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Introduction

Many decision problems contain certain elements that are related to space [32, 35].
For example, to place a set of facilities, factors such as locations, distance, and
connectivity among potential locations must be considered. Political redistricting is
another example where space plays a significant role in determining the final plan
that must satisfy restrictions such as spatial contiguity and compactness. We broadly
refer to these as spatial decision problems.

Spatial decision problems are often difficult to solve due to many factors.
Researchers have long recognized that spatial decision problems are often com-
putationally intensive to solve [1]. This is because most spatial decision problems
rely on a search algorithm to find feasible and optimal solutions from a huge set of
potential solutions to the problem. The computational intensity of spatial decision
problems often makes it impractical to find the optimal solution to the problem as
the time used to search for the solution may become excessive. For many real world
problems, even if the global optimal can be found, the solution is only optimal in
the context of how the problem is simplified by removing factors that are otherwise
difficult to be considered in the optimization model.

In additional to the computational burden, spatial decision problems often have
multiple stakeholders who decide how the final decision should be made [38]. These
stakeholders often have different goals to achieve regarding a specific problem and
some of these goals are typically translated as the multiple criteria or objectives
of the problems. For many problems that have multiple objectives, there may not
exist a single solution that is deemed to be optimal by all stakeholders. To address
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such decision problems, a variety of solution approaches have been developed [8].
The literature, however, seems to be less concerned with how to incorporate these
approaches such that a better solution can be ultimately reached. A more interesting
question is, if existing solution approaches can be collectively used to provide
high-quality solutions, is it useful to develop new ones? Moreover, how can we
successfully incorporate different perspectives of decision makers and stakeholders
to generate more robust and reliable solutions that are satisfactory to a wider group
of people?

The above questions are related to an interesting topic in social science: diversity,
referring to a state of difference exhibited in a system and its components. Recent
developments have demonstrated that effectively incorporating diversity may pro-
vide better solutions to highly complex problems in social and economic domains
such as long-term prediction [19]. The purpose of this paper is to explore how the
concept of diversity manifests in spatial decision making and how spatial decision
making can benefit by incorporating diversity in the solution process. Although this
paper is focused on decision problems from an optimization perspective, many
concepts developed here can also be applied to other types of decision making
problems. In the remainder of this paper, I first identify the kinds of diversity in
spatial decision making, and then discuss a number of approaches to incorporating
diversity into geographical problem solving.

Kinds of Diversity

Let x be a vector of decision variables. For a spatial decision problem, at least
a subset of these decision variables have spatial references, often encoded as
location indices. For example, we can have x D .x1; x2; : : : ; xn/ as indices to n
locations and assign xi to 1 if the ith location is selected for a design purpose
(e.g., facility location) and 0 otherwise. We then assume x must be drawn from
a domain denoted as S that defines all feasible solutions. The goal of solving a
spatial decision problem is then to find an x such that a set of m objective functions,
f.x/ D .f1.x/; f2.x/; : : : ; fm.x//T , can be optimized. Formally we write the problem
in a generic form as

min f
subject to x 2 S :

(1)

Simon [24] suggested three steps that are commonly adopted in problem solving
for a broad range of applications where decisions must be made. Starting at the
intelligence step, the problem must be formulated so that alternative solutions can be
found in the second step called design. In the third step called choice, a final decision
must be made based on the alternatives identified. To solve a spatial decision
problem, diversity is ubiquitous in all steps. For example, diversity occurs when the
problem is interpreted and formulated by different stakeholders from different
perspectives, solved using different methods, and presented to decision makers who
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have different preferences. Specifically in this paper, I examine diversity in spatial
decision making from three perspective: (1) how solutions differ with respect to their
decision variables and objective functions, (2) how the optimality of solutions differs
and how their differences can be measured, and (3) how approaches to solving these
problems differ.

Diverse Solutions

Solutions to a decision problem are typically described using two spaces: solution
space and objective space. A solution space is formed by all the feasible solutions
to the problem. Formally, a solution space is an n-dimensional attribute space where
each dimension is one of the n decision variables, and we can denote it as a set
of fxjx 2 Sg. An objective space, however, is an m-dimensional space where each
dimension is one of the m objective functions, denoted as ff.x/jx 2 Sg. For spatial
decision problems, a third space can also be identified: the geographic space of the
solutions because each solution can be mapped and the spatial pattern shown on the
map conveys meaningful messages that will be critical in the decision process [3].
Here we use a general notation of g.x/ to indicate the measure of solution x in
the geographic space and therefore the geographic space can be denoted as a set
fg.x/jx 2 Sg. Figure 1 illustrates the relationship between these three spaces.

The difference between solutions in the solution space can be captured using a
distance measure such as the Euclidean distance
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k/
2 ; (2)

where xi
k and xj

k are the kth decision variable in solutions i and j, respectively.
Using the measure in Eq. (2), the distances between the solutions in Fig. 1 are
dAB D dBA D 2, dBC D dCB D p

2, and dAC D dCA D p
2.

The difference between two solutions can also be calculated in the objective
space, again using a Euclidean distance:
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where f i
k is the kth objective function value for solution i. In the hypothetical

objective space in Fig. 1, it can be noted that dobj
AC < dobj

AB < dobj
BC .

While the above two measures provide the numerical distances between solu-
tions, one may argue that because the selected nodes in solutions A and B are
adjacent in each case, they are more clustered than in solution C where the
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Fig. 1 A hypothetical spatial decision problem in which two nodes must be selected in a network
of six nodes in order to minimize two objectives. Three possible solutions are illustrated as (A), (B),
and (C). The number associated with each node is the index of the decision variable corresponding
to that node. For each solution, its realization in the solution space is represented by whether a
node is selected (gray circle) or not (open circle), or a set of values for the decision variables. For
example, solution A is (0, 1, 0, 0, 0, 1). The geographic space realization is the network map shown
in this figure, and each dot in the plot represents one of the hypothetical solutions in the objective
space

selected nodes have no direct connections. Many measures can be used to reflect
the geographic space of these solutions. Here we use a simple measure of the
shortest distance or smallest number of edges on the path between selected nodes
to illustrate the concept, and we have gA D 1, gB D 1, and gC D 3. Accordingly,
the distance in geographic space between these solutions can be simply calculated
using the absolute difference between these measures:

dgeog
ij D jgi � gjj ; (4)

where gi and gj are the geographic measures of solutions i and j, respectively. In
the three solutions in Fig. 1, we have dgeog

AB D dgeog
BA D 0, dgeog

BC D dgeog
CB D 2, and

dgeog
AC D dgeog

CA D 2.

Diverse Optimality

The diversity in the objective space has two aspects. First, each solution can be
identified using its objective function values as shown in Fig. 1 where the three dots
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marked as A, B, and C in the plot refer to the hypothetical values of the objective
function values. The distance between these solutions in the objective space can
therefore be simply calculated using the Euclidean distance between them.

Second, it is important to note that the multiple objectives for a problem reflect
different and often conflicting goals. A consequence of such difference is the trade-
off among alternative solutions, meaning there is no single solution that can be
considered to be satisfactory with respect to all the goals. The trade-off among
solutions can be formally understood using the concept of a domination. Here, we
say a solution to a decision problem x1 dominates (or is better than) another solution
x2 if and only if

8i fi.x1/ � fi.x2/ ^ 9i fi.x1/ < fi.x2/ :

In other words, solution x1 dominates solution x2 if x1 has at least one objective
function value that is smaller (better) than that of x2, while all other objective values
of x1 are not greater (worse) than that of x2. For a single objective optimization
problem, there is typically only one solution that dominates all other feasible
solutions. For a multiobjective problem, however, there often exists a set of solutions
that are called non-dominated solutions, meaning they dominate all other solutions
outside the set and each of these solutions does not dominate other members in the
set. Solutions in this set are optimal and the set is often referred to as the Pareto
front. In Fig. 1, the shaded area in the plot represents the objective space of the
solutions, the thick curve represents the Pareto front and solutions on the curve are
optimal (and therefore non-dominated) solutions.

A fundamental problem of (spatial) decision making is that the decision problem
may be ill-structured because many social, economic, and environmental factors
are difficult to be included in problem formulation [4, 25]. This feature suggests
that the optimal solutions obtained based on the original problem formulation may
become sub-optimal when new factors are considered as they often may be in
real world applications. It is therefore important to understand the structure of the
entire solution space instead of just the optimal ones, even if they can be found.
We use the ranks of the solutions in the objective space to reveal this structure.
Using the definition of dominance, we first give all the non-dominated solutions
a rank of 1 (circles in the plot of Fig. 1). Then we increase the rank value to 2
and assign it to the non-dominated solutions in the remaining un-ranked solutions
(pluses in Fig. 1). This process continues until all solutions are ranked.

After the ranking process is completed, we can measure the diversity of the
objective space at different levels. First, we measure the between rank diversity of
solutions using the inverse Simpson index [26]:

1
PK

kD1 p2
k

; (5)

where pk be the proportion of solutions that fall in rank k, and K is the total number
of ranks in the solutions. The denominator is the probability that two random
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individual solutions have the same rank. If each solution has its own rank, we
have pk D 1=K .1 � k � K/ and the between rank diversity is K. On the other
hand, if all solutions are non-dominated (there is only 1 rank), we have a minimal
between rank diversity of 1. For the 9 solutions in Fig. 1, the between rank diversity
is 1=. 1

32 C 1
32 C 1

32 / D 3.
Second, we can measure the diversity of solutions within each rank as the ratio

between the number of solutions in the rank and a hypervolume of the solution
space:

dk D j [x2Rk f.x/j=…m
i .fu

i � fl
i/ ; (6)

where the denominator is the hypervolume computed using the upper and lower
bounds of each objective function values, fu

i and fl
i, respectively, Rk is the set

of solutions in rank k, and the numerator gives the number of unique individual
solutions in rank k in the solution space.

Finally, while the above measures are aimed to provide a view for the solutions
in the entire set or the ranked ones, diversity of solutions can also be measured at
the level of each solution by examining the crowdedness of the neighborhood of
that solution. Here we can borrow the concept of niche count from the evolutionary
algorithm literature [8, 11] to measure the crowdedness around a solution:

ni D
N

X

jD1

sh.dij/; (7)

where ni is the niche count of solution i, dij is the distance between individual i
and j, which can be any of the distance measures discussed above (Eqs. (2), (3),
and (4)) depending on what type of diversity is to be measured, and function sh.d/

is defined as:

sh.d/ D
�

1 � .d=�share/
˛ if d < �share

0 otherwise;
(8)

where �share is a constant distance threshold that dictates the size of the neigh-
borhood to be used for a solution, and ˛ is a constant coefficient that reflects the
weight given to a distance. In general, a high niche count suggests a high number
of solutions exist around the given solution. We typically focus on solutions that
have a low diversity of solutions in their neighborhood as suggested by low niche
counts. Without knowing how solutions are exactly distributed in the solution space
or objective space, it is often desired that each solution have a similar niche count
(or local diversity).

At this point, one might reflect on why the above diversity discussion and
diversity measures matter. The answer relies on how spatial decision problems are
or can be solved. If there exists a magic tool that can return the exact solutions
to a spatial decision problem, then none of the above discussion would matter
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much because the problem can be solved exactly, meaning we can find the optimal
solution to the problem and therefore can make the decision consequently. For
many real world decision problems, however, it is often impractical to solve the
problem exactly, and it is important to find as many solutions as possible to enable
an informed decision making process. More critically, the solutions found need to
be diverse so that decision makers are not biased toward a certain subset of the
solutions.

Diverse Toolboxes

Given the formulation of a spatial decision problem, the optimal solution can
be obtained using an exact method. However, as discussed above, such an exact
approach may become impractical when the size of the problem increases and
additional factors must be considered in the decision process. It is critical, therefore,
to explore a diverse set of solutions to the problem to enable a comprehensive
examination of the solution space during the decision making process so that the
decision makers can make their final choice. A second type of solution approach,
called heuristics, can be used for this purpose. Heuristics are often more efficient
compared with their exact counterparts, though they do not guarantee the global
solutions to be found. The literature has generally suggested the effectiveness of
heuristics in finding high quality solutions that are optimal or near optimal [5].
However, it has not been the focus of existing research to discuss how heuristic
methods can be used to generate a diverse set of solutions to facilitate the decision
process. In this section, I give a brief overview on the diversity of the solution
methods. I will then discuss in the next section on how to utilize the diversity of
these methods.

A large number of heuristic methods for spatial optimization problems have
been developed in the past few decades. A traditional approach to developing
such a method is problem-specific and lacks the flexibility of applying to other
problems. The effectiveness of this type of heuristics is evident in the literature
[5, 7]. For example, the vertex exchange method developed to solve the p-median
problem in location-allocation models [31], though highly effective [22], cannot be
directly used for other location allocation problems such as the center problems
without significant modifications. Another example is the heuristic method that is
specifically designed to solve political redistricting problems [33].

In general, traditional heuristic methods can be considered in different categories.
A simple approach is to develop a greedy algorithm that construct a complete,
feasible solution by assigning the values to the decision variables step by step.
During each step, a decision variable is assigned so that the solution appears to be
the best at that step, which can be simply achieved by minimizing the increase of the
objective function value caused by assigning the new decision variable (assuming
minimization is the goal). A greedy algorithm can often be strikingly simple to
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develop but the performance may not be satisfactory for many problems, especially
when the problems contain many local optimal solutions.

Different from greedy algorithms, a local search algorithm starts from a complete
solution to the problem that is called the current solution. The search algorithm can
be used to create a neighboring solution by manipulating the current solution. The
neighboring solution will be used to replace the current one if the former exhibit a
better objective function value. Otherwise, the algorithm keeps searching for other
neighbors. The algorithm stops when no better solution can be found. The vertex
exchange algorithm for the p-median problem [31] is an example of local search
where a neighbor solution is generated by swapping a selected vertex with other
candidates.

In contrast to traditional approaches that are typically tailored to specific
problems, a new set of heuristics is aimed to solve a wide range of optimization
problems. These new methods, called metaheuristics collectively, include evolu-
tionary algorithms, tabu search, simulated annealing, and ant colony optimization
algorithms. A common feature of these algorithms is their root in natural processes.
Evolutionary algorithms (EAs), for example, are derived from the natural selection
theory [11, 12]. For an EA to find an optimal or near optimal solution to a problem,
a set of solutions called a population is maintained at the same time. Each solution
in an EA population is evaluated and consequently rated using a fitness function
related to the objective functions of the problem. Solutions that exhibit high fitness
function values often have a high chance to be used to create new solutions for the
next iteration. In addition to their nature-inspired search mechanisms, metaheuristic
methods also try to represent various optimization problems in a general and
adaptive fashion. In EAs, for example, binary, integer, or real number strings have
been used to represent solutions to numerical optimization problems in general [23],
and geographic optimization problems in particular [35].

Embracing Diversity

Diversity can be incorporated into a spatial decision making process in a variety
of ways. Before we start the discussion of specific incorporation strategies, let us
stipulate the importance and therefore the benefits of recognizing and incorporating
diversity in spatial decision analysis. First, the decision makers may wish to examine
a diverse set of solutions such that important solutions, though may not be optimal
according to the original mathematical formula, can be discussed and may be further
modified. Second, a diverse set of solutions in the solution process can be used to
maintain useful components of optimal solutions that otherwise may not exist in
the “good” solutions chosen by the search algorithm. Here, I identify a number of
technologies that can be used to promote or utilize diversity discussed above for the
purpose of spatial decision making.
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Encouraging and Maintaining Diverse Solutions

Several methods have been suggested in the evolutionary algorithm literature to
maintain a diverse set of solutions. These methods try to balance two kinds of
power in a search algorithm. First, a search algorithm is exploratory if it focuses
on finding new solutions, especially solutions with new components that have not
been found or included in those found so far during the search process. In EAs, a
process called mutation is specifically designed to increase the exploratory power
of search by randomly changing a portion of an existing solution with a hope of
introducing new values which can then be combined with other solutions in order
to construct better solutions. On the other hand, a search is exploitative if it tries
to exhaustively use values in solutions found so far. In EAs, a crossover operation
tries to combine two existing solutions to create new ones and therefore “exploits”
current information that is already included in the two solutions. An exploitative
operation tends to decrease the diversity of solutions while an exploratory one often
increases the diversity.

Carefully balancing these two types of operations in a solution approach is
critical for a successful search [6, 9, 37]. Some more recent work has also tested
an adaptive fashion of using exploratory and exploitative search operations. For
example, Tarokh [29, 30] suggest exploratory operations to be used more frequently
if the lack of diversity is deemed in the current solutions. In EAs, the sharing method
[11, 191] has been commonly used to reduce the chance of a solution to be selected
if it is in a crowded neighborhood (measured in Eq. (7)). This concept is also used in
EAs for multiobjective optimization problems where the fitness values of solutions
in a crowded area in the objective space will be reduced so the solutions in less
crowded areas have more chance to explore their neighborhood [8, 14].

Hybrid Solution Toolboxes

Solution approaches developed in the literature can be used in different ways.
Though the common way of using these methods independently is useful, the overall
performance can be improved if these methods are used collectively. One way of
utilizing the diverse tools is to design a new process based on the components from
existing methods. A method designed in this way can be called a hybrid method.
For example, the concepts of vertex change and greedy algorithms are used to
develop new and more effective hybrid methods to solve the p-median problem
[21, 34]. While this type of hybridization is common in the literature [10, 16, 18, 20],
a successful algorithm design may be ad hoc as many design aspects cannot be
replicated in other problems.
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Cooperative Methods

The recent literature has suggested another approach to incorporating different
tools for problem solving. Hong and Page [13], for example, developed a general
framework that includes a large number of problem-solving agents, each of which
is a specific heuristic method that can be used to find a local-optimal solution to
a problem. Each problem solving agent is evaluated using the average of the best
solutions found. A subset of these agents is then selected to solve another set of
random problems where each problem is solved sequentially, meaning one agent
starts to solve it and then pass the final result to the next agent until all the agents
are used. Their computational experiments on three different problem configurations
suggested that a set of randomly selected agents outperformed the best agents on
all cases.

In many real world problem situations, it has been observed that humans
cooperate throughout the solution process and there have been different strategies
in cooperating. In English, for example, it is often agreed that “two heads are better
than one” [27, 28]. In this spirit, we can develop a new framework where problem
solving agents work with each other through different cooperative (and sometimes
non-cooperative) mechanisms, where some agents may prefer working alone while
other may tend to solve a problem together with the others. There can be many
cooperation strategies too. To illustrate various cooperation strategies, we discuss
a recent development [36] in solving the p-median problem using two different
approaches: a method called TB developed by Teitz and Bart [31], and a method
called SA that is based on simulated annealing [15]. TB maintains a current solution
and continuously replaces it with a better neighboring solution. TB stops when no
better neighboring solution can be found. SA, however, uses a probability to accept
a neighboring solution for replacement. while the acceptance probability for a better
solution is always 1, SA also accepts solutions that are worse than the current one.
The probability of accepting worse solutions decreases as the search progresses.
SA terminates when no solution is accepted.

In this example [36], a total of seven modes of cooperation were implemented.
First, TB and SA were two “work alone” modes where each ran separately and
reported its own result. In addition to running these two methods independently,
five cooperative strategies were also used. In a relay strategy, TB ran first and then
the solution found by TB was used in SA; the process terminated after SA stops.
A sequential consensus strategy was similar to relay, but the solution found by SA
were passed on to TB again and the process repeated until no improvement can be
made. To use a compete strategy, both TB and SA started independently and then,
during each iteration of both methods, the current solutions were compared and the
winner was used by both method for the next iteration. A full cooperation strategy
depended on an exchange mechanism such that the two methods always exchanged
their current solutions during each iteration. Finally, a parallel consensus strategy
was developed so that both methods ran independently until they stopped and then
they exchanged their best solutions found with each other; each agent then restarted
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Table 1 Experiments on cooperation strategies for the p-median problem

Cooperation strategy
Number of optima found Average deviation from optima

Best Average Worst Best Average Worst

TB 25 5 5 0.07 0.32 0.78

SA 23 6 6 0.25 0.91 1.92

Relay 28 11 11 0.04 0.21 0.49

Sequential consensus 30 9 9 0.03 0.18 0.50

Compete 29 9 9 0.04 0.20 0.49

Full cooperation 30 10 10 0.05 0.17 0.39

Parallel consensus 34 15 15 0.01 0.11 0.24

using the solution from the other agent and continued the search process. Both kept
exchanging solutions until not improvement can be made by any agents. A parallel
computing environment was used to implement these methods.

Forty benchmark p-median problems [2] were used to test the above strategies.
Each strategy was run 100 times for each problem. The best, average, and worst
solutions generated in these 100 runs were used to report two summaries: the
number of times these solutions were optimal for the 40 problems, and the average
deviation from the known optima (Table 1). For example, the parallel consensus
strategy found the optimal solutions to 34 of the 40 problems in the best case
amid the 100 runs. The results clearly suggest that all the five cooperative strategies
outperformed the two work-alone mode. Some strategies (e.g., parallel consensus)
consistently outperformed the all other strategies, while some strategies (e.g.,
compete) may not necessarily outperform the other cooperative methods.

Extending the above experiment, we can consider each method as an agent
that is equipped with a particular skill of solving some problems. An agent-
based modeling framework, therefore, can be regarded as a platform to utilize the
diversity of toolboxes in spatial decision making. In addition to such a toolbox
perspective, agent-based models can also incorporate multiple players (decision
makers) that have different belief systems and reflect different preferences to the
decision problem. Simulation results of these models can be used by decision
makers to learn interesting system behaviors.

Conclusions

The role of diversity has been recognized in many disciplines such as biology and
sociology. In this paper, I attribute the importance of diversity in spatial decision
making to the fundamentals of spatial decision making: multiple stakeholders with
often conflicting goals, the ill-structured nature of the decision problem that leads
to the need of exploring not only the optimal solutions but suboptimal solutions,
and computational intensity of the solution approach. These characteristics entail



34 N. Xiao

the consideration of diversity for spatial decision making. This paper examines
diversity in spatial decision making from three perspectives: solutions, optimality,
and methods. The diversity of solutions can be identified and measured in the
solution space, objective space, and their geographic space.

Considering diversity in spatial decision support systems is consistent with
a postmodernist view [see, for example, 17] that adds to a computationally
sophisticated environment of geocomputation. From a social or political point of
view, promoting diversity in the decision process reflects a step toward a more
appealing democratic process. It will be an informative debate to see if such an
effort will provide us “better” decisions, the meaning of which may be beyond its
methodological domain and of course is another aspect of diversity.

Acknowledgements An early version of this paper was presented at GeoComputation 2007 in
Maynooth, Ireland.

References

1. Armstrong MP (2000) Geography and computational science. Ann Assoc Am Geogr
90(1):146–156

2. Beasley JE (1985) A note on solving large p-median problems. Eur J Oper Res 21:270–273
3. Bennett DA, Xiao N, Armstrong MP (2004) Exploring the geographic ramifications of

environmental policy using evolutionary algorithms. Ann Assoc Am Geogr 94(4):827–847
4. Brightman H (1978) Differences in ill-structured problem solving along the organizational

hierarchy. Decis Sci 9(8):1–18
5. Cooper L (1964) Heuristic methods for location-allocation problems. SIAM Rev 6:37–54
6. Crepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algo-

rithms: a survey. ACM Comput Surv 45(3):1–33
7. Daskin MS (1995) Network and discrete location: models, algorithms, and applications. Wiley,

New York
8. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
9. Eiben AE, Schippers CA (1998) On evolutionary exploration and exploitation. Fundam Inf

35(1–4):35–50
10. Estivill-Castro V, Murray A (2000) Hybrid optimization for clustering in data mining. In:

CLAIO 2000, IMSIO, Mexico
11. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning.

Addison-Wesley, Reading, MA
12. Holland JH (1975) Adaptations in natural and artificial systems. University of Michigan Press,

Ann Arbor, MI
13. Hong L, Page SE (2004) Groups of diverse problem solvers can outperform groups of high-

ability problem solvers. Proc Natl Acad Sci 46:16385–16389
14. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective

optimization. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE
World Congress on Computational Intelligence, vol 1. IEEE Service Center, Piscataway, NJ,
pp 82–87

15. Kirkpatrick S, Gelatt CD, Vecchi MP Jr (1983) Optimization by simulated annealing. Science
220:671–680

16. Krzanowski RM, Raper J (1999) Hybrid genetic algorithm for transmitter location in wireless
networks. Comput Environ Urban Syst 23:359–382



Considering Diversity in Spatial Decision Support Systems 35

17. Macmillan B (1997) Computing and the science of geography: the postmodern turn and the
geocomputational twist. In: Proceedings of the 2rd international conference on GeoComputa-
tion, University of Otago, Otago, New Zealand, CD-ROM

18. Nalle DJ, Arthur JL, Sessions J (2002) Designing compact and contiguous reserve networks
with a hybrid heuristic algorithm. Forensic Sci 48(1):59–68

19. Page SE (2007) The difference: how the power of diversity creates better groups, firms, schools,
and societies. Princeton University Press, Princeton, NJ

20. Preux P, Talbi EG (1999) Towards hybrid evolutionary algorithms. Int Trans Oper Res
6(6):557–570

21. Resende MGC, Werneck RE (2004) A hybrid heuristic for the p-median problem. J Heuristics
10:59–88

22. Rosing KE (1997) An empirical investigation of the effectiveness of a vertex substitution
heuristic. Environ Plann B Plann Des 24(1):59–67

23. Rothlauf F (2006) Representations for genetic and evolutionary algorithms, 2nd edn. Springer,
Berlin

24. Simon HA (1960) The new science of management decision. Harper and Row, New York
25. Simon HA (1977) The structure of ill-structured problems. In: Models of discovery. Boston

studies in the philosophy of science, vol 54. Springer, Dordrecht, pp 304–325
26. Simpson EH (1949) Measurement of diversity. Nature 163:688
27. Surowiecki J (2004) The wisdom of crowds. Anchor, New York, NY
28. Tapscott D, Williams AD (2008) Wikinomics: how mass collaboration changes everything.

Portfolio, New York, NY
29. Tarokh M (2007) Genetic path planning with fuzzy logic adaptation for rovers traversing rough

terrain. In: Castillo O, Melin P, Kacprzyk J, Pedrycz W (eds) Hybrid intelligent systems.
Studies in fuzziness and soft computing, vol 208. Springer, Berlin, pp 215–228

30. Tarokh M (2008) Hybrid intelligent path planning for articulated rovers in rough terrain. Fuzzy
Sets Syst 159(21):2927–2937

31. Teitz MB, Bart P (1968) Heuristic methods for estimating the generalized vertex median of a
weighted graph. Oper Res 16:955–961

32. Tong D, Murray AT (2012) Spatial optimization in geography. Ann Assoc Am Geogr
102(6):1290–1309

33. Weaver JB, Hess S (1963) A procedure for non-partisan districting. Yale Law J 73:288–309
34. Whitaker R (1983) A fast algorithm for the greedy interchange of large-scale clustering and

median location problems. INFOR 21:95–108
35. Xiao N (2008) A unified conceptual framework for geographical optimization using evolution-

ary algorithms. Ann Assoc Am Geogr 98(4):795–817
36. Xiao N (2012) A parallel cooperative hybridization approach to the p-median problem. Environ

Plann B Plann Des 39:755–774
37. Xiao N, Armstrong MP (2003) A specialized island model and its application in multiobjective

optimization. In: Cantú-Paz E, et al (eds) Genetic and evolutionary computation — GECCO
2003. Lecture notes in computer science, vol 2724. Springer, Berlin, pp 1530–1540

38. Xiao N, Bennett DA, Armstrong MP (2007) Interactive evolutionary approaches to multiob-
jective spatial decision making: a synthetic review. Comput Environ Urban Syst 30:232–252


	Considering Diversity in Spatial Decision Support Systems
	Introduction
	Kinds of Diversity
	Diverse Solutions
	Diverse Optimality
	Diverse Toolboxes

	Embracing Diversity
	Encouraging and Maintaining Diverse Solutions
	Hybrid Solution Toolboxes
	Cooperative Methods

	Conclusions
	References


