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Preface

A major objective of medical research is related to the development of improved
medication and implants. Due to the individual anatomy of each human being, the
research direction points more and more towards a patient specific medicine. This in
turn requires a better understanding of biological systems and of the performance of
implants in humans. In engineering disciplines the application of virtual process
design has originated many important innovations. Virtual modelling helps
understand and control processes. Furthermore, virtual testing is fast and flexible.
Hence, many new products can be efficiently designed and verified by numerical
approaches.

In recent years these concepts were successfully applied in the field of
biomedical technology. Based on the tremendous advances in medical imaging,
modern CAD systems, high-performance computing and new experimental test
devices, engineering can provide a refinement of implant design and lead to safer
products. Computational tools and methods can be applied to predicting the per-
formance of medical devices in virtual patients. Physical and animal testing pro-
cedures can be reduced by use of virtual prototyping of medical devices. These
advancements enhance medical decision processes in many areas of clinical
medicine.

In this book, scientists from different areas of medicine, engineering and natural
sciences are contributing to the above research areas and ideas. The book provides a
good overview of new mathematical models and computational simulations as well
as new experimental tests in the field of biomedical technology.

In the first part of the book the virtual environment is used in studying biological
systems at different scales and under multiphysics conditions. Modelling schemes
are applied to human brain tissue, blood perfusion and metabolism in the living
human, investigation on the effect of mutations on the spectrin molecules in red
blood cells and numerical strategies to model transdermal drug delivery systems.

The second part is devoted to modelling and computational approaches in the
field of cardiovascular medicine. The contributions start with an overview of cur-
rent methods and challenges in the field of vascular haemodynamics. This is fol-
lowed by new methods to accurately predict heart flow with contact between
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the leaflets, estimation of a suitable zero stress state in arterial fluid structure
interaction, solution strategies for stable partitioned fluid-structure interaction
simulations, methods for stable large eddy simulation of turbulence in cardiovas-
cular flow, a demonstration of the importance using non-Newtonian models in
specific hemodynamic cases, a multiscale modelling of artificial textile reinforced
heart valves, and new strategies to reduce the computational cost in fluid-structure
interaction modelling of haemodynamics. The part closes with a method to com-
putationally assess the rupture risk of abdominal aortic aneurysm.

A parameter study of biofilm growth based on experimental observations and
numerical test as well as a multiscale modelling approach to dental enamel are
contributions that face current challenges in dentistry.

The part related to orthopaedics starts with an overview of challenges in total hip
arthroplasty and is followed by a concept for a personalized orthopaedic trauma
surgery based on computational simulations.

The last part addresses otology and shows that an off-the-shelf pressure mea-
surement system can be successfully used for intrachochlear sound pressure
measurements. The second contribution is a user-specific method for the auditory
nerve activity, leading to a better understanding of the electrode nerve interface in
the case of cochlear implants.

All contributions highlight the state-of-the-art in biotechnology research and
thus provide an extensive overview of this subject.

Hannover, Germany Peter Wriggers
January 2017 Thomas Lenarz
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Part I
Biological Systems



Multiscale Aspects in the Multiphasic
Modelling of Human Brain Tissue

Wolfgang Ehlers and Arndt Wagner

Abstract The enormous microscopic complexity of the multicomponent brain-

tissue aggregate motivates the application of the well-known Theory of Porous

Media (TPM). Basically, a quaternary TPM-model is applied to brain tissue, cf.

Ehlers and Wagner, Comput Method Biomech Biomed Eng 18:861–879 (2015), [1].

Besides the model’s broad range of application, such as the simulation of brain-

tumour treatment, we focus in this article on a specific anatomical property of the

brain-tissue aggregate. Namely, its separated pore space which is concurrently per-

fused by two pore liquids. These are the blood in the blood-vessel system and the

interstitial fluid in the interstitial-fluid space. In this regard, the constitutive formu-

lation of evolving liquid saturations under certain loading conditions needs to be

found. In order to microscopically underlay and motivate such a macroscopic consti-

tutive relation within a thermodynamically consistent TPM approach, a microscopic

study of the interaction between the pore compartments is performed and discussed

in terms of scale-bridging aspects.

1 Introduction and Motivation

For various medical purposes regarding brain tissues, it could be of immense benefit

to use numerical simulations. The aim to simulate real applications on the length

scale of centimetres to metres requests a macroscopic modelling, for example, in

case of the simulation of a therapeutic infusion process within brain tissue during

brain-tumour treatment as it is shown in Fig. 1. Obviously, processes occurring on

the complex microscale have a certain impact on the overall behaviour and need

to be included. One example, on which we will focus in the present article, is the

stiffness of the blood vessel system in comparison to the surrounding tissue aggre-

gate (under physiological pressure conditions). This issue is still under controversial
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4 W. Ehlers and A. Wagner

Fig. 1 Simulation of a therapeutic infusion process within brain tissue during brain-tumour treat-

ment. The supplied domain of the brain hemisphere is displayed in green and the second-order

permeability tensors, governing the patient-specific anisotropic perfusion behaviour, are visualised

via ellipsoids in light blue on an exemplary cross section, cf. [3] for a comprehensive overview

discussion. Therefore, the purpose of this contribution is to perform within the

commercial finite-element (FE) software tool Abaqus
®

(Dassault Systèmes, Vélizy-

Villacoublay, France, cf. http://www.3ds.com) microscopic and locally single-phasic

computations of a representative elementary volume of the brain-tissue aggregate.

This allows for the assignment of microscopic material parameters for the individ-

ual components. In this regard, elastically deformable blood vessels, separating the

pore compartments, are assumed. Thus, the liquid with the higher pressure displaces

the liquid with the lower pressure. The subsequent geometrical evaluation of certain

adjusted pressure situations (applied as boundary conditions) within such a micro-

scopic model allow for a meaningful postulation of a macroscopic constitutive equa-

tion. Note in passing that the presented study of scale-bridging aspects differs from

a complete two-scale approach using the FE
2
-Method (where both the macroscopic

as well as the underlying microscopic structure are analysed with the finite-element

method, cf. [2] in terms of the TPM). The scale-bridging approach proposed here

rather proceeds from an one-time analysis of a specific process on the microstruc-

ture and a subsequent transfer to the macroscopic model obtaining a microscopically

underlaid constitutive equation.

http://www.3ds.com
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tissue cell

cell body interstitial fluid space

intracellular space
intravascular space

extravascular space

blood plasma

blood vessel
(capillary)

capillary membrane

blood cell
extracellular space

Fig. 2 Exemplary sketch of microscopic fluid spaces in brain tissues, according to [3]

2 Anatomic Elements of Human Brain Tissue

Amongst other things, brain tissue includes the components interstitial fluid and

blood, which are mobile in two basically separated pore compartments. In this

regard, the interstitial fluid is situated within the interstitial fluid space, whereas

the intravascular space contains the blood. Moreover, further tissue spaces are com-

monly distinguished, such as the intra- and extracellular space or the extravascular

space, cf. Fig. 2 for a qualitative sketch. In general, the capillary membrane (wall) is

highly selective and governs the passing of molecules from the intravascular to the

extravascular space. Thus, the so-called blood-brain barrier separates the individual

pore compartments.

The interstitial fluid typically occupies a volume fraction of 20% of the brain’s

bulk volume, cf. [4]. However, a variation between 15% and 30% is normal and even

may fall to 5% during global ischaemia. Typical values of the blood volume fraction

are in the range of approximately 3% for healthy tissues, cf. [4] based on, e.g., [5]. In

contrast, in tumour-affected domains, the blood amount may vary between 1% and

20%.

3 TPMModel of the Overall Brain-Tissue Aggregate

To provide a framework for the considerations in this paper, the basis of the macro-

scopic thermodynamically consistent drug-infusion model is briefly described in this

section. Using the TPM, a volumetrical averaging procedure (smearing) of the under-

lying microscopic structure over a representative elementary volume (REV) leads

to an idealised macroscopic model of superimposed and mutually interacting con-

stituents. For a detailed discussion of the model, the interested reader is referred to

the underlying articles of [1, 6, 7] and citations therein. Basically, the quaternary

TPM model includes four constituents. In particular, three immiscible constituents

are given by the solid skeleton 𝜑
S
, the blood 𝜑

B
and the overall interstitial fluid

𝜑
I
, where 𝜑

I
contains a dissolved miscible therapeutic solute 𝜑

D
. To account for the

local composition of the aggregate, scalar structure parameters, the volume fractions
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n𝛼 = dv𝛼
dv

, (1)

are introduced defined as the local ratios of the partial volume elements dv𝛼 with

respect to the volume element dv of the overall aggregate. Assuming fully saturated

conditions (no vacant space within the domain), the well-known saturation condition∑
𝛼
n𝛼 = nS + nB + nI = 1 is obtained. As was already mentioned, the pore liquids

are mobile in their individual pore compartments. Therefore, the volumetric amount

(saturation) of the blood

sB = 1 − sI = nB
1 − nS

(2)

is specified in relation to the overall pore space (porosity). The set of model equations

proceeds from the specific balance relations for multiphasic materials, cf., e.g., [8] or

[9], where preliminary assumptions are initially included, i. e. isothermal conditions,

materially incompressible constituents, negligible gravitational forces and accelera-

tion terms. Therefore, the governing balance relations are given by the momentum

balance (3)1 of the overall aggregate 𝜑, the volume balance (3)2 of 𝜑
B
, the volume

balance (3)3 of 𝜑
I

and the concentration balance (3)4 of 𝜑
D

, viz.:

div𝐓 = 𝟎 ,
(nB)′S + div(nB𝐰B) + nB div(𝐮S)′S = 0 ,
(nI)′S + div(nI𝐰I) + nI div(𝐮S)′S = 0 ,
nI(cDm)

′
S + cDm div(𝐮S)′S + div(nIcDm 𝐰D) + cDm div(nB𝐰B) = 0 .

(3)

Therein, the overall Cauchy stress 𝐓 in (3)1 can be derived for, e.g., finite and

anisotropic elastic deformation processes of the solid in combination with the overall

pore pressure as was described in [1]. The notion ( ⋅ )′S indicates the material time

derivative with respect to the solid motion. In terms of the volume fractions and

their temporal changes

nS = nS0S (det 𝐅S)
−1 and (nS)′S = − nS div (𝐮S)′S ,

nB = sB (1 − nS) and (nB)′S = (sB)′S (1 − nS) − sB(nS)′S ,
nI = 1 − nS − nB and (nI)′S = − (nS)′S − (nB)′S ,

(4)

it turns out that a constitutive relation for the blood’s saturation sB is required, since

the saturation condition is not sufficient to determine all volume fractions. Note in

passing that the temporal change (sB)′S is based on the chosen constitutive ansatz for

sB, cf. Sect. 4.2. In Eq. (4), the quantity nS0S denotes the initial solid volume fraction

and det 𝐅S is the determinant of the solid’s deformation gradient 𝐅S = 𝐈 + GradS𝐮S.

Therein, the operator GradS denotes the material gradient of 𝜑
S

with respect to its

reference position. Finally, the set of equations in (3) contains the seepage velocities

𝐰B, 𝐰I and 𝐰D which are described via
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nB 𝐰B = − 𝐊SB

𝜇BR ( grad pBR +
pdif .
sB

grad sB ) ,

nI 𝐰I = − 𝐊SI

𝜇IR grad pIR ,

nIcDm 𝐰D = −𝐃D grad cDm + nIcDm 𝐰I .

(5)

The perfusion of the solid skeleton by the mobile but separated pore liquids is con-

sidered by the permeability tensors 𝐊SB
and 𝐊SI

, whereas 𝐃D
is the diffusivity of the

therapeutic agent. Moreover, 𝜇
BR

and 𝜇
IR

are the effective shear viscosities of the

liquids. The pressure difference pdif . = pBR − pIR indicates the difference between

the individual pore-liquid pressures. Finally, the TPM model is solved for the pri-

mary variables solid displacement 𝐮S, effective pore-liquid pressures pBR, pIR and

therapeutic concentration cDm after inserting the constitutive relations into the set

of equations given in (3). With regard to the corresponding numerical solution of

the coupled system of partial differential equations using the research code Pandas

(Porous media Adaptive Nonlinear finite element solver based on Differential Alge-

braic Systems, cf. http://www.get-pandas.com), the Bubnov-Galerkin mixed FEM is

applied as shown in [3] for several numerical examples.

4 Microscopically Underlaid Macroscopic Constitutive
Relation

As was already mentioned, the TPM model includes two pore liquids. Therefore, a

constitutive equation to describe the division for the volume fractions is required,

since there is still no general agreement concerning the stiffness of the blood-vessel

system in comparison to the surrounding tissue aggregate. Therefore, the purpose

of this section is to perform a microscopic and locally singlephasic computation of

a representative elementary volume of the brain tissue aggregate. This is realised

using Abaqus and consequently allows for the assignment of microscopic material

parameters for the individual components. The evaluation of adjusted pressure sit-

uations within such a microscopic model allows for a meaningful foundation of the

developed macroscopic constitutive equation.

4.1 Microscopic Model Settings

In terms of a microscopic description, a tube-like geometry is considered for the

description of a single vascular vessel, cf. Fig. 3. In order to apply a pressure dif-

ference between the inside and the outside of a blood vessel, pdif . = pBR − pIR is

subjected at the inside of the blood-vessel wall, cf. Fig. 3a. For the sake of simplic-

ity, a linear elastic material behaviour is chosen. The corresponding parameters are

collected in Table 1. Due to the elastically deformable blood vessels, the liquid with
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vessel

Rin

Rout

pdif.

1

2

(a) (b)

Fig. 3 Boundary conditions on a single blood vessel (a) and meshed geometry (b) with an exem-

plary point at the inside (1) and the outside (2) of the vessel, respectively

Table 1 Collection of parameters for a single blood vessel and a REV

Quantity Value Reference/Remark

Blood vessel inner radius Rin 1.6 × 10−4 m [10]

Blood vessel outer radius Rout 2.6 × 10−4 m [10]

Edge length lREV of a single

REV

7.3 × 10−4 m Assumption to satisfy the initial

(physiologic) condition sB = 0.2
Poisson’s ratio 𝜇 0.48 For the cases (i) − (iii), according to [11]

Young’s modulus E 2792N/m
2

For the cases (i) and (ii), assumption of

soft vessel walls

Young’s modulus E 1.2 × 105 N/m
2

For case (iii), according to [12]

the higher pressure displaces the liquid with the lower pressure. In particular, three

different cases are studied:

∙ case (i): “soft” vessel walls under unconstrained conditions,

∙ case (ii): “soft” vessel walls under constrained conditions (cf. Sect. 4.1.1) and

∙ case (iii): “stiff” vessel walls under unconstrained conditions.

In these microscopic computations, the pressure difference is applied as a boundary

condition and the arising volume changes are geometrically evaluated in a subse-

quent step. To bridge from the microscopic to the macroscopic scale, many single

REV are arranged in a regular manner, cf. Fig. 4. In this regard, the edge length of

a single REV is chosen such that the initial saturation under zero pressure differ-

ence constitutes to sB = 0.2. Physically, a variation of the volume fractions within

a single REV requires an inflow (of the blood for a positive pressure difference) and

an outflow (of the interstitial fluid for a positive pressure difference) of the liquids.

This is provided by free-flow boundary conditions for both liquids in longitudinal

direction of the chosen blood-vessel orientation.
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Fig. 4 Exemplary sketch of the macroscopic overall aggregate composed of multiple REVs

4.1.1 Geometrical Evaluation

Within Abaqus, the displacement of each node of the FE grid is obtained by the

solution of the considered initial-boundary-value problems. Note in passing that an

analytical solution for the widening of a linear-elastic cylindrical shell under con-

stant internal pressure does exist, cf., e.g., [13], and corresponds to an unconstrained

microscopic computation. In a geometric evaluation, the deformation of the solid

vessel wall can be captured by the displacements of the nodal points under load-

ing conditions. However, the focus of this contribution lies on the evaluation of the

liquid’s saturations. In this regard, the geometrical evaluation of the arising volume

fractions in the unconstrained cases (i) and (iii), cf. Fig. 5a, is trivial, since the dis-

placements of the nodes 1 (located at the inside of the vessel wall) and 2 (cor-

responding point in radial direction at the outside, cf. Fig. 3) are known from the

computation and allow for the determination using basic geometrical relations. In

addition, the widening of a single vessel is at a certain state somehow constrained by

the surrounding vessels, which themselves wide in a similar manner, as it is sketched

in Fig. 5b. This is approximated by a linear pathway in the contact domain and a cir-

cular shape in the edges. For the sake of simplicity, a constant thickness t of the

blood vessel is assumed. Obviously, this represents a simplification, since (at least

in the case of mutual contact) a deformation of the vessel wall may occur. However,

this assumption allows a relatively simple evaluation of the arising volume fractions.

Then, the volume fractions can be computed for the constrained case (ii), viz.:

VB =
[
𝜋 (d − t)2 + 4 (d − t) (lREV − 2 d) + (lREV − 2 d)2

]
hREV ,

VI = (4 d2 − 𝜋 d2) hREV .
(6)

Therein, hREV is the height of the REV required to compute a volume. However,

hREV vanishes within the determination of the liquid’s volume fractions via

nB = VB

VREV
and nI = VI

VREV
(7)
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(a) (b)

Fig. 5 a Unconstrained vessel widening within the REV and b constrained vessel deformation

caused by interacting vessels

and, thus, has no influence. In conclusion, this allows for the evaluation of the liquid’s

saturations under applied pressure conditions. In particular, this is carried out for

typical pressure states and collected in Sect. 4.3.

4.2 Macroscopic Constitutive Relation

The aim to simulate bio-technical/engineering applications of human brain tissues

requires a thermodynamically consistent setting of the blood-saturation function in

the context of the TPM model. This is somehow comparable to the procedure within

unsaturated soil mechanics. Therein, the capillary pressure, defined as the difference

between the pressures of the non-wetting and the wetting fluids in a common pore

space is used to evaluate the saturations via capillary-pressure-saturation conditions,

cf., e.g., [14]. However, in the specific case of human brain tissue, the blood and

the interstitial fluid are not situated in the same pore compartment such that these

relations cannot be applied. Instead, further considerations are made here in order to

specify the blood saturation, while bearing the microscopic considerations in mind.

In general, the macroscopic constitutive equation should provide the flexibility to

capture several circumstances. For the case of sufficiently soft elastic arterial walls,

a mutually volumetrical interaction is induced by an upcoming pressure difference.

Therefore, a constitutively chosen ansatz for the Helmholtz free energy 𝜓
B

of the

blood constituent is postulated according to [1], viz.:

𝜓
B(sB) = �̃�

B

𝜌BR

(
(𝛽B + 1) ln (sB) + 1

sB
− ln (1 − sB)

)
+ �̃�

B
0 . (8)

Therein, �̃�
B

and 𝛽
B

denote material parameters, which allow via �̃�
B

for the adaption

of the pore-pressure difference to typical pressure values as they exist in the skull

and for the initial blood saturation via 𝛽
B
. Furthermore, �̃�

B
0 denotes the constant

reference potential (standard state potential). This approach satisfies the thermody-

namical restrictions and consequently yields a relation for the pressure difference
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Fig. 6 Thermodynamically

consistent constitutive

relation for the

blood-saturation function sB

pdif .(sB) = sB 𝜌BR
𝜕𝜓

B

𝜕sB
= �̃�

B
(

1 − 2 sB
sB (sB − 1)

+ 𝛽
B
)

,

where 𝜕𝜓
B

𝜕sB
= �̃�

B

𝜌BR

(
𝛽
B

sB
− 1

sB (sB − 1)
− 1

(sB)2

)

.

(9)

The inversion of (9) finally leads to the blood saturation function

sB(pdif .) = 1

2
( pdif .

�̃�B − 𝛽
B)

(
( pdif .

�̃�B − 𝛽
B − 2

)
+
√

4 +
(pdif .
�̃�B − 𝛽

B)2
)

.
(10)

It should be noted that Eq. (10) is found by rational investigations of a meaningful

inversion of (9), which is a second-order function in sB. The derived relation for the

blood saturation (10) allows for a proper determination of the volume fractions using

the relations in (4). To give an example, an equation satisfying typical initial volume

fractions of the brain tissue as well as typical pressure values as they exist in the skull

is adapted by 𝛽
B = 3.75 and �̃�

B = 200.0 N/m
2
, cf. Fig. 6. Physically, this leads to a

replacement of the interstitial fluid if the pressure difference pdif . is positive. Note in

passing that a constant value of nB0S = 0.05 yields an initial value of sB0S = 0.2 and,

as a result, pdif . = 0.

4.3 Results and Discussion

In this section, the evaluated results of the microscopic computation are compared

with the macroscopic constitutive approach. For the pressure in the vascular sys-

tem (cerebral blood pressure depending on its hierarchical position), the range in

the capillary bed varies between 10 mm of mercury (mmHg) (corresponds to 1333

N/m
2
) at the venous end and 30 mmHg (4000 N/m

2
) at the arterial end. Whereas

the interstitial-fluid pressure (tissue pressure) has a typical value of 6 mmHg (800
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Fig. 7 Comparison of different approaches for the blood-saturation function. Evaluated pres-

sure states from microscopic computations are displayed with diamonds which are connected with

dashed lines

N/m
2
). To capture such typical conditions, the adjusting blood saturation is evalu-

ated for pressure differences in the range of −500 N/m
2 ≤ pdif . ≤ 2000 N/m

2
. In

particular, the pressure difference is applied in steps of 500 N/m
2

with a subsequent

evaluation of the arising volume fractions according to Sect. 4.1.1. The evaluated

pressure states from the microscopic computations are then displayed with diamonds

and interpolated with dashed lines, cf. Fig. 7. The evaluation of case (i) (soft ves-

sel, unconstrained) yields to reasonable results in the pressure range of −500 N/m
2

≤ pdif . ≤ 1500 N/m
2
. However, for a further increase of the pressure difference, non-

physical results (i. e. a blood saturation greater than one) occur. This is caused by the

possibility of an unconstrained widening of the blood vessel. In contrast, in the case

(ii) (soft vessel, constrained) it is nicely identified that the microstructural compu-

tations yield comparable results in relation to the constitutively chosen pressure-

saturation relation (Sect. 4.2) in the domain of nearly fully blood saturated condi-

tions. Again, the constitutive formulation of the blood saturation function is not arbi-

trary but has to fulfil the thermodynamic restrictions discussed in Sect. 4.2. There-

fore, the pathway vary slightly from the graph of case (ii) obtained by microscopic

computations. However, this allows for a scale-bridging in terms of microscopic and

macroscopic material parameters. In the specific case (ii), the microscopic material

parameters, Young’s modulus E = 2792 N/m
2

and Poisson’s ratio 𝜇 = 0.48, of the

blood vessel wall correspond to the macroscopic material parameters �̃�
B = 200.0

N/m
2

and 𝛽
B = 3.75 of the constitutive function. Assuming a higher stiffness of

the vessel (corresponding to somehow realistic experimental values of the human

intracranial artery) in case (iii) yields within the considered pressure regime a nearly

constant blood saturation. This would justify to assume a constant blood-volume

fraction within macroscopic simulations.

In conclusion, a constitutive approach for the relation between the pressure differ-

ence pdif . of the liquids and the blood saturation sB was presented which satisfies both
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the thermodynamic consistence as well as physical conditions within human brain

tissue. Moreover, this macroscopic saturation condition was motivated and studied

by a microscopic computation of a representative microstructure using Abaqus and

a subsequent geometrical evaluation of the arising saturations under applied liquid

pressure conditions. With reliable experimental results, this would provide the pos-

sibility to identify the macroscopic material parameter of the constitutive function

based on the microscopic material parameter in terms of scale-bridging aspects.
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Simulation of Steatosis Zonation in Liver
Lobule—A Continuummechanical Bi-Scale,
Tri-Phasic, Multi-Component Approach

Tim Ricken, Navina Waschinsky and Daniel Werner

Abstract The human liver is an important metabolic organ which regulates metabo-

lism of the body in a complex time depending and non-linear coupled function-

perfusion-mechanism. Harmful microstructure failure strongly affects the viability

of the organ. The excessive accumulation of fat in the liver tissue, known as a fatty

liver, is one of the most common liver micro structure failures, especially in west-

ern countries. The growing fat has a high impact on the blood perfusion and thus

on the functionality of the organ. This interaction between perfusion, growth of fat

and functionality on the hepatic microcirculation is poorly understood and many

biological aspects of the liver are still subject of discussion. The presented compu-

tational model consists of a bi-scale, tri-phasic, multi-component approach based

on the theory of porous media. The model includes the stress and strain state of the

liver tissue, the transverse isotropic blood perfusion in the sinusoidal micro perfusion

system. Furthermore, we describe the glucose metabolism in a two-scale PDE-ODE

approach whereas the fat metabolism is included via phenomenological functions.

Different inflow boundary conditions are tested against the influence on fat deposi-

tion and zonation in the liver lobules. With this example we can discuss biological

assumptions and get a better understanding of the coupled function-perfusion ability

of the liver.

1 Introduction

For a realistic simulation of the liver behavior it is important to take into account

a detailed description of the biological processes. We present a bi-scale, tri-phasic,

continuum multi-component model simulating blood perfusion and metabolism in
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macroscopic structure mesoscopic structure microscopic structure

Fig. 1 Bi-scale approach; macroscopic structure: millimeter spatial resolution to observe the vas-

cular system from the in- and outflow of the liver to smaller and smaller branches of the vessels;

mesoscopic structure: micrometer spatial resolution to observe the perfusion through the sinusoids;

microscopic structure: biochemical description of the metabolism in the liver cells

the human liver based on the two-phasic approach, see Ricken et al. [13]. To get a

better understanding of the liver we start with a short physiological outline. For more

informations, see Hubscher et al. [8].

The liver is the main metabolic organ in the human body. Roughly, the structure

of the organ is segmented into four hepatic lobes of unequal size within the range

of centimeters; the main parts are the right lobe (lobus hepatic dexter) and left lobe

(lobus hepatis sinister). Each lobe consists of liver lobules which have the size of

about a few millimeters. They are hexagonally structured parts of the liver tissue, see

Fig. 1. Microscopic sized hepatocytes, the liver cells, are arranged in radial columns

embedded in the liver lobules. The hepatic vascular system is important for the blood

supply of the hepatocytes. For this, the vascular system consists of branches which

supply the organ from the macroscopic to microscopic anatomy of the liver. On the

macroscopic level branches of hepatic artery (oxygen rich) and portal vein (nutri-

ent rich) run together and supply the segments of the organ. Intrahepatic bile ducts

proceed together with the blood vessels and support the liver during detoxification

processes as the bile fluid is excreted with decomposed products. The microcircula-

tion takes place in the liver lobule. In each corner of the liver lobule a portal triad is

located which is composed of the three branches of hepatic artery, portal vein and

a bile duct in their smallest subdivision. The microcirculation is described by blood

vessels connecting the portal triad with the central vein which are called sinusoids.

The central vein drains the blood leading to a directed blood flow from the portal

triad to the central vein, see Fig. 1.

Under consideration of the physiological background it is unavoidable to classify

the liver in different scales to focus on scale depending processes.

We focus on a bi-scale approach; on the mesoscopic level we describe the blood

perfusion through the liver lobule and on the microscopic level the metabolism in

the cells.

The mesoscopic model is based on an ansatz for transverse isotropic permeabil-

ity relation describing the perfusion given in Ricken et al. [12]. Due to the complex
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in
su

lin

increase

decrease
ffaext

lacext

glcext

VHGU VGS

VLP

VGLY

FFA TG

additional hypothesis:

fat metabolism

reduced metabolic model:

glucose metabolism

Fig. 2 Metabolism: the biochemical reactions are described with the metabolites of external glu-

cose (glcext ), external lactate (lacext ), external FFA (f faext ), internal triglyceride (TG) and internal

glycogen (glyc). External components are included in the fluid phase whereas internal components

are included in the solid tissue of the liver. Triglyceride describes the fat phase in the liver. Reduced

metabolic model: the glucose pathways (VHGU), (VGS) and (VGLY) are modeled by sets of ordi-

nary differential equations. WithVHGU < 0: hepatic glucose production,VHGU > 0: hepatic glucose

utilization, VGLY < 0: gluconeogenesis, VGLY > 0: glycolysis, VGS < 0: glycogenolysis, VGS > 0:

glycogenesis. Additional hypothesis: the fatty acid pathway (VLP) is modeled by assumptions con-

cerning the uptake rate of FFA. With VLP > 0: lipogenesis and VLP < 0: lipolysis

vascular system of sinusoids it is impossible to model the numerous capillaries

with an accurate discrete geometrical description. Therefore we apply a homoge-

nized multiphase approach, based on the theory of porous media (TPM) which is

a convenient tool in order to describe complex, multi-phasic and porous materials;

see de Boer [2, 3] and Ehlers [5]. This approach includes the description of three

main phases, namely the liver tissue, fat tissue and blood vessels. Additionally to the

main phases, the homogenized liver lobule includes miscible components which are

important for the biochemical description of the metabolism. A description of the

mesoscopic model is given in the appendix.

We describe the biochemical processes on the microscopic scale of our model

as the metabolism takes place in the smallest parts of the liver tissue, the cells. The

liver is crucial for metabolites regulation of glucose and free fatty acid (FFA) due

to its ability to store glucose in form of internal glycogen and FFA as internal fat

deposition. The cells can switch between glucose and FFA deposition and utilization

depending on the requirements of the rest of the body. After ingestions, glucose and

FFA concentrations coming from the digestive system increase (hyperglycemia). The

liver cells start to deposit them as internal metabolites glycogen and triglyceride.

Whereas, during fasting times (hypoglycemia) the internal metabolites are served

as a backup system and can be used to increase the low concentration of external

metabolites. We summarize the metabolism in a set of ordinary differential equations

which consider the conditions of hyperglycemia and hypoglycemia and the relations

of the internal and external metabolites. The microscopic model approach is derived

from a detailed pharmacokinetic model of hepatic glucose metabolism, described in

König et al. [10]. We presented a reduced model for glucose metabolism in Ricken

et al. [13] and add a phenomenological approach for the fat metabolism (Fig. 2).
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2 Glucose and Fat Metabolism

The liver ensures biosynthetic metabolic pathways of immense complexity. In this

study we focus on the main metabolic pathway of glucose described by a simpli-

fied ordinary differential equation system. Furthermore, we add a phenomenological

approach for the fat metabolism.

Figure 2 summarizes the applied pathways for glucose and fat metabolism. The

main task of the liver is the maintenance of homeostasis for metabolites which

might be necessary for the organism. For this the liver regulates the glucose and fat

level in order to offer enough energy for the brain and muscles. The metabolites are

stored or utilized depending on hormone concentration levels. We distinguish two

conditions: the fed (hyperglycemia) and fasted state (hypoglycemia). During feed-

ing the organism is saturated of glucose and FFA leading to utilization of external

metabolites. Glycolysis and glycogenesis are two possible metabolic pathways of

glucose. The first metabolic pathway ensures the energy supply for cells and repro-

duction of lactate. The second describes energy storage in form of internal glycogen.

Lipogenesis is the fatty acid pathway describing the ester of FFA and glycerol to

triglyceride. The lipid accumulation is reinforced by high carbohydrate diets.

During the fasting state the organism utilizes hepatic glycogen, non-carbohydrate

carbon substrates and lipids. Gluconeogenesis is one pathway for the generation

of glucose. The utilization of certain non-carbohydrate carbon substrates provides

a balanced glucose level. Breaking down hepatic glycogen describes the second

mechanism to maintain glucose, namely glycogenolysis. The utilization of lipids is

part of the lipolysis pathway and the reverse of lipogenesis. Molecules of lipids are

hydrolyzed to glycerol and FFA.

For a realistic depiction of the liver functionalities, we take the above described

main metabolic pathways into account. We use a reduced metabolic model, which

has been derived from a detailed kinetic model of hepatic glucose metabolism, see

König et al. [10]. It fully represents the metabolic behavior of depletion and utiliza-

tion of glycogen. For further information see Ricken et al. [12, 13].

FFA play an important role in essential functions for the organism. They deliver

cells energy and are important constituents for esterifying lipids. For a homeostatic

circulation the organism can store, produce and consume FFA. This process is mainly

regulated in the liver by fat metabolism. Stored triglyceride in adipocytes and dietary

fat are sources, which ensure the availability of FFA in the liver. Beside the external

concentration we need to take important enzymes and insulin into account. Insulin

is a hormone which is distributed depending on the glucose concentration level in

blood. The task of insulin is to regulate glucose and fat metabolism, so the pathways

are coupled. Enzymes are responsible for hydrolysis of proteins, which bind FFA for

circulation in the blood plasma.

The effects of fatty acid metabolism are not part of the kinetic model. In the

following we present the assumptions concerning the FFA pathway. Equally to

the glucose metabolism we calculate the rates of changing concentrations for the

metabolites �̂�
𝛼𝛽

contributing in the FFA pathway. We apply the influencing factors
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Fig. 3 Insulin dependency �̂�
FFA
glc : uptake rate of FFA depending on the concentration of glucose
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Fig. 4 Threshold of external FFA concentration 0, 6 mmol/l which leads to a hypoglycemic con-

dition; 2a FFA dependency �̂�
FFA
ffa : uptake rate of FFA depending on the external FFA concentration.

3a fat dependency �̂�
FFA
nTG : uptake rate of FFA depending on the volume fraction of fat for a stable

computation

{
�̂�
FFA
glc ; �̂�FFAffa ; �̂�FFAnL ; �̂�FFAnTG

}
. The terms are postulated via the differential equation of

growth function with

�̂�
FFA
glc = exp−log(2)

glc3

glcTP3

�̂�
FFA
ffa = +∕−1 + exp−40∗ ((f fa − 0,6)∗ 2)4

�̂�
FFA
nL = − 1 ∗ exp−log(2)

(nL)3

0,153 + 1

�̂�
FFA
nTG = − 1 ∗ exp−log(2)

(nTG)3

0,23 + 1

(1)

We calculate the maximum uptake rate of FFA considering insulin influence

(�̂�
FFA
glc ) which couples the glucose metabolism to the fat metabolism, see Fig. 3.

Figure 4 summarizes the effects of hypoglycemic conditions which lead to
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Fig. 5 Threshold of external FFA concentration 0, 6 mmol/l which leads to b hyperglycemic con-

dition; 2b FFA dependency �̂�
FFA
ffa : uptake rate of FFA depending on the external FFA concentration.

3b fluid dependency �̂�
FFA
nL : uptake rate of FFA depending on the volume fraction of fluid for a stable

computation

production of FFA. The uptake rate (�̂�
FFA
ffa ) is positive as the organism needs more

FFA for energy supply. The hypoglycemic condition results in phase transition from

the fat phase to the fluid phase. To get a stable computation considering the satu-

ration condition we take the influencing factor (�̂�
FFA
nTG ) into account which steers an

excessive increase of fluid. However, Fig. 5 shows the impact during hyperglycemic

conditions. The uptake rate (�̂�
FFA
ffa ) is negative as the liver stores redundant FFA and

synthesizes lipids. In this case the fat phase gets additional mass and we steer an

excessive increase of fat with (�̂�
FFA
nL ).

The mass exchange must fulfill the restrictions of the entropy inequality (24); the

exchange can be summarized with

�̄�
TG𝛽 = �̄�

TG ∶=
[
�̂�
FFA
glc ; �̂�FFAffa ; �̂�FFAnL ; �̂�FFAnTG

]
. (2)

3 Numerical Example: Comparison of Different
Assumptions for the Perfusion Coupled
to the Metabolism

Many aspects of the liver are still subject of discussion. One example is the blood

supplying system of the hepatic microcirculation. In this case it is still uncertain how

the blood is emanating from the blood vessels into the liver lobule. One assump-

tion, defined by Rappaport in 1954 [11], assumes an idealized hexagonal lobule

which regards the portal triad as the ‘terminal portal venule’. This case regards

the blood supplying system of the microcirculation initiated at the corners of the

liver lobule, emanating from the portal triads. In a realistic framework, this point of

view is not rational and a different assumption has to be applied. For this case
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Fig. 6 Schematic sketch of

the feeding cycle showing

duration and typical patterns

of glycogen in a single

lobule during deposition and

depletion. Figure reproduced

from Babcock and

Cardell [1]

Rappaport described additional portal venules which are derived from the portal vein

and deliver the base of the liver lobule with inflowing blood. So the blood supplying

system of the microcirculation is located at the surface of the liver lobule.

To get a better understanding of the different approaches and the influence on the

metabolism, we simulate both hypotheses for the initial point of the microcirculation:

∙ Boundary-Model A: Idealized Case—Blood is emanating from the portal triad

∙ Boundary-Model B: Realistic Case—Blood is emanating from derived portal

venules

In the numerical example we compute the microperfusion in one liver lobule cou-

pled to the metabolism similar to Ricken et al. [13]. We evaluate the storage of inter-

nal glycogen deposition resulting from glucose metabolism analog to the experi-

ments performed by Babcock and Cardell. In [1], Babcock and Cardell evaluated the

glycogen storage during 24 h in one liver lobule after a feeding period (see Fig. 6).

Furthermore we analyze the results of the fat metabolism which accrues in the hepa-

tocytes (see Figs. 11–13).

We apply external boundary conditions for the glucose and FFA concentration

which are applied in the feeding artery after one meal in 24 h (see Fig. 7). Fur-

thermore we add external conditions for FFA. (cf. Stanhope et al. and Yuen et al.

[14, 16])

The boundary conditions focus on the two different assumptions (see Fig. 8) for

the initial point of the microcirculation (see Fig. 9). Additionally to the time depend-

ing DIRICHLET boundary conditions for the external concentration glucose and

FFA, which depend on the food intake (see Fig. 7), we apply constant DIRICHLET

boundary conditions for lactate at the inflow. As the blood flow is orientated in the

direction of the pressure gradient (transverse isotropic permeability relation, Ricken

et al. [13]) we apply a pressure difference between the inflow and the outflow with

constant values (see Fig. 10).
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Fig. 7 External boundary

conditions: glucose profile

corresponding to 2 h food

intake and 22 h fasting based

on 24 h profiles of plasma

glucose (red). Analog profile

for plasma FFA (blue).

Experimental data from

Stanhope et al. [14] and

Yuen et al. [16]. Evaluation

for numerical example after

6, 9 and 18 h
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Fig. 8 Depiction of the applied geometry and boundary conditions. a Boundary-Model A

b Boundary-Model B

3.1 Discussion

The simulation provides the evaluation of metabolites (see Figs. 11, 12, 13) resulting

from glucose and fat metabolism. On the one hand we focused on the

glucose pathway which depends on the external condition of blood glucose concen-

tration. During hyperglycemic conditions the external concentration is high resulting

in storage of glycogen. Whereas, a low glucose concentration encourages glycogen

depletion. On the other hand we evaluated the phenomenological approach of the

fat metabolism which leads to accumulation of fat depending on external blood FFA

concentration. Based on the assumption that fat metabolism is inhibited by the pres-

ence of insulin we can observe the coupling between glucose and fat metabolism.
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portal veinportal triad

portal venules

(b)(a)

Fig. 9 Different assumptions for the blood supplying system of the microscopic circulation.

a Boundary-Model A b Boundary-Model B

ModelA

ModelB

Fig. 10 Contour plot for the pressure distribution on the left hand side and velocity distribution

on the right hand side. Comparison of the two assumptions for the boundaries; Boundary-Model

A at top and Boundary-Model B beneath
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(a) 6 hours
glucose [mmol/l] glycogen [mmol/l] volume fraction of fat [-]

inflow
Model A

Model B

high glucose
metabolism activity

low fat
metabolis mactivity

Fig. 11 Contour plot for the partial distribution after 6 h. Comparison of the two assumptions for

the boundaries; Boundary-Model A at top and Boundary-Model B beneath

The main objective of this example is the comparison of the different boundary

conditions as shown in Fig. 9. Figure 10 shows the influence on the microcircula-

tion which results in a different velocity and pressure distribution. In the first case

we assume idealized boundary conditions with an inflow emanating from the por-

tal triad leading to a high pressure at the corners of the lobule. Based on the local

pressure-modulated remodeling approach we get a directed blood flow depending

on the gradient from the portal triad to the central vein. The velocity in between the

portal triads is almost zero. The second assumption results in a high pressure on the

lobule surface. The blood flow is directed from the surface to the center of the lob-

ule with continuous values on the surrounding. The superposition at the portal triad

leads to increased velocity. In conclusion the patterns of velocity are slightly twisted

(see Fig. 10).

The Figs. 11, 12 and 13 evaluate the distribution of external concentration glu-

cose, the deposition of glycogen and volume fraction of fat after 6, 9 and 18 h. The

metabolism depends on the availability of metabolites in the lobule. As the motion

of the external concentration is controlled by the blood flow, we can observe a higher

activity of the glucose metabolism in areas with reduced velocity (more availability

of metabolites). Hence, the different boundary conditions lead to slightly reversed

depositions of glycogen in the lobule analogue to the microcirculation. The results

of the experimental evaluation of the glycogen patterns in Fig. 6 are similar to the
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(b) 9 hours
glucose [mmol/l] glycogen [mmol/l] volume fraction of fat [-]

inflow
Model A

Model B

low fat
metabolism activity

Fig. 12 Contour plot for the partial distribution after 9 h. Comparison of the two assumptions for

the boundaries; Boundary-Model A at top and Boundary-Model B beneath

(c) 18 hours
glucose [mmol/l] glycogen [mmol/l] volume fraction of fat [-]

inflow
Model A

Model B

high glucose
metabolism activity

low fat
metabolism activity

Fig. 13 Contour plot for the partial distribution after 18 h. Comparison of the two assumptions for

the boundaries; Boundary-Model A at top and Boundary-Model B beneath
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simulation with the boundary-model B and correlate to the hypothesis that additional

venules support the microcirculation.

The development of the volume fraction of fat depends on the one hand on the

availability of FFA and on the other hand it is controlled by insulin. In conclusion, a

high activity of glucose metabolism leads to the release of insulin and the decrease of

fat synthesis. Both models result in a higher concentration of lipids at the inflow area,

the so called periportal zone of the liver lobule. This outcome is reasonable following

the statement of Hubscher et al. who say that the “hepatocytes in the periportal zone

have a higher capacity for [. . . ] fatty acid metabolism” (Chap. 1, page 12 [8]).

Although the simulation focuses only on the quantitative evaluation, it approxi-

mates the patterns of metabolites in good accordance. Furthermore we could demon-

strate that the metabolism including the phenomenological fat metabolism can be

modeled via a bi-scale, tri-phasic approach. In this extended example (cf. Ricken et

al. [13]) we show the influence of different boundary conditions and the importance

of the biological background. But further investigations are needed to validate the fat

metabolism and enlarge the applicability of the model to liver disease with growing

fat influencing the metabolism.

Appendix

Perfusion-Model with a Multi-phasic Approach

The perfusion of the blood through the liver lobules is an important part to depict

realistic descriptions for the viability of the organ. For that we use a homogenized

approach on the mesoscopic scale, see Fig. 14. We consider three phases: the liver

tissue 𝜑
𝐒
, fat tissue 𝜑

𝐓𝐆
and fluid phase 𝜑

𝐋
.

The phases are assumed as mutually immiscible materials 𝜑
𝛼𝛼𝛼

with a heteroge-

neous arrangement in the overall volume. Each phase consists of a carrier phase 𝜑
𝛼
,

namely a solvent, and small miscible microscopic components 𝜑
𝛼𝛽

, called solutes

in the solvent. The TPM is an approach, which is composed of the mixture theory

(Greve [7] and Hutter et al. [9]) and the concept of volume fractions (de Boer [2, 3]

and Ehlers [5]). The saturation condition completes the approach.

The overall structure is a mixture of all included components, so the whole body

𝜑 can be decomposed by

𝜑 =
𝜅∑

𝜶=1
𝜑
𝜶 ∶=

𝜅∑
𝛼=1

[
𝜈−1∑
𝛽=1

(𝜑𝛼𝛽) + 𝜑
𝛼]. (3)

To account the contribution of different phases we use the volume fraction n𝛼𝛼𝛼
expressed by the ratio of partial volume dv𝛼𝛼𝛼 to the overall mixture volume dv
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n𝛼𝛼𝛼 = dv𝛼𝛼𝛼

dv
. (4)

In view of the volume fractions, the saturations condition has to be fulfilled with

𝜅∑
𝜶=1

n𝛼𝛼𝛼 mit 𝜅 ∈ {S,TG,LS,TG,LS,TG,L} . (5)

For an effective connection between the mixture theory and the concept of volume

fractions we consider the density 𝜌
𝛼𝛼𝛼

with

m =
𝜅∑

𝜶=1
m𝜶 = ∫

Bs

𝜅∑
𝜶=1

𝜌
𝜶dv . (6)

where m is the mass of the mixture and m𝜶
is the partial mass. Thereby 𝜌

𝜶
describes

the partial density, which is derived by the ratio of mass dm𝜶

to the volume dv of

the structure

𝜌
𝜶 = dm𝜶

dv
. (7)

The true density 𝜌
𝜶R

of the phases follows with

𝜌
𝜶R = dm𝜶

dv𝜶
. (8)

hepatocyte

central vein
sinusoid

portal triad

micro circulation
Perfusion Approach

Homogenized Approach

Fig. 14 Numerical implementation: perfusion approach with permeability in dependence of vessel

distribution and preferred flow direction. Homogenization of the real structure into a smeared model

(TPM)
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Including the given Eqs. (3) and (8) we get a connection between the density and

the volume fractions with

𝜌
𝜶 = dm𝜶

dv
= dm𝜶

dv𝜶∕n𝜶
= n𝜶 𝜌

𝜶R
. (9)

The concentration c𝛼𝛽 of the microscopic components which are included in the

phases are described by the ratio of the number of moles dn𝛽mol and the partial volume

dv𝛼𝛼𝛼 with

c𝛼𝛽 =
dn𝛽mol

dv𝛼𝛼𝛼
. (10)

The partial molar density of the microscopic components 𝜌
𝛼𝛽

is decomposed by

the volume fraction n𝛼𝛼𝛼 , the concentration c𝛼𝛽 and the molecular weight M𝛽

mol of the

constituent

𝜌
𝛼𝛽 = n𝛼𝛼𝛼c𝛼𝛽M𝛽

mol . (11)

Whereas, the molecular weight of the constituent is calculated by the fraction of

the mass dm𝛽
of the component and the number of moles dn𝛽mol

M𝛽

mol =
dm𝛽

dn𝛽mol

. (12)

Balance Equations in the Framework of TPM

The balance equations for the porous media contain the description for each phase

𝜑
𝛼𝛼𝛼

analogous to a one phase continuum. The multiphase approach incorporates the

chemical and physical interactions of the phases 𝜑
𝛼𝛼𝛼

with the interaction forces �̂�𝜶
and the mass exchange �̂�

𝜶
following the metaphysical principles of Truesdell [15].

The local statements of the balance equation of mass, momentum and moment of

momentum follow with

𝜅∑
𝜶=1

[𝜕n
𝛼𝛼𝛼

𝜕t
+ div(n𝛼𝛼𝛼 𝐱′

𝜶
) − 1

𝜌𝜶R
�̂�
𝜶 ] = 0

𝜅∑
𝜶=1

[div 𝐓𝜶 + 𝜌
𝛼𝛼𝛼 (𝐛𝜶 − 𝐱′′

𝛼𝛼𝛼
) + �̂�𝜶 − �̂�

𝜶 𝐱′
𝜶
] = 000

𝜅∑
𝜶=1

[𝐓𝜶 − (𝐓𝜶)T ] = 000

(13)
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The balance equation of mass applies the time derivative 𝜕t of the volume fraction

n𝛼𝛼𝛼 . Furthermore, “div” describes the spatial divergence operator, 𝐱′
𝜶

the velocity of

the phases and 𝜌
𝜶R

the true density. 𝐓𝜶
is the Cauchy stress tensor, 𝐛𝜶 is the specific

volume force and 𝐱′′
𝛼𝛼𝛼

describes acceleration. Truesdell introduced the metaphysical

principles in [15] with fundamental formulations for the mixture bodies which lead

to the restrictions
𝜅∑

𝜶=1
�̂�
𝜶 = 0

𝜅∑
𝜶=1

�̂�𝜶 = 000 .
(14)

Assumptions for the Perfusion Model

In this approach we apply three main phases for the mixture body. Thus, the volume

counts the main phases 𝜑
𝛼𝛼𝛼

with 𝜶 ∈ S (liver tissue), TG (fat tissue), L (blood).

We assume miscible concentrations included in the main phases which are impor-

tant for the metabolism processes. The liver tissue is described by two components,

the hepatocytes which include glycogen 𝜑
𝐒𝛽 ∈ {Gy} as an internal concentration

and fat as the second component which includes triglyceride 𝜑
𝐓𝐆𝛽 ∈ {TG}. Both

internal miscible components are results of the metabolism. Furthermore, the blood

phase includes external solutes which are important metabolites coming from the

intestines. Focusing on the glucose and fat metabolism we apply external concentra-

tions for glucose, FFA and lactate 𝜑
𝐋𝛽 ∈ {Gu,Lc,FFA}. Since the overall solutes

𝜑
𝛼𝛽

are negligibly small in contrast to the phases 𝜑
𝛼𝛼𝛼

we do not take the volume frac-

tion of the concentrations into account. So, the volume of the main phases is nearly

the same as the volume of the carrier phases and we can simplify 𝜑
𝛼𝛼𝛼 ≅ 𝜑

𝛼
. Thus,

we summarize the description for the mixture body with 𝜅 = 3

𝜑
𝛼 = {S,TG,L} = 𝛼i |i = 1…3 (15)

and (𝜈 − 1) the microscopic components

𝜑
S𝛽 = {Gy} = 𝛽i |i = 1

𝜑
TG𝛽 = {TG} = 𝛽i |i = 1

𝜑
L𝛽 = {Gu,Lc,FFA} = 𝛽i |i = 1…3

(16)

The overall volume v can be calculated by the volume fractions n𝛼 of the phases

v =
𝜅∑

𝛼=1
dv𝛼 = ∫

Bs

𝜅∑
𝛼=1

dv𝛼 = ∫
Bs

𝜅∑
𝛼=1

n𝛼 dv mit 𝜅 ∈ {S,TG,L} (17)

The basis of the TPM applies superimposed continua with interactions and inde-

pendent motion functions for the included phases. De Boer [4] and Ehlers [5] give
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an explanation of the kinematics of TPM. We assume a Lagrange description of the

motion for the liver tissue 𝝌S(XXXS, t) with XXXS describing the reference configuration

of the liver cells and t describing the time. As the fat tissue is connected to the liver

cells we use the same motion function with 𝝌S = 𝝌TG. Additionally, the internal

concentrations which are exclusively present in the cells of the liver have the same

motion function as the liver and fat tissue. So we extend 𝝌S = 𝝌TG = 𝝌S𝛽 = 𝝌TG𝛽 .

As a consequence of the identical motion function one velocity follows for the liver

tissue, fat tissue and the internal concentration (glycogen, triglyceride) with 𝐱′S =
𝐱′TG = 𝐱′S𝛽 = 𝐱′TG𝛽 . Beside the fixed solid fraction the porous body contains the fluid

phase which represents the blood flow. For the kinematics of the blood flow we use

a modified Eulerian description with respect to the solid phase. We apply indepen-

dent motion functions for the blood phase 𝝌L(XXXL, t) and the external concentration:

glucose 𝝌L,Gu(XXXLGu, t), lactate 𝝌L,Lc(XXXLLc, t) and FFA 𝝌L,FFA(XXXLFFA, t), which are

included in the blood phase. The velocities follow with xxx′L = xxx′L(XXXL, t) for the main

phase of the fluid and 𝐱′L,Gu = 𝐱′L,Gu(XXXLGu, t) for glucose, 𝐱′L,Lc = 𝐱′L,Lc(XXXLLc, t) for

lactate and 𝐱′L,FFA = 𝐱′L,FFA(XXXLFFA, t) for FFA.

The blood flow in the liver lobules mainly depends on the vascular system, which

is designed by the sinusoidal arrangement. The sinusoids guide the blood from the

portal triads to the central vein and lead to an anisotropic diffusivity. We introduced

an approach for the anisotropic perfusion in Ricken et al. [13]. This includes an ansatz

for the filter velocity nL 𝐰LS with the volume fraction of the fluid nL and the seepage

velocity 𝐰LS. The seepage velocity defines the difference in velocity of the fluid and

solid phase 𝐰LS = 𝐱′L − 𝐱′S.

nL 𝐰LS = kS0S (
nL

1 − nS0S
)m 𝐌∗ [ −grad𝜆 + 𝜌

LR 𝐛] (18)

It depends on the deformation ( nL

1− nS0S
)m (see Eipper [6]) which includes a dimen-

sionless material parameter m, controlling the isotropic dependency of the perme-

ability. Furthermore, it depends on the Darcy permeability with kS0S [
m4

Ns
] and on the

transverse isotropic permeability relation 𝐌∗
which includes the alignment of the

sinusoids (for further information see Ricken et al. [12, 13]).

Field Equations and Constitutive Modeling

Summarizing, we consider a quasi-static, isothermal, tri-phasic porous model with

microscopic substances. The model takes into account an incompressible solid phase

𝜑
S

and fat phase 𝜑
TG

which are derived by the same motion function and an incom-

pressible fluid phase 𝜑
L
. We assume mass exchange between the fat and fluid phase.

All phases include substances 𝜑
𝛼𝛽

which are calculated by the microscopic model

and allow phase transition to build up the metabolism. The solid phases 𝜑
S

and
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fat phase 𝜑
TG

include the internal concentrations 𝜑
S𝛽

with 𝜑
S𝛽 ∈ {Gy} and 𝜑

TG𝛽

with 𝜑
TG𝛽 ∈ {TG}. The external concentrations 𝜑

L𝛽
with 𝜑

L𝛽 ∈ {Gu,Lc,FFA}
are included in the fluid phase. For the calculation of the presented model we use

the following independent relations. On the one hand we use the local form of the

balance equation of mass and momentum for each component with

(n𝛼)′
𝛼
+ n𝛼 div 𝐱′

𝛼
= 1

𝜌𝛼R
�̂�
𝛼

div 𝐓𝛼 + 𝜌
𝛼 𝐛𝛼 + �̂�𝛼 = �̂�

𝛼 𝐱′
𝛼

(19)

for the main phases and

(n𝛼)′
𝛼𝛽

c𝛼𝛽 M𝛽

mol + n𝛼 (c𝛼𝛽)′
𝛼𝛽

M𝛽

mol + n𝛼 c𝛼𝛽 M𝛽

mol div xxx
′
𝛼𝛽

= �̂�
𝛼𝛽

div 𝐓𝛼𝛽 + 𝜌
𝛼𝛽 𝐛𝛼 + �̂�𝛼𝛽 = �̂�

𝛼𝛽 𝐱′
𝛼

(20)

for the included concentrations. The field equations include the interaction terms

between the main phases �̂�
𝛼

and the miscible substances �̂�
𝛼𝛽

. On the other hand we

consider the physical constraint condition derived by the assumptions of the porous

medium with the saturation condition

nS + nTG + nL = 1, (21)

the conditions for the mass exchange between the components with

�̂�
S + �̂�

TG
,+ �̂�

L + �̂�
𝛼𝛽 = 0 , (22)

and the interaction forces

�̂�S + �̂�TG + �̂�L + �̂�𝛼𝛽 = 𝟎 . (23)

Beside the field equations we need constitutive relations to complete the calcula-

tion concept of the saturated porous body. The constitutive equations are derived by

the evaluation of the entropy inequality

𝜅∑
𝜶=1

[−𝜌𝛼𝛼𝛼 (𝜓𝜶)′
𝜶
− �̂�

𝜶 (𝜓𝜶 − 1
2
𝐱′
𝛼𝛼𝛼
⋅ 𝐱′

𝛼𝛼𝛼
) + 𝐓𝜶 ⋅DDD

𝜶
− �̂�𝜶 ⋅ 𝐱′

𝛼𝛼𝛼
] ≥ 0, (24)

The constitutive equations follow with
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Table 1 Material parameters of liver lobule

Parameter Value Unit Remark

nS0S 0.8 – Volume fraction solid

nTG0S 0.02 – Volume fraction fat

nL0S 0.18 – Volume fraction fluid

𝜇
S
, 𝜇

TG 4 × 104 Pa Lam constant

𝜆
S
, 𝜆

TG 3 × 104 Pa Lam constant

𝜃 280 K Temperature

R 8.3144 J/molK Gas constant

kLD 4.5 × 10−10 m/s Darcy permeability

TTTS + TTTS𝛽 + TTTTG + TTTTG𝛽 = 2 𝜌S FFFS
𝜕𝜓

S

𝜕CCCS
FFFTS + 2 𝜌TG FFFS

𝜕𝜓
TG

𝜕CCCS
FFFTS

− (nS + nTG) 𝜆 III

TTTL = − 𝜆 nL III + 𝜌
𝛼𝛽 c𝛼𝛽 𝜕𝜓

𝛼𝛽

𝜕c𝛼𝛽
III

TTTL𝛽 = −𝜌𝛼𝛽 cL𝛽 𝜕𝜓
𝛼𝛽

𝜕c𝛼𝛽
III.

(25)

for the description of the stresses.

We postulate a hyperelastic material description of the solid following the Hooke’s

law with the Neo-Hookean Helmholtz free energy function

𝜓
S = 1

𝜌
S
0S

[
𝜆
S 1
2
(lnJS) − 𝜇

S lnJS + 1
2
𝜇
S (tr CCCS − 3)

]

𝜓
TG = 1

𝜌
TG
0S

[
𝜆
TG 1

2
(lnJS) − 𝜇

TG lnJS + 1
2
𝜇
TG (tr CCCS − 3)

] (26)

including the Lamé constants 𝜆
S

and 𝜇
S

for the liver solid and 𝜆
TG

and 𝜇
TG

for the

liver fat (Table 1). Moreover we describe the free energy function for the concen-

trations 𝜓
𝛼𝛽

with the general gas constant R [ J
molK

], the temperature of the mixture

𝜃 [K], the molecular weight of the constituent M𝛽

mol [
g

mol
] and the reference chemical

potential 𝜇
𝛼𝛽

0 [ J
mol

]

𝜓
𝛼𝛽 = 1

c𝛼𝛽

[
R 𝜃

M𝛽

mol

(ln(c
𝛼𝛽

c𝛼𝛽0
) − 1) + 𝜇

𝛼𝛽

0

]
. (27)
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Nano-Mechanical Tensile Behavior
of the SPTA1 Gene in the Presence
of Hereditary Hemolytic Anemia-Related
Point Mutations

Melis Hunt

Abstract A skeletal network of spectrin molecules provides shear stiffness to the
red blood cell (RBC) membrane maintaining its shape (by providing elasticity) and
thus its stability. There are two α and two β subunits of human spectrin; the α1 and
β1 spectrin subunits are encoded SPTA1 and SPTB, respectively. Hereditary
elliptocytosis (HE), one of the hereditary blood disorders, results in elliptical/oval,
elongated RBCs due to the abnormalities that occur mainly at the atomistic level
because of the mutations in SPTA1 and SPTB. In HE, the RBC membrane partly
loses its elasticity and this results in a reduced overall durability of RBCs. In its
severe forms, hereditary blood disorders can lead to hemolytic anemias when the
abnormal RBCs start to depreciate. This study aims to observe mechanically how
the abnormalities due to the mutations in SPTA1 gene affect single spectrin
molecules. The stiffness of the mutated and normal/wild-type molecules are cal-
culated using Steered Molecular Dynamics (SMD) by subjecting the spectrin α
chain to displacements up to tens of nanometers and drawing force-extension maps
from these computational experiments. The most common HE mutations being
SPTA1 gene missense mutations in the dimer-tetramer self-association site makes it
interesting to introduce mutations at the binding site and compare the change in the
mechanical response of the mutated molecules to that of the wild-type. Overall, the
results presented here show that the nano-mechanical tensile behaviour at the
chain-level does not change under the presence of the point mutations. This sug-
gests that the local structural disturbances the mutations cause, will affect the
spectrin scaffold on the network-level rather than on the on the single chain level
implying more complicated molecular interactional disorders. The work presented
here is a part of a larger effort to improve understanding the functional implications
of the mechanical and structural properties of proteins starting at the atomistic level.
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1 Introduction

Many protein molecules (i.e. spectrin, titin, spider silk…) have multi-domain
structures which result in a force-displacement behavior with a characteristic
saw-tooth pattern when exposed to mechanical stretching due to the unfolding of
their domains along the molecular chains (Fig. 1). Unfolding of molecules provide
numerous advantages to proteins. Unfolding of the “hidden length” (when the
contour length of a molecule is different than the end-to-end distance of the
molecule) along the constituent domains of a molecule, eases the molecule into
high levels of strain by keeping low force levels. This enables “softening” of the
proteins. “Softening” acts as a manner to first allow for an initially stiff behavior,
then to limit the overall force level and to enable large extensions at low forces and
low compliance [1–14].

Figure 1 shows schematics for the unfolding of a single molecule with a
folded-domain. When a molecule with folded domains is subjected to tensile strain,
the force increases until all the domains are aligned with each other, then one of the
domains unfolds revealing some hidden length dropping the force. If the tensile
strain further increases, force starts increasing but this time with a more resilient
response until all the domains are aligned again yet another unfolding event hap-
pens dropping the force one more time… This behavior goes on till all the hidden
length is revealed as long as the molecule is subjected to higher strain levels. The
force-extension map reveals the “saw-tooth” pattern which is bound to have a softer
edge/lower plateau force and less peaks as the pulling speed decreases and also as
the event numbers increase.

In order to understand the mechanical behaviour of structural proteins, it is
useful to study their response to mechanical unfolding. These direct investigations
are commonly performed by atomic force microscopy (AFM); the macromolecule
is mechanically unfolded by the imposition of elongations at constant strain-rate,
and the required force is measured as a function of the elongation. The unfolding
patterns and force-extension maps can also be studied using computational

Fig. 1 A schematic of the force-extension behavior yielding a “saw-tooth pattern” eventually
resulting in a more compliant behavior for a single molecule containing folded domains along
which the end-to-end distance (ro) is shorter than the contour length of that particular domain
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experiments; in particular Steered Molecular Dynamics (SMD); where a harmonic
potential (spring) is used to induce motion through constant velocity mimicking the
AFM experiments in which a molecule is stretched by a cantilever moving at
constant velocity. There are difficulties in directly comparing simulations and AFM
experiments as the elongations speeds differ greatly (i.e. in the order of 10−7 for
AFM experiments versus 0.5 m/s for SMD experiments). However the unfolding
scenario (i.e. position of force peaks) and the order of magnitude in forces enable us
to draw consistent conclusions from SMD simulations.

2 Spectrin Structure

A skeletal network of spectrin molecules provides shear stiffness to the red blood
cell (RBC) membrane maintaining its shape (by providing elasticity) and thus its
stability. The spectrin network is composed of lateral heterodimeric association
of α and β subunits which possess 16–20 tandem homologous repeats each. The
principal form of the spectrin molecule constitutes of head-to-head interactions
between two α/β dimers leading to the formation of a spectrin tetramer; where
the tetramerization site is comprised of α-0 and β-17 partial domains (see Fig. 2)
[15–17].

Hereditary elliptocytosis (HE) is an inherited RBC membrane disorder associ-
ated with defective spectrin due to the mutations in codons 28, 46, 48, and 49 [18].
HE disorders are characterized by visibly elliptical RBCs. HE disorders range from
asymptomatic to hemolytic anemia [19]. Although many defects are known to
result in HE, cases generally involve disruptions of horizontal cytoskeleton inter-
actions; i.e. mutations in the tetramerization site which influences the function and

Fig. 2 Spectrin assembly constitutes of a lateral heterodimeric association of α- and β-chains
which form the spectrin tetramer by the antiparallel head-to-head interactions between two α/β
dimers (Panel I). α-chain has 20 full repeats and a partial repeat (Panel III). Tetramerization site
comprised of α-0 and β-17 partial domains as shown in the ribbon diagram (Panel II)
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structural integrity of the molecule by reducing the elasticity of the RBCs and thus
resulting in mechanical weakness or fragility of the membrane skeleton that leads to
a reduced overall durability of RBCs.

Arginine at the 28th residue (ARG28), located in the tetramerization site, is a
vital residue for the conformational stability of α-spectrin [20]. There are four major
types of replacements at this site: arginine replaced by cysteine, histidine, leucine or
serine (ARG28 [CYS/HIS/LEU/SER]) residues [18]. The literature provides
excellent structural analyses on the conformations undertaken by the mutated
residues of spectrin [21]. However mechanical analysis at the atomistic level is the
missing piece in studying the mechanisms that lead to RBC diseases. It has been
suggested that the ARG28 mutations lead to abnormality in the folding and the
bonding of the tetramerization site; however there is limited knowledge about
whether these mutations cause disruptions on the dimer level in the α-chain directly
or disrupt the chain-chain inter-bonding in the heterodimer/tetramerization level or
even further in the network level. One of the objectives of this work is to elaborate
on whether one could observe disturbances due to mutations at the local site when
the site is applied external forces. Here, for that reason, the mechanical stiffness of
the wild-type (WT)/healthy and the mutated (cysteine (CYS), serine (SER), his-
tidine (HIS) and leucine (LEU) replacements) cases will be calculated using Steered
Molecular Dynamics (SMD) by subjecting the spectrin tetramerization complex to
displacements up to tens of nanometers drawing force-extension maps from these
computational experiments.

The complete tetramer structure illustrating the interactions of the domains
(mainly hydrophobic and also electrostatic) was revealed and identified in 2010
[22] providing a guide for designing further computational experiments to explore
more details of the HE-related mutations and their effects. This work aims to go
beyond the focus on the biochemical structural analysis and characterize
tetramerization site mechanical properties and discuss the possible local effect of the
ARG 28 point mutations on these properties.

3 Materials and Methods

The α-0 and α-1 domain as well as the β-16 and β-17 domain (encompassing the
tetramerization site) data was obtained from the PDB with the identification
(ID) 3LBX [22]. Four types of point mutations; cysteine (CYS), histidine (HIS),
serine (SER) and leucine (LEU) amino acid residue, were introduced in the ARG 28
location in the α-0 residue in the spectrin tetramerization domain.

The Molecular Dynamics (MD) simulations were carried out using the all-atom
CHARMM force field [23] as implemented in the NAMD program [24] and to
visually observe the results in 3D, visual molecular dynamics (VMD) [25] is used.
Energy minimization is performed using a conjugate gradient (CG) scheme. The
equilibration is carried out at a temperature of 310 K (resembling body tempera-
ture). The stretching of the proteins is performed via the Steered Molecular
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Dynamics (SMD) method [26–28]. This method is based on the concept of pulling
the center of mass of a collection of chosen atoms via a spring along the direction of
the molecular axis, while keeping the center of mass of another group of atoms
fixed through a stiffer spring.

Each SMD simulation is set up in three stages as follows:

1. Energy minimization: Energy minimization is carried out for several thousand
steps, ensuring that convergence is achieved. The convergence is determined by
confirming that the total energy of the system converges to a steady value.

2. Equilibration: The equilibration process ensures that the molecules start in the
most likely in vivo condition at finite temperature. We find that the 20 ns
equilibration, limited due to computational constraints, gives a well equilibrated
structure with good geometry convergence.

3. Tensile loading: SMD approach is used to pull part of the spectrin tetramer-
ization site to model tensile loading. SMD simulations give valuable insights in
the unfolding pathways of a protein. For the SMD simulations, the fixed atoms
consist of the Cα (α Carbon) atoms at one end of a chain, and the pulled atom is
the Cα atom at the other end of the chain. Different pulling speeds are tested
(0.5, 0.05, 0.005, 0.0005 nm/ps). The SMD spring constant used is
k = 400 kcal mol−1Å2.

All simulations are performed with a 2 femtosecond time step.
The simulations are carried out using an implicit solvent model [29–34] where

the need for explicit water atoms is eliminated by including the effects of solvent in
the inter-atomic force calculation. The advantage of implicit solvent models is that
the computational cost (i.e. the necessary CPU time) of the simulation is used more
efficiently to monitor longer and slower simulations as opposed to the necessity for
a very large water bath to accommodate the spectrin structure. The Generalized
Born model has been demonstrated to provide a good approximation of explicit
solvent simulations of proteins [7, 8, 35]. In this work, employing an implicit
solvent model will allow faster convergence at lower pulling speeds at a lower
computational cost so that enough simulations can be done to obtain statistically
meaningful results and at the same time, here, demonstrating an example of the
applicability of this approach to large protein systems.

4 Results

We begin with the presentation of the SMD analysis. The Cα atom of codon 19 is
fixed while the Cα atom of codon 158 is the SMD atom as shown in Fig. 3I. The
figure outlines the three segments of the folded domain.

Force-extension plots of the tensile experiments for the wild type (WT) are
shown in Fig. 3II for four different pulling speeds (0.5, 0.05, 0.005, 0.0005 nm/ps).
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For all pulling speeds except 0.5 nm/ps, one can observe the typical three
regimes;

1. The elastic regime where the force increases linearly with the applied
deformation.

2. The plateau regime where the force remains constant with the applied
deformation.

3. Final regime where the force increases rapidly with the applied deformation.

It can be observed from the figure that for pulling rates 0.005 and 0.0005 nm/ps;
the results are very similar. This shows the convergence of the simulations and that
the pulling speed chosen is appropriate. Here, it must also be noted that in total 11
trajectories were calculated and averaged to increase the statistical precision of the
results.

Figure 4I shows the force versus applied displacement behavior for the ‘wild
type (WT)/healthy’ structure. The force level required to unravel the hidden length
comes out to be ∼200 pN. At a displacement of ∼5 nm, Segment 3 (see Fig. 4IV)

Fig. 3 Panel (I) outlines the three segments of the folded domain in the SMD test along with the
length of each segment. The Cα atom of codon 19 is fixed while the Cα atom of codon 158 is the
SMD atom. Panel (II) a–d shows the force-extension plots of tensile experiments for the wild type
(WT) for four different pulling speeds; 0.5 nm/ps, 0.05 nm/ps, 0.005 nm/ps, 0.0005 nm/ps;
respectively
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becomes completely aligned with the pulling direction while Segment 2 is unfolded
and the force drops to zero. Figure 4II details how the length of Segment 1 remains
unchanged as Segment 2 and 3 re-arrange themselves to accommodate the applied
displacement. This confirms that the increase in the force for an applied displace-
ment of ∼5 nm manifests itself as stretching of Segment 3 coupled with
re-orientation/conformation change of Segment 2. Further examination of Fig. 4I
reveals that the force, due to the applied displacement, increases linearly until the
tertiary structure changes and the triple helix starts unfolding. This process is a
step-wise process and the unfolding is completed at the point “D” as shown in
Fig. 4I. We can observe from Fig. 4II that as Segment 3 stretches and Sect. 2
re-orients itself, the end-to-end distance of the former section increases and that of
the latter decreases until point “D” where the unfolding of the tertiary structure is
completed and Segment 1 and 3 are completely aligned. Following this point, there
is no further increase or decrease in the end-to-end distance of either section.
Although there is some unfolding in Segment 3, the 10 nm displacement ultimately
only results in tertiary re-arrangements of the helices as detailed in Fig. 4IV. Fig-
ure 4III shows the applied displacement versus the change in the contour length
(here referred to as the addition of subsequent Segments 1; 2 and 3). We can
observe here that the overall contour length does not change with the applied
displacement of 10 nm since the increase in the end-to-end distance of Segment 3 is
cancelled out by the decrease in the end-to-end distance of Segment 2 during the
test as detailed in (II).

The tensile test performed here encompasses the unfolding of the protein’s
tertiary structure as shown in the early experimental studies [1–14] and 10 nm
displacement applied results in unraveling the ‘hidden’ 10 nm in the tertiary
structure with no change in the secondary alpha-helical structure of the protein.
Once the unfolding of the ‘hidden length’ is completed at point “D” as denoted in
Fig. 4I, the force drops to zero revealing an initial unfolding stiffness of
∼0.0125 N/m.1

Overall, the ‘hidden length’ of protein structures gives rise to very compliant
materials with high levels of ductility involved not just owing to the secondary
structure of the protein (alpha helix) but mainly the tertiary structure is the reason
for this very ductile behavior. Despite the gap between the pulling speeds between
AFM experiments and SMD simulations where the AFM results are reproduced, the
simulations here have been able to capture the peaks observed at similar force levels
to those in AFM [1, 3, 6].

Following the basic SMD analysis for the WT, four types of missense mutations
are introduced in the codon 28 in the α-0 region in the spectrin tetramerization site.
The arginine amino acid (ARG 28) is replaced by cysteine (CYS), histidine (HIS),
serine (SER) and leucine (LEU) amino acid residues. As we can see in Fig. 5, the

1The stiffness values for protein structures from MD simulations are obtained using averaging
approaches (i.e. moving average) therefore instead of an exact number, the order of magnitude of
the values obtained should be considered.
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results for the mutated structures follow a similar trend to that for the WT. The
slight tendency toward the more compliant behavior for the mutated structure is
possibly from the statistically varying conformations each structure assumes after
the equilibration process which would also depend on factors such as the size of the
structures’ side groups.

Figure 6 shows the force versus displacement graph for all cases for larger
displacements up to ∼45 nm. The contour length for the α-0 and α-1 combined
alpha-helical repeat is 20 nm as shown in the latter analysis (From the fixed Cα
atom of codon 19 to the SMD atom/Cα atom of codon 158; the constituent 139

Fig. 4 The characteristic SMD data is detailed from the tensile test on WT (wild type/healthy)
case. Panel I shows the force-displacement graph with the critical points marked by A–D which are
also detailed in the ribbon-diagram of α-spectrin. Segment 1 is denoted by black, segment 2 is
denoted by blue and segment 3 is denoted by green. The same notation is used in panel II where
each segment’s elongation is plotted with respect to the applied displacement. Panel III shows the
applied displacement with respect to time together with the contour length fluctuations around -0-
for the same applied displacement. Panel IV shows the ribbon diagram of the unfolding pattern:
tertiary structure unraveling with the applied axial displacement
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Fig. 5 The characteristic SMD force-displacement data is shown for the WT/arginine (ARG;
black) together with the cases with the point mutations; histidine (HIS; blue), cysteine (CYS;
green), leucine (LEU; purple); serine (SER; red)

Fig. 6 The characteristic SMD force-displacement data is shown for the WT/arginine (ARG;
black) together with the cases with the point mutations; histidine (HIS; blue), cysteine (CYS;
green), leucine (LEU; purple); serine (SER; red) for an applied larger displacement. Snapshots
under the graph display the ribbon diagrams for (A), (B) and (C) for the denoted displacement for
the WT (ARG 28 for the wild type/healthy case). The ribbon diagrams show the ‘alpha helix’
convolution with purple; ‘turn’s with blue and ‘coil’s with gray. ARG 28 Cα atom; the ‘hot spot’
(the mutation site) is shown with an orange sphere. After point C; the secondary structure is ‘coil’
and the backbone is completely aligned which also corresponds to the H-bonds in the backbone
breaking resulting in a stiffer response shown from the force-displacement data for all cases
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codons/38 alpha-helical turns-taking into account that each turn in an alpha helix is
0.54 nm long and constitutes of 3.6 residues- are approximately 20 nm long when
aligned). Further displacement applied once Segment 1–3 are all aligned will result
in the unfolding of the alpha helix convolution; that is the change in the protein’s
secondary structure. Figure 6 inset shows the configuration the WT structure
assumes at different displacement levels. At a displacement of 25 nm (A), the alpha
helix in some parts starts transforming into ‘turn’s. Once ‘coil’ secondary structure
starts appearing in the structure there is a slight increase in the force levels with the
applied deformation, although the change from an alpha helix to ‘turn’ secondary
structure happens at a constant force level.

At (B), at a displacement of 35 nm, only the alpha helix around ARG 28 remains
in-tact and at a displacement level of ∼38 nm at the point (C), the whole secondary
structure has turned into ‘coil’ and the 139 constituent residues have a total
end-to-end distance of ∼40 nm (meaning each turn almost doubles in length when
stretched to completely unfold the alpha helix). After reaching an end-to-end dis-
tance of 40 nm; after which the alpha helix structure is no longer maintained, the
H-bonds in the backbone start breaking giving a resistant response to the applied
displacement. This stiffness is calculated to be ∼8 N/m. This stiffness level also
shows more clearly why the SMD spring stiffness is chosen to be 400 kcal/molȦ2

(∼300 N/m) instead of the conventional choice of 10 kcal/molȦ2 (∼7 N/m)
which would be too low to obtain the correct stiffness. The spring stiffness has
to be sufficiently large so that in a series of springs its effect is negligible

(i.e. 1 ̸k= ∑
n

i=1
1 ̸kið Þ+1 ̸kspring; where k is the equivalent stiffness of n springs in

series which is shown to be an acceptable model for the bonding of a protein
structure [36]).

In order to further investigate the effect of the mutations on the particular ‘hot
spot’ (codon 28), another analysis is conducted here where the stretching of the
alpha helix around the ‘hot spot’ is investigated by pulling on the Cα atoms
equidistant from the codon 28; in particular: Cα atoms of the codon 26 in the axial
direction and the Cα atom of the residue 30 in the opposite axial direction. This
tensile test is shown step-by-step (A–E) in the inset of Fig. 7.

This segment of the α-chain structure tested here is approximately as long as a
‘turn’ in the alpha-helical convolution with an initial length of ∼0.6 nm. The force
versus displacement path initially follows a linear trend (with a slope of ∼10 N/m)
as it essentially involves breaking the alpha-helical hydrogen bonds (H-bonds)
which act as linear springs. Thus in the first stage (A→B) the segment goes from
one energy well (folded convolution) to another (unfolded convolution). The slope
found for the four residues involved concur with the stiffness derived in the liter-
ature (∼42 N/m for one residue to break the H-bonding for unfolding an
alpha-helical convolution; which would then imply (42/4) N/m for residues which
act like harmonic springs in series) [36]. This slope also concurs with the result
shown in Fig. 6 beyond point C where the slope is measured to be ∼8 N/m.
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Once the ∼0.6 nm length-segment is stretched another ∼0.6 nm, the strain on it
being 100%, the secondary structure is completely altered and alpha helix is
unfolded followed by the backbone stretching. Interestingly, point (C) is the point
where codon 28 secondary structure becomes a ‘coil’ where from then on the force
levels increase nonlinearly in order to displace the atoms until (D) where every
backbone residue is completely aligned. The constant slope observed after this
point (a displacement amounting to ∼1.2 nm) is the stiffness of the bonds of the
backbone atoms of the polypeptide and is ∼50–70 N/m. This is approximately four
orders of magnitude higher than the stiffness obtained while unfolding the tertiary
structure (Fig. 4).

Here, it has been presented that the unraveling of the ‘hidden length’ due to
forced unfolding occurs by unfolding the tertiary structure prior to the change in the
secondary structure for the healthy and mutated structures. SMD simulations help
deliver a hierarchical level of stiffness values for the tetramerization site which is
shown to be similar for both the healthy and the mutated structures. It is important
to monitor the stability of the healthy versus mutated cases locally.

Fig. 7 Total force versus displacement is shown for the WT/arginine (ARG; black) together with
the cases with the point mutations; histidine (HIS; blue), cysteine (CYS; green), leucine (LEU;
purple); serine (SER; red) for a tensile test on the local ‘hot spot’ from the point A; folded
configuration to the point E where the backbone is being stretched. Point C, in the middle, marks
the complete unfolding of the ‘alpha helix’. The ribbon diagrams for each case are shown with the
boundary condition: the end Cα atoms applied equal displacement in opposite directions
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5 Discussion

The main focus of this work was to explore and assess, from a mechanical per-
spective, the effects of point mutations on the SPTA1 gene which cause HE
(Hereditary Elliptocytosis). The crystal structure of the spectrin tetramerization site
provides novel insights and enables us to do molecular testing to discuss the
potential effects of mutations [22]. It was shown here that the mechanical stiffness
of the tetramerization site is not directly affected by the point mutations. This
suggests that the local structural disturbances the mutations cause, will affect the
spectrin scaffold on the network-level rather than on the on the single chain level
implying more complicated molecular interactional disorders. The local distur-
bances the mutations cause; due to different side-chain conformations/interactions;
examined at different high-energy regions over long time periods could reveal
insight to the “stability of the structure-lethality of the mutations” correlation.

Application of the SMD procedure to the tetramerization site here highlighted
the unfolding pattern for a structure with folded domains where the sequence of
unfolding was presented to comply: tertiary structure unraveling followed by the
secondary structure change giving rise to a “softening” behaviour. From the
SMD analyses, the stiffness of the backbone and the stiffness of the structure in
general are discussed and compared. This provides insight into the prospective
mechanical analyses that can be conducted to model different networks of
poly-peptide chains [36].
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The Choice of a Performance Indicator
of Release in Transdermal Drug Delivery
Systems

Giuseppe Pontrelli and Laurent Simon

Abstract An effective time constant for first-order processes is defined to capture

the dynamics of systems represented by partial differential equations. In this chapter,

the methodology is applied to passive and electrically assisted drug controlled trans-

dermal delivery devices in two case studies. The analysis, which is carried out using

Laplace-transformed variables, results in a first-order approximation and does not

require time-domain solutions. Numerical experiments are included to illustrate the

effectiveness of the index under different conditions and to estimate the time it takes

to establish a steady-state flux across the membrane.

1 Introduction

Traditional transdermal drug delivery (TDD) systems are based on the transport of

therapeutic agents across the skin by passive diffusion. Despite being the subject

of extensive research over the years because of its potential advantages, the exact

release mechanism remains unclear in some cases and it is often difficult to pre-

dict the drug kinetics accurately [1, 2]. The solutes which can be administered by

transdermal route are limited to molecules of low molecular weight, due to the excel-

lent barrier properties of the stratum corneum, the outermost layer of the epidermis

[3]. To increase skin’s drug transport and overcome this limitation, innovative tech-

nologies have been developed, some of them based on the use of electrical current

(iontophoresis). In these electrically assisted systems, an applied potential of low

intensity (≈1V) generates an additional driving force for the drug motion in the skin

[4, 5].
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The application of transdermal patches for accurate delivery of medicaments to

their target sites is another possible non-invasive technology: the drug is initially

stored in the vehicle, a porous polymeric reservoir having an impermeable backing at

one side and an adhesive in contact with the skin at the other side, and is subsequently

released in a controlled manner [6, 7]. Compared to conventional TDD products, the

rational design of these novel drug delivery devices poses further challenges, such

as the complex mechanisms and the unknown significance of process parameters.

Additional factors include the device polymeric microstructure characteristics and

properties of the electric field.

In the absence of experimental data, mathematical modelling of TDD allows to

predict drug release from the vehicle and its transport into the target tissue. The

framework also offers insights into the factors governing drug delivery and provide

quantitative relationships between drug concentration, or the delivery rate, and some

key design drug/vehicle properties [8]. For traditional TDD, the coupling between

the diffusion process in the reservoir and in the target tissue has been considered in

[6, 9]. In the majority of TDD models, a constant flux enters the target tissue and the

role of the reservoir finite capacity is neglected [10].

Moreover, the above models assume that the skin is homogeneous and ignore its

composite structure. In fact, it is well accepted that the skin is an inhomogeneous

medium, composed of several layers with different thickness and physico-chemical-

electrical properties (Fig. 1). This aspect has a crucial importance since the drug

transport critically relates to the local diffusive properties and, even more impor-

tantly in iontophoresis, the potential field relies on the layer-dependent electrical

conductivities. The multi-layer structure of the biological media and other related

issues have been addressed in other papers [11] and in a recent work, where a model

of iontophoretic drug release from a vehicle into a multi-layered dermal tissue is

presented [12]. However, even in situations where the transport phenomena are well

represented mathematically, the need exists to develop analytical tools or simple indi-

cators to extract meaning from the model and the data. These tools will make possible

to answer certain questions, such as how long it takes to attain a therapeutic flux, or

what processing conditions need to be adjusted and by how much, in order to reach

a desired delivery rate without solving the full differential equations. Furthermore,

when a full mathematical representation is not available, or is too complicated for

being of practical use, simple performance indicators are required to elucidate the

main transport mechanisms and identify the most critical components in TDD.

Among several mathematical techniques available for control systems analysis,

Laplace transform and linearization are frequently applied to describe a process

dynamics through an effective time constant (ETC)(denoted by teff ) [13]: this rep-

resents a useful indicator of the time elapsed before reaching a steady state. The

existence of a single ETC is of great importance in the design of drug delivery sys-

tems, because it would allow product manufacturers to tune specific properties to

ensure that a constant release is reached at a specific time [7]. The problem is to

find a formal definition of teff which makes the index precise for a general dynamical
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Fig. 1 An anatomic representation of the skin, composed by three main layers: epidermis (approx-

imately 100µm thick), dermis (between 1 and 3mm thick, highly vascularized) and a subcutaneous

tissue. The epidermis is divided into sub-layers where the stratum corneum (approximately 10µm
thick) is the outermost layer and is the major barrier to the drug migration, being composed of

densely packed cells, with a typical brick and mortar structure. Each skin layer, due to its histolog-

ical composition, has a different influence on the drug transport mechanism

system, no matter how complicated it is, even in cases when the time-dependence

departs markedly from a simple exponential form. For a practical and useful defini-

tion, it must also be possible to compute teff in a simple and straightforward manner

to enable different convective-diffusive systems to be compared on a common basis.

Our goal is to relate ETC to the model parameters of a TDD device. This allows,

with the aid of a single index, to understand the role of key factors influencing the

release of active pharmaceutical ingredients and to assess the time drug reaches a

target steady-state flux and to optimize the release performance.

The chapter is organized as follows. In Sect. 2, we introduce the concept of the

ETC and its use in a general framework. In Sect. 3 the one-layer model in TDD is

presented, and in Sect. 4 the computation of ETC is carried out. The mathematical

problem in a multi-layered model is addressed in Sect. 5 followed by the correspon-

dent ETC derivation (Sect. 6). Finally in Sect. 7 some numerical estimates of ETC

and drug flux in the various cases, are presented and discussed for a realistic range

of parameters and typical drugs.
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2 The Concept of an Effective Time Constant: Definition
and Applications

The introduction of a dynamic metric for controlled-release systems stems from the

need to link the performance of formulations to measurable physico-chemical fea-

tures of the drug and vehicle. For example, in transdermal heat-enhanced devices,

manufacturers have the opportunity to design products that address the needs of

patients suffering from breakthrough cancer pain. The idea is to dramatically tighten

the pain-relief gap by triggering a prompt onset of drug effect. Although opioids

are usually administered intravenously, there has been a growing interest in using

physical enhancers to make transdermal patches designed to meet unique treatment

protocols required by cancer patients. Preliminary studies, conducted by Ashburn et

al., have shown some of the benefits of the application of local heat to transdermal

fentanyl patches [14]. These researchers noticed that, when applying these patches

with no controlled heat, attaining a steady-state blood level of the medicament may

require a long time. One the contrary, an increase observed in the serum concentra-

tion immediately after the application of controlled heat, suggests that such technolo-

gies may prove effective in the delivery of analgesia [14]. A computational method

to estimate the onset of action based on the properties of the active and inactive phar-

maceutical ingredients, would be very useful in this case. It has also been shown that

the period elapsed to reach 98% of the steady-state flux, defined by four times the

first time constant, is related to the properties of the delivery system, although no

analytical expression is available [15].

The ability of iontophoresis to deliver medicaments through the skin and quickly

establish a therapeutic level has been studied. Song et al. [16] developed an alter-

nating current technique to increase the permeation rate of urea and decrease the lag

time in the human epidermal membrane. These researchers suggested that the design

of iontophoretic drug-delivery devices would improve, considerably, if the transport

lag time was well characterized and flux variability decreased [16]. Although the

controlled-release community has expressed special interest in controlling the factors

that delay the onset of the steady-state release rate [17], early efforts used compart-

mental models of transdermal iontophoretic transport [18]. This approach provides

limited mechanistic insight and makes it difficult to extrapolate the findings to new

iontophoretic products.

Laplace transform and linearization are commonly applied to examine the

dynamic responses of many processes. These procedures help control engineers and

process designers determine relevant characteristic parameters which affect the tran-

sient behavior of a plant [19]. For example, let us consider a storage tank with inlet

and outlet flows: the time elapsed before reaching a steady-state liquid level, after

changing the inlet flow rate, is related to the tank area and the flow resistance in the

outlet pipe. The transfer function reveals that the product of these two factors rep-

resents the process time constant. Based on the success of these techniques, there

have been significant efforts made, by researchers, toward implementing these tools

to best describe the dynamics of diffusion [13]. A similar approach is considered
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in this work to derive design equations that connect ETC to key properties. These

features can be use by manufacturers of controlled-released systems to guarantee

accurate release of active pharmaceutical ingredients to a selected site.

To assess the suitability of the method, let us start with a first-order system [19]:

𝜏p
dy
dt

+ y = Kpu (t) (1)

where 𝜏p (otherwise called teff ) and Kp indicate the time constant and steady-state

gain of the process, respectively; u and y are the input and output variables. While

Kp is the ratio of the ultimate response (yss) to the size of a step change in u, 𝜏p is

a measure of the time it takes to reach yss. The gain Kp determines the sensitivity

of a system. For example, consider a process where saturated steam is supplied to

heat the liquid in a vessel. A Kp value of 7 ◦F/(lb/min) suggests that an increase of

1.0 lb/min in the steam mass flow rate is necessary to raise the liquid temperature

by 7 ◦F. It can be shown that y has achieved 63.2% of its steady-state value after one

time constant. At tres = 4𝜏p (called the response time), y is at 98% of its ultimate

value. In the previous example, the response time denotes the period elapsed before

the temperature changes by 7 ◦F. By Eq. (1), using the Laplace variable s, often used

to analyze the dynamics of linear systems, the response becomes:

Y (s) =
Kp

𝜏ps + 1
U (s) (2)

The variables Y and U represent the Laplace transforms u and y assuming that

y(0) = u(0) = 0.

This concept of a single time constant to describe a process dynamics is extended

to systems in which the variable of interest can be approximated by a series of the

form:

𝜒 (𝐱, t) =
∞∑

n=1
fn (𝐱)e−𝜆nt

(3)

where 𝜆n = 1∕tn and fn is a function of the space 𝐱. The numbers tn denote the char-

acteristic time constants with tn > tm or 𝜆n < 𝜆m for n < m. In general, the system

dynamics is represented by the first 𝜆n values. To use a single time constant that

estimates how fast 𝜒 (𝐱, t) approaches the equilibrium 𝜒eq (𝐱), a first-order moment

with a normalized probability density function 𝛺 (𝐱, t) is applied:

teff (𝐱) =
∞

∫
0

t𝛺 (𝐱, t) dt (4)

where
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𝛺 (𝐱, t) =
𝜒eq (𝐱) − 𝜒 (𝐱, t)

∞∫
0

(
𝜒eq (𝐱) − 𝜒 (𝐱, t)

)
dt

The properties of Laplace transforms can be used to write ETC defined in Eq. (4) in

terms of s [7]:

teff (𝐱) =
lim
s→0

(
𝜒eq(𝐱)

s2
+

d�̄�
ds

(𝐱, s)
)

lim
s→0

(
𝜒eq(𝐱)

s
− �̄� (𝐱, s)

) (5)

with �̄� (𝐱, s) the Laplace transform of 𝜒 (𝐱, t). An inspection of Eq. (4) shows that

teff (𝐱) is guaranteed to have a positive value as long as the difference

𝜒eq (𝐱)
s

−
�̄� (𝐱, t) does not change sign. Although there are other performance indicators (e.g.,

lag time) that have been defined to describe process dynamics [7], ETC remains the

most effective indicator for our purposes. In the following, we apply the previous

concepts to a one and multi-layered cases. The ETC is defined and computed for

both systems.

3 A One-Layer Model for TDD

Let us consider a TDD system, where the skin is modeled as a planar membrane in

contact with an infinite reservoir (i.e., constant drug concentration) and a receiver

chamber. Because most of the mass transfer occurs along the direction normal to

the skin surface, we restrict our study to a simplified 1D model. In particular, we

consider a Cartesian coordinate and draw a line pointing inwards which crosses the

vehicle and the skin. The skin surface is located at x = 0; x = x1 is the thickness of

the SC (Fig. 2). Here, diffusion is assumed to take place only in the stratum corneum

(SC) instead of the full-thickness skin, due to the formidable barrier posed by this

layer. Permeation through the SC is the rate-limiting step [8]. We use c ≈ 0 at the

SC limit x = x1 to show rapid removal of the drug from the interface between the

SC and the viable epidermis by rapid diffusion followed by absorption by the blood

vessels [20].

Iontophoretic transport
To promote TDD, an electric field is locally applied in the area where the therapeutic

agent has to be released (iontophoresis): for example, the anode is at x = 0 and the

cathode is at x = x1. Let 𝛹0 and 𝛹1 (𝛹0 > 𝛹1) be the correspondent applied potential

at the endpoints (Fig. 2). By mass conservation, the drug concentration
1

satisfies the

following equation:

1
A mass volume-averaged concentration c1(x, t) (mg∕cm3

) is considered in this chapter.
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Fig. 2 A diagram of a n-layered tissue (𝓁1,𝓁2, ...,𝓁n) with a vehicle 𝓁0. In some cases, the model

is confined to SC layer only (Sect. 3), while in a more realistic situation, it includes several layers

(Sect. 5) The 1D model is defined along the line normal to the skin surface and extends with a

sequence of n contiguous layers from the vehicle interface x0 = 0 up to the skin bound xn = L, where

capillaries sweep the drug away to the systemic circulation (sink). In iontophoresis, a difference of

potential is applied to facilitate drug penetration across the skin’s layers (figure not to scale)

𝜕c1
𝜕t

+ ∇ ⋅ J1 = 0 (6)

and the mass flux is defined by the Nernst-Planck flux equation [10]:

J1 = −D1∇c1 − u1c1∇𝜙1, (7)

where𝜙1 is the electric potential and the convective (electroosmotic) term is omitted.

Equation (7) is the generalized Fick’s first law with an additional driving force which

is proportional to the electric field. The electric mobility is related to the diffusivity

coefficient through the Einstein relation:

u1 =
D1zF
RT

, (8)

(cm2 V−1 s−1), where z ion valence, F the Faraday constant, R the gas constant, T the

absolute temperature. The boundary conditions are:

c1 = c10 at x = 0 (9)

c1 = 0 at x = x1 (10)

where c10 is related to the vehicle concentration c0 by c0 = K1
0c10 with K1

0 the reser-

voir/skin partition coefficient. The Eq. (10) arises because, in deep skin, drug is

uptaken by capillary network and is lost in the systemic circulation: we refer to this

as systemically absorbed drug.
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The initial conditions is set as:

c1(x, 0) = 0 (11)

The electric potential field

To solve Eqs. (6)–(8) in [0, x1], we first seek a solution of the Poisson equation [10]:

∇ ⋅ (𝜎1∇𝜙1) = 𝜌(x) ≃ 0
𝜙1 = 𝛹0 at x = 0 (12)

𝜙1 = 𝛹1 at x = x1

with 𝜎1( cm−1
𝛺

−1) the skin electrical conductivity and 𝜌(x) is the charge density

over the permittivity [4]. It is straightforward to verify that the exact solution of the

problem (12) is

𝜙1(x) = a1x + b1 (13)

with the expressions of a1 (V∕cm) and b1(V) given in Sect. 7.

4 Computation of the ETC for a One-Layer Skin Model

For the system described by Eqs. (6)–(11), the goal is to determine the period elapsed

before reaching a steady-state flux by first estimating the ETC. Therefore, the cumu-

lative amount of drug released at x = x1 and into the systemic circulation is also an

increasing function:

M (t) =
t

∫
0

−D
𝜕c1
𝜕x

(x1, 𝜏)d𝜏 (14)

and, by definition of a monotonic function, the time derivative of M (t) (e.g., the flux

at x = x1) does not change sign. It starts at 0 and reaches a steady-state value.

After applying the definition of the Laplace transform to c1, we get

c̄1 (x, s) =
∞

∫
0

c1 (x, t) exp (−st)dt (15)

where c̄1 (x, s) is the Laplace transform of c1 (x, t). Substituting c̄1 (x, s) into Eqs. (6)–

(7) leads to the following solution:

c̄1 (x, s) = k1 exp
⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

−
𝛾1
D1

−

√
𝛾
2
1 + 4D1s

D1

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦
+ k2 exp

⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

√
𝛾
2
1 + 4D1s

D1
−

𝛾1
D1

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

(16)
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with 𝛾1 = u1a1. Equation (16) is solved for k1 and k2 after imposing the boundary

conditions (9) and (10). These integration constants are replaced in (16) to give

c̄1 (x, s). An expression for the flux at x = x1 in terms of s gives

J1 (s) =

c10
√

𝛾
2
1 + 4D1s exp

⎡
⎢
⎢
⎢
⎢⎣

x1

(√
𝛾
2
1 + 4D1s − 𝛾1

)

2D1

⎤
⎥
⎥
⎥
⎥⎦

s

⎡
⎢
⎢
⎢⎣
exp

⎛
⎜
⎜
⎜⎝

x1
√

𝛾
2
1 + 4D1s

D1

⎞
⎟
⎟
⎟⎠

− 1
⎤
⎥
⎥
⎥⎦

(17)

The ETC, obtained from Eq. (4), and the steady-state flux are

teff =
𝛾
2
1x12

[
2csch

2
(
𝛾1x1
2D1

)
+ 1

]
− 2𝛾1D1x1 coth

(
𝛾1x1
2D1

)
− 4D2

1

2𝛾21

[
𝛾1x1 coth

(
𝛾1x1
2D1

)
− 2D1

] (18)

and

J1eq =
c10𝛾1

exp
(
𝛾1x1
D1

)
− 1

(19)

respectively. Note that

lim
𝛾1→0

teff =
7x12

60D1
lim
𝛾1→0

J1eq =
c10D1

x1

recover the expressions for the passive (simple) diffusion [7].

5 A Multi-layer Model for TDD

The skin has a typical composite structure, constituted by a sequence of contiguous

layers of different physical properties and extensions. To be more realistic, let us

generalize the previous model and consider the skin made of several layers of thick-

nesses l1, l1, ..., ln, each treated as a macroscopically homogeneous porous medium.

Therefore, a set of intervals [xi−1, xi], i = 1,… , n (xn = L) are defined (Fig. 2).

Iontophoretic transport

As in the case of the one-layer model, the concentration satisfies the following

equation:
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𝜕ci

𝜕t
+ ∇ ⋅ Ji = 0 (20)

and in each layer i the mass flux is defined by the Nernst-Planck flux equation [10]:

Ji = −Di∇ci − uici∇𝜙i, ui =
DizF
RT

, i = 1,… , n (21)

where 𝜙i is the electric potential in layer i. The boundary conditions are:

c1 = c10 at x = 0 (22)

cn = 0 at x = xn (sink condition due to the capillary washout) (23)

At the layer interfaces, we impose continuity of mass fluxes and ratio of equilibrium

concentrations equal to partition coefficients:

Ji = Ji+1 ci = Ki,i+1 ci+1 at x = xi, i = 1, 2,… , n − 1 (24)

The initial conditions are:

ci(x, 0) = 0 i = 1, 2,… , n (25)

The electric potential field

In this multi-layer model, the potential is the solution of the multiple Poisson

equations [10]:

∇ ⋅ (𝜎i∇𝜙i) = 𝜌(x) ≃ 0 i = 1,… , n
𝜙1 = 𝛹0 at x = 0 (26)

𝜙n = 𝛹1 at x = xn

with 𝜎i( cm−1
𝛺

−1) the electrical conductivities in the layer i. At the interfaces we

assume an electrically perfect contact and we impose continuity of potential and

fluxes:

− 𝜎i∇𝜙i = −𝜎i+1∇𝜙i+1 𝜙i = 𝜙i+1 at x = xi i = 1,… , n − 1
(27)

It is straightforward to verify that the exact solution of the problem (26)–(27) is

𝜙i(x) = aix + bi i = 1,… , n (28)

with the expressions of ai (V∕cm) and bi(V) are computed as in [12] (see Sect. 7).
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6 Computation of the ETC for a Multi-layer Skin Model

For simplicity, a three-layer skin model (n = 3) is studied. The governing Eqs.

(20)–(21) read:

𝜕c1
𝜕t

= D1
𝜕
2c1
𝜕x2

+ 𝜕

𝜕x

(
u1c1

𝜕𝜙1
𝜕x

)
in [0, x1] (29)

𝜕c2
𝜕t

= D2
𝜕
2c2
𝜕x2

+ 𝜕

𝜕x

(
u2c2

𝜕𝜙2
𝜕x

)
in [x1, x2] (30)

𝜕c3
𝜕t

= D3
𝜕
2c3
𝜕x2

+ 𝜕

𝜕x

(
u3c3

𝜕𝜙3
𝜕x

)
in [x2,L] (31)

The equilibrium partition relations at the boundaries are

c0 = K0,1c1 at x = 0 (32)

c1 = K1,2c2 at x = x1 (33)

c2 = K2,3c3 at x = x2 (34)

The flux continuity equations at the boundaries are

D1
𝜕c1
𝜕x

+ u1c1
𝜕𝜙1
𝜕x

= D2
𝜕c2
𝜕x

+ u2c2
𝜕𝜙2
𝜕x

at x = x1 (35)

D2
𝜕c2
𝜕x

+ u2c2
𝜕𝜙2
𝜕x

= D3
𝜕c3
𝜕x

+ u3c3
𝜕𝜙3
𝜕x

at x = x2 (36)

At the dermis/capillary interface, we have

c3 = 0 at x = L (37)

Following a method similar to the one described in Sect. 4, the Laplace transformed

concentrations are:

c̄1 (x, s) = k1 exp
⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

−
𝛾1
D1

−

√
𝛾
2
1 + 4D1s

D1

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦
+ k2 exp

⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

√
𝛾
2
1 + 4D1s

D1
−

𝛾1
D1

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

c̄2 (x, s) = k3 exp
⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

−
𝛾2
D2

−

√
𝛾
2
2 + 4D2s

D2

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦
+ k4 exp

⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

√
𝛾
2
2 + 4D2s

D2
−

𝛾2
D2

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

and

c̄3 (x, s) = k5 exp
⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

−
𝛾3
D3

−

√
𝛾
2
3 + 4D3s

D3

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦
+ k6 exp

⎡
⎢
⎢
⎢⎣

1
2

x

⎛
⎜
⎜
⎜⎝

√
𝛾
2
3 + 4D3s

D2
−

𝛾3
D3

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦
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with 𝛾1 = u1a1, 𝛾2 = u2a2 and 𝛾3 = u3a3. The integration constants ki with i = 1, ..., 6
are obtained after solving Eqs. (32)–(37) in the Laplace domain. Using these results,

expressions for ETC and the steady flux are derived at x = L. The functions are not

shown here because of page limitation, but the numerical results are given in the next

section.

7 Computational Results

To evaluate the dynamic behavior of a transdermal drug delivery, with a possible

iontophoretic enhancement, an estimate of ETC is made in the one-layer and multi-

layer model.

One-layer model

In the case where the skin is modelled by a single layer, we use the following nominal

parameters corresponding to the permeation of arginine vasopressin through hairless

rat skin [21]:

x1 = 10−3 cm D1 = 1.1 × 10−11 cm2∕s z1 = +2 (38)

With these data at hand, it results: csch
2
(
𝛾1x1
2D1

)
≈ 0 and coth

(
𝛾1x1
2D1

)
≈ −1, and

Eq. (18) reduces to:

teff ≈
𝛾
2
1x21 + 2𝛾1D1x1

−2𝛾21 (𝛾1x1 + 2D1)
≈ −1

2
x1
𝛾1

Similarly, in Eq. (19), given that exp

(
𝛾1x1
D1

)
≈ 0 , the steady flux velocity at x1

reduces to:
J1eq

c10
≈ −𝛾1

Therefore, the dependence of ETC on 𝛥𝛹 is roughly inversely linear. The steady-

state flux is quasi-linear to the DelPhi. Although the procedure yields fairly complex

expressions (Eqs. 18 and 19), in the physiological range, a simple dependence on

𝛾1 = u1a1 (see Eqs. (8) and (13)) results (Fig. 3).

Multi-layer model

Here, the skin is assumed to be composed of three main layers, the SC, the viable

epidermis, and the dermis (Fig. 4). The model parameters are given in Table 1. In

the absence of direct measurements, indirect data are inferred from previous studies

in literature [22, 23]. Diffusivities depend on the type and size of the transported

molecules and are affected of a high degree of uncertainty. Representative values of

partition coefficients are listed [21, 24]. The K2,3 value of 1.0 was selected because
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Fig. 3 The near-linear inverse dependence of ETC and the quasi-linear dependence for steady flux

J1eq∕c10 on 𝛥𝛹 (case one-layer). A similar trend is reported for varying D1, at a fixed 𝛥𝛹

Fig. 4 A schematic section

representing the three-layer

model (figure not to scale)

Table 1 The parameters used in the simulations for the three-layer model

— Stratum corneum (SC) (1) Viable epidermis (2) Dermis (3)

li = xi − xi−1 (cm) 1.75 × 10−3 3.5 × 10−3 0.11
Di (cm2∕s) 10−10 10−7 10−7

𝜎i (S∕cm) 10−7 10−4 10−4

Ki−1,i 0.01 2.2 1.0
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Table 2 The ETC and steady flux as a function of different currents with D1 = 10−11 cm2∕s,D2 =
10−7 cm2∕s,D3 = 10−7 cm2∕s
𝛥𝛹 (V) a1∕a2∕a3 (V∕cm) ETC(s) J1eq∕c10 (cm∕s)
0 0∕0∕0 5.41 × 104 5.71 × 10−7

1.0 −538.1∕ − 0.54∕ − 0.54 3.89 × 104 2.08 × 10−5

1.5 −807.2∕ − 0.81∕ − 0.81 1.22 × 104 3.12 × 10−5

1.7 −914.8∕ − 0.91∕ − 0.91 8.00 × 103 3.54 × 10−5

2.0 −1076.3∕ − 1.08∕ − 1.08 4.10 × 103 4.16 × 10−5

Table 3 The ETC and steady flux as a function of different diffusivities with 𝛥𝛹 = 1.0V
D1 (cm2s−1) D2 (cm2s−1) D3 (cm2s−1) ETC(s) J1eq∕c10 (cm∕s)
10−11 10−7 10−7 3.89 × 104 2.08 × 10−5

2.0 × 10−11 2.0 × 10−7 2.0 × 10−7 1.94 × 104 4.16 × 10−5

3.0 × 10−11 3.0 × 10−7 3.0 × 10−7 1.30 × 104 6.25 × 10−5

4.0 × 10−11 4.0 × 10−7 4.0 × 10−7 9.73 × 103 8.33 × 10−5

the viable epidermis is usually treated as an aqueous tissue nearly equivalent to the

dermis [25]. The coefficients ai of the potential 𝜙i in Eq. (28) have the following

expressions:

a1 = −
𝛥𝛹𝜎2𝜎3

G
a2 = −

𝛥𝛹𝜎1𝜎3
G

a3 = −
𝛥𝛹𝜎1𝜎2

G

where G = l3𝜎1𝜎2 + l1𝜎3(𝜎2 − 𝜎1) + l2𝜎1(𝜎3 − 𝜎2) and 𝛥𝛹 = 𝛹0 − 𝛹1.

The results are shown in Tables 2 and 3. As in the one-layer case, an electrical

current—as well as increasing layer diffusivities—promotes a more effective release

and enhances the drug flux in a nearly linear way, leading a reduced ETC. Never-

theless, since the thicknesses and compositions of the tissues are different in the

one- and three-layer cases, the numerical values of ETC and flux are not directly

comparable.

Although the model parameters are subject to some degree of uncertainty, esti-

mation of the ETC is an important tool that can be applied for the successful release

of new molecules and the improved delivery of conventional drugs.

8 Conclusions

The dynamic behavior of a finite physical system can often be described by a

single relaxation time constant. In this chapter we have defined such an effective

time constant as a design tool for transdermal drug release, possibly enhanced

by iontophoresis. As a single index of release performance, the ETC has the advan-



The Choice of a Performance Indicator of Release . . . 63

tage that it can be evaluated from Laplace transforms without the need of explicit

inversions, and can be used to describe the different effective speeds of relaxation of

an extended system. Although closed-form expressions of ETC are not always easy

to obtain and analyze, ETC has been derived and computed for two case studies:

the transdermal drug delivery in one-layer and multi-layer models, with convection

terms present in the case of electrically-assisted release.
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Cardiovascular Medicine



Multiscale Multiphysic Approaches
in Vascular Hemodynamics

Michael Neidlin, Tim A.S. Kaufmann, Ulrich Steinseifer
and Thomas Schmitz-Rode

Abstract Vascular hemodynamics are an important part of many medical and
engineering applications. The advances in imaging technologies, modeling methods
and the increasing computational power allow for sophisticated in-depth studies of
the fluid dynamical behavior of blood. The integration of patient-specific geome-
tries, the consideration of dynamical boundary conditions and the interaction
between fluid and solid structures play the major role in all numerical modeling
frameworks. The following chapter gives a brief summary on each of these topics
providing a concise guideline for the interested modeler. In the end three appli-
cations are provided. Studies on Fluid-Structure-Interaction in the aortic arch,
multiscale CFD simulations of heart support and the vascular hemodynamics in the
cerebral arteries (Circle of Willis) are shown. The cases are chosen to emphasize the
emerging complexity of fluid dynamics in biological systems and the methods to
tackle these obstacles.

1 Introduction

The fluid mechanics of blood play a major role in many problems of biomedical
engineering. Medical devices such as stents, heart valves and pumps are in constant
contact with blood and therefore need to be carefully designed with respect to their
influence on the flow field. Another important question is the blood flow through
parts of the human vascular system. Hereby the interaction with these devices may
be of interest. Further on, investigations of various physiological and pathological
scenarios increases the understanding of the underlying mechanisms and ultimately
help improving the clinical outcome.

From the numerical modeling viewpoint there are several aspects which need to
be considered. First of all, the investigated geometries are rather complex and
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exhibit high variability. As patient specific considerations gain more and more
importance, (non-invasive) imaging techniques need to be incorporated in the
model creation process. Secondly, boundary conditions need to be defined carefully
with respect to the cardiovascular system as a whole. Finally, vessel elasticity and
wall movement address the need of fluid-structure interaction (FSI) simulations.

This book chapter gives a concise overview of the current methods and chal-
lenges in the field of vascular hemodynamics with a focus on clinical application. It
should be seen as a starting point for a numerical modeler interested in these
scientific questions. The explanations do not claim to be exhaustive. In the second
part, some examples of these methods are presented.

2 Geometry Creation and General Simulation Settings

As stated in the introduction, patient specificity is of course defined by the input data of
the geometric anatomy. Non-invasive imaging techniques such as magnetic reso-
nance imaging (MRI) and computer tomography (CT) are the common data sources.
The geometry is created by surface reconstruction from these grayscale images.
Semi-automated processes as region growing algorithms increase the model creation
speed. Some exemplary applications can be found in [1, 7–9]. However the error
probability can be quiet high in low-resolution imaging or the visualization ofmoving
objects like heart valves. Feedback from clinicians at this stage can omit unrealistic
geometrical representations and improve the meaningfulness of the acquired results.

After model creation the meshing is usually done by unstructured tetrahedral
elements. As wall shear stress plays a major role in almost all clinical questions, the
boundary layer needs to be carefully represented by prismatic elements. The
shear-thinning behavior of blood can be expressed by the appropriate material
models (Power-law, Carreau-model etc.). However, these phenomenological models
are based on experimental data. Especially in the low shear regime <5 s−1 the model
predictions show limitations. An a priori estimation of the shear rates can help to
judge whether a non-Newtonian blood model is necessary. At last, turbulent effects
need to be considered in the simulations. Comparison of a peak Reynolds number
with a critical Reynolds number (Eq. 1) is a possible approach Peacock et al. [14]

Repeak, c =169α0.83St − 0.27 ð1Þ

With α as the Womersley number and St as the Strouhal number. In case of
turbulence the Shear Stress Transport model is a common RANS description.
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3 Boundary Conditions

As we are only able to consider a selected region of interest of the cardiovascular
system, regarding its pathological-anatomical specific features, (mostly a piece of
the bigger sized arteries or veins), the question arises how to include the remaining
part of the circulation.

Figure 1 shows the 3-D model of the aortic arch embedded in the entire car-
diovascular system. It is evident, that one should try and model the system as a
closed-loop to get a realistic simulation. With a multiscale description it is possible
to solve this problem. At first, we model the entire cardiovascular circulation as a
0-D lumped parameter (LP) network leading to a system of ordinary differential
equations (ODE). Then the ODEs are coupled to the fluid solver to combine the
high resolution of computational fluid dynamics (CFD) with the overall dynamical
behavior. The final model is adaptable to patient specific measurements of pressures
and flows in the various parts of the cardiovascular system. Further on pathologies
like valve insufficiencies, hypertension or diminished autoregulation capabilities
can be represented by adjustments of the lumped parameters.

Fig. 1 Aortic arch in a
simplified model of the
cardiovascular system
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3.1 Lumped Parameter Modeling

Basically LP modeling uses elements of hydraulic circuits such as resistances,
capacitors and inductances to express the flow resistance, the vessel compliance and
the inertance of the blood. The so-called Windkessel models describe the combi-
nation of these elements to express the pressure/flow relationship of an elastic
vessel segment. There has been extensive research on Windkessel modeling and on
LP modeling of the cardiovascular system [4, 10, 13, 17]. The reader is referred to
these works for more information.

A very simple case, a resistance with a capacitor (two-element Windkessel), is
presented in Eqs. 2a and 2b:

Qout =
pi − pi+1

Ri
ð2aÞ

dpi
dt

=
Qin −Qout

Ci
ð2bÞ

Qin and Qout are the incoming and outgoing flows into the compartment i (Ri and
Ci). pi and pi+1 are the pressures of the corresponding and the downstream com-
partment, respectively. This procedure is repeated for every block of the cardio-
vascular circulation, until there is a coupled system of ODEs. Elements as valves,
cardiac chambers and coronary arteries have more sophisticated descriptions than
Eqs. 2a and 2b. Again [10] give a thorough explanation.

3.2 0-D/3-D Coupling

The coupling between LP and CFD is achieved with the consolidated approach
from [12] by an interchange of flows (CFD) and pressures (LP) at the boundary
faces. At each timestep the flows Qi across the boundaries are calculated by the
CFD solver and serve as the input for the LP model. The ODE system is solved and
the interface pressures are imposed as uniformly distributed pressure boundary
conditions in the CFD solver.

4 Fluid-Structure-Interaction

There are mainly two approaches to perform a two-way coupled FSI simulation, the
monolithic and the partitioned approach. The monolithic approach solves the fluid
and solid domain simultaneously within the same solver and thus by using one set
of equations, resulting in relatively stable simulations. The downside is the rather
complicated formulation of the equations.
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The second approach for FSI simulations is the partitioned approach, in which
the fluid and solid domain are solved separately with two different solvers and the
information between both systems is transferred through a domain interface.
The CFD solver calculates the solution of the fluid domain and thereby also the load
on the fluid-solid interface. The structural solver receives the load and calculates the
displacement of the vessel wall, which is transferred back to the fluid domain. This
procedure is one iteration loop and is repeated until the loading and the displace-
ment are converged. The main challenge is the instability of the simulations due to
the explicit nature of the fluid and structural iterations.

This means that displacements of the interface are not included in the fluid
domain and the fluid pressures are not considered in the structural domain during
each stagger iteration [3, 16]. After each iteration loop the differences of the cal-
culated interface displacements lead to large pressure gradients in the incompressible
fluid domain and destabilize the computations. This is known as the “artificial
added-mass instability” [2, 6, 11] and can occur in fluid-structure interactions of an
incompressible fluid with a slender flexible structure.

To overcome this obstacle the interface artificial compressibility method, which
has been introduced byDegroote et al. [3] can be applied.Hereby, an additional source
term in the continuity equations for elements adjacent to the interface imitates the
structural displacement and dampens out the arising disturbances. With progressing
iteration loops the displacement differences vanish and both solvers converge. The
choice of an appropriate time step is critical to achieve a stable coupling scheme and
two contrasting factors need to be considered. First of all, the time step has to be small
enough to limit the fluid pressure changes. Secondly, and counterintuitively, the
“artificial added-mass instability” increases with a decreasing time step.

As the displacements of the interface deform the elements in the fluid domain,
changes in mesh quality need to be considered. A possibility to maintain high mesh
quality and prevent folding of mesh elements is to adapt the mesh stiffness (or mesh
diffusivity) such that the deformation is compensated by less skewed elements.
Another approach is adaptive remeshing of highly deformed mesh regions. This
numerically expensive option should only be considered if the deformations are too
high to be compensated by an increase of mesh stiffness.

4.1 0-D/3-D Coupling of FSI Simulations

The coupling of an LP network to the FSI domain works with the same procedure as
for the CFD domain. One additional aspect is the reflection of pressure waves and the
unrealistic structural deformations [5, 15]. As a solution an additional resistance
representing the characteristic impedance of the truncated artery can be included in the
LP network. With this modification the incoming pressure wave is absorbed at the
3-D/0-D interface. The characteristic impedance can be calculated from geometrical
dimensions (inertance L) and material properties (compliance C) according to Eq. 3:
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Zc =

ffiffiffiffi

L
C

r

ð3Þ

5 Examples

5.1 An FSI Model of Cardiopulmonary Bypass
with Cerebral Autoregulation

Neurological complications often occur during cardiopulmonary bypass (CPB).
Hypoperfusion of brain tissue due to diminished cerebral autoregulation (CA),
atherosclerotic disease and consecutive thromboembolism reduce the cerebral
oxygen supply and increase the risk of perioperative stroke. To improve the out-
come of cardiac surgery, patient-specific FSI models can be used to investigate the
blood flow during CPB. In this study, a computational model of CPB which
includes cerebral autoregulation and movement of aortic walls on the basis of
in vivo measurements is established.

First, the Baroreflex mechanism, which plays a leading role in CA, is represented
with a 0-D control circuit. The model parameters are assessed with respect to their
physiological meaning and their influence on the cerebral blood flow (CBF).
Pathologies like hypertension or impaired autoregulation can be expressed by the
adjustment of the parameters. Further on, the effect of drugs on the static and
dynamic behavior of the Baroreflex can be reproduced.

Additionally a two-way coupled fluid-structure interaction (FSI) model with CA is
set up. Thewall shear stress (WSS) distribution is computed for the whole FSI domain
and a comparison to rigid wall CFD is made. Constant flow and pulsatile flow CPB is
considered.

Rigid wall CFD delivers higher wall shear stress values than FSI simulations,
especially during pulsatile perfusion. The flow rates through the supraaortic vessels
are almost not affected, if considered as percentages of total cannula output. The
developed multiphysic multiscale framework (Fig. 2) allows deeper insights into
the underlying mechanisms during CPB on a patient-specific basis.

5.2 A CFD Model of VAD Support Using Closed-Loop
Multiscale Simulations to Evaluate Various
Cannulation Strategies

Left ventricular assist devices (LVADs) are a common therapy for end-stage heart
failure patients. As the heart cannot supply enough blood into the systemic circu-
lation, a blood pump is put in parallel to the left ventricle to unload the heart and
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increase the blood flow. One open question investigates the positioning of the
outflow cannula in the aortic arch. Several techniques as ascending or descending
aortic grafting exist, which have an influence on the hemodynamics in the aortic
arch and on the therapy outcome. A CFD model which takes the patient specific
variability and the interaction between cardiac function and pump speed needs an
addition of a lumped parameter model to the 3-D domain.

The cardiovascular system is divided into twelve compartments describing the
systemic and pulmonary circulation, the four heart chambers and the coronary
arteries. Further on, the VAD is modeled as a pressure and rotational speed
dependent flow source. The entire model with exemplary results is shown in Fig. 3.

Physiological non-heart failure (NHF) and pathological heart failure (HF) con-
ditions can be set by decreasing the elastance of the left ventricle. The effect is seen
in the left ventricular pressure-volume loop. Reduced elastance decreases the stroke
volume and the aortic pressure from 120/80 mmHg to 80/60 mmHg. VAD support

Fig. 2 0-D model of cerebral autoregulation coupled to a 3-D FSI model of the aortic arch.
Streamlines and wall shear stress distribution during cardiopulmonary bypass
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(in constant flow full support conditions) reduces the ventricular afterload and
pulsatility and increases the blood flow from 3 l/min to 5 l/min (results not shown).
This behavior has also been observed in several in vitro and in vivo studies. With
this numerical framework the position of the outflow cannula can be varied to see
its effect on the hemodynamics in the aortic arch.

5.3 A Numerical Framework to Investigate Hemodynamics
During Endovascular Mechanical Recanalization
in Acute Stroke

Ischemic stroke, caused by embolism of cerebral vessels is accompanied by high
morbidity and mortality. Endovascular aspiration of the blood clot is an interven-
tional technique for the recanalization of the occluded arteries. However, the
hemodynamics in the Circle of Willis (CoW) is not completely understood, which
results in medical misjudgment and complications during surgical intervention. In
this study a multiscale description of cerebral hemodynamics during aspiration
thrombectomy is established.

First, the CoW is modeled as a 1-D pipe network on the basis of CT angiography
(CTA) scans and different vascular configurations are investigated regarding the
overall flow distribution in the arterial network (Fig. 4, center)

Fig. 3 Left multiscale model of aortic flow during VAD support. Right Left ventricular pV-loop
during physiologic (blue), pathologic (red) and LVAD full support (yellow)
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Afterwards, a vascular occlusion is placed in the middle cerebral artery and the
relevant section of the CoW is transferred to a 3-D computational fluid dynamic
(CFD) domain. A suction catheter in different positions is included in the CFD
simulations. The boundary conditions of the 3-D domain are taken from the 1-D
domain to ensure system coupling. An Eulerian-Eulerian multiphase simulation
describes the process of thrombus aspiration (Fig. 4, right).

The physiological blood flow in the 1-D and 3-D domain is validated with
literature data. Further on, it is proven that domain reduction and pressure coupling
at the boundaries is an appropriate method to reduce computational costs.

6 Conclusion

Vascular hemodynamics play an important role in many research areas of
biomedical engineering. The presented methodology can of course be extended to
other problems. As patient-specific models play an important role in current
investigations, the behavior of the entire system should be taken into account. With
a combination of lumped parameter and 3-D models it is now not only possible to
look beyond one patient condition (geometry A with boundary conditions B), but to
cover several scenarios which include different pathologies, the effect of medication
and the remodeling of the system. Multiple projects which deal with patient cohort
measurements can serve as a valuable source to combine the different scales of
numerical modeling to draw to new and insightful conclusions. As computational
power increases multiphysic approaches, which are right now still numerically
expensive, will become increasingly important.

Fig. 4 1-D/3-D representation of aspirational thrombectomy. Geometry extraction (left), 1-D
model (center), 3-D multiphase thrombus aspiration (right)
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Heart Valve Flow Computation
with the Space–Time Slip Interface
Topology Change (ST-SI-TC) Method
and Isogeometric Analysis (IGA)
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and Takafumi Sasaki

Abstract We present a heart valve flow computation with the Space–Time Slip

Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA).

The computation is for a realistic heart valve model with actual contact between

the valve leaflets. The ST-SI-TC method integrates the ST-SI and ST-TC methods

in the framework of the ST Variational Multiscale (ST-VMS) method. The ST-

VMS method functions as a moving-mesh method, which maintains high-resolution

boundary layer representation near the solid surfaces. The ST-TC method was intro-

duced for moving-mesh computation of flow problems with TC, such as contact

between the leaflets of a heart valve. It deals with the contact while maintaining high-

resolution representation near the leaflet surfaces. The ST-SI method was originally

introduced to addresses the challenge involved in high-resolution representation of

the boundary layers near spinning solid surfaces. The mesh covering a spinning solid

surface spins with it, and the SI between that mesh and the rest of the mesh accu-

rately connects the two sides. This maintains the high-resolution representation near

solid surfaces. In the context of heart valves, the SI connects the sectors of meshes

containing the leaflets, enabling a more effective mesh moving. In that context, the

ST-SI-TC method enables high-resolution representation even when the contact is

between leaflets that are covered by meshes with SI. It also enables dealing with

contact location change or contact and sliding on the SI. With IGA, in addition to

having a more accurate representation of the surfaces and increased accuracy in the

flow solution, the element density in the narrow spaces near the contact areas is kept

at a reasonable level. Furthermore, because the flow representation in the contact

area has a wider support in IGA, the flow computation method becomes more robust.

The computation we present for an aortic-valve model shows the effectiveness of the

ST-SI-TC-IGA method.
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1 Introduction

Heart valve flow computation is challenging because it requires accurate represen-

tation of boundary layers near moving solid surfaces, including the valve leaflet sur-

faces, even when the leaflets come into contact. In computation of flows with moving

boundaries and interfaces (MBI), accurate representation of boundary layers near

moving solid surfaces requires moving-mesh (interface-tracking) methods, where

the fluid mesh moves to follow (track) the fluid–solid interfaces, enabling us to con-

trol the mesh resolution near the interface and have high-resolution representation

of the boundary layers.

The Space–Time Variational Multiscale (ST-VMS) method [1, 2], which is the

core computational method we are using here in addressing the challenges of heart

valve flow computation, is a moving-mesh method. It was introduced mainly for

fluid–structure interactions (FSI) and, in a more general context, for MBI. It is the

VMS version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method

[3–5], with the VMS components coming from the residual-based VMS (RBVMS)

method [6–9]. The stabilization components of the original DSD/SST method are the

Streamline-Upwind/Petrov-Galerkin (SUPG) [10] and Pressure-Stabilizing/Petrov-

Galerkin (PSPG) [3] stabilizations, and for that the method is also called “ST-SUPS.”

Functionally, the ST-VMS method can be seen as an augmented version of the ST-

SUPS method, with two additional stabilization terms beyond the three of the ST-

SUPS method, or the ST-SUPS method can be seen as a reduced version of the

ST-VMS method.

The ALE-VMS method [11, 12], first presented in [13], is the VMS version of the

Arbitrary Lagrangian–Eulerian (ALE) finite element method [14], which is a more

commonly used moving-mesh method. The RBVMS and ALE-VMS methods have

been successfully used for different types of FSI, MBI and fluid mechanics problems

(see, for example, [12, 13, 15–39]).

The ST-SUPS and ST-VMS methods have also been successfully used for dif-

ferent classes of FSI, MBI and fluid mechanics problems. The classes of problems

include spacecraft parachute FSI [24, 40–44], wind-turbine aerodynamics [20, 24,

28, 40, 45–49], flapping-wing aerodynamics [24, 40, 48, 50–56], cardiovascular

fluid mechanics [40, 48, 54, 57–61], spacecraft aerodynamics [62, 63], thermo-fluid

analysis of ground vehicles and their tires [64], thermo-fluid analysis of disk brakes

[65], flow-driven string dynamics in turbomachinery [66], flow analysis of the tur-

bine part of a turbocharger [67], flow around a tire with road contact and deformation

[68], and ram-air parachutes [69].

The challenges associated with using a moving-mesh method in a heart valve flow

computation even when the valve leaflets come into contact and create a topology

change (TC) in the fluid mechanics domain is addressed with the ST-TC method. The

method was introduced in [54]. Even before the ST-TC method, the ST-SUPS and

ST-VMS methods, when used with robust mesh update methods, have been proven

effective in flow computations where the solid surfaces are in near contact or cre-

ate other near TC, if the “nearness” is sufficiently “near” for the purpose of solving
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the problem. For examples of such computations, see the references mentioned in

[54]. Flow computation of heart valves, however, is an example of the class of com-

putations where the “nearness” that can be modeled with a moving-mesh method

without actually bringing the surfaces into contact might not be “near” enough. That

is because an actual contact is required for blocking the flow when the valve closes.

The Fluid–Solid Interface-Tracking/Interface-Capturing Technique (FSITICT) [70]

was motivated by that class of problems. In the FSITICT, we track the interfaces

wherever and whenever we can with a moving mesh, and capture over that moving

mesh the interfaces we cannot track, specifically the interfaces where and when we

need to have an actual contact between the solid surfaces. As commented in [61],

essentially, the FSITICT is based on giving up on the interface-tracking accuracy in

the parts of the domain where and when we expect an actual contact. The FSITICT

has been successfully extended in [33] to 3D FSI computation of a bioprosthetic

heart valve. In that case the interface-tracking technique was the ALE-VMS method,

and the interface-capturing technique was a variational immersed-boundary method,

later referred to as the Immersogeometric method in [71].

The ST-TC method does not give up on interface-tracking (moving-mesh) accu-

racy even when there is an actual contact between solid surfaces or other TC. It can

handle an actual TC while maintaining high-resolution boundary layer representa-

tion near solid surfaces. The ST-TC method is based on special mesh generation and

update, and a master–slave system that maintains the connectivity of the “parent”

mesh when there is a TC. The ST-TC method has been successfully applied to 3D

computational analysis of heart valve models [61] and wing clapping [56].

Considering that heart valve flow computations involve a high level of geometric

complexity, it is desirable to have a good level of freedom in mesh generation and

mesh moving. This is accomplished with the ST Slip Interface (ST-SI) method [49].

The method was originally introduced to retain the desirable moving-mesh features

of the ST-VMS method when we have spinning solid surfaces, such as a wind-turbine

rotor. With the ST-SI method, the mesh covering the spinning solid surface spins with

it and we maintain the high-resolution representation of the boundary layers. Earlier

methods to accomplish that objective in the ST framework were the Shear–Slip Mesh

Update Method (SSMUM) [72–74], which was introduced in [72, 73] and named

“SSMUM” in [74], and the ST/NURBS Mesh Update Method (STNMUM), which

was introduced in [50–52] and named “STNMUM” in [47]. In the ST-SI method

NURBS basis functions can be used for the temporal representation of the spinning

motion. With the spinning motion represented by quadratic temporal NURBS basis

functions, and with sufficient number of temporal patches for a full rotation, the

circular paths associated with the spinning motion can be represented exactly. An

added “secondary mapping” [1, 2, 24, 50] enables also specifying a constant angular

velocity corresponding to the invariant speeds along those paths. For more on how

the ST-SI method compares to the two earlier methods, see [68].
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The starting point in the development of the ST-SI method was the version of

the ALE-VMS method designed for computations with “sliding interfaces” [23, 75].

This ALE-VMS version has been used successfully in a number of computations with

spinning solid surfaces [23, 26, 29, 30, 75]. In the ST-SI method, interface terms

similar to those in the ALE-VMS version are added to the ST-VMS formulation to

account for the compatibility conditions for the velocity and stress. That way, the SI

between the spinning mesh and the rest of the mesh accurately connects the two sides.

While having high-resolution representation of the boundary layers near a spinning

solid surface, by using NURBS functions in temporal representation of the spinning

motion, the ST-SI method has exact representation of the circular paths associated

with the spinning. The ST-SI method has been successfully applied to aerodynamic

analysis of vertical-axis wind turbines [49], thermo-fluid analysis of disk brakes [65],

flow-driven string dynamics in turbomachinery [66], and flow analysis for the turbine

part of a turbocharger [67]. In the context of heart valves, the SI connects the sectors

of meshes containing the leaflets, enabling a more effective mesh moving.

The “ST-SI-TC” method, introduced in [68], integrates the ST-SI and ST-TC

methods in the ST-VMS framework. The initial target was to enable accurate flow

analysis when we have a spinning solid surface that is in contact with a solid surface.

In that context, the ST-SI-TC method was successfully applied to flow around a tire

with road contact and deformation [68]. In the context of heart valves, the ST-SI-

TC method enables high-resolution representation of boundary layers even when the

contact is between leaflets that are in mesh sectors connected by SIs. It also enables

dealing with contact location change or contact and sliding on the SI, which of course

can also be encountered in the context of spinning solid surfaces.

The RBVMS test computations in [8] with the Isogeometric Analysis (IGA) [15]

showed that using quadratic or cubic NURBS basis functions in space significantly

improves the solution accuracy compared to the finite element analysis with trilinear

basis functions. Computations with the ST-VMS method and ST-IGA (with NURBS

basis functions in space) were first reported in [1] in a 2D context. The ST-IGA

method has been successfully applied to flow analysis of the turbine part of a tur-

bocharger [67] and ram-air parachutes [69]. In this paper, we integrate the ST-SI-TC

and ST-IGA methods. The “ST-SI-TC-IGA” method, beyond enabling a more accu-

rate representation of the surfaces and increased accuracy in the flow solution, keeps

the element density in the narrow spaces near the contact areas at a reasonable level.

When solid surfaces come into contact, the elements between the surface and the

SI collapse. Before the elements collapse, the boundaries could be curved and rather

complex, and the narrow space might have high-aspect-ratio elements. With NURBS

elements, we can deal with such adverse conditions rather effectively. Furthermore,

because the flow representation in the contact area has a wider support in IGA, the

flow computation method becomes more robust.

In Sect. 2 we describe the ST-VMS and ST-SI formulations. The ST-SI-TC-IGA

method is described in Sect. 3. A heart-valve flow computation with an aortic-valve

model is presented in Sect. 4, and the concluding remarks are given in Sect. 5.
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2 ST-VMS and ST-SI Formulations

In this section, we include from [49] the ST-VMS and ST-SI formulations.

2.1 ST-VMS Formulation

The ST-VMS formulation is given as

∫Qn

𝐰h ⋅ 𝜌
(
𝜕𝐮h
𝜕t

+ 𝐮h ⋅∇∇∇𝐮h − 𝐟h
)
dQ + ∫Qn

𝜀𝜀𝜀(𝐰h) ∶ 𝜎𝜎𝜎(𝐮h, ph)dQ

− ∫(Pn)h
𝐰h ⋅ 𝐡hdP + ∫Qn

qh∇∇∇ ⋅ 𝐮hdQ + ∫
𝛺n

(𝐰h)+n ⋅ 𝜌
(
(𝐮h)+n − (𝐮h)−n

)
d𝛺

+
(nel)n∑
e=1

∫Qe
n

𝜏SUPS
𝜌

[
𝜌

(
𝜕𝐰h

𝜕t
+ 𝐮h ⋅∇∇∇𝐰h

)
+∇∇∇qh

]
⋅ 𝐫M(𝐮h, ph)dQ

+
(nel)n∑
e=1

∫Qe
n

𝜈LSIC∇∇∇ ⋅ 𝐰h
𝜌rC(𝐮h)dQ

−
(nel)n∑
e=1

∫Qe
n

𝜏SUPS𝐰h ⋅
(
𝐫M(𝐮h, ph) ⋅∇∇∇𝐮h

)
dQ

−
(nel)n∑
e=1

∫Qe
n

𝜏
2
SUPS
𝜌

𝐫M(𝐮h, ph) ⋅
(
∇∇∇𝐰h) ⋅ 𝐫M(𝐮h, ph)dQ

= 0, (1)

where

𝐫M(𝐮h, ph) = 𝜌

(
𝜕𝐮h
𝜕t

+ 𝐮h ⋅∇∇∇𝐮h − 𝐟h
)
−∇∇∇ ⋅ 𝜎𝜎𝜎(𝐮h, ph), (2)

rC(𝐮h) = ∇∇∇ ⋅ 𝐮h (3)

are the residuals of the momentum equation and incompressibility constraint. Here,

𝜌, 𝐮, p, 𝐟 , 𝜎𝜎𝜎, 𝜀𝜀𝜀, and 𝐡 are the density, velocity, pressure, external force, stress tensor,

strain rate tensor, and the traction specified at the boundary. The test functions asso-

ciated with the velocity and pressure are 𝐰 and q. A superscript “h” indicates that

the function is coming from a finite-dimensional space. The symbol Qn represents

the ST slice between time levels n and n + 1,
(
Pn

)
h is the part of the lateral boundary

of that slice associated with the traction boundary condition 𝐡, and 𝛺n is the spatial

domain at time level n. The superscript “e” is the ST element counter, and nel is the

number of ST elements. The functions are discontinuous in time at each time level,
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and the superscripts “−” and “+” indicate the values of the functions just below

and just above the time level. There are various ways of defining the stabilization

parameters 𝜏SUPS and 𝜈LSIC. See [4, 5, 47, 49, 64] for the stabilization parameter

definitions used here. For more ways of calculating the stabilization parameters in

finite element computation of flow problems, see [76–97].

The expression for 𝐫M(𝐮h, ph) includes second derivatives of the velocity. For lin-

ear basis functions these terms vanish, and for bilinear and trilinear basis functions

they are very much underrepresented. This means that 𝐫M(𝐮h, ph) does not explic-

itly depend on the Reynolds number. When we use quadratic or higher-order basis

functions, on the other hand, the term is nonzero and therefore explicit dependence

of the residual on the Reynolds number is taken into account.

2.2 ST-SI Formulation

2.2.1 Two-Side Formulation

We use the labels “Side A” and “Side B” to represent the two sides of the SI. In the

ST-SI formulation, we add boundary terms to Eq. (1). The boundary terms for the

two sides are first added separately, using test functions 𝐰h
A and qhA and 𝐰h

B and qhB.

Then, putting together the terms added to each side, the complete set of terms added

becomes

− ∫(Pn)SI

(
qhB𝐧B − qhA𝐧A

)
⋅
1
2
(
𝐮hB − 𝐮hA

)
dP

− ∫(Pn)SI
𝜌𝐰h

B ⋅
1
2

((h
B − |||h

B
|||
)
𝐮hB −

(h
B − |||h

B
|||
)
𝐮hA

)
dP

− ∫(Pn)SI
𝜌𝐰h

A ⋅
1
2

((h
A − |||h

A
|||
)
𝐮hA −

(h
A − |||h

A
|||
)
𝐮hB

)
dP

+ ∫(Pn)SI

(
𝐧B ⋅ 𝐰h

B + 𝐧A ⋅ 𝐰h
A
) 1
2
(
phB + phA

)
dP

− ∫(Pn)SI

(
𝐰h

B − 𝐰h
A
)
⋅
(
�̂�B ⋅ 𝜇

(
𝜀𝜀𝜀(𝐮hB) + 𝜀𝜀𝜀(𝐮hA)

))
dP

− 𝛾 ∫(Pn)SI
�̂�B ⋅ 𝜇

(
𝜀𝜀𝜀

(
𝐰h

B
)
+ 𝜀𝜀𝜀

(
𝐰h

A
))

⋅
(
𝐮hB − 𝐮hA

)
dP

+ ∫(Pn)SI

𝜇C
h

(
𝐰h

B − 𝐰h
A
)
⋅
(
𝐮hB − 𝐮hA

)
dP, (4)
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where

h
B = 𝐧B ⋅

(
𝐮hB − 𝐯hB

)
, (5)

h
A = 𝐧A ⋅

(
𝐮hA − 𝐯hA

)
, (6)

h =
hB + hA

2
, (7)

hB = 2

( nent∑
𝛼=1

nens∑
a=1

||𝐧B ⋅∇∇∇N𝛼

a
||
)−1

(for Side B), (8)

hA = 2

( nent∑
𝛼=1

nens∑
a=1

||𝐧A ⋅∇∇∇N𝛼

a
||
)−1

(for Side A), (9)

�̂�B =
𝐧B − 𝐧A‖‖𝐧B − 𝐧A‖‖ . (10)

Here,
(
Pn

)
SI is the SI in the ST domain, 𝐧 is the unit normal vector, 𝐯 is the mesh

velocity, nens and nent are the number of spatial and temporal element nodes, N𝛼

a is

the basis function associated with spatial and temporal nodes a and 𝛼, 𝛾 = 1, and C is

a nondimensional constant. From our experience, for our element length definition,

usually C = 1 is large enough for stability.

A number of remarks were provided in [49] to explain the added terms and to

comment on related interpretations. We refer the reader interested in those details to

[49].

Remark 1 In [49], the expression given by Eq. (7) was in the form

h = min(hB, hA). (11)

With the new form in Eq. (7), which was introduced in [68], the expression gives

zero value only if the element length is zero on both sides.

Remark 2 The ST-SI method was generalized in [68] by adding a coefficient 𝛾 to

the sixth integration so that we have the option of using 𝛾 = −1. Using 𝛾 = 1 in

a discontinuous Galerkin method was introduced in the symmetric interior penalty

Galerkin method [98], and using 𝛾 = −1was introduced in the nonsymmetric interior

penalty Galerkin method [99]. Stabilized methods based on both 𝛾 = 1 and −1 were

reported in [100] in the context of the advection–diffusion equation.

Remark 3 It was proposed in [68] to use, in general, the ST-SI method also as a

way of imposing the periodicity in ST-VMS computations with spatial periodicity,

including rotational periodicity (i.e., discrete rotational symmetry). In such cases, we

place an SI where we want to impose the periodicity and carry out the computations

while including the corresponding ST-SI terms.
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2.2.2 One-Side Formulation

On solid surfaces where we prefer to have weakly-imposed Dirichlet conditions for

the fluid [22, 100], we use the ST-SI version where the SI is between the fluid and

solid domains. This version is obtained (see [49]) by starting with the terms added to

Side B and replacing the Side A velocity with the velocity 𝐠h coming from the solid

domain. Then the terms added to Eq. (1) to represent the weakly-imposed Dirichlet

conditions become

− ∫(Pn)SI
qhB𝐧B ⋅ 𝐮hBdP − ∫(Pn)SI

𝜌𝐰h
B ⋅ h

B𝐮
h
BdP + ∫(Pn)SI

qhB𝐧B ⋅ 𝐠hdP

+ ∫(Pn)SI
𝜌𝐰h

B ⋅
1
2

((h
B + |||h

B
|||
)
𝐮hB +

(h
B − |||h

B
|||
)
𝐠h
)
dP

− ∫(Pn)SI
𝐰h

B ⋅
(
𝐧B ⋅ 𝜎𝜎𝜎h

B
)
dP − 𝛾 ∫(Pn)SI

𝐧B ⋅ 2𝜇𝜀𝜀𝜀
(
𝐰h

B
)
⋅
(
𝐮hB − 𝐠h

)
dP

+ ∫(Pn)SI

𝜇C
hB

𝐰h
B ⋅

(
𝐮hB − 𝐠h

)
dP. (12)

3 ST-SI-TC-IGA Method

We first overview the aspects of the ST-SI [49] and ST-TC [54] methods relevant to

their integration as the ST-SI-TC method [68], and then describe the advantages of

the IGA in this context and integration of all three components as the ST-SI-TC-IGA

method.

3.1 ST-SI Method

We note that the ST-SI method allows mesh slipping also in the one-side formulation,

that is, when the SI is between the fluid and solid domains where we have weakly-

imposed Dirichlet conditions. The boundary terms added to Eq. (1) to connect the

two sides and to connect the fluid to the solid in the one-side formulation were given

in Sects. 2.2.1 and 2.2.2. The added terms (see Eqs. (4) and (12)) include derivatives

in the direction normal to the SI. Therefore the elements bordering the SI need to

have finite thickness in the normal direction. This places a limitation on the meshes

that can be used with the ST-SI method because if an element bordering the interface

degenerates it might lead to a zero element thickness in the normal direction.
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3.2 ST-TC Method

The ST-TC method can deal with TC in ST moving-mesh computations. The dis-

cretization is unstructured in time, but based on a “parent” mesh that is structured in

time. The ST parent mesh is extruded from a single spatial mesh. The key technol-

ogy is massive element degeneration by using a special master–slave system. This

special system allows changing, within an ST slab, master nodes to slave nodes and

slave nodes to master nodes. With that, elements can collapse or be reborn. This

way, within an ST slab, we can represent closing and opening motions. Since an ST

method naturally allows discretizations that are unstructured in time, the rest of the

method needs no modification. The method is very flexible, and computationally as

effective as a typical moving-mesh method. However, the master–slave relationship

has to be node to node; a point on a solid surface that is not a node cannot be a master

or slave node.

3.3 ST-IGA Method

With NURBS meshes, we can represent curved boundaries with less elements com-

pared to finite element meshes. With this desirable feature, a volume can also be

meshed with high aspect ratio elements. This is particularly helpful when we need

to generate meshes in very narrow spaces.

3.4 Integration of the ST-SI, ST-TC and ST-IGA Methods

Integration of these three methods brings a number of advantages. (i) It enables high-

resolution boundary layer representation near the solid surfaces in contact even when

the surfaces are covered by meshes with SI. (ii) It enables dealing with contact loca-

tion change or contact and sliding on the SI. This overcomes the ST-TC restriction

that a point on a solid surface that is not a node cannot be a master or slave node.

(iii) When surfaces contact each other, the elements between the surface and the SI

collapse. Before the elements collapse, the boundaries could be curved and com-

plex, and the narrow space might have high-aspect-ratio elements. With NURBS

elements, we can deal with such adverse conditions rather effectively. (iv) Because

the flow representation in the contact area has a wider support in IGA, the flow com-

putation method becomes more robust.

To illustrate how the ST-SI-TC-IGA method works, we show with a 2D example

how we deal with two valve leaflets flapping and coming into contact in an asym-

metric fashion. Figure 1 shows the mesh motion, and Fig. 2 shows the corresponding

control mesh.
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Fig. 1 An example of contact and sliding (element representation). Element colors indicate the

NURBS patches the elements belong to. The thick red curves are the leaflets. The two green vertical
lines, with the narrow space between them added only for illustration purposes, represent the two

sides of an SI

Remark 4 As can be seen in Fig. 1, we have high-aspect-ratio elements near the con-

tact region, and the NURBS elements can deal with that without mesh entanglement.

Remark 5 We allow situations where a surface from only one of the two sides coin-

cides with the SI. This gives us the freedom of the two sides of the SI having their

own master–slave relationships. For the surface that coincides with the SI, the SI

serves the purpose of enforcing the weak Dirichlet condition.
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Fig. 2 An example of contact and sliding (control mesh). Shading colors indicate the NURBS

patches. The black curves represent the control-mesh surfaces corresponding to the leaflets. The

control points on the two sides of the narrow vertical gap correspond to the two sides of the SI.

When control points coincide, they are in a master–slave relationship

Remark 6 In the case of quadratic NURBS elements, three control points along each

of the two parametric directions aligned with the SI must coalesce with the corre-

sponding control points in the third direction to result in a zero-volume element (see

Fig. 2 for the 2D version of that). Unless that happens, the element is treated as an

element with nonzero volume, and the element integrations are performed using all

the integration points of the element. We also note that even if a spatial element

belonging to an ST element has zero volume, as long as the ST element has nonzero

volume, we integrate over that ST element (see [54] for details).
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4 Aortic-Valve Model

4.1 Geometry

We have a typical aortic-valve model, such as the one in [56]. The model, shown in

Fig. 3, has three leaflets and one main outlet, corresponding to the beginning of the

aorta. The leaflet motion is prescribed.

4.2 Mesh and Flow Conditions

We create the mesh with five SIs, with three of them connecting the mesh sectors

containing the leaflets in the valve region of the aorta (see Fig. 4). The other two SIs,

which are the top and bottom circular planes in Fig. 4, connect the meshes in the inlet

and outlet regions to the valve region. They are for independent meshing in the inlet

and outlet regions.

Fig. 3 Aortic-valve model

geometry. Aorta, leaflets, and

sinuses. The left picture

shows the entire

computational domain, and

the right picture is the

zoomed view of the valve
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Fig. 4 Aortic valve and the

three SIs

The volume mesh is made of quadratic NURBS elements. The number of control

points is 84,534, and the number of elements is 54,000. We prescribe the motion of

the interior control points, and specify in each domain the master–slave mapping for

all leaflet positions. Figure 5 shows a set of selected NURBS elements to illustrate

how elements collapse.

The boundary conditions are no-slip on the arterial walls and the leaflets, traction-

free at the outflow boundary, and uniform velocity at the inflow boundary, with a

temporal profile as shown in Fig. 6. The cycle period is 0.71 s. The no-slip condition

on the arterial walls is based on the weakly-imposed Dirichlet condition given by

Eq. (12).

4.3 Computational Conditions

We use the ST-SUPS method, which can obtained by dropping the last two series of

integrations in Eq. (1). The time-step size is 4.00×10−3 s. There are three nonlinear

iterations at each time step. The number of GMRES iterations per nonlinear iteration

is 300.
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Fig. 5 A set of selected

NURBS elements, from

when the valve is fully open

(top) to when it is fully

closed (bottom). The right
pictures are the zoomed

views around the leaflet
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Fig. 6 Inflow velocity (two

cycles)

4.4 Results

Figures 7 and 8 show the isosurfaces corresponding to a positive value of the second

invariant of the velocity gradient tensor, colored by the velocity magnitude.

The result shows how effectively the flow separation is captured near the leaflet

edges and the solution is obtained as the surfaces come into contact.

Remark 7 We note that there is a thin vortex sheet near the aorta wall in the second

and third pair of pictures in Fig. 8, which correspond to the fully closed positions of

the valve. That is because full blocking of the flow requires a collapsed (i.e. zero-

volume) element, which in turn requires that the control points of the element coa-

lesce as described in Remark 6, and that is not happening for the elements with two

edges on the leaflet edges and two edges on the aorta wall. In the current setting, the

control points associated with the two edges on the aorta wall cannot coalesce.

5 Concluding Remarks

We presented a heart valve flow computation with the ST-SI-TC-IGA method, which

integrates the ST-SI, ST-TC and ST-IGA methods in the framework of the ST-VMS

method. The computation was for a realistic aortic-valve model with prescribed valve

leaflet motion and actual contact between the leaflets. The ST-VMS method functions

as a moving-mesh method, which maintains high-resolution boundary layer repre-

sentation near the solid surfaces, including the leaflet surfaces. The ST-TC method

was introduced for moving-mesh computation of flow problems with TC, such as

contact between the leaflets of a heart valve. It deals with the contact while main-

taining high-resolution representation near the leaflet surfaces. The ST-SI method
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Fig. 7 Isosurfaces

corresponding to a positive

value of the second invariant

of the velocity gradient

tensor, colored by the

velocity magnitude (m/s).

The frames are for t = 0.716,

0.804, 0.892, and 0.984 s

0.5 1.0 2.5 3.0
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Fig. 8 Isosurfaces

corresponding to a positive

value of the second invariant

of the velocity gradient

tensor, colored by the

velocity magnitude (m/s).

The frames are for t = 1.072,

1.160, 1.252, and 1.340 s

0.5 1.0 2.5 3.0
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was originally introduced to addresses the challenge involved in high-resolution rep-

resentation of the boundary layers near spinning solid surfaces. The mesh covering

a spinning solid surface spins with it, and the SI between that mesh and the rest

of the mesh accurately connects the two sides. This maintains the high-resolution

representation near solid surfaces. In the context of heart valves, the ST-SI method

gives us more freedom in mesh generation and mesh moving, and that helps us deal

with the high level of geometric complexity involved. The SIs connect the sectors of

meshes containing the leaflets, enabling a more effective mesh moving. The ST-SI-

TC method enables high-resolution representation of boundary layers even when the

contact is between leaflets that are in mesh sectors connected by SIs. It also enables

dealing with contact location change or contact and sliding on the SI. With the ST-SI-

TC-IGA method, beyond having a more accurate representation of the surfaces and

increased accuracy in the flow solution, we keep the element density in the narrow

spaces near the contact areas at a reasonable level. When solid surfaces come into

contact, before the elements between the surface and the SI collapse, the boundaries

could be curved and rather complex, and the narrow space might have high-aspect-

ratio elements. The ST-SI-TC-IGA method can deal with such adverse conditions

rather effectively. In addition, because the ST-SI-TC-IGA method provides a wider

support for the flow representation in the contact area, we have a flow computation

method with increased robustness. The computation we present for the aortic-valve

model shows the effectiveness of the ST-SI-TC-IGA method.
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Estimation of Element-Based Zero-Stress
State in Arterial FSI Computations
with Isogeometric Wall Discretization

Kenji Takizawa, Tayfun E. Tezduyar and Takafumi Sasaki

Abstract In patient-specific arterial fluid–structure interaction computations the

image-based arterial geometry does not come from a zero-stress state (ZSS),

requiring an estimation of the ZSS. A method for estimation of element-based ZSS

(EBZSS) was introduced earlier in the context of finite element wall discretization.

The method has three main components. 1. An iterative method, which starts with

a calculated initial guess, is used for computing the EBZSS such that when a given

pressure load is applied, the image-based target shape is matched. 2. A method for

straight-tube segments is used for computing the EBZSS so that we match the given

diameter and longitudinal stretch in the target configuration and the “opening angle.”

3. An element-based mapping between the artery and straight-tube is extracted from

the mapping between the artery and straight-tube segments. This provides the map-

ping from the arterial configuration to the straight-tube configuration, and from the

estimated EBZSS of the straight-tube configuration back to the arterial configuration,

to be used as the initial guess for the iterative method that matches the image-based

target shape. Here we introduce the version of the EBZSS estimation method with

isogeometric wall discretization. With NURBS basis functions, we may be able to

use larger elements, consequently less number of elements, compared to linear basis

functions. Higher-order NURBS basis functions allow representation of more com-

plex shapes within an element. To show how the new EBZSS estimation method

performs, we present 2D test computations with straight-tube configurations.
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1 Introduction

In the last decade, we have seen a major expansion in computational cardiovascu-

lar fluid mechanics research (see, for example, [1–56]). Much of the emphasis has

been on computations involving moving boundaries and interfaces (MBI), including

fluid–structure interaction (FSI) between the blood flow and cardiovascular wall.

While these are challenging classes of computations, advances in core MBI and FSI

methods (see, for example, [36, 37, 47, 56–59] and references therein) and devel-

opment of special methods targeting cardiovascular MBI and FSI (see, for exam-

ple, [29, 33, 36, 46, 51] and references therein) helped address a large number of

computational challenges.

In patient-specific arterial FSI computations the image-based arterial geometry

does not come from a zero-stress state (ZSS). Special methods targeting cardiovascu-

lar MBI and FSI include those designed to take that into account. The attempt to find

a ZSS for the artery was first made in a conference paper [60], where the concept of

estimated zero-pressure (EZP) arterial geometry was introduced. The method intro-

duced in [60] for calculating an EZP geometry was also included in one of the earlier

journal papers on space–time arterial FSI methods [9] as “a rudimentary technique”

for addressing the issue. It was pointed out in [9, 60] that quite often, the image-based

geometries were used as arterial geometries corresponding to zero blood pressure,

and that it would be more realistic to use the image-based geometry as the arterial

geometry corresponding to the time-averaged value of the blood pressure. Given that

arterial geometry at the time-averaged pressure value, an estimated arterial geome-

try corresponding to zero blood pressure needed to be constructed. Special methods

developed to address the issue include the newer EZP versions [17, 26, 29, 33, 36]

and the prestress technique introduced in [24], which was further refined in [30] and

presented also in [33, 36].

A method for estimation of element-based ZSS (EBZSS) was introduced in [42] in

the context of finite element wall discretization. The method has three main compo-

nents. 1. An iterative method, which starts with a calculated initial guess, is used for

computing the EBZSS such that when a given pressure load is applied, the image-

based target shape is matched. 2. A method for straight-tube segments is used for

computing the EBZSS so that we match the given diameter and longitudinal stretch

in the target configuration and the “opening angle.” 3. An element-based mapping

between the artery and straight-tube is extracted from the mapping between the

artery and straight-tube segments. This provides the mapping from the arterial con-

figuration to the straight-tube configuration, and from the estimated EBZSS of the

straight-tube configuration back to the arterial configuration, to be used as the initial

guess for the iterative method that matches the image-based target shape. The method

was used successfully in [42] in test computations based on straight-tube configura-

tions with single and three layers, and a curved-tube configuration with single layer.

The method was used successfully also in [52] in coronary arterial dynamics com-

putations with medical-image-based time-dependent anatomical models.
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In this article, we introduce the version of the EBZSS estimation method with

isogeometric wall discretization. With NURBS basis functions, we may be able to

use larger elements, consequently less number of elements, compared to linear basis

functions. Higher-order NURBS basis functions allow representation of more com-

plex shapes within an element. To explain how the new EBZSS estimation method

works and to demonstrate how it performs, we carry out 2D test computations with

straight-tube configurations.

In Sect. 2, we describe, in the context of isogeometric discretization, the Element-

Based Total Lagrangian (EBTL) method, including the EBZSS concept. Section 3,

extracted from [42], is an overview of the analytical relationship between the ZS

and reference states of straight-tube segments, and here we call that relationship

“straight-tube ZSS template.” The test computations are presented in Sect. 4, and

the concluding remarks are given in Sect. 5.

2 Element-Based Total Lagrangian (EBTL) Method

In this section we provide an overview of the EBTL method [42], including the

EBZSS concept, and describe the version of the method with NURBS wall dis-

cretization.

Let 𝛺0 ∈ ℝ3
be the material domain of a structure in the ZSS, and let 𝛤0 be its

boundary. Let 𝛺t ∈ ℝ3
, t ∈ (0,T), be the material domain of the structure in the

deformed state, and let 𝛤t be its boundary. The structural mechanics equations based

on the total Lagrangian formulation can be written as

∫
𝛺0

𝐰 ⋅ 𝜌0
d2𝐲
dt2

d𝛺 + ∫
𝛺0

𝛿𝐄 ∶ 𝐒 d𝛺 − ∫
𝛺0

𝐰 ⋅ 𝜌0𝐟 d𝛺 = ∫(𝛤t)h
𝐰 ⋅ 𝐡 d𝛤 . (1)

Here, 𝐲 is the displacement, 𝐰 is the virtual displacement, 𝛿𝐄 is the variation of the

Green–Lagrange strain tensor, 𝐒 is the second Piola–Kirchhoff stress tensor, 𝜌0 is

the mass density in the ZSS, 𝐟 is the body force per unit mass, and 𝐡 is the external

traction vector applied on the subset
(
𝛤t
)
h of the total boundary 𝛤t.

2.1 EBZSS

In the EBTL method the ZSS is defined with a set of positions 𝐗e
0 for each element

e. Positions of nodes from different elements mapping to the same node in the mesh

do not have to be the same. In the reference state, 𝐗REF, all elements are connected

by nodes, and we measure the displacement 𝐲 from that connected state. The imple-

mentation of the method is simple. The deformation gradient tensor 𝐅 is evaluated

for each element:
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𝐅e ≡ 𝜕𝐱
𝜕𝐗e

0
, (2)

=
𝜕
(
𝐗REF + 𝐲

)

𝜕𝐗e
0

. (3)

The deformation gradient tensors for different elements are on different states, but

the terms in Eq. (1), including the second term, do not depend on the orienta-

tion. Therefore the rest of the process is the same as it is in the total Lagrangian

formulation.

2.2 NURBS Basis Functions

In representation of the EBZSS with NURBS basis functions, we may be able to

use larger and less number of elements compared to linear basis functions. Higher-

order NURBS basis functions allow representation of more complex shapes within

an element. Curvature representation requires at least quadratic NURBS, and to have

a continuous curvature, cubic or higher-order NURBS is required.

In the case of 1D parametric space, a curve segment can be represented by

NURBS as

𝐳(𝜉) =
nen∑

a=1
Ra(𝜉)𝐳a, (4)

where nen is the number of control points in the element, 𝐳a is the position of the

control point (node) a,

Ra(𝜉) =
Na(𝜉)wa

nen∑

b=1
Nb(𝜉)wb

, (5)

Na(𝜉) is the B-spline basis function for point a, and wa is the NURBS weight for

point a. An equivalent form can be obtained by using the homogeneous coordinates

[61], where 𝐳a is augmented as

𝐳wa =
[
wa𝐳a
wa

]
. (6)

With that, we represent the curve segment as

𝐳w(𝜉) =
nen∑

a=1
Na(𝜉)𝐳wa , (7)
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and

𝐳(𝜉) =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥
⎥
⎦

𝐳w(𝜉)
nen∑

a=1
Na(𝜉)wa

. (8)

The forms given by Eqs. (4) and (8) are equivalent.

As proposed in [61], we represent the B-spline basis functions with the Bernstein

basis functions Bb(𝜉):

Na(𝜉) =
nen∑

b=1
CabBb(𝜉), (9)

where Cab denotes the components of the Bézier extraction operator. See [61] for

how to obtain the operator from the B-spline knots. With that,

𝐳w(𝜉) =
nen∑

a=1

nen∑

b=1
CabBb(𝜉)𝐳wa . (10)

From that, we can first operate with Cab, and obtain the Bézier control positions as

�̂�b =
nen∑

a=1
𝐳wa Cab. (11)

The extension to multi-dimensional parametric spaces is straightforward.

Given the control position 𝐳a for a point a, the corresponding homogeneous coor-

dinates 𝐳wa , its Bézier representation �̂�a, and the Bézier extraction operator compo-

nents Cab, we move to an array notation where

𝐙 =
[
𝐳a
]
, (12)

𝐙w =
[
𝐳wa

]
, (13)

�̂� =
[
�̂�a
]
, (14)

𝐂 =
[
Cab

]
. (15)

Then, Eq. (11) can be written as

�̂� = 𝐙w𝐂. (16)

With that, the transformation from the Bézier representation to NURBS representa-

tion becomes

𝐙w = �̂�𝐂−1
. (17)
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2.3 EBZSS Representation with NURBS Basis Functions

When we are designing a ZSS, we have the corresponding reference state 𝐗REF.

Therefore we have
(
𝐗REF

)
a, wa, and the Bézier extraction operator corresponding to

the element. We obtain the homogeneous coordinates
(
𝐗REF

)w
a and then convert that

to

(
̂𝐗REF

)

a
. From that and the Bernstein basis functions, we can design the EBZSS

as

(
�̂�e

0

)

a
. For implementation convenience, we convert the control points to

(
𝐗e

0

)w
a

by using Eq. (17).

Remark 1 Although in the ZSS we could have element-based wa values, that would

in general require using different basis functions between the ZS and reference states.

Here we do not consider that option.

With the EBZSS, under a given load we would like to reach a configuration that

matches the target shape, and we take 𝐗REF as the target state. Here we assume that

we have a reasonably good initial guess for the EBZSS, and explain the iterative

method used in calculating the EBZSS that results in the target state associated with

the given load. In doing that, we use many pieces of the method described in [42]

for linear elements.

In our iterative method, we estimate 𝐅 from the ith solution. We use the notation

𝐅 (𝐱,𝐗) = 𝐑 (𝐱,𝐗)𝐔 (𝐱,𝐗) , (18)

which is the polar decomposition of 𝐅 into rotation 𝐑 and right stretch tensor 𝐔.

The arguments in the tensors represent the numerator and denominator in the partial

derivatives. With that, 𝐅 at (i + 1)th iteration is expressed as

𝐅i+1 = 𝐑
(
𝐗REF, 𝐱i

)
𝐅i𝐑

(
(𝐗e

0)
i
, (𝐗e

0)
i+1)

. (19)

With the approximation

𝐑
(
(𝐗e

0)
i
, (𝐗e

0)
i+1) = 𝐈, (20)

we obtain

𝐅i+1 = 𝐑
(
𝐗REF, 𝐱i

)
𝐅i
, (21)

and from that we obtain

(
𝐅i+1)−1 =

(
𝐅i)−1 𝐑(𝐱i,𝐗REF), (22)

=
(
𝐔i)−1 𝐑((𝐗e

0)
i
,𝐗REF). (23)
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Fig. 1 The representative

parametric position 𝜉𝜉𝜉a
assigned to the Bézier

control point a, and the

straight path from 𝟎 to 𝜉𝜉𝜉a.

When performing the

integration with the midpoint

rule, the evaluation point is

𝜉𝜉𝜉a∕2

×
U|ξξξ=ξξξa/2

ξξξa

0

In this article, in calculating (𝐗e
0)

i+1
, instead of doing the tensor evaluations at

𝜉𝜉𝜉 = 𝟎, we do integrations from 𝜉𝜉𝜉 = 𝟎 to the corresponding positions:

(𝐗e
0)

i+1|||𝜉𝜉𝜉=𝜉𝜉𝜉a
− (𝐗e

0)
i+1|||𝜉𝜉𝜉=𝟎 = ∫

𝐗e
REF|𝜉𝜉𝜉=𝜉𝜉𝜉a

𝐗e
REF|𝜉𝜉𝜉=𝟎

(
𝐅i+1)−1 d𝐗REF. (24)

Here 𝜉𝜉𝜉a is the representative parametric position assigned to the Bézier control point

for a (see Fig. 1), and we use a straight path from 𝟎 to 𝜉𝜉𝜉a. The representative para-

metric positions are equally spaced. The first approximation here is performing the

integration with the midpoint rule:

(𝐗e
0)

i+1|||𝜉𝜉𝜉=𝜉𝜉𝜉a
− (𝐗e

0)
i+1|||𝜉𝜉𝜉=𝟎 ≈

(
𝐅i+1)−1|||𝜉𝜉𝜉=𝜉𝜉𝜉a∕2

(
𝐗e

REF
||𝜉𝜉𝜉=𝜉𝜉𝜉a − 𝐗e

REF
||𝜉𝜉𝜉=𝟎

)
. (25)

The second approximation is to assume that the relationship given by Eq. (25)

between (𝐗e
0)

i+1|||𝜉𝜉𝜉=𝜉𝜉𝜉a
and 𝐗e

REF
|||𝜉𝜉𝜉=𝜉𝜉𝜉a

can also be used between the control points

(𝐗e
0)

i+1
a and ( ̂𝐗e

REF)a:

(𝐗e
0)

i+1
a − (𝐗e

0)
i+1|||𝜉𝜉𝜉=𝟎 ≈

(
𝐅i+1)−1|||𝜉𝜉𝜉=𝜉𝜉𝜉a∕2

(
( ̂𝐗e

REF)a − 𝐗e
REF

||𝜉𝜉𝜉=𝟎
)
. (26)

This is the new version of the “direct-update (DU)” process (see [42] for the original

DU process). The “recursive-update (RU)” process is given as

(𝐗e
0)

i+1
a − (𝐗e

0)
i+1|||𝜉𝜉𝜉=𝟎 ≈

(
𝐅i+1)−1|||𝜉𝜉𝜉=𝜉𝜉𝜉a∕2

𝐅
(
𝐗REF, (𝐗e

0)
i)|||𝜉𝜉𝜉=𝜉𝜉𝜉a∕2

(
̂(𝐗e
0)ia − (𝐗e

0)
i||𝜉𝜉𝜉=𝟎

)
(27)

=
(
𝐔i)−1|||𝜉𝜉𝜉=𝜉𝜉𝜉a∕2

𝐔
(
𝐗REF, (𝐗e

0)
i)|||𝜉𝜉𝜉=𝜉𝜉𝜉a∕2

(
̂(𝐗e
0)ia − (𝐗e

0)
i||𝜉𝜉𝜉=𝟎

)
. (28)
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We note that the tensor–vector operations in Eqs. (26)–(28) actually involve the

augmented versions of the tensors, where the augmented version of a tensor 𝐅 is

defined as

[
𝐅 𝟎
𝟎T 1

]
, (29)

and the augmented versions of the vectors (𝐗e
0)

i+1|||𝜉𝜉𝜉=𝟎, 𝐗e
REF

|||𝜉𝜉𝜉=𝟎 and (𝐗e
0)

i|||𝜉𝜉𝜉=𝟎, as

defined by Eq. (7).

In the actual computations, we start from the “ZSS template”: (𝐗e
0)

0 = (𝐗e
0)TEMP

(see Sect. 3). In the steady-state structural mechanics computations, it is reasonable

to start from displacement 𝐲 = 𝟎. However, it is unlikely for that to be a good match

for the ZSS. To improve the convergence of the structural mechanics solution for

i=0, we use an incremental loading and modify the initial guess for the EBZSS

based on that ramping:

(
(𝐗e

0)
0)j = (1 − tj)𝐗REF + tj(𝐗e

0)TEMP. (30)

Here 0 < t1 ≤ t2 ≤ ⋯ ≤ tN = 1, N is the number of nonlinear-iteration steps used in

computing 𝐲0, and the iterations start with (𝐲0)0 = 𝟎. We also ramp the load:

(𝐡h)j = tj𝐡h, (31)

where 𝐡h is the target load. The ramping options include having a ramping profile

where the tj values change at every certain number of nonlinear-iteration steps. With

that, we obtain the steady-state solution 𝐲0 for (𝐗e
0)

0 = (𝐗e
0)TEMP based on the full

load. For i = 1 and beyond, (𝐗e
0)

i
is calculated from Eq. (28), and the nonlinear

iterations used in computing 𝐲i start with (𝐲i)0 = 𝟎.

3 Modeling the Artery ZSS: Straight-Tube ZSS Template

An analytical relationship between the ZS and reference states of straight-tube seg-

ments was given in [42]. Here we will call that relationship “straight-tube ZSS tem-

plate.” We describe the straight tube in the target state, which is here the refer-

ence state, with three lengths: 𝓁, h and L. They are the circumferential length of

the arterial-wall midsurface, wall thickness, and the longitudinal length. The tube

volume is

V = 𝓁hL. (32)
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Fig. 2 Straight tube in the

target (left) and ZS (right)
states. The dashed lines
denote the arterial-wall

midsurface in each state

rE

rI

h

�

φ
h0

�0 (�0)E

(�0)I

For an artery, beyond having a target shape under a given load, there are some

significant properties. One of them is the opening angle, 𝜙, seen after a longitudinal

cut, which we call the “LC state.” Fig. 2 summarizes the template.

Remark 2 We note that in general it is not necessary for the LC state to be a ZSS.

4 2D Test Computations

We define a parameter 𝛼:

𝓁0 = 𝛼𝓁I, (33)

where 𝓁I is the circumferential length of the inner tube surface in the target state.

The task of calculating 𝓁0 becomes the task of calculating 𝛼.

4.1 Meshes

In the test computations here, we use quadratic and cubic NURBS basis functions.

Although NURBS can represent a circular arc exactly, it cannot do that throughout a

full circle while retaining the C1
continuity of the basis functions. Therefore, here we

simplify the basis functions to uniform B-splines. Figures 3 and 4 show the meshes

used.

We evaluate how well the meshes represent the circular arcs. For that, we inspect

the radius of curvature, 𝜌. Figures 5 and 6 show 𝜌∕𝜌 as a function of the circumfer-

ential parametric coordinate, 𝜉, where 𝜌 is the average radius.

Remark 3 The highest shape function value is at 𝜉 = 0 for the quadratic B-splines,

and at 𝜉 = −1 and 𝜉 = 1 for the cubic B-splines. From that, and from Figs. 5 and 6,

we conclude that the radius of curvature will be lowest at points closest to the control

points, and highest between those points.
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Fig. 3 Quadratic B-spline meshes with 4, 8, 16, 32, 64, and 128 elements. The red circles are the

control points and the gray part is the actual tube

Fig. 4 Cubic B-spline meshes with 4, 8, 16, 32, 64, and 128 elements. The red circles are the

control points and the gray part is the actual tube
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Fig. 5 Representation of the

radius of curvature within an

element with quadratic

B-splines. The curves are for

the six meshes, 𝜉 is the

circumferential parametric

coordinate, and 𝜌 is the

average radius
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Fig. 6 Representation of

the radius of curvature

within an element with cubic

B-splines. The curves are for

the six meshes, 𝜉 is the

circumferential parametric

coordinate, and 𝜌 is the

average radius
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Fig. 7 Standard deviation

of 𝜌∕𝜌 as a function of the

arc angle Δ𝜃 represented by

a B-spline element, where 𝜌

is the average radius
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Figure 7 shows the standard deviation of 𝜌∕𝜌, as a function of the arc angle Δ𝜃
represented by an element, where Δ𝜃 = 2𝜋∕nel, and nel is the number of elements.

We note that both quadratic and cubic B-splines have second-order accuracy.
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4.2 Curvature Matching in the ZSS

Curvature matching in the ZSS is done by first converting the B-spline element in

the target state to Bézier representation. After that, for the specified 𝜙, we generate

element configurations with the objective of having a constant radius of curvature in

the ZSS. Then we convert that back to B-spline representation. Figures 8 and 9 show

examples of the process for 𝜙 = 5𝜋∕2, which results in Bézier elements with Δ𝜃 =

(2𝜋 − 𝜙)∕nel = −𝜋∕(2nel), and for a given value of 𝛼. The negative value implies

that the outer surface is smaller than the inner surface.

In the case of quadratic Bézier functions, we choose the middle control point to be

on the tangents to the inner surface at the two other control points. This determines

the curvature in the ZSS. For cubic Bézier functions, we have an additional degree of

freedom, and we use that by choosing the control points to be also at equally-spaced

angular positions. Figure 10 shows the convergence rate for the standard deviation of

𝜌0∕𝜌0 for the Bézier elements, where 𝜌0 is the average radius. We note from Figs. 7

and 10 that Bézier elements yield the same representation quality as the B-spline

elements for quadratic functions, and slightly better quality for cubic functions.

Fig. 8 Curvature matching in the ZSS. Quadratic basis functions with 8 elements. The B-spline

mesh in the target state (top left) is converted to Bézier representation (top right). From that, for

the specified 𝜙 and for a given value of 𝛼, we generate element configurations with the objective of

having constant radius of curvature in the ZSS (bottom right). Then we convert that back to B-spline

representation (bottom left)
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Fig. 9 Curvature matching in the ZSS. Cubic basis functions with 8 elements. The B-spline mesh

in the target state (top left) is converted to Bézier representation (top right). From that, for the

specified 𝜙 and for a given value of 𝛼, we generate element configurations with the objective

of having constant radius of curvature in the ZSS (bottom right). Then we convert that back to

B-spline representation (bottom left)

10010−110−210−3

100
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10−6
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0/
ρ
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Quadratic Cubic

Fig. 10 Curvature matching in the ZSS. Standard deviation of 𝜌0∕𝜌0 as a function of the arc angle

Δ𝜃 represented by a Bézier element, where 𝜌0 is the average radius
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4.3 Computational Results

For a range of 𝛼 values, we go through the process described in Sect. 4.2 and,

using the B-spline elements with curvature matching in the ZSS, we do structural

mechanics computations. We obtain the steady-state solutions corresponding to a

constant pressure value of p0 = 92 mm Hg. In these computations, the arterial wall

is made of hyperelastic (Fung) material. The material constants D1 and D2 are

2.6447 × 103 N∕m2
and 8.365, and the penalty Poisson’s ratio is 0.45. We note that,

because of the process in Sect. 4.2, the inner-surface shapes obtained from the com-

putations will be at the best as good as those in the upper-left picture in Figs. 8 and

9, for whatever the number of elements are.

The structural mechanics computations generate a relationship between the cur-

vature in the deformed state and 𝛼, and from that we select the 𝛼 value that matches

the curvature in the target state. Figures 11 and 12 show the average curvature of

the inner surface in the deformed state as a function of 𝛼 for the six meshes with

quadratic and cubic B-splines. For quadratic functions, with the mesh made of 4 ele-

ments, the 𝛼 value that matches the target curvature is very different than the value

obtained with the other meshes. For cubic functions, except for the mesh made of
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Fig. 11 Average curvature in the deformed state as a function of 𝛼 for the six meshes with quadratic

B-splines, where 𝜅 is the curvature in the target state
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Fig. 12 Average curvature in the deformed state as a function of 𝛼 for the six meshes with cubic

B-splines, where 𝜅 is the curvature in the target state

4 elements, curves for all the meshes coincide. Figure 13 shows, for all the meshes,

the 𝛼 value that matches the target curvature.

With all the meshes and the 𝛼 values displayed in Fig. 13, we compute the

steady-state structural mechanics solutions to examine the stretches. We evaluate

the stretches at the 4× 4 Gaussian quadrature points (see Fig. 14).

4 8 16 32 64 128
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Fig. 13 For all the meshes, the 𝛼 value that matches the target curvature
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η

Fig. 14 Schematic display of the integration points
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Remark 4 In the structural mechanics computations with quadratic functions, we

use only 3× 3 quadrature points.

Remark 5 The integration points are defined over the ZSS.

Because of the circular symmetry, the stretches should depend only on the radial

position. Here we check that by examining their values along different radial lines

in the element, which are called “Inner” and “Outer” in Fig. 14. Figure 15 shows, for

the meshes with 8 elements, the radial stretches. For the meshes with 16 or more

elements, the radial stretches along the inner and outer lines are basically indistin-

guishable.

Remark 6 The precise definitions of the radial and circumferential directions for the

stretch components are based on the parametric coordinates.

Figure 16 shows, for the meshes with 16 elements, the circumferential stretches. For

the meshes with 32 or more elements, the circumferential stretches along the inner

and outer lines are basically indistinguishable.
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Fig. 15 Radial stretches for the meshes with 8 elements and quadratic (top) and cubic (bottom)

B-splines
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Fig. 16 Circumferential stretches for the meshes with 16 elements and quadratic (top) and cubic

(bottom) B-splines

Table 1 Stretch values at the integration points for the mesh with 128 elements and cubic B-

splines. The values along the inner and outer lines are identical for the number of digits displayed

𝜂 𝜆r 𝜆
𝜃

−0.86114 0.9481 1.044
−0.33998 0.8760 1.121
0.33998 0.7800 1.218
0.86114 0.7049 1.289

Table 1 shows, for the mesh with 128 elements and cubic B-splines, the stretch

values at the integration points. We assume the values in Table 1 to be the actual

values and calculate based on that the relative error for the other meshes. Figure 17

shows the relative error in the radial and circumferential stretches at all 8 integration

points for all those other meshes.
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Fig. 17 Relative error in

the radial and circumferential

stretches at all 8 integration

points for the meshes with

quadratic (top) and cubic

(bottom) B-splines. The

colors represent different

meshes, with the same color

convention used in Fig. 11.

The relative error is

calculated based on the value

obtained from the mesh with

128 elements and cubic

B-splines
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5 Concluding Remarks

We have introduced the version of the EBZSS estimation method with isogeometric

wall discretization. The EBZSS estimation method, which was originally introduced

in the context of finite element wall discretization, will help us estimate the ZSS in

patient-specific arterial FSI computations, where the image-based arterial geometry

does not come from a ZSS. The method consists of three main components. 1. An

iterative method, which starts with a calculated initial guess, is used for computing

the EBZSS such that under a given load, the image-based target shape is matched.

2. A method for straight-tube segments is used for computing the EBZSS so that

the given diameter and longitudinal stretch in the target configuration are matched

together with the opening angle. 3. An element-based mapping between the artery

and straight-tube configurations. This provides the mapping from the arterial con-

figuration to the straight-tube configuration, and from the estimated EBZSS of the

straight-tube configuration back to the arterial configuration, to be used as the ini-

tial guess for the iterative method that matches the target shape. With NURBS basis

functions, we may be able to use larger and less number of elements compared to

linear basis functions. Higher-order NURBS basis functions allow representation

of more complex shapes within an element. To demonstrate how the new EBZSS

estimation method performs, we presented 2D test computations with straight-tube

configurations, carried out with quadratic and cubics basis functions and meshes

made of different number of elements.
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Fluid-Structure Interaction Modeling in 3D
Cerebral Arteries and Aneurysms

Yue Yu

Abstract In recent years, there have been great interests in fluid-structure inter-

action (FSI) problems due to their relevance in biomedical applications. However,

several difficulties have hindered the development of partitioned FSI algorithms in

modeling cerebral arteries and aneurysms. For example, the relatively small values

of the mass ratio between the arterial wall and the blood will cause instabilities in

coupled solvers, the arterial wall responses are very complicated therefore difficult to

be described by classical structural models, accurate simulations in patient-specific

geometries require large CPU time, and so on. To resolve these difficulties, the inves-

tigation of proper models for the aneurysms and the design of efficient and stable

numerical schemes of these models are considered in this chapter. To be specific, we

first contribute on stabilizing the partitioned fluid-structure interaction procedure and

resolving the added-mass effect, then develop and employ fractional PDEs to model

the complex biomechanical viscoelastic properties of patient-specific aneurysms. To

validate the optimal coefficient analysis, the FSI framework is applied to patient-

specific aneurysms, hence demonstrating the general applicability of the proposed

model and the developed methodology.

1 Introduction

A cerebral aneurysm is a pathological dilatation of the intracranial artery, and its

rupture is the leading cause of subarachnoid hemorrhage [53]. However, the current

clinical technology could not provide a lot of detailed information in vivo. Com-

putational simulations then appear as an effective alternative approach for under-

standing the mechanisms behind aneurysm growth and rupture [8, 15, 16, 25, 28,

39, 50, 51], which rely heavily on the fluid-structure interaction (FSI) methods

[3, 4, 6, 17, 22, 24, 29, 37–39, 47]. Regarding the numerical approaches, the high-

order spectral/hp element method has demonstrated particular advantages, because

of its high resolution in space. With the high-order method, it is possible to capture
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the complicated patient-specific aneurysm geometry, as well as to predict possible

flow instabilities. Therefore, this note focuses on developing and bringing to real-life

applications high-fidelity and high-performance numerical tools for fluid-structure

interaction, with spectral/hp element methods.

This chapter is organized as follows. In Sect. 2 we describe the FSI governing

equations and discretization methods and the interface transmission conditions. The

FSI coupling procedure at each time step for the full partitioned algorithm without

special stabilization is summarized in Sect. 2.1.

To stabilize the fluid-structure interaction solver, in Sect. 3 we present the gen-

eral fictitious methods for fluid-structure interaction (FSI) problems for the parti-

tioned coupling approach [6, 55]. The fictitious pressure method involves modifi-

cation of the fluid solver whereas the fictitious mass and damping methods modify

the structure solver. Therefore, the generalized fictitious methods can provide not

only software modularity but also great flexibility for implementation. For exam-

ple, one can combine a fluid open source code with a black box structure code by

employing the fictitious pressure method, or a fluid black box code with a struc-

ture open source code by employing the fictitious mass (or damping) method. We

analyze all fictitious methods for simplified problems and obtain explicit expres-

sions for the optimal reduction factor (convergence rate index) at the FSI interface

[23]. This analysis also demonstrates an apparent similarity of fictitious methods to

the FSI approach based on Robin boundary conditions, while the Robin boundary

conditions have been found to be very effective in FSI problems. All methods were

implemented in the context of spectral element discretization, which is more sensi-

tive to temporal instabilities than low-order methods. In numerical tests, we verify

the selection of optimal values for the fictitious parameters for simplified problems,

and also also develop an empirical a posteriori analysis for complex geometries. The

empirical a posteriori analysis is applied to 3D patient-specific flexible brain arter-

ies with aneurysms for very large deformations. We demonstrate that the fictitious

pressure method enhances stability and convergence, and is comparable or better in

most cases to the Robin approach or to the other fictitious methods.

Based on the stabilized FSI method, in Sect. 4 we then demonstrate a new

fractional-order PDE model for arterial walls introduced in [56]. Typically, integer-

order differential equations are used to model the stress-strain relations for arterial

walls [1, 21, 43]. However, although the integer-order model can capture the time-

dependent response of the arterial wall, in [18] it was reported that this model’s

viscoelastic response is very sensitive to the relaxation parameters. In arterial simu-

lations, these relaxation parameters vary significantly among patients and anatomic

locations, which makes the estimation of these parameters a challenging task and

hinders the use of the integer order model. Therefore, in [12–14, 18, 40] fractional

time derivatives [34, 35, 41] are introduced to describe the layered structure of arte-

rial walls and to capture the continuous relaxation spectrum of soft tissue. In Sect. 4,

we develop fundamental new numerical methods for 3D fractional order PDEs, and

investigate the fractional order models for 3D arterial walls in FSI simulations. To

deal with the high memory requirements and in order to accelerate the numeri-

cal evaluation of hereditary integrals, we employ a fast convolution method [32]
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that reduces the memory cost to O(log(N)) and the computational complexity to

O(N log(N)). Furthermore, we combine the fast convolution with high-order back-

ward differentiation to achieve third-order time integration accuracy. We confirm

that in 3D viscoelastic simulations, the integer order models strongly depends on

the relaxation parameters, while the fractional order models are less sensitive. As

an application to long-time simulations in complex geometries, we also apply the

method to modeling fluid-structure interaction of a 3D patient-specific compliant
cerebral artery with an aneurysm.

Lastly, we summarize in Sect. 6, and suggest several problems as a natural next

step.

2 Fluid-Structure Interaction: Mathematical Formulation

In the arterial flow simulations, the domain 𝛺 ⊂ ℝ3
can be composed of two parts:

the fluid subdomain𝛺f (t) occupied by the fluid (blood), and the structure subdomain

𝛺s occupied by a deformable structure (arterial walls), as shown in Fig. 1. There

is a common boundary between the two subdomains, which is the fluid-structure

interface 𝛴(t) = 𝛺f (t) ∩𝛺s. The fluid problem is stated in an arbitrary Lagrangian-

Eulerian framework [26] since the fluid domain is changing with the movement of

the interface, while for the structure kinematics a purely Lagrangian approach is

adopted. Therefore, we aim to solve for three sets of variables in this FSI system: the

fluid velocity 𝐮(𝐱, t), the fluid mesh velocity 𝐰(𝐱, t), and the structure displacement

𝜂(𝐗, t). Here 𝐱 = 𝐱(t) and 𝐗 are the position vectors in the deformed configuration

and initial configuration, respectively.

In this section, we present the general settings for fluid and structure subdomains,

respectively, and describe a strong coupling partitioned method, which solves the

FSI system with the standard Dirichlet-Neumann boundary condition at the inter-

face. In the following, we assume that suitable Dirichlet or Neumann boundary con-

ditions are imposed on the boundaries 𝜕𝛺f (t)⧵𝛴(t) and 𝜕𝛺s⧵𝛴(t), and therefore omit

them in the descriptions. To ensure the continuity on the interface, subiterations are

Fig. 1 Sketches for problems of interest: Left flow inside an arterial bifurcation; Right domain for

the flow in a tube arterial model
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employed on each time step. In the following sections, we denote the subiteration

number by the subscript k, and the time step number by the superscript n.

Fluid Model: The fluid is assumed to be incompressible and Newtonian, hence,

we describe it by the incompressible Navier-Stokes equation in the arbitrary

Lagrangian-Eulerian (ALE) framework,

𝜕𝐮
𝜕t

+ (𝐮 − 𝐰) ⋅ ∇𝐮 = −
∇p
𝜌f

+ 𝜈∇2𝐮, in 𝛺f (t), (1a)

∇ ⋅ 𝐮 = 0, in 𝛺f (t), (1b)

combined with the initial condition 𝐮(𝐱, t = 0) = 𝐮0(𝐱), in 𝛺f (0), and the Dirichlet

boundary conditions on the interface, i.e., 𝐮 = 𝜕𝜂

𝜕t
, on 𝛴(t), which enforces the con-

tinuity of velocities. Here, 𝐰, p, 𝜌f , and 𝜈 stand for the mesh velocity, pressure, fluid

density, and the kinematic viscosity, respectively.

To solve numerical equations (1), we employ the parallel Navier-Stokes solver

NEKTAR [31] where the Navier-Stokes equation is discretized in time using a high-

order splitting scheme, with three parts: first the nonlinear terms are treated explic-

itly, then the pressure is obtained by a Poisson equation solver, and finally the viscous

terms are treated implicitly [30]. At time step n and subiteration step k, we solve for

𝐮n
k and pn

k from previous time step results 𝐮n−i
and previous subiteration solution 𝐮n

k−1
[5]:

�̃�n −
∑J

i=1 𝛼i𝐮n−i

𝛥t
= −𝐍n

k−1, (2a)

̃̃𝐮n − �̃�n

𝛥t
= −

∇pn
k

𝜌f
, (2b)

𝛽𝐮n
k − ̃̃𝐮n

𝛥t
= 𝜈∇2𝐮n

k , (2c)

where
𝜕pn

k

𝜕𝐧f
= −𝜌f

(
𝜕𝐮n

k

𝜕t
+ 𝜈∇ × ∇ × 𝐮n

k−1 + 𝐍n
k−1

)

⋅ 𝐧f , on 𝛴(t), (3)

and 𝐍n
k−1 ∶= (𝐮n

k−1 − 𝐰n−1) ⋅ ∇𝐮n
k−1. Here J denotes the time integration order, and

𝛼i, 𝛽 are the corresponding coefficients of the J−th order backward differentiation

formulas [31]. In (3), 𝐧f is the normal vector of fluid subdomain pointing outward

on the interface 𝛴(t).
The current configuration 𝐱 of the fluid subdomain is defined as a lifting from

the structure displacement on the interface: given the displacement on the interface

𝜂|
𝛴

, we construct a mapping from the initial fluid configuration 𝛺f (0) to the current

configuration 𝛺f (t), based on a harmonic extension operator. At each time step, the

mesh position 𝐱 is obtained from the integration of the mesh velocity. Similar to the

Navier-Stokes equation, at each time step the mesh velocity is obtained by solving
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the Laplace equation with the spectral element method. For more details about the

fluid solver, we refer the interested readers to [6].

Structure Model: For the structure subdomain we follow the Lagrangian

approach, so all physical variables are described in the initial configuration 𝐗. We

are going to start with a linear elastic model and infinitesimal deformations in this

section and Sect. 3, then modify the model to an viscoelastic Kelvin-Zener (Stan-

dard Linear Solid or SLS) model in Sect. 4. Note that a hyperelastic model with

finite deformations [54] can also readily be substituted in. The equation describing

the deformation can be expressed as follows:

𝜌s
𝜕
2
𝜂

𝜕t2
− div(𝐒) = 𝜌s𝐟 , in 𝛺s, (4)

with the Neumann boundary condition at the interface

𝐒𝐧s = −[−p𝐈 + 𝜌f 𝜈(∇𝐮 + (∇𝐮)T )]𝐧f , on 𝛴(t), (5)

and the proper initial deformation 𝜂(𝐱, t = 0) = 𝜂0(𝐱), in 𝛺s. In the above equations,

𝐒, 𝐟 and 𝜌s are the second Piola-Kirchhoff stress tensor for the specific material, the

body load on the structure, and the structure density, respectively. On the interface

𝛴(t), 𝐧s stands for the normal vector pointing outward from the structure subdo-

main. When considering the geometrically linear elastodynamics, the second Piola-

Kirchhoff stress tensor is given by

𝐒 = 𝜆E
2(1 + 𝜆)(1 − 2𝜆)

[

tr

(
𝜕𝜂

𝜕𝐗
+ 𝜕𝜂

𝜕𝐗

T)]

+ E
2(1 + 𝜆)

(
𝜕𝜂

𝜕𝐗
+ 𝜕𝜂

𝜕𝐗

T)

, (6)

where E and 𝜆 are the Young’s modulus and the Poisson ratio of the material, respec-

tively. On the right hand side of (5), we note that −p𝐈 + 𝜌f 𝜈[∇𝐮 + (∇𝐮)T ] represents

the hydrodynamic stresses at the interface from the flow. Therefore, while the trans-

mission condition 𝐮 = 𝜕𝜂

𝜕t
enforces the continuity of velocities, the Neumann bound-

ary condition in (5) enforces the continuity of the normal stresses at the interface.

The structure problem is solved with a parallel spectral element method code,

StressNEKTAR [20]. Spatially, the variables in StressNEKTAR are discretized in a

similar way as in NEKTAR. To discretize in time, we implement a three-step back-

ward differentiation formula (BDF) [19] which can be defined by different expres-

sions for the displacement and velocity at the next time step. From (4) and (5) we

have

𝜌s�̈�
n
k − div(𝐒(𝜂n

k )) = 𝜌s𝐟n
k , (7)

and

𝐒(𝜂n
k )𝐧s = −[−pn

k−1𝐈 + 𝜌f 𝜈(∇𝐮n
k−1 + (∇𝐮n

k−1)
T )](𝐧f )n, on 𝛴(t), (8)

where we have used “⋅” to denote the temporal derivatives. In the three-step BDF
scheme, the acceleration and velocity approximations are also expressed based on
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the current information (𝜂
n
k , ̇𝜂

n
k ) and previous time steps results (𝜂

n−i
, �̇�

n−i
) as:

�̇�
n
k = A1𝜂

n
k + B1𝜂

n−1 + C1𝜂
n−2 + D1𝜂

n−3
, (9a)

�̈�
n
k = A2�̇�

n
k + B2�̇�

n−1 + C2�̇�
n−2 + D2�̇�

n−3
. (9b)

Here Ai, Bi, Ci and Di (i = 1, 2) are related following the rule

A1 =
𝜃1
𝛥t
, B1 =

2.5 − 3𝜃1
𝛥t

, C1 =
3𝜃1 − 4
𝛥t

, D1 =
1.5 − 𝜃1

𝛥t
, (10a)

A2 =
𝜃2
𝛥t
, B2 =

2.5 − 3𝜃2
𝛥t

, C2 =
3𝜃2 − 4
𝛥t

, D2 =
1.5 − 𝜃2

𝛥t
, (10b)

and (𝜃1, 𝜃2) are also decided based on considerations of stability and dissipation.

When taking (𝜃1, 𝜃2) = (0, 0), the three-step BDF scheme reaches its highest accu-

racy, i.e., the third-order convergence in time.

2.1 Partitioned Algorithm

To strongly impose the continuity of the interface, at each time step we perform

subiterations for the FSI system until a convergence is obtained. In each subiteration

step, the fluid and structure solvers work separately, then interact by exchanging

suitable transmission conditions at the interface𝛴(t). Here the Aitken relaxation, see

the appendix of [55], is employed in both the structure and fluid solvers, to accelerate

the convergence. At the n-th time step, we solve the FSI system following the fixed

point algorithm:

1. Set

(Solid) 𝜂
n
0 = 𝜂

n−1
, �̇�

n
0 = �̇�

n−1
, �̈�

n
0 = �̈�

n−1
, (11a)

(Fluid) 𝐮n
0 = 𝐮n−1

, pn
0 = pn−1

. (11b)

2. for k = 1 ∶ kmax, do

a. (Solid) Solve the elastodynamics equation (7) with external traction force

−[−pn
k−1𝐈 + 𝜌f 𝜈(∇�̃�n

k−1 + (∇�̃�n
k−1)

T )](𝐧f )n applied on the interface, and

update the displacement results 𝜂
n
k .

b. (Solid) Perform the Aitken relaxation on 𝜂
n
k , and obtain the relaxed displace-

ment �̃�
n
k .

c. (Solid) From �̃�
n
k , calculate the velocity and acceleration �̇�

n
k and �̈�

n
k based on

the BDF scheme (9).

d. (Solid) Pass the velocity and acceleration at the interface to the fluid solver.



Fluid-Structure Interaction Modeling in 3D Cerebral Arteries and Aneurysms 129

e. (Fluid) Update the velocity boundary condition 𝐮n
k = �̇�

n
k and the pressure

boundary condition 𝜕pn
k∕𝜕𝐧f = −𝜌f

(
�̈�

n
k + 𝜈∇ × ∇ × 𝐮n

k−1 + 𝐍n
k−1

)
⋅ (𝐧f )n at

the interface.

f. (Fluid) Solve the Navier-Stokes equation (2), and obtain updated velocity

and pressure (𝐮n
k , p

n
k).

g. (Fluid) Apply the Aitken relaxation on 𝐮n
k to obtain the relaxed velocity �̃�n

k .

h. (Fluid) Calculate the normal stress−[−pn
k𝐈 + 𝜌f 𝜈(∇�̃�n

k + (∇�̃�n
k)

T )](𝐧f )n at the

interface

i. (Fluid) Pass the normal stress at the interface to the structure solver.

j. (Solid and Fluid) Check convergence on both solvers. If

||�̃�n
k − �̃�

n
k−1||, ||�̃�

n
k − �̃�n

k−1||, ||p
n
k − pn

k−1|| < 𝜀, (12)

set k = kmax and update the results as

(Solid) 𝜂
n = �̃�

n
k , �̇�

n = �̇�
n
k , �̈�

n = �̈�
n
k , (13a)

(Fluid) 𝐮n = �̃�n
k , pn = pn

k . (13b)

Else, continue to the (k + 1)-th subiteration.

3. (Mesh) Update the mesh velocity boundary condition at the interface with 𝐰n =
�̇�

n
and get the mesh velocity 𝐰n

.

4. (Mesh) Update the mesh positions for the fluid subdomain.

5. Go to time step n + 1.

3 Fictitious Methods

In the presence of large added-mass, the coupling procedure introduced in Sect. 2.1

exhibits very slow convergence, or sometimes even no convergence at all [9]. To

overcome this problem, fictitious methods were introduced in [6, 55], as an effective

way of stabilization and convergence acceleration. A brief review of these meth-

ods are given in this section, and a convergence analysis is derived for all cases for

simplified problems, which provide us with some guidance in choosing the optimal

parameters in the applications.

Fictitious Mass and Damping Methods: In the fictitious mass and damping

methods [6], the structure momentum equation is solved with additional accelera-

tion and damping terms. These terms aim to balance the added-mass operator. Con-

sidering the fictitious mass coefficient fm and damping coefficient fd, equation (7) is

modified as

𝜌s(1 + fm)�̈�n
k + 𝜌sfd�̇�n

k − div(𝐒(𝜂n
k )) = 𝜌s𝐟n

k + 𝜌sfm�̈�n
k−1 + 𝜌sfd�̇�n

k−1. (14)
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Here we note that when the subiteration is converged, we have 𝜂
n
k ≈ 𝜂

n
k−1 and �̇�

n
k ≈

�̇�
n
k−1. Therefore, the scheme with fictitious mass and damping of Eq. (14) should

converge to the same results as the original scheme of Eq. (7) at the end of each time

step. The fictitious mass method can be thought of as mimicking an exact coupled

solver, with the optimal value of fm being a good approximation to
𝜌f M

𝜌sHs
where M is

the added-mass operator as defined in [55].

Fictitious Pressure Method: Now we also apply the idea of fictitious methods to

the fluid solver, on the pressure term in (1a). By introducing the fictitious pressure

coefficient fp, the splitting scheme for the Navier-Stokes equation (2) can be written

as

𝛽𝐮n
k −

∑J
i=1 𝛼i𝐮n−i

𝛥t
+ 𝐍n

k−1 − fp
∇pn

k−1
𝜌f

= −(1 + fp)
∇pn

k

𝜌f
+ 𝜈∇2𝐮n

k . (15)

As in the fictitious mass and damping methods, the new scheme (15) converges to

the same values as the original one (2) at the end of each time step, and therefore it

does not change the physical solution of the FSI problem.

3.1 Analysis of an Idealized Artery Model

We now consider a simple model for an artery modeled as a straight tube. The

problem is solved in a cylinder with radius R and length L, as shown in the right

plot of Fig. 1, in which a Neumann boundary condition
𝜕u
𝜕𝐧 = 0 is set on BC1 and

BC2, and Dirichlet boundary condition p = p̄(t) for pressure. In the cylindrical

coordinate system (r, 𝜃, y), this problem is independent of the angle 𝜃, therefore a

tube domain 𝛺 = {(r, y) ∈ [0,R) × [0,L]} ⊂ ℝ2
is considered, with the fluid sub-

domain 𝛺f = 𝛺 as and the structure subdomain coincides with the interface 𝛴 =
{(r, y)|r = R and y ∈ [0,L]}. In this simplified model, the deformation of the struc-

ture is assumed to be very small, therefore the fluid domain can be considered fixed.

Here we use a linear incompressible inviscid model for the fluid, and a generalized

string model as described in [42] for the structure:

𝜌f
𝜕u
𝜕t

+ ∇p = 0, in 𝛺f , (16a)

1
r
𝜕(rur)
𝜕r

+
𝜕uy

𝜕y
= 0, in 𝛺f , (16b)

u ⋅ n = 𝜕𝜂

𝜕t
, on 𝛴, (16c)

𝜕u
𝜕n

= 0, p = p̄(t) on BC1 ∪ BC2, (16d)

p = 𝜌sHs
𝜕
2
𝜂

𝜕t2
+ G1Hs𝜂 − G2Hs

𝜕
2
𝜂

𝜕y2
, on 𝛴, (16e)
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where the components of 𝐮 in r and y directions are denoted as ur and uy, respectively.

In the structure model, the displacement 𝜂 lies in the r direction, with Hs, G1, G2 as

the thickness and the material coefficients. Here Hs is the thickness of the structure,

and G2 =
KE
1+𝜆

with K being the Timoshenko correction factor. The reaction term G1
is introduced to take into account transverse membrane effects. For an arterial vessel

with radius R0, this term can be approximated as G1 ≈
E

(1−𝜆2)R2 under the assumption

of linear elastic behavior, as illustrated in [42]. Here the pressure can be decomposed

into two parts: one given by the interaction with the structure at the interface, and

another one related to the other boundaries 𝛺f⧵𝛴 only. Our main focus is on the first

part, which is influenced by the added-mass operator M , and therefore the boundary

conditions p = p̄(t) on BC1 ∪ BC2 are assumed to be vanishing.

Now we investigate the effects of fictitious methods on this simplified tube prob-

lem. The following analysis is performed on the n-th step, therefore we omit the

step numbers and analyze the convergence of pressure to the zero solution. Similar

to the analysis in [23], our convergence analysis is based on the Fourier sine trans-

form in the y direction. Since pk(r, y) = 0 when y = 0 or y = L, for every fixed r, the

Fourier sine series {sin
(
𝛾𝜋r
L

)
}, 𝛾 = 1, 2,⋯∞ forms a complete orthogonal basis for

pk(r, y). In the following analysis, the reduction factor is defined by the Fourier sine

coefficients: given a function c(r, y) ∈ L2(ℝ2),

ĉ(r, 𝛾) = 2
L ∫

L

0
c(r, y) sin

(
𝛾𝜋y

L

)
dy. (17)

which corresponds to the frequency 𝛾 . To quantify the error for pressure at the k-th

subiteration, on the interface we define a reduction factor in the frequency space

𝜌k(𝛾) ∶=
|p̂k(0, 𝛾) − p̂(0, 𝛾)|
|p̂k−1(0, 𝛾) − p̂(0, 𝛾)|

, (18)

where p̂(r, 𝛾) is the Fourier sine coefficient of the exact pressure p(r, y) at the cur-

rent time, and p̂k(r, 𝛾) is the Fourier coefficient of the numerical approximation for

pressure at the k-th subiteration. If 𝜌k(𝛾) is less than 1 for all relevant frequencies at

every subiteration step, the algorithm converges. Moreover, the smaller this reduc-

tion factor is, the faster the rate of convergence is.

In the fictitious mass and damping methods, the structure solver is modified as in

(14), with the fluid solver unchanged. In [55] we have derived the following:

Theorem 1 With fictitious mass and damping coefficients fm and fd, respectively,
the reduction factor of frequency 𝛾 is independent of the subiteration step and it is
given by:

𝜌
FM(𝛾) =

|
|
|
|
|

A1(𝛽𝜌f − 𝜇(𝛾)(fmA2 + fd)𝜌sHs𝛥t)
𝜇(𝛾)𝛥t((A2 + fmA2 + fd)A1𝜌sHs + G1Hs + 𝛾2G2Hs)

|
|
|
|
|
, (19)
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where 𝜇(𝛾) ∶=
𝛾𝜋I′0(

𝛾𝜋R
L
)

LI0(
𝛾𝜋R

L
)

depends on the modified Bessel function I0(r) =
∑∞

m=0

1
m!

(
r
2

)2m
, 𝛽 is the coefficient of the J-th splitting scheme for the fluid solver as defined

in (2), A1, A2 are the coefficients of the BDF scheme for the structure solver as in (9),
and Hs, G1, G2 are the thickness and material coefficients of the structure model.

For the fictitious pressure method, we calculate the reduction factor from Fourier

analysis for the coupling algorithm with the original structure solver and the fictitious

pressure fluid solver as defined in (15). Given a fictitious pressure coefficient fp, we

have derived the following in [55]:

Theorem 2 The reduction factor for the fictitious pressure coefficient fp of frequency
𝛾 can be written as

𝜌
FP(𝛾) =

|
|
|
|
|

A1𝛽𝜌f − fp𝛥t𝜇(𝛾)(A1A2𝜌sHs + G1Hs + 𝛾
2G2Hs)

(1 + fp)𝛥t𝜇(𝛾)(A1A2𝜌sHs + G1Hs + 𝛾2G2Hs)

|
|
|
|
|

(20)

which is independent of the subiteration number k.

Remark For the cases with small Young’s modulus E or small time step size, we

have G1𝛥t ≪ 1 and G2𝛥t ≪ 1. It was reported in [9] that such cases suffer from

severe added-mass effect, and therefore very slow convergence. When taking fp =
fm + fd∕A2 for these cases, the two fictitious methods both have an equivalent reduc-

tion factor as the Dirichlet-Robin transmission condition given in [23]. The optimal

coefficients from the fictitious methods should be comparable with each other.

Remark When the material has a large modulus or we use a large time step size, i.e.,

G1𝛥t ≫ 1 and G2𝛥t ≫ 1, the reduction factor for the fictitious pressure method reads

𝜌
FP(𝛾) =

|
|
|
|

fp
1+fp

|
|
|
|
. Therefore a small fp would be preferred for a faster convergence in

these cases.

4 Fractional-Order Viscoelastic Model for Aneurysm Walls

In this section, we extend the linear elastodynamics arterial wall model, to investigate

the viscoelastic properties for arterial wall mechanics. To be specific, we study three-

dimensional (3D) fractional PDEs that naturally model the continuous relaxation

properties of soft tissue, and employ them to simulate flow structure interactions for

patient-specific brain aneurysms [55].

Fractional-Order Model: Here we generalize the 1D fractional-order model

described in [40] into the 3D case

𝐒(t) + 𝜏
𝛼

𝜎

𝜕
𝛼𝐒(t)
𝜕t𝛼

= 𝐒0(t) + 𝜏
𝛼

𝜀

𝜕
𝛼𝐒0(t)
𝜕t𝛼

, (21)
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where 𝐒 is the second Piola-Kirchhoff stress tensor, 𝛼 is the fractional order, and 𝜏
𝜎
,

𝜏
𝜀

are the relaxation parameters. The Riemann-Liouville definition is employed for

the fractional derivative
d𝛼 f (t)

dt𝛼
of order 𝛼 (0 ≤ 𝛼 < 1)

RL
a 𝐃𝛼

t f (t) = 1
𝛤 (1 − 𝛼)

d
dt ∫

t

a
(t − 𝜐)−𝛼f (𝜐)d𝜐, (22)

which is a non-local operator that depends on the history of function f (t). The 𝛤

function is defined as 𝛤 (r) = ∫ ∞
0 e−ttr−1dt. We mainly focus on the linear elastic

model with infinitesimal deformations for simplicity, i.e., taking the stress tensor 𝐒0
as the 𝐒 in (6). However, the same methodology can also be applied on nonlinear

materials if we take 𝐒0 as the stress tensor for hyperelastic materials and employ a

Newton-Raphson procedure at each time step (more details can be found in [54]).

We assume that both the stress tensor and the strain tensor are continuously differen-

tiable, and the object is at a static equilibrium when t ≤ 0. Then we can set the lower

limit of the fractional derivative (22) to be a = 0. Consequently, as 𝛼 approaches 1,

the model (21) converges to the integer-order SLS model

𝐒(t) + 𝜏
𝜎

𝜕𝐒(t)
𝜕t

= 𝐒0(t) + 𝜏
𝜀

𝜕𝐒0(t)
𝜕t

.

In fact, we have also numerically verified that as the fractional order 𝛼 approaches

1, the simulation results from the fractional-order model converges to the results

from the integer order SLS model, and therefore increasingly more sensitive to the

parameters (also shown in [40]).

Fast Convolution Method: Next we derive a time discretization formulation for

(4), to compute the displacement field 𝜂(𝐗). When the integer-order derivative term

𝜕
2
𝜂

𝜕t2
can be approximated by the three step BDF scheme (9), the fractional-order deriv-

ative is introduced when substituting (21) into (4), which requires special time inte-

gration approaches to be investigated in this section. One of the most popular ways

of discretizing the fractional derivative is the Grüwald-Letnikov formula which is

of first order accuracy in time and consumes 𝑂(N2) operations and 𝑂(N) mem-

ory in evaluating the accumulated right-hand-side from deformation history. Here

N = T∕𝛥t numbers of total time steps.

Since the Grüwald-Letnikov formula is limited by its first-order accuracy and

the computational bottleneck, especially in long-term time integration as in the FSI

problems of interest here. To improve both the accuracy as well as the efficiency, we

now convert Eq. (21) to the convolution form. Applying the Laplace transform L to

(21), we have

L (𝐒)(s) =
((

𝜏
𝜀

𝜏
𝜎

)𝛼

+ 1
𝜏𝛼
𝜎

(

1 −
(
𝜏
𝜀

𝜏
𝜎

)𝛼) 1
𝜏−𝛼
𝜎

+ s𝛼

)

L (𝐒0)(s). (23)
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Then taking the inverse Laplace transform, we get the relation between 𝐒(t) and 𝐒0(t)

𝐒(t) =
(
𝜏
𝜀

𝜏
𝜎

)𝛼

𝐒0(t) +
1
𝜏𝛼
𝜎

(

1 −
(
𝜏
𝜀

𝜏
𝜎

)𝛼)

∫
t

0
I(t − r)𝐒0(r)dr, (24)

where I(t) ∶= t𝛼−1E
𝛼,𝛼

(
−
(

t
𝜏
𝜎

)𝛼)
, L (I)(s) = 1

𝜏−𝛼
𝜎

+s𝛼
, and E⋅,⋅(t) is the two parameter

Mittag-Leffler function [41], which can be seen as the fractional generalization of the

exponential. By substituting the relaxation form of constitutive law (24) into (7), at

the n-th time step and the k-th subiteration, we obtain the discretized form

𝜌s�̈�
n
k +

𝜏
𝛼

𝜀

𝜏𝛼
𝜀

𝐒0(𝜂n
k ) =

1
𝜏𝛼
𝜎

((
𝜏
𝜀

𝜏
𝜎

)𝛼

− 1
)

∫
tn

0
I(tn − r)𝐒0(𝜂(r))dr + 𝜌s𝐟n

k . (25)

When t → ∞, the Mittag-Leffler function has a heavy tail and its decay is only alge-

braic. Therefore, although we may directly calculate the Mittag-Leffler function to

compute the convolution integral ∫ t
0 I(t − r)𝐒0(𝜂(r))dr in (25), such heavy tail behav-

ior would prohibit us from alleviating the computational complexity. The methods

introduced in [32, 33] then provide an effective alternative to evaluate such convo-

lution integrals. The idea is to decompose the integral range ∫ tn

0 with base 2:

∫
n𝛥t

0
= ∫

2m1𝛥t

0
+∫

(2m1+2m2 )𝛥t

2m1𝛥t
+⋯ + ∫

n𝛥t

(n−1)𝛥t
(26)

where m1 = [log2(n)], m2 = [log2(n − 2m1 )], etc. To approximate the l-th part of the

convolution integral, we apply the trapezoidal rule to a parametrization of the contour

integral for the inverse Laplace transform:

I(t) = 1
2𝜋i ∫𝛤l

L (I)(𝛾)et𝛾d𝛾 ≈
L∑

j=−L
𝜔
(l)
j L (I)(𝛾 (l)j )et𝛾 (l)j , (27)

where the complex contour 𝛤l is chosen to be the Talbot contour [44, 49], and 𝜔
(l)
j

and 𝛾
(l)
j are the weights and quadrature points on each Talbot contour:

𝜔
(l)
j = −

j
4𝜋(L + 1)i

d𝜛l

d𝜅
(𝜅j), 𝛾

(l)
j = 𝜛l(𝜅j), 𝜅j =

j𝜋
L + 1

.

The function 𝜛l(𝜅) is chosen such that the singularities of L (I)(s) lie in the contour

[33]. In the current method, we generate the quadrature points for all 𝑂(logN) num-

bers of Talbot contours before the first time step (pre-processing cost only). While

computing the last part of the convolution integral in (26), we improve the linear

approximation proposed in [33] by making a full use of the velocity �̇�
n−1

and accel-

eration �̈�
n−1

information approximated following the three-step BDF scheme (9):
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∫
n𝛥t

(n−1)𝛥t
I(n𝛥t − r)𝐒0(𝜂(r))dr ≈ H1𝐒0(𝜂n−1) + H2𝐒0(�̇�n−1) + H3𝐒0(�̈�n−1) (28)

which introduces an O(𝛥t4) error. Here the integrals can be calculated a priori as the

inverse Laplace transforms

H1 =∫
n𝛥t

(n−1)𝛥t
I(n𝛥t − r)dr ≈

L∑

j=−L
𝜔

(0)
j

1

𝛾
(0)
j

(
𝜏−𝛼
𝜎

+
(
𝛾
(0)
j

)𝛼)et𝛾(0)j

H2 =∫
n𝛥t

(n−1)𝛥t
(r − (n − 1)𝛥t)I(n𝛥t − r)dr ≈

L∑

j=−L
𝜔

(0)
j

1

(𝛾 (0)j )2
(
𝜏−𝛼
𝜎

+
(
𝛾
(0)
j

)𝛼) et𝛾(0)j

H3 =∫
n𝛥t

(n−1)𝛥t

(r − (n − 1)𝛥t)2

2
I(n𝛥t − r)dr ≈ 1

2

L∑

j=−L
𝜔

(0)
j

1

(𝛾 (0)j )3
(
𝜏−𝛼
𝜎

+
(
𝛾
(0)
j

)𝛼)et𝛾(0)j

and the weights as well as the quadrature points correspond to the Talbot contour

chosen for t = 𝛥t. For the rest of the convolution integrals ∫ b
a I(n𝛥t − r)𝐒0(𝜂(r))dr

in (26), we can approximate them on the corresponding Talbot contour 𝛤l

∫
b

a
I(n𝛥t − r)𝐒0(𝜂(r))dr =∫

b

a

1
2𝜋i ∫𝛤l

1
𝜏−𝛼
𝜎

+ 𝛾𝛼
e(n𝛥t−r)𝛾d𝛾𝐒0(𝜂(r))dr

≈
L∑

j=−L
𝜔
(l)
j

1

𝜏−𝛼
𝜎

+
(
𝛾
(l)
j

)𝛼
e(n𝛥t−b)𝛾 (l)j ∫

b

a
e(b−r)𝛾 (l)j 𝐒0(𝜂(r))dr,

(29)

where the inner integral ∫ b
a e(b−r)𝛾 (l)j 𝐒0(𝜂(r))dr can be updated recursively by solving

dy[b, a, 𝛾 (l)j ](r)
dr

= 𝛾
(l)
j y[b, a, 𝛾 (l)j ](r) + 𝐒0(𝜂(r)), y(a) = 0. (30)

In the end of the n-th time step (when the subiteration has converged), we update

yn ≈ y[b, a, 𝛾 (l)j ](n𝛥t) recursively after obtaining the approximated displacement 𝜂
n
,

velocity �̇�
n

and acceleration �̈�
n
:

yn ≈ e𝛾
(l)
j 𝛥tyn−1 + e𝛾

(l)
j 𝛥t − 1
𝛾
(l)
j

𝐒0(𝜂n) −
e𝛾

(l)
j 𝛥t(𝛾 (l)j 𝛥t − 1) + 1

(𝛾 (l)j )2
𝐒0(�̇�n)

+
e𝛾

(l)
j 𝛥t((𝛾 (l)j 𝛥t)2 − 2𝛾 (l)j 𝛥t + 2) − 2

2(𝛾 (l)j )3
𝐒0(�̈�n).

(31)
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Therefore, while the piecewise linear interpolant used in [33] introduces an O(𝛥t2)
error, the time derivatives obtained from the three-step BDF scheme makes our algo-

rithm more effective in long-term computation because it only gives O(𝛥t4) error at

each time step which yields an O(𝛥t3) error accumulatively. This accuracy could

be further improved by using higher-order BDF schemes. Since the Talbot contours

are fixed, the computational cost in our algorithm for approximating the convolu-

tion integrals (26) are 𝑂(N logN) for multiplications, 𝑂(logN) for evaluations of

the Laplace transform L (I)(s), and 𝑂(logN) active memory for storing yn
. Here N

is the total number of time-history steps.

Combining (28) and (29), we can rewrite the right hand side of (25) as

𝜌s𝐟n
k + 1

𝜏𝛼
𝜎

((
𝜏
𝜀

𝜏
𝜎

)𝛼

− 1
)(

H1𝐒0(𝜼n−1) + H2𝐒0(�̇�n−1) + H3𝐒0( ̈𝜼n−1)

+
∑

l

⎛
⎜
⎜
⎜
⎝

L∑

j=−L
𝜔
(l)
j

1

𝜏−𝛼
𝜎

+
(
𝛾
(l)
j

)𝛼
e((n−1)𝛥t−b)𝛾 (l)j y[b, a, 𝛾 (l)j ]((n − 1)𝛥t)

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

(32)

and substitute it into the FSI partitioned algorithm in Sect. 2.1. Note that we only

need to update the inner integral approximations yn
following (31) at the end of

each time step, i.e., not for each subiteration. The estimated integrals in (28) and

(29) introduce an O(𝛥t4) error each, which accumulatively give an O(𝛥t3) error from

the fast convolution method. Regarding the efficiency, with N = T∕𝛥t numbers of

total time steps, this resultant algorithm requires𝑂(N logN) operations and𝑂(logN)
memory.

5 Numerical Simulations

We now present a series of numerical tests using the fictitious methods. With these

tests, we aim to provide a validation for our theoretical analysis, and to demonstrate

the capability of our fractional-order PDE solver in modeling realistic physiological

problems in computational domains with a large number of elements. In particular,

we consider two FSI problems which model compliant brain arteries and blood flow,

where the mass ratio is relatively low and therefore the stabilization technique is

required for the partitioned FSI approach.

5.1 Blood Flow in an Artery

In this section we consider a straight tube with pulsatile inflow as an idealization

of an arterial flow. The fluid domain is as illustrated in the right plot of Fig. 1, with
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R = 1 mm and L = 4 mm. The arterial wall is modeled by a layer of linear elastic

material on the tube wall, with thickness Hs = 0.105mm. In all tests we take the fluid

density as 𝜌f = 1060 kg/m
3
, and the structure density 𝜌s = 1.2𝜌f since the material

density of the arterial wall is known to be close to that of the blood. On the fluid

solver, a Womersley velocity profile with 8 Fourier coefficients is imposed at the

inlet boundary, with a mean velocity 0.106 m/s. For the fluid model, the kinematic

viscosity for the fluid is set to 3.8 × 10−6 m
2
/s. In the structural model, the Poisson

ratio is set to 𝜆 = 0.3, and the Young’s modulus of the vessel walls E = 0.6 MPa,

which is in the physiological range of intracranial vessels of size 2–4 mm [2]. In

the following simulations, we employ polynomial order 3 elements for the velocity,

pressure and displacement. The first-order splitting scheme (𝛽 = 1.0) is applied on

the fluid, and the BDF scheme on the structure, with time step size 1.9 × 10−5 (s).
Effect of Fictitious Methods on Number of Subiterations: Next we investigate

the optimal values of the fictitious coefficients for the cylindrical artery, and test the

effect of these coefficients for both fictitious mass and fictitious pressure methods. On

the fluid outlet, a constant pressure boundary condition p = 0 MPa and a zero Neu-

mann boundary condition for velocity are imposed. The similarity between the ficti-

tious methods and Dirichlet-Robin transmission conditions suggests that their opti-

mized coefficients should be close, if the same time integration schemes are applied

for the fluid and structure solvers. For the simpliffied model described in Sect. 3.1,

when apply the fluid and structure solvers in time with first-order accuracy, an opti-

mized coefficient 𝛼s =
2𝜌f

𝛥t𝛾max
was provided in [23] for the Dirichlet-Robin conditions,

where 𝛾max is the maximum frequency supported by the numerical grid (which is 8 in

our simulations). Therefore, for the cylindrical case with first-order splitting scheme

(which gives 𝛽 = 1) for the fluid and the three-step BDF formula (which gives

A1 = A2 =
5
3𝛥t

) for structure, we can derive the optimal fictitious mass coefficient

for (19) as fm = 2𝛽𝜌f

𝜇(𝛾max)A2𝜌sHs𝛥t
≈ 1.7 and the optimal fictitious pressure coefficient for

(20) as fp = 2𝛽𝜌f A1

𝜇(𝛾max)𝛥t(A1A2𝜌sHs+G1Hs+𝛾2maxG2Hs)
≈ 1.3, where 𝛥t = 1.89 × 10−5 s. The esti-

mated optimal coefficients are given based on the approximations that G1 ≈
E

(1−𝜆2)R2

and G2 ≈
KE
1+𝜆

, with K ≈ (1+𝜆)
2+𝜆

for the thin-walled cylinder [27].

To investigate the effect of different coefficients, we test the two fictitious methods

with coefficients fp, fm = {0.44, 0.87, 1.3, 1.7, 2.16, 2.61}. The averaged subiteration

numbers are listed in Table 1. We can see that among all fictitious mass coefficients,

the smallest subiteration number is obtained by fm = 2.16, while the theoretically

optimal choice fm = 1.7 gives a subiteration number slightly larger than this. On

the other hand, for the fictitious pressure method, fp = 0.87, fp = 1.3 and fp = 1.7
obtained similar subiteration numbers, while fp = 1.3 is the best case over all. This

finding is consistent with our estimations. In summary, in this case the fictitious

pressure method gives a smaller subiteration number than the fictitious mass method.

Now we investigate the effects of different fictitious methods with various Young’s

modulus and time step sizes. In all cases, the averaged subiteration numbers are

obtained with the theoretical optimal coefficients
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Table 1 Averaged subiteration number for the cylindrical artery test: effect of different methods.

E = 0.6 MPa, 𝛥t = 1.89 × 10−5 s
Case Fic mass Fic

pressure

Avg subit-

eration

Case Fic mass Fic

pressure

Avg subit-

eration

T1 0.0 0.0 No con-

vergence

TM1 0.44 0.0 80.6 TP1 0.0 0.44 22.7

TM2 0.87 0.0 76.0 TP2 0.0 0.87 18.7

TM3 1.3 0.0 45.4 TP3 0.0 1.3(opt) 17.7

TM4 1.7(opt) 0.0 28.7 TP4 0.0 1.7 19.8

TM5 2.16 0.0 27.6 TP5 0.0 2.16 21.3

TM6 2.61 0.0 29.8 TP6 0.0 2.61 60.1

fm =
2𝛽𝜌f

𝜇(𝛾max)A2𝜌sHs𝛥t
, or fp =

2𝛽𝜌f A1

𝜇(𝛾max)𝛥t(A1A2𝜌sHs + G1Hs + 𝛾2maxG2Hs)
. (33)

We first vary the Young’s modulus from 0.15 to 19.2 MPa with fixed time step size

𝛥t = 1.89 × 10−5 s, and obtain the averaged subiteration numbers as shown in the

left plot of Fig. 2. When the Young’s modulus is as small as 0.15 MPa, the ficti-

tious mass method requires 251.2 averaged subiterations while the fictitious pressure

method only requires 29.5. When the Young’s modulus increases, both methods con-

verge faster and the averaged subiteration number from the fictitious mass method is

closer to that from the fictitious pressure method, but the latter still performs better.

On the other hand, we fix the Young’s modulus as E = 0.6 MPa and increase the

time step sizes from 9.43 × 10−6s to 1.51 × 10−4s. The averaged subiteration num-

bers from the fictitious methods are plotted in the right plot of Fig. 2, from which we

can see that when𝛥t = 9.43 × 10−6s, the fictitious mass method takes 270.1 averaged

Fig. 2 Averaged subiteration number for the cylindrical artery test. Left varying Young’s modulus;

right varying time step sizes
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subiterations while the fictitious pressure method only 34.7. However, if we increase

the time step size to 1.51 × 10−4s, the fictitious mass method preforms better (with

16.0 averaged subiteration number) than the fictitious pressure method (with 18.0
averaged subiteration number). Overall, from these results we can see that the fic-

titious pressure method is much more efficient when the Young’s modulus and/or

the time step size are small. When the Young’s modulus and/or the time step size

get increased, the performance from the fictitious mass method becomes comparable

with that from the fictitious pressure method.

Sensitivity to Viscoelastic Coefficients: We now employ the fractional-order vis-

coelastic arterial wall model (21) in the FSI simulations, and evaluate the sensitivity

of this model by varying the viscoelastic parameters 𝛼, 𝜏
𝜀

and 𝜏
𝜎
. In all tests we take

a reduced Young’s modulus E = 0.3 MPa. On the fluid solver, at the outlet the pres-

sure p̄ is flow-dependent and is determined from the flow rate Q(t), given the resis-

tant R, and the capacitance C as in [6], with coefficients R = 2.8 × 103dyn ⋅ s∕cm5

and C = 3.4 × 10−7cm5∕dyn. The arterial outlet is assumed to be undeformed when

the outlet pressure p̄(t) reaches its lowest point at t = 0.0151 s. To investigate how

sensitive the solution is to the choice of relaxation parameters 𝜏
𝜀

and 𝜏
𝜎
, in the left

plot of Fig. 3, we present the pressure-radial displacement hysteresis loops results at

point (1, 0, 2) for fixed 𝛼 = 0.2 with various relaxation time parameters. Correspond-

ingly, the results for 𝛼 = 1.0 are displayed in the right plot. When 𝛼 = 1.0, a more

noticeable viscous response can be observed, and the arterial wall deformation is

more sensitive to the relaxation spectrum used. This means that when the fractional

order 𝛼 is relatively small, the effect of the fractional order SLS model (21) has low

sensitivity on the relaxation parameters. Therefore, it overcomes the uncertainty for

using the integer order SLS model in simulating arterial networks, where 𝛼 is typi-

cally less than 0.3, since we can only hope to get accurate estimates of 𝜏
𝜀

and 𝜏
𝜎

at

limited anatomic locations.

Fig. 3 Pressure-radial displacement hysteresis loops at point (1, 0, 2) in the idealized artery simu-

lations, from fixed and varying relaxation parameters. Left 𝛼 = 0.2; Right 𝛼 = 1.0



140 Y. Yu

5.2 Blood Flow in a Patient-Specific Aneurysm

In this section patient-specific aneurysm models are tested, with the arterial geome-

try extracted from Magnetic Resonance Imaging data [6]. This aneurysm is located in

the cavernous segment of the right internal carotid artery at the eye level. In all tests

the structure subdomain covers the aneurysm sac only, as shown in the left plot of

Fig. 4. Similar to the cylindrical artery model in the previous section, we imposed a

Womersley velocity profile with 8 harmonics at the inlet boundary of the fluid solver,

and a zero Neumann boundary condition for velocity at the outlet. The outlet pres-

sure p̄ is flow-dependent as in [6]. The arterial outlet is assumed to be undeformed

when the outlet pressure p̄(t) reaches its lowest point at t = 0.0571 s. To integrate

in time, we employed the second-order splitting scheme for the fluid solver, and the

BDF formula for the structure side. All the simulations are done with the physical

and numerical parameters summarized in Table 2. In the tests of this section we set

𝜌s∕𝜌f = 1. To investigate the displacement distribution on the whole aneurysm, we

show the corresponding displacement amplitudes at the systolic peak in the right two

plots of Fig. 4. We observe that the maximum displacement amplitude is about 0.8
mm, which is obtained near point 1. This is also consistent with the physiological

range obtained from the measurements, as reported in [36].

Fictitious Method: Next, we investigate the effect of various fictitious methods,

by comparing the subiteration numbers. Before demonstrating any results, an estima-

Fig. 4 Left two plots structure mesh and fluid mesh. Right two plots displacement magnitudes

distribution and positions of the history points in patient-specific aneurysm test at t = 3T∕7

Table 2 Parameters used in the patient-specific aneurysm simulations

Parameter Value Parameter Value

Young’s Modulus 3 Mpa Poisson ratio 0.3
Blood density 1.06 g∕cm3

Wall thickness 0.01 cm

Kinematic viscosity 3.8 × 10−2 cm2∕s Average flow rate 70 ml/min

Time step size 1.43 × 10−3 s Polynomial order 2
Resistant parameter 7.844 × 102 dyn ⋅

s∕cm5
Capacitance parameter 7.285 × 10−5 cm5∕dyn
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Table 3 Averaged subiteration number in patient-specific aneurysm test

Fic

mass

Fic

pres-

sure

Robin

coef

Avg

subiter

Fic

mass

Fic

pres-

sure

Robin

coef

Avg

subiter

B1 0.0 0.0 0.0 18.4 BR1 0.0 0.0 350 12.4

BM1 0.5 0.0 0.0 16.2 BP1 0.0 0.2 0.0 14.7

BM2 2.08 0.0 0.0 12.4 BP2 0.0 0.119 0.0 12.3

tion of the optimal coefficients is needed. Since the artery with aneurysm is a com-

plicated geometry, we cannot obtain any reasonable analytical value from Fourier

analysis. Instead, this value is obtained from the post-processing of several sample

tests. We first take three initial tests with three initial guesses of fm and fp, then esti-

mate fm(opt) and fp(opt) from simulation of these three runs. More details can be

found in [55].

In the following we confirm the previous estimate. The results are also compared

with those from a Robin based semi-implicit coupling method proposed in [3]. Since

the Young’s modulus E is large in this example, based on our previous discussions in

Sect. 3.1, we take a smaller value for fp as the initial guess. Firstly, the averaged subit-

eration numbers for three sample cases B1 ∶ fm = fp = 0, BM1 ∶ fm = 0.5, fp = 0 and

BP1 ∶ fm = 0, fp = 0.2 are computed, as shown in Table 3. The estimates for fp(opt)
and fm(opt) can be obtained: fp(opt) ≈ 0.119, fm(opt) ≈ 2.08. The averaged subiter-

ation numbers obtained from fp(opt) = 0.119 and fm(opt) = 2.08 are also listed in

Table 3. To demonstrate the effects of these coefficients, the subiteration numbers

obtained from the Robin-based coupling method with its optimal coefficient 350 is

also provided. It can be seen that the fictitious methods with estimated optimal coeffi-

cients require smaller subiteration numbers compared to the original sample simula-

tions. Among all, the test with fp = 0.119 has the best performance, which is slightly

better than that from fm = 2.08 and the Robin based coupling method. Comparing

to the fictitious pressure method with its optimal coefficient, the optimized fictitious

mass method has a similar efficiency here. Since the Young’s modulus E = 3 MPa

in these simulations is large, this finding actually confirms our previous discussion

in Sect. 3.1.

Viscoelastic Model: The authors in [11–14, 18] have demonstrated that frac-

tional orders would be able to properly predict the different mechanical behavior of

the smooth muscle cell activities. Since the smooth muscle decrease plays a cru-

cial role in the change of cerebral aneurysm walls [7, 46, 48, 52], in this section

we investigate the fractional order models on the patient-specific aneurysm geome-

try demonstrated in Fig. 4. On the structure side, the fast convolution method intro-

duced in Sect. 4 is used, with the fictitious mass method applied to stabilize the FSI

partitioned procedure.

To compare the computed evolution of the aneurysm deformation from different

models, we first display the displacement time traces of three points on the inter-

face. The locations of these points are shown in the right two plots of Fig. 4. Two
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Fig. 5 Time traces in patient-specific aneurysm with viscoelastic arterial wall models. Upper
left, upper right, bottom left displacement profiles for corresponding points; bottom right pressure

imposed at the inlet

fractional-order viscoelastic models are studied for the aneurysm wall: FOV-SLS1

(𝛼 = 0.29, 𝜏
𝜀
= 1.84 (s), 𝜏

𝜎
= 0.076 (s)) and FOV-SLS2 (𝛼 = 0.2, 𝜏

𝜀
= 11.74 (s),

𝜏
𝜎
= 7.61 (s)) which were calibrated from arterial sample loading tests in the lit-

eratures [12–14, 18]. Then we compare the results against simulation results from

the pure elastic model. The computed inlet pressure and the time traces for displace-

ments at these three points are shown in Fig. 5, for the pure elastic model, the FOV-

SLS1 and the FOV-SLS2 models. The FOV-SLS1 model predicts a much smaller

deformation compared with that from the other two models, which results in a larger

blood pressure drop in each cardiac cycle. A minor phase shift could be observed

while comparing the location of the maximum displacement for each model: while

the maximum displacements were achieved after the systolic peak in all cases, the

case using the FOV-SLS1 model reaches its maximum deformation firstly, then the

case using the elastic arterial wall model, and finally the case with the FOV-SLS2

model. It was also observed that although the displacement magnitudes vary for dif-

ferent arterial wall models, the displacement magnitude distribution pattern does not

change much [56].



Fluid-Structure Interaction Modeling in 3D Cerebral Arteries and Aneurysms 143

6 Conclusion and Future Work

This chapter centered around numerical analysis and large-scale scientific computing

for cerebral artery and aneurysm applications with specific focus on fluid-structure

interaction problems.

Specifically, we first introduced a family of fictitious methods and analyzed them

for FSI problems, where additional terms are introduced in the fluid/structure equa-

tions to balance the added-mass effect and make the partitioned FSI solver perform

more like an exact coupled solver [6, 55]. The fictitious methods can be implemented

by changing the coefficients of the pressure or acceleration terms in the fluid or struc-

ture equations, respectively, and therefore can be easily extended and adopted in any

existing FSI solver. We verified the a priori analysis of optimal fictitious coefficients

with corresponding numerical tests, which suggest that for small Young’s modulus

and/or small time step size, the fictitious pressure method is a better choice for a faster

convergence. However, when the Young’s modulus or time step size increases, the

performance of the fictitious pressure and fictitious mass methods is comparable. As

validation for the methods on complex geometries, we also conducted simulations

and provided theoretical analysis to obtain optimal values for the fictitious parame-

ters in 3D patient-specific brain arterial geometries with aneurysms.

With the stabilized FSI framework, we have investigated a 3D viscoelastic arte-

rial wall model, whose constitutive law is derived using fractional-order differen-

tial equations. To sustain the high-order accuracy of the backward differentiation

formula (BDF), we designed a high-order fast convolution method with third-order

convergence rate in time and N log(N) operation count. In numerical tests, we inves-

tigated the ability of fractional-order model to capture the viscoelastic behavior of

arterial walls under fluid-structure interactions. On an idealized artery geometry, we

compared several models with the same elasticity parameters and different viscoelas-

tic parameters. This comparison study indicates that for the integer-order SLS mod-

els, the viscous behavior strongly depends on the relaxation parameters 𝜏
𝜀

and 𝜏
𝜎
,

while the fractional order models are less sensitive. Especially when the fractional

order 𝛼 → 0, the viscous response is less pronounced, and the fractional model is

tuned by a single parameter, the fractional order 𝛼. As an example of long-term large-

scale simulations, we have also investigated the performance of this fractional-order

arterial wall model on the 3D complex patient-specific brain aneurysm geometry.

In ongoing work, we are now investigating the proper fractional parameters

specifically for the aneurysm sac using patient-specific data. Since the fractional

order is related with the loss of smooth muscle cells, this aneurysm-specific model

as well as the numerical tools developed here may help to understand the structural

integrity of the aneurysm wall, and therefore contribute in studying the subclasses of

unruptured aneurysm walls [10, 45]. In the future, we will further develop coupling

schemes for FSI with better efficiency and accuracy, and apply the related domain

decomposition approaches in other multiscale and multiphysics problems, for exam-

ple, multi-phase flows, atomistic-to-continuum coupling problems, etc.
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Large-Eddy Simulation of Turbulence
in Cardiovascular Flows

F. Nicoud, C. Chnafa, J. Siguenza, V. Zmijanovic and S. Mendez

Abstract A 4th-order accurate, low dissipative flow solver is used to perform

Large-Eddy Simulations of three typical hemodynamic situations: the flow through

the idealized medical device proposed by the American Food and Drug Adminis-

tration; the intracardiac flow within an actual human left heart whose morphology

and deformations are deduced from medical imaging; the flow downstream of an

artificial aortic valve which arises from the blood-leaflets interaction problem. In all

the cases, the 𝝈 subgrid scale model designed to handle wall-bounded transitional

flows is successfully used and the numerical simulations compare favourably with

the experimental data available. These results illustrate the potential of the Large-

Eddy Simulation methodology to properly handle blood flows. They also support

the idea that turbulence, even if not fully developed, may be present in cardiovascu-

lar flows, including under non pathological conditions.

1 Introduction

Turbulence is a natural phenomenon in fluid mechanics, which gives rise to wide

spectrum, chaotic fluctuations in the velocity/pressure fields, even in the absence of

external forcing. This phenomenon arises when the inertia forces are significantly

larger than the viscous effects, viz. when the Reynolds number Re exceeds a few

thousands in steady flow, most probably less for pulsatile flows [1]. This number

usually reaches a few hundreds in medium-sized arteries and a few thousands in the

largest vessels, in the heart itself or within biomedical systems such as total artificial

hearts or ventricular assist devices. Thus, one may expect turbulence to be present in
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the cardiovascular system, at least in some favourable regions in space (e.g. close to

stenoses, valves, bifurcations) and during specific periods of the cardiac cycle (when

the flow decelerates). Still, until recently turbulence was virtually not studied, at least

non-invasively, in the cardiovascular biomechanics community, notably because in

vivo 3D and unsteady measurements of the blood velocity are very challenging.

Recent progresses in both computational fluid dynamics (CFD) and medical imag-

ing techniques give rise to a renewed interest for the turbulent properties of blood

flows. Unstable and/or turbulent flows have been observed in numerical simulations

in abdominal aortic aneurysms [2], carotid siphons [3], cerebral aneurysms [4] as

well as experimentally in an idealized left ventricle [5]. Thanks to an MRI method

based on the intravoxel velocity standard deviation, it is now possible to estimate the

turbulent kinetic energy in vivo. Significant levels of kinetic energy were found not

only in pathological left atria [6] but also in normal left ventricles [7], supporting

the idea that turbulence can also occur in healthy human subjects.

From a numerical point of view, representing turbulence is a challenge due to the

wide variety of both temporal and spatial scales that are present at the same time.

In the ideal case of a decaying isotropic turbulence, one may show that the largest-

to-smallest length scales ratio behaves like R3∕4
e [8]; as a consequence, the number

of grid points necessary to properly represent a turbulent flow, including the whole

range of fluctuations, increases as fast as R9∕4
e . This approach where turbulence is

accounted for by just and only solving all the scales produced by the Navier-Stokes

equations is called Direct Numerical Simulation and remains most of the times out of

reach of the current computing power except in simple cases with moderate Reynolds

number. The large variety of scales inherent to any turbulent flow motivated the

development of turbulent models in order to complement the Reynolds-Averaged

Navier-Stokes (RANS) equations which allow to compute the averaged flow quanti-

ties without explicitly representing the fluctuations. Despite decades of very active

research and some successes in fully developped turbulent flows, there are still many

controversies about the proper way to develop ’good’ turbulent models [9] and the

idea of a universal formulation able to properly deal with any turbulent flows is

widely considered as hopeless. On top of not being predictive enough, RANS mod-

els are better suited for fully turbulent flows at very high Reynolds numbers than

transitional flows. The ability of Large-Eddy Simulation (LES) to better predict a

flow without prior knowledge, including regarding its laminar/turbulent nature, is

one of the reasons why this technique is now being used in many applications. It is a

method of choice for unsteady 3D flows at moderate Reynolds numbers, especially

when transition from laminar to turbulence plays a key role. In this paper, we illus-

trate how LES can be used to represent three configurations typical of cardiovascular

applications:

∙ an idealized medical device where a stationary flow goes from laminar to turbulent

in a simple geometry [10],

∙ a realistic human left heart whose geometry and cyclic deformations are deduced

from medical imaging and where CFD/LES in a time varying domain is used to

generate the associated blood flow [11],
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∙ the flow past an artificial aortic valve where the Fluid-Structure Interaction prob-

lem is solved to predict the leaflets dynamics and associated turbulent generation.

Some numerical and physical issues specific to each of these configurations will be

discussed in Sects. 3, 4 and 5 respectively, together with comparison with experi-

mental data when available. Some details about the numerics and the subgrid scale

modelling strategy are first given in Sect. 2.

2 LES Requirements

In LES, the modelling effort focuses on the smallest length scales of fluctuations

which are presumably less dependent on the geometry of the flow domain and

thus more universal. The largest scales (which can be as small as twice the typi-

cal cell size, at least in theory) are explicitly resolved as solutions of the low-pass

filtered Navier-Stokes equations [12]. Thus, the finer the mesh, the larger the range

of resolved scales and the smallest the contribution of the subgrid scale model. In

other words, the modelling effort in less intense in LES compared to RANS and this

is all the more true that the grid is refined.

The price to pay is that the dynamics of the largest scales, as well as the related

macroscopic mixing and turbulent stresses, must be properly represented by the

numerics. As a consequence the numerical errors associated to both the spatial and

temporal discretizations must be kept as small as possible. Notably, dissipation-free

schemes must be preferred so that the (relative) intensity of the different resolved

scales is not spoiled. An important feature of LES is that the scheme should be

as accurate as possible for all the scales represented on the mesh, the largest as

well as the smallest. This means that the order of accuracy of a numerical method

is not a good measure of its capability to perform well in the LES; the effective

wave number [13] and kinetic energy conservation [14] concepts are better suited

to characterize a numerical scheme dedicated to LES. For example, better results

may be obtained with a second order centered (dissipation-free at all scales) scheme

than with a higher-order upwind biased (dissipative) scheme [15, 16]. As a con-

sequence, a RANS solver, usually based on stabilized scheme coupled to implicit

time marching methods designed to speed up the convergence towards a steady solu-

tion cannot be easily adapted to LES. In the present study, the in-house flow solver

YALES2BIO (http://www.math.univ-montp2.fr/~yales2bio) was used to solve the fil-

tered flow equations. Dedicated to the computations of blood flows, this general pur-

pose solver relies on a 4th-order accurate centred (dissipation-free) finite-volume

formulation where the projection method [17] is used to meet the divergence-free

condition. The time-stepping is also 4th-order accurate, based on the dissipation-

free explicit low-storage Runge-Kutta scheme [18]. At the end, the algorithm is non

dissipative and one relies on the physical dissipation, either laminar or issued by the

subgrid scale model, to ensure numerical stability. This is made possible because

the Reynolds number is low to moderate in biomedical applications so that numer-

http://www.math.univ-montp2.fr/~yales2bio
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ical stabilization is not necessary; this also requires to use high quality 3D meshes.

Finally, YALES2BIO inherits its parallel efficiency from the YALES2 package devel-

oped by V. Moureau and co-workers [19, 20].

From the modelling point of view, the subgrid scale stress tensor 𝜏SGS which

results from the filtering operation applied to the Navier-Stokes equations is most of

the time modelled thanks to the eddy-viscosity assumption (introduced in the RANS

concept in the 70s). In the case of an incompressible fluid, this reduces to

𝜏SGS = 2𝜌𝜈SGS𝐒

where 𝜌 is the fluid density, 𝐒 is the strain rate tensor of the resolved scales and 𝜈SGS
is the so-called subgrid scale viscosity. Several models were proposed over the years

for this quantity and most of them share the following form:

𝜈SGS = (C𝛥)2 D(𝐮) (1)

where C is the model constant which is usually tuned (either theoretically or numeri-

cally) so that the model produces the proper amount of dissipation in the simple case

of decaying isotropic turbulence. The length scale 𝛥 denotes the typical size of the

local cell of the mesh used to solve the filtered Navier-Stokes equations and D is a

differential operator which defines the model and operates on the resolved velocity

field 𝐮. The 𝝈-model [21] is used in this study, meaning that:

D(u) =
𝜎3(𝜎1 − 𝜎2)(𝜎2 − 𝜎3)

𝜎
2
1

(2)

In this expression, 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ 0 are the three singular values of the local velocity

gradient tensor and can be efficiently computed [21]; the model constant isC = 1.35.

This model was selected because it meets several useful properties relevant in terms

of SGS modelling, although not shared by the other SGS models. On top of vanishing

for a variety of canonical laminar flows for which no SGS viscosity is expected, it

has the proper cubic behavior in near-wall regions. In [21], the model was imple-

mented in different numerical solvers and validated in academic cases (homoge-

neous isotropic turbulence, turbulent channel); its effectiveness in a more demand-

ing configuration was also demonstrated recently by considering the impingement

of an unsteady jet with a rigid wall [22]. In this particular case which is relevant to

intra-cardiac hemodynamics, the comparison with experimental data shows that the

𝝈-model outperforms the well-known Dynamic Smagorinsky model [23].

In the next three sections, results from the 𝝈-model as implemented in the

YALES2BIO solver are discussed to illustrate how LES can be used to analyse flows

relevant to cardiovascular applications.
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3 The FDA Medical Device Test Case

The United States Food and Drug Administration (FDA) medical device benchmark

was introduced at the beginning of the current decade as an answer to the ubiq-

uitous presence of various numerical methods in biomedicine. The purpose of the

proposed benchmark program was to validate the CFD codes on idealized medical

device examples. The first FDA test model [10, 24] aims at challenging CFD codes

on a case whith transition to turbulence, which is frequently encountered in biomed-

ical devices. Accurately predicting turbulence is necessary to properly assess shear

stresses, themselves relevant to blood damage prediction in ventricular assist devices

(VAD) [25, 26], but also in blood flows through stents and pumps, to cite a few. Mis-

predicting the turbulent nature of blood flows heavily impacts the results and may

cause critical faulty conclusions.

The FDA medical device model, as illustrated in Fig. 1, consists of a fixed axisym-

metric geometry with a long inlet section, a convergent nozzle, a 10 diameters

long throat section and a sudden expansion at the downstream end. This geome-

try submits the flowing fluid to several events as acceleration through the conver-

gent, pipe type of flow in the throat where maximal Reynolds number (Reth) is

reached and jet formation into the sudden expansion section characterized by decel-

eration, mixing shear layer generation and possible turbulence transition. Five flow

regimes were considered, which correspond to fully laminar case (Reth = 500), tran-

sient case (Reth = 2000), laminar inlet—transition to turbulence in sudden expansion

(Reth = 3500), laminar inlet—turbulent case (Reth = 5000) and fully turbulent case

(Reth = 6500).

The reported computational investigations on this FDA benchmark can be divided

into two major groups: blinded studies that were conducted without foreknowledge

of the experimental results and the studies conducted after the publication of first

benchmark results. While none of the first 28 CFD research groups which used

various RANS methods managed to fully reproduce the FDA experimental results

[24], almost all succeeding CFD studies [27–30] reported good agreement with the

FDA experiments. This raises a number of questions regarding both the numerical

Fig. 1 Geometry specifications of the first FDA ideal medical device
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methods for turbulence transitional blood flows and the overall methodology to rep-

resent the FDA blood flow case. While the RANS codes [24, 31] in this case clearly

lag behind the LES due to their inability to accurately predict the laminar to turbu-

lent transition, the absence of analysis of the sensitivity to numerical parameters in

the reported DNS and LES results [27, 28, 30] questions the actual predictive char-

acter of these simulations. Indeed, the FDA case proves to be highly sensitive to any

physical or numerical specificities as illustrated in the remaining of this section.

3.1 Simulations with Perturbation-Free Inlet

Investigation of the effects of numerics on the results was conducted by consider-

ing three grid levels as well as a variety of CFL numbers (dimensionless time step).

In order not to presume the resulting flow field in any way, unstructured finite vol-

ume grids were designed with almost no-local refinement in the domain with only

slight stretching towards the upstream and downstream ends. The three grids con-

tain respectively 5 million tetrahedral elements with h = 0.34mm average cell height

(Coarse), 15 million with h = 0.2 mm (Medium) and 50 million with h = 0.14 mm

(Fine). Further details on the numerics and grids are available in [32].

Snapshots of instantaneous velocity fields obtained with the medium grid are dis-

played in Fig. 2 for the transitional (Reth = 3500) case. Except for the CFL number,

the same physical and numerical conditions were used in both cases. This figure illus-

trates that the location of the transition to turbulence is very sensitive to the numerical

details, as confirmed by the profiles displayed in Fig. 3. The latter also shows that the

(a) CFL=0.6

(b) CFL=0.1

Fig. 2 Instantaneous velocity fields (medium grid) for two different values of the CFL numbers

(top CFL = 0.6; bottom CFL = 0.1)—Reth = 3500



Large-Eddy Simulation of Turbulence in Cardiovascular Flows 153

(a) Velocity – Coarse grid (b) Velocity – CFL=0.6 (c) Pressure – CFL=0.6

Fig. 3 Longitudinal evolutions of the streamwise velocity (left and middle plots) and wall-pressure

(relative to the pressure at x = 0 and normalized by the dynamic pressure at the throat—right plot)

for a variety of temporal and spatial resolutions—Reth = 3500

upstream part of the flow (x < 0, the sudden expansion starts at x = 0) is robust to the

details of the simulation. However, both the streamwise mean velocity and the sta-

tic pressure strongly depend on the numerics in the downstream region. This means

that the axisymmetric configuration considered, when fed with an ideal Poiseuille

velocity profile without perturbation, is very sensitive to any physical (boundary

conditions) or numerical (mesh stretching, schemes, time step) modification. This

makes hopeless any effort towards a predictive simulation of this configuration. A

cure to this issue is considered in the next section.

3.2 Small Perturbations at the Inlet

When dealing with transitional flows, the perturbations injected at the inlet of the

computational domain are of prime importance as already discussed in the litera-

ture [33, 34]. In the particular case of the FDA nozzle, the absence of such inlet

perturbations leads to an extreme sensitivity of the results which makes the simula-

tions unreliable. Note that this may also lead to simulations which may compare well

with the experimental data set but which are nonetheless inadequate since not robust

(e.g. the case CFL= 0.6 and coarse grid in Fig. 3a agrees well with the measurements

but should not be trusted since the results depend on the time step).

As shown in Fig. 4, even the smallest amount of perturbations injected at the

inlet (thereafter denoted turbulence injection, TI) greatly improves the situation in

the sense that the results are now robust to any tested numerical condition. More

importantly, the numerical results are also systematically in good agreement with

the experimental data, suggesting that the simulations outcomes are both robust and

accurate. Profiles of the root-mean-square (RMS) velocity, Fig. 5a, show that the

amount of flow perturbations at inlet is significantly increased by TI, as expected. The

small amplitude perturbations are quickly dissipated downstream, being decreased

by more than 2 orders of magnitude as shown in Fig. 5b. Figure 5c and d show that the

flow in the throat is characterized by an increase of the near wall RMS. Just after the
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(a) CFL=0.6: TI range (b) CFL vs TI levels (c) Pressure,CFL=0.6: TI range

Fig. 4 Mean axial velocity and pressure profiles with small TI at inlet (Medium grid, Reth = 3500)

(a) x=-0.15m (Inlet) (b) x=-0.088m (Inlet nozzle) (c) x=-0.034 (throat)

(d) x=-0.008 (throat) (e) x=0.016 (expansion) (f) x=0.032 (expansion)

Fig. 5 Radial profiles of the root-mean-square (RMS) velocity for the laminar (Reth = 500) and

transitional (Reth = 3500) regimes at a variety of axial positions with and without TI (Medium grid)

sudden-expansion, Fig. 5e and f, both RMS profiles obtained with TI are approach-

ing the original no TI cases before merging into laminar flow profile (Reth = 500) or

advancing into turbulence breakdown (Reth = 3500).

Figure 6 shows that TI greatly improves the LES prediction as well as its robust-

ness for laminar, mildly turbulent cases and even in the most demanding, transitional

case (Reth = 2000). The injected perturbations dissipate without inflicting transition

in the laminar case, while in the transitional and turbulent cases they develop and

contribute to more accurate and robust results.
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(a) Reth=500 (b) Reth=2000 (c) Reth=5000

Fig. 6 Axial velocity profiles for the laminar, transitional and mildly turbulent cases with and

without TI (Medium grid)

The study thus reveals that the upstream injection of small-scale perturbations

into transition sensitive flows is an indispensable tool for any biomedical case where

accurate prediction of turbulence is critical.

4 Intracardiac Turbulence

The hemodynamics of the left heart (LH) conveys information regarding the heart

function [35, 36]. Observation of LH flow may thus reflect the presence of an existing

pathology. In addition, there is substantial evidence that the LH hemodynamics can

be responsible for the initiation of ventricular remodelling through mechanosensitive

feedbacks modulating cardiomyocytes architecture [37, 38] and thus cardiac func-

tion [39]. Therefore, accurate assessment of the intracardiac flow is of paramount

importance to get further comprehension of the role played by the hemodynamics

in normal and abnormal LH. Used with caution, image-based computational fluid

dynamics (CFD) can retrieve all the scales of the instantaneous flow, hence being

able to capture disturbed flows. However, pioneering CFD studies focused only on

the large-scale features of the ventricular flow i.e. the jets and the large recirculating

cell. Apart from a few studies that mentioned the potential presence of flow instabil-

ities [11, 40–42], little focus has been given to the disturbed nature of the LV flow,

despite its potential importance.

4.1 Method

Large-eddy simulations were preformed to compute 35 cardiac cycles using the in-

house YALES2BIO solver in a patient-specific left heart model obtained from CMR

images. The set of images used to define the time evolution of the model over the

cadiac cycle consists in 20 3D images of spatial resolution 5.0 × 1.1 × 1.1 mm
3

(21 × 256 × 256 voxels). The subject was 26 years old and his cardiac cycles lasted



156 F. Nicoud et al.

Fig. 7 Human left heart extracted from CMR images. The same domain is shown from four dif-

ferent points of view. The inlets and outlet flow extensions are visible in the left figure. The left

ventricle (LV), left atrium (LA), Aorta (AO), Antero Lateral (A-L) and Postero Medial (P-M) pap-

illary muscles are indicated. A black line passing through the LH indicates the position of the slice

which will be used to display the results in Figs. 8 and 10

on average T = 750 ms. As shown in Fig. 7, the model includes the valves, atrium,

ventricle, papillary muscles and ascending aorta. The deformations of the heart all

along the heart cycle match the CMR exam thanks to an image registration technique.

The technical procedure can be found in [11, 43]. The flow domain within the heart

is discretized using ten million tetrahedral elements. The average edge length is close

to 0.55 mm during diastole. The time step, based on a Courant-Friedrichs-Lewy sta-

bility number of 0.9, varies from 0.2 ms during the beginning of diastole to 0.5 ms

during diastasis.

4.2 Results

The LV large-scale flow features i.e. the blood ejection, the two vortex rings for the

E and A waves and the recirculating cell, are well retrieved (Fig. 8) in accordance

with the numerous observations performed in vivo [42, 44], in silico [40, 45] and

in vitro [46, 47]. However, our computation reveals also large velocity fluctuations,

which are usually not reported in silico but which are in line with the results of pre-

vious experimental work that used both simplified ventricle geometries and inflow

boundary condition [5, 47]. In order to quantify and study the regional distribution

of these fluctuations, we computed them as the difference between the instantaneous

velocity components ui (i = 1, 2, 3) and the phase-averaged velocity components Ui.

The fluctuating part of the fluid velocity is then:

u′i = ui − Ui = ui − ⟨ui⟩

while the corresponding fluctuating kinetic energy (FKE) per unit volume is:
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Fig. 8 Phase-averaged velocity field over a cutting plane through the LH (see Fig. 7 for the plane

position). The mitral and the aortic valves are depicted in grey. The figure shows the classically

reported structure of the heart cycle: the strong blood ejection at systole (0.15 T), the E wave-

induced vortex ring at diastole (0.65 T) and the recirculating cell during diastasis (0.75 T)

FKE = 𝜌

2
⟨
u′iu

′
i
⟩
,

where ⟨⟩ denotes phase-averaged values, 𝜌 is the fluid density (here 1040 kg/m
3
)

and the implicit summation rule over repeated indices is used. Figure 9 displays the

FKE in the left heart during systole (left figure) and diastasis (right figure). Note

that non negligible levels of FKE are visible at these instants. Detailed results of this

simulation and its biomedical consequences can be found in [41].

4.3 Role of SGS Model

As a common practice when using properly resolved LES, all quantities are com-

puted from the resolved velocity field in this study [48, 49]. We note that during our

computations the subgrid scale viscosity remains low in the LV during the whole

the heart cycle, showing that the subgrid scale model dissipates a moderate amount

of energy. Figure 10 shows the ratio between the subgrid scale viscosity and the

fluid viscosity. As expected, since the flow is laminar, the subgrid scale viscosity is

virtually zero during the systole in the LV and has moderate values, but non-null,

during the most turbulent part of the cycle. Thus, the 𝜎-model [21] mainly intro-

duces dissipation in regions where there are significant turbulent fluctuations and
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Fig. 9 3D volume rendering of the FKE in the left heart during systole (left, 0.15 T) and diastasis

(right, 0.75 T). The opacity is set to 0% for FKE values below 30 J/m
3
. The mitral and aortic valves

are not displayed for more clarity but were accounted for in the simulation

1.0

0.75 T

0.0

0.65 T

0.5

0.15 T

Fig. 10 Instantaneous fields of the SGS to fluid viscosity ratio. As expected the SGS viscosity

tends to zero in the left ventricle during systole. The 𝜈SGS∕𝜈 ratio reaches approx. 0.2 in average in

the LV during the most disturbed phase of the heart cycle. Maximum values are close to 5

almost no dissipation in regions where the flow is laminar. This is one of the fea-

tures of the 𝜎-model that makes it suitable for computing cardiovascular flows. For

this particular simulation, an estimation of the Pope criterion [50] can be computed
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as ksgs∕k ≈ 3C∕2(𝛥∕𝜋L)2∕3 [49] where C = 1.5, 𝛥 = 0.55 mm and L = 0.04 m is

the characteristic length of the largest structures. For the present LES, this leads to

ksgs∕k ≈ 0.06 which remains three times below the 15–20% threshold usually used

to evaluate if a LES is sufficiently resolved [50].

4.4 Discussion

The present results question the common idea of laminar flow in the normal left

heart. Imposing the flow to be laminar (as often done in CFD for the LV using com-

mercial software) may be sufficient to retrieve main large-scale hemodynamic fea-

tures, namely jets, recirculating cell, and ejection. However, transitional or turbulent

regimes feature small-scale phenomena that cannot be retrieved under the laminar

hypothesis. The typical Reynolds number value (a few thousand) would make the

DNS of one single cardiac cycle extremely CPU/memory demanding, if not impos-

sible. For example, Chnafa et al. [11] estimated that more than 1 billion nodes would

be necessary to represent the Kolmogorov scale in their realistic human heart model.

On the contrary, well-resolved large-eddy simulation allows retrieving the main char-

acteristics of the flow and its transient properties at a lower cost. This allows sim-

ulating several cycles (here 35) at a tractable numerical cost, thus studying more

complex flow features compared to what is usually done based on RANS simula-

tions, including cycle-to-cycle variations.

5 Cardiac Valves

The aortic heart valve separates the left ventricle from the aorta. It is composed of

three thin deformable leaflets that open and close passively during the cardiac cycle,

preventing blood from flowing back into the left ventricle, and thus ensuring an uni-

directional flow through the cardiovascular system. Aortic valves often degenerate

and lead to either insufficiency or stenosis, which can cause the death of the patient

if not treated. Usually, medication is not a sufficient treatment, and the aortic valve

needs to be replaced by a prosthesis. One of the basic engineering concern for arti-

ficial aortic valve design is the hemodynamics. Indeed, the ideal aortic valve design

should minimize production of turbulence which is notably known to have effect on

thrombus formation (blood coagulation) [51, 52]. In Sect. 4, the aortic valve was rep-

resented thanks to a simple model fed by morphological data gained from medical

imaging [11, 41, 43]. A more realistic modelling based on a Fluid-Structure Inter-

action (FSI) formulation is described in this section where an experimental config-

uration relevant to an artificial aortic valve [53] is also considered for validation.
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Numerical Method

The FSI model relies on the immersed thick boundary method (ITBM) [54] which

was adapted from the original immersed boundary method (IBM) introduced by

Peskin [55] to deal with 3D membranes. Two independent meshes are considered

to discretize the solid valve and the fluid. The valve leaflets are represented by a

moving Lagrangian mesh while the fluid is discretized by a fixed Eulerian unstruc-

tured mesh. The different steps of the ITBM are the following:

1. Knowing the displacement ⃖⃖⃖⃖⃗Um of each Lagrangian node, the mechanical force

⃖⃖⃖⃖⃗Fm resulting from the membrane deformation is calculated,

2. The mechanical force ⃖⃖⃖⃖⃗Fm is regularized on the fluid mesh, giving rise to the vol-

umetric force ⃖⃗fj on each fluid node,

3. The Navier-Stokes equations (forced by the regularized mechanical forces) are

solved on the fluid mesh, yielding the velocity of the fluid ⃖⃖⃗vj on each fluid node,

4. The velocity of the membrane ⃖⃖⃖⃖⃗Vm at each Lagrangian node is interpolated from

the ⃖⃖⃗vj field, enabling to deduce the new position ⃖⃖⃖⃖⃗Xm from the position at the pre-

vious timestep

⃖⃖⃖⃖⃗Xm = ⃖⃖⃖⃖⃗Xm
previous + 𝛥t⃖⃖⃖⃖⃗Vm

The displacement of each Lagrangian node is then updated thanks to ⃖⃖⃖⃖⃗Um = ⃖⃖⃖⃖⃗Xm −
⃖⃖⃖⃖⃗X0
m, where

⃖⃖⃖⃖⃗X0
m stands for the initial stress-free position (also referred to as the

reference position).

The regularization and interpolation of steps 2 and 4 require dealing with Dirac

functions that must be properly regularized on the Eulerian fluid mesh [56]. To this

respect, the Reproducing Kernel Particle Method [57] is used to deal with unstruc-

tured meshes. The computation of the mechanical force ⃖⃖⃖⃖⃗Fm (step 1) is performed by

the LMGC90 solid mechanics solver [58], using the classical finite-element method.

In the present work, a quasi-incompressible Neo-Hookean material is used to model

the valve, defined by its strain energy function:

W = G
2
(
̄I1 − 3

)
+ K

2
(ln J)2 , (3)

where G and K are the shear and bulk modulus, respectively. ̄I1 is the first invariant

of the isochoric right Cauchy-Green deformation tensor ̄𝐂, and J is the Jacobian of

the transformation.
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Fig. 11 Details of the computational setup. The flow is generated using switching inlet and outlet

conditions, imposed far from the zone of interest. The assumption of a flat velocity profile is made

to impose the inlet/outlet flow rate signal

Computational Setup

The computational setup was designed in such a way to represent the experimen-

tal test rig studied at the Helmholtz Institute of Aachen [53]. The aortic geometry

includes the three sinuses of Valsalva after the calculations by Reul et al. [59] (see

Fig. 11). The valve is built on a tri-commissure frame positioned within the aortic

geometry, and is designed in an almost closed position (see Fig. 11). Both the arter-

ial wall and the tri-commissure frame are defined as rigid bodies whose borders are

non-slip wall boundary conditions of the fluid domain. As shown in Fig. 11, a flow

rate signal is imposed as a periodic inlet condition either upstream or downstream of

the valve, depending if the signal is positive or negative. The whole fluid geometry

is represented by approx. 3.3 million tetrahedral elements, and the zone of interest

(displayed in Fig. 11) is meshed with a uniform mesh resolution of 0.5 mm. The valve

mesh is composed of approx. 1500 quadratic hexahedral elements, with an effective

resolution of 0.5 mm.

The characteristics of the flow and the valve are relevant of physiological data

and are summarized in Table 1. In view of the Reynolds (Re) and Womersley (W0)

numbers, the viscosity of the Newtonian blood analogue fluid is set in the high-shear

limit values [60].

Results and Discussion

Figure 12 shows the streamwise velocity field downstream of the valve. Four char-

acteristic instants of the cardiac cycle are shown: t = 0.20 s, just before the flow rate

reaches its maximal value, referred to as Early Systole (ES); t = 0.26 s, when the

flow rate is maximal, referred to as Peak Systole (PS); t = 0.35 s, just after the flow
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Table 1 Characteristics of

the flow and the valve set to

reproduce physiological flow

conditions

Flow parameters

Density 𝜌 = 1100 kg/m
3

Dynamic viscosity 𝜇 = 3.6 × 10−3 Pa s

Heart rate nbpm = 60
Mean cardiac output Qmean = 3.48 L/min

Reynolds number Re = 1388
Womersley number W0 = 17
Valve parameters

Density 𝜌s = 1000 kg/m
3

Shear modulus G = 2.4 MPa

Bulk modulus K = 1.6 MPa

Thickness of the valve e = 0.15mm

Radius of the valve R = 12.5mm

rate reaches its maximal value and begins to decrease, referred to as Mid-Systole

(MS); t = 0.55 s, when the flow rate is decreasing, referred to as Late Systole (LS).

The main feature of the flow is the propagation of a jet emerging from the valve at ES

(see label a), propagating between ES and MS (see labels b and c), and dissipating

at LS. This jet is most probably hydro-dynamically unstable, promoting transition to

turbulence downstream of the valve.

In order to analyse the structure of this jet and highlight the cycle-to-cycle vari-

ations of the flow, two velocity profiles are extracted over 10 distinct cycles (dis-

played in Fig. 12): profile 1 (P1), located immediately behind the valve; profile 2

(P2), located further downstream of the valve. Cycle-to-cycle variations are mainly

observed on P2, suggesting that the jet emerging from the valve is mostly laminar

and that it becomes turbulent when propagating further downstream. Regarding P2 at

PS, MS and LS, it is seen that cycle-to-cycle variations increase as the inlet flow rate

decreases, which is consistent with the observations made by Chnafa et al. [11, 41]

in the case of whole heart geometries with simple (without FSI) valve model. This

feature should be related to the general trend of all decelerated flows to destabilize.

Few cycle-to-cycle variations are nonetheless observed on P1 at ES; these fluctua-

tions are in fact induced by variations in the valve opening process and not related

to any turbulent motion. This is illustrated in Fig. 13 which displays some typical

shapes of the aortic valve. All these views correspond to the same three instants (the

third one corresponding to ES) but were extracted at four different cycles. If the over-

all opening process is always the same (buckling of the leaflets, either successive or

simultaneous), very large fluctuations are also present from one cycle to the other.

These variations most probably result from two main ingredients: the sensitivity of

the buckling phenomenon to the details of the load on the first hand, the existence

of a chaotic pressure load induced by the downstream turbulent fluctuations on the

other hand.
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Fig. 12 Streamwise velocity field downstream of the valve. Two velocity profiles (P1 and P2) are

extracted over 10 distinct cycles. Four different instants of the cardiac cycle are depicted (ES, PS,

MS and LS)
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t = 0.20 s

t = 0.17 s

t = 0.15 s

Fig. 13 Typical shapes of the aortic valve during the opening phase. The last instant (t = 0.20 s)

corresponds to ES (see Fig. 12). Each column corresponds to a specific cycle

6 Conclusion

Given the flow regimes encountered in macro-circulation, turbulence is most prob-

ably present in many practical configurations, either physiological or within bio-

medical devices. Large-Eddy Simulation has the potential to properly represent the

effects of turbulence provided that it is used with appropriate numerics, subgrid scale

model and boundary conditions. The numerical solver YALES2BIO (http://www.

math.univ-montp2.fr/~yales2bio/) gathers all the required properties and was suc-

cessfully used in three different situations including the intracardiac flow and the

interaction with a realistic aortic valve. Transitional flows are even more demanding

and should be addressed very carefully since they may be extremely sensitive to the

details of the simulation if no perturbation is introduced in the upstream condition.

This is illustrated by considering the simplified medical device proposed by FDA as

a validation test case.
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Computational Comparison Between
Newtonian and Non-Newtonian Blood
Rheologies in Stenotic Vessels

Bruno Guerciotti and Christian Vergara

Abstract This work aims at investigating the influence of non-Newtonian blood

rheology on the hemodynamics of 3D patient-specific stenotic vessels, by means

of a comparison of some numerical results with the Newtonian case. In particular,

we consider two carotid arteries with severe stenosis and a stenotic coronary artery

treated with a bypass graft, in which we virtually vary the degree of stenosis. We per-

form unsteady numerical simulations based on the Finite Element method using the

Carreau-Yasuda model to describe the non-Newtonian blood rheology. Our results

show that velocity, vorticity and wall shear stress distributions are moderately influ-

enced by the non-Newtonian model in case of stenotic carotid arteries. On the other

hand, we observed that a non-Newtonian model seems to be important in case of

stenotic coronary arteries, in particular to compute the relative residence time which

is greatly affected by the rheological model.

1 Introduction

Blood is a two-phase mixture comprising various types of formed elements (red

blood cells, white blood cells, platelets) suspended in an aqueous solution of organic

molecules, proteins, and salts called plasma. Because of this multi-component nature,

blood exhibits complex rheological properties [1, 2]. In particular, several experi-

mental investigations showed that blood features a so-called shear-thinning behavior,

that is, its viscosity decreases with increasing shear rates, reaching a nearly constant

value of approximately 0.035 poise only for shear rates grater than 200 s−1 [3].

In computational fluid-dynamics, the assumption of Newtonian flow (i.e. constant

viscosity) is generally accepted for blood flow in large-sized arteries, such as the

aorta, where the shear rates are high, while the non-Newtonian behavior of blood
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has to be taken into account in small vessels like the capillaries [2]. For medium-

sized vessels, such as the carotid arteries or the coronary arteries, the validity of the

Newtonian hypothesis is still not completely clear, especially in the stenotic case. In

addition to this, presently there is no universal agreement upon the correct model

to represent the viscous properties of blood [4]. For these reasons, modelling of

blood’s non-Newtonian behavior is increasingly being performed and different non-

Newtonian models have been used in order to study their effects on blood flow char-

acteristics (e.g. flow field, secondary flow patterns, wall shear stresses).

We report in Table 1 the main computational studies regarding the use of non-

Newtonian models in (possibly stenotic) carotid and coronary arteries, either in ideal

or real (i.e. patient-specific) geometries. Most of the literature deals with healthy (i.e.

non-stenotic) geometries, see [5–8, 12] for carotid arteries and [14, 15, 17, 18] for

coronary arteries, whereas studies on stenotic geometries are still sparse. Among

the studies in ideal stenotic districts, we cite e.g. Razavi et al. [9], who studied dif-

ferent non-Newtonian models in a 2D idealized stenotic carotid, and Chen et al.

[13], who studied an ideal model of stenotic coronary artery treated with an end-

to-side bypass graft. As for coronary bypasses, we mention Kabinejadian et al. [16],

who studied a compliant model of an idealized sequential coronary artery bypass

graft, but without including the stenosis in the 3D geometry. Even more rare are

the studies on patient-specific stenotic vessels: Stroud et al. [11] compared New-

tonian and non-Newtonian models in a severely stenotic patient-specific carotid,

but only a two-dimensional model was examined; Shirmer et al. [10] studied a 3D

Table 1 Review of the literature regarding computational studies in carotid and coronary arteries

using non-Newtonian models

Arterial vessel Geometry Non-Newtonian model

Box et al. [5] Non-stenotic carotids Ideal, 3D Carreau-Yasuda

Boyd et al. [6] Non-stenotic carotids Real, 2D Carreau-Yasuda

Gijsen et al. [7] Non-stenotic carotids Ideal, 3D Carreau-Yasuda

Perktold et al. [8] Non-stenotic carotids Ideal, 3D Casson

Razavi et [9] Stenotic carotids Ideal, 2D 6 different models
a

Shirmer et al. [10] Stenotic carotids Real, 3D Carreau

Stroud et al. [11] Stenotic carotids Real, 2D Power law

Valencia et al. [12] Non-stenotic carotids Real, 3D Herschel-Bukley

Chen et al. [13] Stenotic coronaries Ideal, 3D Carreau-Yasuda

Jeong et al. [14] Non-stenotic coronaries Ideal, 2D Carreau

Johnston et al. [15] Non-stenotic coronaries Real, 3D Generalised power law

Kabinejadian et al. [16] Non-stenotic coronaries Ideal, 3D Carreau-Yasuda

Liu et al. [17] Non-stenotic coronaries Real, 3D Power law

Soulis et al. [18] Non-stenotic coronaries Real, 3D 7 different models
b

Vimmr et al. [19] Stenotic coronaries Real, 3D Carreau-Yasuda

a
Power law, Carreau, Carreau-Yasuda, Modified-Casson, Generalized power law, Walburn-Schneck

b
Carreau, Carreau-Yasuda, Power law, Non-Newtonian power law, Generalized power law, Casson, Walburn-Schneck
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patient-specific stenotic carotid artery, but no comparison was made with the New-

tonian model; Vimmr et al. [19] performed a numerical comparison of Newtonian

and non-Newtonian models in patient-specific aorto-coronary bypasses. At the best

of our knowledge, no comparisons between Newtonian and non-Newtonian models

have been made so far in patient-specific 3D stenotic carotid arteries. Furthermore,

no attention has been given to the influence of the degree of stenosis on the non-

Newtonian behavior of blood in 3D patient-specific aorto-coronary bypass configu-

rations.

In this context, the aim of this work is to investigate the effects of non-Newtonian

blood rheology on the hemodynamics of 3D patient-specific stenotic vessels. In par-

ticular, we studied two sets of geometries:

1. two carotid arteries with severe stenosis (i.e. greater than 70%);

2. a stenotic coronary artery treated with a bypass graft. In this case, we virtually

vary the degree of stenosis in order to obtain three different degrees of coronary

stenosis (50, 70, 90)%, with the aim of analysing the effects of the non-Newtonian

rheology for different degrees of stenosis.

On these geometries, reconstructed from MRI or CT images, we performed

unsteady numerical simulations based on the Finite Element method. In order to

describe the non-Newtonian blood rheology, we choose the Carreau-Yasuda model,

since this model is able to correctly describe the physiological shear-thinning behav-

ior of blood [4].

2 Materials and Methods

2.1 Computational Domains and Mesh Generation

For this study, we consider two carotids with a degree of stenosis greater than

70% who underwent elective carotid endarterectomy, i.e. the surgical removal of

atherosclerotic plaque (cases CA1, CA2), and one patient with isolated severe left

anterior descending (LAD) coronary artery disease (i.e. stenosis greater than 70%)

who underwent aorto-coronary bypass graft surgery by means of the left internal

mammary artery (case CO1). Radiological images were acquired by means of Mag-

netic Resonance technology for CA1 and CA2 and Contrast Enhanced Computed

Tomography for CO1.

Using the software VMTK (https://www.vmtk.org), we reconstructed from the

radiological images a surface model of the interface between the blood and the arte-

rial wall (see Fig. 1 for two examples of reconstructed surfaces). The corresponding

computational domains were turned into volumetric meshes of tetrahedra, obtained

after a refinement study (constant wall shear stresses up to a tolerance of 2%). A local

mesh refinement was also performed in all the cases at the level of the stenosis. As

examples, we report in Fig. 2a detail of the meshes for CA1 and CO1 cases.

https://www.vmtk.org
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Fig. 1 Computational domains for the numerical simulations. Left: case CA2. Right: case CO1

with a 70% LAD stenosis

Fig. 2 Mesh details. Left:
stenotic carotid bifurcation

of case CA1. Right: different

degrees of LAD stenosis of

case CO1

2.2 Mathematical and Numerical Methods

We consider blood as a homogeneous and incompressible fluid described by the

Navier-Stokes equations [20] and we assume either a Newtonian or a non-Newtonian

rheology model. In particular, for the latter case we choose the Carreau-Yasuda
model, with viscosity given by [3, 19]

𝜇(𝐱, t) = 𝜇∞ + (𝜇0 − 𝜇∞) (1 + (𝜆�̇�(𝐱, t)a)
n−1
a , (1)

where �̇� is the shear rate defined by �̇� = 2
√
DII , DII =

1
2
∑3

i,j=1 DijDij being the

second invariant of the rate of deformation tensor 𝐃(𝐮) = 1
2

(
∇𝐮 + (∇𝐮)T

)
, with

𝐮 = 𝐮(𝐱, t) the fluid velocity. For the Newtonian case, we set 𝜇 = 𝜇∞. Since the vis-

cosity given by (1) is a function of the velocity, we will write in general 𝜇 = 𝜇(𝐮).
The values of the parameters that define the Carreau-Yasuda model are 𝜆 = 1.902 s,
n = 0.22, a = 1.25, 𝜇0 = 0.56P, 𝜇∞ = 0.035P.

As for time discretization, we consider the backward Euler method with a semi-

implicit treatment of the convective term. The non-linearity arising from the non-

Newtonian model (1) is treated semi-implicitly. This means that, indicating with zn
the approximation of a generic function z(t) evaluated at tn = n𝛥t, n = 1,…, at each
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time-step tn we have the following discretized-in-time problem to be solved in the

computational domain 𝛺:

⎧
⎪
⎨
⎪
⎩

𝜌
𝐮n − 𝐮n−1

𝛥t
− ∇ ⋅

[
𝜇(𝐮n−1)

(
∇𝐮n + (∇𝐮n)T

)]
+ 𝜌𝐮n−1 ⋅ ∇𝐮n + ∇pn = 𝟎 in 𝛺,

∇ ⋅ 𝐮n = 0 in 𝛺,

equipped with a suitable initial condition for the velocity, and where 𝜌 = 1.06 g∕cm3

is the fluid density and p = p(𝐱, t) the fluid pressure.

As for the boundary conditions, we consider at each discrete time tn a flow rate

condition

∫
𝛤

𝐮n ⋅ 𝐧 d𝛾 = Q(tn),

for 𝛤 = 𝛤
carot
in , 𝛤

carot
out,1 , 𝛤

coron
in,1 , 𝛤

coron
in,2 , 𝛤

coron
out,1 (see Fig. 1) and where Q are the corre-

sponding flow rates depicted in Fig. 3 for cases CA1 and CA2 and Fig. 4 for case

CO1 (for each degree of stenosis). For the carotid cases, the patient-specific mea-

sures of flow rate were obtained by means of Doppler echocardiography technique

(see [21] for more details). For the coronary cases, the prescribed flow rate at the

coronary inlet 𝛤
coron
in,1 and at the graft inlet 𝛤

coron
in,2 were taken from literature [22, 23].

For the latter section, the amplitude of the signal was set in accordance to the degree

of stenosis, in order to guarantee that the flow rate perfusing the myocardium at the

outlet 𝛤
coron
out,1 (calibrated by means of an healthy simulation) remained constant, as

observed in the clinical practice [24, 25] (see [26] for more details). In the remaining

artificial sections 𝛤
carot
out,2 and 𝛤

coron
out,2 , the following homogeneous Neumann condition

is prescribed, in accordance with the fluid incompressibility:

−pn𝐧 + 𝜇

(
𝐮n−1

)
𝐃 (𝐮n) = 𝟎.

Fig. 3 Flow rates imposed as boundary conditions on the inlet and outlet of the computational

domain for cases CA1 (left) and CA2 (right)
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Fig. 4 Flow rates imposed as boundary conditions on the inlets and outlet of the computational

domain for case CO1 for different degrees of stenosis: 50% (left), 70% (middle) and 90% (right)

We performed unsteady numerical simulations using the Finite Element library

LifeV developed at MOX—Politecnico di Milano, INRIA—Paris, CMCS—EPF

of Lausanne, and Emory University—Atlanta (https://www.lifev.org). The vessel

walls were assumed to be rigid. In order to highlight the differences between New-

tonian and non-Newtonian rheologies, we did not consider any turbulence model,

although for stenotic carotids transition to turbulence may occur [27, 28]. We used

P1bubble − P1 finite elements for the space discretization and we set the time dis-

cretization parameter 𝛥t = 0.01 s. The flow rate conditions were prescribed by means

of a Lagrange multipliers method, see [29, 30].

3 Results

3.1 Carotid Arteries

In order to investigate the differences between the Newtonian (N) and non-Newtonian

(N-N) models, we report in Fig. 5 the velocity magnitude v(𝐱, t) =
√

u2x + u2y + u2z at

the systolic instant t1 and at the post-systolic instant t2 = 0.41 s on selected sections

in cases CA1 and CA2, respectively. Furthermore, Fig. 6 shows the vorticity magni-

tude w(𝐱, t) =
√

𝜔2
x + 𝜔2

y + 𝜔2
z

1
on the same sections for CA1 and CA2. These sec-

tions were selected so as to comprise the common carotid artery (CCA), the stenosis

and the internal carotid artery (ICA). In the same images we also report, for t1 and

t2 and on the same sections, the viscosity computed for the non-Newtonian model

and the differences dV (𝐱, t) = |vN − vNN| and dw(𝐱, t) = |wN − wNN|, where the sub-

scripts N and NN refer to the Newtonian and non-Newtonian computations, respec-

tively. From these results, small differences can be observed between the two models

both for velocity and vorticity at systole (t1). Instead, some differences are noticeable

at t2: for the velocity, at the distal ICA and, only for case CA2, at the CCA, whereas

for the vorticity, mainly at the ICA for both the cases. As for the viscosity in the

1
We recall that the vorticity, 𝜔, is defined as 𝜔 = ∇ × 𝐮.

https://www.lifev.org
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Fig. 5 Left columns: velocity magnitude v in the Newtonian (N) and non-Newtonian (N-N) mod-

els. Middle column: absolute value of the difference between the Newtonian and non-Newtonian

velocity magnitudes. Right column: viscosity computed for the non-Newtonian model. Top: CA1

case; bottom: CA2 case. For each case, the quantities are reported on a selected section and at the

systolic (t1) and post-systolic (t2) instants

non-Newtonian cases, we notice higher values in regions where the vessel diameter

is large (e.g. in the CCA and in the region downstream the stenosis). This is due to

lower velocities and shear rates at larger diameters, which result in higher viscosities

due to the shear-thinning behavior of blood.
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Fig. 6 Left columns: vorticity magnitude w in the Newtonian (N) and non-Newtonian (N-N) mod-

els. Middle column: absolute value of the difference between the Newtonian and non-Newtonian

vorticity magnitudes. Right column: viscosity computed for the non-Newtonian model. Top: CA1

case; bottom: CA2 case. For each case, the quantities are reported on a selected section and at the

systolic (t1) and post-systolic (t2) instants

Figure 7 shows the Wall Shear Stress (WSS) magnitude tw(𝐱, t)=
√

𝜏2w,x+𝜏2w,y+𝜏2w,z
at systole for CA1 and CA2, together with the viscosity computed for the non-

Newtonian model. The Wall Shear Stress vector, 𝜏w, is defined as 𝜏w = 𝐭 − (𝐭 ⋅ 𝐧)𝐧,

where 𝐭 = 2𝜇𝐃𝐧 is the traction vector acting on a surface with normal 𝐧. Systolic



Computational Comparison Between Newtonian and Non-Newtonian Blood . . . 177

Fig. 7 WSS magnitude at the systolic instant t1 in the Newtonian (N) and non-Newtonian (N-N)

models. Top: case CA1; bottom: case CA2. The viscosity computed for the non-Newtonian model

is also reported

WSS is an important index of risk of plaque rupture (see [31]), so that it is interest-

ing to evaluate the possible effects of the non-Newtonian model on the quantification

of this index. From the figures, no significant differences are observed between the

Newtonian and non-Newtonian solutions. We notice that the regions where the vis-

cosities are higher correspond to region of low WSS, which however are not regions

of interest for stenotic carotids.

We finally report in Table 2 the mean relative differences between the Newtonian

(N) and non-Newtonian (N-N) results at instants t1 and t2 for velocity, vorticity and

WSS magnitudes, defined as

∫
𝛺
|qN − qNN|d𝐱
∫
𝛺
|qN|d𝐱

q = v,w, tw. (2)

Table 2 Mean relative difference computed with (2) between the Newtonian (N) and non-

Newtonian (N-N) cases for velocity, vorticity and WSS magnitudes for CA1 and CA2 at t1 and t2
Velocity magnitude Vorticity magnitude WSS magnitude

t1 (%) t2 (%) t1 (%) t2 (%) t1 (%) t2 (%)
CA1 4.8 9.1 5.8 11.8 3.6 6.5

CA2 9.5 24.0 10.9 30.4 7.2 18.4
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Differences up to nearly 24 and 30% are visible for velocity and vorticity magni-

tudes, respectively, thus confirming what we observed in Figs. 5 and 6. For WSS

magnitude, the differences are not so negligible as we inferred from Fig. 7. In any

case, the differences are more pronounced at the deceleration phase (instant t2).

3.2 Coronary Arteries

Figure 8 shows the diastolic (i.e. the maximum, see Fig. 4) velocity magnitude for the

3◦ of stenosis on a selected section at the region of the anastomosis. Furthermore, for

the same section, we report the viscosity computed for the non-Newtonian model and

the difference dv between Newtonian and non-Newtonian results. We notice appre-

ciable differences in the viscosity and, accordingly, in the velocity field. In particular,

the latter are more localized in the native/stenotic artery (on the right in the figures)

for smaller degrees of stenosis and at the anastomosis region for higher degrees of

stenosis, and they are more pronounced for higher degree of stenosis. In Table 3,

Fig. 8 Left columns: velocity magnitude v in the Newtonian (N) and non-Newtonian (N-N) mod-

els. Middle column: absolute value of the difference between the Newtonian and non-Newtonian

velocity magnitudes. Right column: viscosity computed for the non-Newtonian model. Top: 50%
degree of stenosis; middle: 70% degree of stenosis; bottom: 90% degree of stenosis. For each case,

the quantities are reported on a selected section and at the diastolic instant
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Table 3 Mean relative difference computed with (2) between the Newtonian (N) and non-

Newtonian (N-N) cases for the diastolic velocity magnitude and RRT for different degree of stenosis

Stenosis (%) vmax (%) RRT (%)

50 2.7 34.3

70 2.8 51.5

90 6.9 91.5

we report the mean relative differences of diastolic velocity magnitude given by (2),

q = v. These results confirm that the relative difference increases for increasing val-

ues of the stenosis degree.

In Fig. 9, we report the Relative Residence Time (RRT) distribution in a region

comprising the coronary-bypass anastomosis and the stenosis for Newtonian and

non-Newtonian models and for each degree of stenosis. RRT is a function of space

defined on the lumen boundary given by

RRT(𝐱) = 1
(1 − 2OSI(𝐱))TAWSS(𝐱)

,

where OSI is the Oscillatory Shear Index

OSI(𝐱) = 1
2

⎛
⎜
⎜
⎝
1 −

‖‖‖∫
T
0 𝜏w(t, 𝐱)dt

‖‖‖
∫ T
0
‖‖𝜏w(t, 𝐱)‖‖ dt

⎞
⎟
⎟
⎠
,

and TAWSS is the Time-Averaged Wall Shear Stress

TAWSS(𝐱) = 1
T ∫

T

0
‖‖𝜏w(t, 𝐱)‖‖ dt.

The choice of this index for the comparison between the models was driven by the

fact that RRT is known to be related to the risk of plaque formation in coronary

arteries [32] and, since restenosis is a known clinical problem in coronary artery

bypasses (see [33]), it is interesting to investigate the effects of the non-Newtonian

model on this index. We can see from the figure that RRT is greatly influenced by

the choice of the rheological model for all stenosis degrees (notice that the scales are

different for each stenosis degree, in order to better emphasize the differences). In

particular, the Newtonian model overestimates RRT, especially at the anastomosis

and in the native/stenotic branch. The reason for these differences may be attributed

to the low flow rates in the stenotic vessel (in addition to the generally low flow rates

in the coronary arteries), thus featuring very low shear rates. These results are also

confirmed by the mean relative differences of RRT computed owing to (2), q = RRT ,

which are reported in Table 3 for each degree of stenosis and which feature very high

values, especially for increasing values of the stenosis degree.
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Fig. 9 RRT distribution in a region comprising the coronary-bypass anastomosis and the stenosis

in the Newtonian (N) and non-Newtonian (N-N) cases for each degree of stenosis, case CO1

4 Conclusions

The purpose of this study was to investigate the influence of non-Newtonian blood

rheology in stenotic vessels. In particular, we considered two carotid arteries with

severe stenosis (i.e. greater than 70%) and one coronary vessel in which we virtually

varied the stenosis degree (50, 70, 90)%. Our comparisons between Newtonian and

non-Newtonian models showed that:
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1. for stenotic carotid arteries, velocity and vorticity fields are influenced by blood

rheology (mean differences of magnitudes up to 24 and 30%, respectively).

Smaller differences were found in the quantification of WSS (mean difference

of magnitude up to 18%);

2. also for stenotic coronary arteries, the velocity field is influenced by blood rhe-

ology. Moreover, great differences were found in the quantification of RRT (for

all stenosis degrees). Thus, we believe that the non-Newtonian behavior of blood

should not be neglected to accurately compute RRT, regardless of the degree of

the stenosis.

Limitations of this work are the absence of turbulence models in the stenotic

carotids and of a fluid-structure interaction model. We are working on both these

topics to understand their importance in quantifying the differences between New-

tonian and non-Newtonian models.
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Abstract Tissue engineered valvular implants are in development as living and

remodelling prostheses to replace damaged native valves. To improve the mechan-

ical properties of the valve, textile is used as a reinforcing scaffold. To predict the

behaviour and optimize the structure of such composites, it is necessary to under-

stand the behaviour of the underlying components. The current study seeks to test a

multi-scale approach often used in the field of composites to evaluate the behaviour

of knitted textile reinforced elastomeric composites. The complex textile structure

is divided into simplified models at different levels/structural units. Virtual experi-

ments are conducted at each of these levels and their responses are fit to appropri-

ate isotropic and anisotropic hyperelastic material models. The simulation responses

obtained by conducting virtual experiments on the repeating unit cell (RUC) of the

composite are then compared with experimental results, resulting in good agree-

ment. After experimental validation, the multi-scale approach is used to predict the

behaviour of artificial heart valves.
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1 Introduction

1.1 Motivation

Engineered bio-materials are ubiquitous and have important functions in numerous

bio-medical applications which are incentivized by advances in regenerative medi-

cine. One such application of bio-material implants are artificial heart valves where

replacement of load-bearing soft tissues has long been the impetus for the devel-

opment of new materials. To achieve adequate mechanical properties required by

such implants to sustain the pressures and flow of the systemic circulation, a three-

dimensional textile scaffold is used as reinforcement on which cells can grow, prolif-

erate and form into a functional tissue construct. The optimum scaffold architecture

for artificial heart valves is a structure with high degree of interconnectivity (through

continuous fibres or interconnected short fibres) allowing for continuous stress flow

through the thin heart valve leaflets to the strong aortic wall, protecting the cusps

from rupture and still porous enough to allow cellular migration and proliferation. A

mismatch between highly deformable native tissue and engineered bio-material can

lead to short and long term health impairments. The capability of implants to deform

similar to the macroscopic mechanical response of the surrounding biological mate-

rials, is often associated with dissimilar micro structural deformation mechanisms.

This mismatch on smaller length scales might lead to micro injuries, cell damage,

inflammation, fibrosis or necrosis [33]. Hence, the mechanical bio-compatibility of

soft implants depends not only on the properties and composition of the implant

material, but also on its organization, distribution and motion at one or several length

scales. To achieve such a design and mechanical bio-compatibility, modelling strate-

gies need to be developed in order to rationalize experimental observations and pre-

dict implant performance.

1.2 Previous Work

A substantial amount of work has been done in the field of cardio-vascular engi-

neering, from experiments to simulation. Cheung et al. [11] reviewed the current

progress in tissue engineering of heart valves, looking at different fabricating strate-

gies of tissue engineered heart valves (TEHVs), concluding that a clinically viable

product has not yet been realized. Singh et al. [39] reviewed the design aspect of

medical textiles (woven, knitted, braided, electro-spun) intended for vascular implant

applications, concluding that mechanical properties of biological material such as

anisotropy, non-linearity, compliance and visco-elasticity remain widely unconsid-

ered while designing synthetic vascular implants. Mazza and Ehret [33] showed that

the mechanical bio-compatibility of scaffolds is not only linked to adequate macro-

scopic properties (non-linear stress-strain response, ductility, strength) but also to the

realization of micro structural deformation mechanisms, in particular, the deforma-
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tion field at the cell length scale influences the mechano-transduction and mechano-

biological response of the tissue surrounding the implant. Some years back, [43]

reviewed the ability of material processing techniques to produce different mechan-

ically sound tissue surrogates and highlighted the unique structural characteristics

produced in these materials. Translations of these properties to distinct macroscopic

bio-mechanical behaviours were also discussed.

Some of the works in the direction of stress and strain analysis of heart valves

under its diastolic and systolic phase are detailed in this paragraph. Stapleton et al.

[42] analysed the effect of fibre orientation and volume fraction on the macroscopic

stress developed in a tubular three leaflet heart valve in its closed configuration, indi-

cating that a non-uniform fibre distribution using tailored fibre placement could be

used to optimize reinforcement design. Argento et al. [2] presented an approach of

mechanical characterization of the electro-spun scaffolds for TEHVs, by account-

ing for the effect of underlying scaffold structure. The derived material properties

were then used to simulate the stress and strain in a heart valve when it was closed.

De Hart et al. [14] analysed the effects of collagen fibres (distributed short nat-

ural fibres) on the mechanics and hemodynamics of a trileaflet aortic valve using

a numerical analysis of the systolic phase. It demonstrates that presence of distrib-

uted fibres substantially reduce stresses in the leaflets and provide smoother opening

and closing while reducing the fluttering motion of the leaflets. Cacciola et al. [8,

9] produced stentless artificial aortic valve prosthesis and analysed different fibre-

reinforced structures with respect to the stresses that are likely to contribute to the

failure of fibre-reinforced prostheses and compared them with the results obtained

for a stented prosthesis. The comparison showed that stress developed in the stent-

less models were significantly lower than the stented models with the same type of

reinforcement. De Heart et al. [13] analysed three-dimensional finite element models

for reinforced three-leaflet valve prosthesis for stress reduction. Different fibre rein-

forcements were investigated and the model responses were analysed for stresses

showing that, in peak stress areas of reinforced models, up to 60% of the maximum

principle stresses were taken over by fibres and that, in some cases of reinforcement,

a more homogeneous stress distribution was obtained.

An experimental protocol along with a set of parameters addressing scaffold stiff-

ness, anisotropy, influence of deformation history and change in properties when

embedded in homogeneous matrix was proposed by [32]. They compared the per-

formance of nine mesh types used for pelvic repair, covering a wide range of mechan-

ical responses, comprehensively and extensively characterizing the mechanical bio-

compatibility of mesh prostheses. Jana et al. [26] compared the advantages and dis-

advantages of decellularized and fabricated scaffolds for use as TEHVs, concluding

that synthetic scaffold-based TEHVs are more suited as an implant because they can

be tailored to the requirement. Even though decellularized scaffolds retain the orig-

inal valve structure and extra-cellular matrix, their low pore size, porosity and cell

survivability limit their use for valve engineering. Van Lieshout et al. [48] tested var-

ious bio-compatible scaffold heart valves and fibrin under systemic circulation and

compared the electro-spun valvular scaffold with knitted valvular scaffold in [49].

It was shown that the knitted textile scaffold lasted longer in the systemic circula-
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tion as the electro-spun scaffold tore after a while. Yeoman et al. [54] developed

a constitutive model to represent the non-linear warp-weft coupled mechanics by

extending a strain energy function for soft tissue to include shear and by increasing

the number and order of coefficients, which was validated for uniaxial tension tests.

The model was successfully able to predict the macro behaviour of some textiles but

fails to capture the micro mechanics and its effects. D’Amore et al. [12] simulated the

mesoscopic in-plane mechanical behaviour of elastomeric electro-spun polyurethane

membrane where the simulations were developed from experimentally-derived fibre

network geometries. Effects on macro-mechanics based on fibre intersections, con-

nectivity, orientation, and diameter were evaluated demonstrating good agreement

with the experimental data.

Modelling approaches for different knitted/woven fabrics and their composites

have been presented by [1, 27, 29, 31, 38, 51]. But to the knowledge of the authors,

literature on multi-scale modelling of knitted textile reinforced elastomeric compos-

ites is scarce. Qi et al. [36] presented a repeating unit cell (RUC) based approach to

determine the effective stiffness of a multi-layered biaxial weft-knitted fabric rein-

forced composite. Wan et al. [52] presented a multi-scale approach to analyse the

damage behaviour of a multi-axial warp knitted composite. Ugbolue et al. [46] dis-

cusses a method to produce auxetic knit structures from non-auxetic yarns and their

use as an engineering textile material that becomes wider when stretched and thinner

when compressed. In [47], they examined the geometrical model of auxetic warp

knitted structures and validated its characteristics with data obtained from experi-

mental analysis.

Apart from geometric modelling, a significant amount of work has been invested

in modelling the macroscopic behaviour of biological materials (which have dif-

ferently oriented short fibres as reinforcement). Much of the works on continuum

modelling of isotropic and anisotropic material behaviour has been reviewed in

[10]. These materials are known to support large reversible deformations along with

exhibiting hysteresis, stress softening or relaxation. A hyperelastic constitutive equa-

tion is typically the basis of the model that describes the behaviour of the material.

The hyperelastic constitutive equation can be isotropic or anisotropic. Böl et al. [7]

used a micro mechanically motivated tetrahedral element developed in [6] to create a

predictive model of thin muscular films accounting for the muscle fibres. Auricchio

et al. [4] tested the impact of using different material models in a patient-specific

finite element analysis able to virtually reproduce stent-less valve implantation, on

both the stress pattern and post-operative coaptation area, length and height. Also,

physical and non-physical response from a few of these hyperelastic material models

have been compared in [16].

In the field of traditional fibre reinforced composites, there has been tremen-

dous development in multi-scale material modelling; investigating the effects of the

micro structure on its macroscopic behaviour. Nguyen et al. [35] reviewed the recent

developments in multi-scale modelling of continuous and discontinuous modelling

of multi-phase heterogeneous materials. Vassiliadis et al. [50] discussed the chal-

lenges and solutions/modelling methodologies for woven fabrics at different scales

accounting for micro to macro scale deformations. An extended literature review
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of the computational models for the deformation of woven fabrics was presented.

A review on homogenization and topology optimization of periodic structure was

presented by [21]. Some of the recent works in the direction of multi-scale mod-

elling of composites accounting for the micro structural effects are presented in

[5, 15, 30, 44, 45].

1.3 Present Work

Even though there exists a considerable body of work in various disciplines like

modelling of bio-materials, analysis of scaffolds, analysis of artificial and TEHVs

and multi-scale modelling of fibre reinforced composites, there exists a scarcity in

the synergistic approach towards the analysis and development of cardio-vascular

bio-implants. In this work, a multi-scale method related to the modelling, simu-

lation and analysis of bio-compatible mechanical deformations of knitted scaffold

used in the development of tissue engineered tubular heart valve by [34, 53] is

illustrated. Simulations are conducted on knitted PET fibre scaffold embedded in

a silicone matrix (resulting in a two-phase composite) at various structural levels to

predict their mechanical behaviour. Simulated predictions are then compared to the

experimental results. Substituting the engineered tissue matrix (consisting of ori-

ented elastin and collagen fibres) with silicone enables us to focus on understanding

and predicting the behaviour of the knitted scaffold which is the underlying rein-

forcing structure. To predict the behaviour of the knitted scaffold embedded in sil-

icone, henceforth referred to as composite, one needs to understand the structural

response at different levels. Therefore, the composite used as an artificial heart valve

was decomposed into multiple levels as shown in Fig. 1. A multi-scale modelling

approach popular in the field of material mechanics is employed. The benefit of this

approach is that individual components of the composite can be modelled by means

of a simple material model which can be characterized using simple experiments.

This chapter is organized as follows. A brief introduction to the artificial heart

valves used in this study is given in the next section. Then the experimental setup

Fig. 1 Multi-scaling of a knitted scaffold embedded into silicone matrix [41]
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for the composite is presented. The structural multi-scale levels, along with a small

introduction to the modelling approach is provided in Sect. 4. This is followed by

a brief overview of the constitutive material models used (Sect. 5). The results are

discussed in Sect. 6. The chapter concludes with a summary and an outlook.

2 Bio-Engineered Aortic Heart Valves with a Tubular
Leaflet Design

The tube-in-stent valve consists of a tubular tissue engineered fibrin based construct

sewn into a stent at three single attachment points and along a circumferential line at

the annulus according to the single point attachment commissure technique proposed

by [20]. The valves are produced by using fibrin gel as a cell carrier embedding

vascular cells isolated from human umbilical cord veins and a tubular warp knitted

textile structure as a co-scaffold [34]. Initially, the knitted polyethylene terephthalate

(PET) mesh is embedded into the fibrin gel containing the cells. The tubular mesh

construct is fixed during the static cultivation for one week after which it is sutured

into a self-expandable nitinol stent. First the construct is sewn at the three single

points to form the commissure points and then circumferentially to define the annulus

(Fig. 2).

After static conditioning, the TEHVs are conditioned for 14 days in a custom-

made bioreactor positioned in an incubator. With the use of actuators and mem-

branes, the bioreactor is able to create a flow to open and close the valve. At the end

of the in vitro conditioning phase, the valve is tested under aortic flow and pressure

conditions according to ISO 5840-3 i.e., cardiac output of 5 L/min, 100 mmHg mean

aortic pressure and 70 bpm (beats per minute) frequency. The pressures are measured

by pressure transducers positioned immediately upstream and downstream from the

valves. The instantaneous flow is measured by a flow meter positioned upstream from

the valves. Pressure and flow values are recorded by a LabVIEW
TM

application.

Fig. 2 Fabrication of the tube-in-stent valve. From left to right: tubular construct after one week

of static cultivation still fixed at the silicone connectors, after release from the silicone connectors

and placed into the stent, after suturing at the three commissure points and at the base of the tubular

construct circumferentially (annulus), top view of tube-in-stent valve [34]
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3 Experiments

Uniaxial tensile tests were conducted on the composite samples (knitted textile scaf-

fold embedded in silicone matrix), results from which were used to validate the pro-

posed modelling and simulation approach. Once the proposed approach was vali-

dated, it was used to predict the behaviour of an artificial heart valve which uses the

same scaffold as reinforcement. As mentioned earlier, engineered tissue was substi-

tuted with silicone to focus on modelling and predicting the behaviour of the knitted

scaffold, which is the underlying reinforcing structure.

The test setup, which includes a Zwick Z005 testing machine along with all the

specimens are shown in Fig. 3. Force and global displacements were measured and

recorded. The load cell signals were recorded using the control software TestXpert

II. Time, force, cross head displacement and nominal strain were measured. The

kinematic quantities were captured at the specimen in real time, providing global

strain values. The results from the experiments are discussed in Sect. 6.

The textile mesh was produced using medical grade polyethylene terephthalate

(PET) fibres. For the production, a tüll-fillet pattern, a needle gauge of E30 (i.e. 30

needles per inch) and a course density of 15 loops/cm were chosen. 52 PET yarns

were processed into a tubular structure which was thermo-stabilized at 200
◦
C for

8 min before use. The textile mesh was then embedded into a medical grade silicone

Fig. 3 Experimental setup; Zwick Z005 machine with clamped experimental sample (left), exper-

imental samples with marked positions for measuring displacements (right)
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Table 1 Dimensions of the

specimen
Parameter Value (mm)

Length (l) 120.00

Measuring length (lm) ≈29

Width (w) 25.67 ± 0.28
Thickness (t) 1.245 ± 0.05

matrix and cured for around two hours. The final specimens are shown in Fig. 3 and

the dimension of the produced specimens are provided in Table 1. Nominal strain

was measured using an optical extensometer and two points.

Volume fraction of PET fibres in the samples were derived by considering the

density of the PET fibres and its mass over a given area. Density of the PET fibres

is 1.38 g∕cm3
. The mass m of the textile mesh over an area of A = 551.25mm

2
(l =

17.5mm, b = 31.5 mm) was found to be 0.025 g. Hence, using 𝜙 = Vtextile∕Vtotal =
(m∕A)∕(t𝜌) the volume fraction of the composite for the same area A was determined

to be approximately 2.564%.

4 Finite Element Simulations

All the finite element (FE) models were created using the commercial software

Abaqus [22]. The elements used were C3D4 (linear tetrahedral) and C3D8R (eight-

noded brick elements with reduced integration and enhanced hourglass stiffness)

depending on the structural model in consideration. All the structural models were

simulated using the implicit (standard) solver of Abaqus except the macroscopic

heart valve model, which was simulated using the explicit solver.

4.1 Multi-scale Modelling

The multi-scale modelling approach has been divided into two cases, Case L and

Case U. Case L is used to predict the tensile behaviour of the embedded textile

scaffold for experimental validation of the approach, after which Case U is used

to simulate and predict the behaviour of the heart valve composite subjected to the

pressures of the cardiac cycle (i.e. fatigue loading). Apart from the geometric mod-

elling, a principle difference between the two schemes is the material properties used

for the elastomeric silicone matrix. It is well known that elastomeric matrix includ-

ing biological tissues has a hysteresis when subjected to cyclic loading i.e. they show

Mullins’ effect (see Fig. 11). Therefore, the matrix properties were divided into load-

ing and unloading sections. In Case L, the properties of the loading section are used

because the experimental sample is only subjected to monotonic tensile loading. The

properties of the unloading section are used for Case U because after the first few
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Fig. 4 Hierarchical multi-scaling of the textile reinforced silicone samples is divided into Case L

(for experimental comparison) and Case U (for simulating the behaviour of the heart valve com-

posite). The type of material models used to represent the components are also mentioned

cardiac cycles the virgin matrix softens and behaves elastically along the unloading

path until the previous maximum deformation has been reached. Also, sine the heart

valve will be simulated for the same maximum pressure difference, it is assumed that

the maximum stretch reached by the matrix in the first cycle will not be exceeded

in the consecutive cycles. The internal structure of the heart valve composite was

simplified and divided into three levels for Case L and four levels for Case U. The

schematic representation of the different levels used in multi-scale modelling of the

heart valve composite is shown in Fig. 4.

The modelling approach of repeating unit cells (RUC) presented in [21] was

implemented at the textile, knit and fibre levels. Virtual experiments were conducted

at a lower level RUC by applying far-field strains. Volume averaging over the com-

puted stress distribution within the RUC was carried out to determine the effective

material response, which were then fitted by a material model to determine the mate-

rial parameters for the upper level model. The same procedure was repeated until all

the levels under investigation were accounted for. This approach is often referred

to as hierarchical multi-scaling in the literature (for example see [5]). Displacement

based 3D periodic boundary conditions (PBCs) as explained by [5] were used and

modified to apply in-plane periodicity to predict the effective material response for

different multi-scale levels. Material models used at different levels are shown in

Fig. 4 and briefly discussed in Sect. 5.

An important aspect of hierarchical multi-scaling is to maintain the desired vol-

ume fraction of reinforcing fibres at the highest level, i.e. the volume fraction of

the fibres at the textile level for Case L has to be ≈2.564% and at the macro-level

heart valve model for Case U has to be ≈4.69%. To achieve this, the volume frac-
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Table 2 Dimensions of the RUCs

Dimension Fibre level RUC (µm) Knit level RUC (mm) Textile level RUC

(mm)

Length 17.065 1.342 2.380

Width/diameter 29.557 1.647 4.122

Thickness 1.706 0.700 1.245

tion of different underlying models has to be chosen such that there is a trade off

between reality and modelling convenience. Volume fraction of the textile structure

for Case L and Case U, also referred to as homogenized knit level at the textile level

was 15% and 36.61% respectively, which was modelled using the dimensions of the

specimen measured under a microscope (see Sect. 4.5). In Case L, this implies that

the volume fraction of the knit and the fibre levels have to be adjusted such that the

overall volume fraction is achieved. For the ease of modelling the knit level RUC,

the volume fraction of fibres at the fibre level was assumed to be 90%. This means

that at the knit level, the yarns (also referred to as homogenized fibre level) needed

to have a volume fraction of ≈19%. Hence, considering the volume fraction of the

fibres at fibre level, yarns at the knit level and textile structure at the textile level,

the overall volume fraction of the fibres in the composite was achieved to be 2.565%

(= 90% × 19% × 15%). Similarly, in Case U the macro scale heart valve model was

divided into three layers, where the centre layer was used to represent the textile

scaffold. This layer forms 70% of the heart valve (see Sect. 4.6), resulting into the

over all fibre volume fraction of 4.38% (= 90% × 19% × 36.61% × 70%).

It can be observed from the mentioned dimensions that there does not exist a

scale separation between the knit level and the textile level RUC. The complexity of

modelling the textile structure using intricately knitted textile patterns motivated the

use of a volume averaged homogenization approach to capture the effective response

of a knit. The material parameters obtained by fitting an appropriate material model

to the effective response were then used for the textile structure in the textile level

RUC (Table 2).

4.2 Fibre Level Structural Model

The fibre level model was used to evaluate the material parameters of the yarn. 24

PET fibres with a diameter of 17µm were assumed to be tightly bundled together

in a yarn. Although the number of fibres is probably not large enough to ignore the

edge effects, the tow was idealized using a hexagonal dense packing (HDP) RUC

considering the assumption of a periodic composite. As a result, yarns have a high

fibre volume fraction which means that the fibre distribution does not play a role

in it’s effective response. The boundary effects on the peripheral fibres are assumed
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Fig. 5 Fibre level structural model [41]

to be restricted by modelling the yarn in the knit level model using a circular cross-

section, with a volume fraction of 90%. Therefore, the HDP RUC was modelled with

a volume fraction of 90% as shown in Fig. 5. The individual material response of the

fibres and the matrix was captured using a linear elastic material model because a far

field strain of only 1% is applied on the RUC. The homogenized material response

from this level was used to represent the yarn in the knit level.

4.3 Knit Level Structural Model

Figure 6 shows a close-up of the textile where one of many interlocking yarn loops

(knit) in the textile is visible. Modelling such a complex knit pattern is computa-

tionally challenging and expensive. Even though the knitted textile has a repetitive

pattern, it is difficult to identify a consistent path along which the yarns are knit.

Hence, it was found necessary to simplify the knit for computationally efficient mod-

elling. The simplified knit pattern has to account for the continuous load transfer

within the yarns from one knit to other along with the locking of yarn alignment

in the loading direction due to the looping structure of the knit. Therefore, in this

work, the complex knits was approximated by a simplified knit pattern with a vol-

ume fraction of 19% as shown in Fig. 6. The yarns were modelled using transversely

isotropic elasticity. Material orientations are assigned to the yarns and the material

properties are obtained from the homogenized response of the fibre level. The matrix

was modelled as an incompressible hyperelastic material. The homogenized mater-

ial response from this level was then used to represent the homogenized knit in the

textile level RUCs.
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Fig. 6 Knit level structural model [41]

Fig. 7 Textile level structural model

4.4 Textile Level Structural Model

Figure 7 shows the textile pattern and the RUCs used to model it, with the homog-

enized knit volume fraction of 15% and 36.61% for Case L and Case U, respec-

tively. These RUCs are periodic only in the XY plane. Orthotropic Fung’s hypere-

lastic material model was used to represent the homogenized knit domain in these

RUCs, and the matrix was modelled as an incompressible hyperelastic material. As

mentioned earlier, there does not exist a scale transition between the knit level RUC

and the textile level RUCs, but because the effective knit level response was aver-

aged over the volume, it can be used to represent the homogenized knit domain. The
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Fig. 8 Microscopic measurements of angle, length and thickness of the textile within the specimen

and wire frame model of the textile structure at the textile level RUC

Table 3 Structural

parameters for defining the

textile structure

Dimension Values

Edge length (a) 1.3560 mm

Thinner section (t1) 0.4133 mm

Thicker section (t2) 0.6008 mm

Angle (A) 120
◦

orthotropy was ensured using local orientations. These RUCs were then subjected

to virtual experiments and the results were compared to the experimental results.

The homogenized knit domain in the textile level RUCs were modelled such that

it forms a spatial envelope of the textile region within the composite. A rectangu-

lar cross-section with filleted edges was used to represent this domain in the textile

level RUCs. Dimensions of this domain was measured from microscopic images of

the silicone textile composite (Fig. 8). Mean value of the measured quantities; edge

length (a), thickness of thinner section (t1), thickness of thicker section (t2) and angle

distribution (A) are given in Table 3. Using these dimensions, a 2D wire-frame of the

honeycomb fibre domain was constructed (Fig. 8), which was later extruded and fil-

leted to obtain the desired geometries for both the RUCs. From the measurements, it

was observed that the thickness of the textile region in the embedded textile scaffold

composite (homogenized knit domain) was ≈1/3 of the composite thickness. Hence,

as the RUC for Case L was modelled to have the same thickness as the composite and

the homogenized knit domain was restricted to 1/3 of the RUC thickness. For Case

U, the homogenized knit domain was modelled through the thickness because in the

macro scale heart valve model, the textile scaffold region is sandwiched between two

matrix layers.
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4.5 Virtual Textile Composite

The textile level RUC was generated with an assumption that there are no boundary

effects even though the specimen under consideration is of finite width consider-

ing the length scales at different levels. This assumption works reasonably well for

composites undergoing small deformations with varying length scales, but the same

cannot be stated for soft composites undergoing large deformations. Hence, a virtual

textile composite that mimics the experimental sample as shown in Fig. 9 was gen-

erated with the intention to compare the effective response of the RUC with the full

specimen simulation. Only a quarter of the entire sample was modelled and symmet-

ric boundary conditions shown in Fig. 9 were applied (Table 4).

Fig. 9 Virtual textile composite and the boundary conditions applied on it
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Table 4 Dimensions of the

virtual textile sample
Dimension Values (mm)

Length 41.22

Width 9.58

Thickness 1.254

4.6 Macro Level Heart Valve Model

Figure 10 shows the macro level heart valve model. The macro model of the heart

valve is divided into three layers along the thickness. The centre layer is where the

textile scaffold is present. This layer is modelled by the Fung’s orthotropic hyperelas-

tic material model, with material parameters obtained by fitting the Fung’s model to

the virtual experiments conducted at the textile level model in Case U. The outer and

the inner layers are considered to be pure matrix (silicone or engineered tissue) layers

and are modelled using the isotropic hyperelastic (Arruda Boyce) material model.

The material properties for the matrix are obtained by fitting the Arruda Boyce model

to the unloading part of the experimental results conducted on Elastosil samples. The

macro heart valve level is now subjected to the loading of three cardiac cycles and

compared to experimental results.

The simulations in the paper are based on the tubular valve construct as shown in

Fig. 10 (see also [42]). The tubular construct is 18 mm long, has an outer diameter

of 23 mm with a thickness of 0.7 mm. An initial simulation was carried out on the

tubular construct to achieve the geometry of the sutured heart valve. The deformed

geometry was then extracted from the output file to obtain a stress free initial sutured

configuration. Aortic and ventricular surface pressures were applied to simulate the

cardiac cycle while keeping the suture points and the base of the heart valve fixed.

The boundary conditions are summarized in Fig. 10. Details about the aortic and the

ventricular pressure applied as a periodic change in amplitude within Abaqus [22]

are given in [41].

Fig. 10 Macro scale heart valve level; initial sutured configuration along with boundary conditions

and pressure loads (AP: aortic pressure; VP: ventricular pressure)
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5 Material Models

Four different material models were used across the different levels. The fibres were

modelled as linear elastic and isotropic whereas an isotropic hyperelastic material

model was applied for the matrix. The yarns were assumed to behave transversely

isotropically as well as linear elastically. To fit the response at the knit and the textile

levels, Fung’s orthotropic hyperelastic material model [18] which is already imple-

mented in Abaqus was used. Various other orthotropic/anisotropic hyperelastic mate-

rial models such as the ones suggested by [17, 19, 23, 24, 37] could also be used

to represent orthotropic/anisotropic material response. But, as the focus of this work

was more on the methodology rather than material modelling, implementing any one

of these models was outside the scope of this work.

5.1 Transversely Isotropic Material Model

The material properties of the yarn, used in the knit level RUC, are modelled

using a transversely isotropic material law. Transverse isotropy is a special case of

orthotropy, where the material has the same properties in one plane and different

properties in the direction normal to this plane. These materials can be described

by five independent elastic constants. By convention, the five elastic constants in

transversely isotropic constitutive equations are the Young’s modulus and Poisson’s

ratio in the symmetry plane, Ep and 𝜈p, the Young’s modulus and Poisson’s ratio in

the normal direction, En and 𝜈np, and the shear modulus 𝜇np. Considering the out of

plane direction to be the z-direction, the compliance matrix takes the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜖xx
𝜖yy
𝜖zz
2𝜖yz
2𝜖zx
2𝜖xy

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
Ep
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− 𝜈p
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1
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0 0 0
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Ep

1
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0 0 0

0 0 0 1
𝜇np

0 0

0 0 0 0 1
𝜇np

0
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⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
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⎢
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⎣
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𝜎zz
𝜎yz
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𝜎xy

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

in Voigt notation.

5.2 Arruda Boyce Material Model

Elastosil silicone matrix material is modelled across all scales/levels (except the fibre

level) using the Arruda Boyce model [3] which is an isotropic hyperelastic consti-

tutive model used to describe the mechanical behaviour of rubber-like and other
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polymeric substances. This model is based on the statistical mechanics of a material

with a cubic repeating unit cell containing eight chains along the diagonal directions.

The material is assumed to be incompressible. The strain energy density function for

the incompressible [3] model is given by

W = NkB𝜃
√
n
[

𝛽𝜆chain −
√
n ln

(
sinh 𝛽
𝛽

)]

(2)

where n is the number of chain segments, kB is the Boltzmann’s constant, 𝜃 is the

temperature in Kelvin and N is the number of chains/density of chains in the network

of cross-linked polymers.

𝜆chain =
√

I1
3
; 𝛽 = L −1

(
𝜆chain
√
n

)

; 𝜇ab = NkB𝜃 (3)

𝜆chain represents the stretch of a chain. I1 is the first invariant of the right Cauchy-

Green deformation tensor, and L −1
is the inverse Langevin function. 𝜇ab is the shear

modulus obtained by fitting the experimental results.

5.3 Fung’s Orthotropic Material Model

The generalized Fung strain energy potential in Abaqus is based on the two-

dimensional exponential form proposed by [18], which was suitably generalized to

arbitrary three-dimensional states using [25]. It has the form

W = c
2
(eQ − 1) + K

2

(
(J2) − 1

2
− ln J

)

(4)

where c is the shear modulus, K is the bulk modulus, J is the change in volume and

with Q being defined by

Q = 𝐄 ∶ 𝔹 ∶ 𝐄 (5)

𝔹 is a dimensionless symmetric fourth-order tensor of anisotropic material constants

and 𝐄 represents the Green-Lagrange strain tensor. The orthotropic form of the gen-

eralized Fung model with eleven independent variables is used in this work. The

Voigt notation of the 𝔹 matrix is given by

̂𝐁 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 b7 b8 0 0 0
b7 b2 b9 0 0 0
b8 b9 b3 0 0 0
0 0 0 b4 0 0
0 0 0 0 b5 0
0 0 0 0 0 b6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)
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It is well known in literature that parameter fitting of the Fung model largely

depends on the choice of the initial values. Hence, care has been taken to choose

the initial values reasonably while fitting this model to the virtual experiments at

different levels.

6 Results and Discussions

6.1 Characterization to Experimental Results

In this section we characterize the two phases of the soft composite. Silicone matrix

was characterized with experiments conducted in house using linear elasticity for

small deformations and with Arruda Boyce model for large deformations. PET fibres

were characterized using the experimental data obtained from literature for a single

fibre tensile test. The experimental results obtained from the uniaxial tension tests

conducted in house on the soft composite were used for validating the modelling and

simulation approach presented in this paper.

6.1.1 Silicone Matrix

The silicone matrix is characterized using tensile tests. The specimens had a gauge

length of 31.28 mm, a width of 6.35 mm, and a nominal thickness of around 1.15 mm.

The specimens were preloaded with 0.5 N, and stretched at 3 mm/min until fail-

ure. The engineering stress versus stretch is plotted in Fig. 11. As can be seen from

Fig. 11a, silicone has a hyperelastic material response, which undergoes softening

under cyclic loading representing the Mullins’ effect. As the composite is subjected

to monotonic uniaxial tensile loading, the silicone matrix is characterized only by

the loading curve of both cycles. For the fibre level model, silicone matrix is charac-

terized using linear elasticity (Fig. 11b) where the elastic constant E is found to be

1.1495 MPa, and for all the other scales, the matrix is characterized by the Arruda

Boyce model where the constants 𝜇ab and n are found to be 0.2665 MPa and 1.2856

respectively. The heart valve is subjected to cyclic fatigue loading, therefore the sil-

icone matrix is characterized only by the unloading curve of the last cycle. For the

fibre level model, silicone matrix is characterized using linear elasticity (Fig. 11d)

where the elastic constant E is found to be 0.7323 MPa, and for all the other scales,

the matrix is characterized by the Arruda Boyce model where the constants 𝜇ab and

n are found to be 0.0862 MPa and 1.0600 respectively. Silicone is modelled as nearly

incompressible.
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Fig. 11 Experimental data used for elastic fit of material models a silicone with Arruda Boyce

model; b silicone for strain less than 10% with linear elasticity; c PET fibres [28] for strains less

than 10% with linear elasticity

6.1.2 PET Fibres

The PET fibre material parameters were obtained by using experimental data from

[28] as shown in Fig. 11c. This stress vs strain curve is from a tensile test on a

single PET fibre. Since plasticity is not included in the present model, part of the

curve before it becomes plastic can be approximated with linear elasticity where

E = 10.259GPa was found and 𝜈 = 0.35 was assumed.

6.2 Numerical Results

In the sections below, results obtained from virtual experiments carried out to pre-

dict the effective behaviour at each structural level model are discussed. The effec-

tive response obtained were fitted with an appropriate material model to be used

for carrying out virtual experiments at the higher level model. The results from the

knit level structural model was used in both the textile level structural model and

the virtual composite model, results from which are used for validation of the pre-

sented approach with experimental results. The results obtained were fitted using
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Table 5 Parameters obtained by homogenizing the fibre level model

Parameters Case L Case U

Ep (MPa) 521.57 346.43

En (MPa) 9233.09 9233.01

𝜇np (MPa) 21.47 13.72

𝜇p (MPa) 183.49 122.33

𝜈p 0.422 0.417

𝜈np 0.020 0.013

a Monte Carlo multi-curve fitting algorithm. First the tensile tests were used to fit

the corresponding parameters. Keeping the obtained parameters fixed, the remaining

parameters were fitted to the shear response.

6.2.1 Fibre Level Structural Model

The material response of the yarn was derived from the homogenized response of

the fibre level RUC. A far-field strain of 1% was applied to the RUC in three uniaxial

strain and three shear deformation modes in order to fully populate the elasticity

tensor (see [40]). The material parameters obtained are given in Table 5.

6.2.2 Knit Level Structural Model

To characterize the material response of the knit level model, virtual tensile and

pure shear tests were carried out at the knit level RUC for a far field strain of 25%

while applying periodic boundary conditions in all the three directions. The material

response obtained was then fitted with the orthotropic hyperelastic Fung’s model.

The effective material response and the material fit are as shown in Figs. 12 and 13.

c and K along with nine independent parameters constituting the ̂𝐁 matrix are given

in Table 6.

6.2.3 Textile Level Structural Model

The material parameters obtained from the knit level model for Case L were then

used to represent the textile structure in the textile level RUC of Case L. The RUC

was subjected to a far field tensile strain of 75% and pure shear strain of 37.5% while

applying the periodic boundary condition only in the XY and XZ plane. The material

was free to deform in the YX plane because the RUC has been modelled with the

same thickness as that of the specimen. The effective response obtained by subjecting

this RUC to displacements in the Y direction were also used for comparison with the

experimental results. This is discussed in Sect. 6.3.
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Fig. 12 Results and fit from virtual experiments at the knit level for Case L

Fig. 13 Results and fit from virtual experiments at the knit level for Case U
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Table 6 Parameters obtained by fitting the Fung’s material model to virtual experiments conducted

at the knit and the textile level models

Parameters Case L Case U

Knit level model Textile level

model

Knit level model Textile level

model

c (MPa) 1.241 3.580 1.008 1.1635

K (MPa) 11.6212 12.0 4.163 2.00

b1 2.683 0.449 1.939 1.1957

b2 38.792 0.480 33.412 1.2917

b3 1.959 0.32 0.779 0.6059

b4 20.524 4.50 14.649 12.5

b5 10.463 4.50 6.039 12.5

b6 17.088 4.50 11.409 12.5

b7 2.498 0.0062 2.591 0.0828

b8 0.570 0.2726 0.229 0.1396

b9 1.501 0.0062 1.319 0.1493

Fig. 14 Results and fit from virtual experiments at the textile level for Case L

The effective material response obtained were then fit with the Fung orthotropic

hyperelastic model. Shear test was carried out only in the XY plane to obtain the b4
parameter. Parameters b5 and b6 were assumed to be the same as b4. The effective
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Fig. 15 Results and fit from virtual experiments at the textile level for Case U

material response and the material fit are as shown in Fig. 14. c and K along with

nine independent parameters constituting the ̂𝐁 matrix are given in Table 6.

Similarly, material parameters obtained from the knit level model for Case U were

then used to represent the textile structure in the textile level RUC of Case U. The

RUC was subjected to a far field tensile strain of 50% and pure shear strain of 25%

while applying the periodic boundary condition in all directions. The effective mate-

rial response obtained were then fit with the Fung orthotropic hyperelastic model

which was used to model the centre textile scaffold layer in the macro scale heart

valve is shown in Fig. 15. c and K along with nine independent parameters consti-

tuting the ̂𝐁 matrix are given in Table 6.

6.2.4 Virtual Textile Composite

The material parameters obtained from the knit level model was also used to repre-

sent the textile structure in the virtual textile composite, which was then subjected

to a global displacement of 75%. From the strain contour plots in Fig. 16, it can be

observed that the strains localize in the pure silicone matrix pockets. For a global

strain of 50% the matrix strains is around 60%. The localization is not very high

because of the low fibre volume fraction in the composite. One can also observe a

prominent Poisson’s effect, i.e. there is a proportional decrease in the lateral mea-

surement to the proportional increase in length of the virtual textile specimen.

The effective response obtained by subjecting the virtual textile composite to dis-

placements in the Y direction are also used for comparison with the experimental

results and with the results of the textile level RUC. This is discussed in Sect. 6.3.
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Fig. 16 Experimental and simulation comparison for the textile reinforced silicone: engineering

(First Piola Kirchoff) stress versus stretch; contour plots of strain distribution in the textile level

RUC and virtual textile composite; (inset) change in Poisson’s ratio over longitudinal strain

6.3 Experimental Validation and Comparison

The material response of the textile level RUC and the virtual textile composite are

in good agreement with the experimental results until a global strain of 40%. It then

diverges as shown in Fig. 16. The good agreement of the stress-strain response at

relatively low strains can be attributed to accurate capture of the scaffolding structure

and the overall volume fraction of the scaffold in the composite. The divergence

of the simulation which results into a stiffer response can be attributed to a couple

of reasons; (i) matrix damage leading to localized damage, delamination (similar

to [32]) and void formation resulting in matrix softening has not been considered

and (ii) idealization of the underlying knit pattern does not accurately capture the

mechanics of the knitted textile at large deformations.

The inset compares the change in lateral contraction with respect to axial stretch

(i.e. Poisson’s ratio) of the virtual samples. Even though the change in Poisson’s ratio

is qualitatively and quantitatively similar, there exists an offset, suggesting that the

boundary effects under tension are not accurately captured by the RUC as expected.

But as the heart valve undergoes large bending deformation and relatively small

stretches, we consider the results obtained from the virtual experiments of the RUC

for further computations. This is also a trade off between numerical accuracy and

computation effort.
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Fig. 17 Deformed and undeformed configuration in the iso-geometric view and top view

6.4 Heart Valve Model

After validation of the proposed multi-scale approach, it was used to predict the

opening and closing behaviour of the macroscopic heart valve model (Fig. 10). As

mentioned earlier, the heart valve model was divided into three layers. The center

layer is the textile scaffold layer, whereas the inner and outer layers are pure matrix.

The matrix layer was modelled using the Arruda Boyce material model, parame-

ters for which are provided in Sect. 6.1.1. The center layer was modelled using the

orthotropic Fung’s material model, parameters for which were obtained through the

proposed multi-scale modelling scheme. Results for the multi-scale modelling of

various levels in Case U, to obtain the parameters of the homogenized center layer

have been presented in Sect. 6.2. The parameters are provided in Table 6.

The deformed and undeformed configuration of the closed and open heart valve

are shown in Fig. 17. Fifteen observation points on the loading cycle are pointed

out and the logarithmic strain contour plots of the heart valve for these positions

are shown in Fig. 18. From the contour plots, one can observe that the deformed

geometry of the heart valve is symmetric. But in reality, different bifurcation modes

might be present for the closing of the heart valve leaflets based on the position of

the suture point in the corners, as explained by [42]. In our simulations, results are

symmetric because of the choice of the fixed nodes at the suture points.

To further understand the deformation of the leaflets, the principle logarithmic

strains along three pre-selected paths, at the top, middle and bottom of the heart

valve, have been plotted in Fig. 19. All the paths start at the vertical line crossing

suture point “S1”, pass through the verticals along the suture points “S2” and “S3”,

before ending at its start point. Logarithmic strains are plotted over the circumferen-

tial length of the initial tubular construct. Five different graphs for all the aforemen-

tioned paths during the third loading cycle and comparing the logarithmic strain at

the mentioned observation points, have been plotted. It can be observed that when

the valve is completely closed (point 11), there are large strains in the centre, at the

bottom of the leaflet (path “bottom”). Considerable strains also develop under the

suture points (both at the top and in the middle). During the systole phase (points 12

and 13) of the cardiac cycle, strains in the entire heart valve are relaxed, because dur-

ing this phase the pressure difference between the aortic and the ventricular side of

the heart valve is very small and the deformed heart valve is close to its undeformed
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Fig. 18 Initial configuration a loading curve along with the legend of the logarithmic strain plot

(AP: aortic pressure; VP: ventricular pressure); b logarithmic strain contour plot

configuration (see Fig. 17). In the initial diastolic phase (point 14), the strains devel-

oped in the centre, at the bottom are high compared to the other regions and other

time points in the diastolic phase. This is because maximum difference between the
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Fig. 19 Logarithmic strains versus for given time points along different paths (top, middle and

bottom) on the heart valve, starting from suture point S1, passing through suture point S2 and S3

and finishing at S1

aortic and the ventricular pressure exist at this point. During this diastolic phase,

point 15 is the same as point 11 in the previous diastolic phase.

The maximum principle logarithmic strain obtained in the heart valve is ≈0.5,

which occurs at the constrained bottom of the heart valve. This is equivalent to nom-

inal strains of ≈65%. In the remainder of the heart valve, the local maximum prin-

ciple logarithmic strains are less than 0.25, which is equivalent to nominal strains of
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≈28%. Therefore, the choice for taking the textile level model up to macro strains

of 50% at the textile level model is adequate to capture the effective response of the

reinforcing textile at the macro level. Furthermore, the lower two levels are idealiza-

tions, hence, it was assumed that the chosen macro stain limits are enough to predict

the behaviour of the next upper level. To be more precise one will need to account

for local damage in the matrix due to higher strains at the textile level.

7 Conclusion and Outlook

The goal of the current study was to show the competence of the multi-scale mod-

elling approach to predict the behaviour of soft composites, with application to

bio-materials. First, the complex structure of the textile reinforced composite was

reduced to simplified structural models at different levels. Repeating unit cells

(RUCs) of these simplified structural models were then meshed to obtain a finite

element (FE) model. These were then subjected to periodic boundary conditions and

loaded using far-field (macroscopic) strains to obtain an effective material response.

The effective material responses were then fitted using the appropriate material mod-

els. Only the material models available in a commercial finite element tool were used.

The material behaviour of the considered orthotropic material derived from multi-

scale simulation are in good agreement with the experimental results, implying that

the technique can be used to study systems which are otherwise difficult to experi-

ment on and optimize. The suggested method can now be used to optimize the textile

structure along with its orientation, saving time and resources needed to create a pro-

totype of each specimen for optimizing the end product.

The approach can further be made more reliable and robust by further investiga-

tions to quantify the deviation of the final result due to the change in volume fraction

of individual structural levels, such that the modelling is faithful to the overall vol-

ume fraction of the composite. Also, further investigations are needed to determine

the effect of different idealized knit patterns at the knit level model on the overall

results. The changing cross-section of the yarn in the knit level model should also

be considered during modelling.

To validate the simulation results of the heart valve, one can either use a digital

image correlation to generate the strain patterns occurring in the tubular aortic heart

valve or simulate fluid flow through the valve and compare the flow volumes.
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Preliminary Monolithic Fluid Structure
Interaction Model for Ventricle Contraction

D. Cerroni, D. Giommi, S. Manservisi and F. Mengini

Abstract In this work we test the performance of different algorithms for the solu-

tion of a monolithic Fluid Structure Interaction (FSI) problem with a simplified ven-

tricle model with the purpose to reduce the computational time. We study this chal-

lenging FSI problem by solving the fully coupled and the projection algorithm with

a different number of penalty correction steps. The proposed FSI penalty projection

algorithm is a modification of the Chorin method for fluids based on a predictor and

a corrector step. The performance of the modified algorithm is tested by comparing

the results obtained with the standard coupled algorithm with the ones obtained with

the modified penalty projection scheme.

1 Introduction

In the last decades the number of Fluid-Structure studies has been increasing in var-

ious fields of engineering. Many early studies can be found with regard to wing or

bridge response stability and biology applications but in recent years a great interest

has been developed in FSI problems related to biological and medicine fields, e.g.,

see [1, 2] and citations therein. In particular very interesting works can be found

on aneurysm growing, hearth valves mechanics and ventricle contraction dynamics.

Such simulations represent an impressive step forward in the comprehension and the

prediction of biological component behavior and dynamics. A fluid structure inter-

action problem solves the conservative set of equations over both fluid and solid

domain. The most common solution strategy, implemented in software packages, is

the so-called partitioned approach, which decouples the problem into two separate

sub-problems and uses dedicated software for each different region. According to

this solution strategy the coupling is achieved by enforcing continuity stress condi-

tions along the fluid-solid interface. For details the interested reader can see [3]. It is

worthwhile to remark that when large displacements occur, as in the case of biolog-
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ical applications, explicit partitioned algorithms show instabilities due to the poor

fluid-solid coupling matching with unbalanced solid-fluid stresses at the interface.

In order to overcome this numerical problems one could implicitly enforce coupling

conditions. These algorithms are called fully coupled or monolithic and solve simul-

taneously for the fluid and structure unknowns, so that the solid and fluid regions are

treated as a single continuum and the interface conditions are automatically enforced

[4, 5]. Moreover, in a typical biological FSI problem, the fluid and the solid material

are characterized by a similar density leading to the so called “added mass effect”.

In this case it is well known that only fully coupled algorithms exhibit good sta-

bility properties [4]. For large displacements, as typical in biology, an accurate and

detailed geometrical domain is important leading to computational expensive sim-

ulations [6]. The reduction of the computational cost of the monolithic approach

motivated this work. The cpu time reduction can be achieved by using different res-

olutions in different regions or by using velocity-pressure uncoupling algorithms [2,

7, 8]. In order to reduce the computational cost of the ventricle model we explore

the possibility to use a penalty-projection uncoupling and test the performance of the

algorithm proposed in [9]. In this work we use a simplified model to simulate the ven-

tricle contraction cycle and the results, obtained with the monolithic fully coupled

algorithm, are compared with the ones obtained with the fully decoupled algorithm

in order to explore the possibility to reduce the computational effort and introduce

a more realistic ventricle model. The work is organized as follows. In Sects. 2 and 3

we give the mathematical description of the fluid structure interaction problem and

the penalty projection algorithm. In Sect. 4 we present some numerical tests. We

define the simplified model used to simulate the ventricle contraction and compare

the results obtained with the pressure-velocity coupling and uncoupling algorithms.

2 Mathematical Model

In this Section we introduce mathematical notation used in the work together with

the generic mathematical description of a fluid structure interaction problem. We

denote by Hs(O), s ∈ ℜ, the standard Sobolev space of order s with respect to the

set O , which is either the flow domain 𝛺, or its boundary 𝛤 , or part of its boundary.

Whenever m is a non negative integer, the inner product over Hm(O) is denoted by

(f , g)m and (f , g) denotes the inner product overH0(O) = L2(O). Hence, we associate

with Hm(O) its natural norm ‖f‖m,O =
√
(f , f )m. For 1 ≤ p < ∞ the Sobolev space

Wm,p(O) is defined as the closure of C∞(O) in the norm

‖f‖pWm,p(O) =
∑

|𝛼|≤m
∫O

|

(
𝜕

𝜕x

)𝛼

f (x)|p dx .

The closure of C∞
0 (O) under the norm ‖ ⋅ ‖Wm,p(O) will be denoted by Wm,p

0 (O).
Whenever possible, we will neglect the domain label in the norm. For vector-valued
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Fig. 1 Reference and current configurations for a generic FSI domain

functions and spaces, we use boldface notation. For example, 𝐇s(𝛺) = [Hs(𝛺)]n
denotes the space of ℜn

-valued functions such that each component belongs to

Hs(𝛺). Of special interest is the space

𝐇1(𝛺) =
{

vj ∈ L2(𝛺) ||
|

𝜕vj
𝜕xk

∈ L2(𝛺) for j, k = 1, 2
}

equipped with the norm ‖v‖1 = (
∑2

k=1 ‖vk‖
2
1)

1∕2
. For details concerning the function

spaces we have introduced, one may consult [10, 11].

In an ordinary FSI problem we consider a mechanical system composed by a

laminar Newtonian fluid region and a solid one which defines a moving domain 𝛺t.

A schematic geometry of the problem is shown in Fig. 1. Let 𝛺
f
t and 𝛺

s
t be the fluid

and the solid region at t ∈ (0,T], respectively. At t = 0 the fluid and solid region

are defined by �̂�
f
0 and �̂�

s
0. Let 𝛤

i
t = �̄�

f
t ∩ �̄�

s
t and 𝛤

i
0 = �̄�

f
0 ∩ �̄�

s
0 be the interface

where solid and fluid interact. 𝛤
k
t , k = 1, 2, 3 and 𝛤

k
0 , k = 1, 2, 3 are defined to be the

remaining external boundaries at t ∈ (0,T] and t = 0, respectively. The evolution of

the solid and fluid domain �̂�
f
0 and �̂�

s
0 are defined by

X s ∶ �̂�
s
0 ×ℝ+ → ℝ3

,

A f ∶ �̂�
f
0 ×ℝ+ → ℝ3

,

such that the range of X s(⋅, t) and A f (⋅, t) define 𝛺
s
t and 𝛺

f
t , respectively. X s

maps

any material point �̂�s0 from the given fixed reference configuration �̂�
s
0 to the current

solid material configuration 𝛺
s
t . The solid displacement is then defined as

�̂�s(�̂�s0, t) = X (�̂�s0, t) − �̂�s0 . (1)

The mapping A f
is such that A f (�̂�f0, t) = �̂�f0 + �̂�f (�̂�f0, t), where �̂�f (�̂�f0, t) is defined as

an arbitrary extension operator over the fluid domain �̂�
f
0 and given by
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�̂�f (�̂�f0, t) = Ext(�̂�s|
𝛤

i
0
) in �̂�

f
0 . (2)

The extension operator used to evaluate the fluid region displacement is the harmonic

or Laplace operator. Other similar operators can be employed as described in [12–

15]. The velocity �̂�f
is defined by

�̂�f = 𝜕�̂�f
𝜕t

in �̂�
f
0 . (3)

This quantity represents the velocity in terms of the reference coordinate �̂�f0.

2.1 The Coupled Fluid-Structure Problem

The behavior of the fluid is described by the Navier-Stokes equations for incompress-

ible flows. For details the interested reader can also see [16–19].

𝜌
f 𝜕𝐯f
𝜕t

|
|
|
| ̃A

+𝜌f
(
𝐯f − 𝐰f ) ⋅ 𝛁𝐯f − 𝛁 ⋅ 𝝈f = 𝟎 in (0,T) ×𝛺

f
t ,

𝛁 ⋅ 𝐯f = 𝟎 in (0,T) ×𝛺
f
t ,

𝐯f |t=0 = 𝐯0 in �̂�
f
0 , (4)

𝐯f |
𝛤

1,f
t,D∪𝛤

2,f
t,D

= 𝐠f in (0,T) ,

𝝈f ⋅ 𝐧f |𝛤 1,f
t,N ∪𝛤

2,f
t,

= 𝐡f in (0,T) ,

where 𝜌
f

is the constant density, 𝐯f is the fluid velocity, ̃A denotes the ALE appli-

cation that maps the reference fluid configuration �̂�
f
0 onto the current fluid config-

uration 𝛺
f
t and 𝐰f

denotes the fluid domain velocity. 𝐧 is the unit normal vector

that points outward from the boundary 𝜕𝛺
f
t and 𝐠f , 𝐡f , 𝐯0 are given data. The flow

state variables in the incompressible case are the pressure pf and the velocity 𝐯f .
The contribution of external forces such as gravity is assumed to be negligible. The

constitutive relation for the stress tensor in the Newtonian incompressible case reads

𝝈
f = −pf 𝐈 + 𝝉

f = −pf 𝐈 + 2𝜇f
𝜺

(
𝐯f
)
, (5)

where 𝜇
f

is the dynamic viscosity of the fluid, pf the Lagrange multiplier associated

to the incompressibility constraint and 𝜺

(
𝐯f
)

the strain rate tensor defined as

𝜺

(
𝐯f
)
= 1

2

(

𝛁𝐯f +
(
𝛁𝐯f

)t
)

. (6)
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The total time derivative is related to the adopted reference systems. The governing

equations for structural mechanics are the following momentum equations

𝜌
s 𝜕𝐯s
𝜕t

− 𝛁 ⋅ 𝝈s(𝐮s) = 𝟎 in 𝛺
s
t , (7)

where 𝜌
s

is the density of the solid material, 𝐯s is the velocity field and 𝝈
s

its Cauchy

stress tensor, which is a function of the solid region displacement 𝐮s. Since the con-

stitutive law for the solid stress tensor is expressed in terms of displacements one

must solve both the balance equations (7) and the kinematic relation

𝐯s = 𝜕𝐮s
𝜕t

. (8)

For the reference configuration we can introduce the right Cauchy-Green deforma-

tion tensor 𝐂 as

Cij = FkiFkj ∀ i, j = 1,… , 3 , (9)

where 𝐅 is the deformation gradient tensor defined by 𝐅 = 𝐈 + 𝛁𝐮s. In a similar way

in the current configuration we can introduce the left Cauchy-Green deformation

tensor, 𝐛, as

bij = FikFjk ∀ i, j = 1,… , 3 . (10)

According with this notation we can now express the Cauchy stress tensor, 𝝈
s
, as

[16]

𝜎
s
ij =

2
J

[

bij (I bij − bimbmj)
J𝛿ij
2

]

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜕W
𝜕I

𝜕W
𝜕II

𝜕W
𝜕J

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

where I = Cii, II = 1∕2
(
I − CijCji

)
are the first and second invariant of the right

Cauchy-Green strain tensor 𝐂 and J its determinant. The quantity W = W(I, II, J) is

the strain energy of the system which depends on the constitutive law of the consid-

ered material. For example for a Neo-Hookian material, with respect to the current

configuration, the energy function is defined by

W(I, J) = 1
2
𝜇s

(
J−2∕3tr𝐂 − 3

)
+

1
2

(

𝜆 + 2
3
𝜇s

)(1
2
(J2 − 1) − ln J

)

. (12)

In the case of incompressible solid, the third invariant is equal to one so the energy

density function becomes

W(I) = 1
2
𝜇s (tr𝐂 − 3) (13)
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and the Cauchy stress tensor is defined by

𝝈
s = −ps𝐈 + 𝝈

s∗
, (14)

where 𝝈
s∗

is the tensor obtained by using the equations (11) and (13).

The problem defined by (4)–(7) is not well posed since we have not yet prescribed

any boundary conditions at the interface 𝛤
i
t . The coupling between the fluid and the

solid model determines the missing boundary conditions, which consist of imposing

the continuity of velocity and stress at the interface 𝛤
i
t as

𝐯f |
𝛤

i
t
= 𝐯s|

𝛤
i
t
, (15)

𝝈
f ⋅ 𝐧f |

𝛤
i
t
+ 𝝈

s ⋅ 𝐧s|
𝛤

i
t
= 𝟎 . (16)

In order to write the weak formulation of the coupled problem, let us consider the

following functional spaces

𝐕t = {𝝓 ∈ 𝐇1(𝛺f
t ) ∶ 𝝓|

𝛤
1,f
t,D∪𝛤

2,f
t,D

= 𝟎} ,

𝐕t
g = {𝝓 ∈ 𝐇1(𝛺f

t ) ∶ 𝝓|
𝛤

1,f
t,D∪𝛤

2,f
t,D

= 𝐠f } ,

Qt = L2(𝛺f
t ) ,

𝐌0 = {𝝍 ∈ 𝐇1(�̂�s
0) ∶ 𝝍|

𝛤
1,s
0,D∪𝛤

2,s
0,D∪𝛤

3
0,D

= 𝟎} ,

𝐌0
g = {𝝍 ∈ 𝐇1(�̂�s

0) ∶ 𝝍|
𝛤

1,s
0,D∪𝛤

2,s
0,D∪𝛤

3
0,D

= 𝐠s} ,

D0 = L2(�̂�s
0) .

In addition, let us introduce the following bilinear form

af (𝐯𝐟 ,𝝓) =
∫
𝛺f

𝝉
f (𝐯f ) ∶ 𝛁𝜙 d𝐱 = 𝜇(𝛁𝐯f + (𝛁𝐯f )T ,𝛁𝝓) , (17)

where we denote with 𝝉
f

the fluid viscosity tensor. The variational formulation of the

fluid equations can be obtained through the usual method by multiplying the Eq. (4)

with appropriate test functions, performing integrations on the whole domain and

keeping into account the boundary and interface conditions. This procedure leads,

for the velocity field 𝐯 ∈ 𝐕t
g and pressure p ∈ Qt

, to the following fluid momentum

equation

𝜌
f
(
𝜕𝐯f
𝜕t

|
|
|
| ̃A

,𝝓

)

+ a(𝐯f ,𝝓) − 𝜌
f ((𝛁 ⋅ 𝐰f )𝐯f ,𝝓) + 𝜌

f (
(
𝐯f − 𝐰f ) ⋅ 𝛁𝐯f ,𝝓) =

(pf ,𝛁 ⋅ 𝝓) +
∫
𝛤

i
t

(𝝈f ⋅ 𝐧f ) ⋅ 𝝓 d𝛾 +
∫
𝛤

f
N

𝐡f ⋅ 𝝓 d𝛾 , (18)
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(q,𝛁 ⋅ 𝐯f ) = 0 ,

𝐯f |t=0 = 𝐯f0 ,

for all 𝝓 ∈ 𝐕t
and q ∈ Qt

. In a similar way, we define the following bilinear form

as(𝐮s,𝝍) = (𝝈s(𝐮𝐬),𝛁𝝍) . (19)

By following the procedure briefly described above, we obtain at each time t, for the

velocity 𝐯s◦X s ∈ 𝐌0
g and pressure ps◦X s ∈ 𝐃0

, the following weak formulation

for the solid problem

𝜌
s
(
𝜕
2

𝜕t2
𝐮s,𝝍

)

+ as(𝐮s,𝝍) − (ps,𝛁 ⋅ 𝝍) =
∫
𝛤

i
t

(𝝈s ⋅ 𝐧s) ⋅ 𝝍 d𝛾 +
∫
𝛤

s
N

𝐡s ⋅ 𝝍 d𝛾 ,

(d,𝛁 ⋅ 𝐮s) = 0 , (20)

𝐮s|t=0 = 𝐮s0 , 𝐯s|t=0 = 𝐯s0 ,

for all 𝝍◦X s ∈ 𝐌0
and d◦X s ∈ 𝐃0

. Let us introduce a global weak formulation

for the fluid-structure problem. If we define the functional space

𝐒t = {(𝝓,𝝍◦X s) ∈ 𝐕t ×𝐌0 ∶ 𝝍|
𝛤

i
t
= 𝝓|

𝛤
i
t
} , (21)

from (15), (16), (18) and (20), we can write the FSI problem in the coupled formu-

lation as

𝜌
f
(
𝜕𝐯f
𝜕t

|
|
|
| ̃A

,𝝋

)

+ a(𝐯f ,𝝋) − 𝜌
f ((𝛁 ⋅ 𝐰f )𝐯f ,𝝋) + 𝜌

f (
(
𝐯f − 𝐰f ) ⋅ 𝛁𝐯f ,𝝋)−

(pf ,𝛁 ⋅ 𝝋) + 𝜌
s( 𝜕

2

𝜕t2
𝐮s,𝝋) + as(𝐮s,𝝋) − (ps,𝛁 ⋅ 𝝋) (22)

−
∫
𝛤

s
N

𝐡s ⋅ 𝝋 d𝛾 −
∫
𝛤

f
N

𝐡f ⋅ 𝝋 d𝛾 = 0 , ∀𝝋 ∈ 𝐒t

(q,𝛁 ⋅ 𝐯f ) = 0 (d,𝛁 ⋅ 𝐮s) = 0, (23)

𝐯f |t=0 = 𝐯f0 𝐮s|t=0 = 𝐮s0 𝐯s|t=0 = 𝐯s0 . (24)

It is worth noting that by using the coupling conditions (15) and (16) and this par-

ticular choice of the fluid-structure test functions, the boundary terms that appear in

the fluid-solid interface 𝛤
i
t cancel out. This assures that forces at the interface are

always computed in an exact way.
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3 Numerical Penalty-Projection Algorithm

The solution of the system (22) and (23), due to its saddle-point nature, is CPU-time

expensive and many authors have proposed different strategies to reduce the compu-

tational effort. Some of the most popular ones are decoupled fractional step strate-

gies, domain decomposition methods and reduced models which try to decrease the

degrees of freedom by splitting the discrete matrix or using boundary integral tech-

niques [20]. Projection methods are widely used in fluid dynamics but they are not

popular in incompressible structural mechanics due to the poor performance of the

projection step itself over rigid media. In this work we propose to split the com-

putation of the velocity and pressure degrees of freedom by introducing an iter-

ative penalty-projection method. The standard projection method consists of two

steps: a predictor step and a corrector one [21]. In the predictor step an auxiliary

discrete velocity �̃�h, which does not satisfy the divergence-free condition, is com-

puted, while, in the corrector step, an iterative correction 𝛿ps,n+1h,proj is introduced to

enforce the incompressibility constraint. This projection allows us to solve the pres-

sure and the velocity field separately but, at the same time, it does not recover the

original boundary conditions on pressure which are defined implicitly in the origi-

nal momentum equation [22]. This issue is particularly relevant on solid boundaries

when incompressible materials are considered. In this case the boundary conditions

involve the whole stress tensor and not only the pressure components. An error on

the solid boundary, which deforms the solid surface in the wrong way, is introduced

by setting the pressure or its normal derivative to zero. This is particular relevant

when large displacements and moving meshes are considered. The iterative penalty

procedure begins with the evaluation of an auxiliary velocity field �̃�h and a pressure

correction term 𝛿ps,n+1h,pen . The quantity �̃�h = (�̃�fh, �̃�
s
h) is the solution of the following

momentum balance equation

𝜕t(�̃�
f
h,𝝋h) + 𝜕t(�̃�sh,𝝋h) + c(�̃�fh,𝝋h) + ds(�̃�sh,𝝋h) − (pf ,kh ,𝛁 ⋅ 𝝋h)

− (𝛿pf ,kh,proj,𝛁 ⋅ 𝝋h) − (r1𝛿p
s,k+1
h,pen ,𝛁 ⋅ 𝝋h) = 0 ∀𝝋h ∈ 𝐒t . (25)

where 𝜕t(�̃�⋅, ⋅) is the Eulerian time discretization of the velocity field defined by

𝜕t(�̃�sh,𝝍h) =
𝜌
s

Δt
(�̃�s,n+1h ,𝝍h) −

𝜌
s

Δt
(�̃�s,nh ,𝝍h) . (26)

The operator c(�̃�fh,𝝓h) is the fluid advection term modified by the ALE correction as

c(�̃�fh,𝝓h) = a(�̃�f ,n+1h ,𝝓h) −
(

𝜌
f (𝛁 ⋅ 𝐰f ,n

h

)
�̃�f ,n+1h ,𝝓h

)

+ 𝜌
f
((

�̃�f ,nh − 𝐰f ,n
h

)
⋅𝛁�̃�f ,n+1h ,𝝓h

)

−
∫
𝛤

f
N

𝐡f ⋅ 𝝓h d𝛾 (27)
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and ds(�̃�sh,𝝍h) is

ds(�̃�sh,𝝍h) = Δt as(�̃�s,n+1h ,𝝍h) + as(𝐮s,nh ,𝝍h) −
∫
𝛤

s
N

𝐡s ⋅ 𝝍h d𝛾 . (28)

The update of the penalty correction is obtained by using

𝛿pk+1,n+1h,pen = 𝛿pk,n+1h,pen + r2(𝛁 ⋅ �̃�kh) , (29)

where r1, r2 are real values that satisfy the following constraint [20]

0 < r1 < 2r2 . (30)

It is important to remark that in case of large penalty values the numerical conver-

gence may deteriorate quickly [20]. In order to accelerate the convergence a pro-

jection step can be introduced. The projector algorithm computes the L2 orthogonal

projection of �̃�n+1h onto the space of divergence free vectors fields, which reads

𝜌
𝐯n+1 − �̃�n+1

Δt
+ 𝛁𝛿p̃n+1proj = 0 in 𝛺t ,

𝛁 ⋅ 𝐯n+1 = 0 in 𝛺t .

(31)

Now we reformulate this Darcy system by taking the divergence of the first expres-

sion in order to obtain a Poisson problem for 𝛿p̃n+1proj . The pressure variations 𝛿p̃f ,n+1h,proj

and 𝛿p̃s,n+1h,proj are the solutions of the following weak elliptic problem

(𝛁𝛿p̃f ,n+1h,proj,𝛁𝜁 )𝛺f
n
+ (𝛁𝛿p̃s,n+1h,proj,𝛁𝜁 )𝛺s

n
= − 𝜌

f

Δt
(𝛁 ⋅ �̃�f ,n+1, 𝜁 )

𝛺
f
n
− 𝜌

s

Δt
(𝛁 ⋅ �̃�s,n+1, 𝜁 )

𝛺s
n
,

(32)

for all 𝜁 in 𝐇1
𝛤0

, where 𝛤0 is the region where the pressure is imposed. In the rest

of the boundary 𝛤 − 𝛤0, where normal velocity are imposed, homogeneous Neu-

mann boundary conditions must be applied. After solving these two sub-problems

we project the predicted velocity onto the space of solenoidal vector fields as

𝐯f ,n+1h = �̃�f ,n+1h − Δt
𝜌f

𝛁𝛿p̃f ,n+1h,proj in 𝛺
f
t , (33)

𝐯s,n+1h = �̃�s,n+1h − Δt
𝜌s

𝛁𝛿p̃s,n+1h,proj in 𝛺
s
t , (34)

and update both the pressure pf ,n+1h and ps,n+1h
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pf ,n+1h = pf ,nh + 𝛿pf ,n+1h,proj + 𝛿pf ,n+1h,pen in 𝛺
f
t , (35)

ps,n+1h = ps,nh + 𝛿ps,n+1h,proj + 𝛿ps,n+1h,pen in 𝛺
s
t . (36)

We remark that the projection pressure field, on the boundary where the velocity

field is imposed, has vanishing normal pressure derivative instead of the normal

component of the Cauchy stress. This leads to a wrong representation of the pressure

and stress components for an incompressible solid material which tends to reduce

the bending displacement field. The iterative penalty correction is meant to reduce

this boundary error and provide a stable behavior. The detailed description of the

implementation of the penalty projection algorithm that has been used in this work

can be found on [9].

4 Numerical Results

In this Section we describe the ventricle model used in this work and compare

the results obtained with the fully coupled algorithm and those obtained with the

penalty-projection algorithm for some penalty iteration cycles.

4.1 Ventricle Model

The domain 𝛺 consists of a fluid and a solid region denoted by 𝛺f and 𝛺s, respec-

tively. The overall dimensions of the geometrical model, shown in Fig. 2, are taken

from a real standard heart ventricle. On the top of the fluid domain 𝛺f there are two

ventricle valves: the inlet and outlet valve. The heart valves are taken into account

by using a simplified dynamical model. In order to reproduce the close-open valve

movement we add a pressure loss term in (4) as Δp = 𝛽 ⋅ 𝐯|𝐯| . Let 𝛺i be the valve

inlet region 𝛺i defined as

𝛺i = {𝐱 ∈ R3|
[

1 +
(

3 + z − 0.046
0.04

)( y
0.1

− 0.35 − 0.08 z − 0.046
0.04

)]

0.1|x|2.5

+
|
|
|
|

y
0.1

− 0.32 − 0.08
( z − 0.046

0.04

)|
|
|
|

2.5
− 0.005

(

1 + z − 0.046
0.04

)

< 0} (37)

where 𝛽 is defined by the relation

{
𝛽 = 0 𝐯 ≤ 0
𝛽 = 104 𝐯 > 0 . (38)

The valve outlet region 𝛺o is defined by
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Fig. 2 Ventricle

geometrical model

𝛺o = {𝐱 ∈ R3|
(

y
0.1

+ 1.05
)(

|x|
0.075

)2.5
+

[(
|y|
0.1

+ 0.05
)

0.9
]2.5

− 0.01
(

1 + z−0.046
0.025

)

< 0} ,
(39)

where 𝛽 is defined by {
𝛽 = 0 𝐯 > 0
𝛽 = 104 𝐯 ≤ 0 . (40)

The inlet and outlet regions 𝛺i and 𝛺o are shown in the left part of Fig. 3. In the

remaining part of the top region of the domain, shown in the right part of Fig. 3, we

suppose that the value of 𝛽 is 104. In this region we suppose that the fluid cannot

Fig. 3 Valve zones with reverse motion (on the left) and total occlusion (on the right)
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flow because the valve is closed by its contraction and keep a constant pressure load

with p = 12,000 Pa. The ventricle contraction is taking into account through a time

dependent young modulus E0 and a fixed 𝜈 value of 1/2. In particular we consider

E =
{

E0
Er−1
t∗2

t2 + E0 t < t∗

E0(Er − 1)e(t−t∗) + E0 t ≥ t∗
(41)

where E0 is the young modulus of the tissues in the relaxed state, set to 2 × 105 Pa.

Er, which is set to 2, is the ratio between the Young modulus in the contracted state

and E0. The temporal parameter t, which is 0 at the beginning of the contraction,

becomes 1 at the end of the pulse cycle. The ratio between the contraction and the

relaxation period is defined as t∗. In this example we assume that the whole cardiac

cycle has a duration of 1s and t∗ = 0.3.

4.2 FSI Ventricle Simulations

In this Section we presents the numerical results obtained with the fully coupled

algorithm. The solution overview at t = 1, 1.4, 1.6 and 1.86 s is shown in Fig. 4. We

can notice that in the first two time steps, due to the ventricle contraction, the pressure

inside the chamber is greater than the boundary pressure load and the fluid exits

Fig. 4 Solution overview, obtained with the fully coupled algorithm, at t = 1, 1.4, 1.6 and 1.86 s
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Fig. 5 Central point

displacement over time
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the fluid domain from the outflow region while it is blocked from flowing through

the inlet by the values of 𝛽 assumed in this valve region. When the young modulus

reaches a low value, the last two steps of Fig. 4, we have the opposite: the pressure

inside the chamber is lower than the boundary load and the fluid flows inside the

domain only from the inlet region. We remark that these results are obtained The

movement of the point at the bottom of the fluid region as a function of time is

shown in Fig. 5. These computations, performed with the monolitic algorithm, are

very expensive and the simulations can run for days even on multiprocessor clusters.

In order to reduce cpu time we perform the same simulation using the a penalty-

projection algorithm based on FSI pressure-velocity uncoupling with different num-

ber of penalty iterations. The penalty-projection algorithm used is described in [9]. In

Fig. 6 the axial displacement over time of the Fluid Structure interface point located

at the bottom of the fluid domain is shown for different cases. The curve A is the

displacement obtained with the fully coupled algorithm. The curve B, C and D are

obtained with penalty value of 1/dt and with 0, 1 and 2 penalty iterations, respec-

tively. With a further increase of the penalty iteration number the results obtained

with the penalty projection algorithm are equal to the ones obtained with the fully

coupled algorithm and the displacement of the reference point over time is again

the curve A of Fig. 6. However the FSI pressure-velocity splitting can speed up the

computation of a factor ten and more resources can be used to describe the ventricle

geometry in details.

In Table 1 we report the time, needed by the coupled and decoupled algorithm,

for solving a single time step of the problem described in the previous Sections in

different cases. In particular we report the computational cost obtained with two

computational grids, the first (Case 1) characterized by 66511 and the second (Case

2), obtained with a middle point refinement of the first one, characterized by 522469
nodes. From the first to the second case the number of unknowns of the problem
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Fig. 6 Bottom fluid

structure interface point

displacement as a function of

time for different cases.

Curve A obtained with the
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Table 1 Computational cost of a single time step iteration in the case of coupled and decoupled

algorithm for different computational grids

#Nodes #Dofs Coupled

algorithm (s)

Decoupled

algorithm (s)

Case 1 ∼7 × 104 ∼2 × 105 ∼80 ∼18
Case 2 ∼5 × 105 ∼2 × 106 ∼710 ∼67

(dofs) goes from 208797 to 1700429. From that Table we can notice that as we

increase the number of dofs, the time reduction provided by the decoupled algorithm

increases as well.

5 Conclusion

In this work a penalty projection algorithm, which provides an huge reduction of

the computational cost for the solution of a monolithic fluid structure interaction

problem, has been tested. A simplified geometrical and mathematical model for the

ventricle contraction has been introduce and the results obtained with the fully cou-

pled algorithm has been compared with the ones obtained with the penalty projection

scheme. The results have shown that increasing the number of penalty iterations the

solution, obtained with the splitting algorithm, leads to the same solution proving

the consistency of the penalty projection method. We remark that in this work a

simplified computational grid has been used in order to perform the fully coupled

simulation. This coupled algorithm can not be used in realistic computational grids

while the splitting scheme can easy deal with complex meshes without loosing the

stability provided by the monolithic approach.
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The Biomechanical Rupture Risk Assessment
of Abdominal Aortic Aneurysms—Method
and Clinical Relevance

T. Christian Gasser

Abstract An Abdominal Aortic Aneurysm (AAA) is an enlargement of the

infrarenal aorta, a serious condition whose clinical treatment requires assessing its

risk of rupture. This chapter reviews the current state of the Biomechanical Rupture

Risk Assessment (BRRA), a non-invasive diagnostic method to calculate such AAA

rupture risk, and emphasizes on constitutive modeling of AAA tissues. Histology

and mechanical properties of the normal and aneurysmatic walls are summarized

and related to proposed constitutive descriptions. Models for the passive vessel wall

as well as their adaptation in time are discussed. Reported clinical BRRA valida-

tion studies are summarized and their clinical relevance is discussed. Despite open

problems in AAA biomechanics, like robust modeling vascular tissue adaptation to

mechanical and biochemical environments, a significant body of current validation

evidence suggests integrating the BRRA method into the clinical decision-making

process.

1 Introduction

Abdominal Aortic Aneurysm (AAA) disease is a serious condition and causes many

deaths, especially in men above the age of 65. Progressive treatment i.e. either sur-

gical or endovascular AAA repair, cannot (and should not) be offered to all patients.

AAA repair is recommended if AAA rupture risk exceeds the interventional risks.

While the hospital-specific treatment risks are reasonably predictable, assessing

AAA rupture risk for individual patients remains the bottle neck in clinical decision

making.

According to the current clinical practice AAA rupture risk is assessed by the

aneurysm’s largest transverse diameter and its change over time. Specifically, AAA

repair is generally recommended if the largest diameter exceeds 55 mm or if it grows

faster than 10 mm per year [1, 2]. The majority of clinicians follow this advice (see
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the performed survey amongst vascular clinicians at http://www.vascops.com/files/

survey2006.pdf) and use both indication criteria for clinical decision making. How-

ever, this kind of somewhat crude rupture risk assessment is the subject of much

debate and AAAs with a diameters of less than 55 mm can and do rupture (even

under surveillance), whereas many aneurysms larger than 55 mm never rupture [3,

4]. Most importantly, due to the poor specificity and sensitivity of the diameter cri-

terion, the cost-effectiveness of patient treatment is not optimal. A more individual-

ized AAA repair indication would be of great help. The drawbacks of the currently

used AAA repair indicators triggered considerable research in the field and, besides

the diameter and its change over time, many other clinical risk factors have been

proposed. The Biomechanical Rupture Risk Assessment (BRRA) being one of such

methods [5–12].

2 The Basic Concept of the Biomechanical Rupture Risk
Assessment (BRRA)

Raising the blood pressure leads to local stress concentrations in the wall, and, if high

enough, starts damaging the wall at specific spots which weakens/softens the ves-

sel wall. Because of the compromised biological integrity of aneurysm tissue [13]

and/or the supra-physiological wall stress level, healing cannot fully repair these

micro defects. Consequently, the vessel wall continues to accumulate weak links. If

the damage level, i.e. the numbers of defects per tissue volume exceeds a certain

threshold, micro defects join each other and form macro-defects. Finally, a single

macro-defect may propagate and rupture the vessel through the whole thickness, i.e.

the AAA ruptures. Different engineering concepts are known to study initiation and

propagation of failure (macro-defects) in materials. One of the simplest approaches

is introducing a risk factor by relating local wall stress and local wall strength, i.e.

introducing a Wall Rupture Index WRI= 𝜎∕𝜎Y, where 𝜎 and 𝜎Y denote von Mises

stress and tissue strength, respectively. The WRI is calculated all over the aneurys-

matic sack, i.e. between the level of the infrarenal arteries and the aortic bifurcation.

Finally, the peak of WRI, Peak Wall Rupture Index (PWRI) say, is extracted and

serves as BRRA risk index.

2.1 Work Flow and Diagnostic Information

In order to implement the BRRA in the clinical work flow, a robust, fast, and

operator-insensitive simulation pipeline is required. As an example Fig. 1a illus-

trates the BRRA work flow using the A4clinics software (VASCOPS GmbH, Graz,

Austria). During an Image Segmentation step an accurate three-dimensional model

of the aneurysm is derived by segmenting luminal and exterior surfaces from

http://www.vascops.com/files/survey2006.pdf
http://www.vascops.com/files/survey2006.pdf
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Fig. 1 a Work flow of the Biomechanical Rupture Risk Assessment (BRRA) of Abdominal Aor-

tic Aneurysms (AAAs) using the A4clinics software (VASCOPS GmbH, Graz, Austria). b Def-

inition of the Rupture Risk Equivalent Diameter (RRED) for an individual AAA patient. The

RRED denotes the diameter of an average AAA that experiences the same Peak Wall Rupture

Index (PWRI) as the individual case. Image taken from [76]

Computed Tomography-Angiography (CT-A) images in DICOM (Digital Imag-

ing and Communications in Medicine) format [14]. In CT-A images, the interface

between the vessel wall and the Intra-luminal thrombus (ILT) tissue (a pseudo-

tissue seen in the majority of AAAs [15]) cannot be detected, such that the mean-

population AAA wall thickness is pre-defined. Then, a Mesh Generation step uses

the segmented surfaces and meshes vessel wall and ILT by pure hexahedral and

hexahedral-dominated elements, respectively [14]. During the Finite Element Analy-
sis step the user sets the patient-individual mean arterial pressure and other charac-

teristics, and the wall stress 𝜎 that is required to carry the blood pressure for the

individual aneurysm shape and ILT topology, is computed. This calculation uses

mean-population elastic tissue properties and applies mixed Q1P0 finite elements

[16] to prevent volume locking. Simultaneously the wall stress is locally related to

an estimated wall strength 𝜎Y, which in turn defines the WRI= 𝜎∕𝜎Y all over the

aneurysmatic sack. Finally, a Data Analysis step extracts key geometrical and bio-

mechanical information, which together with other examination input is compiled by

a Reporting step into an Analysis Report. All steps can be executed by clinical users

and the whole process, i.e. from reading the CT-A images to receiving the Analysis
Report, takes about 10–20 min using standard laptops or PCs.

In order to assess the relative risk of rupture with respect to the mean popula-

tion AAA patient, the Rupture Risk Equivalent Diameter (RRED) is introduced, see

Fig. 1b. The RRED reflects the size of the average aneurysm that experiences the

same PWRI as the individual case [7]. This is done by translating the individual

biomechanical analysis into a diameter risk, i.e. the currently applied risk stratifi-

cation parameter in the clinics. The RRED connects the individual biomechanical

assessment with the outcome of large diameter-based clinical trials, like the small

UK aneurysm trial [2, 7].
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2.2 Complexity Versus Uncertainty of Model Predictions

Naturally, every model involves making modeling assumptions (see Fig. 2 for the

BRRA) and reflects the real object always only up to a certain degree of com-

pleteness (see A. Einstein: “Everything should be made as simple as possible, but

no simpler”. http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363),

and a model should be verified and validated to the degree needed for the model’s

intended purpose or application [17]. For a BRRA simulation the required level of
modeling details can only be defined in the context of the clinical outcome. Conse-

quently, a good model will only include modeling details that improve the clinical

outcome and disregard all the other information that reflects our current knowledge

about the biomechanical problem. For example, the required degree of complexity

of the aneurysm wall model (isotropic vs. anisotropic modeling; single phase vs.

multiphase modeling; constant wall thickness vs. variable wall thickness; etc.) used

by the BRRA can only be evaluated in relation to the wall model’s implication on

the clinical outcome—a complex model does not necessarily give better diagnostic
information.

Wall stress computations are not particularly sensitive to constitutive descriptions

[10, 18] as long as the wall’s low initial stiffness, followed by its strong stiffening at

higher strains, is captured [19]. Similarly, despite the fact that ITL tissue is highly

porous [20, 21], previous biomechanical studies have demonstrated that a single

phase model predicts AAA wall stress with sufficient accuracy [22, 23]. In con-

trast, wall stress predictions are sensitive to AAA geometry, such that an accurate

three-dimension AAA representation is critically important for accurate predictions.

Finally, the Finite Element Method (FEM) solves a discretized biomechanical model,

and also the discretization error needs to be assessed in relation to the uncertainty of

the input information.

Fig. 2 Modeling assumptions and input uncertainties entering the Biomechanical Rupture Risk

Assessment (BRRA) of Abdominal Aortic Aneurysms (AAAs). The validity of each assumption

needs to be validated with respect to the clinical outcome of the BRRA prediction, i.e. a measurable

benefit of the computed diagnostic information. Image taken from [76]

http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363
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3 AAA Tissue Characterization

The characterization of vascular tissue is an active field of research and numer-

ous studies with application to AAA tissue have been reported. AAA wall pathol-

ogy is driven by the complex interaction of biochemical and biomechanical events

[24], such that AAA tissue characterization requires multi-disciplinary investiga-

tions. Specifically, the development of robust and reliable constitutive modeling asks

for profound histological and mechanical understandings of AAA tissues.

3.1 Properties of the Normal Aorta

Histology and morphology. In the arterial wall, ExtraCellular Matrix (ECM) com-

ponents (elastin, collagen, ProteoGlycans (PGs), fibronectin, fibrilin, etc.) ensure the

vessel’s structural integrity, whereas cells (endothelial cells, Smooth Muscle Cells

(SMC), fibroblasts, myofibroblasts, etc.) maintain its metabolism. Specifically, the

proteins elastin and collagen, and their interactions, almost entirely define the ves-

sel’s passive mechanical properties [25].

Collagen fibrils organize into suprafibrilar structures (see Fig. 3), where PG

bridges seem to provide interfibrillar load transition [26–29]. Physiological mainte-

nance of the collagen structure relies on a delicate turnover at a normal half-life time

of 60–70 days [30] between degradation (mainly through Matrix MetalloProteinases

(MMPs)) and synthesis by cells like SMCs, fibroblasts and myofibroblasts, [31].

Elastin functions in partnership with collagen and mainly determines the mechan-

ical properties of arterial tissue at low strain levels [25]. In the vessel wall, elastin

is predominantly seen in the media, within which it is organized in sheets (71%),

fibers (27%) and radial struts (2%) [32], see Fig. 3. Elastin is synthesized and secreted

by vascular SMCs and fibroblasts, a process that normally stops soon after puberty

once the body has reached maturity. Elastin degradation (by selective MMPs known

as elastase) is related to several diseases (atherosclerosis, Marfan syndrome, Cutis

laxa, etc.), but also important for many physiological processes such as growth,

wound healing, pregnancy and tissue remodeling [33]. Finally, SMCs at the differen-

tiated/contractile phenotype equip the vessel wall with active properties for quickly

adjusting vessel caliber and stiffness.

At the organ level the vessel wall is composed of intimal, medial and adventitial

layers, see Fig. 3. The intima is the innermost layer and comprises primarily of a

single layer of endothelial cells lining the arterial wall. The media is the middle layer

of the artery and consists of a complex three-dimensional network of SMCs, elastin

and collagen fibers and fibrils. These structural components are preferentially aligned

along the circumferential vessel direction [32, 34] and organized in repeating MLUs

of 13–15 µm thickness [32, 35, 36]. The media’s discrete laminated architecture is

gradually lost towards the periphery and hardly present in muscular arteries. Finally,

the adventitia is the outermost layer of the artery and consists mainly of fibroblasts
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Fig. 3 Histological idealization of an artery. It is composed of three layers: intima (I), media

(M), adventitia (A). The intima is the innermost layer consisting of a single layer of endothelial

cells, a thin basal membrane and a subendothelial layer. Smooth Muscle Cells (SMCs), elastin

and collagen are key mechanical constituents in the media and are arranged in a number (up to

60 in the aorta) of 13–15 µm thick Medial Lamellar Units (MLUs). In the adventitia the primary

constituents are collagen fibers and fibroblasts. Collagen fibers with a thickness in the range of

micrometers are assembled by collagen fibrils (50–300 nm thick) of different undulations. Load

transition between collagen fibrils is maintained by Proteoglycan (PG) bridges. Elastin fibers with

a thickness of hundreds of nanometers are formed by an amorphous core of highly cross-linked

elastin protein that is encapsulated by 5 nm thick microfibrils. Elastin fibers are organized in thin

concentric elastic sheets (about 1–2µm thick), in a rope-like interlamellar elastin fibers (about

100–500 nm thick), and as thick radial struts (about 1.5µm thick). Image taken from [135]

and fibrocytes and ECM of thick bundles of collagen fibrils. The strong adventitial

layer protects the biologically vital medial layer from overstretching and anchors the

artery to its surrounding.

Mechanical properties and experimental observations. The vessel wall is a mix-

ture of solid components (elastin, collagen, SMCs, PGs, etc.) and water, much of

which is not particularly mobile but bound to PGs, elastin, and the like. In-vivo the

volumetric strain is three orders of magnitude smaller than the circumferential strain

[37], such that, for many mechanical problems, it seems reasonable that the artery

wall can be regarded as an incompressible homogenized solid.

The normal (non-calcified) artery is highly deformable and exhibits anisotropic

[38, 39] and nonlinear [40] stress versus strain response. It stiffens typically at around

the physiological strain level in response to the recruitment of the embedded wavy
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collagen fibrils [25, 41, 42]. The vessel’s load-free state is determined by a residual

stress state [43], which biomechanical consequences are well discussed in the litera-

ture [44–47]. Clearly, residual stresses are multidimensional and circumferential [44,

47] as well as longitudinal [48] stresses have been reported in the load-free vessel.

Arteries are axially pre-stretched, which seem to prevent their axial pulsation in the

body [49].

Even when preconditioned, the aortic wall shows typical strain rate dependency

like creep, relaxation and (almost frequency-independent [50]) dissipation under

cyclic loading. Exposing vascular tissue to supra-physiological mechanical stresses

rearranges the tissue’s microstructure through irreversible deformations; damage-

related effects [51, 52] and plasticity-related effects [52, 53] have been documented.

The level of vascular SMC activation or basal tone changes in response to bio-

mechanical stimuli such as flow [54], pressure [55], circumferential and longitudi-

nal stretching [56], hormonal stimuli, neural stimuli, and drugs. Finally, the normal

vessel seems to follow the concept of homeostasis, i.e. it adapts to changes in the

mechanical environment such that target mechanical properties are kept relatively

constant. Specifically, target values for Wall Shear Stress (WSS) [57, 58], circum-

ferential wall stress [59, 60] and axial stretch [61] have been shown to be regained

after alterations.

3.2 Aneurysm-Related Alteration of the Aorta

AAAs are the end-result of irreversible pathological remodeling of the ECM [13,

62]. Specifically, the walls of larger AAAs show (i) degradation of the elastin, (ii)

compensatory increased collagen synthesis and content, (iii) excessive inflamma-

tory infiltration, and (iv) apoptosis of vascular SMC [13, 24, 63–65]. It is widely

accepted that loss of elastin (and possibly SMC) triggers initial dilatation, while col-

lagen turnover promotes enlargement and local wall weakening that eventually leads

to AAA rupture [13].

With progressing aneurysm disease, the well-defined organization of normal ves-

sel wall (Fig. 3), is lost; in larger AAA sometimes not even a distinct differentiation of

individual vessel wall layers is possible. The entire wall seems to resemble a fibrous

collagenous tissue similar to the adventitial layer in the normal aorta [34]. Blood flow

within AAAs is complex [66] and triggers the formation of strong Vortical Struc-

tures (VSs) [67], which seem to play a critical role in blood coagulation [68] and

could explain the formation of ILT. The ILT has solid-like properties [21, 69] and

is composed of a fibrin mesh, traversed by a continuous network of interconnected

canaliculi incorporated with blood cells, e.g., erythrocytes and neutrophils, aggre-

gated platelets, blood proteins, and cellular debris [20, 70]. It creates an environment

for increased proteolytic activity [71, 72] that may cause the observed weakening

[73] and thinning [63] of the vessel wall.

Due to the above mentioned aneurysm-related proteolytic degeneration of struc-

tural proteins, an AAA wall mechanically differs significantly from a normal aorta.
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Specifically, the AAA wall is less anisotropic, and, at the same time, the non-linearity

of the stress-strain relation is more pronounced [38]. As already indicated by the

AAA wall’s inhomogeneous patho-histology [74], wall strength also shows sig-

nificant inter- and intra-patient variability [75]. Strength values of the AAA wall

reported in the literature are summarized elsewhere [76], and several factors that

influence wall strength are already identified [77–81]. Such wall strength informa-

tion is, with very few exceptions [82], usually derived from uniaxial tensile testing,

which unfortunately does not reflect the biaxial in-vivo loading of the AAA wall.

Local variations of wall thickness and wall strength partly compensate for each

other (wall strength and thickness are strongly negatively correlated [76]), and wall

tension, i.e. stress multiplied by wall thickness, seems to be a more robust rupture

risk predictor [83]. The inverse correlation between wall thickness and wall strength

also justifies, to some extent, the typically-used uniform wall thickness for the BRRA

computations. Consequently, FEM models that assume both, wall strength and wall

thickness homogenous may give better results than models using an inhomogeneous

wall thickness together with a homogenous wall strength.

3.3 Modeling Frameworks

While purely phenomenological approaches can successfully fit experimental data,

such models show limited robustness for predictions beyond the strain range within

which model parameters have been identified. Structural (or histo-mechanical)

constitutive descriptions overcome such limitation and integrate histological and

mechanical information of the arterial wall. Such formulations are not only more

robust but also help to understand load carrying mechanisms in the vessel wall.

Clearly, modeling assumptions need to fit the objective of the particular simulation

[17], and for most applications the artery can be regarded as a single phase incom-

pressible solid.

3.3.1 Descriptions for Passive Vessel Wall Properties

In arterial biomechanics, hyperelasticity of incompressible solids is a popular mod-

eling approach in order to derive the Cauchy stress

𝝈 = 2𝐅𝜕𝜓(𝐂)
𝜕𝐂

𝐅T − p𝐈 (1)

from the strain energy density 𝜓(𝐂) in reference volume. Here, tissue deformation

is determined by the right Cauchy-Green strain 𝐂 = 𝐅T𝐅, which is a function of the

deformation gradient 𝐅. The hydrostatic pressure p acts on the identity 𝐈 and serves

as a Lagrange parameter to enforce incompressibility. All constitutive information

(mechanical and histological) is captured by a particular form of the strain energy
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function 𝜓 . The spatial elasticity tensor for a FEM implementation can be derived

according to the classical framework of hyperelasticity [84].

Besides models originally proposed for rubber [85, 86], constitutive descriptions

tailored for vascular tissue include exponential terms in the strain energy 𝜓 [87,

88] and account for material anisotropy [89–101]. The stress in the wall of inflated

structures like the AAA is mainly determined by its geometry and the inflation

pressure, such that validation results [10, 18, 102] indicated that a reduced Yeoh

potential 𝜓 = c1(I1 − 3) + c2(I1 − 3)2 provided reasonable results. Here, I1 = tr𝐂
denotes the first invariant of the right Cauchy Green strain. Despite the Yeoh poten-

tial being inherently phenomenological, the parameter c1 relates to elastin-dominated

low strain properties, while c2 determines the collagen-dominated large strain prop-

erties of the vessel wall. In the present study these parameters are set to capture mean-

population AAA wall properties, i.e. c1 = 177.0 kPa and c2 = 1881.0 kPa [10].

Despite ILT tissue being much softer than the vessel wall, it can occupy large

volumes and can have a significant structural impact. ILT was modeled by an Ogden-

like strain energy function 𝜓 = c0
∑3

i=1(𝜆
4
i − 1), whose properties change from its

luminal (c0 = 2.62 kPa) to the abluminal (c0 = 1.73 kPa) site [21]. Here, 𝜆i denote

the principal stretches, and such structural response also matches experiential ILT

data reported elsewhere [69].

3.3.2 Descriptions for Adaptive Vessel Wall Properties

From a mechanical perspective, aneurysm pathology tends towards a wall, within

which collagen remains the only protein able to provide structural integrity [65].

Consequently, collagen (and its turnover) determines the properties of the AAA wall

and motivates the application of the general theory of fibrous connective tissue [103]

by integrating fibers of dispersed orientation. The superposition of such fibers deter-

mines the tissue’s Cauchy stress

𝝈 = 2
𝜋

𝜋∕2

∫
𝜙=0

𝜋∕2

∫
𝜃=0

𝜌(𝜙, 𝜃)𝜎(𝜆)dev(𝐦⊗𝐦) cos𝜙d𝜙d𝜃 − p𝐈 , (2)

where the hydrostatic pressure p enforces incompressibility, and 𝐦 = 𝐅𝐌∕|𝐅𝐌|
denotes the spatial collagen fiber orientation; 𝐌 is their orientation in the reference

configuration. The spatial deviator operator is denoted by dev(∙) = (∙) − tr(∙)𝐈∕3,

and 𝜃 and 𝜙 are the azimuth and elevation angles, respectively. The orientation den-

sity function 𝜌(𝜙, 𝜃) reflects the orientation of collagen fibers in the reference config-

uration and integrates histological information into Eq. (2). In addition, the mechan-

ics of the collagen fibers are captured by the Cauchy stress 𝜎(𝜆) of the individual

fiber as a function of its stretch 𝜆.

A collagen fiber is thought of to be assembled of numerous PG-interlinked and

undulated collagen fibrils (see Fig. 3), which gradually engage according to a trian-
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gular Probability Density Function (PDF) [104]. In addition, the first Piola-Kirchhoff

stress versus stretch relation T = c𝜆log𝜆 captures the mechanics of the approxi-

mately linear [105, 106] collagen fibrils [104]. In contrast to other formulations

[107, 108], the triangular PDF combined with the selected stress versus stretch law,

allowed an analytic integration of fibril engagement, fast enough to support organ-

level AAA computations. The model exhibited the typically non-linear property of

soft biological tissues [104], and accurately described in-vitro experimental data over

a wide range of biaxial deformations of the normal aorta [109] and the AAA wall

[34].

Finally, a neoHookean model 𝜓 = µ(I1 − 3)∕2 captured the constitution of the

matrix, within which collagen fibers are embedded. Dependent on the progress of

aneurysmal disease, such matrix contribution is almost negligible, but helped to sta-

bilize the numerical computations.

Collagen turnover model. The present model assumes that cells (fibroblasts, myofi-

broblasts, SMCs) sense the state of strain and pre-stretch collagen fibrils prior to their

deposition. This requires three distinct sub-models, denoted as Sensing Model, Mass
Turnover Model and Structure Update Model, respectively.

The Sensing Model defined the physical quantity 𝜉 that stimulates collagen syn-

thesis, i.e. the production of new collagen. Specifically, the model assumed that col-

lagen stretch tends towards its homeostatic value of 𝜆ph (a stretch at which 10% of

the collagen fibrils are engaged [110]) by satisfying the optimality condition

𝜉(𝐌) = 𝜆(𝐌)
𝜆ph

𝜌

𝜌

→ 1 . (3)

Here, 𝜌 denotes the specific collagen density that aims at approaching the target den-

sity of 𝜌. The use of 𝜌 substituted the maximum collagen turnover rate, which was

introduced previously [110]. It is emphasized that 𝜉 depends on 𝐌, i.e. the orienta-

tion of the particular collagen fiber in the reference configuration.

The Mass Turnover Model quantified the relation between the sensed stimu-

lus 𝜉(𝐌) and the change of the specific collagen density, i.e. the relation between

degraded �̇�
−

and synthesized �̇�
+

collagen density rates, respectively. Despite exper-

imental data hinting towards a stretch-based degradation of collagen (see [111] and

references therein), in the present model collagen degraded independently from the

orientation 𝐌 and according to �̇�
− = −𝜂𝜌, where 𝜂 defines the time-scale of the

degradation process. In contrast, collagen syntheses was related to the stimulus 𝜉(𝐌)
and followed �̇�(𝐌)+ = 𝜂𝜌𝜉(𝐌).

Finally, the Structure Update Model specified how collagen was integrated/

disintegrated into/from the existing collagen structure. The model assumed that col-

lagen fibrils are disintegrated without changing their undulation characteristics, i.e.

without changing their triangular PDF. In contrast synthesized collagen fibrils are

integrated at a certain distribution of pre-stretches, i.e. according to a triangular PDF

with pre-defined 𝜆min and 𝜆max; details are reported elsewhere [110]. Note that the

triangular PDF, which describes the deposited collagen also defines the above intro-
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duced homeostatic stretch 𝜆ph. Specifically, for 10% of the collagen fibrils being

engaged, this stretch reads 𝜆ph = 𝜆min + 0.224(𝜆max − 𝜆min) [110].

In order to ensure a time step Δt small enough to accurately integrate the outlined

rate equations a ‘look-ahead’ technique was used. Specifically, the largest collagen

density increment max[�̇�−, �̇�+]Δt over all Gauss points of all finite elements was

used to control the time step through FEAP’s AUTO MATErial command [112].

4 Clinical Validation

Prior to the implementation of the BRRA into the regular clinical workflow, its valid-

ity needs to be tested with respect to its specific simulation objective [17], i.e. the

clinical value of the BRRA diagnosis. Specifically, it is not important that all under-

lying modeling assumptions (sub-models) reflect current knowledge (see Sect. 2.2),

but the whole system needs to demonstrate an improvement over state-of-the-art

clinical practice.

4.1 Quasi-static BRRA Computations

Quasi-static computations are based on CT-A image data at a single time point and

used the purely passive AAA tissue descriptions detailed in Sect. 3.3.1.

Operator variability. Intra- and inter-operator variability of the A4clinics (VAS-

COPS GmbH, Graz, Austria) rupture risk assessment system has been tested in clin-

ical environments [113, 114], and own (unpublished) data showing an intra-operator

variability of 3.5% for PWRI predictions and of 1.5% for maximum diameter mea-

surements. This high precision could only be achieved with active (deformable)

image segmentation models, which are known to have sub-pixel accuracy [14, 115].

In contrast, other segmentation tools (like MIMICS, Materialise, Leuven, Belgium)

apply low-level segmentation methods based on threshold approaches, which not

only require intensive manual interactions but also leads to high operator variability

of the results.

Retrospective comparison between ruptured and non-rupturedAAAs. The diag-

nostic value of the BRRA method has been studied for almost 20 years [5–12]. Dur-

ing such studies Peak Wall Stress (PWS) has been regularly shown to be higher

in ruptured/symptomatic AAAs than in intact/non-symptomatic AAAs [116]. Inte-

grating wall strength (based on a statistical model that correlates mechanical in-vitro

tests with patient characteristics [117]) in the BRRA further improved its diagnostic

value, i.e. led to an improved retrospective discrimination between ruptured and

non-ruptured cases [6, 8]. For example, a size-adjusted comparison showed that the

RRED was, on average, 14.0 mm larger in ruptured than in non-ruptured cases, see

Fig. 4 taken from [7].
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Fig. 4 Size-adjusted comparison between ruptured and non-ruptured Abdominal Aortic

Aneurysms (AAAs). The comparison is based on the difference between Rupture Risk Equiva-

lent Diameter (RRED) and the maximum transversal Diameter (D). The number of patients and the

one-sided p-valuea are denoted by n and p, respectively. Image has been adjusted from [7]

Quasi-prospective comparison between ruptured and non-ruptured AAAs. CT-

A scans of AAA patients that eventually experienced rupture (e.g., because the

patient refused treatment) provide ideal data for a validation of the BRRA, and, to the

best knowledge of the author, one such study has already been published [118]. The

results showed that the BRRA method was able to significantly discriminate between

AAAs that would rupture, when compared to a baseline-matched control group that

did not rupture or was treated. The study [118] also found that in more than half

of the cases, the rupture sites correlated with calculated pre-rupture PWRR loca-

tions. Consequently, the authors concluded that asymptomatic AAA patients with

high PWRR and RRED values have an increased rupture risk.

Female versus male AAA rupture risk. Despite the fact that AAA prevalence

is several times lower in females, female aneurysms rupture at smaller diameters

[119–121]. Independently from this clinical observation, in-vitro failure testing of

female AAA wall samples showed a lower strength compared to male samples [117,

122]. This gender-specific wall weakening effect is integrated into the PWRI, and

the biomechanical risk of an average 53 mm large female AAA relates to an aver-

age 13.2 mm larger male case [7]. This BRRA simulation result nicely matches data

from above mentioned clinical observations.

Correlation of PWRI and FDG-uptake. The vascular wall’s biological activity can

be evaluated indirectly through energy consumption, using 18-fluoro-deoxy-glucose

(18F-FDG), as a tracer for positron emission tomography (PET) imaging [123]. Vas-

cular cells respond to mechanical loads [24], such that an 18F-FDG-uptake can,

in principle, be used to qualitatively explore wall stress. Despite the fact that the

aneurysmatic wall loses its biological vitality [13, 64] PET-scan images still showed

a considerable correlation between wall stress and an 18F-FDG-uptake [80, 124].
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Correlation of PWRI and wall histopathology. Biomechanical stress is a common

denominator of several aortic pathologies [24]. The complex geometry and mor-

phology of AAAs cause highly inhomogeneous wall stress, and WRI correlated with

wall’s histopathology. Specifically, wall segments that in-vivo experienced high WRI

showed fewer smooth muscle cells and elastic fibres, more soft and hard plaques, as

well as a trend towards more fibrosis, when compared to wall samples at low WRI

[74].

4.2 AAA Growth Prediction

Experimental AAA growth data was collected from analyzing CT-A images at at

least two time points [125–127]. In a cohort of almost one hundred AAAs, diameter

growth was continuously distributed all over the aneurysmal sac, reaching median

absolute and relative peaks of 3.06 mm/year and 7.3 %/year, respectively [126]. Most

interestingly, the local growth rate depended on the local baseline diameter, the local
ILT thickness and (for wall segments not covered by ILT) also on the local wall stress
level. Despite these complex influences, AAA growth was simulated based on the

adaptive AAA wall description detailed in Sect. 3.3.2. For simplicity, and to avoid

coupling with blood flow computations (in order to predict the formation of ILT [67,

68]), only cases with negligible or no ILT were considered; the expansion over time

for an individual AAA is shown in Fig. 5. The performed growth simulation showed

promising correlations with experimental data (for example in terms of coupled cir-

cumferential and longitudinal growth of the AAA wall), and structural instability

(similar to the snap-through phenomena of an inflated rubber balloon) was observed

at stress levels in the range of reported AAA wall strengths.

Fig. 5 Evolution of Abdominal Aortic Aneurysm (AAA) shape predicted by the adaptive AAA

wall descriptions detailed in Sect. 3.3.2. The simulation covered four years of AAA growth and

used parameters listed in Table 1
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Table 1 Parameters used to simulate Abdominal Aortic Aneurysm (AAA) growth according to

constitutive model described in Sect. 3.3.2

Parameter Value Description

𝜇 21.0 kPa neoHookean parameter of the

matrix

c 60.0 MPa Collagen fibril stiffness

𝜆min 1.045 Initial collagen minimum

straightening stretch

𝜆max 1.117 Initial collagen maximum

straightening stretch

𝜌 0.4 Specific collagen target mass

density

𝜆min 0.94 Minimum straightening stretch

of deposited collagen

𝜆max 1.117 Maximum straightening

stretch of deposited collagen

𝜂 0.167 years Collagen turn over rate

5 Conclusions

AAA wall pathology is driven by the complex interaction of biochemical and biome-

chanical events [24], such that a multi-disciplinary approach, involving also biome-

chanics, is needed to better understand and more effectively treat AAA disease. AAA

rupture is a local event in the aneurysm wall and global parameters like the maxi-

mum diameter and its expansion over time frequently fail to predict individual risk

for AAA rupture. In contrast the BRRA method assesses the wall’s local mechani-

cal loading and quantitatively integrates many known risk factors for AAA rupture

like large size, asymmetric shape, female gender, and hypoxia due to a thick ILT

layer. From a single CT-A scan, the biomechanical risk for rupture is best expressed

by the RRED, which relates the individual case to the size of an average aneurysm

at the same biomechanical risk for rupture. A significant and still growing body of

validation evidence suggests using the RRED as an additional parameter for clinal

decision making. Apart from other challenges, biomechanical predictions critically

depend on an accurate constitutive description of the AAA tissue. Most important for

the BRRA is to estimate AAA wall strength, which by itself is influenced by many

factors. It is crucial in development of a constitutive model not only to understand

the (passive) interaction of structural components within the vascular wall, but also

how cells dynamically maintain such a structure.

Computational mechanics may advance our understanding of physiological and

pathological mechanisms of organs, interaction between medical devices and biolog-

ical material, drug delivery pathways, the interplay between structure and function of

tissues, mechanotransduction and many others. Although to some extent traditional

applied mechanics concepts are directly applicable to solve cardiovascular problems,
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the inherent property of vascular tissue to adapt to mechanical and biochemical envi-

ronments, remains a challenging modeling task. The normal vessel wall responds

to mechanical stimuli [96], and seems to alter its mechanical properties towards

approaching conditions for optimal mechanical operation [128]. However, cardio-

vascular diseases compromise such a mechanism and can lead to the formation of

life-threatening aneurysms.

Despite modeling aneurysm development and progression being an active field

of research [110, 129–133], most of these models are characterized by a high degree

of phenomenology, and all of them are poorly validated. Consequently, significant

further development is required to improve the reliability of growth and remodel-

ing descriptions of the AAA wall. Modern image modalities allow the extraction of

biomechanical functional information (gated CT-A, 3D ultrasound, Magnetic Res-

onance (MR) imaging) as well as biological activity (PET-scan) of the wall. Such

information might provide valuable insights into growth-related effects and directly

inform biomechanical AAA models, which in turn might further improve the sensi-

tivity and specificity of the BRRA.

Many biomechanical models are overloaded with mechanical complexities and

fail to address clinical problems adequately, and hence, do not enjoy clinician accep-

tance. Even after decades of biomechanics research the huge chasm between engi-

neering and clinical approaches, that address the same cardiovascular problem,

remains. A simulation model represents the real objective or process towards the

desired degree of complexity, and should be guided by clinical needs rather than

by integrating all available (biomechanical) information of the problem [17, 134].

Computational biomechanical models do not only require careful selection and com-

bination of modelling assumptions but also rigorous clinical validation. Specifically,

biomechanics researcher should be advised that more complexity does not necessar-
ily give better predictions.
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Abstract Streptococcus gordonii is one of the first colonizing bacteria on tooth

or dental implant materials forming so-called biofilm. These biofilms cause severe

inflammation that, as a consequence, lead to tooth or implant failure. A promising

way to study the S. gordonii biofilm formation is by combining experimental investi-

gations and numerical simulation. Our previous research has shown the potential to

model the growth process of the S. gordonii biofilm in a mimic human oral environ-

ment by using a mathematical model developed by Alpkvist and Klapper (the A-K

model). The parameters used for the simulation were calibrated by the experimen-

tal results. However, what are the crucial parameters that have a strong influence on

the biofilm growth behavior and thus need to be determined accurately is an open

question. In this paper, parameter studies on four independent parameters are carried

out.
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1 Introduction

Due to the demographical change in the world, the human population grows older

nowadays. This gives clinicians the major challenge to guarantee patients best health-

care and secure best quality of life in every stage of age. Special attention was

drawn on dental implants within the last decades. In Germany about 1 million den-

tal implants are inserted each year. They are among the most widely used medical

implant systems. Despite the striking advantages of dental implant treatment, about

20% of patients develop bacteria-induced implant infections [1]. In many cases treat-

ment of peri-implantatis is complicated and requires a surgical intervention since

antibiotic therapy can be ineffective.

The human oral cavity is inhabited by over more than 700 bacterial species [2].

The oral microbiota contains harmless as well as (opportunistic) pathogens. The

latter is directly involved in the development of oral infectious diseases like peri-

odontitis, peri-implantitis and tooth decay [2, 3]. Surfaces within the oral cavity

are covered with bacterial agglomerates, referred to as biofilms. These are complex

structured microbial communities in which bacteria are embedded in a self secreted

extracellular polymeric substance (EPS) [4]. This matrix shields the bacteria from

external threats. It acts as a potent diffusion barrier so that the antibiotic resistance

is up to 5000 fold higher in biofilms compared to planktonic bacteria [5, 6]. As a

consequence, the conventional treatments fail.

If the adhesion of so called first colonizers is controlled, also further stages

of biofilm development are influenced. The periodontopathogenic late colonizing

species will decrease as they cannot attach to the biofilm in a stable way. One of

these first colonizers is the Streptococcus gordonii [7–9]. This is an opportunistic-

pathogen, gram positive bacterium that adheres to tooth or implant substratum

[10–12]. For the better analysis of the bacterial biofilm, new studies must be taken

into account. Since 1994, so called flow chamber systems are the gold standard

[13]. The biofilm formation is influenced by environmental conditions: (a) the trans-

port of nutrients, oxygen or signaling molecules (b) contribution to gene expression,

(c) biotransformation reaction [14–18]. Therefore, the establishment of a flow cham-

ber concerning the saliva flow is an option to study the biofilm formation. As it was

described by literature, a saliva flow velocity of 100µL∕min is used [19]. For this

specific study, we have designed an open flow chamber system and a strategy to study

the S. gordonii biofilm formation by combining the experimental studies together

with numerical simulation [18]. Numerical simulations help to identify situations

that lead to fast biofilm growth.

A mathematical model developed by Alpkvist and Klapper (A-K model)[20] has

been used to simulate the S. gordonii biofilm formation. Our previous study shows

that the A-K model has a good potential to describe the S. gordonii biofilm forma-

tion under the experimental condition for physiologic fluid oral environment [18]. A

comparison of the simulation results and experimental observations, which has been

reported in [18] (as shown in Sect. 4) is presented again in this paper. However, quite

a few parameters are required for the numerical modeling and only few of them are
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quantitatively measured from experiments. Therefore, parameter studies are useful in

order to identify the crucial parameters that need to be well determined to make pre-

diction with the model. In this study, we introduce the A-K model briefly in Sect. 2

and the numerical strategy developed by Feng et al. [21] to solve the model is shortly

presented in Sect. 3. Both the experimental and numerical setups are described in

Sect. 4. In Sect. 5 an analysis of the independence of the parameters is carried out

and four independent parameters are found. Then parameter studied are presented

on those four crucial parameters.

2 Mathematical Model

2.1 Governing Equations

Based on our previous study [18], the mathematical model (A-K model) developed

by Alpkvist and Klapper has been founded to be suitable to model the S. gordonii
biofilm growth in human oral environment. We briefly describe the mathematical

model in this section which was originally presented in [20]. The numerical study in

this paper limits to a two-dimensional (2D) model. The 2D A-K model is considered

within a computational domain of Ω ∶→ {𝐱 = (x, z) ∶ 0 ≤ x ≤ W, 0 ≤ z ≤ H} as

illustrated in Fig. 1. The computational domain Ω is composed of a time changing

biofilm domain Bt and a fluid domain Ft . The biofilm-fluid interface is denoted as

Γint = Ft ∩ Bt . Even though the input medium is fully mixed with a concentration of

s̄, there still exists a very thin boundary layer above the biofilm-fluid interface within

which the transport of substrates is dominated by molecular diffusion. Therefore, a

diffusive boundary layer of a constant thickness Hb is assumed above the biofilm-

fluid interface. The domain below the top of the boundary layer Γh is a substrate

transport domain St in which the governing transport equation of the substrate is

solved.

Fig. 1 Two-dimensional

illustration of the

computational domain
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The nutrient, namely, the Tryptic Soy Broth with yeast and glucose (TSBYG)

medium is considered as the only biofilm growth limiting substrate in this paper.

Therefore, the biofilm growth rate is limited by the concentration of TSBYG medium

s (kg∕m3). Due to the time scale of the medium transport process is much smaller

than the time scale of biofilm growth, the transport of the medium is usually consid-

ered as quasi-steady and the mass balance for the medium reads

− D∇2s = r(𝝊, s), 𝐱 ∈ St ,
s = s̄, 𝐱 ∈ Γh,

𝜕s
𝜕𝐧s

= 0, 𝐱 ∈ Γs, (1)

where D is of the diffusion coefficient of the medium and r(𝝊, s) describes the con-

sumption rate of the medium by the active biomass. 𝝊 = (𝜐1, 𝜐2, 𝜐3...)T refers to the

volume fractions of different biomass components. No-flux boundary is applied at

Γs ∶→ 𝜕St ∩ 𝜕Ω and 𝐧s here refers to the normal vector of Γs.

We consider two components of biomass, namely the active biomass and inactive

biomass that are distinguished by indexes 1 and 2 respectively. The mass balance for

biomass reads

𝜕𝝊

𝜕t
+ ∇ ⋅ (𝐮𝝊) = 𝐠(𝝊, s), 𝐱 ∈ Ω,

𝜕𝝊

𝜕𝐧b
= 0, 𝐱 ∈ 𝜕Ω, (2)

where the right hand side term 𝐠(𝝊, s) =
(
g1(𝝊, s), g2(𝝊, s)

)T
describes the transfor-

mation process of each component of biomass. 𝝊 = (𝜐1, 𝜐2)T refers to the volume

fractions of the active biomass and inactive biomass respectively and they grow with

a common velocity 𝐮. The biofilm growth velocity 𝐮 is assumed to be irrotational.

Therefore, there exists a potential 𝛷 that satisfies

∇ ⋅ 𝐮 = ∇2
𝛷 = g1 + g2, 𝐱 ∈ Bt . (3)

Equations. (1)–(3) compose the full A-K model used in this paper.

2.2 Transformation Processes

It is assumed that the medium is consumed as a consequences of self-reproduction

of the active biomass. The reaction term r(𝝊, s) reads

r(𝝊, s) = −𝜐1𝜌
1
Y

𝜇s
ks + s

, (4)
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where 𝜌 is the density of biofilm and Y is the biofilm yield, 𝜇 and ks are constant

parameters required in the Monod kinetic. The inactive biomass is generated by the

transformation of the active biomass and the transformation process here is noted as

inactivation which is described by introducing an inactivation rate 𝜅i in the mathe-

matical model. With all these arguments above, the terms g1 and g2 can be eventually

written as

g1(𝝊, s) = 𝜐1

(
𝜇s

ks + s
− 𝜅i

)
,

g2(𝝊, s) = 𝜐1𝜅i. (5)

3 Numerical Strategy

To solve the governing equations (1)–(3) numerically is challenging. Equations (1)

and (3) are second order elliptic partial differential equations (PDEs) which can be

solved easily by using the standard finite element method. However, the boundaries

Γint and Γh change over time due to the growth of biofilm. Therefore, one needs

special treatment for the moving boundaries. We use the iso-line of the total biomass

concentration of a threshold value as the biofilm-fluid interface and Γh is determined

by using a rolling ball algorithm.

More challenges arise when solving Eq. (2) which is a set of hyperbolic PDEs

with nonlinear reaction terms. To solve such PDEs accurately, higher order stable

numerical schemes in both time and space are required. However, it is well known

that higher order schemes suffer from instability problems. For this reason, the com-

bined TDG-FIC (time discontinuous Galerkin [22]—finite increamental calculus

[23]) method is applied for solving Eq. (2). We refer to [21, 24] for more detailed

information of the numerical aspects.

4 Biofilm Height After 24 h: Experimental Observation
and Numerical Simulation

4.1 Experiment Setup

S. gordonii DSM 20568 was acquired from the German Collection of Microor-

ganisms and Cell Cultures (DSMZ). The bacterium was pre-cultivated in Tryptic

Soy Broth (TSB) supplemented with 10% yeast extract (TSBY). The bacterial solu-

tion was incubated at 37 ◦C for 18 h under agitation. For biofilm cultivation in the

flow chamber, the overnight culture was adjusted to an optical density (OD600) of

0.016 with modified (50 mM glucose) TSBY (TSBYG). The OD equaled 1.94 × 106
colony forming units (CFU)/mL. The flow chamber system is a devise for the
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in vitro analysis of biofilm formation under flow conditions. The flow chamber

itself was 7.0 cm × 5.5 cm × 3.5 cm in size. For macroscopic and microscopic analy-

sis, the system was provided with a 28 mm glass cover slip. The 12mm titanium

(grade 4) was used as test specimen. The system was applied and analyzed as

described in [18]. Within this study we focused on the influence of different flow

velocities. Therefore, the bacteria solution was pumped through the system at flow

discharge rates between 100–400µL∕min over 24 h at 37 ◦C. The influence of nutri-

ent supply on biofilm formation was tested with TSBYG media concentrations

between 0.1x and 1.0x (0.01; 0.03; 0.05; 0.06; 0.07; 0.1; 0.3; 0.5; 0.7; 1.0). The

biofilm formation was performed at 37 ◦C for 24 h with a flow velocity of constant

100µL∕min. Both experiments were performed in triplicates of independent exper-

iments.

4.2 Numerical Simulation and Results

The study in [18] shows that there is no significant change of biofilm height after

24 h’s growth under the flow discharges of 100 and 200µL∕min. This indicates

that the detachment effect can be omitted in the case with a flow discharge rate of

100µL∕min.

The initial thickness of biofilm is set to be 1µm which is of the length scale of

single bacterium. Therefore, the initial biofilm-fluid interface reads

Γ0
int ∶→ z = 1(µm). (6)

Parameters used for the simulation are listed in Table 1. Experimental observations

as well as numerical simulation results are presented in Fig. 2. Error bars of the

experimental results are the standard deviation calculated from different repeating

measurements. The active biofilm height h1 and inactive biofilm height h2 used in

the figure are defined as

hi = 𝜗ihbiof ilm (i = 1, 2), (7)

where 𝜗i refers to the mass fraction of the corresponding biomass in the system and

hbiof ilm is the total biofilm height. Specially, we define the inactivation fraction f of

the biofilm as

f =
𝜗2

𝜗1 + 𝜗2
. (8)

The mathematical model used in this paper was calibrated using the experimental

data shown in Fig. 2 and it was validated with a time series of the biofilm heights

measurements. However, it would have been beneficial to have some of the para-

meters pre-determined. Also, the parameters need to be determined, if the model

should be used to predict biofilm growth under different conditions. On the other

hand, it is very difficult to measure all parameters of a biology system experimentally.
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Table 1 Parameters used for the simulation

Quantity name Symbol Value Unit

Length of the computational domain W 100 µm
Height of the computational domain H 100 µm
Thickness of the boundary layer Hb 15 µm
Maximum input medium concentration (1x TSBYG

medium)

smax 43.9 kg∕m3

Diffusion coefficient of TSBYG medium D 5 × 10−10 m2∕s

Biofilm density 𝜌 1100 kg∕m3

Biofilm yield Y 10−1 (−)
Maximum growth rate of biofilm 𝜇 3.0 × 10−5 s−1

Monod half-rate constant ks 0.020 × smax kg∕m3

Inactivation rate 𝜅i 4.0 × 10−6 s−1

Fig. 2 Comparison of

experimental results and

numerical simulation results

of the biofilm height at

different concentrations of

medium after 24 h’s growth
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For this reason, it is useful to study how the change of parameters’ values influence

the simulation results by carrying out parameter studies. This allows to identify those

parameters that are crucial and are really needed to be measured accurately. Mean-

while, the studies can also uncover (not in a comprehensive way) the abilities of the

mathematical model for predicting the biofilm growth process.

5 Parameter Study of the Mathematical Model

As shown in Sect. 4, the simulation results have good agreement with the experi-

mental measurements when the parameters listed in Table 1 are used. To investigate

the sensitivity of the biofilm growth on the different parameters, parameter studies
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are carried out in the following sections. We focus here explicitly on the S. gordonii
biofilm and consider the parameters that were calibrated with experiments as refer-

ence values. Different sets of parameters are applied for numerical simulation and

the influences of the parameters on active biofilm height h1, inactive biofilm height

h2 as well as inactivation fraction f are studied by changing these values. The results

also provide an illustration of what kind of bio-dynamics behaviors of biofilm can be

simulated by using the A-K model. Of course, one may argue that these cases (dif-

ferent sets of parameters) studied in this paper cannot represent all possible results

gained from the A-K model and the bio-dynamic behaviors of biofilm obtained from

the parameter studies are not comprehensive. The system here is restricted to the S.
gordonii systems that close to the reference system presented in Sect. 4. Therefore,

only one parameter (the being studied one) is changed while the others are the same

as the ones listed in Table 1 for each study in the following sections. Moreover, the

results also show the sensitivities of the biofilm heights (active and inactive) and

inactivation fraction to each parameter.

There are 10 parameters listed in Table 1. Several of those parameters are fixed

due to the set up of the experiments and simulations. Those include the size of the

computational domain W and H and the maximum input TSBYG medium concen-

tration smax. The remaining 7 parameters are not all independent as can be seen in

the dimensionless governing equations. For instance, one can expect with a thicker

boundary layer, less TSBYG medium will access to the biofilm-fluid surface and

same effect can be achieved by using a smaller diffusion coefficient of the TSBYG

medium D. Actually, the penetration properties of the TSBYG medium in the biofilm

is mainly controlled by a dimensionless variable 𝛩

2 = H2
𝜇𝜌

2

YDs̄
which is known as the

Thiele modulus. Changing of the Thiele modulus 𝛩

2
can be achieved by chang-

ing either biofilm density 𝜌, maximum growth rate 𝜇, biofilm yield Y or TSBYG

medium diffusion coefficient D. For this reason, we carry out parameter studies of

the biofilm yield Y and the results can be also viewed as results of 𝛩
2
, 𝜌, D or Hb.

What should be noted is that the maximum biofilm growth rate 𝜇 appears in more

than one dimensionless variables (not only in the Thiele modulus 𝛩

2
) in the gov-

erning equations which demonstrates that we need to carry out parameter study on

𝜇 separately. By the end, only four parameters, namely the biofilm yield Y (can be

viewed as the inverse of the Thiele modulus 𝛩
2
), maximum biofilm growth rate 𝜇,

Monod half-rate constant ks and the inactivation rate 𝜅i, are left for parameter studies.

5.1 Influence of Maximum Growth Rate 𝝁

Studies on the influence of the maximum biofilm growth rate 𝜇 are carried out with

three different values of 𝜇 as 1.0 × 10−5s−1, 3.0 × 10−5s−1 and 5.0 × 10−5s−1. The

simulation results of the active biofilm height, inactive biofilm height and inactiva-

tion fraction over the input TSBYG medium concentrations are shown in Fig. 3.
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Fig. 3 Influence of the maximum biofilm growth rate 𝜇 on the active biofilm height, inactive

biofilm height and inactivation fraction over different input TSBYG medium concentrations

The dependency of the biofilm heights on the maximum growth rate𝜇 is, however,

not linear. Also, for a very small value of 𝜇 = 1.0 × 10−5s−1, the inactive biofilm

height decreases with increasing nutrient concentrations. As we expected, the results

demonstrate that the biofilm heights (active and inactive) as well as the inactivation

fraction are very sensitive to the maximum biofilm growth rate 𝜇 due to the pro-

portional behavior, which means a properly determined (by experimental study or

numerical calibration) 𝜇 is important for modeling the biofilm growth numerically.

As a remark, the real role of the maximum growth rate 𝜇 in the mathematical model

is not limited to the results presented in this study. For instance, one may imagine

that if the TSBYG medium cannot fully penetrate the biofilm, the biofilm heights

could be less sensitive to 𝜇. However, as mentioned previously, we only look into

biofilm systems that are close to the reference one.
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Fig. 4 Influence of the Monod half-rate constant ks on the active biofilm height, inactive biofilm

height and inactivation fraction over different input TSBYG medium concentrations

5.2 Influence of Monod Half-Rate Constant ks

The influence of the Monod half-rate constant ks are studied using four different

values of ks as shown in Fig. 4 where again the results after 24 h are plotted depend-

ing on the TSBYG medium concentrations. It is shown that the TSBYG medium

concentration does not influence the biofim heights much in Plane II and the results

even show a trend of converging in the cases of ks = 0.015 × smax, ks = 0.025 × smax,

ks = 0.035 × smax and ks = 0.045 × smax in Plane II.

An interesting observation from the results is that non-monotonic behaviors (as

the results plotted in the circle) of the inactive biofilm height as well as the inac-

tivation fraction are observed in the case of ks = 0.015 × smax. After checking the

simulation results corresponding to the plots presented in the circle, we found both

the active biomass and the inactive biomass increase over an increment of the

TSBYG medium concentrations. However, the inactivation fraction could increase

or decrease (see Eq. 8) over the TSBYG medium concentration as a result of compe-

tition of the active biomass production and inactivation processes. This leads to the
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non-monotonic behavior of the inactivation fraction and naturally leads to a similar

behavior of the inactive biofilm height as shown in the circle.

5.3 Influence of Inactivation Rate 𝜿i

Another important parameter used in the model is the inactivation rate 𝜅i, which

is introduced to describe the inactivation process. However, the mechanism of the

inactivation is still not clear from a biologist’s point of view [18]. Our experimental

results (as shown in Fig. 2) demonstrate that the inactivation process happens anyway

no matter how large the input concentration of the TSBYG medium is in the system.

For this reason, the inactivation process is modeled as a reaction transforming the

active biomass into inactive biomass with a constant rate. Obviously, one expects

that with a larger value of the inactivation rate 𝜅i, more inactive biomass is produced

and the simulation results are as expected sensitive to the inactivation rate 𝜅i as a

result of that. The results of three cases with inactivation rates of 𝜅i = 4.0 × 10−7s−1,
𝜅i = 4.0 × 10−6s−1 and 𝜅i = 4.0 × 10−5s−1 are illustrated in Fig. 5. It is shown that

the simulation results agree with our expectation.

Specially, in the case of 𝜅i = 4.0 × 10−7s−1, the inactivation fraction is larger than

0.6 even in the Plane II. This indicates that the amount of inactive biomass is always

more than the active biomass in this case regardless of how much medium is in the

system.

5.4 Influence of Biofilm Yield Y
The influence of biofilm yield Y on the biofilm heights and the inactivation fraction

is discussed in the following. The biofilm yield is widely used and can be interpreted

as with one unit growth limiting substrate consumed, Y unit mass of active biomass

is produced. The value of the biofilm yield depends on the species of bacteria as well

as the growth limiting substrate.

Simulation results of the influence of the biofilm yield Y (or Thiele modulus

𝛩

2
) on active biofilm height, inactive biofilm height and inactivation fraction are

presented in Fig. 6. It is shown that the curves corresponding to Y = 1 × 10−1 and

Y = 1 × 10−2 are almost coincident. This is because in both of these two cases, the

biofilm yield Y is large enough to guarantee that the TSBYG medium fully penetrates

the biofilm and all bacteria have enough medium to reproduce themselves. The result

also demonstrates that changing of the diffusion coefficient of the medium a little bit

in the biofilm or in the water will not change the final result significantly when the

parameters listed in Table 1 are used. What should be noted is that in the case of

Y = 1 × 10−3, the TSBYG medium also fully penetrates the biofilm. However, the

concentration is not large enough to ensure the bacteria at the bottom of the biofilm

have enough TSBYG medium supply and the growth of the biofilm is partly lim-
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Fig. 5 Influence of the inactivation rate 𝜅i on the active biofilm height, inactive biofilm height and

inactivation fraction over different input TSBYG medium concentrations

ited by the medium concentration (especially in Plane I). Therefore, smaller active

biofilm heights and inactive biofilm heights compared to the cases of Y = 1 × 10−1
and Y = 1 × 10−2 are observed in Plane I. With increase of the medium concentra-

tion, this partly limiting phenomenon is less pronounced and the results converge to

the same value again. This can be verified by the time behavior of the active biofilm

height shown in Fig. 7. The results of the development of the active biofilm height

over time with an input TSBYG medium concentration of 0.05x kg∕m3
are shown in

the left figure in Fig. 7 and the right figure illustrates the results with an input TSBYG

medium concentration of 1x kg∕m3
. The time dependent results demonstrate that the

biofilm growth velocity is not influenced much by different biofilm yield values if the

values are large (e.g. Y = 1 × 10−1 and Y = 1 × 10−2). However, the biofilm grows

slower in the case of Y = 1 × 10−3 when a small input TSBYG medium concentra-

tion (0.05x kg∕m3
) is applied. But almost no difference is observed on the biofilm

growth speed if large enough TSBYG medium concentration (1x kg∕m3
) is sup-

plied. This explains why the curves corresponding to Y = 1 × 10−1, Y = 1 × 10−2
and Y = 1 × 10−3 in Fig. 6 converge to the same value when the TSBYG medium

concentration is 1x kg∕m3
.
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Fig. 6 Influence of the biofilm yield Y on the active biofilm height, inactive biofilm height and

inactivation fraction (from top to bottom) over different input TSBYG medium concentrations

The results of an extreme case of Y = 1 × 10−4 are presented as the red curves

in Fig. 6. The TSBYG medium concentration is almost zero at the bottom of the

biofilm which limits the biofilm growth significantly. The results shown in Fig. 7 also

indicate that the biofilm growth is limited all the time in the case of Y = 1 × 10−4
even with an input TSBYG medium concentration of 1x. Overall, one can draw the

conclusion that the biofilm heights as well as inactivation fraction are sensitive to the

biofilm yield (or Thiele modulus 𝛩

2
) only when the biofilm yield is small enough

(𝛩
2

is large enough). Another interesting observation is that the inactivation fraction

of the case Y = 1 × 10−4 also shows non-monotonic behavior. This is also due to

the competition between the active biomass production and the inactive biomass

transformation as explained in Sect. 5.2.
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Fig. 7 Influence of the biofilm yield Y on the active biofilm height over time with input TSBYG

medium concentrations of 0.05x (left) and 1x (right)

6 Summary and Conclusion

The S. gordonii biofilm formation within 24 h is studied by combining experimen-

tal investigations and numerical simulations. Here, the biofilm behavior was studied

in a flow chamber system mimicking the physiological flow within the oral cavity.

A multi-species continuum biofilm growth model (the A-K model) is applied for

numerical simulation. Our previous research demonstrated that the mathematical

model as well as the numerical strategy used for solving the model are capable to

present the biology behavior of the S. gordonii biofilm formation in such an envi-

ronment. In this study, parameter studies are carried out for better understanding

of the model as well as the biological processes and to identify the requirments for

accurately measured parameters.

Influence of the maximum biofilm growth rate 𝜇, the Monod half-rate constant

ks, the inactivation rate 𝜅i and the biofilm yield Y (or the Thiele modulus 𝛩

2
) on

the biofilm heights (active and inactive) as well as the inactivation fraction are stud-

ied. The parameters that corresponding to the realistic S. gordonii biofilm system are

taken as the references parameter and all the parameter studies are carried out based

on the reference set. As expected that the solutions are rather sensitive to the TSBYG

medium concentrations in most of the cases when the concentration is under a cer-

tain value (in Plane I) while the results are not depending on the TSBYG medium

concentration much with larger concentrations (in Plane II).

The simulation results demonstrate that both the biofilm heights and the inacti-

vation fraction are sensitive to the maximum growth rate 𝜇 and inactivation rate 𝜅i.

This is also not surprising, because the biological definitions of these two parameters

relate to the biofilm heights directly. One can expect that by using a larger maximum

growth rate shall lead to a thicker biofilm. However, even though our simulation

results agree with our expectation, this is not always the golden rule. For instance,

the biofilm growth process could also be limited as a result of too thick of a biofilm
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Table 2 Sensitivity of the biofilm heights h1, h2 and inactivation fraction f to the parameters

𝜇, ks, 𝜅i and Y
Small TSBYG medium concentrations Large TSBYG medium concentrations

h1 h2 f h1 h2 f
𝜇 High High High High High High

ks Fair Fair Small to fair Small Small None

𝜅i High High High High High High

Y ≥ Ycrt Small Small Small None None None

Y < Ycrt High High High High Small to none High

and the TSBYG medium can hardly fully penetrate the biofilm. This did not happen

in our simulations that are close to the reference S. gordonii biofilm system described

in Sect. 4. We also found that the influences of the Monod half-rate constant ks on

the simulation results differ for small and large TSBYG medium concentrations. The

simulation results demonstrate that the biofilm heights as well as the inactivation

fraction are sensitive to ks if the nutrient concentration is low while are not very sen-

sitive to the ks if the nutrient is sufficient. Parameter studies on the biofilm yield Y
(or could also be viewed as studies on 𝜌, Hb or D in the Thiele modulus 𝛩

2
) showed

that the solution are significantly influenced by the parameter only when Y is below a

threshold value Ycrt (Y < Ycrt = 1 × 10−3). This is due to the TSBYG medium, which

cannot fully penetrate the biofilm and the biofilm growth is limited by the lack of the

nutrient supply. As a summary, the sensitivities of the results to these parameters are

presented in Table 2.
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Investigation of Nature’s Design Principle
of Hierarchies in Dental Enamel
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Abstract Dental enamel possesses extraordinary mechanical properties due to a

complex hierarchical and graded microstructure. In this study, multiscale experi-

mental and computational approaches are employed and combined to study nature’s

design principle of the hierarchical structure of bovine enamel for developing bio-

inspired advanced ceramics with hierarchical microstructure. Micro-cantilever beam

tests are carried out to characterize the mechanical properties from nano- to meso-

scale experimentally. In order to understand the relationship between the hierarchi-

cal structure and the flaw-tolerance behavior of enamel, a 3D representative volume

element (RVE) is used in a numerical analysis to study the deformation and damage

process at two hierarchical levels. A continuum damage mechanics model coupled

to hyperelasticity is developed for modeling the initiation and evolution of damage

in the mineral fibers as well as protein matrix. Moreover, debonding of the interface

between mineral fiber and protein is captured by a cohesive zone model. The effect

of an initial flaw on the overall mechanical properties is analyzed at different hier-

archical levels to understand the superior damage tolerance of dental enamel. Based
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on the experimental and computational investigation, the role of hierarchical lev-

els on the multiscale design of structure in dental enamel is revealed for optimizing

bio-inspired composites.

1 Introduction

The unique microstructure of highly-mineralized biological composites results in

optimized mechanical properties in terms of being stiff, hard and damage-tolerant

at the same time, whereas many load-bearing engineering materials with high stiff-

ness and hardness suffer from limited deformability and brittle failure [9]. Therefore,

extensive experimental and computational studies at different length-scales have

been contributed to identify relationships between hierarchical biological structures

and properties that have been unknown until recently in order to develop novel design

strategies and large-scale and low-cost production methods for next-generation man-

made materials [28].

Hierarchical materials are designed from the nano- to the macroscale with char-

acteristic structural features on several length scales, which is often correlated with

their improved fracture toughness and damage-tolerance of biological materials in

comparison to their constituents [14]. However, there has been a key gap in knowl-

edge of how this exactly occurs. Previous experimental studies on the mechanical

characterization of biological materials are mostly based on the macroscopic test-

ing of bulk samples or indentation at nano- and micro-scale [1, 16, 17]. Large-scale

measurements alone embrace the synergistic contribution of all hierarchical levels,

and do not elucidate the contribution of individual hierarchical levels. Indentation

approaches, on the other hand, characterize the materials’ properties at small spots

but under highly complex and constrained conditions so that the critical strength of

the material cannot be determined. For modeling the damage behavior and obtaining

a deeper insight into the relationship between structure and damage resistance of bio-

composites, different computational approaches have been employed in recent years,

e.g. [13, 15, 20, 25]. The majority of these models are based on the small deforma-

tion theory and restricted to 2D numerical analysis, ignoring the geometrical details

of the microstructure as well as complex deformation and failure mechanisms of

biocomposites.

To fill this gap and provide accurate information of the hierarchical structure-

property relationship, we study dental enamel as a model material, since the evo-

lution of enamel microstructure is known to have an adaptive relationship to the

stresses generated during mastication [21, 31]. On the one hand, dental enamel

allows the preparation of samples in different sizes. Micro-cantilever beam tests

are performed for a systematic experimental characterization of bovine enamel at

different length scales. On the other hand, 3D micromechanical simulations in the

framework of finite strain theory are carried out to provide accurate information on

the damage tolerance behavior of enamel. The computational results are verified by
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micro-cantilever experiments at two hierarchical levels. The influence of initial flaws

on the mechanical properties at different hierarchical levels is analyzed to understand

the superior damage tolerance of dental enamel based on computational analysis.

2 Microstructural Characteristics of Bovine Enamel

The structural motifs of bovine enamel varying between nano- to macroscale and

between different locations is summarized in this section before introducing the find-

ings of mechanical characterization. The smallest structural units in bovine enamel

are hydroxyapatite (HAP) nanofibers (15–50 nm in thickness and 40–150 nm in

width) that assemble into quasi-cylindrically shaped 𝜇-sized enamel rods extending

from the dentin-enamel junction to the outer enamel surface with certain angulations

𝛼 with respect to the outer surface of the tooth as shown in Fig. 1. This angle may

vary between different species and also from cusp to cervical region of an individ-

ual tooth. The diameter of rods ranges between 1 and 7µm in different regions of

bovine enamel with respect to the distance from the dentin-enamel junction. Another

remarking structure observed at the second level is the so-called interrod, which is

a continuous layer of nanofibers, lying outside the rods and crossing them at almost

right angles (Fig. 1). The appearance of rod boundaries and the arrangement of rods

and interrods define rod patterns [8, 26], which diverge among different species and

enamel regions. In bovine enamel, three types of rod pattern can be distinguished as

shown in Fig. 1. In pattern A, detected in inner regions, rod boundaries seem “closed”

Fig. 1 Microstructural characteristics of bovine enamel (ir interrod. r rod. HSB Hunter-Schreger

bands)
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(complete) and interrods form inter-row sheets, which assemble into a plywood-like

structure with rows of rods (Fig. 1). In the outer enamel region pattern B domi-

nates, where rod boundary appearances are mostly “open” (incomplete) and inter-

rods serve as a matrix anastomosing to the rod in their open ends. Another class of

characters specified in describing enamel microstructures is the “enamel type” defin-

ing the alignment of rod bundles [21]. In the outer enamel region, rods are aligned

roughly parallel to one another forming the so-called “radial enamel”, which under-

went a specific modification in hypsodont (high-crowned teeth) taxa by increasing

the thickness of inter-row sheets. This is known as “modified radial enamel” and

locates in the innermost layer near to the dentin-enamel junction. The layer between

the innermost and outer enamel is occupied by a more derived enamel type “decus-

sating enamel”. By definition, decussating enamel describes groups of rod bundles

crossing each other, which can occur in a regular (as in bovine enamel) or irregular

fashion. In bovine enamel, uniformly aligned rod bundles form well-defined bands

(Hunter-Schreger bands) that decussate with adjacent bands at high angles.

Although it is widely stated that enamel constitutes little amount of remnant

organic material and water besides its major component HAP, the exact nature, loca-

tion and amount of it is still an unresolved issue. The reported volume fraction of

mineral, organic, firmly and loosely bound water components vary among different

sources between 71–99 vol%, 0.02–8 vol%, 3–9 vol% and 0.02–3.3 vol%, respec-

tively [3, 11, 12, 18, 19, 23, 33]. Soft matter in enamel is reported to be enriched

substantially in the vicinity of the dentin-enamel junction [10, 27] and is believed to

accumulate at the free space between nanofibers and rods [29].

3 Multiscale Experimental Study of Mechanical Behavior
of Dental Enamel

The main objective of the series of experiments is to quantify how the mechanical

properties of bovine enamel change over different hierarchical levels. In counting

the hierarchical order of bovine enamel, here we consider nanostructural elements

(hydroxyapatite nanofibers) as level-1, microstructural elements (rods and interrods)

as level-2, and the complex assembly organized by microstructural elements (bulk

enamel) as level-3. Enamel mainly operates under compressive stresses but due to

the conical shape of teeth, tensile stresses are generated as well. The latter are more

critical for crack propagation [31]. Thus, we conducted three point bending
1

tests.

Bulk enamel specimens were fabricated with successive cutting and grinding steps,

whereas micron-sized specimens of different sizes to characterize level-1 and level-

2 were machined using focused-ion beam milling as shown in Fig. 2.
2

The resultant

mechanical properties are listed in Table 1.

1
Fracture is induced in bending experiments in the tensile stress region of the specimen.

2
For more detailed information about specimen fabrication and testing methods, the reader is

referred to [6, 7, 34–37].
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Table 1 Hierarchical mechanical properties of dental enamel

Specimen level Fracture strength 𝜎
B

(MPa) Elastic modulus E
B

(GPa)

Level-1 978 ± 52 54 ± 2
Level-2 478 ± 93 36 ± 8

Fig. 2 Multiscale experimental study of mechanical response of bovine enamel at different hier-

archical levels

The comparison of bending tests of bovine enamel performed at different hier-

archical levels reveals a consistent reduction in fracture strength 𝜎
B

with increasing

number of hierarchy level. The specific nanometer-sized scale of the enamel HAP

nanofibers has evolved by nature as postulated by Gao et al. [13] in order to ensure

optimum fracture strength of the mineral particles. If the dimension of the biomin-

eral crystallites drops below a critical size, they become defect insensitive and the

atomic bonds control the strength [14]. Thus, the HAP nanofibers were fractured at

stress levels reaching up to 1 GPa under bending (macroscopic bending strength of

HAP mineral is 100 MPa [1]). However, in the hierarchical level-2, the rods come

along with rod boundaries, which are protein-rich regions and, thus, weaker than the

nanofiber boundaries since they are predominantly the preferred sites for crack ini-

tiation [5]. This could be the reason for the reduction of the fracture strength from

level-1 to level-2 and from level-2 to bulk enamel with a greater extend. However,

in the latter, the orientation of nanofibers and rods has an impact as well. In the

micro-cantilevers, the long axes of nanofibers and rods were parallel to the tensile
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stress direction. However, in the bulk samples, the majority of rods were loaded per-

pendicularly to the tensile stress direction leading to delamination at the weaker rod

boundaries. As an alternative explanation for the decreasing trend in 𝜎
B

as a function

of hierarchy, the overall mineral content of the composite structure might decrease

with each additional level of hierarchy [6, 36].

4 Multiscale Computational Simulation of Damage
Behavior of Dental Enamel

In addition to the experimental investigations for studying nature’s design princi-

ple of the hierarchical structure in dental enamel, computational modeling provides

detailed insight into initiation and development of damage processes of enamel for

understanding the failure mechanisms, which are not fully understood in the experi-

ments due to limitations of experimental techniques. In the present work, microme-

chanical analyses based on a 3D representative volume element (RVE) are carried out

for investigating the different deformation and damage behavior on the first and sec-

ond hierarchy levels. For this purpose, physically based damage models are required

to capture the failure mechanisms of mineral fibers and protein layers, as well as the

interface between fibers and protein.

A continuum damage model is formulated in the framework of finite strain theory

to map the non-linear deformation behavior and degradation process of protein and

mineral fibers in enamel, since the protein layer transfers load between hydroxyap-

atite (HAP) fibers through large shear deformation in enamel. The debonding of the

interface between mineral fiber and protein is captured by a cohesive zone model,

since this debonding path is predefined by the geometry.

4.1 Continuum Damage Model for Mineral Fiber
and Protein

4.1.1 Free Energy Density Function

The modeling of damage for mineral fibers has to take brittle failure into account. The

main mechanism here is nucleation and growth of microcracks and their coalescence

leading to fracture of the material. The difference between tensile and compressive

loading due to crack closure must also be appropriately considered [22]. For min-

eral fibers, an isotropic damage theory coupled to Neo-Hookean hyperelasticity is

introduced in order to initiate and evolve damage in the fibers. The corresponding

Helmholtz free energy function is postulated as
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𝛹
m
(J, Ī1,Dm

) = [1 − 𝛼H(𝜎
h
)D

m
]𝛹 0

m, vol
(J) + [1 − D

m
]𝛹 0

m, iso
(Ī1)

= [1 − 𝛼H(𝜎
h
)D

m
]
𝜇

m

2
[
Ī1 − 3

]
+
[
1 − D

m

] K
m

2
[(J − 1)]2 , (1)

where 𝜎
h

represents the hydrostatic stress and D
m

is damage variable of fiber.

𝛹
0
m, vol

, 𝛹
0
m, iso

are the volumetric and isochoric damage-free parts of the Helmholtz

energy, respectively. The first strain invariant of the modified symmetric Cauchy-

Green tensors C̄ is defined as Ī1 = trC̄ with C̄ = F̄t ⋅ F̄. The modified deformation

gradient F̄ is isochoric part of deformation gradient F: F̄ = J−1∕3F, with J = det F.

𝜇
m

and K
m

are the shear and bulk modulus of fibers, respectively.

Damage acts on the volumetric and the isochoric part in different ways: While

the damage term [1 − D
m
] is fully multiplied to the isochoric part, damage is only

partially coupled with the volumetric energy (via model parameter 𝛼) under tensile

loading, controlled by the Heaviside function H(𝜎
h
). This formulation is in accor-

dance with the fact that microcracks are only active if the crack opens under tension,

while they close and transfer stresses under compression. The isochoric part is more

relevant to shear deformation where the microcracks are active independent of the

shear direction.

The protein transmits the load between mineral fibers and is subjected to large

shear deformation. Due to the large deformation of protein, the fracture energy is

absorbed and dissipated, which leads to a high fracture toughness of the composite.

In order to model the characteristics of the deformation and damage behavior of the

protein, an Arruda-Boyce hyperelastic model is coupled to damage. Compared to the

Helmholtz free energy for the mineral, the damage associated with the protein matrix

is only related to distortional energy and independent of the hydrostatic pressure

following [30]:

𝛹
p
(J, Ī1,Dp

) = 𝛹
0
p, vol

(J) + [1 − D
p
]𝛹 0
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(Ī1)

=
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2
− ln J
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+
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1 − D

p

]
𝜇

p

5∑

i=1

[
Ci

𝜆2i−2m

[
Īi1 − 3i

]]
, (2)

where D
p

is damage variable of protein. Thus, the isochoric deformation induces the

damage of protein. The values of the coefficients Ci arise from a series expansion of

the inverse Langevin function

C1 =
1
2
, C2 =

1
20

, C3 =
11
1050

, C4 =
19
7000

, C5 =
519

673750
. (3)

Further, 𝜇
0
p
= 𝜇

p

[
1 + 3

5𝜆2
+ 99

175𝜆4
+ 513

875𝜆6
+ 42039

67375𝜆8

]
relates the initial shear modulus

to 𝜇
p
, and 𝜆 is referred to as the locking stretch and assumed to be 1.0 for protein.
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The second Piola-Kirchhoff stress of mineral fiber and protein is then derived

from the Helmholtz free energy density

S
i
= J

𝜕𝛹
i, vol

𝜕J
C−1 + 2ℙ ∶

𝜕𝛹
i, iso

𝜕C̄
, (4)

where the fourth-order projection tensor ℙ is defined as ℙ = 𝜕C̄
𝜕C

= J−2∕3[𝕀 − 1
3
C⊗

C−1]. Here, 𝕀 denotes the fourth-order identity tensor. With the postulated Helmholtz

free energy density for the fiber and protein in Eqs. (2) and (1), the second Piola-

Kirchhoff stress of mineral fiber and protein are written

S
m
= [1 − 𝛼H(𝜎h)Dm

]
K

m

2
[
J2 − J

]
C−1 + [1 − D

m
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p

5∑

i=1

[

i
Ci

𝜆2i−2p
Īi−11

]

ℙ ∶ I, (5)

respectively.

4.1.2 Damage Initiation Criteria and Evolution Laws

The thermodynamic force Y
m

associated with damage variableD
m

in fibers is derived

as

Y
m
= −

[
𝜕𝛹

m, vol

𝜕D
m

+
𝜕𝛹

m, iso

𝜕D
m

]
. (6)

Using Eq. (1), the damage driving force of the fiber can be formulated as

Y
m
=
{

𝛼𝛹
0
m, vol

+ 𝛹
0
m, iso

𝜎
h
≥ 0

𝛹
0
m, iso

𝜎
h
< 0 . (7)

With the postulated Helmholtz free energy density function of protein (Eq. (2)), the

damage driving force Y
p

of protein is given

Y
p
= −

𝜕𝛹
p, iso

𝜕D
p

= 𝛹
0
p, iso

, (8)

which is the isochoric part of the strain energy density in the undamaged configura-

tion.

The damage potential functions of fiber and matrix are proposed as

F
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= Y
i
− Z(D

i
) = Y

i
−
[
Y0

i
+ 1

b
i

ln
(

D
c

D
c
− D

i

)]
, (9)
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with i = {m, p}, which lead to an exponential damage evolution law for fiber and

protein. Here, Z is the material resistance against material damage. Y0
i

are the initial

resistances to damage and b
i

control the evolution rate of damage resistance with

increasing values of D
i
. D

c
represents the critical value of the damage, that is, D

i

can take values from 0 (undamaged state) to D
c

(critical state of damage leading to

fracture).

The damage evolution law is derived based on the maximum dissipation principle

Ḋ
i
= �̇�

i

𝜕F
dam

𝜕Y
i

= �̇�
i
. (10)

In case of damage, the damage rate Ḋ
i

is determined by the damage consistency

condition

dF
dam
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𝜕F

dam

𝜕Y
i

Ẏ
i
+

𝜕F
dam

𝜕Z
𝜕Z
𝜕D

i

Ḋ
i
= 0. (11)

The damage evolution equation is then derived using Eq. (9) as

Ḋ
i
= D

c
b

i
exp

[
−b

i
⟨Y

i
− Y0

i
⟩
]
Ẏ

i
, (12)

where ⟨⋅⟩ are the Macaulay brackets, i.e., ⟨x⟩ = [|x| + x]∕2.

The viscous regularization method is incorporated into the model to reduce dam-

age localization and improve convergence, which is a generalization of the Duvaut-

Lions viscoplasticity regularization method.

4.2 Protein–Mineral Interface

The interface between protein and mineral is modeled by a cohesive zone model that

has previously been used in [32]. The constitutive model for the material separation

is based on a bi-linear traction separation law, which is defined by three parameters

for each direction (normal and shear): the initial elastic stiffness of the interface, K
int

,

the cohesive strength T0 and the fracture energy 𝛤0. The critical separation, at which

the interface has completely failed is then given by 𝛿c = 2𝛤0∕T0.

The maximum stress criterion is chosen to determine the initiation of damage in

the interface. The effect of the mode mixity on the damage evolution law is not taken

into account in the present work, the parameters in normal and shear direction are

denoted as TN
0 and TS

0 with TN
0 =

√
3TS

0 , respectively. For more information on the

applied cohesive zone model in general, the interested reader is referred to [4].
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4.3 3D Computational Model of the Microstructure

4.3.1 Setup of the 3D RVE Model

The first and second hierarchical levels of enamel can be assumed to be organized

in a self-similar way. The geometrical modeling of the microstructure at the first

and second hierarchical levels are illustrated in Fig. 3. The HAP fibers and enamel

rods are assumed to be unidirectionally aligned and surrounded by protein in the

enamel. In order to simplify the RVE and reduce the computational cost without loss

of essential information, we assume that the nanofibers and enamel rods are period-

ically arranged in a staggered manner and represented by prisms with a hexagonal

cross-section.

At the first hierarchical level, the volume fraction of the mineral fibers is taken as

90%. According to the average size of the fiber cross section (approx. 50 nm [4]), the

side length of RVE shown in Fig. 3(left) is S = 52 nm at the first hierarchical level of

enamel, the thickness of the protein layer is 2 nm. The resulting hexagon side length

of the fiber is approximately e
fib

= 29 nm. Experimental observations show that the

length of the HAP fibers is several µm [6]. Therefore, the fiber length is assumed to

be 3µm according to the computational analysis in [24], which leads the failure of

the level-1 composite caused by the breaking of mineral fiber.

At the second hierarchical level, the fiber is the level-1 composite consisting of

HAP and protein. Nanofibers in the interlayer at the second hierarchical level are

neglected in the RVE model. For the second hierarchy level, it is reported that the

Fig. 3 Three-dimensional representative volume element with periodically staggered structure for

modeling the microstructure of the first and second hierarchical levels of dental enamel
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diameter of the fiber at this hierarchical level ranges from 1 to 7µm [36]. Therefore,

the hexagon side length of fiber at this level is set as e
fib

= 4µm. The length of fiber

is taken as 45µm [6]. The thickness of protein layer is chosen to be 0.2µm, so that

the overall volume fraction of fiber at the second hierarchical level is 84%. The length

of enamel rods is 45µm [6].

The smallest unit of the periodic structure is the triangular prism, which is

regarded as RVE for the 3D simulations. All simulations are conducted using

ABAQUS
®

/standard. The finite element model consists of 8-node linear brick ele-

ments with full integration (designation: C3D8) for the fibers and the protein. Cohe-

sive surfaces are inserted at the physical interface between protein and mineral fibers

to model the interaction and damage behavior between the protein and mineral fibers.

The 3D RVE model is subjected to a uniaxial displacement in fiber direction. Sym-

metric boundary conditions are applied to the bottom and side faces to keep the

faces remaining plane and reproduce the constraint to deformation of the RVE from

neighboring elements.

4.3.2 Material Properties

The mechanical properties of enamel on the different hierarchical levels have

experimentally been determined based on micro-pillar and micro cantilever tests.

However, the elastic properties and strengths of its constituents, protein and HAP,

cannot directly be tested due to the limits of experimental methods. The mechanical

properties of protein and HAP can only be inversely derived by combining mechan-

ical model and experimental data. Elastic properties have already been identified in

[4], strengths of the protein and the fibers were estimated in [32]. The HAP fiber

in enamel is strong and has a brittle failure behavior, while the protein possesses a

high capacity in dissipating energy during deformation. The model parameters b
i

and Y0
i

with respect to the damage process in the fiber and the protein have obtained

by adjusting the values to reproduce the strength and damage behavior of the fiber

and the protein in [24]. The respective values at level-1 are listed in Table 2.

The critical value of damage D
c

is set to 1 according to the definition of damage,

since the material loses the whole loading capacity for D = D
c
= 1. In the damage

model of the fiber, the additional parameter 𝛼 in Eq. (1) maps the different damage

behavior under tension and compression according to the crack closure effect. Due

to the lack of experimental data for determining this parameter, we assume 𝛼 = 1 in

all computations.

The properties of the interface between protein and mineral (cohesive strength T0
and fracture energy 𝛤0) have also been rationalized by comparison to experiments

in [32] and are given in Table 2 as well.

The material properties of interface and protein at level 2 are not yet clearly deter-

mined. In this investigation, the microstructure at level 2 is assumed to be simi-

lar to the first hierarchy level. Therefore, the same model parameters are taken for

the protein matrix acting between the rods and for the interface between fiber and

matrix. Further, Ang et al. [2] investigated the behavior of crack propagation along
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Table 2 Mechanical properties of protein, fiber and interface in enamel

1st hierarchical level:

Mineral fiber:

𝜇
m
= 32.5GPa, K

m
= 49.4GPa, b

m
= 0.2mm

3
/J, Y0

m
= 0.025 J/mm

3

Protein:

𝜇
p
= 89.1MPa, K

p
= 30.0GPa, b

p
= 0.015mm

3
/J, Y0

p
= 0.004 J/mm

3

Interface:

T0 = 60MPa, 𝛤0 = 1.5 J/m
2

2nd hierarchical level:

Enamel rod:

𝜇
m
= 27.4GPa, K

m
= 45.6GPa, b

m
= 0.2mm

3
/J, Y0

m
= 0.01 J/mm

3

Protein:

𝜇
p
= 89.1MPa, K

p
= 30.0GPa, b

p
= 0.015mm

3
/J, Y0

p
= 0.004 J/mm

3

Interface:

T0 = 60MPa, 𝛤0 = 64.3 J/m
2

the interface between protein and fiber using Vickers indentation at second hierar-

chical level of enamel. The critical stress intensity factor KIc is reported to be around

1.5 MPa m
0.5

. With the elastic modulus E
L2

= 36GPa at this level the fracture tough-

ness of the interface is estimated by G
deb

= K2
Ic∕EL2

= 64.3 J/m
2
, which leads to the

critical separation value of 1.286µm.

The material parameters at the second hierarchical level are estimated based on

the stress-strain curve of the level-1 composite as shown in Fig. 4a, since the average

behavior of the first level of hierarchy consisting of fibers and protein is different to

the HAP fibers. The Young’s modulus at the first level of hierarchy, E
L1

= 64 GPa,

is identified directly from the stress strain curve of the level-1-composite from the

simulation. The Poisson’s ratio is estimated to be 0.25 by the rule of mixture, 𝜈1 =
𝜈

m
f
m
+ 𝜈

p
f
p
, where the 𝜈

m
, f

m
and 𝜈

p
, f

p
are Poisson’s ratio and volume fraction of

mineral fiber and protein, respectively. The damage parameters, Y = 0.01 J/mm
3

and

b = 0.18 at the first level of hierarchy are obtained by iterative analysis to reproduce

the strength and softening behavior as shown in Fig. 4a.

4.4 Simulation Results of First and Second Hierarchy Levels

In this section, the 3D finite element simulations are validated by comparing the

simulation results with the stress-strain curve obtained from micro cantilever beam

experiments at the first and second hierarchical levels of enamel. In Fig. 4, it is seen

that the predicted results are in good agreement with experimental data for both

hierarchical levels. The strength and nonlinear deformation behavior of the level-1

and level-2 composites are captured by the multiscale simulations.
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(a)

(b)

Fig. 4 a Stress-strain curve of damage model at level 1. b Comparison of experimental and sim-

ulation results at first and second level of hierarchy

The damage mechanisms for the level-1 and level-2 composites in the simulations

are illustrated in Fig. 5. For the level-1 composite, the crack is deflected after forming

a microcrack at the fiber end due to progressive debonding of the vertical interfaces.

The interface debonding is confined close to the end of the fibers. The damage of

fibers leads to the final failure of the level-1 composite. At this point a sharp drop

in the stress-strain curve can be seen (Fig. 4a) and the level-1 composite fails. In

contrast, the interface debonding initiates near the fiber end and then propagates

along the interface, leading to a progressive degradation of the level-2 composite.

Due to the debonding in a large portion of interface, the loading on the enamel rods
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Fig. 5 Damage distribution in protein, mineral fibers and interface in the simulation of level-1 and

level-2 composites

is reduced during the deformation process of the level-2 composite. Therefore, the

enamel rods remain intact even when the level-2 composite fails.

The debonding of the interface leading to failure at the second level of hierarchy

is consistent with experimental observations. The change of fracture mode from a

catastrophic fracture due to failure of fiber at level 1 to progressive damage along

prism boundaries of the fiber at level 2 is reproduced in the simulation. Further, it

is clearly shown that the nonlinear deformation at the second level is more apparent

due to debonding of interface and damage of protein, leading to a higher fracture

dissipation energy that increases the damage-resistance at the second hierarchical

level of enamel.

4.5 Influence of Initial Flaw at Different Hierarchical Levels

In order to investigate the flaw-tolerance behavior at different hierarchical levels,

an initial flaw is introduced on the interface of the level-1 and level-2 composites.

These imperfections can be a result of biomineralization and are visible under high-

resolution electron microscopy [36].

Five sizes of initial flaws in the range 4–16% (defined as the area of unbonded

interface A
flaw

divided by total area of the interface in the RVE A
total

, A
flaw

∕A
total

)



Multiscale Experimental and Computational Investigation . . . 287

(a)

(b)

Fig. 6 Influence of initial flaw on mechanical properties at first hierarchical level

are considered to analyze the effect of structural imperfections on the degradation

of the mechanical properties of the level-1 composite. The stress-strain curves in

Fig. 6a show that the general damage mechanism is not affected by the presence

of the structural imperfections. The fracture strain of the level-1 composites is not

obviously affected by the size of the initial flaw. The variations of the tensile strength

and Young’s modulus with the size of initial flaw are displayed in Fig. 6b. It is seen

that the tensile strength and Young’s modulus are not sensitive to the size of initial

flaw at the first hierarchical level of dental enamel. With an initial flaw size of 16%,

the tensile strength is only reduced from 1175 to 1110 MPa and Young’s modulus

drops from 65 to 62 GPa.

At the second hierarchical level, the composite becomes more sensitive to the

size of initial flaw compared to the level-1 composite as shown in Fig. 7. The tensile
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(a)

(b)

Fig. 7 Influence of initial flaw on mechanical properties at second hierarchical level

strength of the level-2 composite is reduced from 500 to 360 MPa due to the presence

of an initial flaw with the size 16%. The Young’s modulus dramatically drops from

56 to 43 GPa even if the level-2 composite only has a 4% initial flaw.

The computational analysis shows the different flaw-tolerance behavior of the

composite at the first and second hierarchical levels in dental enamel. Compared to

the second hierarchical level, the amount of interface between HAP and protein at

the first hierarchical level is much larger due to the nano-sized fibers. As a results, the

possibility for the formulation of a initial flaw on the interface at the first hierarchical

level during the biomineralization process becomes higher. However, dental enamel

becomes flaw-insensitive, if the initial flaw or the crack along the interface formu-

lated during loading cycles is present at the first hierarchical level on the nano-scale.
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5 Conclusions

In this work, multiscale experimental and computational approaches have been

employed and combined to study nature’s design principle of the hierarchical struc-

ture of bovine enamel. Small-scale experimental investigations have been performed

to determine the mechanical properties at different hierarchical levels using micro-

cantilever specimens. Three-dimensional finite element simulations incorporating

damage have been performed to understand the hierarchical structure and damage-

tolerance behavior of dental enamel. The simulation results were validated by com-

parison to experimental results from micro-cantilever beam experiments at two hier-

archical levels. The dependence of the deformation and damage behavior on the hier-

archical level are very well captured by the numerical simulations. The predicted

different failure mechanisms at the first and second hierarchical level of enamel are

consistent with experimental observations.

Summarizing the studies on the effects of feature of structure on the flaw-tolerance

behavior of enamel, the following conclusions are drawn:

∙ The experimental results of micro-cantilever tests on bovine enamel at different

hierarchical levels reveal a consistent reduction in fracture strength and Young’s

modulus with an increasing number of hierarchy levels. This results from the over-

all HAP content of the composite decreasing with each additional level of hierar-

chy. In addition, the computational analysis shows that the significant debonding

of interface with a large portion reduces the stress-transfer between fibers at the

second hierarchical level, which leads to the lower strength and Young’s modulus

of the level-2 composite.

∙ In the 3D multiscale simulations it is seen that the predicted results are in good

agreement with experimental data for both hierarchical levels. The predicted dif-

ferent failure mechanisms at the first and second hierarchical level of enamel

are consistent with experimental observations. The presence of initial imperfec-

tions significantly reduces the mechanical properties of the level-2 composite. The

Young’s modulus and tensile strength dramatically drop even if the level-2 com-

posite only has a initial flaw with the size 4%. In contrast, tensile strength and

Young’s modulus are not sensitive to the size of an initial flaw at the first hierar-

chical level of dental enamel.

∙ Based on the computational analysis of the influence of thr hierarchical structure

on the mechanical behavior of enamel, it is found that the first hierarchical level

of enamel with very long fibers on the nano-scale is evoluted to be insensitive to

initial flaws and achieve a high strength and stiffness. At the second hierarchical

level, the microstructure is designed for the damage resistance of enamel.

The experimental and computational results from the study provide the knowl-

edge for designing the hierarchical microstructure of bio-inspired advanced ceramics

with a high flaw-tolerance.
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Part IV
Orthopaedics



Challenges in Total Hip Arthroplasty

Gabriela von Lewinski and Thilo Floerkemeier

Abstract Challenges in total hip arthroplasty have several aspects. The current
chapter discusses the changes of indication, the influence of demographic changes
and the challenges of THA during different lifetimes periods. For younger patients
the use of short stems becomes more and more popular. It is important to gain more
information about the long-term survival rate, the extent of stress shielding and the
osseointegration of the implants. With increasing numbers of THA the problem of
revision THA becomes more and more important. For elderly patients custom-made
implants are helpful to solve situations with a huge bone loss and to achieve a stable
situation to allow a full weight bearing postoperatively.

1 Challenges of Total Hip Arthroplasty (THA)

1.1 Changes in Indication for Implantation
of a Total Hip Arthroplasty

In the 1960s the indication for implantation of a total hip arthroplasty (THA) was
given especially for elderly patients with the underlying diagnosis of osteoarthritis
of the hip [1, 2]. Over the last decades the survival rate after THA increased and
showed satisfying data [3]. Furthermore, pain and restrictions in function can be
addressed very well by implantation of a THA [1, 4]. This concept of success
resulted in the fact that THA designated as the operation of the century [2]. These
facts lead to the enlargement of the indication for THA. Today the indication is
given also for younger patients with osteoarthritis of the hip in order to regain
activities, allow reintegration in working life and not to lose quality of life [5–8].
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However, this implies changes in requirements of hip arthroplasty. Patients, who
receive a THA in progressed age, are unlikely to have a revision of the THA or at
least one, whereas patients, who were implanted a THA in younger age, are likely
to receive one or more revision of the THA. With increasing number of revisions of
the THA also the complexity of the surgical intervention due to less bone substance
and thus problems for a sufficient fixation of the revision implant [9, 10]. Advanced
in biomedical engineering new designs of implants were developed. In the mean-
while a variety of short stem arthroplasties exist [11, 12]. Standard stems reveal a
primary diaphyseal anchorage, which means that load were transferred via arthro-
plasty to the diaphyses of the femur [13]. According to Wolf’s law bone relieves in
region with less loading, while bone strengthened in stressed regions [14]. This can
result in a so called stress-shielding effect, which may be associated with an
increased risk of THA loosening. In contrast to standard stems short stem THA are
supposed to reveal a primary metaphyseal anchorage, which may reduce the
stress-shielding effect and thus the risk of aseptic loosening [15]. However, short
stem are not only shorter than standard stems, but they are also more bone pre-
serving due to a more proximal osteotomy [16]. Along with that the implantation of
a short stem arthroplasty irritates the gluteus muscles less than the implantation of a
standard stem.

2 Influence of Demographic Changes on Osteoarthritis
of the Hip

Demographic changes describe the size, composition and structure of populations.
Thus, it is used to show shifts in population structure. Thus, demographic changes
also influence the incidence of osteoarthritis of the hip and the number of implanted
THAs per year.

Demographic changes in Germany reveal declining birth rates, longer life
expectancy and increasing immigration [17]. This results in a shift to an increasing
ageing of the population over the next decades. This demographic ageing is
associated with the necessity of cost-effective THA in elderly trauma-patients with
low demands as well as with the necessity of innovative THA with good survival
rates and low wear for elective patients with high demands. While the majority of
the German population is between 40 and 60 years at the moment, for the year 2040
the majority of the German population is supposed to be older than 60 years of age
[17]. The risk of osteoarthritis of the hip and other joint increased with the age
above 65 [18].

Furthermore, the life expectancy will increase continuously. While the life
expectancy of a person at the age of 65 was about 10 years at the end of the 19th
century and about 15 years in the 1980s, the life expectancy in Germany in 2050 is
predicted to be greater than 20 years [17].
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In addition, the demands of the activity level in progressed age within the
population will increase. Seniors do not want to be limited in their daily life- and
sportive activity. A study by Moschny et al. gathered the barriers to physiological
activities in elderly population in Germany (mean age 77 years) [19]. The main
reason for limitation of physical activity was a poor health (57.7%). In addition,
more the half of the participants stated pain and more of one-third stated
osteoarthritis as a concurrent cause for physical limitations.

As a consequence of these facts an increase in THAs as well as revision of THA
each year will increase. Kurtz et al. for example predicted for the USA in increase in
demand for THA between 2005 and 2030 of 174% [20]. In addition, a doubling of the
revision of THA in the USA between 2005 and 2026 is expected. Nemes et al. stated
that growing incidence, population growth, and increasing life expectancy will
probably result in increased demand for hip replacement surgery in Sweden [21].

Therefore, it is important to assess the outcome, revision rates and risk factors of
arthroplasties.

3 Joint Replacement Registers

Joint Arthroplasty Registers give helpful information for arthroplasties. They focus
on the outcome of primary arthroplasties. Almost every western European, the
United States and Australia country has a joint arthroplasty register by now. The
longer a joint arthroplasty register exits, the more information is enclosed. Therefore
a lot of information comes for e.g. from the older registers in Scandinavia [22, 23].

In 2010 a quality safety system started as a campaign of the German Orthopaedic
Society to improve the quality of knee and hip arthroplasties in Germany. It is
called the Endocert® system [24, 25]. The system is based on a DIN ISO 9001:2008
certification. Beside the quality of the results, the quality of the processes and the
structures of each center is considered and required. One of the key points of the
system is that joint replacement surgeries of hip and knee are only performed by
high volume surgeons who do at least 50 arthroplasty procedures in hip and knee
per year. Furthermore each X-ray is evaluated and quality indicators such as the
inclination angle of the acetabular cup are measured. This leads to a very detailed
data collection in each center. In contrast to the national joint arthroplasty register,
which focus on the primary arthroplasty, also data from revision arthroplasties of
the hip and knee are collected.

4 Challenges of THA During Different Lifetime Periods

Despite more than 2,00,000 implanted THA in Germany every year [17] remaining
challenges exist. There seems to be a correlation between prolonged surgical time
and difficult cases. Therefore, we determined the number of cases in our center with
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a prolonged (>90 min) surgical duration. In 2014 17% of all primary THAs took
more than 90 min. Distributing the patients of prolonged surgical duration
gender-specific in quintile according to their age at the time of surgery (Fig. 1),
three groups of patients are to the fore:

• Young (female) patients with secondary osteoarthritis of the hip
• (Male) mid-life patients
• “Elderly” (female) patients

The group of young patients with osteoarthritis of the hip represent a challenge
for different reasons. Most of the patients with osteoarthritis of the hip in young age
have the underlying diagnosis of a secondary osteoarthritis [7, 26]. Typical sec-
ondary osteoarthritis of the hip represent hip dysplasia, osteonecrosis of the femoral
head and femoroacetabular impingement. The osteoarthritis due to hip dysplasia
can represent a major challenge for the surgeon depending of the extend of dys-
plasia (Fig. 2). Hip dysplasia is defined as insufficient coverage of the femoral head.
This can result in problems for anchorage of the cup of a THA. Hip dysplasia is
often associated with a coxa valga on the femoral side. Along with that the
implantation of the stem with reconstruction of the center of the hip can be
aggravated by the increased CCD-angle of the femoral neck. Due to the young age
of patients with hip dysplasia more than one revision of the THA is expected for the

Fig. 1 Age distribution in quintels of patients with THA requiring an operating time > 90 min
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future. Thus, bone preserving strategies with low risk of aseptic loosening is
desirable. Short stem THA are part of such approaches [11, 12].

Short stem THAs only exist since the end of the 1990s. Thus, by now longterm
results do not exist [11, 12]. In order to gain midterm results our workgroup
conducted a study to determine the outcome and survival rate after implantation of a
short stem THA with primary metaphyseal anchorage in patients with osteoarthritis
of the hip due to hip dysplasia [27]. Therefore, clinical and radiological outcome
after implantation of a METHA® short stem THA in patients with progressive
osteoarthritis of the hip (58 patients) were compared to the group of patients with
primary osteoarthritis (59 patients). After a mean follow-up of 2.9 ± 1.1 years both
groups showed a significant increase in clinical outcome according to the Harris
Hip Score without significant difference between both groups. The mean Harris Hip
Score in the group of primary osteoarthritis increased from 43.1 ± 17.8 points
preoperatively (range 7.0–92.0) to 91.2 ± 11.1 postoperatively (range 47.0–100.0)
(p < 0.0001), while in the group of osteoarthritis due to hip dysplasia the mean
Harris Hip Score increased from a preoperative mean of 38.1 ± 11.4 points (range
19–72) to 88.8 ± 12.9 postoperatively (range 54–100, p < 0.0001). The outcome
was categorized as excellent in 78 of 117 hips (66.6%), good in 19 (16.2%), fair in
11 (9.4%), and poor in 9 (7.7%). Summarizing the data revealed the METHA® short

Fig. 2 Pelvic X-ray of an 50-year old patient with a hip dysplasia und congential high hip
dislocation. Femoral osteotomy was performed in childhood
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stem as a good option for osteoarthritis of the hip even in patients with osteoarthritis
due to hip dysplasia. The implant also allows a good reconstruction of the center of
the hip and thus of the biomechanics resulting in good clinical outcome.

The second group with certain challenge is the so called “Mid-life group”. It is
the group of dominantly manly patients with progressive osteoarthritis at the age
between 50 and 70 years. These patients are limited due to pain and restriction in
function so that a THA is a reasonable treatment option. However, it is uncertain
which type of implant is best suited for these group of patients: short stem THA or
standard stem THA. Long-term results exist only for standard stems, while only
short- to midterm results are present for short stem THA. As mentioned previously
short stem THA are supposed to be more bone preserving than standard stems due
to a more proximal osteotomy and less stress-shielding effects as well as the
implantation is more muscle protective than the one of standard stems. However,
these supposed benefits of short stems are clinically not proven as short stem THA
exist only since the end of the 1990s. Short stem THAs exhibit a smaller surface
than standard stems. Thus, direct postoperatively the micromotion is increased
compared to standard stems. Do these micromotion exceed certain amounts, the risk
of failed osseointegration exist. In these cases factors like minor bone quality, e.g.
osteoporosis or osteonecrosis of the femoral head, or increased loads due to high
body weight or high body mass index influence the osseointegration of implants. In
the certified center of arthroplasty of the orthopaedic department of the Hannover
Medical School the revisions of short stem THA were analyzed in order to identify
risk factors [28]. Of the 1953 short stem THAs, which were implanted between
2005 and 2012, 38 patients required a revision of the THA. In 12 cases, the modular
titanium neck adapter failed. In 19 cases, reason for revision was aseptic loosening
of the implant; of these, 11 cases were due to major stem subsidence, 2 due to via
falsa (cortical penetration) implantation and 5 due to periprosthetic fractures. This
corresponds to an aseptic total revision rate of 1.3% for 26 short stems and 1.9%
including the cases of all 38 documented revision cases. Thirty-four cases could be
revised with cementless standard hip stems, while 2 cases were revised with short
stems, and 2 cases were revised with long revision stems. The main reason for
revision was undersizing (58% of aseptic revisions). Fifty-four percent of revisions
were conducted in male patients—23% with osteonecrosis of the femoral head, and
7% with short hip stems positioned in varus in coxa vara deformities. Seventy-two
percent of revisions after marked early stem subsidence and position change into
valgus were conducted in female patients.

The third group of patients with special focus is the group of elderly female
patients with an age above 75 years with supposed minor bone quality due
osteoporosis. These patients are unlikely to expect a revision of the THA due to
aseptic loosening. Thus, and due to the fact of supposed minor bone quality a
standard stem is normally chosen. However, it is uncertain whether the THA should
be cemented or not. A cemented THA may be superior to non-cemented THA in
elderly patients.
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5 Challenges of Revision THA

Revision surgery of THA has to be differentiated between the revision surgery of
the acetatabular cup and the femur. Today implants allow the replacement of the
complete femur. Problem is the bone loss of the greater trochanter, which is an
important muscular insertion of the gluteus medius and minimus. These muscles
stabilize the pelvis. With deinsertion of the muscles the patient will limp and there
is the risk for luxation of the hip replacement. However, special tripolar inlay will
help to avoid this complication.

In contrast to this revision surgery of the acetabular cup is more complex insofar
that with increasing loss of bone the anchorage of the acetabular cup the limited.

The acetabular bone defect was categorized according to the Method by
Paprosky as reporting [29] (Table 1) and the method of the American Academy of
Orthopedic Surgeons (AAOS) as reported by D’ Antonio et al. [30] (Table 2).

An implant migration of more than 2 cm (Paprosky type 3A and 3B) and the
pelvic discontinuity can be a resulting problem. These problems can also be a result
of infection, osteolysis and casually fracture. In these situations, the pillars are no
longer in sufficient condition to allow a conventional anchoring of the implants.
After all the revision THA generate major acetabular defects and pelvic disconti-
nuity. This is still a great challenge in the orthopedic surgery.

There are several adequate options mentioned in the literature, which is
depending on the severity of defect situation. Small pelvic bone defects can be
successfully rebuilt with or without supplementary allograft. A lager uncontained
defect surgical options include elongated acetabular component extra—large
hemispheric cups, structural allograft with planting, and reconstruction cages with
ischial or iliac screw fixation. The available several surgical options reflect the
difficulty to solve this problem [31].

Although the methods differ, general principle in the revision surgery of the
acetabular cup with severe bone loss is to achieve a stable restoration of the con-
tinuity between the ischium and the ileum with reconstruction of the anatomical hip

Table 1 Paprosky classification [29]

Type

I Acetabular rim, anterior and posterior column intact. Local, contained defects
II Destroyed hemisphere with intact supportive columns and <2 cm superomedial

or superolateral migration
A Moderate superomedial migration
B Moderate superolateral migration with more destruction of superior dome
C Isolated medial migration

III Superior migration >2 cm and destruction of the acetabular rim and supporting
structures

A Köhlers line intact (the rim defect from 10 o’clock to 2 o’clock)
B Köhlers line not intact (the rim defect from 9 o’clock to 5 o’clock position)
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center. However, currently, in the setting of massive periacetabular bone loss none
of these options has been shown to clear advantageous results. Complications of
acetabular revisions include component loosening, cup migration, alteration in the
biomechanics, changes in the center of rotation of the hip joint, nerve palsies,
chronic weakness, and dislocation.

They have on the one hand often the problem of reduced bone quality and on the
other hand there is a reduced compliance in performing a partial weight bearing on
crutches due to a limited mental and physical fitness. Thus, there is not only the
problem of periacetabular bone loss, but also the anchorage of the revision of the
acetubular cup surgery should be stable enough to allow a postoperative full weight
bearing.

6 Patients and Methods

We evaluated in a retrospective designed study was between January 2010 and May
2016, a total of 44 patients with bone loss and pelvic discontinuity were treated with
a custom acetabular component. (31 female and 13 male, both sides = 0; right
n = 24; left n = 20).

The indication for the custom made acetabular components was that conven-
tional cup replacement and revision cup system were expected not to achieve a
successful result because of massive bone loss and pelvic discontinuity in the
setting of failed THA. In contrast to other custom made acetabular revision cups,
most custom made cups in the present study had not only flanges but also ilical stem
—similar to the pedestral cups published by Schoellner in 2000 [32].

The patients were invited as part of a routine follow-up. From the 44 patients 31
could be included. Four patients died already and one was in coma. Because of
dementia one patient could be followed up but was not included in the study.
Neither death nor coma was related to their arthroplasty. Seven patients could not
be contacted by phone or mail. Mean age of the patient at the time of the surgery
was 71 years (range 38–86 years) (Table 3). The mean follow up was 27 months
(range 7–51). The average duration of the surgery was 245 min (range 127–424).
Length of the stay in hospital was 20 days (range 9–60 days).

Table 2 AAOS
classification

Type 1 Segmental defects

A Peripheral: superior–anterior–posterior
B central (lack of medial wall)

Type 2 Cavitary defects
A Peripherals: superior–anterior–posterior
B Central (intact medial wall)

Type 3 Combined defects (Segmental and cavitary)
Type 4 Pelvic discontinuity
Type 5 Arthrodesis
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All patients received a previous revision surgery before the custom-made
acetabular component was used. Four (13%) patients received a minimum of one
revision, 12 (39%) a minimum of 2 revisions, 7 (23%) a minimum of 3 revisions, 3
(10%) a minimum of 4 revisions and 2 (6%) a minimum of 5 revisions. In 3 (10%)
patients no precise information about the number of foregoing revisions was
available.

Reason for revision surgery included aseptic bone loosening with cup migration
in 16 hips (51%), aseptic and implant fracture in 4 (13%) and recurrent dislocation
also in (13%) and so-called girdlestone situation with complete removal of the
acetabular and femoral components after septic bone loosening with (22%).

Preoperative anteroposterior (a.p.) x-rays and 3-D CT-reconstruction based on
preoperative radiographic evaluation analysis showed thatmost of patients hadmassive
periacetabular bone loss (Paprosky Type 3A and 3B by (97%) (Figs. 3, 4, 5 and 6).

Table 3 Preoperative patient characteristics

n %

Number of total triflange acetabular component 31 100%
Sex
Female
Male

23
8

74
26

Age (Years) 71 (range 38–86)
Previous revision surgery %
0 0 0
1 4 13
2 12 39
3 7 22
4 3 10
5 2 6
>5 3 10
Reason for surgery Total %
Aseptic bone loosening with cup migration 16 51
Aseptic & implant fracture 4 13
Recurrent dislocation 4 13
Girdlestone pseudarthrosis after Septic bone loosening 7 23
Preoperative walking aid Total %
No walking aids 2 6
Not mentioned 1 3
Crutch 14 45
Rollator 3 10
Wheelchair 7 23
Reclining 4 13
Operation Time min (range) 245 (range: 127–424)
Duration of hospital stay 20 (range: 9–60)
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Bone loss grading was performed using preoperative radiographs, and written
reports about the surgery and CT reconstructed pelvic models. With this informa-
tion the classification became accurate.

Outcome assessment included intraoperative and postoperative complications,
reason for revision like dislocation, infection or revision of any reason, surgery and
implant failure, surgery time, duration of the hospital stay.

Failure was defined according to Friedrich et al. [33] if custom-made implant
had to be expanded or replaced with other methods.

One important criterion for evaluating the clinical outcome is the mobility of the
patients. Therefore we compared the degree of mobility pre- and postoperatively
and asked if any supports such a wheelchair or crutches were needed.

Clinical evaluation of the postal-surgical function was performed by using the
validated disease-specific assessment tool, the Harris Hip score [34]. The patient
activity level was assessed using the University of California Los Angeles (UCLA)

Fig. 3 Preoperative anteroposterior radiograph of a 71-year-old patient with an aseptic loosening,
and migration of the acetabular cup. A massive bone loss in the os ilium is seen
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Fig. 4 Preoperative 3D reconstruction based on patient CT data. Medial breakthrough and cranial
defect, unstable dorsal and ventral pillars. Classified as Paprosky Type IIIb

Fig. 5 3D reconstruction of the custom-made acetabular implant bridging the defect, position of
the flanges and the ilical stem
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[35] and the survey about the 38 modified HOOS items. Five subscales “Pain”,
“Symptoms”, “Activities of Daily Living”, “Sport and Recreation Function” and
“Hip Related Quality of Life” which have in described from Nilsdotter et al. [36]
were considered.

7 Results

Thirty (96%) procedures were considered clinically successful. Failure occured by
one patient (4%). In this case the patient had a deep infection. The patient underwent an
antibiotic treatment and girdlestone-situation. After healing of the infection reim-
plantation of THA with a new custom-made acetabular component was performed.

Fig. 6 Postoperative anterior-posterior pelvic X-ray. A well-fixed custom-made acetabular
component with flanges and ilical stem is seen
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Three patients (10%) had an infection and all of them underwent surgical
debridement and treatment with antibiotics. Two of these three patients had a
girdlestone situation before implantation due to a deep joint infection before. Hip
dislocation was seen in five (16%) cases, one could be solved with closed reduction.
Four patients required further surgical intervention. Two of them were treated by
exchanging the inlay into a tripolar anti-luxation inlay and the remaining two had an
exchange of the inlay and the femoral head.

All in all seven 7 of 31 (23%) patients had a reoperation for any reason; four
because of dislocation and three because of infection. All were successfully treated.

All patients were followed postoperatively with an anterior-posterior pelvis
radiography. For the latest follow-up only 25 patients were able to come to an
outpatient visit.

Radiological evaluation at the time of follow-up showed no signs of loosening or
cup migration in none of the patients. In two patients the custom-made acetabular
component demonstrated a loosening of the screws in the flange of the os ischium,
without any signs of loosening of the cup itself.

In the clinical assessment the average Harris hip scores for 31 patients in this
study reached a mean value of 70.4 points (range: 19–95 points). The mean of the
UCLA Score was 4 points (range: 1–8 points) which stands for regularly partici-
pation in mild activities such as walking, limited housework, and limited shopping.

The survey about the 38 HOOS items resulted a mean of 56.4 points (range: 20–91
points).

The assessment of the use of walking aids pre- and postoperative was impres-
sive. 91% of the patients needed at least crutches as a walking aid preoperatively.
13% of the patients were even not able to sit in a wheelchair. The postoperative
evaluation showed that only 45% of the patients were depended on walking aids
and only one patient (3.2%) was sitting in a wheelchair.

8 Discussion

The revision THA and the resulting major acetabular defects and pelvic disconti-
nuity is still a great challenge in the orthopedic surgery [37–40]. There are several
options mentioned in the literature, which is depending on the severity of defect
situation. The diversity surgical options shows the difficulty to solve this problem
[33, 37, 41]. The custom-made acetabular is a possibility which is according to the
literature seems to be a favorable option for massive periacetabular bone loss.

The results of the present study are compared with other studies using custom
made implants in the literature (Table 4). A direct comparison is difficult because
patient groups and the design of the custom made implants differ. Beside the study
of Taunton [42] (n = 57 hips) it is the largest patient group evaluating a custom
made implant. Most of the published studies used a triflange custom-made
acectabular implant. The use of the short iliacal stem in combination with the
custom made implant—similar to the pedesdal cup is new. Furthermore with an
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average age of 73 years at the time of the operation it is the oldest patient group
receiving an custom made implant for an acetabular revision surgery. However, as
mentioned at the beginning these elderly patients are a special challenge because of
the reduced bone quality. But the concept seems to make sense. The walking ability
could be clearly improved comparing the pre- and postoperative status. The UCLA
activity score demonstrated that the patients can participate in mild activities of the
daily life. Considering the age group this can be assessed as a success, too.

Most of the published studies used the Harris-Hip-Score for evaluation of the
clinical results. It ranges between 61 and 80 points in the literature. With 72 points
in the present study the result fits into the range. Furthermore, we used the HOOS
with mean 54 (range 21–96) points and the UCLA with mean 4 (range 1–8) points.
These score are more detailed and gave us additional options to measure the patient
skills.

Unfortunately a comparison with results presented in the literature was not
possible because of none used this score in the past studies.

Although the patient condition could be detected with all three methods, with the
HOOS and UCLA score we could better assess the skills of the Patient. With the
huge survey, considering the five subscales “Pain”, “Symptoms”, “Activities of
Daily Living”, “Sport”, “Recreation”, “Function” and “Hip Related Quality of
Life”, we get a holistic picture of the patients. The disadvantage in HOOS and
UCLA is that because of co-morbidities some elderly patients could not accurately
distinguish the reason for their restrictions. With investigating an older patient
group with more co-morbidities in comparison to the literature this could be a
reason for the limited mobility and inducing a reduced HOOS and UCLA score
although the custom made implant has an accurate fitting.

Apart from these clinical scores it was important to know how satisfied the
patients were with the result of the operative treatment. We could note that a very
large proportion about 80% would repeat this treatment again and in 76% quality of
life could be increased.

9 Conclusion

A challenging mission is the managing of massive acetabular bone loss in revision
THA. Despite the high rate of complications, which has much to do with the prior
surgircal conditions, the patients show a large satisfaction. Overall a custom-made
acetabular component can be a valuable solution for pelvic discontinuity and
acetabular bone loss.
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Questions to the Engineers

• Long-term results for short-stem arthroplasty are missing by now. In order to
gain information about long-term survival rate the extent of stress-shielding and
osseointegration, which can be determined by finite-element analysis, can
help. Furthermore, similar approaches can be done for simulation of short stem
arthroplasty in deformities.

• The reconstruction of the acetabular cup in cases of severe periacetbular bone
should be stable enough to allow a postoperative full weight bearing for the
patients. Custom made implants seems to be a promising solution for this
complex problem. It would be helpful to construct implants that have a stable
anchorage in the bony defect.
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Personalized Orthopedic Trauma Surgery
by Applied Clinical Mechanics

M. Roland, T. Tjardes, T. Dahmen , P. Slusallek, B. Bouillon
and S. Diebels

Abstract In this study, the concept of applied clinical mechanics is used to present

first steps in the direction of personalized orthopedic trauma surgery. As example

process, a complex distal tibia fracture treated with an implant is chosen. Based on

an automated workflow, routinely acquired tomographic data is segmented, assigned

with material parameters and extended to an adaptive volume-mesh with hanging

nodes. For the finite element simulations, this bone-implant system is equipped with

realistic axial loading conditions. An optimization algorithm is then used to analyze

the amount of fracture healing that will provide a full weight bearing capacity of the

injured extremity in combination with the implant.

1 Introduction

Fractures are a neglected mass disease. With an incidence of about 140,000 tibial

and 165,000 femoral fractures per year in Germany the cost of fracture care is a

relevant burden for health care systems. Today the gold standard of fracture care is

surgical treatment, i.e. open or, in an increasing number of cases, minimally inva-

sive reconstruction of the fractured bone and mechanical neutralization of forces and

loads acting on the fractured bone by implants such that immediate functional and

physiotherapeutic training of the injured extremity is possible.
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From the biological point of view, fracture care by means of surgical fracture

reduction and stabilization aims to provide the best environment possible for the

complex process of fracture healing, which is a cellular process mediated by a

complex network of mediators, to occur. Thus, the surgeon has a double role in the

treatment process. First, to decide whether a given patient will benefit from surgi-

cal therapy of a fracture. This decision is guided by different factors, including the

knowledge on comorbidities, the patient’s ability to compliantly follow the rehabil-

itation plan, and the patient’s functional expectations and needs, to name but a few.

This part of the surgeon’s role in fracture care is guided by sound understanding of

clinical medicine and clinical experience but also requires a set of soft skills in order

to guide the each patient individually through the therapeutic process.

The surgeon’s second role is to manually implement the mechanical solution onto

the fracture of the patient, i.e. to operate on the patient. The surgeon has to make a

choice concerning the appropriate implant and position the implant such that the

result of surgery provides better conditions for the micro-scale processes of fracture

healing than non-operative therapy. This again requires a great amount of manual

experience but also a deep understanding of mechanical laws and principles and

their effects in the given case. While clinical experience cannot be substituted or

augmented by any sort of technical device or algorithm, the understanding of the

mechanical performance of an implant, i.e. the application of the general laws of

(bio-) mechanics in a given case, is amenable to modeling, simulation and

optimization.

Thus the question arises whether the opportunities offered by image processing,

simulation of mechanical processes using the finite element method and the point-

of-care availability of sufficient computational power might combine to a tool that

can assist the surgeon to anticipate the optimal osteosynthetic strategy preoperatively

on an individualized basis. Technically speaking, the aforementioned aim requires a

simulation solution that allows to run simulations of an osteosynthesis on the individ-

ual patient’s imaging data to provide understanding of the interplay between fixation

strength of an implant and the amount of new bone formation, i.e. fracture healing,

that is necessary to provide full weight bearing capacity of an extremity. The interac-

tion between an implant and the dynamical process of fracture healing is extremely

difficult to anticipate prior to surgery as the mechano-induction of fracture healing

is a micro-scale process, which is directly influenced by fracture stabilization, i.e.

by a macro-scale process. Due to the trans-scale nature of surgical fracture care,

technical support in the sense of a software based, personalized analysis and simu-

lation approach were a meaningful progress. Before this concept will be available as

a point-of-care solution, algorithms have to be developed providing this information

within a time frame that is compatible with clinical routine processes.

The work presented in this chapter examines whether an integrated workflow,

which uses routine CT imaging data of a complex distal tibia fracture, can be imple-

mented such that information on the amount of fracture healing that will provide a

full weight bearing capacity (in combination with a given implant) of the injured
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extremity is achieved. Once this proof of concept is accomplished, further options

regarding an integration of biomechanics into the actual treatment process in surgical

fracture care have to be explored.

2 Methods

The methods presented in the beginning of this work are based on the integrated

workflow presented in [1]. Thereafter, the concept of patient-specific and person-

alized simulations directly on computed tomography data from medical imaging is

combined with the optimization strategy introduced in [2, 3]. For the simulation set-

up, several algorithmic parameter variations and their influence on the interpretation

from the viewpoint of orthopedic trauma surgery are analyzed and discussed.

2.1 Preparation and Tomography of the Fracture Model

Starting with a routinely acquired tomogram of a real patient or, alternatively, an

artificial bone-implant-system based on real patient data, such artificial bone models

of clinical relevant conditions are widely used to design mechanical experiments as

well as to set up biomechanical FEM simulations.

Here, an AO type 42–B1.1 was implemented in a tibia model (Sawbones Europe,

Malmø, Sweden). This fracture classification represents multifragmentary diaphy-

seal fractures of the tibia with a spiral wedge third fragment that, once reduced,

maintains contact between the proximal and distal fragments [4].

To improve the radiographic visibility of the bone model, the surface of the saw-

bone was treated with zinc spray. The fracture was fixed using a 14 hole-titanium

distal tibia-locking compression plate (anatomical LCP, Synthes, Oberdorf, Switzer-

land). A computed tomography scan of the fracture model and of a real patient was

performed (Somatom Definition Flash, Siemens, Germany).

The tomogram consist of the gray-scale values in the uint12 format, which can

be mapped linearly to the Hounsfield scale (HU). The density values are arranged

on a regular grid, with a series of 582 single CT images. The slice thickness of

the dataset is constant, with a distance of 0.6 mm between two pictures. All images

are square with 512 pixels as height and width with a constant pixel spacing of

0.318 mm. The tomogram is passed to the segmentation and the meshing procedure

as individual gray-scale images.

2.2 Image Processing

In order to identify the pixels addressing the bone-implant-system in each image, a

segmentation process is necessary. For this study, the adaptive thresholding method
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was implemented and the interval was selected using histogram analysis. Due to the

fact that adaptive thresholding as segmentation method only produces satisfactory

results in conjunction with a selective low-pass filtering, here the edge-enhancing

non-linear anisotropic diffusion (EED) filter was applied [5]. Hereby, the tomogram

is preprocessed to cut off high frequencies or noise, but edges are detected, and blur-

ring orthogonal to the edge direction is avoided so that features are preserved. Suit-

able choices of the diffusion tensor in the implemented EED method allow the design

of filters that are going around the structures of the image and preserve the edges.

The method is explained in all details in [6]. The computed tomography images

were segmented automatically, using the diffusion process in two dimensions, i.e.

the tomogram was processed slice-by-slice, and the individual slices were segmented

separately. The fracture area was marked in an additional step in a semi-automatic

way by an orthopedic trauma surgeon, cf. red parts in Fig. 1c.

2.3 Mesh Generation

The result of the segmentation process is a segmented tomogram, stored in an image

stack, in which each image represents one slice of the tomogram. In every slice, the

CT gray-scale values and in addition, the corresponding material class information

are stored to allow an adaptive coarsening of individual material classes. This image

information is placed at a uniform resolution on a homogeneous grid given by the

pixel spacing and the slice thickness. In order to analyze the mechanical properties, a

FEM simulation needs to be executed on the tomogram. FEM simulations typically

operate on so-called volume-mesh data [7, 8]. Therefore, a program based on the

OpenFlipper framework [9] was created to transfer tomograms to volume meshes.

Tomographic data provided in the format of a uniform grid can be trivially trans-

ferred to a volume mesh by limiting the polyhedral topology to hexagons. For each

voxel in the grid, a cuboid hexagon is created that represents the extent of this voxel,

leading to a 1:1 relation between voxels and cells. The material information of the

voxel can thus trivially be stored in the cell corresponding to the voxel.

However, this obvious approach leads to a simulation mesh with a large number

of cells, which often exceeded the capabilities of the available hardware. As a conse-

quence, the volume mesh resolution needs to be reduced. As shown in [1], uniform

downsampling via 2D or 3D box filtering yields in less accurate simulation results

compared with feature adaptive downsampling based on a hanging node strategy.

To realize a hanging node based meshing concept, some properties of the tomogra-

phy data must be exploited in the following way: The bone-implant-system consists

of several materials. When building the FEM model in the segmentation step, the

material properties of the voxels were simplified by mapping each density value to

one material of a finite set (air, soft tissue, cortical bone, trabecular bone, broken

bone, marrow and implant metal). Those material classes have different mechanical

properties and thus require different spatial resolutions in the FEM simulation. Parts

that can take high mechanical stresses need to be expressed at full tomographic reso-



Personalized Orthopedic Trauma Surgery by Applied Clinical Mechanics 317

Fig. 1 a Original computed

tomography image routinely

acquired during the clinical

workup; b EED filtered

image; c applied adaptive

thresholding and mapping to

material classes
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Table 1 Impact of the adaptive coarsening on the number of mesh cells for each material class

Mesh type Cortical bone Trabecular

bone

Implant Fracture area Mesh cells

Full

tomographic

resolution

2,990,879 1,663,007 312,109 103,748 5,069,743

Applied

adaptive

coarsening

693,885 245,654 312,109 103,748 1,355,396

Fig. 2 Cut through the mesh to visualize the concept of hanging nodes. Different colors represent

sets of different material classes: implant (), cortical bone (light blue), trabecular bone (blue) and

fracture area (red); coarsening of the mesh via collapsing cells

lution, while soft parts that can take less mechanical stresses can be expressed safely

using a coarser resolution. A detailed description of this meshing concept and some

numerical examples for a bone-implant-system can be found in [1].

Here, for the implant and the fracture area, the full tomographic resolution is

chosen without any coarsening. For the cortical bone, one level of coarsening is

applied and for the trabecular bone, three levels of coarsening are allowed. In [1],

it is shown that this strategy leads to a good relation of mesh coarsening on the

one hand and the increase of computational errors on the other hand. Table 1 shows

the impact of the algorithmic coarsening on the mesh size and Fig. 2 illustrates the

hanging node concept.
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2.4 Material Assignment

Besides the geometric properties of the volume-mesh structure, material properties

had to be assigned to every mesh cell [10]. In order to derive an empirical elasticity-

bone density relationship for the real and the artificial bone, the gray-scale values

given in terms of Hounsfield Units can be mapped to local bone properties [11–

13]. Therefore, the following linear conversion between HUs and equivalent mineral

density 𝜌eqm in g∕cm3
is used:

𝜌eqm = 10−3(0.793) × HU.

An isotropic heterogeneous material is assumed, having a different value for the

Young’s modulus and a fixed value for the Poisson ratio inside each mesh cell based

on the segmented material classes. This type of material model has shown a good

agreement with experimental observations [14, 15]. Depending on the local ash den-

sity, the mapping for the cortical and the trabecular bone is defined as follows [10,

16]:

𝜌ash = 1.22𝜌eqm + 0.0523 g∕cm3

Ecort = 10, 200 × 𝜌
2.01
ash MPa

Etrab = 5, 307 × 𝜌ash + 469MPa,

with a fixed Poisson ratio of 𝜈 = 0.30. The ash density relation corresponding

to the equivalent mineral density is in accordance with [17]. For the fracture area,

the material parameters of the corresponding mesh cells are set to experimentally

established soft tissue parameters [18]. The implant is assumed to be an Ti-6Al-7Nb

alloy with literature values between 114GPa [19] and 108GPa [20] for the Young’s

modulus.

2.5 Set-up of the Numerical Simulations

For the numerical simulations, the standard linear elasticity model [21] was imple-

mented in the deal.II environment. Assume that the boundary of the elastic body

is divided into two disjoint sets 𝛤D (Dirichlet boundary) and 𝛤N (Neumann bound-

ary) and assume that a system of body forces 𝐟 ∶ 𝛺 → ℝ3
and surface tractions

𝐠N ∶ 𝛤N → ℝ3
act on the body. On the other part 𝛤D of the boundary, the body is

rigidly fixed in space. Under the assumption of small displacements, the displace-

ment 𝐮 = (ui)1≤i≤3 satisfies the following problem:
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−
3∑

j=1

𝜕𝜎ij

𝜕xj
(𝐮) = fi in 𝛺,

ui = 0 on 𝛤D,
3∑

j=1
𝜎ij (𝐮) nj = gi on 𝛤N ,

where 𝐧 = (ni)1≤i≤3 is the unit outward normal to the boundary 𝛤D, fi and gi are the

components of the forces 𝐟 and 𝐠N , and 𝜎ij (𝐮) is the stress tensor [22].

Appropriate boundary conditions were specified consistently in all simulations.

The elastic body was fixed at the side pointing to the foot. At the side of the knee,

forces were applied representing the body weight of the patient (80 kg) with the

original fracture.

The FEM simulations were realized using the deal.II software library [23,

24]. The system matrices and the right-hand side vectors were built using linear

Lagrange finite elements. The systems were solved using the standard conjugate gra-

dient (cg) method [25] and a symmetric successive over-relaxation (SSOR) precon-

ditioner with a relaxation parameter 𝜔 = 1.3 [26].

All simulations were executed on a DELL PowerEdge with 2 Intel Xeon 5680

CPUs and 72 GB main memory. As described above, the adaptive meshing strategy

leads to a computing grid with 1,355,396 mesh cells. For the chosen linear Lagrange

finite elements this concept results in 5,608,551 degrees of freedom (d.o.f.) for every

simulation run.

2.6 Optimization Strategy

The presented algorithmic optimization strategy is introduced and analyzed in [2, 3].

The algorithm seeks the minimal amount of fracture union necessary to allow phys-

iological loading of the limb without subjecting the implant to stresses and strains

that might result in an implant failure or in pain occuring during the mobilization of

the patient.

The boundary conditions for the optimization algorithm are given by a complete

union of the pseudarthrosis, below called best-case scenario, and by a complete

nonunion of the pseudarthrosis, below called worst-case scenario. First, the worst-

case scenario is computed. For this purpose, the material parameters of the region

marked as the nonunion or fracture area during the segmentation process are set to

the parameters of soft tissue [18]. Here, the maximum possible von Mises stress aris-

ing in the bone-implant system during the optimization process can be quantified for

the given set of loading parameters. Second, the best-case scenario is computed by

setting the material parameters of the nonunion area to the parameters of cortical

bone.
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The goal of the optimization procedure is to gradually approach the minimum

amount and location of bone bridging over the nonunion area that will protect

the implant from overloading. As described in [2], the criterion when the algo-

rithm moves to the next iteration needs to be defined a priori by a so-called stop
criterion. Therefore, the stop criterion is set to X% of the maximum von Mises

stress arising in the current step of the algorithm in the region marked as the nonunion

area, i.e. if a mesh cell carries less than X% of the load it is considered omittable.

Several stop criterions are tested and analyzed in this study. For that purpose, the

X is set to 5, 10, 15, 20, 25 and 30%. In all cases it is assumed that nonunion area

mesh cells sharing less than X% of the load can be eliminated such that the load can

be dissipated over the neighboring mesh cells. This procedure is repeated until no

more nonunion area mesh cell can be eliminated. With the number of unfilled areas

increasing with every run of the optimization algorithm, the maximum of the von

Mises stress in the remaining area and the implant increases constantly.

Starting with the best-case scenario as state of complete union, fracture area mesh

cells with von Mises stress < threshold×max are identified. The material para-

meters for these mesh cells are set from cortical bone to soft tissue in an update step.

After one cycle over all fracture area mesh cells, the new material parameters are

used as starting point for the next optimization run.

3 Results and Discussion

The methods presented in Sect. 2 demonstrates that, given today’s technical possibil-

ities in terms of point-of-care availability and affordability of computational power

as well as the advancements in image processing and finite element modeling, a state

of the art has been reached such that, from a technological point of view, biomechan-

ics is ready to evolve from a theoretical and laboratory discipline into a discipline that

actively participates in the treatment process in orthopedic trauma surgery (Table 2).

A crucial step in every workflow using imaging data is the segmentation process

which is necessary to transfer the image data into a format such that different tissue

types with different mechanical characteristics, i.e. material classes, can be simulated

simultaneously, cf. Fig. 1.

Once the segmentation process is completed, the different materials have to be

transferred into a finite element model. The finite element model is the key structure

of the simulation process. Understanding biomechanics as applied clinical biome-

chanics means to accept that the simulation has to include the complete anatomical

target structure, i.e. the extend of the model is determined not by the mechanical but

by the anatomical needs. Thus in applied clinical mechanics the subject of simulation

is usually much larger than in conventional biomechanical investigations. This notion

results in a conflict of interest with the necessity to provide point-of-care solutions

that can be operated on commercially available personal computers.

The application of modified finite element modeling approaches has overcome

this problem. By using the hanging node concept, the size of the finite element model
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Table 2 Optimization algorithm in pseudo-code from [2]

Algorithm Reduction of the filling capacity

1: initialization:
2: compute the worst–case scenario

3: set the material parameters of each fracture area mesh cell

to soft tissue

4: compute the von Mises stress for the tibia

5: search for the maximum stress value

6: define max ∶= maximum stress value

7: compute the initial scenario

8: set the material parameters of each fracture area mesh cell

to cortical bone

9: compute the von Mises stress for the tibia

10: define the stress threshold

11: define the stop_criterion

12: repeat
13: if von Mises stress of fracture area mesh cell < threshold×max
14: set the material parameters of each fracture area mesh cell

from cortical bone to soft tissue

15: compute the von Mises stresses for the tibia

16: search for the maximum stress value

17: until stop criterion is reached

can be reduced such that the consumption of computational resources during the

iterative simulation processes is drastically reduced, cf. Fig. 2. As the number of

mesh cells is reduced only in areas that contribute little to the overall mechanical

behavior, the reduction of nodes, and thus the increased speed of computation, can

be expected not to worsen the overall mechanical validity. On the contrary, when

modeling bone anatomy, a reduction of mesh cells e.g. in the medullary cavity results

in a model that is closer to the anatomy of bone than a model with homogeneously

distributed mesh cells.

However, the fact that image processing algorithms are available and computa-

tional power is at hand does not guarantee the clinical validity of solutions gener-

ated with an applied clinical mechanics approach. To ensure that algorithms which

develop mechanical solutions for clinical problems, be it individualized implants or

a weight-bearing protocol for fracture aftercare, are safe and robust for implementa-

tion in clinical routine processes, some questions related to the interaction between

the algorithm and individual imaging data, i.e. individual fractures and their plethora

of mechanical constellations, need to be understood.
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Given the high variability of mechanical fracture constellations mentioned above,

the analysis of the simulation models derived from the individual imaging data,

which has been implemented in a bone model (Sawbones, Sweden), is best carried

out from the extremes, i.e. from a state of complete fracture consolidation, referred to

as best-case scenario, and from a state of fracture nonunion, referred to a worst-case

scenario.

3.1 Numerical Simulation with Perfect Bone Formation in
the Pseudarthrosis Area—Best-Case Scenario

For this numerical simulation, the complete fracture area was assigned to the mechan-

ical characteristics of cortical bone. Physiologically this means that the fracture can

be considered completely healed. This situation is, especially with respect to com-

plex fracture patterns and the fact that the distal tibia is a high-risk region in terms

of the probability of fracture healing disorders, a rare situation in clinical medicine.

However, given the loading pattern chosen for this numerical simulation, it

becomes obvious that the maximum stress occurs in the diaphyseal area, i.e. the

area that is physiologically subjected to bending and torsional forces during axial

loading, cf. Figs. 3 and 5. Thus if a metaphyseal distal tibia fracture is completely

consolidated, the metaphyseal portion of the implant does not show any substantial

loading. This observation is easily explained by the fact that the cancellous nature

of metaphyseal bone architecture dissipates loads more efficiently away from the

implant than diaphyseal bone (Figs. 4 and 6).

Fig. 3 Best-case scenario for the full bone-implant-system
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Fig. 4 Bone-implant system with different material classes

Fig. 5 von Mises stress focused on the implant in the best-case scenario

Fig. 6 von Mises stress focused on the implant in the worst-case scenario
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3.2 Numerical Simulation with Totally Absent Bone
Formation in the Pseudarthrosis Area—Worst-Case
Scenario

A state with no fracture healing at all is found either directly after the fracture has

been subjected to surgical treatment, i.e. reduction of the fracture and neutraliza-

tion of displacing forces with an implant, or if fracture healing is disturbed and a

nonunion has developed. In this case the pattern of tension in the diaphyseal por-

tion of the implant is very similar to the best-case scenario while the tension in the

metaphyseal portion of the implant increases drastically. In clinical reality there are

two noteworthy consequences. First, if functional treatment with early weight bear-

ing is allowed, the portion of the implant that is mechanically the weakest (due to

soft tissue restraints in the distal tibia, the thickness of the implant decreases towards

its distal end) is subjected to increased cyclic loading, i.e. the risk of implant fail-

ure increases. Second, the loading of the bone, which is mediated by the implant,

is essentially uncontrollable. With respect to the mechanobiological importance of

controlled, cyclic loading for bone healing, this is a clinically highly important con-

sequence, as uncontrolled loading significantly increases the risk of incomplete or

absent fracture healing. This results in the well-known phenomenon of only partially,

i.e. incomplete, healed fractures.

The pattern of partial fracture consolidation cannot be predicted based on mor-

phological fracture classifications like the AO classification of fractures. For clinical

decision making the pattern of incomplete fracture consolidation is difficult to evalu-

ate for the physician in terms of which pattern of fracture consolidation will progress

to complete union, which pattern of consolidation is sufficient for full weight bear-

ing, and which pattern will end up in nonunion and/or implant failure. Today, this

decision is thus still based on the clinical experience of the physician.

From a mechanical point of view, the process of fracture healing in the distal tibia

is caught in a dilemma: the portion of the tibia where the fracture pattern becomes

most complex and most variable is addressed by the mechanically weakest portion

of the implant which at the same time is subjected to the highest loads in the case of

partial or complete weight bearing.

Before clinical decision making can really be improved, a deeper understanding

of how much fusion, i.e. fracture healing, is necessary to allow full weight bearing

without subjecting the implant to loads that result in unphysiological loading of the

healing bone or, in the long run, in implant failure.

In the present study, an optimization algorithm is used that iteratively reduces

the fusion area of a complex distal tibia fracture until a predefined stop parameter is

reached. In the first instance, the optimization parameters have been set arbitrarily.

Setting the stop criterion to 20%, the remaining fusion area reaches an impressive

minimum (Figs. 7 and 8) after four simulation/optimization iterations, cf. Figs. 9, 10,

11, 12 and 13.

Thus the analysis of the extreme cases of complete and completely absent frac-

ture healing has shown straight-forward results in terms of the loading of the implant.
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Fig. 7 This table illustrates the maximum value of the von Mises stress in every iteration step for

all different optimization thresholds. The stop criterion is set to 80% of the maximum value of the

von Mises stress of the worst-case scenario

Fig. 8 This table shows the number of updated mesh cells per iteration step for all different opti-

mization thresholds. For the optimization threshold values of 25 and 30%, the stop criterion is

reached after the second iteration step
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Fig. 9 Complete fracture

area

Fig. 10 Remaining fusion

area after the fourth iteration

Fig. 11 Remaining fusion

area after the first iteration

As fracture healing is a dynamic biological and not a technical process, it is impos-

sible to predict the course of fracture healing from occasional CT imaging. The

only mechanically valid information that can be extracted so far is the estimation

of implant failure due to fatigue in the case of a nonunion. (Fig. 14)
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Fig. 12 Remaining fusion area after the second iteration

Fig. 13 Remaining fusion area after the third iteration

Fig. 14 Localization of the optimized union area in the full bone-implant-system
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3.3 Impact of the Optimization Parameter on the Results

To understand the processes between the extremes described above, an optimization

algorithm was developed gradually reducing the number of mesh cells in the frac-

ture area according to a priori specifications of the load in a mesh cell. The iterative

approach of algorithmic optimization combined with simulation of the optimized

situation is a key principle to connect biomechanical analysis to clinical judgement

and decision making. However, the choice of the stop criterion is basically a tele-

ological choice that necessitates further investigation concerning the robustness of

the algorithm against different values of the stop criterion. If the stop criteria are var-

ied from 5 to 30% in 5% increments, the number of updated mesh cells per iteration

varies considerably (Figs. 7 and 8).

Regardless of the actual optimization threshold the number of cells updated per

iteration decreases exponentially. For optimization thresholds between 5 and 15%,

the optimization process reaches a minimum of updated cells after five iterations of

the algorithm, with more than 50% of the cells remaining. If the optimization thresh-

old is set to 25–30%, only two iterations are sufficient to reduce the number of cells

in the fracture area by more than 95%. Thus there is a considerable dependence of the

performance of the optimization algorithm on the choice of the optimization thresh-

old. The experience from clinical medicine that a full circumferential consolidation

of a fracture is not a prerequisite for full weight bearing and function is confirmed

by these results.

4 Conclusion and Outlook

The studies presented confirm the hypothesis that routinely acquired imaging data

from complex distal fractures of tibia can be processed such that the fracture can be

analyzed using an optimization algorithm that detects the fracture fusion area which

is necessary to achieve full weight bearing, thereby also confirming the hypothe-

sis that full circumferential fusion of a fracture is not a prerequisite to achieve full

weight bearing from a mechanical point of view. At the current stage of development,

these observations are a promising proof of concept. The major limitations from a

clinical point of view result from the fact that the experiment was performed on an

artificial bone model. Thus, the mechanical loads and strains measured cannot be

directly translated directly to clinical cases. Furthermore, the percentages of mesh

cells updated depending on the setting of the optimization criterion cannot be trans-

ferred directly into clinical decisions. To get the workflow closer to reality, the next

stages of dement need to be a further investigation of the algorithm’s performance

for different fracture types and an evaluation of the simulation results with cadaver

experiments and mechanical parameters fitted to natural bone. However, the results

indicate that the integration of biomechanics into the actual therapeutic process in

fracture care is a promising concept that needs further evaluation.
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Measurement of Intracochlear Pressure
Differences in Human Temporal Bones
Using an Off-the-Shelf Pressure Sensor

Martin Grossöhmichen, Rolf Salcher, Thomas Lenarz
and Hannes Maier

Abstract Before clinical data are available, the achievable output levels of
Implantable Middle Ear Hearing Devices (IMEHDs) are usually characterized in
human cadaveric temporal bones (TBs) by measuring the vibration response of the
stapes footplate with a laser Doppler vibrometer. However, this method is accurate
only if the ossicular chain is stimulated and the cochlea is intact. For other stimu-
lations, such as perilymph stimulation with a Direct Acoustic Cochlear Implant
(DACI) and round window stimulation an alternative measurement method is nee-
ded. The sound pressure difference between scala vestibuli (SV) and scala tympani
(ST) is a good candidate for such a method as it correlates with evoked potentials in
animals. Using a custom-made pressure sensor it has been successfully measured
and used to characterize acoustical and mechanical stimulation in human cadaveric
TBs. In order to make this method accessible to a wider community, an off-the-shelf
pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intra-
cochlear sound pressure measurements in cadaver ears. During acoustic stimulation,
intracochlear sound pressures were simultaneously measurable in SV and ST
between 0.1 – 8 kHz with sufficient signal-to-noise ratios with this sensor. The
intracochlear sound pressure differences were comparable to results obtained with
custom-made sensors. Our results demonstrated that the pressure sensor Samba
Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV
and ST and for the determination of differential intracochlear sound pressures.
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1 Introduction

The majority of Implantable Middle Ear Hearing Devices (IMEHDs) as the Carina®

andMET® (Cochlear Ltd.) or the Vibrant Soundbridge (MED-EL) were developed for
the treatment of sensorineural hearing loss [2, 3]. Here, the implant commonly stim-
ulates the ossicular chain (e.g. incus body) with an actuator. To quantify the equivalent
sound pressure output level in such applications, the ASTM standard 2504-05 [4]
provides an experimental method in human cadaveric temporal bones (TBs). This
method is commonly used and compares the vibration amplitude of the stapes foot-
plate (SFP) in response to sound and to actuator stimulation measured with a Laser
Doppler vibrometer (LDV). This method has been demonstrated to be reliable for
applications that stimulate the ear in the physiological forward direction [3, 5–7].

More recently, the indication of IMEHDs was extended to conductive and mixed
hearing loss applications where the implant vibrates the SFP or the round window
(RW) [8–10]. Additionally, the direct acoustic stimulation of the cochlea by a Direct
Acoustic Cochlear Implant (DACI, e.g. Codacs™, Cochlear Ltd.) was introduced for
the treatment of severe to profound mixed hearing loss [11, 12]. Quantifying the
output level of these new stimulation modes by LDV measurements in TBs
according to ASTM standard 2504-05 [4] is not appropriate. Alternatively vibration
responses of the RW determined by LDV can be used in a DACI stimulation [13,
14], but alterations of the complex vibration pattern at frequencies >1.5 kHz limit
the reliability [13, 15, 16]. In the other case, where the RW is excited by an IMEHD,
the ear is stimulated in reverse direction compared to the physiological sound
transmission. Although SFP vibration responses are commonly measured to estimate
the stimulation efficiency in reverse stimulation [17–19], it has been demonstrated
that this method markedly underestimates the real output level [7].

In conclusion, measuring stapes vibration responses according to ASTM stan-
dard 2504-05 [4] is a reliable method to determine the output level of IMEHDs only
during forward stimulation when the ossicular chain and cochlea are left intact. In
all other stimulation modes an alternative measurement method is needed to
quantify the output level of IMEHDs and DACIs in human cadaveric TBs. The
sound pressure difference between the scala vestibuli (SV) and scala tympani
(ST) correlates with cochlear excitation [20] and pressure differences have suc-
cessfully been used to characterize the output level in forward and reverse stimu-
lation in TB experiments [7, 21–23]. In these studies the sound pressure in SV and
ST was measured with a custom-made pressure sensor developed by E. Olson [24].
This sensor is commercially not available and difficult to build. Therefore the
much-needed technique of intracochlear sound pressure measurement is currently
available only for a limited group of researchers.

In order to make this method accessible to a wider community, the goal of our
study was to demonstrate that an off-the-shelf pressure measurement system can be
successfully used for intracochlear sound pressure measurement. This may con-
tribute to establish intracochlear sound pressure measurements as a generally
accessible and commonly used technique.
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2 Materials and Methods

In this study intracochlear sound pressures in response to acoustic stimulation of the
tympanic membrane were measured in SV (PSV) and ST (PST) in cadaveric human
TBs with the off-the-shelf pressure transducer Samba Preclin 420 LP.

2.1 TB Preparation

Human cadaveric TBs obtained from the Institute for Pathology of the Hannover
Medical School and the Department of Legal Medicine of the University Medical
Center Hamburg-Eppendorf [25] were used for this study. Harvesting and anony-
mous use of the TBs was approved by the ethics committee of the Hannover
Medical School (2168-2014). All TBs were harvested within 48 h post mortem,
immediately frozen at approx. −19 °C and thawed shortly before preparation at
room temperature. A mastoidectomy, removal of the facial nerve and thinning of
the RW niche overhang down to approx. 0.5–1 mm were performed. After
preparation the TBs were stored in saline containing ∼0.005‰ thimerosal at
approx. −19 °C until the experiments. During experiment the TBs were kept moist
with saline to avoid changes in mechanical behavior [4].

2.2 Experimental Setup

TBs were fixed in a laboratory clamp on a vibration isolated table (LW3048B,
Newport, Germany). A custom-made sound application setup containing a probe
microphone (ER-7C, Etymotic Research Inc., USA) and a loudspeaker (DT48,
beyerdynamic, Germany) was cemented (Paladur, Heraeus Kulzer GmbH, Ger-
many) to the outer ear canal (OEC). The tip of the probe microphone tube was
positioned 1–2 mm from the tympanic membrane (TM). To prevent unwanted
vibrations from the loudspeaker to the TB, the TB was embedded in modelling clay
(Play-Doh, Hasbro, Germany).

2.3 Intracochlear Pressure Measurement

Intracochlear pressures in SV and ST were measured simultaneously with two
off-the-shelf pressure fiber-optic transducers (Samba Preclin 420 LP, Samba Sen-
sors AB, Sweden) connected to a two-channel control unit (Samba control unit 202,
Samba Sensors AB, Sweden). The pressure transducer has an outer diameter of
0.42 mm, is calibrated by the manufacturer, valid for lifetime with a long term
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stability of <0.5% of range [26, 27], and can be reused for several measurements.
The pressure measurement system has a maximum measurement frequency of
40 kHz, a pressure range of −50 to +350 hPa and a sensitivity of approx. −80 dB
re 1 V/Pa. The control unit provides a proportional voltage signal at each analog
output channel. Each transducer was mounted to a custom made holder attached to
a 3-axis micromanipulator (M3301R, World Precision Instruments Germany
GmbH, Germany), allowing the adjustment in all three spatial directions.

2.4 Vibration Measurement

SFP vibration responses were measured with a single-point LDV system (OFV 534,
OFV 5000, A HLV MM 30, Polytec, Germany) attached to a surgical microscope
(OPMI-1, Zeiss, Germany). The laser beam was directed at a small piece
(<0.3 mm × 0.3 mm) of reflective tape on the SFP at a visually estimated incident
angle of ≤ 45° to the SFP normal. During analysis the incident angle was con-
sidered by a cosine correction.

2.5 Experimental Procedure

(1) The TB preparation was checked visually using a surgical microscope.
(2) The loudspeaker was driven by a custom multi-sine signal, with equal ampli-

tudes of approx. −25 dB re 1 Vrms at 0.125, 0.25, 0.5, 1, 2, 3, 4, 6, 8 and
10 kHz. The vibration of the SFP was measured with the LDV and the sound
pressure level (SPL) in the OEC was recorded by the probe microphone. Only
if the SFP vibration response was within the modified acceptance range [5] of
the ASTM standard F2504-05 [4], the experiment was continued.

(3) Two Samba Preclin 420 LP transducers were placed in SV and ST (Fig. 1).
(4) For this purpose the promontory was thinned and a fenestration of approx.

0.5 mm diameter was made in SV and ST. After insertion of the transducer
(100–300 µm, visually estimated) into the scalae it was sealed with dental
impression material alginate (Alginoplast®, Heraeus Kulzer GmbH) in TB05–
07 or a silicone rubber plug (Silikonkautschuk RTV, Wacker-Chemie GmbH,
Germany) permanently mounted to the optical fiber in TB16, 18, 19. During
cochleostomy, sensor insertion and sealing, the middle ear cavity was immersed
in saline to prevent air from entering the cochlear.

(5) SFP vibrations in response to the acoustic multi-sine stimulation were measured
again.

(6) The TM was stimulated acoustically between 0.1 and 10 kHz by a sequence of
sine wave signals with a frequency resolution of 3/octave (23 frequencies
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between 0.1 and 10 kHz) at levels of 105–130 dB SPL. The sound pressures in
SV and ST were measured by the pressure transducers, the vibration of the SFP
was measured with the LDV and the SPL in the OEC was recorded by the
probe microphone.

(7) After completing all measurements the pressure transducers were removed and
the correct positioning of the cochleostomies in SV and ST was confirmed
visually by dissection of the TB.

In total, three out of 19 TBs were excluded due to damages of anatomical
structures. Of the remaining 16 TBs, six had SFP vibration responses compliant to
the modified acceptance range of ASTM F2504-05 [5] and were used for intra-
cochlear sound pressure measurements.

2.6 Signal Generation, Acquisition and Analysis

For signal generation and acquisition a commercial 16-bit, 4 channel data acqui-
sition system (PC-D and VIB-E-400, Polytec, Germany) with commercial software
(VibSoft 4.8.1, Polytec, Germany) was used. Electric input signals to the loud-
speaker were buffered by an amplifier (SA1, Tucker-Davis Technologies, USA).
Input signals were acquired simultaneously as averaged complex spectra (800 FFT
lines, 0–10 kHz, 12.5 Hz resolution). The complex signal-spectra were averaged
500–1000 times. At each stimulation frequency the SNR was determined using the
average of the three adjacent FFT lines below and above as noise level estimate.
Vibration responses with SNR < 12 dB and intracochlear sound pressure responses
with SNR < 7 dB were excluded from analysis.

Fig. 1 Temporal bone preparation. a Cochleostomies of ∼0.5 mm diameter in scala vestibuli
(SV) and scala tympani (ST). A reflector was placed on the stapes footplate for LDV measurement.
b Samba Preclin 420 LP transducers placed in SV (left) and ST (right) sealed with Alginate. Taken
from [1]
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3 Results

3.1 SFP Vibration Responses Before
and After Cochleostomy

Six TBs showed vibration responses of the SFP to sound [dB re µm/Pa] at
0.25–4 kHz (Fig. 2a) compliant to the modified acceptance range [5] of ASTM
F2504-05 [4] and were used for intracochlear sound pressure measurements. Even
after the insertion of the pressure transducer, the SFP responses (Fig. 2b) were
inside the range, except TB06 at 4 kHz (5.7 dB deviation), TB16 at 1, 2, and 3 kHz
(2.8 dB maximum deviation) and TB19 at 4 kHz (2.4 dB deviation).

3.2 Sound Pressures in Scala Vestibuli and Scala Tympani

To compare the measurement data across all TBs independent of stimulation level,
the intracochlear sound pressures PSV and PST were normalized to the outer ear
canal SPL POEC (Fig. 3) and to the stapes footplate velocity VSFP (Fig. 4).

In all specimens except TB05, intracochlear sound pressures were measurable in
both scalae between 0.1 and 6.35 kHz with an SNR > 7 dB. When normalized to
POEC the magnitudes of PSV (Fig. 3a) were similar across all experiments, as well as
PST (Fig. 3c) at frequencies ≥ 3 kHz. At lower frequencies the magnitudes of
PST/POEC varied up to 42 dB across experiments. In particular in TB19 the mag-
nitudes were at ≤ 0.4 kHz up to 27 dB smaller than in all other experiments.
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The phases of PSV (Fig. 3b) and PST (Fig. 3d) were similar across all TBs showing
an increasing lag to POEC with increasing frequency. At frequencies >4 kHz the
phases of PST decreased significantly, resulting in approx. two cycles shift
at ≥ 5.5 kHz.

The magnitudes of PSV normalized to VSFP (Fig. 4a) were similar across all
experiments, only TB07 showed a prominent peak at 2.525 kHz. In contrast, the
magnitudes of PST/VSFP (Fig. 4c) varied at frequencies below 3 kHz significantly
by up to 49 dB. Again, at frequencies ≤ 0.4 kHz the magnitudes in TB19 were
distinctly smaller compared to the other experiments. At frequencies ≤ 2 kHz the
PSV/VSFP and PST/VSFP phases were mainly constant for each TB whereas at higher
frequencies the phases showed a higher variation.

In each experiment the normalized magnitude of PSV was higher than the nor-
malized magnitude of PST at frequencies above 400 Hz whereas the pressure
magnitudes in both scalae were similar at lower frequencies. Only in TB07 the
magnitudes of PSV and PST were similar (differences ≤ 2 dB) up to 1.6 kHz and in
TB19 the magnitude of PSV was distinctly higher than PST at all frequencies.
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3.3 Intracochlear Pressure Differences

The magnitudes and phases of the complex pressure differences (ΔP = PSV − PST)
between SV and ST are plotted in Fig. 5 normalized to the SPL in the OEC (POEC).
Apart from TB16, showing a sharp notch at 2525–3175 Hz, the magnitudes
(Fig. 5a) were similar across all TBs with differences ≤ 20 dB. The phases
(Fig. 5b) were also similar in all TBs showing a 1/8–2/3 cycle lead at frequencies
below 1 kHz that decreased with increasing frequency to a lag of up to 1 1/3 cycle.
Since in TB05 pressure differences were only measurable at ≤ 312.5 Hz and up to
20 dB lower than in the other experiments, it was assumed that the preparation in
this TB failed and the TB was not further considered in the analysis. The magni-
tudes and phases of the differential pressure (ΔP = PSV − PST) normalized to the
velocity of the SFP (VSFP) (Fig. 6) were almost frequency independent. Across all
TBs the magnitudes varied ≤ 21 dB, except in TB16 at 2525–3175 Hz where a
notch was present. The phases were near 0° at frequencies ≤ 2 kHz and varied
between −180° and +180° at higher frequencies.
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4 Discussion

4.1 Effect of Transducer Insertion
on SFP Vibration Responses

After pressure transducer insertion most SFP vibration responses to sound (Fig. 2)
were not significantly changed and fulfilled the modified ASTM criteria [5]. The
difference between SFP vibration displacement before and after insertion of
transducers (Δd = dpost − dpre) was generally within 5 dB below 3 kHz and within
7 dB at higher frequencies. These results indicate that the opening and re-closure of
the cochlea by insertion of the pressure transducers has no pronounced effect on
cochlear mechanics and confirms the assumption that the inserted sensor has a
much higher acoustic impedance than the round window membrane and does not
lead to major changes in natural cochlea acoustics.
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4.2 Comparison to Previous Work with Custom-Made
Pressure Sensors

In the past it has been already demonstrated that the measurement of intracochlear
pressure differences across the cochlear partition can be used to characterize the
response levels from forward and reverse stimulation in human cadaveric TBs [7,
21–23]. The objective of this study was to investigate if intracochlear differential
pressures are measurable in a similar manner with the off-the-shelf pressure
transducer Samba Preclin 420 LP. Thus, the intracochlear sound pressures PSV, PST

and differential sound pressures ΔP measured here were compared (Figs. 3, 4, 5, 6)
to earlier measurements [7, 22, 23] performed with custom-made sensors [24] that
has proven to provide reliable results in the past.

Normalized to POEC or by VSFP, our PSV magnitudes (Figs. 3a and 4a) were
largely within the minimum-maximum range of Stieger et al. [7] and Nakajima
et al. [22] in the investigated frequency range. At frequencies ≥ 2 kHz the PST

magnitudes (Figs. 3c and 4c) were also mostly comparable to these studies but
differed up to approx. 20 dB at lower frequencies. Whereas we observed a
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maximum variation of up to 42 dB in the magnitudes of PST/POEC and up to 49 dB
in the magnitudes of PST/VSFP, the magnitudes of PST/POEC in Nakajima et al. [22]
and the magnitudes of PST/VSFP in Stieger et al. [7] varied maximally approx.
25 dB. One potential reason for the difference between the PST magnitudes found
here might have been the 6.3 times (approx. 16 dB) bigger sound sensitive inte-
gration area of the Samba Preclin 420 LP pressure transducer (0.1385 mm2)
compared to the custom-made sensor (0.0219 mm2). Another reason for the higher
variation of our PST magnitudes study might have been differences in sealing. This
would also explain why in our study the magnitudes of PSV/POEC and PSV/VSFP

were more similar (maximum variation: 20 and 30 dB) across the TBs than the PST

magnitudes.
In the experiments TB06, TB07 and TB16 where the magnitudes of PSV and PST

dropped at 8 and 10 kHz below 7 dB SNR the acoustic stimulation dropped to 70–
90 dB SPL. This finding is in line with the theoretical resolution limit of the samba
sensor system of 88–95 dB SPL at ≥ 7 kHz at the TM.

The phases of PSV (Fig. 3b) and PST (Fig. 3d) relative to POEC were mostly
within the range of Nakajima et al. [22]. Only at frequencies >4 kHz our PST

phases differed significantly showing an up to 1 cycle longer delay which probably
might be due to different unwrapping of the phase. Relative to VSFP the PSV and PST

phases (Fig. 4b, d) were at frequencies <2 kHz comparable to Stieger et al. [7] but
mostly lower at higher frequencies. A 1/2 cycle shift in PST phases at approx.
0.5 kHz determined by Stieger et al. [7] was not observable here. One potential
reason for the lower similarity to Stieger et al. [7] might be that in their study the
vibration response of the stapes was measured at the posterior crus whereas we
measured it at the footplate leading to a different impact of rocking motions.
However, to determine the input to the cochlea the relevant parameter is the
pressure difference between SV and ST correlated to cochlear microphonics [20].
When normalized to POEC (Fig. 5a), at ≥ 1 kHz, the magnitude of the complex
pressure difference ΔP = (PSV − PST) was within the minimum-maximum range of
measurements by Nakajima et al. [22], but up to 16 dB less at lower frequencies. As
mentioned before a probable reason for this discrepancy at low frequencies might
have been the sealing between pressure transducer and bone. On the other hand our
data was comparable in the whole frequency range (Fig. 5) to two exemplary
measurements of a later study [23] performed by the same researchers. This vari-
ance demonstrates that more reference data of differential intracochlear pressure
measurements would be useful but is currently not available. The phases of
ΔP relative to POEC were similar to Nakajima et al. [22]. When normalized to the
stapes velocity, almost all magnitudes of ΔP/VSFP (Fig. 6a) were within the
minimum-maximum range of Stieger et al. [7], except at frequencies <0.3 kHz
where our results were maximally 15 dB less. Almost all phases of ΔP relative to
VSFP were within the range of Stieger et al. [7].

Between 2525 and 3175 Hz where the normalized ΔP magnitude decreased
extraordinarily in TB16 (Figs. 5a and 6a), the absolute values of PSV and PST were
close in magnitude and phase in this experiment. Usually this might be an indi-
cation for placement of both pressure transducers accidently into the same scala.
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However, in this experiment the differential intracochlear pressure at all other
frequencies was normal and a defect of the preparation could be excluded based on
the visual inspection during dissection.

In consideration of nonlinear effects on the normalized intracochlear pressure
magnitudes, the range of acoustical stimulation levels has to be taken into account. In
our study sounds were presented at 105–130 dB SPL, whereas in Stieger et al. [7]
stimulation levels between 50 and 115 dB SPL and in Nakajima et al. [22] levels
between 70 and 130 dB SPL. It is known that the vibration response of the stapes in
human cadaveric TBs is linear with the level of acoustic stimulation up to 124 dB
SPL at 0.4–6 kHz [28] and up to 130 dB SPL at 0.1–4 kHz [29]. Therefore it can be
assumed that the normalized intracochlear pressures and pressure differences mea-
sured by Stieger et al., Nakajima et al. and Pisano et al. [7, 22, 23] and our results are
not subject to significant middle ear non-linearities although our minimum stimu-
lation levels were higher. In one experiment we stimulated acoustically first with
sound pressure levels of 110–130 dB SPL and second with levels of 90–120 dB
SPL. When normalized to POEC the magnitudes of PSV and PST were similar within
3 dB except at 3175 Hz where a decrease in PST by 12 dB was found for the lower
simulation level.

5 Conclusion

With the commercial off-the-shelf pressure transducer Samba Preclin 420 LP
intracochlear pressure differences with acoustic stimulation were comparable to
results obtained with custom-made sensors [24] at frequencies of 1–8 kHz and
differed up to 16 dB below 1 kHz. The insertion of the pressure transducers only
had a minor effect of <5 dB on the stapes vibration response to sound. Our results
demonstrate that the Samba Preclin 420 LP is usable for simultaneous measure-
ments of intracochlear sound pressures in SV and ST with sufficient SNR and
sensitivity.
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Development of a Parametric Model
of the Electrically Stimulated
Auditory Nerve

Waldo Nogueira and Go Ashida

Abstract Cochlear implants (CIs) are used to restore the sense of hearing in people

with profound hearing loss. Some CI users can communicate over the phone and even

understand speech with some background noise, whereas some other CI users do not

obtain the same benefit from the device. Due to differences in the interface between

the electrodes and the auditory nerves, the best settings of the CI may be different for

each user. In order to improve the fitting of CIs and to understand the electrode-nerve

interface, a user-specific model of the auditory nerve activity has been developed.

The model is based on a combination of existing models found in the literature.

This chapter presents the basic components of the model: A three-dimensional finite

element method to estimate the voltage distribution in the cochlea; and an audi-

tory nerve model based on multi-compartment Hodgkin-Huxley-type equations fit-

ted to known electrophysiological measurements. Using the above described model,

intracochlear voltage distributions are reproduced. Additionally, amplitude growth

functions of the evoked compound action potential (ECAP) were simulated using

an artifact rejection forward masking paradigm. The model has been parameterized

such that it can be personalized to each CI user by fitting its parameters to predict

the individual voltage distributions and amplitude growth functions. The modeling

results show that different amounts of nerve density and nerve degeneration lead to

different shapes in the amplitude growth function. The future goal of the model is

to create a tool to predict the most comfortable level of each CI user and to fit CI

parameters in a personalized clinical situation.
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1 Introduction

The cochlear implant (CI) is an auditory prosthesis that converts acoustic waveforms

into electrical pulses that are delivered to auditory nerves (ANs) via implanted elec-

trodes [34]. The spectro-temporal information of the sound is first pre-processed and

analyzed by the CI processor; then corresponding electrical pulses are generated to

stimulate ANs through the array of electrodes that are inserted in the cochlea; and

finally sequences of action potentials of the AN fibers are sent to higher brain areas

to form an auditory perception [30].

While CIs are generally successful in restoring hearing to a reasonable degree in

people with profound hearing loss, their performances show considerable variations

between individual subjects [32]. Some CI users can communicate over the phone

or even understand speech in a noisy environment, whereas other CI users do not

obtain the same degree of benefits. A number of reasons may exist for the observed

variations [9]. For example, the exact positions of the electrodes in the cochlea, and

the amount of functional auditory neurons might differ significantly between indi-

vidual CI users. Individualization of the CI strategy (location, stimulation protocol,

etc.) thus seems to be necessary to achieve an optimal outcome of implanted CIs.

In order to improve the fitting of CIs and to understand how CI stimuli interact

with AN fibers, we construct a user-specific model of the cochlea and ANs. The

model is composed of two parts: A 3D-reconstructed finite element method (FEM)

model of the cochlea (reviewed in [9, 14]), in combination with multi-compartment

conductance-based model of ANs (reviewed in [24]). The goal of the study is to sim-

ulate and assess evoked compound action potentials (ECAPs). Since the parameters

of the model can be adjusted to reproduce individual ECAPs of each CI user, it may

be used as a tool to explore the optimal CI strategy tailored for individual CI users.

2 Methods

2.1 3D Cochlear Geometry and Finite Element Model

A general cochlea geometry was constructed based on a histological dataset of a sin-

gle human cochlea (Fig. 1a). The shapes of the compartments (scala vestibuli, scala

media, scala tympani, Reissener membrane and basilar membrane) were approxi-

mated by polygons with a relative low number of points as done by Rattay et al.

[26]. At every 30◦ around the vertical axis, a new plane containing all the compart-

ments was repeated. The new plane was extruded and joined to the previous plane. In

total, 2.5 turns of the cochlea were modeled. Figure 1a, b present an example of the

geometry and the triangulation for a cochlea. The resulting geometry can be easily

modified and adapted to clinical computer tomography (CT) data of each individ-

ual [20–23]. The geometry of the electrode array was based on the nucleus contour

advance electrode array. This electrode is composed by 22 electrodes inserted in the

scala tympani.
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Fig. 1 3D reconstruction of the cochlea. a Geometry of a general cochlea with different compart-

ments and a nucleus contour advance electrode array inserted in the scala tympani. bCorresponding

mesh required for FEM

FEM was used to model the electric field in the cochlea. The geometry was clas-

sified into domains (bone, nerve tissue, perilymph, endolymph, Reissner membrane

and basilar membrane), and each domain was assigned a material property in the

form of resistivity. The relevant resistivity values can be found in [2]. Based on the

reconstructed 3D cochlea, each AN fiber was modeled as a one-dimensional curve

with estimated positions of 10 nodes of Ranvier (Fig. 2, left). All AN fibers run along

the spiral ganglion over the two and half turns of the cochlea (Fig. 2, right). In total,

7000 AN fibers were modeled.

2.2 Auditory Nerve Model

In order to model neural activity, it is necessary to couple the 3D voltage distribution

model with an appropriate AN model that can reliably reproduce known biophysical

properties of human AN axons. The model is based on measured anatomical para-

meters and tuned to fit previous physiological recording results.

2.2.1 Anatomy

Based on previous anatomical results of human Type 1 auditory nerves, we con-

structed a one-dimensional nerve model (Fig. 3). The human AN has a bipolar shape

with a peripheral axon receiving synaptic inputs from cochlear hair cells, a large

unmyelinated cell body (soma), and a central axon innervating its target neurons in

the central auditory system [19]. The diameter of the central axon is roughly as twice

as that of the peripheral axon (peripheral: 1.32 ± 0.15µm, central: 2.65 ± 0.30µm,

unmyelinated segments, measured by Rattay et al. [28]). Type 1 human ANs have



352 W. Nogueira and G. Ashida

Fig. 2 3D reconstruction of AN fibers. Left FEM 3D voltage distribution simulation. The voltage

distribution is sampled at AN node positions. Right Distribution of AN nodes, the different color

indicates nodes corresponding to the most peripheral node (green), the peripheral dendrites (yellow)

and the axon (red). In total 7000 nerve fibers were created

Fig. 3 Modeled anatomy of an AN fiber. Unmyelinated nodes and the soma are shown in white.

Myelinated internodal segments are gray-shaded. Nodal and somatic compartments are sequentially

numbered from the peripheral end. Presomatic (#6–8) and postsomatic axonal nodes (#10–12) are

respectively subdivided into three compartments. Each compartment is assumed to be a uniform

cylinder. The diameter and length of each compartment (shown below the drawing) were determined

from previous anatomical results and our 3D reconstruction (see Sect. 2.2.1). In contrast to other

mammals, the soma of a human AN is generally not myelinated [19]

myelinated axons: myelination starts at 5–26µm from the cell body in the peripheral

axon and at 4–38µm in the central axon [25]. The diameter of the human AN soma

is 22–34µm [25], corresponding to the cross-sectional area of the soma (measured

at the maximum diameter) of 400–900µm
2

[18]. Since there are no systematic mea-

surements available for the internodal length of human AN, we will use estimated

values from our 3D reconstruction of the human cochlea (see Sect. 2.1 and Fig. 2).

Note that the presomatic compartment (unmyelinated peripheral axonal compart-

ment next to the soma) of our model is significantly shorter than those of earlier ref-

erences [3, 27, 28, 33]. These previous studies used an unrealistically long (100µm)
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presomatic compartment to ensure spike conduction across the large cell body. We

used a shorter value in our model, and spike conduction was instead ensured by

adjusting physiological parameters (see Sect. 2.2.3).

2.2.2 Physiology

A number of models have been used for simulating spiking activity of AN fibers

(reviewed in [24]). In this study, we adopted the modified Hodgkin-Huxley model

introduced by Smit et al. [33], which were tuned to reproduce known physiologi-

cal data of human nerves. Equations and parameters of the Smit model are summa-

rized in Tables 1 and 2, respectively. In short, each model compartment (axonal node

or soma) is charged with its intrinsic sodium, potassium, and leak currents as well

as axonal currents from the neighboring compartments and external stimuli. The

dynamics of each ionic current is described by a first-order differential equation.

Actual capacitance (C) and conductances (gL, ḡNa, ḡK) of each compartment

(Table 1) were obtained by multiplying the values in Table 2 with the surface area

calculated from the length and diameter of the compartment (Fig. 3). The Na and K

conductance densities were the same for all compartments, while the leak conduc-

tance density of the soma and perisomatic compartments was set 10 times lower than

Table 1 Equations of the AN physiology model. The membrane potential V is measured from the

resting potential V
rest

= −88.24mV. All the factors were adjusted for a body temperature of 37◦. An

apparent typo in the equation for 𝛼n in [33] was corrected. For the sake of simplicity, the subscript

k indicating the k-th compartment is dropped, except for the axonal current equation. I
ext

denotes

external stimulus current

Variable Equation

Membrane potential V C dV
dt

= IL + INa + IK + I
axon

+ I
ext

Leak current IL = gL(EL − V)

Sodium current INa = ḡNam3h(ENa − V)

Potassium current IK = ḡKn4(EK − V)

Channel kinetics
dx
dt

= 𝛼x(V) ⋅ (1 − x) − 𝛽x(V) (x = m, h, n)

Na activation 𝛼m(V) = 2.23(37−20)∕10 4.42 ⋅ (2.5−0.1V)
exp(2.5−0.1V)−1

Na deactivation 𝛽m(V) = 2.23(37−20)∕10 ⋅ 4.42 ⋅ 4.0 exp(−V∕18)

Na inactivation 𝛼h(V) = 1.5(37−20)∕10 ⋅ 1.47 ⋅ 0.07 exp(−V∕20)

Na deinactivation 𝛽h(V) = 1.5(37−20)∕10 ⋅ 1.47 ∕ (1 + exp(3.0 − 0.1V))

K activation 𝛼n(V) = 1.5(37−20)∕10 0.2 ⋅ (1.0−0.1V)
10(1−exp(1−0.1V))

K deactivation 𝛽n(V) = 1.5(37−20)∕10 ⋅ 0.2 ⋅ 0.125 exp(−V∕80)

Axonal current I
axon,k = (Vk−1 − Vk)∕Rk−1 + (Vk+1 − Vk)∕Rk
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Table 2 Parameters of the AN physiology model. Reversal potentials are measured from the rest-

ing potential. All the parameters were adjusted for a body temperature of 37◦ [33]

Parameter Value

Leak reversal potential EL 141.0mV

Na reversal potential ENa −0.60mV

K reversal potential EK −0.086mV

Membrane capacitance density Cm 0.028 × 10−3 nF/µm
2

Leak conductance density GL 0.905 × 10−3 uS/µm
2

Na conductance density GNa 6.567 × 10−3 uS/µm
2

K conductance density GK 0.728 × 10−3 uS/µm
2

Intracellular axial resistivity 𝜌

axon
0.25 MΩ µm

the value in the table (see Sect. 2.2.3). The axonal resistances Rk were also calculated

from axial resitivity 𝜌

axon
and the geometry of the model (Fig. 3).

Several models have been suggested to model the myelinated human AN fibers

[24]. In this study, we simply assumed that the internodal segments are perfectly

insulated and purely resistive. Therefore the axonal current at each compartment is

determined by the voltage difference between the two neighboring compartments

(Table 1).

2.2.3 Parameter Fitting

Before we used our AN model to predict ECAPs, we tested its biological plausibility

and made additional modifications to the original model [33]. First, we calculated

simulated conduction velocities for an axon with a diameter of 2.6µm [28]. Assum-

ing an internodal length of 500µm and a nodal length of 2µm, we obtained a con-

duction velocity of 27.5m/s, which was within the range of estimated human AN

conduction velocities (15–31 m/s) [17].

Next, we optimized the conductance of the soma. Initially, the modeled ionic

conductances (leak, Na and K) of the soma were the same as those of the node.

By running a number of preliminary simulations, however, we found that the static

leak currents of the somatic and perisomatic compartments were the major cause of

spike conduction failure (Fig. 4). Therefore we reduced the leak conductance of these

compartments by a factor of 10 to allow action potentials to travel across the soma.

Rattay et al. [27, 28] similarly assumed ten-fold higher conductance densities in the

nodes than in the soma. We consider this modification as biologically relevant, since

densities of ion channels are generally higher in nodes of Ranvier than in the soma

[7, 15]. As conductances of other nodal compartments remained unchanged, con-

duction velocity and other biophysical factors of the central axon were not affected

with this modification.
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(b)(a)
50 mV 1 ms 50 mV 1 ms

#1 (peripheral end)

#3 (peripheral axon)

#7 (presomatic)

#9 (soma)

#15 (central axon)

#1 (peripheral end)

#3 (peripheral axon)

#7 (presomatic)

#9 (soma)

#15 (central axon)

Fig. 4 Spike conduction failure and modification of the AN model. a Without the reduction of the

leak conductances in somatic and perisomatic compartments, action potentials cannot go beyond the

soma. b With the reduction of the leak conductances, the large unmyelinated somatic compartment

allows a spike to transmit with some delay [27, 28]. An external step current (1.0 nA, 2.5ms) was

injected to the peripheral end of the model AN (compartment #1). Compartment numbers in the

correspond to the numbering in Fig. 3

2.3 Evoked Compound Action Potentials (ECAPs)

The electrode-nerve interface of a CI user can be characterized with the record-

ing capabilities of the device. Current commercial CIs can record small physiolog-

ical potentials generated by stimulated AN fibers. This objective measure is known

as evoked compound action potential (ECAP). The main goal of this chapter is to

develop a model of the AN fiber activity to simulate ECAP responses for different

electrode positions, stimulation modes and degrees of auditory nerve survival, and

therefore allowing for a better understanding of the electrode-nerve interface.

2.3.1 Modeled ECAPs

The extracellular potential created by the j-th AN fiber measured by the m-th elec-

trode is modeled as the sum of the contributions of all nodes along the fiber:

𝐄𝐂𝐀𝐏m
j (t) =

K∑

k=1
Hm

j,k

dVj,k(t)
dt

,

where K is the number of nodes (see Fig. 3), Vj,k is the membrane potential of the

k-th node of the j-th fiber, and Hm
j,k is the transfer function between this node and

the m-th electrode. We assumed that the measured ECAP is recorded at the center

of each electrode, and the transfer function describes electrical coupling between

the electrodes and the centers of AN nodes. The FEM model, in combination with

known resistivity [2], was used to estimate the transfer function.
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We obtain the final ECAP at the m-th electrode by simply summing up the con-

tributions of all AN fibers:

𝐄𝐂𝐀𝐏m(t) =
J∑

j=1
𝐄𝐂𝐀𝐏m

j (t),

where J is the number of simulated AN fibers and set to 7000 in our simulations.

2.4 Parameterization of the Auditory Nerve Model

The auditory nerve model has been parameterized to simulate different amount of

degeneration of each AN fiber at different locations. Figure 5 shows the parameteri-

zation graphically. The aim of the model is to fit the parameters to clinical measures

on CI users. The clinical measures are described in the following section.

2.4.1 Recorded ECAPs

ECAPs from the AN represent the neural activity at the first encoding stage in the

auditory pathway. These potentials do not require the subject to be attentive and can

Fig. 5 Parametrized model of AN degeneration. a Modeled AN degeneration. Different amount of

degeneration of the AN is shown.Green denotes the peripheral node, yellow the peripheral dendrites

and red the axon nodes. The apical part is less degenerated (the dendrite peripheral node is still

functional) than the basal part, where only the axons are modeled. b Higher density of dendrites

existing on the basal part there than on the apical part of the cochlea
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be recorded even when the listener is sleeping or under anesthesia. Moreover, these

potentials are not affected by muscle activity and can therefore be recorded when the

subject is moving. The ECAP consists of a negative (N1) and a positive (P2) peak,

which occur approximately 0.2−0.4 and 0.6−0.8ms following the stimulus onset,

respectively [5]. CI manufacturers have simplified and automated ECAP recording

methods using the intracochlear CI electrodes [8]. ECAP responses can be used to

estimate the CI fitting parameters such as the comfort and threshold levels of electri-

cal stimulation. However, the applicability of ECAPs to estimate behavioral levels

has been limited by intra- and inter-subject variability [12]. It has been shown that

the ECAP can potentially give information regarding cochlear health. For example,

the N1 latency, the amplitude of the response (voltage difference of N1-P2 peaks),

and the slope of the amplitude-growth function (AGF), which is defined as the input

stimulation level versus the output recorded ECAP level curve, might all be influ-

enced by the amount and density of auditory nerve fibers. Note that these parameters

have been included in the parametric model.

The main difficulty in recording ECAPs is that the auditory nerve response occurs

within 1 ms of onset of electrical stimulation. This means that an ECAP overlaps

in time with the stimulus artifact. For this reason, artifact removal techniques are

required to obtain reliable ECAP measurements in CIs. The two most common tech-

niques used are the forward masking and the alternating polarity technique. The

basic principal of the forward masking technique [4] is to record the response to

a probe stimulus alone that contains both the neural response and the stimulus arti-

fact. Next the response to probe stimulus preceded by a masker stimulus is recorded.

This recording contains only the stimulus artifact and no neural response to the probe

that is forward-masked by the masker. The artifact-only response is subtracted from

the neural response plus the stimulus artifact, which leaves only the neural response.

The alternating polarity artifact rejection technique consists of sending a biphasic

pulse (e.g. cathodic-anodic) and recording the response. The stimulus polarity can

be reversed in polarity so that the anodic pulse comes first. Assuming that the same

neural response is generated using both polarities and that the stimulus artifact sim-

ply reverses in polarity, the sum of the response to the two pulse polarities should

cancel the artifact and result in the neural response multiplied by two.

ECAPs can be recorded with the Advanced Bionics Volta 1.0 software. The soft-

ware was configured to cancel the artifact using the forward-masking artifact rejec-

tion technique. Biphasic pulses (cathodic first) were generated having a pulse length

of 60µs. The inter pulse interval between the masker and the probe was set to

398.712µs. Electrode 11 was used for probe and masker. Figure 6 shows the individ-

ually recorded ECAPs (after artifact removal) and the resulting AGF on the left. A

linear fitting was used to obtain the stimulation level at which the first ECAP occurs.

This stimulation value is termed threshold NRI and is typically used as en estimation

of the behavioral most comfortable level with a CI.
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Fig. 6 Recorded ECAPs. a Raw ECAP recordings at different stimulation levels over time.

b Recorded AGF on a CI user

Fig. 7 Simulated ECAPs a Simulated single ECAP responses at different stimulation levels.

b Simulated AGF

It can be observed that the waveform of the measured ECAP (Fig. 6) differs from

the simulated ECAP (Fig. 7). The idea of the parametric model is to adapt the amount

of neural degeneration and nerve density such that the measured and simulated AGF

become as similar as possible.

3 Results

3.1 Simulation of the ECAP Using the Forward
Masking Technique

ECAP responses were simulated using a generalized version of the 3D voltage dis-

tribution model and the AN model. Figure 7 presents the simulated ECAP responses

and the corresponding AGF.
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Fig. 8 Effects of different

values for the parameters

neural density and neural

degeneration in the AGF

predicted by the CI auditory

nerve model

3.2 Effects of Different Amounts of Nerve Degeneration
and Nerve Density on AGF

Using the parameterization presented above (density of nerve fibers and amount of

degeneration of each nerve fiber) it is possible to model different morphologies for

the AGF. Figure 8 presents an example of the effects observed in the AGF for an

increased amount of nerve degeneration or nerve density. The nerve degeneration

was simulated by selecting less apical peripheral node to initiate the action potential.

The simulations show the estimated AGF when the action potential was generated

at nodes 1 (most peripheral), 2 and 3. The same initial node was used in all the 7000

nerve fibers along the cochlea. Figure 8 shows that increasing the amount of nerve

degeneration from 1 until 3 causes an increase in steepness of the AGF.

The change in nerve density was simulated by decreasing the amount of nerve

fibers. Three versions of the model were run with different amounts of nerve den-

sity. The standard configuration used 7000 nerve fibers, while the degraded auditory

configuration used 700 nerve fibers. The nerve fibers were equally spaced to cover

the 2.5 turns of the cochlea. Figure 8 shows that the change in the nerve density

causes not only a decrease in the level of each ECAP, but also an increase in the

steepness of the AGF.

4 Discussion

Based on available anatomical and physiological results, we created an AN model

that was combined with the 3D cochlea reconstruction data to predict ECAPs. We

used an AN geometry similar to the model of Rattay et al. [27] but with shortening

the presomatic unmyelinated compartment and with internodal lengths to fit anatom-

ical measurements [25]. We adopted the modified HH equations proposed by Smit

et al. [33] with optimization of the ionic conductances of the soma to allow stable

spike conduction. Based on these formulations, we calculated ECAPs and compared
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our model predictions with empirical human data. Our modeling results generally

matched the shape and growth function of a general recorded ECAP from CI users.

Next steps consist of extending our modeling framework to predict ECAPs in indi-

vidual CI users. In the framework proposed we used two parameters to model the

AN population; i.e., these parameters consist on the amount of nerve degeneration

of each nerve fiber and the nerve density. Preliminary results show that these two

factors have a large impact in the morphology of the ECAP. Fitting the model to

recorded data might be useful to make hypotheses about the state of the AN for each

CI user, and therefore it might be useful to optimize the fitting or the sound coding

strategy individually.

The AN physiology model used in this study comprises only leak, fast sodium

and delayed rectifier potassium conductances [33]. In human axons, however, more

variations of ion channels are identified [29, 31]. Since nonlinear dynamics of active

conductances may affect physiological properties of the model AN, such as adapta-

tion [1], finer tuning of these additional ion channels would be necessary for more

precise model predictions.

For the sake of simplicity, all the modeled AN fibers in this study were assumed to

be identical morphologically and physiologically. Namely, we used the same anatom-

ical (Fig. 3) and electrical (Tables 1 and 2) properties for the AN fibers. Actual ANs

in vivo, however, show considerable variations in spontaneous and driven activities

[10]. Sizes of AN fibers also vary along the cochlea, presumably reflecting tonotopic

specializations [6]. In addition, channel noise may further affect the AN response

patterns (e.g., [13]). Performance of our model may be improved by the inclusion of

these sources of variations.

The relationship between the intracellular membrane potential and the extracel-

lular field potential has long been a subject of both theoretical and experimental

studies. Previous recording results in the rat hippocampus showed that the first time

derivative of the membrane potential usually agrees well with the extracellular poten-

tial for the initial depolarizing phase of an action potential but not for the succeed-

ing depolarizing and repolarizing phases [11]. In the mouse brainstem neurons, a

weighed sum of the membrane potential (resistive current) and its first derivative

(capacitive current) predicts well the extracellular potential [16]. Similarly in the

model of AN fibers, a combination of resistive and capacitive currents might pro-

duce more precise and realistic ECAPs.
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