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Abstract. Road journeys are one of our most frequent daily tasks.
Despite we need them, these trips have some associated costs: time,
money, pollution, etc. One of the usual ways of modeling the road net-
work is as a graph. The shortest path problem consists in finding the
path in a graph that minimizes a certain cost function. However, in real
world applications, more than one objective must be optimized simulta-
neously (e.g. time and pollution) and the data used in the optimization
is not precise: it contains errors. In this paper we propose a new math-
ematical model for the robust bi-objective shortest path problem. In
addition, some empirical studies are included to illustrate the utility of
our formulation.
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1 Introduction

Road trips are an inherent part of our modern lifestyle. To give a quick example,
only in U.S.A., citizens spend almost two hours a day driving. We must add to
this time the economic (fuel, vehicle maintenance, ...) and psychological (stress,
anxiety, ...) costs. For this reason, it is not surprising that the problem of finding
the shortest or fastest paths between two points in the city is a popular and well
studied problem in the scientific literature.

A rather generalized way of modeling the city’s road network is to treat it
as a weighted directed graph. The streets are the arcs of this graph, the city
intersections are the nodes, and the weights could be the length of the road,
speed limits, etc. If we use this model, well-known algorithms like Dijkstra [1]
or A* [2] are useful even for commercial applications. However, these models
have a very simplistic view of the city, offering as a solution a single route that
(generally) only minimizes time (or distance).

But time is not the only objective for the citizens. Fuel, modern environmen-
tal concerns, or reduced traffic jams are also new goals to be taken into account
for smart mobility in cities. A good point to start with new formulations is to
consider the bi-objective shortest path (BSP) problem, that has received special
attention in recent years both in academy and industry [3].
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To make a difference, it is important that the proposed solutions for the
BSP problem are applicable in the real world. This requires taking into account
real-time and precise information on the state of the roads, traffic jams, flows of
vehicles, etc. The challenge of the use of these data sources falls in its dynamic
nature, e.g., traffic in rush hour differs from that in the evening, or in its sto-
chasticity, e.g., an accident happens on the road. These are the reasons why a
useful solution (algorithm) must take these imprecisions into account and avoid
providing routes that, for example, can cause by themselves additional delays
in the arrival to the destination. The ability of a solver to tolerate these inac-
curacies is called robustness. And a variant of the BSP problem that takes into
account inaccuracies in its input data will be called robust bi-objective shortest
path problem (RBSP problem).

In this article we will present a new model of RBSP problem that deals with
the robustness from a stochastic point of view. We assume that the input data
behaves as probability distributions. Also, we decided work with the bi-objective
version of SP problem given that most of the existing instances for this kind of
problem optimize only one or two objectives. Therefore BSP problem is the
natural choice on which to make our robust model.

The article is structured as follows: Sect. 2 shows the basic formulation of the
RBSP problem. Section 3 describes our proposal for modeling the robustness of
the problem. Section4 presents some empirical results of our selected model.
Section b presents alternative formulations of the robustness for the RBSP prob-
lem existent in the state-of-the-art. Finally, Sect. 6 presents the main conclusions
of this article and the lines of future work.

2 Basic Formulation

Before presenting our model, it is necessary to give some basic notions about
the BSP problem and about the robustness in optimization problems. Then,
we formulate the mono-objective and bi-objective shortest path problem. Later,
general considerations about robustness in optimization problems are presented.

2.1 Mono- and Bi-objective Shortest Path Problems

Let G(N, A) be a directed graph, where N is the set of nodes, and A the set of
arcs between nodes, A C N x N; we define a path p = p1,p2,...,pr as a list of
nodes that: Vp;, pit1 € p,0 <i <k —1,(p;,pit+1) € A. We define P . as the set
of all possible paths between a start node s and an end node e.

We can define a cost function C : A — RT in the graph G. This function
assigns a non-negative numeric weight value to each edge of the graph. In order
to simplify the formulation, we write C((4, j)) = ¢;; as the cost of the arc (i, 7).

The path between two given nodes s and e in the graph that minimizes the
total cost of the path is the result of solving the following problem:

min z(p) = Z Cij (1)

PEPs,e =
(i,5)€p
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where z(p) is the objective function, s and e are (respectively) the start and end
nodes of the path. Abusing of notation we write (i,j) € p when the arc (4, j)
appears in the path p.

We will consider, without loss of generality, that the objective (components
of the vector function) are to be minimized. Next, we include the definition of
some standard multi-objective concepts to make the paper self-contained.

Definition 1 (Dominance). Given a vector function f : Ps. — R, we say
that solution x € P, . dominates solution y € Ps ., denoted with x <¢ y, if and
only if fi(x) < fi(y) for all 1 <i < d and there exists j € {1,2,...,d} such that
fi(z) < f;j(y). When the vector function is clear from the context, we will use <
instead of <s.

Definition 2 (Pareto Optimal Set and Pareto Front). Given a vector
function f : Py, — R?, the Pareto Optimal Set is the set of solutions P that
are not dominated by any other solution in Ps .. That is:

P={2€Pslfyc€Psey=<a}. (2)
The Pareto Front is the image by f of the Pareto Optimal Set: PF = f(P).

Definition 3 (Set of Non-dominated Solutions). Given a vector function
f:Pse— R4, we say that a set X C Ps,e s a set of non-dominated solutions
when there is no pair of solutions x,y € X where y < x, that is, Vo € X, Py €
X,y<uz.

Now we can define the bi-objective shortest path (BSP) problem. This prob-
lem was defined by Hansen [4] in 1980. Here is a simple definition of the BSP
problem:

Definition 4 (Bi-objective Shortest Path). Let, C = (C',C?) a pair of
cost functions, and c;j 1, the cost of the arc (i,j) in objective k. The bi-objective
shortest path problem are defined as follows:

min 2 (p) = Z (CijsCij2) (3)

PEPs,e =
(i,5)€p

2.2 Robustness

In real problems, one of the biggest problems is the many inaccuracies in the data.
Changes in the environment, noisy sensors and actuators, and lack of knowledge
of the problem are some examples of the issues that must be faced by algorithms
and applications that want to be useful in the real world. These events led to a
new optimization paradigm called robust optimization [5]. The lack of precision
can be modeled in two different ways, as explained in [6]: (i) stochastic, which
models inaccuracies assuming a random variable for each variable; (ii) robust,
assume that the value of each variable is obtained from an uncertain set of values.

In this paper we will use probability distributions instead of fixed values in
the cost function of the graph. In this work, we call robustness to the ability of
dealing with inaccuracies.
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3 Robustness Model

There are multiple ways to apply robustness to the BSP problem. However, they
all have a number of limitations, either by simplifying the real world, or by gener-
ating complex objective functions. We here propose a simple model of robustness
for this problem based on treating the costs as probability distributions. With
this approach, we want to generate a simple objective function that is able to
deal with not exact data input.

In real world, much data is uncertain. In the routing of vehicles, the speed of
vehicles, the time, the amount of gases emitted, etc. depend on multiple factors.
Some examples of such factors are: the hour of the day, the degree of congestion
of the road/lanes, the model of vehicle used, or the driver’s profile in terms
of acceleration up/down. For this reason, for the same trip, these environment
variables can take multiple values.

Despite this apparent randomness, environment variables often have a tem-
porary and stationary behavior. Rush hour traffic is usually similar in the same
period of the year. Given this behavior we could interpret, for example, travel
time as a probability distribution with u, the average travel time at any hour of
the day, and o2, its variance. We assume that random variables are independent.

For our RBSP problem, we will transform our fixed arc costs ¢;; 1, into random
variables ¢;; ;. This transformation of the kth-cost function into the new function
will depend on the knowledge of the particular real world variable. In a similar
way, we change our objective function z(p) in a new z(p)

z(p) = Z Cijk (4)
(i,5)€p
A random variable can have many values in theory. However, with regards to
road travel, many factors tend to have similar values. A typical way to be more
flexible in the data is consider, e.g., travel time, within a range. But, unforeseen
events can always occur that cause the data come out of that range. One way to
take all this information into account is to use probability distributions that most
closely resemble real behavior. We will characterize each probability distribution
by two functions: ((é;;%) that return the average of the probability distribution,
and 02(¢;j ) that returns the variance as output. Abusing of notation we write
1(Gij k) as wij K, that means the average of the random distribution of the arc
(i,7) in the objective k. In a similar way we write 02(¢;;x) as Ufj,k.
For an ideal road trip, its associated cost must be minimal and have the
least variation possible. Based on this idea we use, in Eq. 5, our robust objective
function to define the RBSP problem.

Bp) = " (Wijr pijm.2: 0551, 01.2) (5)
(i,5)€p

min z
PEPs,e

The values of p and o2 are the new costs associated to each arc of the graph.
In this way, we transform our bi-objective problem into another one with four
objectives, being able to apply any general algorithm that solve problems with
four objectives.
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4 Experimental Study

In this section we will present some experiments to illustrate the use of our
model. We will use the real map of the city of Malaga (Spain) to show how our
approach is applicable to the real world.

4.1 Algorithms

We test the impact of applying robustness to our problem by using two types
of algorithms. On the one hand, we use the mono-objective algorithms Dijkstra
and A*, because they are typically used in the state-of-the-art and applications.
On the other hand, we use an algorithm to obtain the Pareto optimal set in our
four-objective robust model. The selected the state-of-the-art multi-objective
algorithm is PULSE [7]. This is an exact recursive algorithm based in aggressive
pruning strategies. We implemented PULSE in the Java programming language
and included the modifications that the authors proposed in the article to extend
it to four objectives.

4.2 Madlaga City (Spain)

The city of Mélaga is one of the Spanish cities pioneering in smart cities initia-
tives. It is an example of medium-size European city. Figure 1 shows a map of
Malaga. The graph used in this study to model the city was obtained from Open
Street Map!. This graph had a preprocessing step to became strongly connected
and the resulting graph has 45,410 nodes and 118,388 arcs. Thanks to this, our
results would be compatible with applications that make use of real maps of
Open Street Maps. In this work, since we only want to validate the proposed
model, the weights of the arcs were randomly generated.

Fig. 1. Map view Malaga (Spain) from Open Street Map

1 Official web site: https://www.openstreetmap.org.
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4.3 Methodology

In this section we describe the methodology follows in our empirical study. To
illustrate the behavior of our model we are going to use algorithms that return
solutions without regard to robustness (Dijkstra and A*) and others whose out-
puts take into account the robustness (PULSE). Because, Dijkstra and A* are
mono-objective algorithms, we use weighted sums to take into account two objec-
tives. In both cases, we only assume fixed data in these two mono-objective algo-
rithms, so we use the weighing: af* + (1 — a)z4* with the weight o getting the
different values: @« = 1, @ = 0, @ = 0.5. With this weighting we want to get a
variety of solutions.

We run the algorithms which inputs are a graph (Mélaga) and a start and
end nodes. In the graph of Mélaga we selected a total of five pairs of random
nodes. Each node is numbered between 0 and 9. For each pair (4, j) we calculate
two paths: one from ¢ to j, and another from j to i.

These paths generate a total of ten instances on which we run the algorithms.
We will measure the execution times of each algorithm, because it is desirable
that the algorithm be fast, and the four objectives (z%) of each solution obtained:
the Pareto set in the PULSE algorithm and the single solution in the mono-
objective algorithms. Get z will allow us to compare if one solution is more
robust than another. In this paper, we will assume that one solution (path) p!
is more robust than another p? if 28 (p!) < 28 (p?), 25 (p!) < 25 (p?).

4.4 Empirical Results

Since the representation of four objective variables is a complex problem, we
have opted for a representation in the form of value ranges as it is showed in
the Fig. 2. In this, an example of the Pareto front of one of our test paths (3,2)
is displayed. The boxes are centered on z{* (r-axis) and 2z (y-axis) values; and
its width of each box expresses the 24 (the y-axis is analogous to the z-axis).
We can see that Dijkstra is not within the front obtained by PULSE. A*, on the

other hand, is on the front, but it is only one of the 21 solutions in the front.

840 ;
- .
‘\ Aler) Algorithms
800+ Dijkstra(zR) Dijkstra
A*
PULSE
" 760
R R
A== . ZR_zR R
720 - < ( 2 ) A'(zR) Dljkstra(—’2 2), (zR)
400 500 600 700 800 900

z

Fig. 2. Pareto front for one path of the Malaga City
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Table 1. Computational time in seconds of each algorithm

Path | Dijkstra A" PULSE
2B 2B 10528 40528 2R |28 10528 +0.528
0,1 |0.53|4.45]0.14 0.50 1 4.02|0.29 45.65
1,0 |0.05|2.66 |0.06 0.07|5.72 0.10 82.89
2,3 11.23/14.29/0.72 1.48 1 4.09|1.81 4879.25
3,2 10.31/1.26/0.48 0.7413.39 1 0.98 3641.96
4,5 |1.05|2.87|1.11 0.92/1.58|1.15 1696.29
54 10.96|1.01/0.75 1.04/2.63 | 1.72 11950.93
6,7 |1.14]1.26|1.73 1.25/0.81|1.51 1192.76
7,6 10.24/0.14|0.13 0.17]0.33 1 0.26 1616.03
8,9 10.49/4.12/0.43 0.26 | 9.87 1 0.88 115.98
9,8 |0.04/0.64|0.04 0.06 | 2.22 1 0.28 171.19

Next we will analyze some parameters measured in the different paths.
Table 1 shows the execution times of each algorithm to compute each path. As we
would expect, PULSE is slower than the other two algorithms. The differences
between execution times in the PULSE algorithm are because the proximity
between the start and end points. However, while the mono-objective algorithms
only found one solution, PULSE finds the whole Pareto set of solutions.

In order to compare the robustness between the obtained solutions, we calcu-
lated the number of solutions in the Pareto set whose objectives 24 and 2 (vari-
ances of the two probability distributions) are simultaneously strictly smaller
than the solutions obtained by the three versions of Dijkstra and A*. In the
Table 2 we observe that almost three solutions with less variability are obtained.

Table 2. Pareto size and number of solution obtained by PULSE more robust than
mono-objective algorithms

Path | Pareto set size | Dijkstra A*
z{{ zf 0.52:{2 + 0.5,25 zf zf 0.52{2 + 0.525

0,1 0 |1 |0 0 [0 |0
1,0 0 |1 |0 0 |0 |0
2,3 |26 1 /1 1|0 1 /1 1|0
3,2 |21 3 /0 |0 3 12 0
4,5 5 0 [0 |0 0 |0 |0
5,4 6 1 /1 1|0 1 /1 1|0
6,7 4 0 [0 |0 0 [0 |0
7,6 3 0 [0 |0 0 |0 |0
8,9 6 1 /0 |0 1 /0 |0
9,8 |24 8 |0 |0 8§ |0 |0
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While the computing time is higher, there are situations where it is preferable to
obtain more predictable routes, i.e., travel to airport or job interviews, salesman
that should visit various commercial establishment, etc.

5 Related Work

In tis section we present some works related to the application of robustness
to SP and BSP problem. First, the problem of the mono-objective SPP with
robustness is well studied in the literature. There are many models that add
robustness to this problem in different ways.

In [8] a random factor is added as a delay. This adds some imprecision in the
weight of the bow. They also describe how to use the knowledge of the probability
distribution of this random variable. The authors solved this problem by applying
a strategy similar to the minmax regret, using the supreme of the probability
distribution of the delay.

In [9], the authors modeled robustness using confidence intervals. Although
they tackled the mono-objective problem, they transformed it into a multi-
objective problem by moving from exact values to confidence intervals.

Other authors have started off from the existence of a finite set of possible
combinations of values that can take the weights of the arcs. These sets are called
scenarios. An example of this type of robustness for the SP problem is [10]. In
this paper, the authors used a minmax regret strategy to find a solution that
minimizes cost in the worst case scenario.

There are many papers that analyze robustness in bi-objective problems from
a theoretical point of view [11,12]. However, in all these articles the robustness
is only applied to one single objective. The mean strategy for finding a solution
is the minmax regret as in the mono-objective version of the problem.

6 Conclusions

In this paper a new model for the robust bi-objective shortest path problem has
been presented. Our purely multi-objective approach is distinct from the rest of
commonly used techniques. Thanks to our approach we can get a set of solutions
with different degrees of robustness and quality with respect to two metrics. In
addition, we have empirically illustrated our proposal comparing the results with
those typical algorithms of the state-of-the-art and show how we can get more
robust solutions than them.

As a future work, we will use real data instead of random weights and different
maps for solve the RBSP problem and so analyze the behavior of our model over
different set of data. Besides, we will compare our approach with another models
and implemented different algorithms to resolve the BSP and RBSP problem.
Also, we will apply this methodology of dealing with the robustness to other
problems in smart cities. We will also try not only to treat robustness, but also
to quantify its degree of use in different algorithms and applications.
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