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Introduction

In recent decades, increasingly sophisticated models have been proposed to under-
stand the complex and interdependent social and physical factors involved in the
development of sustainable urban systems. A recent OECD (Organization for
Economic Co-operation and Development) report points out that, despite recent
advances in computational capacities, methodological difficulties still prevent the
development of efficient and user-friendly urban modeling tools [1]. This gives
a fair overview of our current status on urban system research. The challenges
we face in modeling urban systems become more and more structural as we
keep improving computation technology. Over the second half of the twentieth
century, the research approach on urban systems has gradually transformed from
traditionally physical design-focused to a framework with more attention on social
and economic processes (e.g. [2–5]). The transition features at least three new
standing pillars of urban modeling: behavior component, spatial interaction, system
dynamics. Incorporating these modeling aspects into urban system models calls
for a more integrated structural understanding of urban systems. Such a structural
understanding of urban systems is not only necessary to the management of city
operations, but also fundamental to public policy-making. It requires modeling
of urban systems to take into account all physical/geographic, social, economic
components, and their interrelationships in a simplified but informative way.

To understand the structure of urban systems, a starting point is the behavioral
motivation of the city: why do people live in cities? Gutkind [6] answers the question
as following: an unfulfilled longing for the amenities and distractions of city life
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has driven people living in cities, where men have developed more differentiated
habits and needs within proximity. Recently, Glaeser [7] answers the question with
more enthusiasm: people come to cities in search for something better. Cities are
proximity, density, and closeness at a much larger scale. The human nature of
desire for connections and proximity, searching for more and better choices, has
driven people to work and live in cities. How this human nature is organized into
a landscape where different people, culture, and sectors are integrated is the key
to understand the structure of urban systems. It is easy to understand why the rich
and the middle-class choose to live in the cities and bear higher living cost, for
example, but why the poor? One observation is that, the urbanization of poverty
may be explained by the better access to public transportation in cities [8]. In a
nutshell, it is the diversified preferences that drive urban residents’ choices, and the
urban system exists as an aggregate representation of all individual choices.

From a modeling perspective, the difficulty also lies in between calibrating
household behavior and aggregate representation. The complexity in understanding
household behavior comes from the fact that urban residents face an even larger
choice set, while that is also what is fascinating about cities. Location choice is the
major decision of each household in the city, because many of the amenities and
distractions of city life are likely associated with location. Location is also the basic
component of any urban systems. All developed locations and open space left in
between constitute a continuum of urban landscape, which is the framework urban
systems build upon.

Given location choices and income constraints, households decide on the amount
of consumption through a series of decision making mechanisms. The current
simulation approach to urban systems seeks to link together different sub-systems
and markets through modular architecture with substantial geographical details
and level of behavioral realism (e.g. [9, 10]). The advantage of such approach is
that it is good at simulating short run evolution of urban systems at an extremely
disaggregate level. The disadvantage, on the other hand, is that such multi-agent
system is vulnerable to structure change, especially in the long run. In other words,
current urban simulation models tend to perform well in descriptive explanation,
but lack strong ability of prediction (e.g. in land use change and ecosystem
applications). In today’s regional economy, not only is the gradual-adjustment
type of public policy process important, but also the public policy for long term
regional development planning. To address both types of policy needs, it is critical
to develop urban simulation tools which are robust to structure change and capable
of predicting urban evolution in relatively long run.

In this chapter, we focus on the role of urban spatial structure in urban
simulations, and how it helps to strengthen the current simulation approach to urban
systems. As discussed in Crooks et al. [11], one of the key challenges to ABM
simulation in geocomputation is to what extent the model is rooted in independent
theory. Basing on household behavior, urban spatial structure theory integrates
economy system, land use, and transportation system together, which provides
an easy to implement framework for simulating urban systems. Methodologically,
urban spatial structure theory also provides a trackable way to measure performance
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and efficiency of urban systems, which is valuable to public policy-making. Section
“Components of Agent-Based Urban Simulation” discusses basic components of
agent-based urban simulation. In sections “Incorporating Urban Spatial Structure”,
“Transportation and Congestion: An Application”, and “ABM Simulation: Land
Development and Congestion,” a monocentric city simulation model of transporta-
tion cost and congestion effects is developed to illustrate how urban spatial structure
models can be integrated with ABM simulation. Section “Concluding Remarks”
concludes the chapter with discussion on policy implications and future research.

Components of Agent-Based Urban Simulation

Urban simulation models are constructed to address operational needs in planning
and policy-making for increasingly complex urban systems. Many well-known
urban simulation models have two basic functionalities: land use and transportation.
From a modeling perspective, an agent-based simulated urban system should
have three categories of building components: households, spatial interaction, and
landscape. In this section, we discuss the role of each category in urban simulation.
These components are also essential constituents of urban spatial structure models.

Household Behavior

The human behavioral component is the building block of many observed social and
economic phenomenon. The first basic behavioral component of a urban system
is household—each household acts as a node in the network of urban systems.
The decision and choice made by one household can directly or indirectly affect
the behavior of other households across the city. In the economics approach, the
(rational) behavior of a household is usually summarized into a mathematical
form—utility function. The utility function approach provides a simplified way
to represent the inter-relationship among all available choices. In the context of
urban modeling, these choices are usually being categorized into housing consump-
tion, non-housing consumption, and transportation consumption. Given household
income as a binding constraint, the balance among three consumption categories
can be realized through household location choice. Thus, optimal location choice is
equivalent to utility maximization for a rational household.

Household behavior can be generalized to all sorts of agents—business owner,
land developer, social planner, and etc. Similarly, the utility function can also be
generalized to generic objective function—profit function, social welfare function,
and etc. To completely describe the behavior of these agents, a decision making
mechanism has to be established basing on the objective function. In most of
mathematical social science fields, optimization theory is employed to develop
decision making mechanism for agents. The idea is to maximize (or minimize)
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the objective by optimizing the combination of all available choices. Note that, for
many of the urban system problems, a socially optimal decision is not necessarily
optimal to all agents because of the resource constraints. On the other hand, if
all agents make individual optimal decisions, the aggregate social outcome is also
not necessarily optimal to the society (e.g. [12]). Such inconsistency between
aggregate modeling and aggregated individual modeling has been a major challenge
to analytical approach to urban systems. The advantage of agent-based simulation
approach to urban systems, however, is to explore the aggregate social outcome
(i.e. emerging properties) from a disaggregate level which the analytical equilibrium
approach often fails to do [13].

Spatial Interaction

Individual households as agents are not isolated from each other. Urban households
live within very close proximity, thus mutual interactions are an indispensable
part of urban life. Households interact with each other through two important
mechanisms: social network and market. Many systems take the form of networks,
and all non-economic and some economic components of urban systems are
connected through social networks. An important property of social network is
the so-called small world effect or neighborhood effect, which means the network
effects tend to be localized [14]. In urban spatial context, many of the spillover
effects are associated with social networks, which is something to take into
account in urban modeling and public policy-making. Bramoullé and Kranton [15],
for example, show that individuals who have active social neighbors have high
benefits from public goods with only little effort. The social network effects can
influence household location choice, even though other factors are also important.
Ettema et al. [16] suggest that social interactions between households and between
individuals potentially have an influence on household location, mobility and
activity choices. Wang [17] shows that neighborhood spillover effects through
housing markets can affect the whole land development process in an urban area.

The connection through markets is more measurable, at least from the economic
perspective. Households may compete with each other on the market—for instance,
the labor market, where over-supply is often the case. Households may also
corporate with each other through the market—for instance, form a labor union
or business alliance, so that everyone can benefit from collective bargaining. In
ABM simulation, a common approach of modeling market mechanism is to allow
trade between agents [18]. Trade between agents is more like an atomic market,
which is quite different from the macro market that all households can potentially
participate. Coordination between atomic markets like trade mechanism and the
macro market still remains a challenge to ABM simulation. In urban simulation,
how to integrate different macro markets (e.g., housing market and labor market)
into one simulation framework is a more pressing challenge, because to inform
policy-making an understanding of the linkage among different markets is critical.
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In short, because of the existence of social networks and markets, the aggregate
social outcome in urban systems is no longer a simple adding-up of individual
decisions. An urban simulation model which fails to consider the consequence of
these interaction mechanisms may produce biased results.

Landscape

Landscape is the physical foundation of urban simulation. All scientific modeling
requires some level of abstraction or simplification of reality and observed phe-
nomenon. In urban modeling, the spatial configuration of agent activities matters.
The conceptualization of urban landscape varies across different disciplines. For
example, ecologists pay more attention on the structure of impervious surface and
its impacts on ecosystem processes (e.g. [19]). Economists are more interested in
the residential pattern and the spatial distribution of economic activities (e.g. [20]).
These alternative perspectives on urban landscape are not independent from each
other as they seem to be. The structure of impervious surface, for instance, is just a
physical description of road system and residential development.

Landscape can be generated from image or GIS data of original urban layout
using visualization techniques [21]. This approach is often used in scenario-based
case studies. Another approach is to design landscape geometrically following
certain pattern of urban configuration, and the transportation system is usually
integrated as part of landscape. In a two-dimension urban simulation, landscape
can be modeled in grid or circular form. Circular form is usually used to model
monocentric urban structure, where each ring can be defined as a model unit.
Grid form is more generalized, and it can be used in both monocentric and non-
monocentric urban modeling. The smaller the circular rings and grid cells, the more
realistic is the simulation. However, there is always a trade-off between computation
time and level of details in time, space, and agents that a simulation model can
represent. In practice, the choice of landscape form depends on the purpose of
simulation and computation power available.

Incorporating Urban Spatial Structure

In this chapter, an ABM simulation on transportation cost and congestion effects
is developed to illustrate the role of urban spatial structure in agent-based urban
simulation. Due to space limit, the model is confined to the monocentric city model
only. Different components of the simulation model will be discussed. The theory
of urban spatial structure has inspired many analytical and empirical insights about
urban systems, which should be integrated in urban simulations [11]. In general,
analytical models like urban spatial structure models provide more tractable step-
by-step procedures for simulation than heuristic models do.



148 H. Wang

The simulation framework is designed based on an urban spatial structure model
which integrates household behavior, market interactions, and urban landscape.
The idea is to illustrate how we can learn more about urban system dynamics
through emergent properties by incorporating urban spatial structure with the ABM
simulation approach. The basic setup for the urban spatial structure is following. The
city consists of a continuum of households, living across the urban area. The homo-
geneous urban land is divided into many areas (residential and non-residential),
not necessarily equally, each of which has fixed boundary. Households within
each region have three major consumption categories: housing/land (residential,
industrial, commercial, and etc.), non-housing, and transportation. In the model,
we focus on transportation and congestion effects.

Transportation and Congestion1: An Application

The interaction between residential land use and transportation land use, which
may be generalized to the interaction between land use and infrastructure, can
result in potential negative externalities. Among which, congestion is the biggest
concern in urban development policy. As Wheaton [22] points out, if urban land
is allocated to the highest paying use (e.g. as in the Herbert-Stevens model [23]),
aggregated land rent is maximized only if there is no externalities. In many of
the conventional urban development models, especially spatial equilibrium models,
transportation cost is given exogenously and with no congestion effects. In part,
this is because congestion cost depends directly on the choice of travel/commuting
routes. Modeling travel pattern even with low degree of realism poses challenges
to the framework of spatial equilibrium models. On a two-dimension plane, roads
and streets can go any direction, modeling travel pattern and congestion essentially
becomes a high-dimension problem. Therefore, in either analytical modeling or
simulation modeling, certain simplifications have to be made upon the structure of
travel patterns. The advantage of simulation approach is that, it allows more details
and flexibility in model implementation. In this section, an analytical urban spatial
structure model with congestion is introduced, which can be solved as a closed-city
optimal control problem. Basing on the analytical model, a dynamic simulation is
designed to illustrate how urban simulation can be used to inform policy-making.

1Following Solow [27], congestion cost is defined as the cost of travel per person per mile at any
point, which depends on two factors: the number of travelers using that part of the transportation
system, and the amount of land allocated to transportation use at that point
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Static Approach with a Closed-City

Given a circular monocentric city where N consumers commute inwards either to
the central business district (CBD, the central labor market), or another region (the
local labor market) between home and the CBD. The commuting distance (t),2 if
ignoring the local labor market, can be measured by the ray from the CBD to home.
The city is a closed environment, with border at distance B. Following Solow [24]
and Wheaton [22], an intermediate variable is created to reflect the potential travel
demand, n(t), equal to the number of households residing beyond distance t. In
Solow [24] and Wheaton [22], this variable represents the number of commuters
passing region t on their way to work in the CBD.3 In this chapter’s framework,
residents may choose to work locally, thus the actual travel demand in region t can
be less than n(t). Intuitively, the marginal cost of travel in region t is expected to
be a positive function of travel demand, and a negative function of transportation
capacity in region t.

Travel demand and transportation capacity in region t can be defined as follow-
ing. Let s denotes a region between region t and the CBD, i.e., 0 � s � t, and ˛t , s

be the proportion of residents who live in region t and choose to work in region s.
Assuming that all regions are discrete, and s D 0 represents the CBD region, then by
definition

Pt
sD0 ˛t;s D 1.4 The travel demand at region s, D(s), can be expressed as:

D.s/ D
Xs

iD0

XB�1

tDi
.n.t/ � n .t C 1// ˛t;i (1)

If all residents choose to work either in their residing region t, or in the CBD
region, then the travel demand can be simplified to:

D.t/ D
XB�1

jDt
.n.j/ � n .j C 1// ˛j;0 (2)

In continuous case, D(t) can be written as:

D.t/ D �
Z B

t
n0.z/˛zdz (3)

where ˛z is the proportion of residents who live in region z and choose to
work in the CBD region, which can be a constant or a function of distance z.

2In this chapter, t is used as a discrete integer to denote both commuting distance and regions to
simplify notation. This implies that all regions have the same width, but different areas
3For convenience, in the circular monocentric city model the distance to the CBD, t, is often being
used to index land use region as well. In this case, a land use region is a ring around the CBD
4An implicit assumption here is that, residents living in region t do not choose to work in regions
beyond t. Residents who work in regions beyond t are better off by choosing to live in their working
region, because the congestion cost increases as it gets closer to the CBD
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An implicit boundary condition here is n(B) D 0, due to the closed-city assumption.
Transportation capacity is denoted as the fraction of the land allocated to roads
and streets in region t, �(t). Following Wheaton [22], the urban land development
planning can be formulated as an optimal control problem, in continuous case:

0

B
B
B
B
B
B
@

Max
X.t/;Q.t/B

R B
0

h
Y�T.t/�X.t/

Q.t/

i
2� t .1 � �.t// dtC �

A��B2
�

RaCˇ ŒU .X; Q/ �U0�

Subject to W
T 0.t/ D c

�
D.t/

2� t�.t/

�

n0.t/ D � 2� t.1��.t//
Q.t/

(4)

with two boundary conditions:

�
T.0/ D 0

n.B/ D 0
(5)

Y, T(t), X(t), and Q(t) are household income, transportation cost, non-land
consumption (the numeraire, price is standardized to 1), and land consumption,
respectively. A is the total land area available, and Ra is the opportunity rent of urban
land (e.g. agricultural land rent). U(X, Q) is the household utility function. c(�) is the
marginal transportation cost, which is a function of the ratio of travel demand to
transportation capacity D.t/

2� t�.t/ . c
0

(�) and c00(�) are usually assumed to be positive (e.g.
[25]). The maximization problem in Eq. (4) can be solved following optimal control
theory (see [22]).

Dynamic Approach with an Open-City

The static approach to urban land development planning in Eq. (4) ignores the urban
evolution process. In reality, the urban evolution proceeds as a gradual process
and takes decades to adjust [26]. Instead, the urban authority can choose to plan
development stage by stage, i.e., planning and developing one region each time
period rather than the whole urban area at once. The gradual development process,
in many important aspects, is in analogy to the concept of regional economic
evolution. At different stages of development, changes of economic and institutional
environment can lead to updated perspective and goal on urban development
planning. Therefore, a dynamic disequilibrium approach provides a better way to
frame the planning problem, which is also one of the main advantages of simulation
approach to urban modeling [10].

In the circular monocentric city, the development process goes naturally from the
CBD to outside suburban area ring by ring. The land use and economic landscape
may show path dependence, but new development can be treated as another planning
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problem conditional on previous development. Without loss of generality, index
each ring region by natural numbers (t D 1 , 2 , 3 , : : : , with the CBD being region
0), and for any region t the optimization problem becomes:

Max
X.t/;Q.t/

�
Y � T.t/ � X.t/

Q.t/

�

2� t .1 � �.t// C ˇ ŒU .X; Q/ � U0� (6)

If t represents the newly developed edge region, then the change of transportation
cost �T only depends on the travel demand originated from region t and the
transportation capacity of region t. From the first constraint in Eq. (4), given that
the distance horizon is discrete (and �t D 1), we have:

�T D T.t/ � T .t � 1/ � T 0.t/�t D T 0.t/ D c

�
n.t/˛t

2� t�.t/

	

(7)

However, the transportation cost T(t) (not �T(t)) is not solely determined by
conditions in region t, instead it shows path dependence:

T.t/ � T .t � 1/ C c

�
n.t/˛t

2� t�.t/

	

(8)

By the recurrence relation, with boundary conditions T(0) D 0 and n(t C 1) D 0,
Eq. (8) can be written as:

T.t/ � c

�
n.t/˛t

2� t�.t/

	

C c

�
n.t/˛t C Œn .t � 1/ � n.t/� ˛t�1

2� .t � 1/ � .t � 1/

	

C : : :

D
tX

iD1

c

�Pt
sDi Œn.s/ � n .s C 1/� ˛s

2� i�.i/

	

Following Solow [27], choose an exponential form for c(�), c
�

n.t/˛t
2� t�.t/

�
D

k
�

n.t/˛t
2� t�.t/

�m
, thus

T.t/ �
tX

iD1

k

�Pt
sDi Œn.s/ � n .s C 1/� ˛s

2� i�.i/

	m

(9)

where k and m are positive constant parameters. Note that, if ˛s is constant for all

regions, i.e., ˛s D ˛, then
tP

sDi
Œn.s/ � n .s C 1/� ˛s D n.i/˛. n(i) is the population

residing beyond distance i, and n(i)˛ is the portion of that population who work in
the CBD region. In this case, Eq. (9) can be simplified into:

T.t/ �
tX

iD1

k

�
n.i/˛

2� i�.i/

	m

(10)
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Given transportation cost T(t) computed according to either Eq. (9) or Eq. (10),
and other parameters, the optimization problem in Eq. (6) can be solved from the
following first order necessary conditions:

 
UQ

UX
D Y�T.t/�X.t/

Q.t/

U0 D U .X.t/; Q.t//
(11)

In the closed-city model, U0 can be determined endogenously. In the open-city
model, U0 is usually set as exogenous [22]. In Eq. (6) and Eq. (11), Y and U0 are
exogenous parameters. Y can be considered as the average income level in a given
region (e.g. census tract). U0 can be interpreted as the minimum living standard or
quality of life in the region given the income level Y. The idea is that Y and U0

are not two independently determined parameters. The two parameters can also be
interpreted at individual household level.

The optimum conditions in Eq. (11) are similar to those of spatial equilibrium
models, at least in the mathematical form. The essential difference is that the
transportation cost now depends on the travel demand and transportation capacity
from all previous stages of development. Put another way, the transportation cost
for residents in the newly developed region now reflects the congestion effects
created when they pass through all previously developed regions on the way to the
CBD. Since traffic congestion is a mutual effect, from a social planner’s perspective,
therefore, the extra transportation cost imposed on residents located in previously
developed regions by the congestion effects also needs to be taken into account.

ABM Simulation: Land Development and Congestion

The trade-off between transportation capacity and congestion does not disappear
as long as there exists land scarcity. Traffic congestion is a price that urban
residents have to pay for taking the advantage of concentration of amenities and
economic activities by living in cities. Congestion, as the result of many individual
trip decisions, driving habit, and transportation mode choices, is a complicated
phenomenon to model. As Lindsey and Verhoef [28] point out, there is no single
best way to model traffic patterns and congestion. For the purpose of modeling land
use and transportation planning, it is adequate to capture only the main stationary
relationship. In this section, an ABM simulation is implemented based on the
monocentric urban spatial structure.

The goal of ABM simulation is to explore emergent properties out of a complex
and open-ended system. In the context of urban modeling, ABM complements spa-
tial equilibrium based models in both behavioral foundation (or micro-diversity as
in Crooks et al. [11]) and system dynamics. There are three main components in an
ABM simulation: stochastic component, decision making mechanism, aggregated
representation. Stochastic components are the input to the model, which drives
the process dynamics. Decision making mechanism, usually built upon a set of
rationality and behavioral assumptions and optimization theory, is a simplified
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description of the individual behavior. Aggregated representation is more about
output analysis. The results of ABM simulation are often not as neat as those of
analytical equilibrium models. Therefore, certain level of aggregation (e.g. graphical
and statistical analysis) is necessary to interpret the results and their implications.
One of the concerns on ABM simulation practice is that the theoretical implications
of many simulation models often remain implicit and hidden behind the mask of
ad hoc assumptions about model structure and system process [11]. Therefore, it is
imperative to clarify and lay out these major components in ABM simulations.

In the ABM simulation developed below, the stochasticity comes mainly from
the population (consists of agents) growth process and household (agent) income
variations. The decision making mechanism is designed basing on the open-city
model developed in section “Transportation and Congestion: An Application”. For
computational purpose, some aspects of the structural model may be simplified.

Simulation Setup

In this ABM example on congestion cost, the landscape for model development
is a monocentric circular city which consists of a CBD region in the center and
residential regions surrounding the CBD. To study the urban land development
dynamics, the simulation starts from a city with zero population and none residential
development at the beginning. The development process of the city includes two
sub-processes: population growth and new land development, which are also where
the potential stochastic components come into play. Instead of modeling a birth-and-
death process, the simulation only focuses on the net population growing process,
which is assumed to follow a stochastic arrival process. The income level of each
agent (i.e. household) is drawn from a statistical distribution that defines the range
of income across the city.

Another important input to the simulation is the amount of land devoted to
residential development and transportation capacity in each region. Transportation
capacity can be considered as a local public good, which also has spillover
effects (by reducing congestion effects) to households from other regions. If the
provision of transportation capacity is funded through property tax (by taxing
housing expenditure), then there exists an optimal level of �—the proportion of
land devoted to transportation capacity. The determination of a socially optimal �

is not straightforward, because � apparently depends on the total (taxable) housing
expenditure. At the same time, each individual household’s housing expenditure
depends on the transportation cost and therefore �. To simplify, changes of � can be
considered as exogenous policy shocks. In this simulation, � is assumed to follow
an exogenous distribution with respect to distance t (to be discussed later).

The core element of the decision making mechanism is the household utility
function. For each household, the disposable income is allocated to three different
expenditures: housing, non-housing, and transportation. Given a constant ˛—the
proportion of households working in the CBD, basing on Eq. (10) transportation
cost is same for all households within a given region. Therefore, there are only
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two decision variables left in each household’s consumer problem. The household
decisions on housing and non-housing consumptions are made basing on the optimal
conditions in Eq. (11)5. In this simulation a Cobbs-Douglas utility structure is
specified [29], that is

U .X; Q/ D �0X�X Q�Q (12)

where �0, �X , and �Q are constant parameters. While each household is differenti-
ated by its income level, households may also be differentiated through the relative
preference on housing and non-housing consumption, i.e., choosing different �X and
�Q. Upon solving the household optimization problem, for each residential region
t, all individual optimal housing consumptions constitute the aggregated housing
consumption. The total land available for residential development in region t is
given by 2� t(1 � �(t)). Denoting the aggregated housing consumption in region t asPh

iD1 Q�
i .t/, with h being as the total number of households in the region, Q�

i .t/ the
optimal housing consumption, then a measure for residential development density
(�) in the region can be defined as:

�t D
Ph

iD1 Q�
i .t/

2� t .1 � �.t//
(13)

The residential development density, that measures the tension between resi-
dential land demand and supply, is an emergent property in this simulation. More
specifically, the ABM simulation can help to illustrate the dynamic relationship
between transportation cost and land development density, as well as the devel-
opment density distribution with respect to distance. The change of development
density from the scenario with congestion effects to the scenario without congestion
effects is also interesting to explore.

Another interesting emergent property in this simulation is the housing price
dynamics. As being implicit in Eqs. (6) and (11), the (unit) housing price in the
analytical model is endogenously determined. The housing price solved through
Eq. (11) is the individual willingness to pay for housing of each household. The
existence of such heterogeneity of housing prices within a region can be explained
by the residential sorting process [30]. Within a given region, households who are
willing to pay more for a unit of housing are more likely to reside at location with
better amenities or public services. Through the sorting process, household location
choices within the region therefore reflect their willingness to pay. In this simulation,
the micro sorting process is not explicitly modeled. There are two ways to look at
housing price: (1) the cross-sectional housing price distribution within each region;

5Even though the optimal conditions here are derived to maximize land rent from a representative
household (or social planner)’s perspective, they are equivalent to those first order necessary
conditions of a household expenditure minimization problem. The minimized expenditure equals
exactly to the household disposable income net of transportation cost which depends only on
distance t. The reason for this result is that housing price is endogenous in the model, which
exhausts any disposable income net of non-housing and transportation expenditure
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(2) the distribution of housing price with respect to distance. In spatial equilibrium
models, there exists a basic trade-off relationship between transportation cost and
housing price, so that households are indifferent between locations across the city.
In the proposed ABM simulation model, given the existence of congestion effects,
how the relationship would change becomes a policy relevant question. So does the
relationship between housing price and development density.

Parameterization

In this simulation, both the dynamic nature of the system and the open-ended
environment of the model define a terminating simulation—the urban system is
unlikely to reach a steady state. Given the setup of the model, two criteria can
be chosen to terminate the simulation: (1) the simulation terminates after average
housing price reaches certain level, for example, its opportunity cost—agricultural
rent; (2) the simulation terminates after the city expands beyond a given boundary
(e.g. t � 10). Depending on the goal of simulation, either criterion can be a
reasonable choice.

The values of all key parameters in the simulation are set based on the scenario
of large U.S. metropolitan areas. According to the U.S. Bureau of Labor Statistics
Consumer Expenditure Survey in 2011, for instance, urban households on average
spent $50,348; and $17,226 of which was on housing consumption, $2586 of which
was on transportation. Given this empirical evidence on income allocation, the
parameters �X and �Q are set to 0.5 and 0.3, respectively6. According to Arnold
and Gibbons’s [31] analysis of urban impervious surface coverage, about 5 � 10%
of suburban land, 20 � 30% of urban land, and 40 � 60% of commercial center
land is devoted to roads and parking. Therefore, the proportion of land devoted to
transportation capacity, �(t), is specified as a decreasing function of distance t in the
range of 5 � 40%. Similar to Wheaton [22], the parameter ˇ in the transportation
cost is set to 1.1, which is a very conservative specification on congestion effects.
Further sensitivity analysis can be performed to explore the impact of parameter
choices. All simulation parameters are summarized in Table 1.

Simulation Results

The simulations are programmed in MATLAB and implemented on a 64-bit
Windows 7 operating system, with a 3.40 GHz Intel Core i7–2600 processor and
12.0 GB RAM. For a simulation (with graphing) with both congestion scenario and

6The parameter 0.5 and 0.3 are chosen based on relative income allocation. 0.5: 0.3 � non-housing
consumption net of transportation cost: housing consumption
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Table 1 Parameters in the ABM simulation

Variable Value Definition

T 10 Number of residential regions
POPt Triangular (2,5,4)a Net population growing process (in 10,000)
�0 1 Utility function parameter
�X 0.5 Utility function parameter
�Q 0.3 Utility function parameter
k 0.01 Transportation cost function parameter
m 1.1 Transportation cost function parameter
˛ 0.5 Proportion of households working in the CBD

�(t)
�
40 � 35.t�1/

T�1

�
% Land devoted to transportation capacity

Y Uniform [30,000,100,000] Household income level
U0 U0 D Y/2 Household desired utility level

a All generated numbers are rounded to integers

no congestion scenario7, the simulation CPU time ranges from 100 to 130 seconds.
Given the range of the city, the CPU time increases with the number of agents
(population size). There are two major endogenously determined variables in this
simulation: housing price and transportation cost. The two variables are also highly
policy-relevant.

The housing price distributions (kernel density estimation with Epanechnikov
kernel and optimal bandwidth) are presented in Fig. 1. Due to space limitation, four
regions (1, 4, 7, 10) are included only. All housing prices are standardized (divided
by the maximum price and multiplied by 100) so that the maximum price equals
to 100. Note that the graphs only show the relative distribution of housing prices
within each region, which varies from region to region. As the distance to the CBD
increases, moving from the CBD to suburban area, the price distribution becomes
less skewed. That is, housing price is more uniformly distributed across households
in suburban area. One possible explanation for this phenomenon is that, given
household income follows a uniform distribution, in the suburban area household
income level has more impact on the willingness to pay (individual housing price)
for housing consumption.

Another way to look at housing price is through the aggregate housing price
level in each region. Figure 2 shows the relationship between aggregate housing
price and distance to the CBD. The dashed line (red) indicates an approximately
negative linear relationship between housing price and distance to the CBD under
no congestion scenario (see footnote 7). Under no congestion scenario, the marginal
price change with respect to distance to the CBD is constant. With congestion effects

7In the congestion scenario, the transportation cost is calculated according to Eq. (10). In the
no congestion scenario, the transportation cost per unit distance is set equal to the transportation
cost at t D 10 under congestion scenario divided by 10. In other words, at region t D 10, the total
transportation costs in both scenarios are the same (see Fig. 3)
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Fig. 1 Housing price distribution at different regions. Note: All housing prices are standardized
with maximum price equals to 100. The density curves are kernel estimation with Epanechnikov
kernel and optimal bandwidth

considered, housing price decreases quickly first, and then slows down as moving
further from the CBD. Under the congestion scenario, the housing price level change
reflects both a distance effect and a congestion effect. Both effects lower the housing
price. The distance effect reflects the fact that, the further moving from the CBD,
the higher the transportation cost and therefore the lower the housing price. The
congestion effect, on the other hand, has a diminishing effect. In the regions near
to the CBD, congestion tends to be more severe thus dominates the distance effect.
This can be seen from the part where the solid (blue) line is under the dashed line
(red) in Fig. 2. In the regions far from the CBD, the congestion effect is reduced and
the distance effect becomes dominant.

The change of transportation cost works in the opposite direction to the change
of housing price. According to the spatial equilibrium principle, if something is
attractive in one location, then we should expect to see something unattractive
offsetting it in the same location [32]. In this model, housing price and transportation
cost offset each other. In Fig. 3, the dashed line (red) shows the transportation cost
without congestion effects, where total transportation cost is in a direct relationship
with distance to the CBD. The marginal transportation cost in this case is constant
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Fig. 2 Average housing price and distance to the CBD. Note: The aggregate housing prices are
standardized with the price in region 1 equals to 100
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Fig. 4 Residential land development density and distance to the CBD. Note: The density measure
is standardized with density in region 1 equals to 1

(see footnote 7). When there are congestion effects associated with travel, the
total transportation cost becomes higher as expected. The diminishing trend of
marginal transportation cost in this case reflects the fact that congestion effect is
reduced as households reside further from the CBD. One other result to note is
that, the difference between transportation costs under two different scenarios is not
maximized at region 1. The maximum difference is reached around region 3.

As discussed in section “Simulation Setup,” another way to explore the simu-
lation outcome aggregately is to look at residential development density in each
region. In this model, both the housing demand side (population) and housing
supply side (amount of land in each residential region) are exogenously determined.
Given that these two factors directly determines the pressure on land development,
thus the land development density is likely to follow an exogenously determined
pattern as well. In other words, the existence of congestion effects should not have a
strong impact on land development density across all regions. The results presented
in Fig. 4 confirm this conclusion. In Fig. 4, the development density measure is
standardized (divided by the maximum density) with density in region 1 equals to 1.
The development density under two different scenarios is almost overlapping with
each other, even though there indeed exists small differences (see Table 2). Note that
the congestion effects are also a function of distance and the size of the city (e.g. the
radius of urban area in reality), which becomes important especially in an open-city
model.



160 H. Wang

Table 2 Residential land development density and distance to the CBD

Region 1 2 3 4 5 6 7 8 9 10

With
congestion

1.0000 0.5255 0.3295 0.2292 0.1905 0.1167 0.1120 0.0912 0.0890 0.0668

No
congestion

1.0000 0.5178 0.3267 0.2270 0.1893 0.1164 0.1133 0.0925 0.0913 0.0694

Note: all numbers reported are corresponding to Fig. 4

Discussion

The advantage of the ABM simulation approach to urban systems is that it has a
solid behavioral foundation of individual decisions. Depending on the context of
modeling, the simulation procedure still needs guidance on model structure from
analytical approach. In the simulation model presented above, we have incorporated
urban spatial structure models and spatial equilibrium theory into simulation. The
strength of these independent theories is that they provide simplified and structural
ways to understand a complex system. Built upon which, simulation models can
become a powerful tool in facilitating structural understanding of urban systems
while with adequate level of spatial details.

The current model still hinges on the classic monocentric urban spatial structure
with homogeneous landscape. The limitations of such models could be relaxed
in at least two ways. First, the literature has long been paying attention on the
development of non-monocentric models. The difficulty with developing non-
monocentric urban spatial structure is mainly on the analytical treatment of spatial
dimensions. This could be a bottleneck in integrating the analytical approach and
the ABM approach, but it also points to a fruitful future research direction. Another
development in the literature that could help to refine the modeling of urban system
dynamics is the residential sorting process. The entire urban area may never reach
an equilibrium. At a smaller scale, however, households can sort across different
locations (e.g. within a community) and reach a local equilibrium. This requires
urban simulation to take into account the existence of microstructures within the
urban system.

Sensitivity analysis, which many existing ABM simulation models fail to empha-
size, is an important part of aggregate representation. In some sense, sensitivity
analysis is as important as parameter calibration. In every simulation model, certain
parameters have to be exogenously given or calibrated. The sensitivity of simulation
results with respect to the choice of exogenous parameters is necessary knowledge
for understanding the results. In the model presented above, parameter m—a
transportation cost parameter—is an important parameter to the model [22]. Figs. 5
and 6 show how the change of m (from 1.0 (Fig. 5) to 1.2 (Fig. 6), the default value
in the model is 1.1) influences the main results of simulation.

Combining Figs. 2, 3, 4, 5, and 6, as parameter m changes, we can see that
the main patterns of housing price, transportation cost, and development density
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Fig. 5 Sensitivity analysis on transportation cost parameter m (m D 1.0)

between congestion scenario and no congestion scenario still hold. The noticeable
changes in the results are mostly from the magnitude of specific measures.
Therefore, as far as the specification on transportation cost function is concerned, the
simulation results are robust. Similarly, sensitivity analysis on other key parameters
(e.g. proportion of households working in the CBD) can be performed.

Relating to the model in this chapter, the commuting cost in the city also depends
on the travel route choice. In this chapter’s simulation model, the transportation
system consists of symmetric ray-style routes and all households choose the shortest
route to commute. An alternative scenario would be allowing households to choose
among different travel routes. Unless the urban configuration is asymmetric and
heterogeneous, then there is only negligible difference between the two scenarios.
On the other hand, allowing for travel mode choice could lead to substantial
difference in the outcomes, because different travel modes directly imply different
levels of transportation cost given other factors.

Though the simulation model is only for illustration purpose, we can still learn
some policy implications from the outcomes. The first policy-relevant result is the
underestimate of transportation cost (in classic spatial equilibrium models) and
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Fig. 6 Sensitivity analysis on transportation cost parameter m (m D 1.2)

the nonlinearity of transportation cost, as shown in Fig. 3. The underestimate of
transportation cost is due to the ignorance of congestion cost. The ABM simulation
helps to inform the nonlinearity of transportation cost, which is valuable for
designing and evaluating public transportation system. A land use policy-relevant
result is that land development density is insensitive to the existence of congestion
costs (Fig. 4). This on the other hand implies that land development density depends
more on overall urban spatial structure and demographics. Therefore, both economic
planning and land use planning have important impacts on land use density.

Concluding Remarks

The modern city is an arrangement between its residents and local governments
from both an institutional and a financial perspective. Seeking for efficient public
policy and proper government intervention is essential to the sustainability of such
an arrangement. Because of the mobility and heterogeneity of the population, it is
often difficult to keep track of all individual household location and consumption
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decisions. On the other hand, public policy tends to provide general prescription for
diversified individual preferences. How to aggregate the individual preferences into
a form that policy makers can practice on is a critical task of urban modeling. The
ABM simulation approach proposes a way to visualize urban systems so that well-
founded social and economic implications can be derived to inform public policy-
making. Though the multi-agent systems introduce solid behavioral foundation to
urban modeling, the current urban simulation methodology still needs emphasis on
structural understanding of urban systems. White and Engelen [33] raise two major
concerns on high-resolution simulation models of urban and regional systems, for
example, regarding the evaluation of simulation results and model predictability.
One solution to address these issues is to incorporate urban spatial structure theory
into urban simulations, which is the main theme of this chapter.

In this chapter, the linkage between major components of urban simulation and
urban spatial structure models are discussed. Upon which, an ABM simulation
model of urban land development is proposed with focus on transportation cost
and congestion effects, to illustrate the role of urban spatial structure in urban
simulation. The goal of the chapter is twofold. The first goal is to stress the
importance of analytical modeling as the skeleton of urban modeling, even with the
simulation approach. A modular architecture of urban simulation is not necessarily
informative regarding results evaluation and model predictability. A further goal is
to emphasize how urban spatial structure models can help to integrate household
behavior, individual decision making, and aggregate model representation together.
The simulation example provided in the chapter, though only for illustration pur-
pose, gives at least some sense on how the combination of analytical modeling and
ABM simulation can be an efficient and informative approach to urban modeling.

Still, there are many challenges ahead in urban modeling. For example, the
development of theories on social interactions, networks, and matching mechanisms
has substantially pushed the limit of our knowledge on human behavior and system
dynamics. How to incorporate these new research into urban modeling is both
a theoretical question and an empirical matter. Another under-researched area of
urban simulation is the model calibration, which plays a critical step towards good
model predictability. Similarly, calibrating model specification and parameters is
also both a theoretical issue and an empirical issue. All these challenges and
therefore potential future research directions will certainly have profound impacts
on urban and regional modeling.

Lastly, the focus of the chapter is to suggest how we could use well-established
urban spatial structure models in economics and urban studies to strengthen current
agent-based urban simulation studies. The chapter does not intend to criticize
current urban spatial models. Instead, the chapter argues that we should incorporate
them to improve current agent-based urban simulation practices.
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