
genetic algorithm (GA) for discriminative motif discovery to identify long functional
motifs in full-length lncRNA transcripts, a use-case previous methods are incapable of.

2 Proposed Approach

2.1 Representation and Population Initialization

We represent a solution as a position weight matrix (PWM) of length w, which is
therefore not dependent on the input sequence size. A fixed number of individuals is
initialized to create a population by creating randomized PWMs utilizing the conjugate
Dirichlet distribution.

2.2 Fitness

The fitness function must identify similar sequence motifs in the positive set which are
underrepresented in the negative set. A useful metric for the identification of infor-
mative similar sequences is the information content (IC), the total information content
of a PWM M is as follows [4].

IC Mð Þ ¼
Xw

i¼1

X
b2 A;C;G;Tf g Mbi log2

Mbi

pb
ð1Þ
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Where W is the motif width, Mbi is the frequency of nucleotide b of column i and pb is
the background probability of nucleotide b. We chose to augment this popular metric to
incorporate our goal of minimizing the matches of the PWM in the negative sequence
set. We define the fitness score to be the information content of the PWM divided by
the total matches of the PWM in a small random subset S�b of negative set S�.

Fitness ¼ ICðMÞP
S2S�

b

rMðSÞ
jS�

b
j

 ! ð2Þ

Where rM(S) equals the match score of motif M in sequence set S and S�b
��� ��� is the total

sequence length scanned, used as a normalization factor. Using a sliding-window
across each sequence we calculate a score as the log-likelihood PWM score divided by
the maximal PWM score.

2.3 Selection

During each iteration, selection occurs to determine which solutions survive into the
next generation. A solution’s probability of survival is approximately proportional to
their fitness score. Linear-rank selection then occurs with replacement to generate a
new population of solutions.

2.4 Crossover and Mutation

Crossover occurs by randomly selecting two parent individuals which are then
recombined to create two novel children solutions. Therefore, crossover allows the
recombination of solutions to further explore the solution space. To avoid the positional
bias of the traditionally used 1-point crossover, we chose to utilize random uniform
crossover. In random uniform crossover, we randomly choose a crossover number
c between (1: w − 1), then we randomly select c columns of the parental solution
PWMs to be switched. The resulting children solutions then replace the initial parental
solutions used for crossover.

Mutation occurs by randomly selecting solutions which are then altered stochas-
tically to allow further exploration of the search space, thereby avoiding local maxima.
For each solution M selected for mutation, we randomly select a fixed proportion b of
the positive sequence set S+, then we score the solution across all possible windows of
the sequences in Sþ

b . Based on the maximal scoring position of M in each sequence of

Sþ
b we then update the PWM to form M’ using the alignment of the selected positions.

2.5 Implementation

The program was implemented in the R statistical language utilizing the framework
from the R package GA [5, 6]. The pseudo-code is as follows:
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1. Set Input Parameters: 
S = Full sequence set ordered by positive/negative 
W = Motif Width; P = Population size; i = 0 
R = Number of generations to terminate if best solution not improved 

2. INITIALIZE Population: Randomly create P PWMs 
3. Fitness EVALUATION:  BEST = max(Fitness(P))
4. Genetic Operators: While (i < R)  

ELITISM: Save top 5% of fittest solutions for next generation 
SELECTION: Linear-rank selection to create new P
Random uniform CROSSOVER of random subset of P
MUTATE random subset of P
Evaluate fitness of new P
TERMINATION: If ( max(fitness(P)) == BEST) { 

i = i +1 } else { 
 BEST = max(Fitness(P))

i = 0 }  

3 Results

To evaluate our genetic algorithm (GA) we first begin with synthetic data in order to
obtain complete control over the sequence attributes. We created a set Sþ of 100
independent and identically distributed sequences over a range of lengths with a single
randomly implanted motif of length 15, each with 3 random mutations per sequence.
Our negative sequence set S� is simply a dinucleotide shuffle of Sþ . To assess the
sensitivity of the GA we evaluate its performance over a large range of different
sequence lengths N, because as N increases the noise to signal ratio increases (Fig. 1).

Fig. 1. Motif identification accuracy.
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Motif similarity is represented by the log-likelihood PWM score divided by the
maximal log-likelihood PWM score, averaged over 11 trials for each of the different
sequence lengths. The red line is the threshold for a significant match as defined by
Hansen [7].

3.1 Differentially Localized LncRNAs

Lastly, we wanted to identify possible functional motifs in lncRNAs which are dif-
ferentially localized within the cell. For this test case we used published results from
which lncRNA transcript abundances were quantified from fractionated cellular com-
partments, either from the nucleus or the cytoplasm [2]. We extracted the sequences for
all lncRNAs quantified between the nuclear and cytoplasmic fractions, using sequences
enriched in the nucleus as our positive sequence set and the cytoplasmic lncRNAs as
the negative set. This data resulted in a set of 1749 lncRNA transcripts with a total
sequence length of 2.42 megabases, of which 981 sequences are enriched in the nucleus
while 768 are enriched in the cytoplasm. Using the nuclear transcripts as our positive
set and the cytoplasmic transcripts as our negative set we ran the GA on this large
dataset to identify 14-mers associated with subcellular localization (Fig. 2).

Notably, the best motif identified contains a core pentamer RNA motif previously
identified to dictate nuclear localization of lncRNAs [8]. The pentamer RNA sequence
motif was found to be AGCCC with the restriction sites of (G or C) at −3 and (T or A)
at −8, which the motif we identified contains all of, except the −8 restriction site [8].
Next, we calculated the total matches of the identified motif in each sequence
set, finding 3,133 instances of the motif in the nuclear set and only 1,871 in the
negative set. Furthermore, the counts of this motif in each lncRNA shows a small yet
significant correlation with the nuclear/cytoplasm FPKM ratio (Pearson’s Correlation
Coefficient = 0.14, p-value = 4.31 � 10−9).

Fig. 2. Motif found in nuclear enriched lncRNAs. The output of the genetic algorithm ran with
the nuclear enriched lncRNA transcripts as the positive set and the cytoplasmic lncRNAs as the
negative set. The first plot shows the fitness per generation. The second figure is the sequence
logo of the best motif found.
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4 Conclusion

Based on our preliminary observations we have shown that our genetic algorithm is
capable of identifying discriminative motifs in large sequence sets, such as sequence
sets containing thousands of lncRNA transcripts. We demonstrated that our algorithm
can achieve high accuracy in synthetic tests despite a high noise to signal ratio. In
addition, utilizing entire lncRNA transcripts derived from the transcript quantification
of fractionated cells we have identified a motif enriched in nuclear transcripts.
Remarkably, the motif identified recapitulates an experimentally identified lncRNA
localization motif identified in an independent study [8]. The counts of this motif in the
lncRNA transcripts also shows a significant positive correlation with subcellular
localization. This preliminary work shows that it is possible to computationally identify
functional motifs in previously uncharacterized lncRNAs.

Our method is capable of handling large input sequence sets as well as identifying
arbitrarily large motifs. In addition, to speed up the motif identification process over a
range of motif widths, solutions from the final population can be used as a seed
population for identifying motifs of size w + 1. This procedure can be done iteratively
and will speed up the motif identification procedure because the initial population will
already contain informative seed motifs to be expanded upon. Furthermore, the genetic
algorithm framework could likely be improved upon through augmentation of the
genetic operators.
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Abstract. The most commonly used anticancer treatments include
DNA-targeted, genome specific drugs such as topoisomerase inhibitors.
Unfortunately, many patients do not respond to these cytotoxic drugs
since it is not yet possible to identify genomic parameters for response or
non-response. Understanding genomic networks which determine treat-
ment response is thus a cornerstone to effective use of DNA-targeted
drugs. Large cancer cell line databases with extensive genomic and drug
response information provide opportunities to examine these networks
and recover genomic determinants for response to DNA-targeted drugs.
We utilize a novel data fusion framework based on Laplacian eigenmap
embeddings to identify potential response determinants to the topoiso-
merase inhibitor Topotecan.

1 Background

Genomic analysis is required for precise medicine to find the right drug for the
right patient. In order to do this accurately, one must integrate terabytes of data
over dozens of databases, filled with data of varying quality and content.

Cancer cell line databases have collected data on over 1,300 cell lines rep-
resenting the broad spectrum of human cancers. Specifically, there is extensive
analysis of genomic and drug response data on the cell lines in the National Can-
cer Institute (NCI-60) database and the Broad Institute Cancer Therapeutics
Response Portal (CTRP) database [1,13].

Topoisomerase inhibitors are among the most effective and widely used anti-
cancer drugs, and in spite of known molecular pathways for DNA repair, it is
not currently possible to predict how cells respond to these DNA-targeted drugs
[10]. Using standard statistical tools, the Pommier laboratory (LMP) of the
NCI Developmental Therapeutics Branch (NCI-DTB) discovered new factors to
determine topoisomerase inhibitor response from databases based on the NCI-60
[1,14,16]. These include previously unsuspected response determinants like the
putative helicase SLFN11 [15,16].

The NCI-DTB uses CellMiner web-based suites to build prediction functions
from these response determinants based on the elastic net regression algorithm,
which was applied previously for drug response prediction for other databases
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[8,9,12]. Elastic net is a linear regression model which adds a quadratic penalty
to the loss function from LASSO regression. An issue with this method though is
that highly correlated response determinants, such as genes that are co-expressed,
can be swapped to obtain different predictive models which are very similar in pre-
dictive performance.

Thus, the goal of this work is to find novel response determinants to topoiso-
merase inhibitors in a method independent of features selected by elastic net. In
particular, we shall use a nonlinear feature selection model to avoid the aforemen-
tioned problem with a variety of equivalent predictive functions. The features
to be selected are among the cell line database information which gives gene
expression values indicating log2 probe intensity using the Affymetrix HG U133
Plus 2.0 Microarray platform [13]. The main databases considered, NCI-60 and
CTRP, have drug response and gene expression information for the cell lines, so
the feature selection method must appropriately integrate the two types of data.
Our approach will attempt this by examining the expression of genes on cell
lines that are particularly sensitive or resistant to the topoisomerase inhibitor
Topotecan.

2 Method

The goal is to utilize a nonlinear feature selection and data integration, or data
fusion, to find predictive response determinants. To do this, we reformulate the
problem from a mathematical perspective: given a data set which is expressed in
two different modalities, find a similarity metric and elements of the set whose
expressions differ beyond an appropriate threshold.

We start with a data set X of size |X| = m that is expressed in two modalities
a and b, which we represent with data matrices A ∈ IRm×n and B ∈ IRm×p,
respectively. For a data point x ∈ X, let A(x) denote its expression in modality
a and similarly for B(x). In general, n is not equal to p, which makes naive
comparison of n-dimensional A(x) and p-dimensional B(x) difficult.

Our method uses three main steps: embed the data matrices onto feature
manifolds, create a joint representational feature space, and use a stable pre-
image mapping to facilitate comparison.

2.1 Manifold Learning Data Representation for Biological
Process-Based Feature Selection

Laplacian eigenmaps (LE) is a nonlinear topology-preserving transformation
technique that is designed to embed data onto a manifold based on local neigh-
borhoods of data points [3]. We use LE to transform the data set X into two
feature spaces Γa and Γb which capture intrinsic information of X based on the
modalities a and b. The mappings are given by φa : X → Γa and φb : X → Γb,
where ma = dim(Γa) and mb = dim(Γb) are chosen to be greater than n and p,
respectively, to avoid unnecessary loss of information due to dimension reduction.
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2.2 Data Fusion Through Joint Feature Space Representation

The embedded points in Γa are now of the form φa(x) =
(
φi
a(x)

)ma

i=1
, with a

similar form for points in Γb. At this step, we can embed the points in Γa into Γb

using the Coifman-Hirn rotation operator Oab. For a data point x ∈ X, Oab(x)
is given by

Oab(x) = (
ma∑

i=1

xi〈φi
a, φ

j
b〉)mb

j=1,

where xi = φi
a(x). Now, each data point in X is represented by two points in

Γb, one for each modality. This technique, matching features using a spectral
rotation in the feature space, has been used previously for heterogeneous image
data [2,4,6,7].

2.3 Inverse Mapping for Finding Potential Response Determinants

LE is a nonlinear, continuous embedding of points in Euclidean space into a
smooth manifold, so finding pre-images of points is highly non-trivial, especially
when the points are not in the convex hull of the training points used to form
the manifold. Alexander Cloninger, Wojciech Czaja, and Timothy Doster solve
this issue by developing a fast and accurate pre-imaging algorithm for LE which
exploits the sparsity of certain matrices constructed in the LE process [5]. By

Let φ̃b : Γb → IRp denote this approximate pre-image, and let y = Oab(x) for
a data point x ∈ X. Then B(x) and φ̃b(y) are both data vector representations in
IRp of the same point x which can be easily compared using a preferred norm. We
denote the data matrix of these pre-image points as Ã ∈ IRm×p. An advantage
of comparing points in the original space IRp as opposed to comparing in the
representational feature space Γb is that qualitative meanings of points in the
original space may change in the feature space.

This entire process is symmetric in modalities a and b, providing a multitude
of options for comparing points.

3 Preliminary Results and Future Work

The CTRP dataset we used contains 1283 genes expressed over the 792 cell lines
that have response data for Topotecan. The genes chosen are known to have
broad relevance to cancer and pharmacology. They were also filtered such that
the upper quartile gene expression across cell lines was over 5 and the range of
gene expressions across cell lines was over 2. This curation is for three reasons:
lowly expressed genes may not affect the cell in substantive ways, genes with low
variability are not reliable response determinants, and the pre-image mapping
uses an optimization technique which is sensitive to very small values. Let G be
the set of these genes.

The cell lines were subsetted and classified by having Topotecan responses
2 standard deviations above and below the mean response, creating a set of
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13 resistant cell lines and a set of 18 sensitive cell lines, respectively. We represent
gene expression along resistant and sensitive cell lines as data matrices R ∈
IR1283×13 and S ∈ IR1283×18, respectively. Within the context of the feature
selection algorithm, sensitivity and resistance to Topotecan are the modalities
over which G is described.

We then obtain LE embeddings φr(G) and φs(G), where mr = ms = 40
was chosen for computational ease. Following the rest of the algorithm twice,
embedding Γr into Γs and vice versa, we obtain two additional data matrices:

R̃ = φ̃r ◦ Osr ◦ φs(G) ∈ IR1283×18

and
S̃ = φ̃s ◦ Ors ◦ φr(G) ∈ IR1283×13.

We then computed the match distances for each gene g ∈ G, given by
dr(g) =

∥
∥
∥S̃(g) − R(g)

∥
∥
∥
2

and ds(g) =
∥
∥
∥R̃(g) − S(g)

∥
∥
∥
2
. Let δr, δs be the mean

plus 1 standard deviations of the sets dr(G) and ds(G), respectively. Poten-
tial response determinants were thus elements of the set G′ = {g ∈ G|dr(g) >
δr and ds(g) > δs}.

G′ contains 38 genes and includes SLFN11, which was previously discovered
to be a response determinant using statistical methods and then further val-
idated. This provides a promising start toward finding response determinants
with low ambiguity that give more accurate predictive models (Fig. 1).

Fig. 1. A heatmap view of drug activity and gene expression data for 200 CTRP cell
lines with the most extreme responses to Topotecan. Higher and lower values are repre-
sented by red and green, respectively. The LASSO-derived regression model augments
the predictive capacity of SLFN11 expression, with a (10-fold cross-validation) pre-
dicted vs. observed drug response value Pearson’s correlation of 0.67, versus r = 0.45
for SLFN11 alone. (Color figure online)

We plan on repeating this method on DNA-targeted drugs such as MK-1775
and the PARP inhibitor Olaparib. Eventually, we aim to make the entire data
integration paradigm more robust by examining other operators on the feature
spaces and other nonlinear embeddings based on data-dependent graphs.
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Abstract. Intra-host genetic diversity of hepatitis C virus (HCV) plays
crucial role in disease progression and treatment outcome. Development
of new treatment strategies, generation and validation of new biomedical
hypothesis, development of algorithms and models for analysis of viral
data and understanding of viral evolution require studying of thousands
of intra-host viral populations. Since such amounts of experimental data
are not readily available, simulated data are required. However, to the
best of our knowledge, currently, there is no a general framework for gen-
eration of realistic intra-host HCV populations, which takes into account
complex interactions between virus and host, impact of dynamic selec-
tion pressures and statistical effects, such as bottleneck and genetic drift.

In this paper, we propose a general framework for agent-based simula-
tion of intra-host evolution of HCV quasispecies, which takes into account
aforementioned factors. We performed a series of simulations and com-
pared properties of simulated populations with corresponding properties
of populations reconstructed from sequencing reads. Main population
properties used here are positional k-mer entropy and hamming distances
between variants within the population. Our simulations showed that
presence of immune response lead to decrease of relative k-entropy and
increase of standard deviation of hamming distances moving it closed to
values observed in chronically infected patients.

1 Introduction

Intra-host viral evolution is a subject of great interest in epidemiology. Under-
standing of molecular mechanisms of immune escape and drug resistance is
very important for devising successful public health interventions to control
infections. Next-generation sequencinng revealed existence of numerous closely
related genetic variants (quasispecies) of viruses in each infected host. The under-
laying mechanisms defining the structure of intra-host viral populations are not
clear and, to our knowledge, there are no models for realistic simulation of such
structures.

In this paper, we propose the first agent-based simulation of intra-host
viral evolution, which accounts for random mutations, immune response and
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immune cross-reactivity. In order to validate the proposed model and sim-
ulations, the simulated viral populations are compared with experimentally
obtained sequences of intra-host viral populations as well as with randomized
sequences. Our comparisons consider divergence, diversity and titer dynamics as
well as entropy and hamming distance distributions.

The next section proposes a model of intra-host viral evolution and immune
response. Experimental sequence data sets and validation results are discussed
in the last section.

2 Model

The proposed simplified model (Fig. 1) consists of HCV virions, T-cells, and anti-
bodies in the host blood, and liver cells (hepatocytes), which can be infected by
virions or killed by T-cells. The model has two main components: viral infection
and immune system.

Viral Infection
HCV infection is modeled using 2 components: set of virions in the blood (i.e. set
of viral variants with counts), and set of infected liver cells. Virion is an instance
of a viral variant in the host’s blood. It consists of RNA (DNA) molecule, capsid,
and lipids. Viral variant v is a class of virions sharing the same RNA (DNA)
sequence. Variant count q(v) is a number of virions for a given variant v. B is
a set of viral variants (with variant counts) in the host’s blood. Virions in the
blood can infect healthy liver cells and infected liver cells produce new virions
to the blood.

Immune System
In the proposed model immune system consists of B-cells, T-cells, and anti-
bodies. Any virion in the blood can activate B-cell to produce antibody. The

Blood
Liver

T

B

P

T-cell

Plasma cell

B-cell

Virion

Healthy cell

Infected cell

An body 

Fig. 1. Model components and their interaction. Virions and plasma cells are in blood.
Host’s liver cells (hepatocytes) can be infected or uninfected. Antibodies produced by
B-cells neutralize virus. T-cells can attack and kill infected cells.
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corresponding viral variant after delay will be added to the set of viral variants
targeted by antibodies AB. T-cells can attack infected liver cells and kill them.

Simulation Procedure
Simulation requires an initial founder sequence, simulation time T , and other
optional parameters. For initialization, program creates a virion using a founder
sequence. After that it repeats following three steps T times. On the step one
each live virion in the blood is either dies with probability dvb, or activates B-
cell with probability pbc, or with probability pc randomly infects a host’s cell
if it is uninfected, or stays in blood otherwise. If a virion interacts with B-cell,
the process of antibody production is activated after d iterations. At the second
step, each host’s infected cell with the probability dci is either eliminated by
immune system and replaced with a healthy cell, or produces a new sequence
with mutation rate µ and releases new virion to the blood. At the third step,
each active antibody eliminates virions with the probability pab, which depends
on the number of sequences targeted by other active antibodies within a single
mutation from the specific sequence targeted by that antibody. Thus the model
contains the simple implementation of cross-immunoreactivity.

3 Results and Discussion

Viral quasispecies populations simulated by the proposed tool were compared
with the experimental HCV data obtained from acutely and chronically infected
individuals [1,2]. For all experimental samples, HCV HVR1 and NS5A regions
were sequenced using 454 GS Junior System (454 Life Sciences, Branford, CT)
or End-point limiting-dilution real-time PCR [3]. Below we analyze evolution
and structure of simulated and experimental viral populations.

Viral Population Dynamics. We estimated the dynamics of simulated intra-
host viral population divergence (the average distance between variants existing
at a given time and the founder variant), nucleotide diversity [4] and number
of virions in the blood (Fig. 2). The divergence and diversity steadily grow over
time, which agrees with the observed dynamics of these parameters during first
several years of infection for individuals chronically infected with HCV [2]. The
dynamic of viral concentration in the blood suggests rapid expansion during the
early stage of infection followed by the rapid decline after seroconversion and
consecutive oscillatory slow growth or steady average size. Similar behavior is
observed for real data [2].

Viral Population Structure at a Given Time. The viral population struc-
ture is shaped by selection and epistasis [5]. We measure their effect by compar-
ing the observed population with population of randomized variants preserving
allele structure but having erased epistasis and reduced effects of selection. The
randomized variants are generated by independent random shuffling of states in
each position. We measure diversity of viral variants by k-entropy which takes
into account frequency and number of different viral variants as well as the stan-
dard deviation of the distribution of pairwise distances between viral variants.
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Fig. 2. Diversity, divergence, and number of virions over time in simulation.

We define k-entropy as follows. For each k sequential positions (k-mer) start-
ing with position i we count the k-mer entropy

ei =
∑

h∈H

−fi(h)log2(fi(h))

where h is a k-mer starting from the i-th position, H is set of all distinct k-mers
and fi(h) is relative frequency of k-mer h. The k-entropy is the average of k-mer
entropies over all positions.

Table 1. Median values of ratio Rd for k = 2, 10 and ratio Rd. Datasets include 3
types of simulations: without immune response, with immune response but without
cross-immunoreactivity, and with immune response and cross-immunoreactivity, and 2
types of real datasets: recently infected hosts and chronically infected hosts.

Datasets Median Re (k=2) Median Re (k=10) Median Rd

Simulated No immune response 1.004 1.008 0.565

No cross-immunoreactivity 0.987 0.883 0.955

Cross-immunoreactivity 0.986 0.875 0.939

Real Recently infected hosts 0.987 0.961 0.927

Chronically infected hosts 0.907 0.642 2.185
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The Table 1 reports the relative k-entropy, i.e., the ratio Re between k-
entropies for simulated/real populations and corresponding randomized pop-
ulations for k = 2, 10.

Similarly, the relative standard deviation, i.e., the ratio Rd between standard
deviation of the pairs-distances distribution for simulated/real populations and
corresponding randomized populations also reported in Table 1.

Table 1 shows that intra-host HCV variants in recently infected hosts have
increased relative k-entropy and reduced relative standard deviation compared
with quasispecies in chronically infected hosts. In the simulated datasets we
observe that the lack of immune response leads to similarly increase of relative
k-entropy and reduction of the relative standard deviation. Even though the
cross-immunoreactivity is known to greatly affect viral evolution [6,7] our simu-
lations are not significantly affected by its presence. This may be caused by the
oversimplification of the existing model in which only closely related variants are
cross-immunoreactive.

The current simulation model also cannot bring together relative kentropies
and standard deviations of simulated and real datasets. We believe that incor-
poration of epistasis [5] in our model will erase this inconsistency.
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Abstract. Epidemiological dynamics of diseases, which may be transmitted
due to sexual behavior or injecting drug use, can vary across demographic,
socio-behavioral, and geographic population groups. Typically, studies model-
ing infection dissemination in such settings use simulated data and employ
simplified contact networks. Here, we demonstrate feasibility of simulating
HIV/HCV epidemics over a real-world contact network inferred using social
media mining. Such networks can lead to more realistic modeling of disease
transmission patterns in high-risk population than what is possible at the current
state-of-the-art. In particular, we studied how topological characteristics of
transmission networks are reflected by viral phylogenies.

1 Introduction

Diseases caused by RNA viruses such as HIV and hepatitis C virus (HCV), constitute
major causes of debilitation and mortality in the world. Amongst these, HCV alone
infects nearly 3% of the world population. In the USA, HCV infection is the most
common chronic blood-borne disease and one of the leading causes of liver failure. Since
2007 in the USA, HCV infection has exceeded the mortality from HIV infection [1].

Effective epidemiological modeling focused on measuring a disease and its dis-
semination among human populations is essential for designing successful public
health interventions. The design and implementation of such models is stymied by
multiple challenges for diseases whose etiological agents are RNA viruses. These
include:

• Genetic variability and nature of the etiological agent: High genetic heterogeneity
stemming from error-prone replication [2], is a distinguishing feature of RNA
viruses. Infected hosts hold reservoirs of genetically related variants (called
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quasispecies) whose diversity complicates understanding disease progression and
epidemic spread. HCV infection can be initially asymptomatic and lead to late-stage
clinical complications.

• Impact of human behavior: Injecting drug use and sexual behavior are established
risk factors for transmission of HCV and HIV [3, 4]. The transmission is facilitated
by sharing needles and other drug preparation equipment or by sexual behavior.
Unfortunately, addiction (in particular opioid addiction) has become a national
health crisis. It is estimated that each injection drug user is likely to infect about 20
other users within a short period of time [5].

• Limitations of molecular and epidemiological data gathering and analysis: In spite
of the advent of techniques such as Next-Generation Sequencing (NGS), which can
generate large quantities of viral genetic data, development of robust epidemio-
logical models based on biological sampling of viral variants is limited, owing to
complexity of molecular data. Moreover, traditional epidemiological data collection
techniques rely on explicit reporting of indicator-based data from patient records or
surveys. Such a methodology is limited in capturing all contextual details of
infected hosts, which is crucial for modeling transmission, and somewhat time-lags
in detection of infection spread during data collection/processing.

In this paper, we outline an approach for identifying at-risk communities and inter-
relationships that may exist therein based on information extracted from the social
media platform Twitter and simulate epidemics over these networks. It is well known
that human contact is one of the significant factors in the transmission of infectious
diseases [6]. In particular, for diseases caused by HIV and HCV, geographical
co-location, social ties, and high-risk behavior are especially crucial in disease trans-
mission. The proposed approach estimates these factors through the analysis of Twitter
microblogs. It should be noted a priori that social media signals may not directly reflect
factors that cause disease spread as personal health impediments. Especially, diseases
caused by HIV or HCV are rarely discussed openly in social media. However, the
(latent) causative factors are often reflected in online behavior and relationships.

Epidemiological dynamics of HIV and HCV infections can vary across demo-
graphic, socio-behavioral, and geographic population groups leading to different
infection patterns defined by structures of corresponding contact networks. Typically,
studies modeling infection dissemination employ simplified contact network models
[4]. We simulate epidemics over the contact network inferred by social media mining
and study how properties of that network translated into topologies of transmission
networks are reflected by viral phylogenies.

2 Method

Our approach consists of the following steps: (1) data sampling, identification of HCV,
HIV, and addiction-related informational handles and distinguishing these from han-
dles of users who follow these, (2) grouping users by their geo-locations, and (3) re-
lating users to each other so as to form a host network, which would underlie any
inferred transmission network. We briefly describe these steps in the following.
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User accounts on Twitter can be classified into a number of categories including
information handles, user accounts, organizational handles, celebrity handles. As there
may be any number of informational handles dedicated to HCV, HIV and drug
addiction, we use a content-driven classification tree to distinguish personal user
accounts from informational handles and then successively identify addiction/recovery
handles followed by HIV and finally HCV informational handles. That is, in this
classification tree a binary classification problem is solved at each level to identify the
corresponding account. Once we have identified personal user accounts, informational
HCV handle, informational HIV handles, and informational addiction/recovery handles
we expand the set of user related to these handles. Let UHCV denote the set of users who
follow HCV-related handles, UHIV be the set of users who follow HIV-related handles,
and UAR be the set of users who follow addiction/recovery-handles. Further, for a given
user u, let L(u) denote the set of users who are followed by u and F(u) be the set of
users who follow u. The aforementioned user sets are then expanded following Eq. (1).
In this equation the extension of the functions L(.) and F(.) to sets is straightforward.

Ui ¼ Ui [ LðUiÞ [FðUiÞ; i 2 HCV ;HIV ;ARf g ð1Þ

wðu; vÞ ¼ 1
m

Xm

i¼1

ui \ vi
ui [ vi

ð2Þ

Next, users are grouped by their geographic location. For this purpose, we use the
primary location specified in the user profile. Currently, we exclude users who do not
specify location information explicitly. Finally, we identify users who mutually follow
each other and term them friends. These users are represented using a weighted graph,
henceforth called the host network, where each node represents a user and each edge
connects friends. The weights on the edges indicate the extent of “closeness” between
the corresponding vertices with the assumption the closely related vertices are more
likely to facilitate infection transmission than those that are distantly related. The
weighting is accomplished using the Jaccard similarity of tweet content, descriptions
and mutual friends and followers of the corresponding two users based on Eq. (2). In
this equation, the index i enumerates the features used for determining the closeness of
vertices (users) u and v. We use a number of features that capture the similarity of the
tweet contents and the similarity of the social network of each user. Finally, the
connected components of the network are identified and network communities are
identified using the Louvain modularity detection algorithm [7].

The virus spread over the host network is simulated using SI model. The virus is
transmitted along each edge at a rate proportional to its similarity weight estimated
using Eq. (2). The simulation stops, when all vertices are infected. The epidemic
history is represented by a transmission tree, which is a rooted binary labeled tree with
leafs representing infected hosts and interior nodes representing transmission events: an
interior node with a label x and its children with labels x and y represent an infection of
a host y by a host x. Once a transmission tree is constructed, it is transformed into a
transmission network, which indicates who infected whom: the vertices of transmission
network are infected hosts, and the arcs connect hosts linked by transmission. We
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employ a strict molecular clock assumption, under which genetic distances between
viral strains sampled from infected hosts should be proportional to the time after
transmission event. Therefore, the distance between each pair of hosts is defined as the
doubled simulated time to their most recent common ancestor in the transmission tree.
We also assume that for each pair of hosts, the possible direction of transmission is
known (based on the diversity of intra-host viral populations [10]) and agrees with the
difference between infection times of these hosts. For each simulation, the weighted
adjacency matrix was used to construct phylogenetic trees using UPGMA, Complete,
and WPGMA linkage methods, as implemented in Matlab (MathWorks Inc., Natick).
For each phylogenetic tree, the labels of internal nodes were inferred using possible
directions of transmissions and the corresponding transmission network was built. The
transmission networks inferred from phylogenies were compared with the actual
transmission networks.

3 Results

We collected Twitter data collected over approximately two weeks focusing on HIV,
HCV, and addiction. We identified 1974 users in New York city (NYC) who followed
HIV/HCV/Addiction handles (Fig. 1, top row, left). We identified a subnetwork of 746
mutual followers, which contained one large connected component involving 689
users, with a diameter of 11 and average path length of 4.425. We identified 39 clusters
(henceforth termed communities) in this component (Fig. 1, top row, middle). The
communities which had at least 10 users were manually examined and were all found
to have distinct themes such as “HIV/Homosexuality”, “Drug Addiction”, “Epidemi-
ology”, “LGBT Advocacy”, and “Public Health”. Especially important in our problem
context was the identification of the HIV/Homosexuality community, which represents
an at-risk group (Fig. 1, top row, right). This community consisted of thirty male users
of which nineteen were found to have self-identified as homosexuals and four were
found to have self-identified as HIV positive.

Phylogenies do not accurately reflect the actual transmission history; our results
indicate that on average, transmission networks corresponding to phylogenetic trees
contain *26.6% of real transmission links and *25.7% of real transmission ancestries
(pairs of ancestor-descendant). Our results underline the observation that for trans-
mission history inference more specific methods are required, which rely on additional
data in the form of epidemiological information or network theory-based analysis
[8, 9]. However, phylogenies are much better in preserving more general properties of
transmission networks (Fig. 1, middle and bottom rows). The middle row in Fig. 1
shows the results of comparison of degree (left) and distance (right) distributions of real
and phylogeny-based transmission networks. As a measure of comparison, we used
p-value of Kolmogorov-Smirnov test. For degree distributions, average p-values for 3
linkage methods were 0.7184, 0.8368 and 0.6227 respectively, indicating the level of
confidence that degrees of both networks follow the same distribution. The distance
distribution is reflected by phylogenies less well: the average p-values were 0.4717,
0.1280 and 0.5126 respectively, with the hypothesis that distances of both networks
follow the same distribution being rejected at 5% level in 25.3% of cases. It is also
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worth noting, that complete linkage reflected the degree distributions better than the
other two methods, while being worse in reflecting distance distributions. The average
ratios of diameters of phylogeny-based and real transmission networks for 3 linkage
methods are 0.8095, 0.6406 and 0.8138, respectively. All 3 methods tend to under-
estimate the diameter, although the estimates from UPGMA and WPGMA stay rela-
tively close to 1. UPGMA and WPGMA also underestimate the value of s-metric [9],
while complete linkage significantly overestimates it (the average ratios were 0.7005,
3.3671 and 0.6890, respectively).

Fig. 1. Top row: (left) user network from NYC. (Middle) communities identified in the network
are shown in distinct colors. (Right) the HIV/Homosexuality community identified from the
social media data. Middle row: degree and distance distribution of transmission networks
reflected by phylogenies. Bottom row: diameter and s-metric reflected by phylogenies. (Color
figure online)
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4 Conclusions

In this paper, we have described techniques that allow simulating HIV/HCV epidemics
over a real-world contact network inferred using social media mining. The proposed
approach opens an opportunity for modeling context-sensitive aspects of human
behavior that can be crucial for understanding the epidemiological dynamics of dis-
eases caused by HIV or HCV. We have presented preliminary results that show how
information derived from social media can be used to create contact networks and
simulate the spread of diseases. Methods for gathering data from social media for use in
rigorous epidemiological modeling are currently at infancy; many outstanding chal-
lenges have yet to be studied in depth, including the design of sampling strategies,
dealing with the non-uniform and sparse nature of the data, modeling the epistemic
uncertainty in the data, and combining such evidence in existing models of disease
dynamics. However, social media also allows capture of data and relationships that can
be invaluable in modeling of disease spread. Preliminary results from our research,
including those presented in this paper, underline the potential of this new source of
information.
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