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Preface

This volume addresses numerous research topics of GeoComputation as one of
the important scientific areas of research evolving from Geographic Information
Science. The book is the culmination of a few years of work that began with
a series of special sessions on GeoComputation organized at the 2012 North
American Meetings of the Regional Science Association International (RSAI)
in Ottawa, Canada. In addition, it complements the celebration of 21 years of
the GeoComputation conference series as a major scientific forum dedicated to
exchanging scientific advances in this field.

We would like to express our sincere thanks to all our colleagues and authors
who have participated in this project. They responded to our invitation and have
selflessly given their time and effort to passionately contribute to this edited volume
with chapters that cover various aspects of GeoComputation research. The twenty
chapters are arranged into three thematic parts: an overview of GeoComputation
as a cross-disciplinary field of research and its relevance to the science of regional
systems; various cutting-edge aspects related to agent-based and microsimulations
modeling; and finally the use of heuristics, data mining, and machine learning
approaches.

It was indeed a pleasure to work with the 45 contributing authors, and we are
thankful for their patience during the extended book editing process. We are also
thankful to all the reviewers, authors, and external researchers, who have contributed
with thoughtful comments to the blind peer review process and have strengthened
the overall quality and scientific rigor of this book. Our special thanks go to Taylor
Anderson and Olympia Koziatek from the Spatial Analysis and Modeling (SAM)
Laboratory, Simon Fraser University, Canada, for assisting with the book editing
process. The editors’ support for this book project would not be possible without
funding from the Knight Foundation Endowment Fund at the University of North
Carolina at Charlotte and the National Science and Engineering Research Council
(NSERC) of Canada.
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vi Preface

This edited volume represents a coherent body of knowledge rooted in cutting-
edge scholarship covering both theory and several application domains that will be
of interest to GeoComputation researchers, graduate and undergraduate students as
well as GIS practitioners in industry and government agencies.

Charlotte, NC, USA Jean-Claude Thill
Burnaby, BC, Canada Suzana Dragicevic
2017
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Part I
General



GeoComputational Research on Regional
Systems

Jean-Claude Thill and Suzana Dragicevic

The genesis of GeoComputation is not well-defined. On the one hand, Stan
Openshaw is widely regarded as the father of this field of inquiry and he is
credited for having coined the term GeoComputation [1–3]. On the other hand,
early GeoComputational research is difficult to separate from the profusion of
research that was an integral part of the strands of research in quantitative geog-
raphy, mathematical geography, and computational geography that grew out of the
quantitative revolution in Geography. Indeed, the late 1990s saw a flurry of research
contributions incorporating the basic elements of computation, simulation, and data-
driven thinking in the scientific understanding of events, phenomena and structures
with a spatial perspective. These activities were also enabled by improvements in
computer hardware, processing performance, data storage and analysis software
solutions [4].

Defining GeoComputation has been undertaken by many authors, including
[1, 3, 5, 6], and a number of more recent thought leaders. For our discussion,
it is appropriate to adopt Openshaw’s [3] view that it is “concerned with the
application of a computational science paradigm to study all manner of geo-
phenomena including both physical and human systems.” (p. 9). Crucial aspects
of this definition are threefold: objects of interest are geographic or spatial or can
in some way be described within this frame of reference; computationbased on
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actual or simulated data is paramount; and the data-driven approach may serve as a
temporary solution for the dearth of knowledge—including theories—of the subject
matter under investigation.

While GeoComputation, Geography and Geographic Information Systems and
Science share many similarities, there are distinct differences that uniquely separate
them. Geography focuses on methodological traditions that are either more aligned
to post-modern social-theoretical views or, alternatively, stricter neo-positivist
positions that leave little room for a data-driven mind-set in the inquiry process.
Geographic Information Science focuses on the science of data or information,
with substantive emphasis on matters of data formatting, data storage, data rep-
resentation, visualization, generalization, and other related topics. However, over
the years Geographic Information Science has successfully operationalized various
quantitative approaches such as spatial analysis, modelling, and simulation into its
investigation toolbox for multiple computing platforms [7–10]. GeoComputation
on the other hand takes the spatial data as the starting point and attempts to “make
sense” of these inputs and to leverage them to disentangle the complex and often
multi-scalar, dynamic, and non-linear relationships and influences that permeate
the data representations of the world. While Geographic Information Science
continues to struggle to handle matters in quality, uncertainty, incompleteness,
and trustworthiness, GeoComputation methods are designed to be robust to these
considerations, which makes them well-suited to many empirical contexts where
the data is “dirty” as well as to forecasting purposes where the data is by nature
ill-conditioned. GeoComputation, Geography and Geographic Information Science
are complementary and mutually reinforcing [11–13].

GeoComputation has also some clear lineage with Regional Science. Emerging
in the 1950s, Regional Science had established itself as the field of study of the
region, as the spatial expression on many social, economic, and political structures
that frame the operational relationships that maintain the functional cohesiveness
of regions [14]. Regional Science has always espoused a neo-positivism approach
to research. Just as Regional Science was prompt to adopt the emerging paradigm
embedded in Geographic Information Science [14–16] to study the complex
structures of urban and regional systems, it embraced GeoComputation a few years
later, owing to the tremendous leap in scientific knowledge afforded by this new
mode of scientific inquiry.

Regional systems are systems that operate among a number of objects, entities
and agents in ways that may be thematically diverse; but the net outcome of the
interactions and functional relationships among them is some form of order. This
order extends over space (such as the Christallerian system of cities, towns and
villages), and may change over time (for instance the emergence of polycentric
urban systems, or socio-economic convergence of regions comprising a country’s
economic space). It may also exhibit properties that persist over certain ranges of
scales and granularities, and morph into others on other ranges. Thus, the study of
regional systems and their dynamics is at the core of regional science.

GeoComputational techniques are also at the emerging forefront of research
and applications dealing with Big Data analysis, Cloud Computing and High
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Performance Scientific Computing [17]. This is particularly important since it is
necessary to manage and process the data, whether extremely small or extremely
large volumes, in a manner that would yield robust insights into the underlying
structures and patterns to provide reliable decision-support.

This book aims at contributing to both Regional Science and GeoComputation
through a collection of 20 unique research contributions by noted scholars of
regional systems. All the chapters of this book are original pieces of research; some
were featured at a series of special sessions organized by the editors at Regional
Science conferences in the United States and Canada. Others were solicited by the
editors to complement the themes selected as areas of emphasis of this volume. Each
chapter was subjected to a rigorous peer-review process and was also reviewed by
the editors on the volume.

The book is organized in three parts. The first part contains five chapters that
discuss several fundamental themes of research that cut across all areas of regional
systems application and across many families of GeoComputational techniques.
These include discussions of open source codes fostering the spread of the Geo-
Computational paradigm, considerations of diversity (as opposed to conformity) in
spatial decision support systems, and finally state-of-the art discussions of parallel
and high-performance computing matters.

The second part contains five chapters and presents contributions that method-
ologically add to the strand of research on agent-based simulations and microsim-
ulations in urban and regional contexts. This GeoComputational tradition has been
one of the most effective at interfacing bottom-up computational principles with
the fundamental theories of behavioral, social, and economic sciences to advance
understanding of the complex organizations of regional systems.

The third and final part contains ten chapters that leverage various heuristic
methods (such as evolutionary algorithms), and techniques of data mining and
machine learning to complement conventional methods of spatial analysis or as
substitutes for such methods in order to alleviate the intrinsic limitations of these
methods. The contributions of Parts 2 and 3 not only serve to highlight the diversity
of GeoComputational techniques that can be advantageously applied to regional
questions, but also the diversity of application areas, ranging from environmental
impact assessment, travel behaviors, urban service provision, community health,
and others.

The scholarship communicated through these Chapters speaks volume to the
scientific merit of the GeoComputational analysis of regional systems. In an
era when data collection is pervasive (crowd sourcing, volunteered geographic
information, and so on), and when a large part of these data is georeferenced or
geotagged, GeoComputation has a future that is brighter than ever. The ease of
access to high-performance computing and cloud computing, the emergence of
edge computing and quick expansion of open access coding for numerical and
text analytics and visualization, and the embrace of public and public entities for
“big data” make these exciting times indeed for GeoComputational scientists. We
envision the contributions compiled in this book will have an enduring impact on
the long-term expansion of GeoComputational research on regional systems.
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Code as Text: Open Source Lessons
for Geospatial Research and Education

Sergio J. Rey

Introduction

The open source revolution continues to have major impacts on science and
education and the field of spatial analysis is no exception. A number of overviews
of open source spatial analysis and geographic information science have recently
appeared1 and my intent here is not to provide a similar comprehensive coverage
of this area but rather to expand upon a particular set of themes I have raised
previously [11]. I do so by drawing on the lessons learned in the development
and evolution of the PySAL project [13] as it has intersected with my teaching
and research activities.

My central claim is that while open source has attracted much interest in geospa-
tial education and research its potential to enhance our activities has been con-
strained by a lack of understanding of how open source communities function and
the differences that exist between these communities and those found in the aca-
demic and scientific worlds. In broad terms, the excitement around open source in
academia is dominated by the cost advantages Free/Libre Open Source Software
(FLOSS) offers to our teaching and research missions. While these are important
and very real, by focusing on these we miss the forest for the trees. The true value
of open source is its potential to revolutionize and fundamentally enhance geospatial
education and research. I argue that this will only be possible if instead of seeing

1For overviews see [4, 8, 10, 11, 15, 16].
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open source code as only a tool to do research, we see the code as text and an object
of research as well as a pathway to better geospatial education and research.

I begin with an overview of PySAL, discussing its origins, development, and
current state, and I share several lessons I’ve learned as an open source developer
living inside academia. Next, I focus on the role of open source in geospatial
education. I then discuss the impacts of open source for research in geospatial
analysis. I conclude the paper by identifying key areas of future concern and
opportunity.

PySAL

Origins

PySAL’s lineage can be traced back to two earlier projects, Space-Time Analysis
of Regional Systems (STARS) [14] a package I developed with my students at San
Diego State University, and PySpace which was Luc Anselin’s project developed
at the University of Illinois, Urbana Champaign [1]. STARS was designed to
handle exploratory space-time data analysis while PySpace focused on spatial
econometrics. Although they had different foci, the two projects relied on similar
data structures (primarily spatial weights matrices), certain algorithms and statistical
tests.

Collaboration between the project directors led to the realization that by pooling
the development activities of our two teams, we could move these common features
into a single library, rather than continuing to duplicate efforts. Additionally, such
collaboration could allow for a more focused and optimized implementation of the
core shared components and free up time for each of the respective projects to
specialize on features that were unique to the individual package.

A second motivation for creating the library was that, at the time, spatial analysis
was largely absent in the Python scientific computing community. There were
some early efforts of packages for data integration (ogr), map projections (pyproj)
and geoprocessing (shapely), but at the higher end of the spatial analysis stack
there were no Python packages to support exploratory spatial data analysis and
spatial econometrics. As Python was having major impacts elsewhere in scientific
computing, and was starting to make in roads in GIS as reflected by ESRI’s adoption
of Python as a scripting language, we wanted to both contribute to further adoption
of Python within the GIScience community but also fill the void of missing spatial
analytical tools in the wider Python scientific computing portfolio.

Initial discussions about the design of the library laid out a comprehensive
coverage of many areas of spatial analysis that not only included the feature sets in
STARS and PySpace but an expanded vision to cover a broad set of methods, data
structures and algorithms in the spatial analysis toolkit. Parallel to this coverage
of the components in the library we also felt that the library should support a
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number of different types of uses. As a Python library PySAL could be used through
imports at the Python interpretor to facilitate interactive computing at the command
line. A second intended delivery mechanism was to use PySAL to develop rich
desktop clients in the mode of GeoDa and STARS. Here the analytical engine of
the application would be based on methods from PySAL, while advanced graphics
toolkits, such as WxPython, could be used to implement fully interactive and
dynamic graphics. A third way we envisioned the library being used was to build
plugins or toolkits for other packages, for example ArcGIS, QGIS or GRASS. The
fourth delivery mechanism we identified was to provide access to PySAL through
distributed web processing services [9].

Early on in the implementation of the library we began to realize the advantages
that adopting Python for this project would offer. Python is a dynamically typed
scripting language which lends itself nicely to rapid prototyping of ideas which
radically shortens the distance between the germ of an idea and its articulation in
working code. Python also has a clean syntax which facilitates collaboration by
making the implementation of algorithms and spatial analytical methods transparent
as the code becomes text, a point I return to later.

Components

Figure 1 displays a schematic from the early design of PySAL. The key departure
point for development of the library was the spatial weights module. Spatial weights
are central to many areas of spatial analysis as they formalize the notion of neighbor
relations governing potential spatial interaction between locations. Having efficient
data structures to store, create, operate, and transform spatial weights is critical to
the entire library and thus the weights module became the dominant focus early in
PySAL’s implementation.

A second building block in the library is the computational geometry module
which provides a number of algorithms and data structures for spatial tessellations
(Voronoi), minimum spanning trees, convex hulls, binning and R-trees which are
required by several of the other modules in PySAL. For example, the construction
of contiguity based spatial weights from shapefiles uses R-trees, or distance based
weights using K-nearest neighbor algorithms relies on KD-trees.

The clustering module provides methods used to carry out spatially constrained
regionalization as in the case of defining neighborhoods in geodemographics and
urban analysis, or aggregating spatial units to satisfy some minimum threshold value
when estimating disease rates in spatial epidemiology. The exploratory spatial data
analysis module implements methods for global and local spatial autocorrelation
analysis which includes enhancements to deal with rates and spatial smoothing.
Methods for spatial dynamics form the fifth PySAL module and extend the class of
Markov based methods from STARS to include LISA Markov chains, conditional
and joint spatial Markov chains, and directional space-time indicators. Finally,
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Fig. 1 PySAL components

methods for the testing, estimation, and validation of spatial regression models are
contained in the spatial econometrics module.

The first official release of PySAL was in July 2010. We placed this release
under the Berkeley Software Distribution (BSD) license since one of our goals for
PySAL was to contribute the scientific computing stack in Python and BSD was the
dominant and preferred license in this community. At the time of writing PySAL
is in its 9th stable release (1.8), with the next formal release scheduled for January
2015. The project is housed at GitHub.2 Since the first official release PySAL has
been downloaded over 50,000 times and we are quite pleased with the reception
of the library for the community. An important reflection of this reception is the
inclusion of PySAL as a featured package in the leading Python distributions for
scientific computing Anaconda Python Distribution [5] and Enthought Canopy [6].

2https://github.com/pysal.

https://github.com/pysal
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Fig. 2 Effort distribution under flexible and time based (release cycle) schemes

Lessons for Academic Open Source Developers

PySAL was born, and remains housed, in academia and the experience of managing
an open source project inside of a university setting has been a rewarding and, at
times, challenging experience. Because I expect more open source projects to find
homes in academia in the future, I think it may be valuable to share a number of
lessons that I’ve learned as an open source developer working inside academia.

Beginning with the first release (version 1.0) in July 2010 we adopted a 6 month
release cycle. These cycles consist of several phases that begin with a 2 week period
of considering PySAL Enhancement Proposals3 (PEPs), followed by a developer
vote on the PEPs that get priority for the current release cycle. The next phase of the
cycle is the development component which lasts 14 weeks. The final month of the
cycle is a feature freeze where attention shifts to bug fixes, testing, documentation
and preparation of the release.

Prior to adopting the formal 6 month release cycle, work on PySAL and related
projects (STARS, PySpace) followed no formal release schedule. We put out
releases whenever we felt they were ready for public consumption, or in order to
meet a deadline for a grant deliverable. I think this more flexible, less structured
approach towards releases is more common in academic open source projects than
the formal time-based scheme, and it is interesting to contrast the two (Fig. 2).

3We borrowed the PEP concept from the Python Enhancement Proposal model used in the
development of Python: http://legacy.python.org/dev/peps/.

http://legacy.python.org/dev/peps/
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When operating under the informal release scheme, we (the developers) spent
a large portion of the time engaged in design discussions about the new features,
algorithms and related code architecture. These were very enjoyable discussions
to be part of as they often generate a great deal of excitement and many fascinating
ideas about what we could do. As an analogy to a research project, I would liken this
to the phase where you are sitting with a potential collaborator discussing possible
ideas over a beer. Here the sky is the limit and you can easily get caught up in the
excitement of what is possible.

The excitement, however, can seem to evaporate when it comes time to actually
write the proposal and, if successful, start to implement your grand ideas that not so
long ago seemed so beautiful and seductive but now, in the face of the realities of
pending deadlines and implementation challenges, take on a less enticing aura.

Given that the design and discussion phase was so engaging, while the implemen-
tation phase is much more like “work”, it is not surprising that in the informal release
scheme we spent a lot more time in the former and less in the latter. Unfortunately
this meant that a lot of the ideas that drove the exciting design discussions never
materialized in actual code.

When we shifted to the time-based release cycle we designed the lengths of the
different phases to counteract this weakness. Basically we adopted the mantra of:

You can do anything, but you can’t do everything.
David Allen

In other words, the blue sky discussions (i.e., you can do anything) were limited
to the first 2 weeks of the cycle, and had to be formulated in a PEP which are
essentially problem statements for the new feature. Voting on and prioritizing the
PEPs for the release cycle reflected the recognition that we could not, in fact, do
everything we might wish to do, and therefore we simply had to choose among all
of our children which ones would be our favorites for the cycle.

The results of moving from the flexible to time-based release cycle have been
very positive. The regular release schedule gives our users the ability to plan for any
changes that they may want to make in light of new pending features in the library.
For the developers it allows us to focus our energies on a subset of the features,
resulting in more complete and better implementations of these in the release.
Essentially we are sacrificing breadth for depth here.

In terms of the length of the release cycle, I think 6 months hits the sweet spot
for an open source project inside academia, as we can align the ending of the cycle
to coincide with the winter and summer breaks so that those release deadlines can
be given full attention. Shorter cycles would mean release deadlines would compete
against other deadlines during the academic year, while longer cycles (say 1 year)
would slow the development of the project since new features could only be added
once a year.

Our experiences with PySAL are likely similar to those of other projects that are
housed inside academia. As is becoming increasingly recognized, much research
code that is used in science is far from what could be called production quality
software. Often it is written to get results for a particular project and then the
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researcher moves on to the next paper. What is typically missing are critical features
such as documentation and testing that ensure the code could be used by others for
purposes of replication and reproducibility.

Often the finger is pointed at the publish or perish dilemma as the main pressure
leading to the rather poor state of research code. Less recognized, but arguably as
important, is that most academics learn programming on the job rather than through
a formalized sequence of courses in a degree program. As a result, even if the
pressures to publish were absent and the researcher had time to document and test
the code, they often lack the understanding of how to do so. To be fair, this lack
of software engineering skills on the part of academic researchers could also be
laid against many open source and proprietary projects outside of academia—many
developers are self-taught. Equipping researchers with proper software development
skills is a critical need that I return to below.

Lessons for Education

It goes against the grain of modern education to teach students to program. What fun is there
to making plans, acquiring discipline, organizing thoughts, devoting attention to detail, and
learning to be self critical.
Alan Perlis

Open source software and practices can have major empowering impacts on
pedagogy. The free availability of the software offers a number of advantages in
lab based courses. No longer are the students constrained to working in the school
laboratory as they can now use the software installed on their own personal laptops,
or home desktops, to complete exercises. This also allows for a greater degree of
exploration and discovery by the student working by themselves and at their own
pace.

These represent potential pedagogical wins for open source in geospatial edu-
cation. My recent personal experience is that we still have far to go before these
benefits are fully realized. During the fall of 2011 in my introductory course in
GIScience, I decided to use QGIS as the software for the lab component in place of
our traditional package of ArcGIS. This was something I had contemplated doing
for quite sometime, but I always held back as the feature set and polish of QGIS
were not yet at the stage where I felt comfortable doing so. By fall 2011, this had
changed as the development of QGIS had reached an impressive state.

To my surprise this switch was less than well received by the students. Emblem-
atic of the main complaint was the following comment I received on an anonymous
teaching evaluation:

I took this course as I heard we would be taught ArcGIS. I don’t care about the science and
the algorithms underneath the software, I want a job when I leave this class.
Anonymous student evaluation
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While there were a minority of students who told me they appreciated the
introduction to an open source alternative, the vast majority of the students were
not happy about the switch. In addition, I received push-back from some of my
colleagues who were concerned that not covering ArcGIS threatened relationships
with community internship partners that had been carefully cultivated over the years.

I was completely blindsided by these responses and felt a mixture of disappoint-
ment and puzzlement. In hindsight, I admit that these potential negative impacts
never entered my decision making calculus. At the same time, while I now see
that these are pressing concerns, they also raise some important questions regarding
the role of geospatial education. On the one hand, the current demands in the labor
market for students trained in ArcGIS reflects the reality that previous generations of
students we have trained in this software are now in key positions in these agencies
and companies. Additionally, many of these agencies have invested much time and
resources in their GIS infrastructures and are understandably conservative regarding
any changes. But, what about the future? Is our task to train students for today’s
labor market or to equip them with the skill sets and knowledge so that they are
ready for, and can create, the future geospatial labor market?

A second general lesson for geospatial education concerns graduate education
and the seemingly ironic situation of an embarrassment of riches in terms of freely
available high quality programming tools for geospatial research on the one hand
and, on the other, a general lack of desire to do any programming. I believe this
stems from the challenges facing geography graduate students in that they not only
need to acquire knowledge of substantive and methodological areas of the discipline
but also somehow become proficient in programming. We have done a fairly poor
job on the latter with solutions ranging from recommending introductory courses in
computer science departments to learning on the job as part of a research project.
The former is rather inefficient as my experience is geography students taking most
introductory computer science classes come away without any idea of how to apply
core concepts to geographical problems. The mentoring approach scores higher on
this point, but does not really scale well.

There are several possible ways to address these issues. One approach I have
adopted is to create a new course entitled “Geocomputation” that blends together
both a primer on Python and open source tools, such as Git and text editors
(Vim), together with formal lectures on a selection of spatial algorithms and their
application to course projects. Open source tools, while very powerful, can have
steep learning curves and a key motivation for this course is to flatten these curves.
Thus far the course has been very well received as it equips the students with skill
sets that are directly useful to their own thesis and dissertation research.

The course also offers a path to integrate PySAL into the curriculum as the library
offers a rich set of possible topics to both use in lecture as well as to form core
components of student projects. Stepping into an existing project gives the student
hands-on experience with a large scale research code project, and rather than having
to develop their own projects from scratch, they can choose from the ever expanding
list of feature requests (and hopefully declining bug reports) for PySAL as their
project topics.
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It is here that I have seen the impact of the two key freedoms associated
with FLOSS on geospatial education. The “free as in beer” freedom has already
been alluded to since the students are free to download the software. This also is
becoming increasingly important to educational institutions in an era of tightening
budgets. The second freedom derives from the “free as in speech” aspect of FLOSS
which means the code is now available for reading. Here seeing the code as text
is enhanced in powerful ways by the free as in speech nature of FLOSS software
and the use of Python. Students are empowered to think about the computational
concepts and, due to the interpreted nature of Python and its clean syntax, they
are unencumbered by the technical issues of compiling and linking that would be
encountered in other languages hindering the learning process.

You think you know when you can learn, are more sure when you can write, even more
when you can teach, but certain when you can program.
Alan Perlis

By coming to see the code as text, rather than as a black box, students’
engagement with the fundamental concepts is deepened in a way that is simply not
possible with closed source software. In my geocomputation course I endeavor to
have the students come to see geospatial methods as not only tools they can use in
their own research, but as possible subjects for research. For too long now the view
in most geography departments has been that spatial analysis was something you
use to do research, rather than something you do as research. We have only given
scant attention towards nurturing the next generation of geospatial researchers who
will produce the future advances in our fields. To facilitate the latter we have to
affect a mind shift to see code as text.

There is, however, only enough demand at my own institution to offer a course
like Geocomputation no more than every other year which leaves students entering
our graduate program in the off year at a disadvantage as acquiring these skills
early on in their studies is clearly desirable. A recent development in so called
massively open and on-line courses (MOOC) offers some interesting possibilities
in this regard. My experience in teaching PySAL workshops is that there is ample
demand for these types of courses in the broader community. Offering such a course
in the mode of a MOOC provides a mechanism to attract a staggering number
of participants and could be a way to allow students at my own institution the
possibility of taking the course each year. While there has been much debate about
the impact of MOOCs on higher education, I am excited by the potential to reinvent
the role of pedagogy at large research institutions as now it becomes possible to turn
what could currently be seen as a boutique course into a staple offering.

Another attractive possibility for open source geospatial education can be seen
in the Software Carpentry initiative [18]. Software Carpentry grew out of the
recognition that most research scientists lacked basic software skills for scientific
computing. Founded in 1988, the mission of Software Carpentry is to teach
scientists basic lab skills for scientific computing through concentrated 2-day
boot camps that cover topics such as shells, editors, code repositories and other
technologies that help scientists become more efficient in their research computing.
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Taken these lessons together I think that the reality of the situation of open
source and geographic education is currently rather mixed. At the undergraduate
level the impact has been much more limited than I would have originally believed,
due mainly to the institutional factors raised above. The situation is more evolved at
the graduate level. Here I’ve seen several instances where access to the source code
in PySAL has enabled a motivated graduate student to gain a deeper understanding
of a particular spatial analytical method. In hindsight, this mixed success may also
suggest that a certain level of training and education may be required before the
benefits of open source software can be experienced by students. I am optimistic
that as the MOOC concept continues to evolve and Software Carpentry increases its
outreach, our ability to engage more fully with the undergraduate population will be
enhanced.

Lessons for Research

Analogies are often drawn between the logic of open source communities and the
basic way science evolves. The notion of peer review is central to both arenas.
Moreover, the ability to build on the contributions of others, as in the case of
standing on the shoulders of giants, plays a central role in both open source and
science. Finally, there are well accepted standards of behavior and norms in both
communities. While these analogies have a ring of truth to them on the surface,
closer inspection of each reveals subtle but important differences that may suggest
the communities are more different than one might expect. Below I discuss a number
of lessons the geospatial research community may draw from the open source world.

Open source has also had major impacts on research in GIScience. In the US
this is clearly seen in research proposals to federal agencies as increasingly there
are requirements that publicly funded projects include data and results management
components so that subsequent research projects can replicate and extend funded
projects. Having served on review panels for some of these agencies, a clear
trend is that open source has been relied upon by many scientists to respond to
these requirements. It should be emphasized that open source software offers clear
advantages when it comes to replication as there are no longer any “black boxes”
that conceal the implementation of a particular method or algorithm [19].

Peer review, while critically important to both science and open source develop-
ment, works differently in these two communities. In the case of scientific journals,
article reviews are typically done in a double-blind fashion to ensure candor from
the referees. I’ve been an editor of a journal for 15 years, and have been impressed
by the quality of reviews and the contributions these make towards often improving
the original submission. Given that journal refereeing accounts for essentially zero
in tenure and promotion cases, the fact that reviews are done at all, not to mention so
well, is simply amazing to me. In the open source world by contrast, peer review is
entirely open. The code commits a developer makes, the bug reports a user reports,
feature requests, documentation contributions, and a host of other activities are all
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done in public view. This means that the individuals making those contributions
are recognized and given credit. This is quite different from the scientists who
spends several hours reviewing and, ultimately, improving a manuscript, since
her comments only, and not name, are known to the author and wider scientific
community. I think there are wonderful opportunities for academic publishing to
learn from open source peer review processes.4

Another encouraging development can be seen in the evolving nature of the
relationship between spatial scientists using open source code in their research
and the development of that code. In the initial phase of adoption of open source
in GIScience, the number of users of open source code dwarfed the number of
developers of that code, and the intersection of users and developers was minimal.
This situation is changing as there are important synergies between the two groups
reflected in feature requests from users driving the development of the software.
In other words, the distinction between user and developer is beginning to blur
as users are coming to play more important roles in open source projects. Rather
than being seen as end users or consumers, scientists adopting open source code
in their research are increasing being viewed as collaborators in the open source
development process [17].

This shift in collaboration will have major positive impacts on both the quality of
future open source spatial analysis code as well as in the nature of the way geospatial
research is conducted. One of the longstanding criticisms of open source code is that
it can be “developer-centric” in the sense that only the developers understand and
can make use of the code which is otherwise opaque to the end user. By integrating
the research scientist into the development process, developers can be sensitized to
the needs of the wider user community and improve the “user-centric” nature of the
code. With regard to its impact on the practice of geospatial research and science, the
open source model increases the likelihood that the scientific questions lead the way
forward and the software itself is enhanced or modified to address these questions.
This is in contrast to the proprietary world where the core programs themselves
are not malleable. In the past this has led to the choice of research question being
constrained by the functionality provided by the software.

The black box nature of proprietary spatial analysis software can mean that
changes in APIs, data formats, and related design issues can break backwards
compatibility yet, due to vendor lock-in, the costs of this breakage are largely borne
by the community of users who are faced with the question of upgrading to the
new version or finding an alternative. For the vendor, the clear gains are in a new
revenue stream related to the upgraded version of the software. In some cases there

4A related development is the rise of open access journals and the open science movement. A full
discussion of these is beyond the current scope, but can be found in [12].
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may be legitimate debates as to whether the changes in the software reflect true
enhancements to the software or not, but the impact is the same.5

This is not to say that similar changes in an open source project’s code base do
not happen. They can and they do. However, in our development of PySAL we have
paid close attention to backward compatibility as we add new features and we are
loath to break things. Moreover, users have access to the source code and can modify
it to suite their own needs when there are changes in the code base. In the extreme
case, the project could even be forked if development went in directions at odds with
the wishes of our end users. Taken together I think that while open source projects
have code bases that clearly evolve more rapidly than is the case of proprietary
packages, the nature of community norms is such that the negative impacts of these
changes are minimized.

To be sure these are all very positive developments. Yet, for the academic
engaged in open source software development there are a number of challenges.
A chief one regards the academic evaluation and promotion system which places
heavy emphasis on scientific publications. Development, maintenance and doc-
umentation of an open source spatial analysis package requires a significant
investment in one’s time and this cuts into time that could go towards writing and
submitting journal articles, books and proposals for funding. For a package that
becomes widely adopted there is the possibility that scientists who use the package
in their own research take care to cite the package, but my hunch is this is done less
often than one would hope. There have been positive developments in this regard
with journals such as Journal of Statistical Software that provide an outlet dedicated
to developments in statistical software. It also reflects a shift in attitudes towards
scientific software in that it is seen as scholarly work that should come under peer-
review. In other words, the code is indeed viewed as text.

One often overlooked challenge that universities pose to open source developers
is that these institutions are fairly conservative and slow to adapt to change. This was
brought home to me in a very vivid way early on in my experience as an open source
developer. As is customary when receiving a grant from a federal agency, I was
called into a meeting with the chief technology officer (CTO) of my university when
I received funding for the initial development of STARS from the U.S. National
Science Foundation. The conversation went something like the following:

CTO: “Has the software that is being developed in this grant been licensed?”
Me: “Yes, it builds on code that I have placed under the GPL.”
CTO: “What is the GPL?”

I was amazed that in 2004 the CTO of a major research university had not heard
of the GPL, but in hindsight I think it reflects the simple fact that institutional change
occurs at a slower pace than technological change.

5For an example of this debate see the discussion and comments on the geodatabase
thread at http://blogs.esri.com/esri/arcgis/2008/05/30/five-reasons-why-you-should-be-using-the-
file-geodatabase/.

http://blogs.esri.com/esri/arcgis/2008/05/30/five-reasons-why-you-should-be-using-the-file-geodatabase/
http://blogs.esri.com/esri/arcgis/2008/05/30/five-reasons-why-you-should-be-using-the-file-geodatabase/


Code as Text: Open Source Lessons for Geospatial Research and Education 19

It can also be very difficult to secure funding in support of software development.
In part this reflects the dominant view that production of analytical tools is not
research, but rather something used in research. What gets funded is published
research—text matters, code doesn’t, and code isn’t viewed as text. In this context
one strategy we have adopted is to support parts of PySAL development through
funding related to particular substantive projects. This requires having an infrastruc-
ture for the meta project that can keep the bigger picture in mind, while responding
to the requirements of particular funded projects. In one sense the situation is not
much different from that faced by most research active academicians attempting to
juggle multiple on-going projects together with the next round of proposal writing.
PySAL does, however, provide an overarching umbrella that can tie all these pieces
together and, at least conceptually, allow one to see how future opportunities might
be integrated into a research agenda.

An additional challenge for the use of open source code in geospatial research
is that code itself is not enough. There is somewhat of a “build it and they will
come” mentality at work in the all too common practice of new analytical methods
developed as part of a research effort being made available as source code. In theory,
this should allow other researchers to use the code and apply the new methods.
In practice, however, there is often a great deal of heterogeneity in the quality of
documentation accompanying the code as well as learning curves to install the code
and any dependencies which may limit the dissemination and impact of the new
methods. In other words, there can be a substantial gap between what is research
code supporting a particular article, and production code that supports the use of the
software by a wider audience. Here again, the incentive to the original creator of the
new method was the creation of the method itself, the code is often a means to that
particular ends. Indeed the competitive nature of academic research can result in a
reluctance to release code since it may enable competitors to close the gap with the
researcher-developer.6

There can also be a substantial gap between the amount and quality of testing
that research code is subject to compared to the more extensive set of regression
and integration tests that are viewed as a necessary part of an open source project.
Those tests play a critical role in ensuring that new changes to the software do
not introduce errors elsewhere in the code base, and this relies on the ability of
the existing code to replicate a set of known results. Reproducibility is also a central
pillar of the scientific process, yet it is highly ironic that much of the source code that
generates new scientific results is rarely subject to even minimal software quality
control measures. Adopting open source practices in the development of scientific
research code could do much to improve the situation.

6See [3] for arguments as to why this reluctance may be misplaced.
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Conclusion

Although the lessons outlined above treated development, education and research
separately, this was for the purposes of exposition only. There are clearly strong
potential synergies between these activities. At the same time, there are some
challenges that can hamper our ability to exploit these synergies. One of our
overriding goals in the development of PySAL has been to keep the level of code
readability as high as possible, and here we have relied on the clear syntax of
the Python language. We have always felt that the code can serve as a powerful
source of information for students interested to learn the exact manner in which a
spatial analytical method was implemented. While we have by and large kept to this
goal, we have encountered tensions along the way. Keeping the code readable has
required that we limit the number of third party libraries that PySAL requires. These
libraries are often written in lower level languages such as C, C++, or Fortran and
can offer substantial speed gains over pure Python implementations. At the same
time the lower level code can be more difficult for the newly initiated spatial analyst
to decipher. Faced with this trade-off, we have chosen pedagogy over speed.

As the number of open source spatial analysis projects within academia continues
to grow, a difference in attitudes towards collaboration in the open source world
versus academia is starting to emerge. The attitude of “not invented here” appears
to be more prevalent in academia relative to what I have experienced in the
broader open source community. In part, this reflects the pressures that open source
academicians face in that citation of their work is critical for their own career
advancement. This is, however, unfortunate as opportunities for combining these
different tool sets through different forms of interoperability are lost.

The notion of a scientific work-flow has gained much attention in the cyberin-
frastructure community, however progress in the implementations of architectures
to support these work-flows faces a fundamental problem in that there are many
areas of spatial analysis where we lack a consensus on the proper sequence of
tools, or even choice of an individual tool. Paradoxically, the problem is not one
of a scarcity of tools but rather abundance as users face a bewildering array of
software packages. However, many of these are closed source which means their
black box characteristic has hindered a deeper understanding of the methods enabled
by the software. Open source provides a way to shed light on this area and will be
critical in facilitating open discussions about methodological work-flows in spatial
analysis [2].

Scientific geospatial analysis offers an important vetting framework—code can
be evaluated for its scientific soundness through the formal peer review outlet of
journals. As mentioned before, this can stand in contrast to the more open peer
review process in open source where the comments of the community can reflect a
heterogeneous mix of perspectives and levels of expertise. The rise of open source
spatial analysis and tools has played a major role in the dissemination of these
technologies beyond the halls of academia. As [7] has noted, this has shifted the
educational mission from how to train professionals in the use of these technologies
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towards cultivating a more fundamental understanding of GIScience principles.
In the end it is these principles that are paramount; the software and tools can be
seen as a means to these ends. But how that software is built can have profound
impacts on scientific and educational outcomes.
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Considering Diversity in Spatial Decision
Support Systems

Ningchuan Xiao

Introduction

Many decision problems contain certain elements that are related to space [32, 35].
For example, to place a set of facilities, factors such as locations, distance, and
connectivity among potential locations must be considered. Political redistricting is
another example where space plays a significant role in determining the final plan
that must satisfy restrictions such as spatial contiguity and compactness. We broadly
refer to these as spatial decision problems.

Spatial decision problems are often difficult to solve due to many factors.
Researchers have long recognized that spatial decision problems are often com-
putationally intensive to solve [1]. This is because most spatial decision problems
rely on a search algorithm to find feasible and optimal solutions from a huge set of
potential solutions to the problem. The computational intensity of spatial decision
problems often makes it impractical to find the optimal solution to the problem as
the time used to search for the solution may become excessive. For many real world
problems, even if the global optimal can be found, the solution is only optimal in
the context of how the problem is simplified by removing factors that are otherwise
difficult to be considered in the optimization model.

In additional to the computational burden, spatial decision problems often have
multiple stakeholders who decide how the final decision should be made [38]. These
stakeholders often have different goals to achieve regarding a specific problem and
some of these goals are typically translated as the multiple criteria or objectives
of the problems. For many problems that have multiple objectives, there may not
exist a single solution that is deemed to be optimal by all stakeholders. To address
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such decision problems, a variety of solution approaches have been developed [8].
The literature, however, seems to be less concerned with how to incorporate these
approaches such that a better solution can be ultimately reached. A more interesting
question is, if existing solution approaches can be collectively used to provide
high-quality solutions, is it useful to develop new ones? Moreover, how can we
successfully incorporate different perspectives of decision makers and stakeholders
to generate more robust and reliable solutions that are satisfactory to a wider group
of people?

The above questions are related to an interesting topic in social science: diversity,
referring to a state of difference exhibited in a system and its components. Recent
developments have demonstrated that effectively incorporating diversity may pro-
vide better solutions to highly complex problems in social and economic domains
such as long-term prediction [19]. The purpose of this paper is to explore how the
concept of diversity manifests in spatial decision making and how spatial decision
making can benefit by incorporating diversity in the solution process. Although this
paper is focused on decision problems from an optimization perspective, many
concepts developed here can also be applied to other types of decision making
problems. In the remainder of this paper, I first identify the kinds of diversity in
spatial decision making, and then discuss a number of approaches to incorporating
diversity into geographical problem solving.

Kinds of Diversity

Let x be a vector of decision variables. For a spatial decision problem, at least
a subset of these decision variables have spatial references, often encoded as
location indices. For example, we can have x D .x1; x2; : : : ; xn/ as indices to n
locations and assign xi to 1 if the ith location is selected for a design purpose
(e.g., facility location) and 0 otherwise. We then assume x must be drawn from
a domain denoted as S that defines all feasible solutions. The goal of solving a
spatial decision problem is then to find an x such that a set of m objective functions,
f.x/ D .f1.x/; f2.x/; : : : ; fm.x//T , can be optimized. Formally we write the problem
in a generic form as

min f
subject to x 2 S :

(1)

Simon [24] suggested three steps that are commonly adopted in problem solving
for a broad range of applications where decisions must be made. Starting at the
intelligence step, the problem must be formulated so that alternative solutions can be
found in the second step called design. In the third step called choice, a final decision
must be made based on the alternatives identified. To solve a spatial decision
problem, diversity is ubiquitous in all steps. For example, diversity occurs when the
problem is interpreted and formulated by different stakeholders from different
perspectives, solved using different methods, and presented to decision makers who
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have different preferences. Specifically in this paper, I examine diversity in spatial
decision making from three perspective: (1) how solutions differ with respect to their
decision variables and objective functions, (2) how the optimality of solutions differs
and how their differences can be measured, and (3) how approaches to solving these
problems differ.

Diverse Solutions

Solutions to a decision problem are typically described using two spaces: solution
space and objective space. A solution space is formed by all the feasible solutions
to the problem. Formally, a solution space is an n-dimensional attribute space where
each dimension is one of the n decision variables, and we can denote it as a set
of fxjx 2 Sg. An objective space, however, is an m-dimensional space where each
dimension is one of the m objective functions, denoted as ff.x/jx 2 Sg. For spatial
decision problems, a third space can also be identified: the geographic space of the
solutions because each solution can be mapped and the spatial pattern shown on the
map conveys meaningful messages that will be critical in the decision process [3].
Here we use a general notation of g.x/ to indicate the measure of solution x in
the geographic space and therefore the geographic space can be denoted as a set
fg.x/jx 2 Sg. Figure 1 illustrates the relationship between these three spaces.

The difference between solutions in the solution space can be captured using a
distance measure such as the Euclidean distance

dij D
v
u
u
t

n
X

k

.xi
k � xj

k/
2 ; (2)

where xi
k and xj

k are the kth decision variable in solutions i and j, respectively.
Using the measure in Eq. (2), the distances between the solutions in Fig. 1 are
dAB D dBA D 2, dBC D dCB D p

2, and dAC D dCA D p
2.

The difference between two solutions can also be calculated in the objective
space, again using a Euclidean distance:

dobj
ij D

v
u
u
t

m
X

k

.f i
k � f j

k/
2 ; (3)

where f i
k is the kth objective function value for solution i. In the hypothetical

objective space in Fig. 1, it can be noted that dobj
AC < dobj

AB < dobj
BC .

While the above two measures provide the numerical distances between solu-
tions, one may argue that because the selected nodes in solutions A and B are
adjacent in each case, they are more clustered than in solution C where the
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Fig. 1 A hypothetical spatial decision problem in which two nodes must be selected in a network
of six nodes in order to minimize two objectives. Three possible solutions are illustrated as (A), (B),
and (C). The number associated with each node is the index of the decision variable corresponding
to that node. For each solution, its realization in the solution space is represented by whether a
node is selected (gray circle) or not (open circle), or a set of values for the decision variables. For
example, solution A is (0, 1, 0, 0, 0, 1). The geographic space realization is the network map shown
in this figure, and each dot in the plot represents one of the hypothetical solutions in the objective
space

selected nodes have no direct connections. Many measures can be used to reflect
the geographic space of these solutions. Here we use a simple measure of the
shortest distance or smallest number of edges on the path between selected nodes
to illustrate the concept, and we have gA D 1, gB D 1, and gC D 3. Accordingly,
the distance in geographic space between these solutions can be simply calculated
using the absolute difference between these measures:

dgeog
ij D jgi � gjj ; (4)

where gi and gj are the geographic measures of solutions i and j, respectively. In
the three solutions in Fig. 1, we have dgeog

AB D dgeog
BA D 0, dgeog

BC D dgeog
CB D 2, and

dgeog
AC D dgeog

CA D 2.

Diverse Optimality

The diversity in the objective space has two aspects. First, each solution can be
identified using its objective function values as shown in Fig. 1 where the three dots
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marked as A, B, and C in the plot refer to the hypothetical values of the objective
function values. The distance between these solutions in the objective space can
therefore be simply calculated using the Euclidean distance between them.

Second, it is important to note that the multiple objectives for a problem reflect
different and often conflicting goals. A consequence of such difference is the trade-
off among alternative solutions, meaning there is no single solution that can be
considered to be satisfactory with respect to all the goals. The trade-off among
solutions can be formally understood using the concept of a domination. Here, we
say a solution to a decision problem x1 dominates (or is better than) another solution
x2 if and only if

8i fi.x1/ � fi.x2/ ^ 9i fi.x1/ < fi.x2/ :

In other words, solution x1 dominates solution x2 if x1 has at least one objective
function value that is smaller (better) than that of x2, while all other objective values
of x1 are not greater (worse) than that of x2. For a single objective optimization
problem, there is typically only one solution that dominates all other feasible
solutions. For a multiobjective problem, however, there often exists a set of solutions
that are called non-dominated solutions, meaning they dominate all other solutions
outside the set and each of these solutions does not dominate other members in the
set. Solutions in this set are optimal and the set is often referred to as the Pareto
front. In Fig. 1, the shaded area in the plot represents the objective space of the
solutions, the thick curve represents the Pareto front and solutions on the curve are
optimal (and therefore non-dominated) solutions.

A fundamental problem of (spatial) decision making is that the decision problem
may be ill-structured because many social, economic, and environmental factors
are difficult to be included in problem formulation [4, 25]. This feature suggests
that the optimal solutions obtained based on the original problem formulation may
become sub-optimal when new factors are considered as they often may be in
real world applications. It is therefore important to understand the structure of the
entire solution space instead of just the optimal ones, even if they can be found.
We use the ranks of the solutions in the objective space to reveal this structure.
Using the definition of dominance, we first give all the non-dominated solutions
a rank of 1 (circles in the plot of Fig. 1). Then we increase the rank value to 2
and assign it to the non-dominated solutions in the remaining un-ranked solutions
(pluses in Fig. 1). This process continues until all solutions are ranked.

After the ranking process is completed, we can measure the diversity of the
objective space at different levels. First, we measure the between rank diversity of
solutions using the inverse Simpson index [26]:

1
PK

kD1 p2
k

; (5)

where pk be the proportion of solutions that fall in rank k, and K is the total number
of ranks in the solutions. The denominator is the probability that two random
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individual solutions have the same rank. If each solution has its own rank, we
have pk D 1=K .1 � k � K/ and the between rank diversity is K. On the other
hand, if all solutions are non-dominated (there is only 1 rank), we have a minimal
between rank diversity of 1. For the 9 solutions in Fig. 1, the between rank diversity
is 1=. 1

32 C 1
32 C 1

32 / D 3.
Second, we can measure the diversity of solutions within each rank as the ratio

between the number of solutions in the rank and a hypervolume of the solution
space:

dk D j [x2Rk f.x/j=…m
i .fu

i � fl
i/ ; (6)

where the denominator is the hypervolume computed using the upper and lower
bounds of each objective function values, fu

i and fl
i, respectively, Rk is the set

of solutions in rank k, and the numerator gives the number of unique individual
solutions in rank k in the solution space.

Finally, while the above measures are aimed to provide a view for the solutions
in the entire set or the ranked ones, diversity of solutions can also be measured at
the level of each solution by examining the crowdedness of the neighborhood of
that solution. Here we can borrow the concept of niche count from the evolutionary
algorithm literature [8, 11] to measure the crowdedness around a solution:

ni D
N
X

jD1

sh.dij/; (7)

where ni is the niche count of solution i, dij is the distance between individual i
and j, which can be any of the distance measures discussed above (Eqs. (2), (3),
and (4)) depending on what type of diversity is to be measured, and function sh.d/

is defined as:

sh.d/ D
�

1 � .d=�share/
˛ if d < �share

0 otherwise;
(8)

where �share is a constant distance threshold that dictates the size of the neigh-
borhood to be used for a solution, and ˛ is a constant coefficient that reflects the
weight given to a distance. In general, a high niche count suggests a high number
of solutions exist around the given solution. We typically focus on solutions that
have a low diversity of solutions in their neighborhood as suggested by low niche
counts. Without knowing how solutions are exactly distributed in the solution space
or objective space, it is often desired that each solution have a similar niche count
(or local diversity).

At this point, one might reflect on why the above diversity discussion and
diversity measures matter. The answer relies on how spatial decision problems are
or can be solved. If there exists a magic tool that can return the exact solutions
to a spatial decision problem, then none of the above discussion would matter
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much because the problem can be solved exactly, meaning we can find the optimal
solution to the problem and therefore can make the decision consequently. For
many real world decision problems, however, it is often impractical to solve the
problem exactly, and it is important to find as many solutions as possible to enable
an informed decision making process. More critically, the solutions found need to
be diverse so that decision makers are not biased toward a certain subset of the
solutions.

Diverse Toolboxes

Given the formulation of a spatial decision problem, the optimal solution can
be obtained using an exact method. However, as discussed above, such an exact
approach may become impractical when the size of the problem increases and
additional factors must be considered in the decision process. It is critical, therefore,
to explore a diverse set of solutions to the problem to enable a comprehensive
examination of the solution space during the decision making process so that the
decision makers can make their final choice. A second type of solution approach,
called heuristics, can be used for this purpose. Heuristics are often more efficient
compared with their exact counterparts, though they do not guarantee the global
solutions to be found. The literature has generally suggested the effectiveness of
heuristics in finding high quality solutions that are optimal or near optimal [5].
However, it has not been the focus of existing research to discuss how heuristic
methods can be used to generate a diverse set of solutions to facilitate the decision
process. In this section, I give a brief overview on the diversity of the solution
methods. I will then discuss in the next section on how to utilize the diversity of
these methods.

A large number of heuristic methods for spatial optimization problems have
been developed in the past few decades. A traditional approach to developing
such a method is problem-specific and lacks the flexibility of applying to other
problems. The effectiveness of this type of heuristics is evident in the literature
[5, 7]. For example, the vertex exchange method developed to solve the p-median
problem in location-allocation models [31], though highly effective [22], cannot be
directly used for other location allocation problems such as the center problems
without significant modifications. Another example is the heuristic method that is
specifically designed to solve political redistricting problems [33].

In general, traditional heuristic methods can be considered in different categories.
A simple approach is to develop a greedy algorithm that construct a complete,
feasible solution by assigning the values to the decision variables step by step.
During each step, a decision variable is assigned so that the solution appears to be
the best at that step, which can be simply achieved by minimizing the increase of the
objective function value caused by assigning the new decision variable (assuming
minimization is the goal). A greedy algorithm can often be strikingly simple to
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develop but the performance may not be satisfactory for many problems, especially
when the problems contain many local optimal solutions.

Different from greedy algorithms, a local search algorithm starts from a complete
solution to the problem that is called the current solution. The search algorithm can
be used to create a neighboring solution by manipulating the current solution. The
neighboring solution will be used to replace the current one if the former exhibit a
better objective function value. Otherwise, the algorithm keeps searching for other
neighbors. The algorithm stops when no better solution can be found. The vertex
exchange algorithm for the p-median problem [31] is an example of local search
where a neighbor solution is generated by swapping a selected vertex with other
candidates.

In contrast to traditional approaches that are typically tailored to specific
problems, a new set of heuristics is aimed to solve a wide range of optimization
problems. These new methods, called metaheuristics collectively, include evolu-
tionary algorithms, tabu search, simulated annealing, and ant colony optimization
algorithms. A common feature of these algorithms is their root in natural processes.
Evolutionary algorithms (EAs), for example, are derived from the natural selection
theory [11, 12]. For an EA to find an optimal or near optimal solution to a problem,
a set of solutions called a population is maintained at the same time. Each solution
in an EA population is evaluated and consequently rated using a fitness function
related to the objective functions of the problem. Solutions that exhibit high fitness
function values often have a high chance to be used to create new solutions for the
next iteration. In addition to their nature-inspired search mechanisms, metaheuristic
methods also try to represent various optimization problems in a general and
adaptive fashion. In EAs, for example, binary, integer, or real number strings have
been used to represent solutions to numerical optimization problems in general [23],
and geographic optimization problems in particular [35].

Embracing Diversity

Diversity can be incorporated into a spatial decision making process in a variety
of ways. Before we start the discussion of specific incorporation strategies, let us
stipulate the importance and therefore the benefits of recognizing and incorporating
diversity in spatial decision analysis. First, the decision makers may wish to examine
a diverse set of solutions such that important solutions, though may not be optimal
according to the original mathematical formula, can be discussed and may be further
modified. Second, a diverse set of solutions in the solution process can be used to
maintain useful components of optimal solutions that otherwise may not exist in
the “good” solutions chosen by the search algorithm. Here, I identify a number of
technologies that can be used to promote or utilize diversity discussed above for the
purpose of spatial decision making.
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Encouraging and Maintaining Diverse Solutions

Several methods have been suggested in the evolutionary algorithm literature to
maintain a diverse set of solutions. These methods try to balance two kinds of
power in a search algorithm. First, a search algorithm is exploratory if it focuses
on finding new solutions, especially solutions with new components that have not
been found or included in those found so far during the search process. In EAs, a
process called mutation is specifically designed to increase the exploratory power
of search by randomly changing a portion of an existing solution with a hope of
introducing new values which can then be combined with other solutions in order
to construct better solutions. On the other hand, a search is exploitative if it tries
to exhaustively use values in solutions found so far. In EAs, a crossover operation
tries to combine two existing solutions to create new ones and therefore “exploits”
current information that is already included in the two solutions. An exploitative
operation tends to decrease the diversity of solutions while an exploratory one often
increases the diversity.

Carefully balancing these two types of operations in a solution approach is
critical for a successful search [6, 9, 37]. Some more recent work has also tested
an adaptive fashion of using exploratory and exploitative search operations. For
example, Tarokh [29, 30] suggest exploratory operations to be used more frequently
if the lack of diversity is deemed in the current solutions. In EAs, the sharing method
[11, 191] has been commonly used to reduce the chance of a solution to be selected
if it is in a crowded neighborhood (measured in Eq. (7)). This concept is also used in
EAs for multiobjective optimization problems where the fitness values of solutions
in a crowded area in the objective space will be reduced so the solutions in less
crowded areas have more chance to explore their neighborhood [8, 14].

Hybrid Solution Toolboxes

Solution approaches developed in the literature can be used in different ways.
Though the common way of using these methods independently is useful, the overall
performance can be improved if these methods are used collectively. One way of
utilizing the diverse tools is to design a new process based on the components from
existing methods. A method designed in this way can be called a hybrid method.
For example, the concepts of vertex change and greedy algorithms are used to
develop new and more effective hybrid methods to solve the p-median problem
[21, 34]. While this type of hybridization is common in the literature [10, 16, 18, 20],
a successful algorithm design may be ad hoc as many design aspects cannot be
replicated in other problems.
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Cooperative Methods

The recent literature has suggested another approach to incorporating different
tools for problem solving. Hong and Page [13], for example, developed a general
framework that includes a large number of problem-solving agents, each of which
is a specific heuristic method that can be used to find a local-optimal solution to
a problem. Each problem solving agent is evaluated using the average of the best
solutions found. A subset of these agents is then selected to solve another set of
random problems where each problem is solved sequentially, meaning one agent
starts to solve it and then pass the final result to the next agent until all the agents
are used. Their computational experiments on three different problem configurations
suggested that a set of randomly selected agents outperformed the best agents on
all cases.

In many real world problem situations, it has been observed that humans
cooperate throughout the solution process and there have been different strategies
in cooperating. In English, for example, it is often agreed that “two heads are better
than one” [27, 28]. In this spirit, we can develop a new framework where problem
solving agents work with each other through different cooperative (and sometimes
non-cooperative) mechanisms, where some agents may prefer working alone while
other may tend to solve a problem together with the others. There can be many
cooperation strategies too. To illustrate various cooperation strategies, we discuss
a recent development [36] in solving the p-median problem using two different
approaches: a method called TB developed by Teitz and Bart [31], and a method
called SA that is based on simulated annealing [15]. TB maintains a current solution
and continuously replaces it with a better neighboring solution. TB stops when no
better neighboring solution can be found. SA, however, uses a probability to accept
a neighboring solution for replacement. while the acceptance probability for a better
solution is always 1, SA also accepts solutions that are worse than the current one.
The probability of accepting worse solutions decreases as the search progresses.
SA terminates when no solution is accepted.

In this example [36], a total of seven modes of cooperation were implemented.
First, TB and SA were two “work alone” modes where each ran separately and
reported its own result. In addition to running these two methods independently,
five cooperative strategies were also used. In a relay strategy, TB ran first and then
the solution found by TB was used in SA; the process terminated after SA stops.
A sequential consensus strategy was similar to relay, but the solution found by SA
were passed on to TB again and the process repeated until no improvement can be
made. To use a compete strategy, both TB and SA started independently and then,
during each iteration of both methods, the current solutions were compared and the
winner was used by both method for the next iteration. A full cooperation strategy
depended on an exchange mechanism such that the two methods always exchanged
their current solutions during each iteration. Finally, a parallel consensus strategy
was developed so that both methods ran independently until they stopped and then
they exchanged their best solutions found with each other; each agent then restarted
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Table 1 Experiments on cooperation strategies for the p-median problem

Cooperation strategy
Number of optima found Average deviation from optima

Best Average Worst Best Average Worst

TB 25 5 5 0.07 0.32 0.78

SA 23 6 6 0.25 0.91 1.92

Relay 28 11 11 0.04 0.21 0.49

Sequential consensus 30 9 9 0.03 0.18 0.50

Compete 29 9 9 0.04 0.20 0.49

Full cooperation 30 10 10 0.05 0.17 0.39

Parallel consensus 34 15 15 0.01 0.11 0.24

using the solution from the other agent and continued the search process. Both kept
exchanging solutions until not improvement can be made by any agents. A parallel
computing environment was used to implement these methods.

Forty benchmark p-median problems [2] were used to test the above strategies.
Each strategy was run 100 times for each problem. The best, average, and worst
solutions generated in these 100 runs were used to report two summaries: the
number of times these solutions were optimal for the 40 problems, and the average
deviation from the known optima (Table 1). For example, the parallel consensus
strategy found the optimal solutions to 34 of the 40 problems in the best case
amid the 100 runs. The results clearly suggest that all the five cooperative strategies
outperformed the two work-alone mode. Some strategies (e.g., parallel consensus)
consistently outperformed the all other strategies, while some strategies (e.g.,
compete) may not necessarily outperform the other cooperative methods.

Extending the above experiment, we can consider each method as an agent
that is equipped with a particular skill of solving some problems. An agent-
based modeling framework, therefore, can be regarded as a platform to utilize the
diversity of toolboxes in spatial decision making. In addition to such a toolbox
perspective, agent-based models can also incorporate multiple players (decision
makers) that have different belief systems and reflect different preferences to the
decision problem. Simulation results of these models can be used by decision
makers to learn interesting system behaviors.

Conclusions

The role of diversity has been recognized in many disciplines such as biology and
sociology. In this paper, I attribute the importance of diversity in spatial decision
making to the fundamentals of spatial decision making: multiple stakeholders with
often conflicting goals, the ill-structured nature of the decision problem that leads
to the need of exploring not only the optimal solutions but suboptimal solutions,
and computational intensity of the solution approach. These characteristics entail
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the consideration of diversity for spatial decision making. This paper examines
diversity in spatial decision making from three perspectives: solutions, optimality,
and methods. The diversity of solutions can be identified and measured in the
solution space, objective space, and their geographic space.

Considering diversity in spatial decision support systems is consistent with
a postmodernist view [see, for example, 17] that adds to a computationally
sophisticated environment of geocomputation. From a social or political point of
view, promoting diversity in the decision process reflects a step toward a more
appealing democratic process. It will be an informative debate to see if such an
effort will provide us “better” decisions, the meaning of which may be beyond its
methodological domain and of course is another aspect of diversity.
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Parallel Computing for Geocomputational
Modeling

Wenwu Tang, Wenpeng Feng, Jing Deng, Meijuan Jia, and Huifang Zuo

Introduction

In this study, we present the utilization of parallel computing capabilities for
geocomputational modeling. Since its emergence in 1990s, geocomputation has
been playing a critical role in bridging computer science and geography [1–3].
Geocomputation, as Gahegan [4] identified, is based on four themes in computer
science to support geographic problem-solving: (1) computer architecture and
design, (2) search, classification, prediction and modeling, (3) knowledge discovery,
and (4) visualization. Computer algorithms and technologies from these themes are
often intertwined to enable the resolution of complex geographic problems through
geocomputational modeling. The advancement of these algorithms and technologies
in computer science has pushed the development of geocomputation domains.
However, gaps often exist between the development of algorithms and technologies
in computer science and their applications in geography [1, 5]. Thus, it is necessary
to retrospect the development of geocomputational modeling enabled by parallel
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computing. The focus of this study is on parallel computing, representative of
computer architecture and design in geocomputation themes.

Recent increasing parallel computing applications are attributed to the blossom-
ing of high-performance computing resources in cyberinfrastructure. Cyberinfras-
tructure, also referred to as e-Science, is the integration of “computing systems, data,
information resources, networking, digitally enabled-sensors, instruments, virtual
organizations, and observatories, along with an interoperable suite of software
services and tools.” ([6]; page 1). Cyberinfrastructure, as highlighted by NSF [6],
consists of three key capabilities: high-performance and parallel computing, massive
data handling and visualization, and virtual organization. High-performance and
parallel computing is the key component of cyberinfrastructure that provides mas-
sive and transformative computing power for scientific discovery across alternative
domains. Domain-specific problems that are infeasible for desktop computing can
be solved by using tremendous computing power from cyberinfrastructure-enabled
high-performance computing resources [7]. The use of cyberinfrastructure for
enhancing problem-solving requires knowledge and skills from computer hardware,
software, and specific science domains to best exploit the capabilities of cyberinfras-
tructure [6–9]. Of course, as cyberinfrastructure continues to develop, requirements
on computer knowledge and skills tend to be relaxed. This will greatly urge the
domain applications of cyberinfrastructure-enabled high-performance computing.
There are a suite of representative cyberinfrastructure, including U.S. XSEDE
(Extreme Science and Engineering Discovery Environment; see http://www.xsede.
org), Open Science Grid (see http://opensciencegrid.org/), and DEISA (Distributed
European Infrastructure for Supercomputing Applications; see http://deisa.eu).
High-performance computing resources from these cyberinfrastructures are open
to domain scientists for computationally intensive analysis and modeling.

The objective of this chapter is to discuss geocomputational modeling driven by
parallel computing at the era of cyberinfrastructure. We organize the remainder of
this paper as follows. First, we give an introduction to parallel computing. Then,
we provide a detailed discussion on the applications of parallel computing on
geocomputational modeling. We focus geocomputational modeling on four aspects:
spatial statistics, spatial optimization, spatial simulation as well as cartography
and geovisualization. We then use a case study to demonstrate the power of
parallel computing for enabling a spatial agent-based model that is computationally
challenging. Last, we conclude this chapter and propose directions for future
research.

Parallel Computing

Current mainstream computing paradigm is dominated by multi-core and many-
core computing, both of which are inherently associated with parallel computing
architectures and technologies [10–12]. Multi-core machines are shared-memory
computers based on CPU technology, which can be interconnected to form computer

http://www.xsede.org
http://www.xsede.org
http://opensciencegrid.org
http://deisa.eu
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clusters (i.e., distributed memory architectures; see [10, 12]). Many-core computing
is fueled by the emergence of NVIDIA many-core GPUs (Graphics Processing
Units) for general-purpose computation [13, 14]. Multi- and many-core comput-
ing resources are often coupled together—i.e., heterogeneous high-performance
computing resources—for the need of parallel computing. These parallel com-
puting architectures serve the basis for cutting-edge cyberinfrastructure-enabled
computing, for example, cluster-, Grid-, and cloud-computing (see [10, 15, 16]).
In particular, high-performance computing resources are increasingly available on
cloud computing platforms [15, 17]. Thus, how to effectively utilize these high-
performance computing resources is of greater interest than their accessibility. The
solution lies in parallel computing.

Depending on the way that data or information is communicated among pro-
cessors, two generic types of parallel computing methods exist: message passing
and shared memory (see [12]). In message-passing parallel computing, a processor
communicates with others for the data required for its subsequent computation
through sending and receiving messages. The requested data are encoded into
messages on the sender side and then decoded on the receiver side. In terms
of shared-memory parallel computing, processors use common address space to
exchange data among themselves. Message-passing and shared-memory paral-
lelisms dominate the parallel computing paradigm with a focus on inter-processor
communication, which may induce significant overhead. Further, because of inter-
processor communication, synchronization is often needed to coordinate concurrent
operations among processors. A set of synchronization approaches exists, including
barrier, lock, or semaphore [12]. On the other hand, there exist problems for which
divided sub-problems do not exchange data or the exchange is light-weighted. In
other words, processors will not (frequently) communicate for data from others. For
this case, an embarrassingly parallel computing approach (also often referred to as
a master-worker approach; see [12]) is the idealistic parallel solution. Because no or
little communication among processors exists, high performance on computation is
likely to be obtained.

Besides synchronization, a set of parallel strategies, represented by decompo-
sition and load balancing, is often needed to efficiently parallelize a problem.
Decomposition strategies support the partitioning of a problem into sub-problems
according to characteristics of data (domain decomposition) or functions (functional
decomposition) involved [10, 12]. Depending on the size of the sub-problems being
partitioned compared with the original problem, decomposition can be fine- or
coarse-grained. For spatial problems, spatial domain decomposition that takes into
account spatial characteristics of the problems is often used for partitioning and
alternative decomposition strategies reported (see [18, 19]).

In particular, Ding and Densham [18] presented detailed discussion on spatial
domain decomposition strategies based on the regularity and heterogeneity of spatial
domains. As a result, four types (regular versus irregular; homogeneous versus
heterogeneous) of spatial domains exist to guide the decomposition. Regarding
consideration of interactions or influence among spatial features, Ding and Densham
[18] discussed a suite of parallel spatial modeling: local, neighborhood, region,
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and global (also see [20]). Ding and Densham [18] suggested that the consid-
eration of spatial characteristics, represented by heterogeneity and dependency,
is instrumental in the development of parallel algorithms for spatial problems.
For example, spatially heterogeneous characteristics may create an unbalanced
distribution of computation across spatial domains of a problem, which will require
(more) sophisticated domain decomposition for effectively parallelizing the spatial
algorithm. Spatial dependency may affect the choice of the size of neighboring
regions, exerting a significant impact on the synchronization mechanism for a spatial
problem parallelized using either a message-passing or shared-memory approach.

Once a problem is decomposed into a set of sub-problems, each sub-problem
will be wrapped into a task assigned to an individual computing processor. The
relationship between tasks and computing processors can be one-to-one or many-to-
one. The workload assigned to computing processors may be unbalanced—i.e., load
balancing (see [12]) is needed to efficiently utilize the parallel computing resources.
Static and dynamic strategies [12] can be applied to achieve load balancing. For
static load balancing, tasks are assigned to processors before parallel computing.
Once the tasks are executed, there will not be re-assignment of tasks. Optimization
algorithms can be used for static load balancing as it is naturally an assignment
problem. Dynamic load balancing allows for flexibly reassigning or scheduling tasks
among processors to achieve possibly more balanced workload.

To evaluate the performance of parallel algorithms, quantitative metrics based
on computing time can be used. Performance metrics mainly include speedup,
efficiency, and communication-computation ratio (see [12]). Speedup and efficiency
are based on the comparison of execution time between a single processor and
multiple processors (Eqs. (1) and (2)). Both speedup and efficiency are positively
related to the computing performance of parallel algorithms. Communication-
computation ratio is calculated as the ratio of communication time over computation
time (Eq. (3)). Heavy communication overhead of a parallel algorithm usually leads
to a high communication-computation ratio.

s D T1=Tm (1)

e D s=np (2)

c D Tcomm=Tcomp (3)

where s, e, and c are speedup, efficiency, and communication-computation ratio
of a parallel algorithm. T1 denotes the execution time of the sequential algorithm
(i.e., on a single processor). Tm is the execution time of the parallel algorithm.
Tcomm is the time spent on inter-processor communication. Tcomp denotes the time
on computation.
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Parallel Computing for Geocomputational Modeling

Geocomputational modeling serves as an abstraction of real-world geographic prob-
lems. Spatial statistics, spatial optimization, and spatial simulation are three pillars
of geocomputational modeling that provide inductive or deductive problem-solving
support. Further, geocomputational modeling is inherently related to cartography
and geovisualization because of the need of visual presentation of relevant data that
are geographically referenced. Thus, in this study, we focus our discussion in terms
of the use of parallel computing for geocomputational modeling on four categories:
spatial statistics, spatial optimization, spatial simulation, and cartography and
geovisualization (Fig. 1). We use articles summarized in Table 1 to guide our
discussion.

Fig. 1 Illustration of the use of parallel computing for geocomputational modeling

Table 1 List of literature of geocomputational modeling driven by parallel computing

Category Citation

Spatial statistics Armstrong et al. [21], Armstrong and Marciano [22], Cheng [23], Gajraj
et al. [24], Guan et al. [25], Kerry and Hawick [26], Pesquer et al. [27],
Rokos and Armstrong [28], Tang et al. [29]
Wang and Armstrong [30], Widener et al. [31], Yan et al. [32]

Spatial optimization D’Ambrosio et al. [33], Gong et al. [34], He et al. [35], Peredo and Ortiz
[36], Porta et al. [37]

Spatial simulation Abbott et al. [38], Deissenberg et al. [39], Guan and Clarke [40], Li
et al. [41], Nagel and Rickert [42], Tang and Wang [43], Tang et al. [44],
Tang [45], Uziel and Berry [46], Wang et al. [47]

Cartography
geovisualization

Mower [48], Mower [49], Rey et al. [50], Sorokine [51], Tang [52],
Vaughan et al. [53], Wang et al. [54], Wang [55]
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Spatial Statistics

Spatial statistics provide a means of summarizing spatial characteristics of geo-
graphic data or inferring spatial patterns of interest based on first- or second-order
properties of these data (see [56, 57]). Spatial statistics mainly comprise spatial
autocorrelation analysis (e.g., Moran’s I or Gerry’s C), geostatistics (e.g., Kriging
interpolation, semivariogram), and spatial pattern analysis (e.g., kernel density
analysis, Ripley’s K approach). Spatial statistics can be univariate, bivariate, or
multivariate, thus facilitating the inference of spatial relationships within, between,
or among spatial variables [56]. As geographically referenced data are increasingly
available with respect to their size and type, spatial statistics provide necessary
support for analyzing and understanding spatial characteristics (e.g., heterogeneity
and dependence) in these data. Spatial statistics approaches involve comparisons of
spatial entities in terms of distance, direction, geometry, or topological relationships
[56]. These comparisons may operate at local or global levels with respect to the
set of spatial entities [58, 59]. Thus, a significant amount of computation is often
required for spatial statistics approaches, particularly when the geographic datasets
are large.

Parallel algorithms have been developed for the efficient use of spatial statistics
on high-performance computing resources. Armstrong et al. [21] presented their
pioneering work in which a G(d) statistic algorithm, functioning as a local spatial
cluster approach for hotspot detection [60], was parallelized. Subsequent studies
for the parallelization of G(d) algorithm were reported (see [22, 30]). In particular,
Wang and Armstrong [30] proposed a formal theory of spatial computational
domain and applied it to parallelize the G algorithm. Spatial characteristics of
geographic data were taken into account in the parallel algorithm to guide the
efficient derivation of G values. Parallel computing efforts for other spatial statistics
algorithms have been reported [28, 29, 31, 32, 61]. For instance, Yan et al. [32]
developed a parallel Monte Carlo Markov Chain (MCMC) approach for efficient
posterior sampling and applied it to parameterize a Bayesian spatiotemporal model
based on Gaussian random field. Widener et al. [31] parallelized the AMOEBA
(A Multidirectional Optimal Ecotope-Based Algorithm; see [62]) spatial cluster
method using a message-passing approach. The computation of seeds required by
the AMOEBA algorithm was partitioned and assigned to individual computing
nodes. Tang et al. [29] presented a Ripley’s K function approach accelerated through
GPUs for spatial point pattern analysis. Acceleration factors, as reported by Tang
et al. [29], can reach up to two orders of magnitude on a single Tesla Fermi GPU
device and three (about 1501) when using 50 GPUs together.

With respect to geostatistics, Kriging interpolation is an approach that has
been actively parallelized in the literature [23–27]. In Guan et al. [25] paral-
lel work, fast Fourier transformation (to derive the covariance matrix) and the
computation of weights for Kriging-based areal interpolation were parallelized
within a message-passing environment. Guan et al. [25] examined their parallel
areal interpolation algorithm on a high-performance computing cluster (about 5000
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CPUs) and demonstrated that considerable speed-up was obtained. Pesquer et al.
[27] proposed a row-wise decomposition approach to partition the computational
load of ordinary Kriging, in which variogram fitting was automated, into a collection
of worker nodes. Cheng [23] implemented a GPU-enabled parallel universal Kriging
interpolation approach in which computationally intensive matrix-based operations
(multiplication) were mapped to many-core architecture on GPUs. As Cheng [23]
reported, the acceleration factor by using GPUs for universal Kriging is about 18.

Spatial Optimization

Spatial optimization is to search for optimal solutions from a set of alternatives
that constitutes the solution space of a spatial problem of interest [63–65]. A
spatial optimization algorithm is converged when its objective function (single- or
multi-objective), constrained by a set of criteria, reaches maximum or minimum.
Search approaches for optimization algorithms can be exact or heuristic [65]. Exact
search enumerates and compares the entire set of solutions, guaranteeing for global
optimum. Yet, exact search is only suitable for optimization problems that are rela-
tively simple or small because of the brute-force search of solution space. Heuristic
search, including deterministic (e.g., hill-climbing) and stochastic (e.g., simulated
annealing, or evolutionary algorithms), introduces automated mechanisms that
guide the convergence of the optimization algorithm. While heuristic search does
not warrant global optima, it is well-suited to spatial optimization problems that
are often sophisticated. Machine learning algorithms (e.g., decision trees, artificial
neural networks, evolutionary algorithms, ant colony algorithm, and particle swarm
algorithms; see [66–69]) have been extensively used to support heuristics search in
optimization algorithms. These machine learning algorithms emulate the behavior
of human or animals for intelligent problem-solving. The application of spatial
optimization in geography, pioneered by Garrison [70], covers a suite of themes,
including site search [71], location analysis [72, 73], spatial planning [74, 75], and
ecosystem management [76].

The complexity of geographic problems often leads to a large solution space.
As a result, computationally intensive search may be needed in order to obtain
(near) optimal solutions for geographic problems, demonstrating the need of
parallel computing for spatial optimization. Alternative parallel spatial optimization
algorithms have been reported. Peredo and Ortiz [36] developed a simulated
annealing algorithm parallelized using a message-passing mechanism to search
for spatial patterns that match targeted ones. A tree-based strategy was used
to accelerate the computation associated with the acceptance and rejection of
perturbed spatial patterns. Machine learning algorithms, for example, artificial
neural networks and evolutionary algorithms, have been parallelized. Gong et al.
[34] proposed a hybrid parallel neural network algorithm as a nonlinear regression
approach for empirical land use modeling. Parallel strategies were applied for the
training and validation of ensemble neural networks. For evolutionary algorithms,
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the computation of each chromosome is independent with each other. Thus,
the population of chromosomes is usually partitioned into a collection of sub-
populations each assigned to a computing element for parallel computation. Because
of independence among chromosomes’ computation, computing performance for
parallel evolutionary algorithms is usually high. For example, D’Ambrosio et al.
[33] used a parallel evolutionary algorithm for optimal parameter estimation of a
debris flow model based on cellular automata, and PGAPack, a parallel evolutionary
algorithm software package (see https://code.google.com/p/pgapack/), supported
their work. He et al. [35] developed a loose coupling strategy that applied parallel
evolutionary algorithms to calibrate two hydrological models. Further, Porta et al.
[37] implemented parallel evolutionary algorithms for optimal land use allocation
within three types of computing environments: multi-core (shared memory), com-
puting clusters (message passing), and hybrid.

Spatial Simulation

Spatial simulation is an approach that explicitly represents and generates the
artificial history of a geographic system [77–79]. Components and their interrela-
tionships in geographic systems are abstracted and represented in spatial simulation
models. There are three types of generic spatial simulation [78–80]: system models,
cellular automata, and agent-based models. System models, with a foundation in
general systems theory [81], employ a set of differential equations to represent
macro-level relationships among state variables in a system of interest [82]. Because
of the complexity of geographic systems, analytic solutions may not be obtained
for these differential equations. Differential equations in system models are often
solved using a numerical approach. Cellular automata are based on neighborhood
interactions and transition rules to represent spatial dynamics in geographic systems
[78]. Agent-based models (or individual-based models) rely on the concept of agents
that allow for the explicit representation of decision-making processes of spatially
aware individuals or their aggregates [83, 84]. Both cellular automata and agent-
based models are bottom-up simulation approaches tailored to the representation
of decentralized interactions among components in a geographic system. Besides
the three types of generic simulation, there are domain-specific simulation models,
for example, hydrological models [85], that have been developed for the study of
dynamic spatial phenomena. These simulation approaches (generic and domain-
specific) have a vast body of literature in terms of exploring the spatiotemporal
complexity of geographic systems.

The representational and generative power of spatial simulation models creates
high computational demands, which trigger the motivation of utilizing parallel
computing. Costanza and Maxwell [86] detailed the development of a parallel
system model for the simulation of coastal landscape dynamics using spatially
explicit differential equations. Guan and Clarke [40] presented the parallelization
of SLEUTH, a cellular automat model of urban growth, and the application of the

https://code.google.com/p/pgapack
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parallel model into the simulation of urban development of the conterminous U.S.
Alternative spatial domain decomposition strategies were implemented to partition
and allocate computational workload into parallel computing architectures. In Li
et al. [41] work, a spatial cellular automata-driven urban simulation model was
parallelized with support from strategies of ghost zones (for inter-processor com-
munication) and load balancing (by area or workload). Besides cellular automata,
parallel agent-based models have received attention from alternative domain sci-
entists [39, 43, 47]. Uziel and Berry [46] presented a parallel individual-based
model to simulate the winter migratory behavior of Yellowstone elk. Regular
and irregular spatial domain decomposition strategies were used to cope with the
irregular shape of the landscape that elk interacted with. Likewise, Abbott et al. [38]
implemented a parallel individual-based model of white-tailed deer in which the
foraging and movement of deer on their landscape were partitioned and distributed
among multiple processors via a message-passing mechanism. Nagel and Rickert
[42] proposed a parallel agent-based simulation of traffic in Portland and used a
graph partitioning approach to divide the transportation network in the study area
for load-balanced parallel computation. Tang et al. [44] applied a message-passing
approach to parallelize a land use opinion model on a supercomputer. Further, as
the increasing availability and maturity of GPUs technologies, a suite of parallel
spatial simulation models accelerated by using the many-core GPU power have been
reported (A detailed review is in [45]).

Cartography and Geovisualization

Cartography and geovisualization enable the presentation of 2- or 3-D spatial
data through visual forms (e.g., maps or animations). Cartography has a focus on
principals and techniques of mapping [87], while geovisualization is extended from
cartography with an emphasis on interactive mapping and on-the-fly visualization
of spatial information [88]. Map projection, data classification, generalization, and
symbolization constitute fundamental components of cartography and geovisu-
alization [87]. The combination of these cartographic components supports the
design of alternative types of maps, including choropleth, dasymetric, isopleth,
and proportional symbol or dot maps. Cartography and geovisualization pose
a computational challenge [88]. For example, Armstrong et al. [89] illustrated
the use of genetic algorithms for optimizing class intervals of choropleth maps
and underlined that the process of developing optimal data classification requires
computationally intensive search.

Each component in cartography and geovisualization could be highly compu-
tationally demanding, for which parallel computing provides a potential solution.
Parallel algorithms have been developed to accelerate line simplification (see [49,
53]) and label placement of maps [48]. Tang [52] parallelized the construction
of circular cartograms on GPUs. To leverage the massive thread mechanism of
GPUs, the construction process was divided to a large number of fine-grained
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sub-tasks, while synchronization required by iterations of cartogram construction
was conducted at a kernel level. Compared with advanced CPUs, the GPU-based
parallel cartogram algorithm obtained a speed up of 15–20. In order to accelerate
Fisher-Jenks choropleth map classification, Rey et al. [50] examined three different
parallel python libraries, PyOpenCL, Multiprocessing, and Parallel Python, on both
CPU-based parallel python and GPU-based PyOpenCL. Their results indicated
that satisfactory speedup with the parallelization for moderate to large sample
sizes can be achieved and performance gains varied according to different parallel
libraries. Advance in high-performance computing greatly encourages the study
and application of parallel scientific visualization [54]. Visualization software
platforms enabled by high-performance and parallel computing, for example, Par-
aView (http://www.paraview.org/) and VisIt (https://wci.llnl.gov/codes/visit/home.
html) are available and hold promise for accelerating the geovisualization of
large geographic data. Sorokine [51] presented a parallel geovisualization module
that allowed for leveraging high-performance computing resources for rendering
graphics in GRASS GIS. A large geo-referenced image was divided into many
smaller tiles concurrently rendered by back-end computing clusters. Similarly, in
the work by Wang [55], a map tiling strategy was used for parallel visualization of
vector- and raster-based GIS data.

Case Study

Agent-Based Spatial Simulation

In this study, we use a parallel agent-based model of spatial opinion to illustrate
the importance and power of parallel computing for geocomputational modeling.
The agent-based model was developed and parallelized within GPU environment
(see [90]) for detail. In this model, geospatial agents situated within their spatially
explicit environments develop and exchange opinions with their neighbors. Each
iteration, an agent searches stochastically for its neighbors using a distance-decayed
probability function (Eq. (4)).

pij D dij
�1=˛ (4)

The probability (pij) that two agents (i and j) are peered for opinion exchange
is dependent on the distance between them (dij). After determining which neighbor
for communication, the agent will exchange opinion with its neighbor, driven by
a bounded confidence model that Weisbuch et al. [91] proposed. In this bounded
confidence model, the opinion of an individual is a continuous variable with a range
of 0–1. In our model, agents’ initial opinions are uniformly randomly distributed.
In other words, agents are randomly distributed on their opinion space. Each agent
updates its opinion using two parameters: opinion threshold and exchange ratio.

http://www.paraview.org
https://wci.llnl.gov/codes/visit/home.html
https://wci.llnl.gov/codes/visit/home.html
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Opinion threshold determines whether the agent will conduct opinion exchange
with its neighbor. If the opinion distance between the two agents is shorter than the
opinion threshold, the agents will use exchange ratio to update their opinions based
on the opinion distance between them. Otherwise, no opinion exchange activities
will occur if the opinion distance is longer than the threshold.

To enable the opinion modeling at a large spatial scale, the agent-based opinion
model was parallelized and accelerated using general-purpose GPUs (see [90]).
NVIDIA CUDA (Compute Unified Device Architecture; see [13, 92]) was the
computing platform used for this parallel computing effort. GPU-enabled general
purpose computing is based on a shared-memory data parallelism with thread
technologies. A large number of CUDA threads are available for concurrently
executing the assigned computing tasks on the streaming processors of a GPU
device. In this study, the population of geospatial agents was divided into a
collection of sub-populations based on a 1D block-wise domain decomposition
strategy (see [11, 18]). Each sub-population may consist of one or multiple agents
and the associated opinion development process is handled by a CUDA thread.
Because the number of threads allowed in CUDA-enabled GPUs is large, massive
agents are supported in this parallel spatial model.

Experiment

We designed an experiment to examine how parallel computing accelerates and
thus facilitates the agent-based modeling of large-scale spatial opinion exchange.
The experiment is to investigate the impact of communication range on the spatial
opinion exchange. In this model, the distance coefficient (’ in Eq. (4)) in the
distance-decayed neighborhood search determines the communication range (see
[90]). We varied this distance coefficient from 0.2 to 1.3 at an interval of 0.1
(corresponding to 3–398 cells). Consequently, there are 12 treatments in this
experiment (noted as T1–T12). The distance threshold of agents was set at 0.22
and the exchange ratio is 0.40. A raster landscape was used in this study, and the
landscape size of the model is 2000 � 2000. Each cell is situated by an agent. For
each treatment, we repeated the model run 100 times, in total 1200 runs required.
GPU devices that we used in this study are Nvidia Tesla Fermi M2050 (including
448 cores). CPUs are dual Intel Xeon hex-core processors (clock rate: 2.67 GHz;
memory: 12 GBs).

In this model, as agents communicate with their neighbors, their opinions tend to
move towards each other in their opinion space. When their opinions are clustered
within a small range, these agents reach consensus. In this experiment, we are
interested in the consensus development of agents. So we used an index of entropy
[93] to quantify the spatial opinion patterns over time. The entropy index allows for
representing the diversity of spatial opinions: a high entropy index illustrates that
the spatial opinion pattern is diverse. Otherwise, a low entropy index is associated
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Fig. 2 Time series of opinion entropies over iterations (T1–T12: treatment 1–12)

with a homogeneous spatial opinion pattern—i.e., agent opinions are converged or
consensus is reached.

en D �
n
X

iD1

pi
� log pi (5)

where en is the entropy of an agent opinion pattern. pi is the probability of
opinion group i. n is the number of opinion groups. Figure 2 shows the time
series of Shannon’s entropy over 1000 iterations for the 12 treatments. For the
first treatment, the communication range is short (threecells). The total number
of possible neighbors that an agent exchanges opinion is small (79 neighbors).
Thus, as agents communicate for exchanging opinions, entropy exhibits a gradually
decreasing pattern. The averaged entropy at iteration 1000 is about 2.0. In other
words, agents’ opinions do not converge because of the limited communication
range.

As increase in communicate range, entropy curves tend to reach minimum
quickly. In most of the treatments entropy values converge within a range of 0.5–
1.0. This illustrates that increment in communication range tends to increase the
likelihood of communicating with more agents with diverse opinions. As a result,
it is easier for agent opinion to converge for consensus. Of interest is the pattern of
convergence iterations and entropies as communication ranges increase (see Fig. 3).
For the first seven treatments, both convergence time and corresponding entropies
tend to be lower when communication ranges increase. Yet, once communication
range exceeds 40 cells (treatment eight and after), convergence time exhibits a
wide range of variation (between iteration 1 and 1000). Most of the model runs
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Fig. 3 Convergence iterations and entropies for model runs in the experiment

(except treatment T10) tend to converge at a small range of values for each
treatment. Communication range of 40 cells is a critical threshold that triggers the
state transition between stable and unstable convergence. This can be attributed
to change in the interacting intensity (the amount of agent interactions per unit
area) required for spatial opinion exchange. Before communication range reaches 40
cells, interacting intensity (given the same amount and types of agents) is high such
that agents have sufficient opportunities to exchange their opinions for consensus.
Yet, once the communication range exceeds 40 cells, interacting intensity required
for opinion convergence tends to decrease (the number of interactions remains
the same, but neighboring zones are enlarged). The decreased interacting intensity
produces a form of diluting effect that introduces instability in the convergence of
agent opinion.

We used acceleration factor, ratio of computing time on a single CPU over that
on a GPU device (similar to speedup; see [90]; cf. [12]), to evaluate the computing
performance of the parallel agent-based opinion model. Table 2 reports results of
computing performance (including computing time and acceleration factor) of the
12 treatments. GPU computing time of each model run varies between 150 and
160 s (about 2–3 min), and corresponding CPU computing time falls within a range
of 1600–1800 s (about half an hour per run). So the computing time required by
this experiment is reduced from 600 h for a single CPU (0.5 h per run � 1200 runs;
about 25 days) to 60 h for a single GPU. About 10–12 acceleration factors per GPU
device per run were obtained. Because each run in this experiment is independent,
we used 30 GPUs to concurrently execute these model runs to achieve further
acceleration. The total CPU-based sequential computing time of this experiment
requires 23.58 days. When using 30 GPUs together, it takes 6730.11 s to complete
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Table 2 Results of computing performance of the agent-based modeling of spatial opinion
exchange (time unit: seconds; Std: standard deviation)

CPU time GPU time Acceleration factor
Treatment Mean Std Mean Std Mean Std

T1 1773.32 142.28 158.93 10.69 11.23 0.89
T2 1685.88 116.88 158.37 10.49 10.84 1.04
T3 1655.66 100.26 157.95 11.99 10.58 1.09
T4 1670.81 117.33 156.04 12.51 10.66 1.12
T5 1652.46 105.76 159.71 9.69 10.24 0.87
T6 1644.99 86.87 158.53 11.02 10.52 1.18
T7 1675.75 120.79 153.85 11.54 11.04 1.27
T8 1659.36 105.97 164.69 3.15 10.11 0.71
T9 1679.23 112.68 156.38 12.56 10.89 1.15
T10 1660.30 105.06 155.97 10.54 10.46 0.94
T11 1677.63 119.56 159.75 10.10 10.39 0.90
T12 1756.70 141.86 160.18 11.12 11.14 1.41

the experiment. The corresponding acceleration factor (similar to speed up) for
completing the entire experiment is 302.74 with respect to a single CPU. The
influence of communication range on computing performance (both computing time
and acceleration factors) is insignificant in this experiment.

Conclusion

In this study, we illustrated the power of parallel computing for geocomputational
modeling and identified parallel strategies instrumental in tackling the associated
computationally intensive issues. High-performance computing technologies are
extensively available for domain-specific scientists in general and geographers
in particular. Parallel computing strategies, represented by decomposition, syn-
chronization, and communication, allow for best utilizing parallel computing
architectures that high-performance computing is built on. In particular, for the par-
allelization of spatially explicit geocomputational modeling, spatial characteristics
can be taken into account into parallel spatial algorithms to best leverage the high-
performance computing capabilities of state-of-the-art cyberinfrastructure.

We focused our discussion on four categories related to geocomputational mod-
eling: spatial statistics, spatial optimization, spatial simulation, and cartography and
geovisualization. The first three approaches (statistics, optimization, and simulation)
serve as the pillars of geocomputational modeling. These three approaches allow
us to abstract and transform geographic problems into geocomputational modeling.
The abstraction and representation of these problems in geocomputational modeling
approaches make them computationally challenging. Parallel computing provides a
potential solution to resolve the computational intensity of these geocomputational
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modeling approaches. Cartography and geovisualization support the visual pre-
sentation of geo-referenced data or information associated with geocomputational
modeling. The use of parallel computing for the acceleration of cartography and
geovisualization methods is needed when massive data are associated with, or
produced from, geocomputational modeling.

Future research directions that we suggest for the applications of parallel
computing in geocomputational modeling include (1) more elegant parallel spa-
tial strategies for the best utilization of computing power in alternative high-
performance computing resources, including heterogeneous multi- and many-core
computing architecture; (2) more detailed investigation on the capability of parallel
geocomputational modeling approaches (statistics, optimization, and simulation) for
large-scale spatial problem-solving; and (3) parallel geovisualization technologies
for the visual presentation of large GIS data and information (i.e., big data)
associated with geocomputational modeling.
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High-Performance GeoComputation
with the Parallel Raster Processing Library

Qingfeng Guan, Shujian Hu, Yang Liu, and Shuo Yun

Introduction

High-Performance GeoComputation

The recent advancements and wide adoption of spatial data collection technologies
(e.g., high-resolution and hyperspectral remote sensing, Light Detection and Rang-
ing [LiDAR], and global positioning system [GPS]) have led to the explosive
growth of spatial data. Meanwhile, as geospatial science advances, a large variety
of spatial analytical algorithms and spatial models have been developed in the
last few decades. Big spatial data and complex spatial algorithms have been
increasingly used in GeoComputational practices to solve complex spatial problems
[1]. On the other hand, big spatial data and complex spatial algorithms often require
massive computing power that vastly exceeds the capabilities of desktop computers.
Therefore, high-performance GeoComputation is in need.

High-performance computing (HPC), usually referring to parallel computing,
has been adopted in GIScience and GeoComputation since the 1980s. Openshaw
explicitly points out that HPC is a significant component of GeoComputation [2].
The last three decades have seen a wide range of parallel geospatial computing
studies, including transportation [3], land-use modeling [3, 4], spatial data handling
and analysis [5, 6], least cost path [7], polygon overlay [8], terrain analysis [9–12],
and geostatistics [13–17]. The recent developments of CyberGIS [18–20], spatial
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cloud computing [21, 22], and graphics processing units (GPUs) also stimulate
the deployment of parallel computing in geospatial studies (e.g., [23–28]), as they
provide easy-to-access HPC facilities and platforms.

Some characteristics of spatial data and algorithms must be taken into account
when developing parallel geospatial algorithms [29]. For example, Guo et al.
demonstrated the spatial distribution of features affect the spatial distribution of
computational intensity for map visualization [30]. The amount of computing
for visualizing an area where many features are concentrated is higher than
that for visualizing an area where few features are sparsely scattered. Therefore,
when decomposing the spatial domain of a dataset into sub-domains for multiple
computing units (e.g., CPU cores) to process in parallel, the spatial distribution of
computational intensity should be considered such that each computing unit is given
approximately the same amount computing as others to achieve better performance.
Spatially adaptive decomposition [16, 31], scattered mapping [32], and dynamic
load-balancing techniques [33] can be used for such a purpose.

Because of the spatial autocorrelation (or spatial dependence), when processing
a spatial unit, some algorithms (e.g., slope/aspect calculation and spatial interpola-
tion) need to intake not only the spatial unit of interest, but also other spatial units
within certain proximity. To parallelize such algorithms, the data must be carefully
decomposed, such that a subset of data includes not only the part to be processed
by a computing unit, but also the neighboring part (termed halo or ghost zone)
required by the algorithm [32]. Furthermore, in some iterative algorithms (e.g.,
Cellular Automata), the neighboring part of a subset must be updated according
to other subsets at each iteration, which usually results in communications between
computing units [32]. Techniques for reducing the frequency and the amount of
communications have been demonstrated in previous studies [4, 31].

As shown above, designing and implementing parallel GeoComputational algo-
rithms requires not only the knowledge and skills of parallel computing, but also
the understanding of the unique characteristics of spatial data and algorithms
and their effects on parallel computing. The development complexity of parallel
spatial computing can be extensively high for GIScientists and GeoComputation
practitioners. Therefore, an easy-to-use programming library or middleware that is
capable of facilitating the transformation from traditional sequential algorithms to
parallel programs is expected to be greatly valuable to the GIS/GeoComputation
community in the Big Data era.

Parallelizing Raster-Based Spatial Algorithms

Many GeoComputational algorithms for spatial analysis and modeling use raster
data, for the following reasons: (1) a large proportion of spatial data are available
in raster formats (e.g., remote sensing images, land-use and land-cover data, and
digital elevation model); (2) the structure of raster data is simple, therefore easy
to handle and process using computers; (3) the geographic coordinates of spatial
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units are indicated by row-column coordinates in raster data; and (4) raster data are
suitable for representing continuous field and facilitating overlay analysis, which
are commonly used in spatial problem solving.

Raster data are often organized as matrices of regularly shaped and sized cells,
each one is associated with a value representing a certain attribute or condition at
the cell’s location. In many raster-based geospatial algorithms, the computation for
a certain cell is independent from the computation for other cells, which means
the computation is parallelizable. The parallelization strategy is usually straightfor-
ward because the matrix of cells can be decomposed into multiple sub-matrices
to be processed in parallel (termed data parallelism). Note that computational
independence does not mean data independence. Some algorithms require other
cells when processing the cell of interest (e.g., focal [or neighborhood/moving-
window based], zonal, and global operations), while still being parallelizable.
Computational dependence exists in some algorithms. For example, in the flow
accumulation algorithm, the flow accumulation of a cell depends on the flow
accumulations of its upstream cells that must be computed before the current cell.
Parallelizing a computationally dependent algorithm is harder, and usually requires
special parallelization strategy specifically designed for the algorithm [34].

To facilitate the implementation of parallel spatial computing, some general-
purpose programming libraries and environments have been developed. For exam-
ple, Cheng et al. developed a set of general-purpose optimization methods for
parallelizing terrain analysis using a Cellular Automata (CA) approach, which can
also be used in the parallelization of other geospatial algorithms [35]. Qin et al.
developed a set of parallel raster-based GeoComputation operators (PaRGO) for
users to develop parallel geospatial applications on three types of parallel computing
platforms [36].

The parallel Raster Processing Library (pRPL) is an open-source programming
library designed for GIScientists and GeoComputation practitioners to easily imple-
ment parallel raster-based geospatial algorithms [31]. As a general-purpose parallel
raster processing library, pRPL is primarily designed for data parallelism and can
be used for a wide range of raster-based spatial algorithms. By encapsulating
the underlying parallel computing details and providing easy-to-use interfaces,
pRPL greatly reduces the development complexity of high-performance geospatial
applications, hence enabling the utilization of advanced algorithms/models and big
spatial data to solve complex geospatial problems.

This paper first gives a brief introduction to pRPL 2.0 (for more details
about pRPL, please see [31, 37]), and then presents two showcases of using
pRPL to implement high-performance spatial computing: slope/aspect calculation
and Cellular Automata modeling. The experiments show that high-performance
GeoComputation could be implemented with minimal parallel programming skills
by using pRPL.
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Key Features of pRPL 2.0

pRPL was developed using the CCC language based on the Message Passing
Interface (MPI), a general-purpose framework for discrete-memory parallel pro-
gramming [38]. The portability is guaranteed such that pRPL can be adopted on
a wide range of HPC architectures, including multi-core CPU computers, computer
clusters, computational grid, and cloud computing services. The rest of this section
gives a brief introduction to pRPL 2.0.

Basic Components of pRPL

pPRL includes a hierarchy of data containers to hold raster data. A Cellspace is
used to contain a matrix of cells, while a SubCellspace is used to contain a subset
of cells within a Cellspace. pRPL 2.0 allows a data container to hold any CCC type
of data (e.g., int, short, long, float, and double), as well as to retrieve and update a
cell’s value to/from a variable of any CCC type as long as the conversion between
the cell’s data type and the variable’s data type is allowed. A Layer serves as a
combining data container to hold a Cellspace and/or multiple SubCellspaces, and
provides methods to add and remove Cellspace/SubCellspaces.

A data container also has an Info attribute component to hold the metadata,
including the dimensions (i.e., numbers of rows and columns), data type, spatial
reference information (e.g., datum, projection, cell size, and geospatial coordinates
of the northwest corner), NoData value, and the minimal bounding rectangle (MBR)
of a SubCellspace. A cell within a data container can be retrieved by either its row-
column coordinates or geospatial coordinates.

To facilitate focal (a.k.a. neighborhood-based or moving-window) operations,
pRPL provides a Neighborhood class. pRPL supports arbitrary neighborhood
configurations, including not only the classical Von Neumann, Moore, and extended
Moore configurations, but also user-defined ones that can be asymmetric and/or
discontinuous. Also, varying weights can be associated with the cells within a
Neighborhood, in order to facilitate some distance-decay algorithms.

A DataManager serves as a table of contents and maintains an indexing system
for the management and manipulation (e.g., adding, removal, and retrieval) of
multiple Layers and Neighborhoods. A DataManager facilitates the decomposition
and mapping of data, i.e., dividing the Cellspaces into SubCellspaces and mapping
them onto parallel processes1. It also controls the execution of a raster-processing
algorithm, and coordinates the parallel processing automatically.

pRPL provides an intuitive programming guideline for users to implement
application-specific algorithms (termed Transitions). A basic Transition class is

1A process in parallel computing often represents a computational unit, e.g., a CPU or a CPU core.
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provided by pRPL as a template, and a specific algorithm can be implemented as a
customized child class by overriding the basic class. Writing a pRPL-based parallel
program is like writing an ordinary sequential program and requires minimal
parallel programming skills. pRPL automatically takes care of the underlying
parallel computing details, and the users can therefore concentrate on the algorithms
themselves.

Flexible Execution of Transitions

pRPL 2.0 provides three modes of executing customized Transitions to
evaluate Cellspaces/SubCellspaces: EVALUATE_ALL, EVALUATE_SELECTED,
and EVALUATE_RANDOMLY. The EVALUATE_ALL mode applies the
Transition to process all of the cells within a Cellspace/SubCellspace. The
EVALUATE_SELECTED mode uses the Transition to evaluate a set of user-
selected cells. And the EVALUATE_RANDOMLY mode executes an iterative
procedure that randomly selects a cell to evaluate at each iteration until a user-
defined condition is satisfied. These three modes provide a great deal of flexibility
and are able to implement a wide range of raster-processing procedures, such as
scanning, tracing and sampling.

Multi-Layer Processing

pPRL allows a Transition to process multiple Layers of data, which is often the
case in spatial analysis and GeoComputation. Not only multiple input Layers, but
also multiple output Layers are allowed in version 2.0. As shown in Fig. 1, pRPL
is able to synchronize the decomposition across Layers, such as to guarantee that
the SubCellspaces on different Layers match with each other in terms of locations
and dimensions. pRPL 2.0 also allows for varying decomposition configurations
across Layers. This feature can be useful when the Layers have different spatial
reference systems so the SubCellspaces on different Layers may refer to the same
sub-region but have varying Minimal Bounding Rectangles (MBRs) within their
original Cellspace. The SubCellspaces with the same ID on different Layers will be
processed together.

Centralized and Non-Centralized Focal Processing

As mentioned above, pRPL supports not only local-scope and focal-scope process-
ing, but also some zonal-scope and global-scope processing as long as they are
parallelizable. For focal processing, both centralized (i.e., only the central cell of
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Fig. 1 Synchronized decomposition across layers

a neighborhood may be updated during the processing) and non-centralized (i.e.,
any cell within a neighborhood may be updated) algorithms are supported. Users
only need to turn ON/OFF the “Only-Update-Centre” option of the Transition, and
pRPL will automatically execute the special treatments according to the option for
decomposition and parallel processing.

Flexible Domain Decomposition

pRPL provides multiple domain-decomposition methods for users, including reg-
ular row-wise, column-wise, and block-wise decomposition. Also, a spatially
adaptive quad-tree-based (QTB) decomposition method is provided for cases when
the computational intensity is extremely heterogeneous over space. The QTB
decomposition iteratively divides the domain into four quadrats until all sub-
domains have approximately the same workload (Fig. 2). Users must provide
workload-calculation algorithms to the QTB decomposition according to their own
raster-processing algorithms.

“Update-On-Change” and “edgesFirst” for Data Exchange

When focal Transitions are used, each SubCellspace contains not only the block
of cells to be processed locally, but also a ring of “halo” cells serving as the
neighbors of the edge cells. These halo cells are actually the replica of the edge
cells of the neighboring SubCellspaces. Some iterative processing procedures (such
as Cellular Automata) require executing one or more focal Transition(s) multiple
times, which requires data exchange among parallel processes at each iteration
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Fig. 2 QTB decomposition (the Greater Charlotte Metropolitan area, NC, 1992). Workload is
based on the number of urbanized cells

Fig. 3 Halo, edge and interior cells of a SubCellspace

so that the halo cells can be updated according to their origins (Fig. 3) [32, 39].
pRPL uses the “Update-on-Change” technique to help reduce the communication
volume for data exchange among the participating processes, hence reduce the
computing time. At each iteration, the edge cells of SubCellspaces are processed
first, and only the changed cells are packed into data streams and transferred to
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other processes through non-blocking communications. During the data exchange,
the interiors of SubCellspaces are processed. Such “edgesFirst” processing and non-
blocking communication overlap the computation and data transfer, therefore reduce
the waiting time for communication and improve the performance.

GDAL-based Centralized and Parallel I/O

pRPL 2.0 provides interfaces for algorithms to intake and output datasets in
various raster data formats. Such flexible data I/O capability is implemented using
the Geospatial Data Abstraction Library (GDAL, http://www.gdal.org), a general-
purpose data I/O library that supports a variety of commonly used geospatial raster
data formats, including GeoTIFF, Arc/Info ASCII grid, Erdas Imagine, SDTS, etc.
Also, pRPL 2.0 provides two data I/O modes: centralized and pseudo parallel
modes. In both modes, all the Layers needed by the Transition are first initialized.
For input Layers, the master process reads the metadata (e.g., dimensions, data
type, data size, NoData value, and spatial reference information) of the datasets
and distributes to worker processes. For output Layers, the master process creates
the datasets and distributes the metadata to worker processes. The metadata are
then used to decompose the Layers (i.e., initializing the SubCellspaces’ metadata).
For regular decompositions (i.e., row-wise, column-wise and block-wise), the
Layers can be decomposed without reading the actual cell data. For the QTB
decomposition, however, the cell data must be read before decomposition such that
the workloads of SubCellspaces can be calculated.

In the centralized mode, the master process is responsible for reading the
SubCellspaces as needed and distributing them to worker processes before the
computation, and gathering the SubCellspaces from worker processes and writing
them to the output datasets. The non-blocking communication technique is used
for SubCellspace transfer, similar to the data exchange procedure (see section
““Update-On-Change” and “edgesFirst” for Data Exchange”). In the pseudo parallel
mode, all engaged processes read their assigned SubCellspaces from the input
datasets directly in parallel, and write the output SubCellspaces into temporary
datasets in parallel. The master process reads the temporary datasets and writes to
the final output dataset. Both I/O modes assure that only one process writes a file
instead of multiple processes writing to the same file simultaneously, because GDAL
is not completely thread-safe (http://trac.osgeo.org/gdal/wiki/FAQMiscellaneous#
IstheGDALlibrarythread-safe).

pRPL 2.0 also provides an option to use a writer process besides the master
and workers. The writer process takes over the writing operations so the master
can focus on coordinating the parallel processing. The writer dynamically receives
output requests from other processes and writes subsets of data into the final output
dataset.

http://www.gdal.org
http://trac.osgeo.org/gdal/wiki/FAQMiscellaneous#IstheGDALlibrarythread-safe
http://trac.osgeo.org/gdal/wiki/FAQMiscellaneous#IstheGDALlibrarythread-safe
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Static and Dynamic Load-Balancing

pRPL 2.0 supports both static and dynamic load-balancing. In the static load-
balancing mode, all SubCellspaces are mapped to processes before the computation.
All processes read the input data of their assigned SubCellspaces through either
centralized or parallel reading, and execute the Transition to evaluate the Sub-
Cellspaces. Once the computation of a certain SubCellspace is complete and output
is needed, the output data is either transferred to the master/writer for output
(i.e., centralized writing) or written into a temporary dataset (i.e., pseudo parallel
writing).

The dynamic load-balancing mode uses the task-farming technique. A subset of
SubCellspaces are first mapped to worker processes as their initial assignments.
Whenever its assignment is near completion (i.e., only one SubCellspace is left
to evaluate), a worker requests for more SubCellspaces from the master until a
QUIT signal is received. The master dynamically maps SubCellspaces to workers
in response to workers’ requests until all SubCellspaces are mapped. The master or
writer also dynamically receives output requests from workers, and either receives
data from workers for centralized writing, or reads temporary datasets for pseudo
parallel writing.

Showcases and Performance Assessments

To demonstrate the usability of pRPL and its performance, this section presents
two showcases of high-performance geospatial computing implemented using pRPL
2.0: slope and aspect calculations, and Cellular Automata (CA) modeling. The
slope/aspect calculations represent a variety of commonly used spatial analysis
methods that are essentially local and focal operations. The CA modeling represents
spatio-temporal dynamic simulations that require iterative execution of algorithms
and frequent data exchange among parallel processes.

The experiments were conducted on a computer cluster composed of 106
computing nodes, each of which is equipped with four Opteron 2.1GHz 16-core
CPUs and 256GB of RAM. The computing nodes are connected through a Quad
Data Rate (QDR) Infiniband network at 10 Gigabit/s communication rate. The
parallel programs were compiled using gCC compiler 4.7, OpenMPI 1.6, and
GDAL 1.9, on the Scientific Linux 6.4 operation system.

Parallel Spatial Analysis—Slope and Aspect Calculations

Slope, measured in degrees or percentage, represents the maximum rate of change
in value (e.g., elevation) from a cell to its neighbors. Aspect, measured clockwise
in degrees from 0 (north) to 360 (north again), represents the downslope direction
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Fig. 4 The 3 � 3
neighborhood for aspect
calculation

of the maximum rate of change in value from a cell to its neighbors. Slope and
aspect calculations are commonly used techniques in raster-based spatial analysis,
such as terrain analysis, to identify surface change rates, surface facing directions,
flow directions, and flat areas.

The algorithm of slope/aspect calculation often uses a 3 � 3 moving window
(Fig. 4) to calculate the value of the central cell [40], and consists of the following
steps:

1. Calculate the rate of change in the X direction:

dx D .Z Œ1� C 2 � Z Œ4� C Z Œ6�/ � .Z Œ3� C 2 � Z Œ5� C Z Œ8�/

8 � CellWidth
(1)

where Z[i] indicates the value at i-th neighbor of the central cell in the input
Layer.

2. Calculate the rate of change in the Y direction:

dy D .Z Œ6� C 2 � Z Œ7� C Z Œ8�/ � .Z Œ1� C 2 � Z Œ2� C Z Œ3�/

8 � CellHeight
(2)

3. Calculate the slope:

slope D ArcTangent

�

2

q

dx2 C dy2

�

� 180

�
(3)

4. Determine if the cell is in a flat area

if slope D 0; then aspect D �1 (4)

5. Calculate the aspect
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; if dx > 0 and dy > 0

0; if dx D 0 and dy < 0

�; if dx D 0 and dy � 0

(5)

6. Convert the aspect to compass direction value and correct to north:

aspect D 360 � 360

2 � �
C 180 (6)

aspect D
�

aspect � 360; if aspect � 360

aspect; if aspect < 360
(7)

Even though the slope/aspect calculation is not a complex algorithm, when
applied on a massive amount of data, it requires lengthy computing time. One can
expect the computing time to be largely reduced using parallel computing.

Apparently, the slope/aspect calculation is a typical focal raster processing and
can be easily parallelized using pRPL. In this study, a slope/aspect-calculation
Transition class was developed based on the basic Transition class provided by
pRPL, to implement the above algorithm, and a parallel program was developed to
execute the customized Transition in parallel. The program intakes an input file (e.g.,
DEM), and is able to generate two output files (i.e., slope and aspect). A few parallel
computing options are also provided, including the number of SubCellspaces to
be generated by decomposition, load-balancing mode (static or dynamic), data I/O
mode (no output, centralized I/O, or pseudo parallel I/O), and writer mode (with or
without).

To test the performance of the program, a GeoTIFF file (1.93 GB) containing the
DEM data of California was used as the input data (Fig. 5a). The input data includes
40,460 � 23,851 cells at 30-m resolution, and the elevation values are stored as
unsigned short integers. The output data were written into GeoTIFF files (Fig. 5b
and c) with the same dimensions and spatial reference as the input data, and the
slope and aspect values are stored as single-precision floating-point numbers. Each
output file’s size was about 3.9 GB.

All experiments were conducted using the regular decomposition methods (i.e.,
row-wise, column-wise, and block-wise). Also, the scattered mapping technique
(i.e., small-granularity decomposition and each process is assigned with multiple
SubCellspaces that are scattered over the space) was used in the experiments, thus
the chance for workload imbalance among processes was reduced [32].
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Fig. 5 Elevation, slope, and aspect of California

Our experiments showed that the column-wise and block-wise decomposition
methods achieved a little lower speed-up than row-wise decomposition, because
of the strip (i.e., row-wise) storage mode of the input GeoTIFF file. The following
performance assessment focuses on the experiments using row-wise decomposition.
Each Layer was decomposed into 1024 SubCellspaces, each of which consists of
40 � 23,851 or 39 � 23,851 cells to be processed locally, plus a ring of “halo” cells.

Without writing the output slope and aspect data, a sequential program took
4428.01 s (over an hour) to complete using one CPU core on the computer cluster.
The parallel program greatly reduced the computing time by deploying multiple
processes (i.e., CPU cores), as shown in Fig. 6. With 512 processes, using the
dynamic load-balancing and parallel reading modes, the parallel program completed
in 14.11 s, achieving a speed-up of 313.812. Dynamic load-balancing outperformed
static load-balancing in most cases, indicating the task-farming technique did
improve the performance. The obvious exception occurred when four processes
were used, in which case dynamic load-balancing was slower than static load-
balancing. In the dynamic load-balancing mode, the master process is responsible
for dynamically assigning SubCellspaces to the worker processes in response to
their requests, and does not participate in the actual computation. When a small
number of processes are used, isolating a process as the master means losing a
significant proportion of the computing power, hence leading to poorer performance.

Figure 7 shows that parallel reading largely reduces the input time by allowing
all processes to read their assigned SubCellspaces in parallel. When more than 16
processes were used, the reading time in the parallel mode was around 1 s, whereas
in the centralized mode, the reading time was mostly above 10 s. When fewer
processes were used, each process had to read a large number of SubCellspaces,

2Speed-up is a commonly used performance measurement of parallel computing, and is calculated
as the ratio between the sequential computing time and the parallel computing time.
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SLB, PI 1360.85 725.81 367.92 196.52 94.80 48.25 25.15 14.15

DLB, CI 1811.05 742.38 326.61 184.56 91.85 49.18 30.98 21.67

DLB, PI 1801.71 707.42 352.70 168.44 90.10 46.09 25.16 14.11
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Fig. 6 Overall computing times for no-output experiments (the X axis indicates the number
of processes; SLB static load-balancing, DLB dynamic load-balancing, CI centralized input, PI
parallel input)
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Fig. 7 Times for centralized and parallel reading

leading to a longer reading time. Even so, parallel reading was still quicker than
centralized reading.

When writing the output files, a sequential program took 4881.9 s to complete.
With 512 processes including a writer, using the dynamic load-balancing and
centralized I/O modes, the parallel program completed in 251.5 s, achieving a
speed-up of 19.4. By comparing the results with that of the no-output experiments,
we concluded that the writing operations took a large proportion of the overall
computing time.

As shown in Fig. 8, in most cases, dynamic load-balancing outperformed static
load-balancing when other conditions are the same. A writer process greatly reduced
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4 8 16 32 64 128 256 512

SLB, NW, PIO 1709 1070.29 938.961 577.637 464.38 394.013 419.949 465.515

SLB, NW, CIO 1561.85 952.027 777.583 473.188 394.98 254.18 274.533 318.525

DLB, NW, PIO 1908.15 836.472 551.395 393.539 368.231 380.869 424.208 372.692

DLB, NW, CIO 1797.76 825.354 495.574 302.226 278.502 285.303 296.23 252.4

SLB, WW, PIO 2108.12 846.715 504.639 388.886 499.013 495.978 860.441 389.887

SLB, WW, CIO 2047.18 793.721 555.443 371.606 308.025 393.273 263.153 271.8

DLB, WW, PIO 3134.71 926.278 484.983 356.48 428.696 436.566 395.416 402.111

DLB, WW, CIO 2805.99 903.365 478.2 281.963 282.904 287.542 295.447 251.531
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Fig. 8 Overall computing times for with-outputs experiments (NW no writer, WW with writer,
CIO centralized I/O, PIO pseudo parallel I/O)

the overall computing time in the static load-balancing mode, while in the dynamic
load-balancing mode, using a writer did not help improve the performance. This is
because in the static load-balancing mode, the master also participates in the actual
computation, and the writing operations have to be executed by the master after all
its assignments have been finished if a writer does not exist. A writer, taking over
the writing operations, can dynamically write SubCellspaces to the output file in
response to other processes’ requests, thus reduces the overall time. On the other
hand, in the dynamic load-balancing mode, the master does not participate in the
actual computation, and also dynamically writes data to the output files. Using a
writer means losing a worker process, leading to poorer performance.

In almost all cases, parallel I/O yielded poorer performance than centralized I/O.
As mentioned above, parallel reading could help reduce the time for data input. We
therefore concluded that pseudo parallel writing was outperformed by centralized
writing in these experiments. Pseudo parallel writing includes multiple reading and
writing operations (i.e., the I/O of temporary files), which degrades the performance.
Thus a better solution for parallel writing that allows processes to directly write
subsets of data into the output datasets is needed, such as the parallel GeoTIFF I/O
of the Terrain Analysis Using Digital Elevation Models (TauDEM, http://hydrology.
usu.edu/taudem/taudem5/index.html) and the parallel netCDF parallel I/O of the
pIOLibrary (http://sandbox.cigi.illinois.edu/pio/).

http://hydrology.usu.edu/taudem/taudem5/index.html
http://hydrology.usu.edu/taudem/taudem5/index.html
http://sandbox.cigi.illinois.edu/pio/
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Parallel Spatio-Temporal Modeling—Cellular Automata

A classical Cellular Automata (CA) consists of a set of identically shaped and sized
cells, each of which is located in a regular, discrete cellspace. Each cell is associated
with a state within a finite set. The model evolves in discrete time steps, changing
the states of cells according to transition rules, homogeneously and synchronously
applied at every step. The new state of a certain cell depends on the previous states
of a set of cells, which include the cell itself and its neighbors.

With the naturally embedded space and time properties, CA provides a straight-
forward approach for spatio-temporal dynamic simulations, and has been widely
used in geospatial studies, such as land-use and land-cover change [41–44], wildfire
propagation [45], and freeway traffic [46, 47].

In this showcase, we parallelized a classical CA model—the Game of Life
(GOL), using pRPL. More complex CA models can be implemented using the same
strategy (see [31]).

In the GOL, a cell can live or die depending on the condition of its 3 � 3
neighborhood, according to a simple transition rule. As a result, the living status of
the cells can represent various spatial patterns throughout the course of iterations.
The pseudo code of the GOL’s transition rule is as follows:

FUNCTION Transition (cell, time_t)
n D number of alive neighbors of cell at time_t
IF cell is alive at time_t
IF n � 4
THEN cell dies of overcrowding at time_tC1

IF n � 1
THEN cell dies of loneliness at time_tC1

IF n D 2 OR n D 3
THEN cell survives at time_tC1

ELSE (i.e., cell is dead at time_t)
IF n D 3
THEN cell becomes alive (i.e., born) at time_tC1

Similar to the slope and aspect calculation, the GOL’s transition rule is a focal
operation that can be easily parallelized. What makes the GOL more complex is
that the iterative execution of the transition rule requires data exchange among
the parallel processes at every iteration in order to update the “halo” cells of
SubCellspaces. As mentioned in section ““Update-On-Change” and “edgesFirst”
for Data Exchange”, pRPL is able to automatically handle the data exchange while
optimizing the performance. In this study, a customized Transition was developed to
implement the GOL transition rule, and a GOL program to implement the simulation
procedure. The GOL program first initializes a user-defined number of seeds (i.e.,
alive cells) that are randomly distributed over the space, iteratively executes the
GOL Transition on all cells, and reports the number of cells alive at each iteration.
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Fig. 9 Overall computing times for GOL simulations

The parallel GOL program provides both dynamic and static load-balancing
options. Dynamic load-balancing can only be used in the random seeding procedure,
during which the master dynamically assigns SubCellspaces to workers in responses
to their requests. Once complete, all SubCellspaces are assigned to workers. During
the iterative execution of the GOL Transition, the assignments for workers stay
static.

Without writing any output data, a sequential program took 12,242.7 s (about
3.5 h) to complete a 10-iteration simulation on a 20,000 � 20,000 cellspace with
80,000,000 initial seeds. All parallel experiments used row-wise decomposition, and
the cellspace was divided into 1024 SubCellspaces. With 512 processes, the parallel
program completed the same simulation in 35.7 s with a speed-up of 343 using
static load-balancing, and 54 s with a speed-up of 227 using dynamic load-balancing
(Fig. 9). The dynamic load-balancing (i.e., task-farming technique) yielded poorer
performance than static load-balancing. This is mainly because the computational
intensity of the random seeding procedure is quite different from that of the GOL
Transition. The task mapping (i.e., assignments for workers) generated during the
random seeding is not optimized for the GOL Transition’s execution. Also, as
pointed out by Guan and Clarke [31], a spatio-temporal model such as CA changes
the spatial distribution of workload as it evolves because the cell values change at
each iteration. Thus the task-farming technique is not suitable for such dynamic
models.

When writing the final result, a sequential program completed the same sim-
ulation in 12,206 s. With 512 processes (no writer) and centralized writing, the
parallel program completed in 90 s, achieving a speed-up of 135 (Fig. 10). Using
a writer process yielded poorer performance in most cases. This is because the
majority of the overall time was used for the iterative computation, and the writing
only took place in the end. Pseudo parallel writing outperformed centralized writing
when small numbers of processes were used (i.e., less than 128), which is different
from the slope/aspect calculation experiments. This is because the output file of
the GOL experiments was much smaller (800 MB), therefore the time for creation
and writing was considerably shorter. When a small number processes were used,
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Fig. 10 Overall computing times for with-output experiments (CW centralized writing, PW
pseudo parallel writing)

writing temporary files to the shared disk space was more efficient than transferring
the output SubCellspaces to the master/writer. However, when a large number of
processes were used, the I/O channel of the shared disk space was saturated by the
overwhelming number of concurrent writing operations.

Conclusion

Big spatial data and complex geospatial algorithms demand massive computing
power that may largely exceed the capability of individual desktop computers.
High-performance GeoComputation, by utilizing parallel computing technologies,
provides promising solutions to overcoming the computational barriers and enables
complex analytics and modeling using high-resolution data for large-area studies.
Nevertheless, the high complexity of developing parallel geospatial algorithms has
become a major bottleneck that discourages GIScientists and GeoComputation
practitioners to exploit the advantages of high-performance computing in geospatial
studies.

The parallel Raster Processing Library (pRPL), a general-purpose and open-
source programming library, enables transparent parallelism by providing easy-to-
use interfaces for users to parallelize application-specific raster-processing algo-
rithms with minimal knowledge and skills of parallel computing. pRPL allows users
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to focus on their own algorithms, and automatically handles the underlying parallel
computing, including domain decomposition, assignment mapping, algorithm exe-
cution, data exchange, load-balancing, and data I/O.

This paper presents two cases of high-performance geospatial computing imple-
mented using pRPL: (1) the slope/aspect calculation, as an example of a wide range
of spatial analytics that are based on local or focal operations; and (2) the Game
of Life (GOL), a typical Cellular Automata model that represents spatio-temporal
dynamic simulations.

The experiments showed that pRPL largely reduced the computing time. While
parallel reading could effectively reduce the time for data input, the writing of
large output datasets were found to be one of the main bottlenecks of performance.
Therefore a true parallel writing mechanism is needed, which should be able to
allow multiple processes to directly write data to the output datasets concurrently.
Dynamic load-balancing outperformed static load-balancing in the slope/aspect
calculation, indicating the task-farming technique did improve the efficiency for
such non-iterative algorithms. However, it yielded lower performance in the GOL
experiments, because the task-farming was only used for the random seeding
procedure, not the iterative evolvement. Also, the task-farming technique is not
suitable for spatio-temporal simulations because the spatial distribution of workload
may change as the cell values change during the iterative procedure. Using a writer
process was useful for improving the performance in the static load-balancing mode,
because the writer is able to dynamically write subsets of data into the final output
files.

In summary, pRPL provides a variety of options for parallel geospatial comput-
ing, and these options should be carefully chosen according to the characteristics
and requirements of the algorithms and datasets, the parallel computing environ-
ments, and users’ preferences.
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‘Can You Fix It?’ Using Variance-Based
Sensitivity Analysis to Reduce the Input Space
of an Agent-Based Model of Land Use Change

Arika Ligmann-Zielinska

Introduction

Land use system complexity originates from the interplay of key system drivers that
form a web of reciprocal relationships resulting in nonlinearities, path dependence,
and feedbacks across space, time, and scale [1–7]. One way to study a land system
is by using an agent-based model (ABM), in which land operators (like developers,
farmers, residents, businesses) are represented by distinct computational entities
(called agents) that populate a common virtual environment, which reflects the target
land system.

Uncertainty in ABMs is particularly important. These models require a large
number of explanatory variables that describe the spatial, social, environmental,
and socio-environmental components of the system, often combined using nonlinear
functions and advanced algorithms. A common approach to addressing ABM uncer-
tainty is to represent (a portion of) model inputs as probability density functions
(PDFs) which are sampled many times with each sample used in a distinct model
execution. This process, known as Monte Carlo simulation, produces distributions
of outputs. Consequently, input uncertainty is propagated through the model and
reflected in output distribution. While this uncertainty propagation (aka uncertainty
analysis—UA) effectively quantifies the variability of results due to stochastic or ill-
defined inputs, it does not reveal which of these inputs are instrumental in shaping
output variability. Finding the drivers of output uncertainty can be useful in building
a more parsimonious and transparent model with reduced parameter dimensionality.
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It is therefore apparent that ABM output variability has to be subdivided to prioritize
the influence of inputs, leading to input prioritization and model simplification
[8, 9]. One approach to investigate model output variability is through sensitivity
analysis (SA), which tests model response to changes in its inputs [10, 11].

Simplification has long been identified as one of the core steps in model
development and application [12–23]. The principle of Occam’s razor is often cited
as a philosophical rationale for simplification. This principle states that, among
competing explanations, we should adopt explanations with the lowest number
of assumptions. Various methods of simplification have been proposed. In their
seminal paper, Innis and Rexstad [19] provide a comprehensive review of 15
model simplification methods including optimization, filtering, sensitivity analysis,
structure and logic tests, applying dimensionless variables (generalization), meta-
modeling, analytical solutions, time constraints (e.g. a slowly changing system
component may be represented as a model constant), and reduction of parameter
space by eliminating collinearities. For their vegetation model, Moore and Noble
[20] employ Bayesian analysis to generate a directed graph of a given size, leading
to a simplified model at a specific resolution. The procedure is to discretize the
input-output space in order to obtain a representative yet finite approximation of
the otherwise continuous input-output data. Saysel and Barlas [22] use structure
validity tests to generate models equivalent to their original system dynamics
model of irrigation. Crout et al. [16] demonstrate a method of creating simpler
models derived from a base model by systematically substituting its variables with
constants—a procedure called model reduction by variable replacement. Finally,
in their seminal paper on ABM simplification, Edmonds and Moss [18] propose a
method of simplification that starts from an extensive model which accounts for the
widest possible range of evidence and is simplified only when the evidence justifies
it. They argue that simplification should be context-dependent. They also stress that,
when simplifying a model, we should focus on retaining only the relevant behaviors
in order to address a given problem. In this chapter, I postulate that these contexts
can be embedded in model outputs. Consequently, I propose to utilize SA as a means
of model simplification through factor fixing.

In the sections that follow, I propose a framework for ABM simplification
by employing uncertainty and sensitivity analysis. UA is used to generate a
distribution of outputs, which is further summarized using variance—a simple
yet succinct measure of result variability. What follows is SA based on variance
decomposition [24, 25], in which the variance is apportioned to model inputs,
in order to quantify which of them and to what extent affect the variability of
ABM results. Variance-based SA computes sensitivity indices that represent the
fractional contribution of each input to output variance. The reported framework
has very practical implications. By comparing the values of sensitivity indices, we
can prioritize which inputs have a negligible effect on output variability (inputs
with low values of sensitivity indices), and which inputs are the critical drivers of
output uncertainty (inputs with high sensitivity). Each unimportant input can be
fixed to some representative value (like a mean or a mode) leading to a reduction
in ABM parameter space i.e., model simplification. Each influential input can be
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refined in order to improve ABM accuracy or reduce output variability in future
model improvements. For example, finding critical model components allows for
prioritization of input measurements, that is, efficient allocation of resources for
future data acquisition [26]. While the reported framework is applied in the spatial
ABM context, it can be easily used to evaluate the uncertainty of other complex
systems models.

The UA and SA framework is demonstrated using an ABM of agricultural
land conservation. The model emulates a process of farmer enrollment in U.S.
Conservation Reserve Program (CRP) [27]. The model comprises two types of
agents: farmers, who make decisions on their individual CRP participation, and the
Farm Service Agency, which evaluates, selects, and accepts the enrollment offers
made by farmers. A positive enrollment decision leads to the conversion of land
use from row crop/pasture to fallow. The results of the ABM are maps of land use
change, which are summarized using a number of metrics, from total fallow land
acreage, through various measures of land use compactness and contiguity, to cost of
land retirement. The distribution of each metric is used separately in variance-based
SA, leading to alternative input prioritizations and potential model simplifications,
depending on the type of output variable. Variance-based SA has been applied to
spatial modeling in a number of previous studies [8, 24, 28–34]. What sets this
framework apart is its emphasis on model simplification guided by a number of
different outputs.

The chapter is organized as follows. Section “Comprehensive Uncertainty and
Sensitivity Analysis of Agent-based Models of Land Use Change” sets the backdrop
of this study by describing the UA and SA framework. Section “ABM of Agricul-
tural Land Conservation and Model Setup” details the ABM of agricultural land
conservation, the PDFs of data used in simulations, and the design of computational
experiments. The results are presented in section “Results of the Original ABM”,
first by describing the UA and then by reporting the SA and the proposed model
simplification. In section “Model Simplification and Discussion” I demonstrate the
results of ABM simplification and provide some practical guidelines on choosing
the right path to building a transparent model with the presented methodology.
Section “Conclusions” concludes the chapter.

Comprehensive Uncertainty and Sensitivity Analysis
of Agent-Based Models of Land Use Change

The roots of formal SA may be traced to engineering, scientific predictive modeling,
and decision science [11, 30, 35, 36]. SA is frequently perceived as a tedious
step in modeling that can be omitted without a significant loss of information
about model performance. However, SA offers many benefits to improve the
relevance of ABM to land use science and policy. Not only does it improve model
validity by recognizing its critical inputs, but it also provides means of model
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Fig. 1 A framework for model simulation coupled with uncertainty and sensitivity analysis

simplification (input reduction), which is especially valuable when dealing with
highly dimensional ABMs. Finding important inputs allows for prioritizing data
refinement to build better, operational versions of the model. SA can also assist in
choosing the most accurate representation of the spatial system and, consequently, it
can contribute to theory development [28]. For these reasons, I argue that SA plays
an integral role in ABM development and application, requiring comprehensive
methods that systematically examine model input and output uncertainty.

Framework

At the outset, it is important to distinguish between model uncertainty and sensitivity
analysis (Fig. 1). By definition, models with varying inputs produce a number of
output values, requiring a large number of model executions. The output values are
then compiled into a probability distribution. This stage of modeling constitutes UA.
The objective of UA is therefore to evaluate how the uncertainty of inputs propagates
through the model and affects the values of its output variables. What follows is SA
which evaluates how much each source of input uncertainty contributes to model
output variability [11, 24].

The key issue in quantitative SA is to decide on the statistics summarizing
the distribution of a given output. The selected statistic is then partitioned and
distributed among inputs. Due to a number of reasons, variance is the most common
statistic applied to evaluate the importance of inputs in shaping the variability of
results [11, 37]. First, variance-based SA is model-independent, meaning that model
functional complexity does not constrain the validity of SA. Second, variance has
the capacity of capturing the influence on output variability of the full range of input
variation, including the interaction effects among inputs. Finally, variance-based SA
can deal with groups of inputs (e.g. one group of income inputs for all g agents in the
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model, rather than g number of separate income inputs—one for each agent) leading
to computationally more efficient and analytically more useful SA. The procedure
of variance decomposition is described in the following subsection.

Variance-Based Sensitivity Analysis

Variance-based SA decomposes the total unconditional variance (V) of the distribu-
tion of output Y caused by the changes in K model inputs and allocates each portion
of V to individual input i (Vi) as well as i’s interactions with other inputs (with
increasing order effects):

V D Vi C Vj C � � � C Vk C Vij C � � � C Vik C Vijk C Vij:::k (1)

The decomposed variance is used to compute two sensitivity indices for every i.
The first order sensitivity index (Si or S for short) is a measure that quantifies the
fractional contribution to output variance of i taken independently from other inputs
[38, 39]:

Si D Vi

V
(2)

where Vi D V[E(YjXi)] is a variance of the expected value of Y assuming a fixed i.
A relatively high Si denotes an input that substantially contributes to the variability
of Y. Trivially, the sum of all Si (S-sum) must be less than or equal to one. For
additive models the S-sum equals one, meaning that all the variance of Y can be
explained by the first-order effects alone. If this is the case, we can use a number
of computationally less expensive techniques of SA like the correlation coefficients
or the standardized regression coefficients [39]. In many complex models, however,
the inputs interact with each other in a nonlinear manner. Spatial ABMs also exhibit
such behavior [8, 33, 34]. The fractional contribution of nonlinear effects to the
output variance is calculated by subtracting the S-sum from one. Nevertheless, this
measure of interactions does not explain the partial interactions of individual inputs.
The latter can be captured by using a total effects sensitivity index of i (STi or ST
for short), which quantifies the entire fractional contribution to V of i including all
of its interactions with other inputs [40, 41]:

STi D 1 � V ŒE .YjX�i/�

V
(3)

where V[E(YjX i)] is the overall contribution to Y’s variance caused by all inputs but
i. With ST, all first and higher order terms involving i are conveniently represented
by a single index. Note that, for a large K, we would have to compute and interpret
as many as 2k � 1 first and higher order measures of influence—an impractical
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and laborious task. Observe that the sum of all STi (ST-sum) must be greater than
or equal to one. Whenever S-sum and ST-sum are equal (to one), no interactions
affecting the variance of Y exist among model inputs. To obtain the sole interaction
effects of i we need to calculate the difference between STi and Si. More details on
computing the S and ST can be found in Chap. 4 in Saltelli et al. [39].

Simple Example of Variance-Based SA

Consider a toy ABM of farmers growing corn on their land. Each farmer makes
a decision on whether or not to grow corn based on its last season prices (P), the
forecasted weather (W), and land productivity (L). The output variable of the model
is the total area of grown corn with variance VCorn, which can be broken down as
follows:

VCorn D VP
Corn C VW

Corn C VL
Corn C VPW

Corn C VPL
Corn C VWL

Corn C VPWL
Corn (4)

where VP
Cornis the variance in corn area due to price, VPW

Corn is the variance in corn
area due to price and weather, and VPWL

Corn is the variance in corn area due to the three
inputs combined. Assume that the SA results in variances presented in Table 1.

The corresponding sensitivity indices are presented in Table 2.
Based on the computed indices we can conclude that P has the highest influence

on corn area variability, followed by W, followed by L. Interestingly, the interaction
effects of P and L are about the same (�5%), and yet the major first effect of P is
six times that of L. Moreover, although W has a lower impact on output variance
than P when treated singly (33% < 50%), its interaction effect is actually higher
(8% > 5%). Only 8.7% of corn area variance can be attributed to input interactions
(1–0.913).

The ABM simplification would not be advisable. Based on the value of S, input
L is a potential candidate for fixing because only 8.3% of variance can be explained
by L alone. However, considering the interaction effects, the role of L in explaining

Table 1 Total and fractional variances of corn area obtained from a simple farm ABM

VCorn VP
Corn VW

Corn VL
Corn VPW

Corn VPL
Corn VWL

Corn VPWL
Corn

0.06 0.03 0.02 0.005 0.002 0.0005 0.002 0.0005

Table 2 Sensitivity indices for the example farm ABM

S ST ST � S

P 0.03/0.06D 0.5 (0.03C 0.002C 2 � 0.0005)/0.06D 0.55 0.05
W 0.02/0.06D 0.33 (0.02C 2 � 0.002C 0.0005)/0.06D 0.41 0.08
L 0.005/0.06D 0.083 (0.005C 0.002C 2 � 0.0005)/0.06D 0.13 0.047
Sum 0.913 1.09
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output variance increases to 11.9% (0.13/1.09). Consequently, we should always
evaluate model simplification based on the values of ST rather than S.

Finally, P proves to be the most important input that drives the variance of corn
area (�50% overall contribution). We conclude that, to improve the ABM accuracy,
we should focus our data collection efforts on refining the PDF of price.

Sampling

Estimating the S and ST indices is computationally demanding. Based on the
author’s experience, eight inputs usually require more than 2000 model runs. For
this reason, a number of sampling designs have been proposed and tested [25] with
Sobol’ quasirandom sampling outperforming other methods [42–45]. This method
systematically probes the input space, leading to more uniformly distributed sample
points in the multidimensional unit cube when compared to simple random sampling
[46]. Consequently, Sobol’ quasirandom sampling is used in the ABM experiments
reported herein.

ABM of Agricultural Land Conservation and Model Setup

The ABM of agricultural land conservation simulates the enrollment in CRP—a
government-sponsored agricultural land retirement program in the U.S. CRP was
established in 1985 to conserve land production resources by reducing soil erosion
[27, 47]. It was later amended to account for practices targeted toward improving
water quality and maintaining biodiversity. The goal of CRP is to convert row
crop and pasture lands back to natural land cover. Installation and practice of
conservation activities is done on a volunteer basis. Farmers are paid for establishing
and maintaining the conservation practices.

The ABM operates as follows (Fig. 2). Every time step (year), a farmer agent
(FA) decides whether it is willing to enroll in the program. The decision is made
based on individual values of selected sociodemographics including land tenure
(owner or renter), farmer retirement (yes/no), value of production on the farm (in
U.S. dollars), as well as the attitude to risk represented by FA’s decision rule
that also considers behavior of FA’s neighboring agents. The first three decision
criteria are simple statistical variables obtained from a survey [48]. The decision rule
comprises a set of aggregation functions and a sub-model. The sub-model depicts
a simple mechanism of social network influence, embodied in spatial interactions
at an individual level, which allow for simulating the spatial diffusion of CRP
participation through proximal agents [49]. The risk-based decision rule is defined
using Ordered Weighted Averaging—OWA [50]. The OWA set is composed of rules
spanning the continuum from completely risk-averse (all decision criteria must be
above zero) to completely risk-taking (only one must be above zero). Criteria are
combined using rank weights applied in various aggregation functions from the
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Fig. 2 The decision process in the ABM of CRP enrollment

most restrictive (in which all of the criteria need to be met) to the least restrictive (in
which a high value of one criterion is enough to make the decision). OWA results
in a standardized score, which is then compared to an empirically derived threshold
value.

Once the decision is made, the FA evaluates what fraction of land and where
should be selected for land retirement. Priority of selection is based on slope (steep
slope is preferred), distance to water and forest (closer is considered better). The FA
calculates the rental value expected from the land proposed for conservation, and
applies a reduction (bid) to make its offer more competitive. The offer is then passed
to the Farm Service Agency agent (FSA) which collects offers from all interested
farmers and makes a final decision on admission to the conservation program. Due
to a limited federal budget, CRP enrollment is established based both on cost of
an individual offer and on a number of environmental factors which are jointly
represented by an environmental benefits index (EBI) described in the following
section [51]. Once the accepted offers are identified, FSA announces signup results
leading to land use change from row crop or pasture to fallow land.

The ABM runs for 10 years. This allows for a simplified decision process since
the minimum duration of a CRP contract is at least 10 years. Consequently, FAs who
enroll in year one will not be able to withdraw before the end of the simulation and
the ABM will not require algorithms for CRP withdrawal and return to agricultural
production. The basic output of the model is a land use change map with a portion
of farmland staying idle.
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Fig. 3 Study area: (a) an overview map of Michigan with the study area highlighted, (b) a
generalized land use map of the study area, (c) an inset map with a portion of study area at a
larger scale where dots represent the locations of farmer agents

Study Area

The ABM is applied to study CRP enrollment in six counties (Allegan, Barry, Cass,
Kalamazoo, St Joseph, Van Buren) in southwest Michigan, U.S. (Fig. 3). The area
covers 9220 sq. km, with a substantial amount of agricultural land (51% of the total
area). According to U.S. Census of Agriculture [52] there were 6689 farms in the
area in 2007. Furthermore, about 3% of farmland was enrolled in CRP according to
the census.

Data

The ABM inputs comprise seven constants and eight variables. Model constants
include land use [53], slope [54], soils [55], soil rental rates for the selected counties
[56], the total budget available to FSA [57], a threshold value that drives FA’s
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Table 3 Probability distributions of ABM inputs

Input name Input description Probability density function

RETIREMENT Primary farm operator retired from
farming (0: retired, 1: working)

DD [(0, .06), (1, .94)]

PRODUCTION Total value of production on a farm DD [(0, 0), (.2, .06), (.4, .06),
(.6, .11), (.8, .15), (1, .62)]

TENURE Ratio of owned to operated acres DD [(0, .04), (.2, .14),
(.4, .18), (.6, .14), (.8, .15),
(1, .35)]

PRIORITY Prioritization of land characteristics
used in ranking the potential CRP
locations

DD [six combinations with
equal probability]

OWA Farmer agent decision rule based on
ordered weighted averaging

DD [17 combinations with
equal probability]

LANDFRACTION Fraction of farm parcel to set aside for
conservation

UD (0, 1)

BID Voluntary reduction by the farmer of
the offer value below the maximum
payment rate

DD [0%–16% of reduction
with increments of 1, with
equal probability of selection]

EBI Environmental benefits index DD [six spatial layers
representing different
scenarios of EBI distribution
in the study area with equal
probability of selection]

U uniform distribution, D discrete distribution (value, probability)

willingness to enroll [48], and a map with locations of land parcels eligible for CRP,
delineated based on the common land unit specification [58]. The model assumes a
separate decision maker per each virtual farming parcel, which amounts to a total of
26,095 farmer agents. Raster data was set to a common resolution of 30 m, resulting
in 3540 columns and 3790 rows. All data was obtained for 2010—a year of the 41st
CRP signup [51].

The eight variable inputs are depicted in Fig. 2 in black and their PDFs are
summarized in Table 3. Notice that PRODUCTION, TENURE, and RETIREMENT
are empirically-derived variables generated from data collected through the Agricul-
tural Resource Management Survey [48]. Empirical data for the remaining variables
was not available. It was therefore assumed that, for any ill-defined variable, all
possible values can be selected with equal probabilities i.e., OWA, BID, EBI, and
PRIORITY are represented as discrete uniform distributions and LANDFRACTION
is described with a continuous uniform distribution (Table 3).

All model inputs are aspatial except for EBI. The EBI maps were obtained based
on USDA guidelines for assessing environmental benefits from land conservation
[51]. The list of potential benefits includes five factors (plus the rental cost which
is evaluated separately) divided into operational sub-factors. Since the specification
leaves some room for modification based on local geographic conditions, a number
of alternative EBI realizations were generated. Figure 4 depicts the six EBI maps
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Fig. 4 Six alternative realizations of the environmental benefits index used in the ABM. Each
caption describes the combination of factors used in its formulation. Each pixel represents a score
on a range from 50 to 330 points established based on the USDA specification [51]. Higher values
are depicted with darker shades of grey. For clarity, only inset (c) from Fig. 3 is shown
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used in the reported simulations. The maps were produced by overlaying different
combinations of the following six layers that embody three conservation objectives
(names used in Fig. 4 are given in parentheses):

1. The wildlife objective maximizes expected wildlife benefits from conservation
and is represented by two alternative maps:

a. Wetland restoration priority zones (wetlands).
b. Critical ecosystems for conservation (conservation).

2. The water quality objective minimizes inflow of soils, polluted runoff, and
leaching and is operationalized as follows:

a. Drinking water protection zones (drinking water).
b. Groundwater vulnerability areas (groundwater).
c. Safety buffers around streams, rivers, ponds, and lakes (distance to surface

water bodies).

3. The erosion objective captures the vulnerability of soils to erosion and is
embodied in one spatial layer—the soil erodibility index obtained from the
SSURGO database [55].

Experiments and Outputs

The simulations were designed using the following protocol. After identifying
the uncertain inputs and their respective distributions, N samples were generated
using the Sobol’ quasirandom sampling [45]. For the original (initial) model
N D 2304 and the simplified model (reported in section “Model Simplification
and Discussion”) was evaluated with N D 1536. Monte Carlo simulations were run
to generate numerous land use change maps, which were aggregated into scalars
including the total area of fallow land (acres), the cost of land rent (cost), and nine
fragmentation statistics of fallow land (spatial metrics) [59]. Out of the nine spatial
metrics five were highly correlated (jrj > D 0.9), so the final set of output variables
used in model evaluation was set to area, cost, and four spatial metrics i.e., the
average nearest neighbor, the average radius of gyration, the largest patch index, and
the average perimeter-to-area ratio (Table 4). The distributions of the six statistics
were summarized using box plots. The outputs were then subjected to UA and SA.
The UA was performed to quantify the variability of fallow land area resulting from
CRP enrollment by calculating the descriptive statistics. The SA was run to identify
the most and the least influential inputs and to investigate the dependence of the
ABM outputs on input interactions by decomposing the scalars, apportioning them
to inputs, and therefore determining the underlying causes driving the distribution
of results. The resulting S and ST indices were visualized using pie charts (the ST
indices were first normalized to sum up to one).
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Table 4 Scalar outputs obtained from the ABM land use maps

Name Definition Unit

Acres Total area of fallow land Acre
Cost Cost of land rent per year U.S. dollars per acre
ANN Average Nearest Neighbor: average distance between

patches of fallow land measured along a straight line (a
measure of patch isolation)

Meter

GYRATION Average radius of gyration: a averaged measure of the
extent of fallow land patches

Meter

LPI Largest patch index: the percentage of the landscape
comprised by the largest patch of fallow land (a measure
of dominance)

Percent

PAR Average perimeter-to-area ratio of fallow land patches (a
simple measure of shape complexity)

Unitless

Definitions of spatial metrics based on McGarigal [60]

Fig. 5 Example output land use maps and the frequency map of agriculture-to-fallow conversion.
For clarity only inset (c) from Fig. 3 is shown

The ABM was developed in Python (https://www.python.org/) and executed
using the High Performance Computer Center at Michigan State University
(http://icer.msu.edu/). The sensitivity indices were calculated with SimLab (https://
ec.europa.eu/jrc/en/samo/simlab).

Results of the Original ABM

Figure 5 shows examples of output land use maps from two selected model
executions. Observe that, compared to the input land use (Fig. 3), the maps
contain one additional category of fallow land. Because FAs make CRP enrollment
decisions on a pixel-by-pixel basis, most of the parcels at the end of simulation have

https://www.python.org
http://icer.msu.edu
https://ec.europa.eu/jrc/en/samo/simlab
https://ec.europa.eu/jrc/en/samo/simlab
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Fig. 6 Distributions of output scalars with their means and standard deviations: (a) for the original
model with eight inputs, (b) for the simplified model with five inputs

only a portion of their land put to fallow. In addition to the land use output, I created
a map of enrollment frequency by superimposing all output maps to calculate the
percentage of times a particular pixel was converted to fallow. Clearly, considerable
spatial heterogeneity in pixel enrollment can be observed, likely due to the complex
interactions between inputs.

Uncertainty Analysis

The patches of fallow land were used to calculate the spatial metrics listed in Table
4. The distributions of the scalars and their respective means and standard deviations
are rendered in Fig. 6 columns (a). Two observations can be made. First, the cost and
area produce bimodal distributions whereas all the spatial metrics result in skewed
normal-like distributions. The possible reason for the bimodal behavior is described
in the following section. Second, cost is almost perfectly negatively correlated with
area (Pearson’s r D �0.98). This is not surprising given that the FSA operates with
a fixed budget. Consequently, in locations with lower rental rates more land can be
enrolled in the program (and vice versa).

Sensitivity Analysis

A reliable model simplification requires information about which inputs and to
what extent contribute to output variability. By performing the decomposition of
variances of the six scalars, we can identify inputs in the ABM that can be fixed
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Fig. 7 Pie charts of the S and ST indices for the six output scalars: (a) for the original model with
eight inputs, (b) for the simplified model with five inputs. Note that the ST values were rescaled

to constant values with minimal changes to the underlying output distributions. The
results of SA—the S and ST indices—are depicted as pie charts in Fig. 7 rows (a).

Two distinct classes of sensitivities can be observed: the aspatial variables and
the spatial metrics. The first group is characterized by a fairly linear input-output
correspondence, as only 4% of cost variance and 7% of acres variance can be
attributed to interactions (S-sum D 0.96 and 0.93 for cost and acres, respectively).
Given that cost and acres are highly correlated, results of variance decomposition
are quite similar. EBI is the input that predominantly affects the variability of
both statistics (SEBI D 0.9 for cost and 0.87 for acres). Three other inputs that
play some role in describing the variability of these two statistics (especially in
combinations with other inputs—see the ST pie charts), are OWA, TENURE,
and PRODUCTION. Thus, based solely on the simple regional metrics of total
area and cost of enrollment, we could easily fix RETIREMENT, PRIORITY,
LANDFRACTION, BID. This post-processing analysis also indicates that, for these
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two variables, simpler linear methods of SA can be applied without a substantial loss
of information.

The four spatial metrics comprise the second distinct group of sensitivities. This
group is characterized by much larger interaction effects (from 48% for ANN to
90% for PAR). I hypothesize that such complex relationship between input and
output variability can be attributed to the fact that the spatial metrics are sensitive to
the configuration of various spatial layers present in the model like soils, forest,
slope, and all the factors that build the EBIs. In this case, using only the S to
identify the causes of output variance is ineffective and we have to resort to the
ST indices to make a valid decision on ABM simplification. In all four cases
EBI, OWA, PRODUCTION, and TENURE emerge as influential, which is similar
to the inputs established for cost and acres. In addition to these four inputs, we
can identify farmer’s RETIREMENT as one more influential input. Assuming that
ABM simplification should be based on all six output variables, the modified ABM
involves setting PRIORITY, BID, and LANDFRACTION to constants, and leaving
EBI, OWA, PRODUCTION, TENURE, and RETIREMENT as variable inputs. This
results in a reduction of input dimensionality from eight to five dimensions.

Finally, to delve into the cause of the bimodal distributions of cost and area,
I plotted these two variables against EBI, which is the major driver of output
variability. Figure 8 shows the resulting scatter plot. As expected, the EBI layers are
correlated with different combinations of cost and area. Moreover, they are a good
candidate for explaining the bimodal variation. Under scrutiny, the cause may be
both substantive and technical (data-related). Factors building the EBI of the ‘high
cost—low acre’ cluster are a combination of a discrete raster (conservation) and two
continuous distance rasters. The third ‘conservation’ combination (i.e., conservation
and drinking water) is derived from two discrete layers of high priority zones (for
drinking water and biodiversity, respectively). Consequently, the first (substantive)
cause of the bimodal distributions is the presence of the conservation layer in EBI.
The second (technical) cause is the data structure (i.e. a continuous raster) of the
other layer used in combination with the conservation layer.

Model Simplification and Discussion

To evaluate the quality of ABM simplification, I performed UA and SA on the
new ABM. The results are presented in Fig. 6 columns (b) and Fig. 7 rows (b).
Visual comparison shows that all six output distributions maintained their shapes
before and after the simplification (Fig. 6), with quite similar means and variances.
I can conclude that the simplification is satisfactory for studying the general model
behavior and the emergent land use patterns, but may be insufficient for more precise
predictive purposes (in which case the use of ABM is generally not recommended
anyway).

In addition to the qualitative visual examination of the equivalence of both
models, I wanted to quantitatively compare the pre- and post- simplification
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Fig. 8 Scatter plot of the bimodal distributions of Cost and Acres outputs obtained from the
original model. The colors represent the corresponding EBI layers

Table 5 Results of the
Kolmogorov–Smirnov test
comparing the samples of the
distributions of output
variables before and after the
ABM simplification
(˛ D 0.05, N1 D N2 D 200,
Dcritical D 0.136)

Output D p Reject H0?

Acres 0.08 0.5272 No
Cost 0.09 0.3767 No
ANN 0.09 0.3124 No
GYRATION 0.16 0.0144 Yes
LPI 0.11 0.1324 No
PAR 0.29 0.0000 Yes

distributions of the output variables. The Kolmogorov–Smirnov test was computed
at ’ D 0.05. To avoid too much power of the statistical test due to large N
of both experiments, output values for each version of the model were sampled
multiple times at N D 200 (a more likely number of Monte Carlo executions
when dealing with complex, computationally demanding models). Table 5 shows
the representative results of the statistical test (Dcritical D 0.136).

The statistical results suggest that four distributions are not significantly different
from their original counterparts. Moreover, while GYRATION does not pass the
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test, its distance value is fairly close to the critical one. The most observable
difference is for PAR with a general shift of its distribution towards higher scores
(Fig. 6). Since PAR has a number of limitations as a measure of landscape
configuration [60], I conclude that, based solely on output distributions, the simpler
model is a valid substitute for the original one.

The results of variance decomposition paint a slightly different picture of
the simplification (Fig. 7). Since we discarded only the non-influential inputs,
we would expect similar values of S and ST before and after simplification.
While this notion is confirmed for cost and acres, the S pie charts for all four
spatial metrics are visibly different. First, the interaction effects either substantially
increase (by 27% for ANN) or decrease (by 59, 26, and 13% for PAR, LPI, and
GYRATION, respectively). Second, the composition of influential inputs changed
from the dominating EBI to various combinations of all five inputs. While somewhat
puzzling, this behavior points to the dynamic role that the inputs play in this
ABM. Simply put, the inputs are not passive explanatory variables of the dependent
output. Rather, they are continually involved in many interactions during model
execution changing their individual (independent) influence on the final variance.
If we compare the ST indices before and after simulation (Fig. 7, bottom) we can
conclude that the overall contribution of each input remains roughly unchanged.
Thus, the ST indices offer a more comprehensive depiction of input influence on
output variability and provide another argument for using total effect indices when
evaluating complex spatiotemporal models.

Simplification—What for?

We may find it paradoxical that, in order to make a model computationally and
structurally simpler, we need to resort to extensive computation. Since simplification
is time consuming [21] a question could be raised whether this onerous exercise
should even be contemplated. After all, the original model includes all known
evidence and, by fixing some if its components, we risk reducing its predictive
power and confine its applicability to a subset of problems. Modelers are more
interested in avoiding the ‘sin of omission’ in model development—overlooking
drivers that play a critical role in the system resulting in flawed simulations.
Nevertheless, we should also recognize the dangers of ‘commission’—keeping a
model over-parameterized may unnecessarily increase the uncertainty of the output,
even when such uncertainty is not present in the target system [16]. Moreover, when
a model is part of a decision-making process, its excessive complexity may be
perceived as an attempt to obfuscate investigation of a problem [39]. Therefore,
when applying models to controversial public policy problems, transparency should
be pursued. Sensitivity analysis may therefore become instrumental in developing
simplified, surrogate (yet credible) models, which are easier to understand and
which are more efficient in subsequent scenario analysis and application.
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Suggestions for Best Practices to SA-Based Model Simplification

I conclude with some practical guidelines for using SA to build simpler yet equally
valid dynamic spatial models like ABMs. Those best practices are grouped by model
accuracy, the role of interactions, and model scope and outputs.

Models are built for different purposes. We often start from ‘quick and dirty’
models for brainstorming about the target system and hypotheses building, and then
gradually develop more detailed and empirically-rich models for case-based studies
and policy evaluation. The latter may require more accurate results than the former.
The presented method of SA is based solely on variance and its decomposition.
Variance is a very elegant and succinct measure of result variability but it certainly
does not reflect the whole distribution of the output. As the results in Fig. 6 and Table
5 show, it may lead to post-simplification distributions that quantitatively differ
from their original counterparts. Using variance as the only statistics that drives
model simplification may not be sufficient in studies requiring accurate predictions.
An alternative approach to SA, called a moment-independent method, is more
appropriate in such cases [61].

As shown in this chapter, the variability of model results can be affected by
interactions among its inputs. Note that two types of interactions can be distin-
guished: the critical interactions and those that can be ignored during simplification.
By definition, all complex models are imbued with nonlinearities and feedbacks
that influence the behavior of their inputs. Not all of input interactions, however,
manifest themselves in a given output variable. The example demonstrated herein
clearly shows that some of the outputs are more affected by input interactions than
others (compare cost versus ANN in Fig. 7). Thus, the type of output variable may
have a significant effect on the metrics used in SA (e.g. standardized regression
coefficients versus total effects indices). More complex outputs, like spatial metrics,
may require evaluation of higher-order effects. Consequently, modelers should
invest in methods that capture the full spectrum of input interactions, not just the
major (first order) effects.

This leads to another important determinant of SA—the character of the output
variables used to direct model simplification. Whenever a model is built to
serve multiple purposes (like contrasting the economic objectives driving farmers’
decision making with the ecological principles that guide FSA’s decisions) one
output variable may not be enough. Using multiple variables as inputs to variance-
based SA leads to simplification that captures a wide spectrum of model behavior.
For example, if I used only cost or acres as the output variable used to identify the
non-influential inputs, I would end up with a model with fixed RETIREMENT—a
clear driver of variability in land fragmentation. A possible method of simplification,
utilized in this study, is to identify the influential inputs common to multiple output
variables and fix only those inputs that prove unimportant in all outputs.

A related aspect of SA is the quality of data used to build input PDFs. Clearly,
the distribution of outputs and the resultant variance decomposition are dependent
on the type, shape, and other characteristics of the distributions of input variables.
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In cases where the variable is ill-defined, it is prudent to assume a uniform PDF. By
definition, a uniform PDF encompasses the whole spectrum of possibilities with
equal probabilities. Consequently, if an input defined by a uniform distribution
proves unimportant, it can be fixed to a representative value without the need for
obtaining the empirical data in the first place. This outcome is very convenient when
building complex models that require expensive data collection. In this case, it is
best to start from building a rudimentary model that comprises the best available
data, and then decide on input collection efforts based on the results of SA of the
prototype model.

Conclusions

In this chapter, I presented an approach to model simplification that utilizes an
extensive uncertainty and sensitivity analysis. I focused on identifying model inputs
that can be set to constant values without significant changes in output distributions.
Such model simplification is necessary since, as indicated by Crosetto et al. [29],
irrelevant model inputs can degrade the overall model performance. Without model
simplification the complicated and computationally demanding simulations may
become infeasible.

I demonstrated that models of complex land systems are prone to interactions
among inputs that need to be explicitly investigated to illuminate the uncertainty of
the studied system.

I computed sensitivity indices for individual inputs and their combinations.
The indices serve as quantitative representations of the drivers underlying model
uncertainty. They prove useful in isolating the effects of the interconnected explana-
tory variables on the simulated emergent phenomena. Understanding functional
dynamics embedded in ABM is critical if we want to realistically emulate social
and ecological phenomena and build legitimate future scenarios for scientific and
policy analysis.
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Agent-Based Modeling of Large-Scale Land
Acquisition and Rural Household Dynamics

Atesmachew B. Hailegiorgis and Claudio Cioffi-Revilla

Introduction

Rural systems in most Sub-Saharan African countries are characterized by inter-
dependent relationships between households dependent on subsistence agriculture
and the biophysical system to which they are dynamically coupled. Rural house-
holds often rely on rain-fed agriculture, with climate variability directly affecting
agricultural production. Their livelihood decisions are governed by the availability
of and opportunity to use resources (human, social, environmental, or financial).

Recently, the rise in large-scale land acquisitions has become a major public
issue altering the dynamics of rural systems and affecting the adaptive capacity of
rural communities. Although most rural communities have developed adaptation
mechanisms for prolonging their livelihood, the introduction of industrial-scale agri-
business enterprises (both national and international in origins) and the subsequent
rapid change in land-use systems are challenging traditional ways of life. As a result,
affected communities face a choice of migrating, protesting (including violence), or
suffering hardship in situ.

The resilience of such regional systems under future socioeconomic uncertainty,
and the complexity of the dynamics (i.e., heterogeneous actors/agents, nonlinear
interactions, emergent micro-macro dynamics, and multiple spatio-temporal scales),
pose a significant scientific challenge. Understanding the interaction between
enterprises and rural communities, as well as the influence of commercialization
of land on rural livelihoods and ecosystems, is key to improving policies for
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enhancing the well-being of indigenous rural communities, and improving the
prospects for economic development compatible with maintaining the sustainability
of the ecosystems’s functions and processes.

Rural Systems and Large-Scale Land Acquisition

The current surge in large-scale land acquisition in many developing countries
has become a global (or at least a transnational) issue, attracting attention due
to the scale and speed of acquisition [52]. The issue is especially felt in Sub-
Saharan Africa—the area of the world with the highest hunger indices [53]—where
a single enterprise could acquire nearly 500,000 hectares of land in a single
purchase [20]. These land acquisitions involve diverse interest groups, both national
and international, with diverse sources of investments, including privately owned,
government-backed, and sovereign wealth fund investments.

Extent of Large-Scale Land Acquisition

Multiple lines of evidence yield the same overall trend in large-scale land acquisition
in developing countries generally, and in particular Sub-Saharan Africa, including
Ethiopia. The International Food Policy Research Institute (IFPRI) has estimated
that nearly 20 million hectares of farmlands in developing countries have been
acquired by enterprises since 2006 [53]. A World Bank study, based on more
data sources including media reports, raised the figure to 57 million hectares [20].
Of these, more than two-thirds are in Sub-Saharan Africa [20]. Another empirical
study by Cotula et al. [14] has shown that between 2004 and 2008, a total of 2.5
million hectares of land was acquired by national and international enterprises in
five African countries: Ghana, Madagascar, Mali, Sudan, and Ethiopia. A recent
study by The Oakland Institute, an independent policy think tank, reports that in
Ethiopia alone the total amount of lands acquired by foreign and national enterprises
increased from about 1.2 million hectares between 2004 and 2008 to nearly 3.6
million hectares as of January, 2011 [40].

Several processes drive large-scale land acquisition, the most common being
demand for food and biofuel production. The empirical study by Cotula et al.
[14] in five African countries indicated that, of the total 2.5 million hectares
that were acquired by different domestic and foreign enterprises between 2004
and 2008, nearly 1.4 million hectares were for food and 1.1 million for biofuel
production. In line with this, increased involvement by private enterprises and
international organizations in the development of protected areas, nature reserves,
ecotourism businesses, and construction of large-scale tourist complexes promote
the conversion of productive lands into attractive tourist destinations and cause
significant changes to land ownership and the traditional land-use system [54].
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Fig. 1 Influence of large-scale land acquisition on rural systems. Solid and dashed lines indicate
direct and indirect relationships between components, respectively. Source: adapted from [30]

Implications of Large-Scale Land Acquisition

The expansion of large-scale land acquisition can have various influences on a
rural system, as shown in Fig. 1. Earlier studies have linked the activity of such
enterprises to significant change in the socioeconomic dynamics of rural systems
(e.g., [9, 20, 22, 23, 53], among others), showing that enterprises can contribute
to a rural economy by creating jobs, transferring technologies, and developing
infrastructure. In many cases, large-scale land acquisitions are oriented toward
labor-intensive agriculture, thereby creating opportunities for a wage labor market
in rural societies [20]. Wage labor enhances household incomes and diversifies
livelihood options. It may also help households minimize dependency on subsis-
tence farming, decrease vulnerability to climate change, and increase economic
benefits [5]. Moreover, income growth can lead to a self-sufficient lifestyle and limit
rural migration to urban centers [18].

The operation of more capital-endowed enterprises in a rural system can also
increase rural infrastructure (e.g., roads, irrigation canals, bridges, storage facilities,
transportation nodes) as enterprises seek to develop their business for maximum
economic return. Infrastructure improvements can expose rural communities to
broader opportunities, such as providing new or better links to markets and urban
areas, minimizing travel costs, enhancing agricultural productivity, and improving
the prospect for greater public services [10, 21]. Enterprises might also contribute
to a rural system by increasing the production performance of land through the
introduction of modern technology [13].

Although rural households’ welfare might improve from the contributions of
enterprises, large-scale land acquisitions also expose rural households to risks
to their livelihood [7, 52]. Expansion of industrialized agricultural systems can
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deny the customary rights of rural households to utilize communal properties and
lands, affecting indigenous adaptive capacity and increasing the vulnerability of
households [41]. Considerable expansion of large-scale land acquisition can also
cause dispossession and displacement of locals, as most of the lands are already
occupied or used by rural households [2]. The policy of changing a rural system to
a more modern capital-intensive agriculture system can neglect the social functions
of land, which is more than a production-entity in traditional societies.

The environment is also stressed when land is converted to agriculture [29].
The conversion of “marginal” land—currently covered by forest or used for
grazing—can accelerate land degradation and loss of biodiversity [37]. Even when
large-scale farming is implemented in existing agricultural lands, the change from
multi-cropping to mono-cropping causes an increase in vulnerability to drought
and disease. Besides degradation and biodiversity loss, increased utilization of
chemicals without proper treatment of effluent waters can cause environmental
damage and increase health risks for humans, animals, and native vegetation.

Prior Agent-Based Modeling on Traditional Societies
in Rural Systems

Several studies have been conducted to analyze the impacts of expansion of
large-scale land acquisition in rural systems [45]. Earlier methodologies, such
as statistical, equation-based, and systems models have been used to study the
complexity of rural systems in different contexts [42]. However, these approaches
have been criticized for their inefficiency in capturing complex interactions in
human and biophysical systems. Earlier modeling approaches either over-simplify
the representation of human actors or fail to capture temporal complexity, spatial
complexity, and feedbacks [44].

More recently, understanding a rural system as a complex adaptive system has
been a focus of attention, as this approach provides novel insights by capturing
the complexity of interactions and dynamic feedbacks among system components
[44]. The application of dynamic modeling could also help to explore the impact
of climate change and large-scale land acquisition. The application of integrated
models—such as agent-based models (ABMs) for capturing interactions among
individuals and surrounding environment—is essential for understanding complex,
dynamic, and nonlinear challenges faced by rural households when large-scale
land acquisitions occur. An ABM provides a powerful computational laboratory for
exploring and analyzing interesting scenarios focused on the local people’s adaptive
responses to different socioeconomic conditions and the resulting effects on their
ecosystem [11, 15].

Several ABMs have examined interactions between rural households and their
environments in developing countries, including assessments of consequences of
household decisions on land use and land cover change (LUCC) [19, 33–35, 38,
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47, 48]; households’ migration behavior [24, 26, 32, 50]; vulnerability to climatic
factors [1, 8]; adaptation to climate variability [12]; climate risk perception in land
markets [25]; and diversification and adoption of new technologies [6, 31].

Although these and other prior models provide insights on complexity in coupled
human and natural systems and the impact of human actions on the environment and
vice versa, insufficient attention has been paid to the effect of large, industrial-scale
enterprise actors, their interaction with local households, and how they affect rural
landscape dynamics. Existing models focus mostly on individuals, households, and
their interactions with biophysical environments and climate change.

A review of current research on coupled human and natural systems by Rindfuss
et al. [47] identified shortcomings in terms of agent typology, scale of applications,
and representation of feedbacks. Most of the models use only one type of agent, so
agent heterogeneity is typically rendered through variation in household attributes,
not in the characteristics of agents (e.g., households vs. enterprises) [43]. However,
most systems of households consist of more than one type of agent. Competing
actors with diverse objectives and goals interact with each other and with environ-
ments at different spatial and temporal scales [3]. The scale of intervention, type of
interaction among actors, and factors affecting their decisions are usually different.
Rindfuss et al. [47] have suggested that it is essential to consider the influence of
diverse actors, their distinct characteristics, and the different factors affecting their
decision-making to better understand how human and natural systems function.

Setting, Situation and Study Area

This study focuses on the South Omo Zone of Ethiopia, where large-scale land
acquisition is an emerging public issue. The zone is rich in resources (fertile soils,
rivers, irrigable lands) and has significant potential for increased agricultural and
livestock production. It is comprised of 2.3 million hectares of arid and semi-arid
lands in southern Ethiopia, with low and erratic rainfall, periodic droughts, and
different types of vegetative cover and soils. The region borders Kenya in the south
and South Sudan in the southwest, as shown in Fig. 2. Regional topography shows
a distinct gradient along a northeast-southwest direction. Elevation in the northeast
reaches 2500–3500 meters above sea level (MSL), while in the southwest it falls
to 400–500 MSL. Vegetation cover varies along the elevation gradient. Lowlands
are covered primarily with grasslands and woodlands, while highlands are covered
with shrubs and trees. The Omo River dissects the zone running north to south,
draining northern, higher-rainfall areas into Lake Turkana. The South Omo Zone
is intersected by the Woito River on the southeast side, draining the northeast
escarpments into the Chew-Bahir (also known as the “Salt Sea”).

The local population consists of indigenous tribes living in a traditional system
of subsistence agriculture. The total population of the zone is 569,448 inhabitants,
according to the 2012 census, with 284,781 (50.01%) males and 284,667 (49.9%)
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Fig. 2 Geographical location of the South Omo Zone of Ethiopia, also known as Debub Omo.
Source: drawn by the first author, based on [30]

females [17]. The total number of households is 125,009 with an average household
size of 4.6 persons, of which about 80% are male-headed households while
the remaining 20% are female-headed households. The economic activity of the
region is characterized by subsistence agriculture dominated by agro-pastoral and
pastoral systems. Subsistence crop production is the traditional system, focused
primarily on household consumption needs. Crop production is highly dependent
on rain, although there are significant opportunities for irrigation and riverine crops.
Livestock production occurs mainly in lowland areas, where moisture is a constraint.
Lowland households realize 80% of their income from livestock [28].
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South Omo is in the public spotlight due to a rising trend in large-scale land
acquisitions. The government of Ethiopia is interested in increasing the socio-
economic status of rural traditional communities and improving the agricultural
sector by “commodification” of the land. Current policy entails transforming a rural
society of many small farmers and subsistence agriculture into capital-intensive
production enterprises for feeding a growing urban population [39]. Currently the
federal land administration has assigned about 500,000 hectares of land in the South
Omo Zone—which is about 20% of the total area of the region—to a variety of
investment purposes [40]. The Oakland Institute [40] estimates that the amount of
land already provided to large enterprises is 445,500 hectares, mainly along the Omo
river, which is a significant ecosystem used by traditional pastoralists for coping
and adaptation purposes. This trend in land acquisitions will likely bring major
changes to the currently stable rural system—a hypothesis tested by our ABM.
Growing pressures from national and foreign enterprises for large-scale agricultural
production and ecotourism, and shifts in government policies, generate changes
in socio-ecological dynamics, potentially affecting the adaptive capacity of rural
households by limiting access to traditional resources.

The OMOLAND Model

Model Description

The OMOLAND model includes interrelated components of the South Omo Zone
rural system. This ABM is designed to explore interactions and decision-making
among different actors in the system: (1) rural households, whose livelihood is
significantly coupled with climate and biophysical environments; (2) large-scale
land enterprises, operating in the rural system; (3) climate, with variability that
impacts actors and the biophysical environment; (4) actors, affecting their respective
environments; and (5) the environment, producing feedback effects that influence
actors’ decision-making processes at different temporal and spatial scales. The rep-
resentation of entities and their interactions uniquely distinguishes this model from
previously implemented agent-based models of rural systems (e.g., [8, 19, 33, 48]).
The model is implemented in MASON [36], an ABM simulation toolkit written in
the Java programming language and primarily designed to facilitate the development
of fast and efficient ABMs. MASON provides extensive libraries to integrate GIS
data (vector and raster) [51].

Figure 3 illustrates the main components and relationships in OMOLAND using
a UML (Unified Modeling Language) class diagram. The environment is the South
Omo Zone, consisting of biophysical components (including natural and built
systems) with spatial extent of 146.7 by 224.7 km and comprised primarily of
heterogeneous parcels (built environment is minimal in this region, except for some
roads). OMOLAND’s spatial resolution is 1 hectare (100 by 100 m), based on the
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Fig. 3 High-level UML class diagram of the OMOLAND model in MASON. Source: adapted
from [30]

average land-holding size of the rural households in the region. Each parcel has
quality that is restored or depleted based on actions by households and enterprises.
The biophysical system dynamically responds to climate and its variation. Such
response will indirectly influence land-use choices by households and enterprise
agents.

Climate in OMOLAND is represented by rainfall in terms of precipitation
distribution patterns and variations, calibrated to the study area. Climate variation
includes significant changes in weather patterns, shifting from normal to extreme
events (e.g., drought, flooding). Climate determines the characteristics of biomass
in the environment; i.e., type, growth rate, productivity, and annual number and
length of growing period(s) or season(s).

Household agents represent individual households that live in a subsistence
agricultural system (herding and/or farming) within the study area. Household
agents are heterogeneous in their profile, livelihood choices, and decision-making
processes. They have bounded rationality [49], lacking full knowledge of the
environment, and making decisions based on information they have at hand and on
their previous experience. However, households learn, imitate skills and techniques,
and make adjustments to their livelihood. They are also social agents, cooperating
among themselves and competing with others for resources. Each household has one
or more family members. Each family member knows its employment situation.

Enterprise agents represent business actors operating large-scale agricultural
production systems. They use much larger tracts of land in their possession and
are heterogeneous, based on their land holdings and the number of employees they
can hire at a given time. They also create jobs in the rural system and they interact
with household agents in a labor market.
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An enterprise agent is designed to capture two of the main influences of
real-world enterprises in the rural systems. First, enterprises agents influence a
biophysical environment by occupying a large tract of land and changing the
land property from grazing land to farmland as lands are used for production of
commercial crops through mechanized farming. The occupation and conversion
of land has direct effects on the amount of vegetation production in the system.
Conversion of grazing land to commercial farming reduces the total grazing area.
This, in turn, has implications for livestock production, which solely depends on
grazing. Moreover, occupation of land can also affect herding movements from
place to place by fragmenting grazing areas. Second, enterprises affect the system
by introducing a new livelihood option for rural households. These employment
opportunities can diversify household income options. OMOLAND is designed to
implement these two concepts.

Enterprises individually determine labor needs and announce openings to the
public. Employment positions remain open until filled. When a position is filled, it
is no longer searchable by the public and the enterprise does not employ additional
labor. Positions are temporary. When a task reaches its time limit, the enterprise
dismisses all employees and determines when to start a new task.

It is critical to point out that workers can also resign and leave an enterprise.
A household may abandon off-farm activity at any given time and decide to return
to agricultural activities, since in most rural systems off-farm activity is subsidiary
to traditional farming and herding [27]. If a household member decides to leave an
off-farm position, the enterprise will assess labor needs and immediately publicize
employment positions as necessary [46].

In the OMOLAND model, each enterprise pays each worker an equal amount
each day. Although skill or experience may affect the amount of money a worker
can earn, this is not considered in the model. We believe that prior skill or experience
are not yet valued in off-farm activity in South Omo, because the main opportunity
is related to short-term labor activities.

The institution agent in Fig. 3 represents the government and is responsible for
generating policies related to land use. This agent has overall knowledge of the
entire area, assessing and designating land for different uses. For instance, the
institution agent assigns lands to enterprises based on land quality. The allocation
to enterprises can be either on lands that are occupied or unoccupied by rural
households. The institution agent can also relocate household agents depending on
demand for more lands from enterprise agents.

The temporal resolution of OMOLAND is a discrete time step, where 1 step D
1 day. Although such a temporal resolution is relatively fine, some processes occur
only when necessary conditions are satisfied. For instance, crops can only instantiate
and grow when a household agent sows crop seeds on his farmland. Similarly, a
household member’s age increases only once in a year. A full description of the
OMOLAND model can be found in Hailegiorgis [30].
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Model Sequence

The model sequence includes all components involved in the scheduling routine.
Each procedure is activated by its generating actor or entity, and similar procedures
are activated in the same order at each time step. The first routine concerns how
climate affects land. This is updated by having rain fall on each parcel, which is
followed by each parcel updating its soil moisture level. Equal amounts of rainfall
generate equal amounts of soil moisture. In OMOLAND there is no overflow, inflow
of water, or accumulation of soil moisture, as a simplifying assumption, so the
updating mechanism is simple. If there is no rain on a given day, the amount
of soil moisture added to a parcel is assigned as zero; otherwise, a parcel’s soil
moisture equals the amount of rainfall on the parcel. After updating rainfall, the
vegetation subroutine is executed. Vegetation grows or decreases depending on a
parcel’s moisture, for each parcel where there is vegetation.

The second routine concerns household agents. In each time step, each household
agent engages in livelihood activities, updates profiles, and assesses the success or
failure of actions. The main sequential procedures of the household are predicting
future climate conditions, analyzing adaptive response, selecting potential liveli-
hood options, allocating resources for implementing livelihood-related activities,
monitoring wealth status, updating profile, and updating memory. Routines are
only executed at times when appropriate conditions are fulfilled. For instance,
sequential procedures from predicting future climate conditions to determining
livelihood options are executed once in a season. Each household predicts a date
and amount of rainfall for the upcoming season. Based on the outcome of their
action, each household makes an appropriate decision to either adapt or fail to adapt
in response to the anticipated climatic condition of the season. Depending on the
adaptation decision, each household determines the best livelihood or combination
of livelihoods (herding, farming, or off-farming) that yields highest return. The
household then allocates resources necessary for each livelihood in proportion to
the share value of each livelihood. The household remembers its decision and
allocation of resources for each livelihood option throughout the implementation
of each activity. Implementation of an activity is carried out until each has either
been discarded or completed. Memory update is executed at the end of each season.

The livelihood activity sequence of a household is scheduled in the following
order: herding, farming, and off-farming. If a household engages in only one
of the three livelihood options, it only implements the corresponding activity
sequence. For instance, herding activities are invoked if the household has livestock.
A household with livestock looks for high-quality grazing areas for its herds.
A herder household also monitors its herd income in this sequence. Households with
farmland implement farming activities, which include land preparation, planting,
weeding, and harvesting. The implementation date of each activity is determined
by when its necessary conditions are met. For instance, after the onset of rain, a
household assesses if there is sufficient moisture to perform planting. Likewise,
when a crop is ready for harvest, a household executes harvesting. At harvest
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time, each farmer household updates its income in proportion to yield harvested.
Household agents can execute off-farm activities to earn extra income by seeking
employment in one of the enterprises.

After the household routine, the herd sequence is invoked. Herds consume grass
from their current location and move to an assigned location. They update their
metabolic rate, food level, and size based on grass consumption.

Following the herd sequence, the crop sequence is invoked. A crop is activated
only when it is planted. Similar to vegetation, crops respond to available moisture
in their parcel, by either growing or decreasing. A crop updates its growth and
production level at each time step.

The enterprise routine comes next. In each time step, enterprise agents manage
the labor force by deciding whether to recruit or dismiss workers (daily laborers)
and acting on their decisions. Each enterprise determines its labor requirements and
allocates the resource to the task. If the current labor is more than required, the
enterprise agent reduces the labor force to the required minimum level by dismissing
excess workers. Conversely, if there is a need for labor, the agent searches for extra
labor and hires to fill the labor gap.

The institutional sequence is invoked after the enterprise routine. The institution
agent, which represents government, selects potential households needing capacity-
building training or relief support, and provides such benefits as necessary.

Finally, an observer object, for managing data collection and statistics, is invoked
and all the output is written to disk.

Policy Scenarios

The main aim of our scenario analysis is to explore and better understand impacts of
large-scale land acquisitions on rural households by changing the scale and intensity
of intervention of enterprise agents. Policy relevance is high, given the stakes and
complexity of dynamic interactions among enterprises, households, climate, and
environmental entities.

Scenario analyses using OMOLAND examine the impacts of enterprises on rural
households. Analysis focuses on exploring whether enterprises increase the vulner-
ability of rural households or provide households an opportunity to diversify their
livelihood options through off-farm activities. The following two main scenarios
are analyzed: large-scale land acquisition without and with off-farm opportunities,
corresponding to Scenario 1 and Scenario 2, respectively.

The main goal of scenario analysis is to assess issues related to commercial
enterprises’ contributions to providing additional off-farm opportunities to rural
households. Although commercial enterprises increase employment opportunities,
the probability that an individual person in a rural community will participate in such
employment opportunities is not significant due to high competition (i.e., excess
supply of labor). Moreover, such jobs are often short-term or seasonal and usually
poorly paid [46]. Such factors discourage the engagement of rural households in
off-farm activities, affecting their off-farm opportunities.
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Scenario 1 depicts large-scale land acquisition with diverse spatial intensity and
no opportunity for off-farm activity by rural households. In Scenario 2, enterprises
offer labor employment opportunities to rural households [14], recruiting and
dismissing employees depending on their labor requirements. Rural households
search for such nearby off-farm opportunities and engage if they have extra time
available from herding or farming, or if either of these two activities fails to provide
sufficient household income.

Two trends in enterprise growth rates, “slow” and “fast,” are explored in each
scenario, corresponding to 2% and 5% annual growth rates, respectively—with the
latter representing the current rate for the South Omo Zone.

Rural households and enterprises are considered as main agents in each scenario.
The simulation runs for 18,250 steps. Since each step corresponds to a day, then
18,250 iterations are about 50 years. Monthly rainfall data from 1949 to 2009 is
used as climate input. A set of 30 simulation runs is conducted for each scenario,
using the same initial (default) parameter settings.

Results

It is important to discuss model verification before presenting results, following
current standards in quality control. Verification is the process of ensuring that
a simulation is implemented as intended by the conceptual model [4, 11, 16].
Verification of OMOLAND was performed by conducting code walkthroughs,
debugging, profiling, and parameter sweeps. These tests insured that we made
no logical errors in the translation of the model into code and there were no
programming errors. No anomalies have been detected since the above verification
procedures were carried out, so we feel confident that the model behaves as it is
intended and it matches its design.

In this section we present results from simulation analysis of the two scenarios
described in Section “Policy Scenarios”.

Scenario 1: Without Off-Farm Opportunities

Figure 4 shows Scenario 1 (“no off-farm opportunity”) results, assuming slow (2%)
and fast (5%) rates in land acquisition expansion. As can be seen, the two figures
are very similar, the only difference being a slightly lower final value for household
totals in the figure on the right (b). When we explore the number of people that
emigrate from the region, results in Fig. 5 also show that there is a significant
difference between the 2% and 5% expansion rates, especially during the last 10
years of the simulation. However, emigration change is not linearly related to change
in the expansion rate of large-scale land acquisition.

As shown in Fig. 5, at the end of the simulation, the number of emigrants reached
1 person per 9.7 hectares of land acquired by enterprises at a 2% (“slow”) expansion
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Fig. 4 Scenario 1 results: household and population growth without off-farm opportunities,
assuming slow (a) and fast (b) rates of expansion in land acquisition, corresponding to 2% and
5% annual rates
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Fig. 5 Scenario 1 results: migration and land expansion without off-farm opportunity: (a) total
number of emigrants and (b) area of land acquired by enterprise in hectares

rate, while at a 5% (“fast”) rate of expansion the number of emigrants decreases to
1 person per 18.9 hectares. Note that, as a quantitative measure of social impact
caused by enterprise expansion, this emigration effect is akin to a density measured
in [persons]/[hectare]. This can also be interpreted as a displacement flow when time
is added, or [persons]/[area][time].

The impact of expansion of large-scale commercial farming over time on crop
and livestock production is shown in Fig. 6. Interestingly, increasing the rate of
expansion of large-scale commercial enterprises does not significantly affect the
per capita level of livestock and crop production in the region. Trends in livestock
and production for the simulated period are similar under both rates (2% and 5%).
However, in both cases, livestock production shows a slightly downward trend,
whereas crop production ends with an opposite, slightly upward trend. This could
be caused by the fact that most land assigned to enterprises is located in areas where
livestock production is the dominant production system, such as in proximity to
rivers.
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Fig. 7 Scenario 2: migration and off-farm activity with off-farm opportunity: (a) number of
emigrants from the region and (b) number of persons engaged in off-farm jobs

Scenario 2: With Off-Farm Opportunities

In the second scenario, enterprises offer employment opportunities to rural house-
holds. In this case the OMOLAND simulation model provides different results in
terms of the number of emigrants from the region and in patterns of livestock and
crop production. Specifically, the total number of emigrants decreases significantly
as compared to Scenario 1 as shown in Fig. 7a. This is mainly due to the number
of people employed in off-farm jobs increasing as a function of time, following the
expansion of large-scale commercial farming (Fig. 7b).

Although off-farm jobs offer additional income to households, such an opportu-
nity does not entirely eliminate emigration, even under the “fast” rate of expansion
(5% growth rate). This is because there are still persons who cannot sustain their
livelihood under current climatic conditions and are forced to emigrate.

Scenario 2 also shows that off-farm opportunities affect livestock and crop
production in opposite ways, as shown in Fig. 8. These results show that in Scenario
2 livestock production (TLU/person) and crop production (MEQ/person) show
decreasing and increasing trends, respectively.
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Fig. 8 Scenario 2: livestock and crop production with off-farm opportunity: (a) number of
livestock (TLU) per person, (b) crop (Maize Equivalent-MEQ in kilograms) per person

Comparing the two scenarios, trends in both livestock and crop production
are more pronounced in Scenario 2. Livestock production levels (20 TLU/person)
reached 10 years from the start of the simulation in Scenario 1, decreased to less
than 5 TLU/person by the end of the simulation in Scenario 2, while the same level
was >7 TLU/person in Scenario 1. Similarly, crop production increased from 1 to
1.6 MEQ/person by the end of the simulation in Scenario 2, almost a 20% increase
compared to Scenario 1.

Discussion and Conclusion

The OMOLAND model demonstrates two important points regarding the impact of
large-scale land acquisition in the South Omo case, which can be comparable to
other regions in developing countries. First, it suggests that land acquisition without
providing new employment opportunities to local communities of herders or farmers
can lead to catastrophic outcomes—potentially humanitarian disasters and crises—
as more people are forced to migrate from the system [41]. Such events can create
flows in internally displaced persons (IDPs) and, when national boundaries and
border crossings are also involved, transnational refugee flows are another potential
disaster. Although migration of rural households can occur simply as a result of
extreme climate events (e.g., droughts or floods, both common in the region), results
from the model clearly demonstrate that migration rates can be exacerbated as lands
utilized by rural households are given to large-scale commercial enterprises.

OMOLAND also contributes to our understanding of the effect of off-farm
employment opportunities on rural household livelihood. At first glance, it seems
that simulation results align with the aspiration of government development policies
or with those who highlight the economic contribution of enterprises in rural
communities [52]. The emergence of additional sources of income influences the
way in which rural people react to climate change and variability. As more persons
work in off-farm jobs, particularly during times of drought, their vulnerability is
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reduced by the additional income they can generate through such jobs. However,
close observation of these results indicates that emigration and displacement persist
as more lands are controlled by enterprises.

Another result demonstrated by the model is the gradual transition of dominant
rural livelihood from herding to farming as large-scale enterprises spread throughout
the region. Galvin [27] argues that pastoral transitions in most East African countries
are attributed to two major factors. First, grazing land is fragmented, due to
numerous socioeconomic factors, such as changes in land tenure, agriculture, and
institutions. Second, extreme weather events such as droughts are more common
than elsewhere, due to climate change and variability. Although the OMOLAND
model requires further development and analysis, the simulation results agree with
real-world trends in terms of more households engaging in farming than in livestock
production as grazing lands are converted into commercial farming.

Current trends of large-scale land acquisition are likely to continue over the next
decade in most of Sub-Saharan Africa. Exploring the implications of commercially
oriented farming enterprises, not only on rural households but also on the biophys-
ical environment, is a promising potential extension of the model. For example,
large tracts of rural lands recently have been given to a variety of enterprises with
competing interests. These range from those interested in commercial farming (food
crops and biofuel production) to others engaged in ecotourism. Greater demand
for rural land will likely increase land value and, consequently, land marketing. It
is important and feasible to further explore the dynamics of competition for land
among different entities by incorporating into OMOLAND a more comprehensive
land marketing mechanism. Such an integration of land markets or land transactions
into the model could advance our understanding of rural land-use changes, socioe-
conomic transformations, and issues related to short- and long-term rural-urban
dynamics. Although many future research directions are possible and arguably
fruitful, this study contributes to investigating these basic and applied research
questions by laying foundations for further rigorous work on complex dynamics
in coupled human and natural systems.
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Spatial Agent-based Modeling to Explore Slum
Formation Dynamics in Ahmedabad, India

Amit Patel, Andrew Crooks, and Naoru Koizumi

Introduction

In 2009, for the first time in history, more people lived in urban areas than in rural
areas. By 2030, the global urban population is expected to be 59% of the total world
population [1]. Most of this urban growth is expected to take place in developing
countries and raise numerous developmental challenges. One of the most critical
challenges is the lack of affordable housing for the urban poor, which results in
increasing numbers of people living in slums. The issue of slums is compounded
by the fact that it is both a large-scale global problem (e.g. a global crisis due
to unprecedented magnitude in shelter deprivation) as well as posing localized
problems for individual cities (e.g. the spread of infectious diseases). Currently,
one-in-three urban residents (924 million people) live in slums globally, most of
them in cities of the developing world. This number is projected to increase to two
billion people by 2030 if adequate actions are not taken [2].

Many scholars and development practitioners recognize that the proliferation of
slums is one of the most complex and pressing challenges that developing countries
face today (e.g. [2, 3]). Inappropriate housing conditions for the urban poor is
becoming an important concern for policymakers in developing countries since it
is recognized that slums adversely affect the wellbeing of the entire city, raising
wide concerns ranging from public health to that of safety [4]. The international
development community has recognized the growth of slums as an important
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societal issue, as a response, Target 11 of the Millennium Development Goals
(MDG) aimed to significantly improve the lives of 100 million slum dwellers by
2020 [5].

National and local governments in many developing countries have also called
for slum up-gradation and slum improvement programs. The expansion of urban
renewal programs and a greater focus on making cities slum-free has taken a front
seat among policymakers in most developing countries. For example, in Kenya,
their commitment to address the challenge of slums now appears in the national
development agenda [2]. In India, the issue of slums has recently received significant
political salience. For instance, the Jawaharlal Nehru National Urban Renewal
Mission (JNNURM) highlighted tackling issue of slums as a key task [6]. Ms.
Pratibha Patil, then president of India announced a policy targeted to make India
slum-free within five years [7], which resulted in a massive housing program for
slum dwellers called Rajiv Awas Yojana (RAY; [8]).

While policymakers have renewed their focus to address this challenge world-
wide, slums are not a new phenomenon. Several policy actions in the past have
attempted to resolve this issue. Slum policies evolved from “Site and Services”
in the 1970s [9], to “Slum Redevelopment” in the 1980s [4, 10], to “Security of
Tenure” in the 1990s [11] and “Slum-free cities” in 2000s [12]. Several indigenous
policies have also been implemented within cities of developing countries. For
example, in India, the city of Ahmedabad implemented the “Slum Networking
Project” [13] and the city of Mumbai implemented the “Slum Redevelopment
Scheme” [14]. Unfortunately, none of the past slum policies have proved to be a
panacea to making cities slum-free. Many of these policies have been evaluated and
have been found ineffective both in India and elsewhere (e.g. [15–18]).

It is evident that improved responses are required to address this challenge.
Such a task is difficult, especially when there is a gap between slum policies and
an understanding of slum formation and expansion processes. It is evident that
slum policies have been either incremental or experimental. Both types of policies
have been implemented without knowing their adverse implications for either an
individual household at the micro-scale or slum formation patterns at the macro-
scale. Ex-post analyses of these policies are in abundance (e.g. [19–21]) but attempts
to understand the implications of these policies ex-ante are rare. In this sense, past
slum policies were heuristic rather than evidence-based. We believe that part of the
problem is the lack of research tools to evaluate proposed policy interventions with
respect to slums [22, 23]. The model presented in this chapter is one such tool to
conduct policy experiments in a simulated environment before slum policies are
implemented in the real world.

Although our understanding of cities has increased throughout the twentieth
century by incorporating ideas and theories from a diverse range of disciplines
such as economics, geography, history, philosophy, mathematics and more recently
computer science, it is now very clear that there are intrinsic difficulties in applying
such understanding to policy analysis and decision-making [24]. This is especially
challenging in the context of slums of the developing world where the availability
of data and lack of prior research poses additional difficulties.
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To gain a greater understanding of urban problems in absence of empirical data,
researchers have recently focused on simulation approaches to model urban systems.
Specifically, such approaches attempt to discover the basis of individual decision-
making and its implications on urban systems [25]. One such approach is Agent-
Based Modeling (ABM), which enables to simulate individual actions, study the
resulting system behavior and aggregate spatio-temporal outcomes.

Traditionally, urban models focused on aggregate representation of cities and
dealt with residential or employment distributions within cities. But emergent
structures are not well suited to such traditional styles of urban modeling and
raise questions on how to best handle them [25]. Slums display several properties
of emergent structures and hence we, along with others [23, 26, 27], argue that
bottom-up models provide a good alternative for developing new models of cities
and especially for exploring slums. Both cities as well as slums are highly dynamic
in space and time. Since formation of slums is a spatial phenomenon, integrating
Geographical Information System (GIS) with ABM provides an appropriate frame-
work to capture emergence of slums. Furthermore, such a framework provides an
important medium for urban planning because the study and management of slums
is affected by individual level locational and behavioral factors that are difficult to
incorporate in traditional urban planning methods. Modeling also allows scientists
to explore and test theories and practices about slums in a controlled computer
environment to understand urban phenomena through analysis and experimentation,
a traditional goal of science [25]. Urban modeling is also equally important to
planners, politicians and communities to predict and invent urban futures [28].
Several policy measures regarding slums, such as slum upgrading and tenure
formalization can be explored using such a model to generate various scenarios
for urban futures, thus linking science to decision-making.

For making cities slum-free, it is important to understand how these slums
emerge and evolve within cities. However, this is not a trivial task especially
because cities are inherently dynamic, constantly evolving, undergoing changes,
experiencing growth and decline, and restructuring simultaneously [29]. What
makes it more complex is the fact that slums display the same dynamic properties
as the cities within which they are located. Although advances in geosimulation
methods have increased our understanding of urban systems in the developed world,
these methods are rarely applied to study urban problems in the developing world
such as slums.

In the remainder of this chapter, we first provide a review of geosimulation
models of urban systems (see section “Modeling of Urban Systems”) followed
by the discussion on prior efforts to model slum formation (see section “Prior
Efforts to Study Slum Formation using Geosimulation”). Then we present the
conceptual framework for our model that integrates GIS and ABM (see section
“A Geosimulation Approach to Model Slum Formation”). In section “Case Study:
Ahmedabad”, we describe the input data that we use as a basis to model slum
formation in the city of Ahmedabad, India, and finally present the simulation results
in section “Simulation Results”. The chapter concludes with the challenges in
linking GIS and ABM to study slums, and identifies future avenues of research.
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Modeling of Urban Systems

Geosimulation is defined as a method of academic inquiry that simulates the systems
by modeling adaptive collectives of interacting entities [30]. Unlike traditional
top-down approaches, geosimulation studies the systems by dissecting them into
logically justified components and it is characterized by a generative or bottom-up
approach. The phenomena of interest (e.g. urban growth patterns, crowds, etc.) are
therefore viewed as the product of multiple interactions between physically existing
entities (e.g. households or pedestrians).

ABM provides an appropriate paradigm to think about dynamic urban systems,
especially because it is well recognized that cities are complex systems [31] that
emerge from the bottom-up rather than top-down [25]. Similarly, GIS is useful for
representing systems of a geospatial nature and hence provides a useful medium
to represent cities. However, it has been well established in the literature that GIS
is not particularly well suited for dynamic modeling [32]. It is therefore important
to merge the two methods since cities are both highly dynamic and geospatial in
nature. In particular, urban models need to capture spatial changes such that if one
or more location specific attributes or locations of activities themselves change, the
outcomes of the model change [33]. This realization has led researchers to link
GIS and ABM to model urban systems under the umbrella of geosimulation. The
generative approach has been justified because planning and public policy do not
always work in a top-down manner, instead aggregate conditions in cities emerge
from the bottom-up from the interaction of a large number of entities at a local
scale [25]. ABM is particularly well suited to model individual entities and GIS
is appropriate to model locational aspects of cities. Before we discuss why it is
appropriate to link ABM and GIS to study slums, we provide a brief review of
models that link GIS and ABM to study urban systems.

Integrated simulations within the urban context are seen in a number of planning
support systems in the developed world [34–36]. For example, the integration of
Cellular Automata (CA) and GIS has been used to simulate urban dynamics, e.g.
SLEUTH model by Clarke and Gaydos [37], which has been applied to several
cities around the world [38]. Landis [39] developed a multi-scalar model named
California Urban Futures (CUF) that predicts urban growth by integrating GIS and
CA. The CUF evolved into two different models, the CUF II [40] and California
Urban and Biodiversity Analysis Model (CURBA; [41]) that were both used to
simulate policies and generate development scenarios. Engelen et al. [35] designed
a model named Environmental Explorer (EE) to work as spatial support system for
the assessment of socio-economic and environmental policies for the Netherlands.

However, most of the above-mentioned simulations were CA-based which has
several limitations with respect to studying the inhabitants of cities. One of the
principal limitations is the difficulty to adequately model mobile entities within
CA models (e.g. households, pedestrians, vehicles). Another major limitation is
the inability to apply heterogeneous behaviors to all cells within CA framework
[42]. More recently, researchers have started to combine ABM and CA models
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to overcome these limitations and making them more ‘agent-like’ [25]. Examples
of this combination of ABM and CA include Torrens [43] who combined CA
with ABM to explore sprawl in Michigan. While Xie et al. [44] explored urban
growth in China and used agents to explore pressure on land from developers.
Such models place more emphasis on the individual decision maker than on the
transition potential of cells within CA models or the aggregate flow of people within
‘traditional’ urban models.

The utility of exploring urban growth through the combination of CA and ABM
is that land-use change has a temporal, spatial and behavioral component (e.g.
why people want to live in a particular area). By combing CA and ABM, urban
modelers are able to capture these three elements [45]. It has also been argued that
the combination of CA and ABM provide a more decentralized view of exploring
urban systems from the bottom-up [45], which some term as the cell space models
[25]. The combination of CA and ABM allows urban modelers to explore human
behavior and how such behavior impacts on urban growth patterns. For example,
Wise and Crooks [46] explored how heterogeneous agents representing farmers,
developers and buyers could influence the spatial pattern of residential development
through interactions in the land market. Robinson and Brown [47] showed how lot-
size zoning and municipal land acquisition strategies could reduce the impact of
urban sprawl. While the majority of geosimulation models are applied in developed
countries, there are a limited number of models that have been applied to developing
countries, especially in the context of slums. In the next section, we discuss the past
efforts to model slum formation using geosimulation methods.

Prior Efforts to Study Slum Formation using Geosimulation

While policy-oriented and theoretical literature on slums is abundant, the geosim-
ulation approach for this phenomenon has been lagging. There are only a handful
of attempts to model slums so far. Sietchiping [23] adopted the SLEUTH model
in an unplanned urban context of Yaoundé to predict slum growth. However, as
discussed above in section “Modeling of Urban Systems”, CA models lack the
human behavior aspects that ABM can provide. Barros [26] developed an ABM
of slum formation and growth in Latin American cities to address this limitation of
CA models. However, Barros’ [26] model is rather abstract and lacks the explicit
spatial representation of a city and hence cannot be used as a planning support tool.
Xie et al. [44] developed a model that integrated remote sensing data and ABM
to study emergence of Desakota (densely populated rural areas in the extended
surroundings of large cities) in Suzhou region of China. The model incorporated
interaction between global and local scale actions and included the supply-side of
housing (i.e. behavior of developers). However, the model was limited to explain
the emergence of Desakota, a phenomenon largely observed in the peripheral rural
areas within China.
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At the micro-scale, the Informal Settlement Growth Model by Young and Flacke
[27], developed further by Augustijn-Beckers et al. [48], showed how housing
patterns within a single slum can be simulated using simple rules of spatial change.
Vincent [49] developed a spatially explicit ABM for a single ward of the city,
thus limiting its capability for citywide planning. Overall, past slum models are
not useful for policymaking either because they are either abstract or do not model
the city as a whole. Our model attempts to bridge this gap by incorporating human
behavior in a spatially explicit environment of an entire city and thus could be useful
for citywide planning and policymaking.

A Geosimulation Approach to Model Slum Formation

In order to address the shortcomings of the previous simulation efforts discussed
above, a holistic approach to model slum formation is required. Here we present
a conceptual geosimulation framework, which captures the important processes
pertaining to slum formation dynamics that builds upon Patel et al. [50]. Specifically,
our framework aims to capture three important processes, which lead to the
formation of slums within a city. First, population growth, both natural and thorough
migration, drives overall housing demand within a city. Second, households’ resi-
dential location choice behavior drives housing demand at specific locations. Third,
the spatial configuration of the housing market shapes the availability of housing
at specific locations. These processes are modeled because previous literature and
studies have shown that they influence the formation of slums within a city. Our
framework, presented in Fig. 1, is split into three different modules to capture these
three important processes: (1) Population Dynamics Module (PDM), (2) Housing
Dynamics Module (HDM), and (3) Empirical Module (EM). The individual modules
are organized at different geographic and demographic scales, which allow us to
incorporate varying levels of details appropriate for each module. For example,
migration flow is modeled at the regional level whereas the housing market is
modeled at the city level. Each module is envisaged as a tightly coupled system
to allow for the exchange of information. However, we first develop each module
separately in order to verify and validate results from individual modules.

ABM is used to build the HDM, which simulates behaviors of important actors
for the housing market. Slums develop from the bottom-up as a result of such
behaviors rather than from the more traditional top-down normative constraints
of classical models [25]. Our framework is designed to explore the links between
individual behaviors and aggregate outcomes. For example, it can be used to show
how different household behaviors in the housing market can lead to the emergence
of different slum patterns. It can also be used to explore how different urban
policies that influence such behavior may lead to outcomes that were not anticipated
originally. For detailed description of agents, their behavioral rules and simulation
experiments, we refer interested readers to Patel et al. [51].
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Fig. 1 Integrated simulation framework (Source: [50])

A GIS is used for the EM, which has two sub-components, the Geodatabase
and the Empirical Analyzer. The Geodatabase is used to store and represent the
spatial environment of a city. As slums develop as a result of humans interacting
with their spatial environment, this framework is designed to explore links between
spatial configuration of a city and emergence of slum patterns. For example, it can
be used to show how different land parcel sizes within a city could lead to different
slum patterns, as will be shown later. This explicit representation of the spatial
environment allows us to conduct spatially explicit policy experiments that are not
possible in abstract models such as Barros [26] and Patel et al. [51].

Finally, a Discrete Event Simulation (DES) is used to build the PDM, which
simulates population growth for the modeled city. As slums develop as a result of
the gap between demand created by this population growth and existing supply of
housing within a city, this module is envisaged to capture the links between regional
population dynamics and slum formation within a city. For example, it can be used
to show how varying migration rates can lead to varying slum patterns within a city.
This module is under development and we plan to integrate it in the next phase of
the model.

The very nature of the framework requires the identification of slums at the
individual household level, and hence we can leverage the widely accepted UN-
Habitat [52] definition of slums which states that a household is a slum household
if they lack any one or more of these five basic housing elements: (1) access to safe
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drinking water, (2) access to sanitation, (3) adequate living space, (4) permanent
structure and (5) secured tenure. For the purpose of this model, we use overcrowding
criteria (i.e. adequate living space) to identify slums since density on any land
parcel is one of the key emergent properties coming from the HDM. Once the
slums are identified, our model shows the evolution of key output parameters such
as number and size of slums, housing density, housing price to income ratio, etc.,
over space and time in the form of maps and graphs. The Empirical Analyzer, once
developed, will provide a set of tools that helps in calculating these key indicators
from simulation outputs within our geosimulation framework. We also present the
empirical analysis of the slum location patterns in Ahmedabad (see section “Case
Study: Ahmedabad”) that could be used to validate the geosimulation model results.
In following subsections, we describe HDM and EM before we present the empirical
analysis of the slum location patterns in Ahmedabad (see section “Case Study:
Ahmedabad”). In section “Simulation Results”, we present the geosimulation model
that combines Geodatabase and HDM to simulate slum formation dynamics in
Ahmedabad, India.

Housing Dynamics Module

The HDM simulates household residential choice behavior in a spatially explicit
housing market. The type of simulation used for this purpose is an ABM, which
allows us to capture the heterogeneity of decision-making with respect to loca-
tion choice behavior of households. The HDM models the micro-processes of
housing choice behavior at the household level and captures the emergent macro-
phenomenon of formation and expansion of slums at city level. The main agents
in this module are households, developers and politicians. A prototype model for
the HDM can be seen in Patel et al. [51]. The spatial environment of this model
includes housing units, land parcels that contain these housing units, and finally,
electoral wards that contain these land parcels. As the simulation progresses, the
HDM receive a set of newly formed households along with their characteristics in
each time period, the main agents driving housing demand in the model. Two other
types of agents, local politicians and developers are also modeled in this module (as
they are important actors for the housing supply).

Agent behaviors were informed by survey-based studies as advocated by Robin-
son et al. [53] and other extensive reviews of various modeling efforts (e.g. [26,
48, 49]). The assumptions underlining the behavioral rules, such as preferences to
live closer to Central Business District (CBD) or live within budget constraint, are
also supported by the theories developed in residential choice literature (e.g. [54–
57]). Moreover, behavioral rules were supplemented by calibrating micro-process
parameters based on their fit to macro outcomes [53].



Spatial Agent-based Modeling to Explore Slum Formation Dynamics. . . 129

Empirical Module

The land parcels (i.e. individual housing sites) along with several attributes (e.g.
housing price, size etc.) form the spatial environment in our conceptual framework,
which is stored in the Geodatabase component of the EM as shown in Fig. 2.
Electoral ward boundaries are also superimposed to form an appropriate spatial
environment for politician agents. GIS is used to consolidate ward level attributes
such as percentage slum population in each ward, required for micro-processes for
politician agents to determine their behavior. The spatial environment evolves as the
simulation progresses (e.g. percentage slum in a particular ward will change as a
result of household agents’ residential location choice). Aspatial parameters such
as economic growth of the city, level of informality of economy, etc., are also an
important part of this module that is supplied exogenously and affects change in
household characteristics during the simulation such as income levels.

The simulation outputs are then compared with the empirical analyses on various
parameters such as the slum incidence rate, slum locations, size distribution and
densities for calibrating and validating the geosimulation model. It also helps to
identify uncertainty and errors in terms of input data, parameterization, model
outputs, etc., along with sensitivity testing [58].

Fig. 2 Geodatabase with data layers and outputs (Source: [50])
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Case Study: Ahmedabad

Ahmedabad is the sixth-largest city of India with a population of 3.5 million [59], of
which 1.5 million people (41%) live in approximately 1668 slums spread across the
city as shown in Fig. 3. We have chosen Ahmedabad as our case study for several
reasons. First, the second tier cities in India such as Ahmedabad are at the forefront
of the urbanization process and hence more relevant for policymakers (Authors’
interviews with policymakers in India, 2011). Second, Ahmedabad has the required
data on slums, which allows us to validate our model. Third, the moderate size of
Ahmedabad is computationally feasible to simulate on a desktop computer.

Fig. 3 Slum locations and slum sizes in Ahmedabad, 2001 (Source: [50])
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Slums Data

The Ahmedabad Municipal Corporation (AMC) collected slum location data in
2001 with the help of field NGOs named Saath and Sewa. According to this data,
there were 710 slums and 958 chawls (a formal but dilapidated and overcrowded
slum-like housing) in Ahmedabad in 2001. The survey focused on the status
of housing and basic infrastructure in these slums and chawls. The information
collected included: the number of houses, types of houses, locations, the geographic
area of the land parcels, ownership, and the status of basic infrastructure such as
water, sanitation, street lights, etc.

Slums Mapping

The data contained several variables indicating slum locations. The set of variables
that indicated a location were Survey Number, Town Planning (TP) Scheme Num-
ber, and Final Plot (FP) Number. Survey Numbers and FP Numbers in combination
with TP Scheme Numbers were used to uniquely identify a land parcel, which were
then used to locate individual slums and chawls on a base map. There were several
records that either had missing Survey Number or FP Number or both. For those
cases, the actual address and the ward numbers were used to identify the location.
On limited occasions, the authors applied their personal knowledge of the city’s
geography to identify the locations. Addresses often indicated the proximity to other
slums or the known landmarks. Using a combination of these methods, 641 of 710
slums and 896 of 958 chawls were located on the base map as shown in Fig. 3. The
remaining 131 slums and chawls could not be located due to insufficient locational
information.

Descriptive and Spatial Analysis

A descriptive analysis was then conducted to understand the spatial patterns of
slums and chawls in Ahmedabad. Slums and chawls were not differentiated for this
purpose and are referred as slums in the rest of this chapter. Slums vary in size as
defined by the number of houses. The largest slum in Ahmedabad had more than
10,000 houses and the smallest slum had only three houses.

As shown in Fig. 4, there is a large number of smaller slums (with less than 250
houses) and only a small number of large slums (with more than 250 houses). The
mean slum size has 197 houses (Standard deviation of 553 houses). The variation in
the size of the slums relates to several factors including availability of vacant land
at that location, age of the slum, accessibility to other amenities, etc. Moreover,
the slum size distribution provides a stylized understanding of the slum formation
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Fig. 4 Slum size distribution by number of houses in Ahmedabad, 2001 (Source: [45])

pattern, i.e. there are a large number of smaller slums and a small number of large
slums. It therefore, provides us with a basis for qualitative validation during the
development stage of the model.

A commonly used summary statistics to understand the spatial pattern of any
point data is the centroid. The centroid is a measure of central tendency for spatial
pattern similar to the statistical mean. In Ahmedabad, the centroid of all slum
locations was within 0.3 km of the centroid of the city itself. This indicates that
the locations of slums follow the spatial growth pattern of the city. In other words,
the spread of slums is balanced in all directions from the city center. Another useful
statistic is the standard distance. The standard distance provides a single summary
measure of feature distribution around their center similar to the way a standard
deviation measures the distribution of data values around the statistical mean.
The standard distance for distribution of slum locations in Ahmedabad was found
4.7 km. About 1001 or 65% of slums were within 4.7 km (one standard distance)
from the centroid indicating that the slum locations are concentrated around the city
center of Ahmedabad.
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Spatial Clustering

Slum locations were analyzed to explore if slums were randomly located, clustered
or dispersed within Ahmedabad. A spatial statistic called the Nearest Neighbor
Index (NNI) was calculated for revealing underlying pattern of slum locations. The
NNI is expressed as the ratio of the observed mean distance between the nearest
neighbors to the expected mean distance for a hypothetical random distribution.
The pattern is considered clustered when the index is less than 1 and dispersed
when greater than 1.

The NNI was calculated using Spatial Statistics tools of ESRI’s ArcGIS 10 and
it was found to be 0.46, indicating clustering of slums in Ahmedabad. The value
of the Z-score (�40.3) suggests that this clustered pattern is not a result of random
chance (p < 0.01). This suggests that there are some underlying spatial processes at
work. We hypothesize that such processes are related to the locational preferences
of households and the spatial configuration of housing market, which is accounted
for in our conceptual simulation framework.

Once it was identified that there exists a spatial clustering of slums in Ahmed-
abad, the Kernel density estimation method was used to reveal the underlying
clustering of slums. Kernel density calculates the density of point features around
each output raster cell. A smoothly curved surface is fitted over each point. The
kernel density is then presented in the form of a choropleth map of densities.

Figure 5 shows the areas where the slums are clustered as well as areas where the
slums are sparse. As it is evident, there are several hot spots of slums in Ahmedabad.
Particularly, at several locations in the Eastern part of the city, the kernel density
value is high compared to the locations in the western part of the city. There are
few clusters in the Northern region but Northeastern and Southeastern regions have
a sparse density of slums.

Simulation Results

To show how our conceptual geosimulation framework could be used for a real
world city to study slum formations, specifically using the HDM and the EM, we
now present a policy scenario analysis. The model was tested with several initial
conditions. In the first hypothetical scenario, the model was initiated with populating
the “Walled City” without any pre-existing slums. As the simulation progressed,
the emergence of slums was observed, purely as a result of human-environment
interaction. This experiment partly explains how slums came into existence in a city
over time. As seen in Fig. 6, the simulation first showed formation of new slums
within Walled City in the starting few years and eventually slums were dispersed to
peripheries. Such a pattern is similar to the empirically observed pattern in the city
of Ahmedabad as shown in previous section.
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Fig. 5 Clustering of slum locations in Ahmedabad, 2001(Source: [50])

In order to verify the model behavior, we conducted an urban growth pattern
experiment. In this experiment, we assessed if a city grows to its current extent and
increases in density over time. The city was populated with half the wards located
in the center as the initial condition and then the model was run for 30 years. It
was observed that the model reaches to the spatial extent of the city in 30 years
as shown in Fig. 7, after which it attains population growth with increased density.
This pattern is very similar to the empirically observed spatial growth of the city of
Ahmedabad.

Once the model behavior was understood, some policy experiments were
conducted in order to assess effectiveness of our model as a policy support tool.
In one such experiment, the values of number of housing units allowed per unit area
were varied. Ahmedabad’s Development Plan [60] imposes development control
regulations, which stipulate Floor Space Index (FSI, also known as Floor Area
Ratio). FSI controls how much built area can be added per unit of land area. The
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Fig. 6 Hypothetical scenario with “Walled City”

residential density is thus determined by this policy measure. While this policy does
not restrict the supply of housing in totality, i.e. housing market can produce the
same number of units over larger area to meet with the demand, it does restrict the
supply of housing at particular locations. The values tested for Ahmadabad were the
existing housing stock (base scenario), twice the current conditions and finally five
times current conditions in scenario 3.

As shown in Table 1, the increase in FSI induces lower slum population (55%
in base scenario to 45% in higher FSI scenario). While slums still form, they form
at fewer locations. They tend to be larger and denser as highlighted in Table 1. As
we increase FSI to five times from the base scenario, slum density almost doubles
from 47,000 persons per sq. km to 88,000 persons per sq. km. This trend might
be indicative of the fact that when the formal development takes place at a higher
density (as reflected in higher FSI), slum density also increases. The area under
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Fig. 7 Spatial sprawl experiment

Table 1 Impacts of floor space index on simulation outcomes

100 units per site
(base scenario)

200 units per
site

500 units per
site

Percent slums 55% 50.2% 45%
Smallest slum (population) 200 300 600
Largest slum (population) 27,600 28,900 32,000
Number of slums 401 220 171
Area under slums (percent of total area
of the city)

14.5% 8.5% 6.4%

Slum Density (Persons per sq. km) 47,400 76,543 88,889

slum has also observed a decline. It is possible that slums follow the pattern of
formal development and hence if formal development takes place in a compact
area, slums tend to be compact as well. In other words, slums will follow the
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spatial development patterns of the formal city. However, empirical analysis of
slums in cities with varying levels of compactness is required to further validate
this hypothesis.

Discussion and Future Research Directions

This chapter presented a conceptual geosimulation model that explores slum
formation. After presenting the initial framework, we demonstrated the application
of the model to the city of Ahmedabad. The model presented here is an effort
to develop a theoretical framework, which is capable of generating slum patterns
similar to that observed in the real world. Ideally, if it is to be considered as
a good urban planning support tool, it should be able to predict slum locations
with precision. However, such a system inherently requires data on several aspects
that are often not available in developing countries. For example, our model could
produce better results if housing price data was available for multiple years. This
would allow for several assumptions to be replaced with actual data that can help
in calibrating and validating this model further. Data availability is improving in
developing countries (e.g. massive data collection under RAY in India) and it is
hoped that our model will benefit from improved data.

While the model presented here is simple, it does generate real world patterns
of slum formation over space and time. There are several limitations to our model
but many of these are seen in nearly all simulation modeling endeavors [61]. For
example, to move towards a truly “comprehensive” understanding is challenging as
there are many variables and factors such as political will, economic dynamics, and
“unforeseen forces” that cannot be fully modeled and captured in a modeling and
simulation exercise [58].

It should also be noted that detailed calibration and validation of this model
are not carried out due to the lack of consistent data for multiple time-periods.
In addition, the goal of this chapter was to conduct exploratory research and test
the feasibility of the modeling framework. Although, Census 2011 has already
been carried out in India, detailed ward level data is being compiled but not yet
available at the time of writing this chapter. It is hoped that the 2011 census and
slum mapping under RAY will provide comparable data, which can be used to
calibrate and validate the model. In the future, the model could be initiated with
slum locations in 2001. The simulation could then be carried out for the period
between 2001 and 2011 with population growth and migration estimates from the
Census 2011 data. The simulated outputs could then be compared to the observed
slum locations in 2011 (new slum location data has been already collected under
RAY in 2011 but it is uncertain when it will be publicly available).

Furthermore, model development, calibration and validation could also benefit
from extending the spatial analysis. For example, the data for the year in which
each slum came into existence could provide temporal evolution of the slum pattern
observed in year 2001. This analysis could be further enriched if the year of
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construction for each housing unit within those slums is also obtained. Such data
could show when each slum came into existence, whether those slums increased
or decreased in size and population and so on. Temporal variable could provide
a dynamic view of evolution of slum systems that could then be used to validate
dynamic patterns generated within simulation.

Nonetheless, our chapter sets a way for developing a science of slum formation.
We integrate spatial GIS data with ABM to overcome the limitation of individual
methods. We also use empirical analysis of slum location patterns to verify and
validate our model. However, understanding human behavior remains a challenge
to ABM generally [62], but more so with respect to slums. For example, there has
been much research on residential decision-making in the developed world but not in
developing counties and in particularly in slums. We hope that our work will precede
collections of such new type of behavioral data. Data limitations in developing
countries also call for new methods for sharing data. For example, detailed base
maps are very rarely available for slums. However, there is a growing interest in
using Volunteered Geographic Information (VGI) to map slums. For instance, the
Map Kibera project (http://mapkibera.org) and Transparent Chennai project (http://
www.transparentchennai.com/). Such efforts would give us the ability to have a
more detailed spatial footprint of slums. All in all, we hope to contribute towards
formation of a dedicated research agenda that develops a science of slums both in
terms of geosimulation modeling and empirical spatial analysis of slums.
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Incorporating Urban Spatial Structure
in Agent-Based Urban Simulations

Haoying Wang

Introduction

In recent decades, increasingly sophisticated models have been proposed to under-
stand the complex and interdependent social and physical factors involved in the
development of sustainable urban systems. A recent OECD (Organization for
Economic Co-operation and Development) report points out that, despite recent
advances in computational capacities, methodological difficulties still prevent the
development of efficient and user-friendly urban modeling tools [1]. This gives
a fair overview of our current status on urban system research. The challenges
we face in modeling urban systems become more and more structural as we
keep improving computation technology. Over the second half of the twentieth
century, the research approach on urban systems has gradually transformed from
traditionally physical design-focused to a framework with more attention on social
and economic processes (e.g. [2–5]). The transition features at least three new
standing pillars of urban modeling: behavior component, spatial interaction, system
dynamics. Incorporating these modeling aspects into urban system models calls
for a more integrated structural understanding of urban systems. Such a structural
understanding of urban systems is not only necessary to the management of city
operations, but also fundamental to public policy-making. It requires modeling
of urban systems to take into account all physical/geographic, social, economic
components, and their interrelationships in a simplified but informative way.

To understand the structure of urban systems, a starting point is the behavioral
motivation of the city: why do people live in cities? Gutkind [6] answers the question
as following: an unfulfilled longing for the amenities and distractions of city life
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has driven people living in cities, where men have developed more differentiated
habits and needs within proximity. Recently, Glaeser [7] answers the question with
more enthusiasm: people come to cities in search for something better. Cities are
proximity, density, and closeness at a much larger scale. The human nature of
desire for connections and proximity, searching for more and better choices, has
driven people to work and live in cities. How this human nature is organized into
a landscape where different people, culture, and sectors are integrated is the key
to understand the structure of urban systems. It is easy to understand why the rich
and the middle-class choose to live in the cities and bear higher living cost, for
example, but why the poor? One observation is that, the urbanization of poverty
may be explained by the better access to public transportation in cities [8]. In a
nutshell, it is the diversified preferences that drive urban residents’ choices, and the
urban system exists as an aggregate representation of all individual choices.

From a modeling perspective, the difficulty also lies in between calibrating
household behavior and aggregate representation. The complexity in understanding
household behavior comes from the fact that urban residents face an even larger
choice set, while that is also what is fascinating about cities. Location choice is the
major decision of each household in the city, because many of the amenities and
distractions of city life are likely associated with location. Location is also the basic
component of any urban systems. All developed locations and open space left in
between constitute a continuum of urban landscape, which is the framework urban
systems build upon.

Given location choices and income constraints, households decide on the amount
of consumption through a series of decision making mechanisms. The current
simulation approach to urban systems seeks to link together different sub-systems
and markets through modular architecture with substantial geographical details
and level of behavioral realism (e.g. [9, 10]). The advantage of such approach is
that it is good at simulating short run evolution of urban systems at an extremely
disaggregate level. The disadvantage, on the other hand, is that such multi-agent
system is vulnerable to structure change, especially in the long run. In other words,
current urban simulation models tend to perform well in descriptive explanation,
but lack strong ability of prediction (e.g. in land use change and ecosystem
applications). In today’s regional economy, not only is the gradual-adjustment
type of public policy process important, but also the public policy for long term
regional development planning. To address both types of policy needs, it is critical
to develop urban simulation tools which are robust to structure change and capable
of predicting urban evolution in relatively long run.

In this chapter, we focus on the role of urban spatial structure in urban
simulations, and how it helps to strengthen the current simulation approach to urban
systems. As discussed in Crooks et al. [11], one of the key challenges to ABM
simulation in geocomputation is to what extent the model is rooted in independent
theory. Basing on household behavior, urban spatial structure theory integrates
economy system, land use, and transportation system together, which provides
an easy to implement framework for simulating urban systems. Methodologically,
urban spatial structure theory also provides a trackable way to measure performance
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and efficiency of urban systems, which is valuable to public policy-making. Section
“Components of Agent-Based Urban Simulation” discusses basic components of
agent-based urban simulation. In sections “Incorporating Urban Spatial Structure”,
“Transportation and Congestion: An Application”, and “ABM Simulation: Land
Development and Congestion,” a monocentric city simulation model of transporta-
tion cost and congestion effects is developed to illustrate how urban spatial structure
models can be integrated with ABM simulation. Section “Concluding Remarks”
concludes the chapter with discussion on policy implications and future research.

Components of Agent-Based Urban Simulation

Urban simulation models are constructed to address operational needs in planning
and policy-making for increasingly complex urban systems. Many well-known
urban simulation models have two basic functionalities: land use and transportation.
From a modeling perspective, an agent-based simulated urban system should
have three categories of building components: households, spatial interaction, and
landscape. In this section, we discuss the role of each category in urban simulation.
These components are also essential constituents of urban spatial structure models.

Household Behavior

The human behavioral component is the building block of many observed social and
economic phenomenon. The first basic behavioral component of a urban system
is household—each household acts as a node in the network of urban systems.
The decision and choice made by one household can directly or indirectly affect
the behavior of other households across the city. In the economics approach, the
(rational) behavior of a household is usually summarized into a mathematical
form—utility function. The utility function approach provides a simplified way
to represent the inter-relationship among all available choices. In the context of
urban modeling, these choices are usually being categorized into housing consump-
tion, non-housing consumption, and transportation consumption. Given household
income as a binding constraint, the balance among three consumption categories
can be realized through household location choice. Thus, optimal location choice is
equivalent to utility maximization for a rational household.

Household behavior can be generalized to all sorts of agents—business owner,
land developer, social planner, and etc. Similarly, the utility function can also be
generalized to generic objective function—profit function, social welfare function,
and etc. To completely describe the behavior of these agents, a decision making
mechanism has to be established basing on the objective function. In most of
mathematical social science fields, optimization theory is employed to develop
decision making mechanism for agents. The idea is to maximize (or minimize)
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the objective by optimizing the combination of all available choices. Note that, for
many of the urban system problems, a socially optimal decision is not necessarily
optimal to all agents because of the resource constraints. On the other hand, if
all agents make individual optimal decisions, the aggregate social outcome is also
not necessarily optimal to the society (e.g. [12]). Such inconsistency between
aggregate modeling and aggregated individual modeling has been a major challenge
to analytical approach to urban systems. The advantage of agent-based simulation
approach to urban systems, however, is to explore the aggregate social outcome
(i.e. emerging properties) from a disaggregate level which the analytical equilibrium
approach often fails to do [13].

Spatial Interaction

Individual households as agents are not isolated from each other. Urban households
live within very close proximity, thus mutual interactions are an indispensable
part of urban life. Households interact with each other through two important
mechanisms: social network and market. Many systems take the form of networks,
and all non-economic and some economic components of urban systems are
connected through social networks. An important property of social network is
the so-called small world effect or neighborhood effect, which means the network
effects tend to be localized [14]. In urban spatial context, many of the spillover
effects are associated with social networks, which is something to take into
account in urban modeling and public policy-making. Bramoullé and Kranton [15],
for example, show that individuals who have active social neighbors have high
benefits from public goods with only little effort. The social network effects can
influence household location choice, even though other factors are also important.
Ettema et al. [16] suggest that social interactions between households and between
individuals potentially have an influence on household location, mobility and
activity choices. Wang [17] shows that neighborhood spillover effects through
housing markets can affect the whole land development process in an urban area.

The connection through markets is more measurable, at least from the economic
perspective. Households may compete with each other on the market—for instance,
the labor market, where over-supply is often the case. Households may also
corporate with each other through the market—for instance, form a labor union
or business alliance, so that everyone can benefit from collective bargaining. In
ABM simulation, a common approach of modeling market mechanism is to allow
trade between agents [18]. Trade between agents is more like an atomic market,
which is quite different from the macro market that all households can potentially
participate. Coordination between atomic markets like trade mechanism and the
macro market still remains a challenge to ABM simulation. In urban simulation,
how to integrate different macro markets (e.g., housing market and labor market)
into one simulation framework is a more pressing challenge, because to inform
policy-making an understanding of the linkage among different markets is critical.
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In short, because of the existence of social networks and markets, the aggregate
social outcome in urban systems is no longer a simple adding-up of individual
decisions. An urban simulation model which fails to consider the consequence of
these interaction mechanisms may produce biased results.

Landscape

Landscape is the physical foundation of urban simulation. All scientific modeling
requires some level of abstraction or simplification of reality and observed phe-
nomenon. In urban modeling, the spatial configuration of agent activities matters.
The conceptualization of urban landscape varies across different disciplines. For
example, ecologists pay more attention on the structure of impervious surface and
its impacts on ecosystem processes (e.g. [19]). Economists are more interested in
the residential pattern and the spatial distribution of economic activities (e.g. [20]).
These alternative perspectives on urban landscape are not independent from each
other as they seem to be. The structure of impervious surface, for instance, is just a
physical description of road system and residential development.

Landscape can be generated from image or GIS data of original urban layout
using visualization techniques [21]. This approach is often used in scenario-based
case studies. Another approach is to design landscape geometrically following
certain pattern of urban configuration, and the transportation system is usually
integrated as part of landscape. In a two-dimension urban simulation, landscape
can be modeled in grid or circular form. Circular form is usually used to model
monocentric urban structure, where each ring can be defined as a model unit.
Grid form is more generalized, and it can be used in both monocentric and non-
monocentric urban modeling. The smaller the circular rings and grid cells, the more
realistic is the simulation. However, there is always a trade-off between computation
time and level of details in time, space, and agents that a simulation model can
represent. In practice, the choice of landscape form depends on the purpose of
simulation and computation power available.

Incorporating Urban Spatial Structure

In this chapter, an ABM simulation on transportation cost and congestion effects
is developed to illustrate the role of urban spatial structure in agent-based urban
simulation. Due to space limit, the model is confined to the monocentric city model
only. Different components of the simulation model will be discussed. The theory
of urban spatial structure has inspired many analytical and empirical insights about
urban systems, which should be integrated in urban simulations [11]. In general,
analytical models like urban spatial structure models provide more tractable step-
by-step procedures for simulation than heuristic models do.
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The simulation framework is designed based on an urban spatial structure model
which integrates household behavior, market interactions, and urban landscape.
The idea is to illustrate how we can learn more about urban system dynamics
through emergent properties by incorporating urban spatial structure with the ABM
simulation approach. The basic setup for the urban spatial structure is following. The
city consists of a continuum of households, living across the urban area. The homo-
geneous urban land is divided into many areas (residential and non-residential),
not necessarily equally, each of which has fixed boundary. Households within
each region have three major consumption categories: housing/land (residential,
industrial, commercial, and etc.), non-housing, and transportation. In the model,
we focus on transportation and congestion effects.

Transportation and Congestion1: An Application

The interaction between residential land use and transportation land use, which
may be generalized to the interaction between land use and infrastructure, can
result in potential negative externalities. Among which, congestion is the biggest
concern in urban development policy. As Wheaton [22] points out, if urban land
is allocated to the highest paying use (e.g. as in the Herbert-Stevens model [23]),
aggregated land rent is maximized only if there is no externalities. In many of
the conventional urban development models, especially spatial equilibrium models,
transportation cost is given exogenously and with no congestion effects. In part,
this is because congestion cost depends directly on the choice of travel/commuting
routes. Modeling travel pattern even with low degree of realism poses challenges
to the framework of spatial equilibrium models. On a two-dimension plane, roads
and streets can go any direction, modeling travel pattern and congestion essentially
becomes a high-dimension problem. Therefore, in either analytical modeling or
simulation modeling, certain simplifications have to be made upon the structure of
travel patterns. The advantage of simulation approach is that, it allows more details
and flexibility in model implementation. In this section, an analytical urban spatial
structure model with congestion is introduced, which can be solved as a closed-city
optimal control problem. Basing on the analytical model, a dynamic simulation is
designed to illustrate how urban simulation can be used to inform policy-making.

1Following Solow [27], congestion cost is defined as the cost of travel per person per mile at any
point, which depends on two factors: the number of travelers using that part of the transportation
system, and the amount of land allocated to transportation use at that point
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Static Approach with a Closed-City

Given a circular monocentric city where N consumers commute inwards either to
the central business district (CBD, the central labor market), or another region (the
local labor market) between home and the CBD. The commuting distance (t),2 if
ignoring the local labor market, can be measured by the ray from the CBD to home.
The city is a closed environment, with border at distance B. Following Solow [24]
and Wheaton [22], an intermediate variable is created to reflect the potential travel
demand, n(t), equal to the number of households residing beyond distance t. In
Solow [24] and Wheaton [22], this variable represents the number of commuters
passing region t on their way to work in the CBD.3 In this chapter’s framework,
residents may choose to work locally, thus the actual travel demand in region t can
be less than n(t). Intuitively, the marginal cost of travel in region t is expected to
be a positive function of travel demand, and a negative function of transportation
capacity in region t.

Travel demand and transportation capacity in region t can be defined as follow-
ing. Let s denotes a region between region t and the CBD, i.e., 0 � s � t, and ˛t , s

be the proportion of residents who live in region t and choose to work in region s.
Assuming that all regions are discrete, and s D 0 represents the CBD region, then by
definition

Pt
sD0 ˛t;s D 1.4 The travel demand at region s, D(s), can be expressed as:

D.s/ D
Xs

iD0

XB�1

tDi
.n.t/ � n .t C 1// ˛t;i (1)

If all residents choose to work either in their residing region t, or in the CBD
region, then the travel demand can be simplified to:

D.t/ D
XB�1

jDt
.n.j/ � n .j C 1// ˛j;0 (2)

In continuous case, D(t) can be written as:

D.t/ D �
Z B

t
n0.z/˛zdz (3)

where ˛z is the proportion of residents who live in region z and choose to
work in the CBD region, which can be a constant or a function of distance z.

2In this chapter, t is used as a discrete integer to denote both commuting distance and regions to
simplify notation. This implies that all regions have the same width, but different areas
3For convenience, in the circular monocentric city model the distance to the CBD, t, is often being
used to index land use region as well. In this case, a land use region is a ring around the CBD
4An implicit assumption here is that, residents living in region t do not choose to work in regions
beyond t. Residents who work in regions beyond t are better off by choosing to live in their working
region, because the congestion cost increases as it gets closer to the CBD
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An implicit boundary condition here is n(B) D 0, due to the closed-city assumption.
Transportation capacity is denoted as the fraction of the land allocated to roads
and streets in region t, �(t). Following Wheaton [22], the urban land development
planning can be formulated as an optimal control problem, in continuous case:

0

B
B
B
B
B
B
@

Max
X.t/;Q.t/B

R B
0

h
Y�T.t/�X.t/

Q.t/

i
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�
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�

n0.t/ D � 2� t.1��.t//
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(4)

with two boundary conditions:

�

T.0/ D 0

n.B/ D 0
(5)

Y, T(t), X(t), and Q(t) are household income, transportation cost, non-land
consumption (the numeraire, price is standardized to 1), and land consumption,
respectively. A is the total land area available, and Ra is the opportunity rent of urban
land (e.g. agricultural land rent). U(X, Q) is the household utility function. c(�) is the
marginal transportation cost, which is a function of the ratio of travel demand to
transportation capacity D.t/

2� t�.t/ . c
0

(�) and c00(�) are usually assumed to be positive (e.g.
[25]). The maximization problem in Eq. (4) can be solved following optimal control
theory (see [22]).

Dynamic Approach with an Open-City

The static approach to urban land development planning in Eq. (4) ignores the urban
evolution process. In reality, the urban evolution proceeds as a gradual process
and takes decades to adjust [26]. Instead, the urban authority can choose to plan
development stage by stage, i.e., planning and developing one region each time
period rather than the whole urban area at once. The gradual development process,
in many important aspects, is in analogy to the concept of regional economic
evolution. At different stages of development, changes of economic and institutional
environment can lead to updated perspective and goal on urban development
planning. Therefore, a dynamic disequilibrium approach provides a better way to
frame the planning problem, which is also one of the main advantages of simulation
approach to urban modeling [10].

In the circular monocentric city, the development process goes naturally from the
CBD to outside suburban area ring by ring. The land use and economic landscape
may show path dependence, but new development can be treated as another planning
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problem conditional on previous development. Without loss of generality, index
each ring region by natural numbers (t D 1 , 2 , 3 , : : : , with the CBD being region
0), and for any region t the optimization problem becomes:

Max
X.t/;Q.t/

	
Y � T.t/ � X.t/

Q.t/




2� t .1 � �.t// C ˇ ŒU .X; Q/ � U0� (6)

If t represents the newly developed edge region, then the change of transportation
cost �T only depends on the travel demand originated from region t and the
transportation capacity of region t. From the first constraint in Eq. (4), given that
the distance horizon is discrete (and �t D 1), we have:

�T D T.t/ � T .t � 1/ � T 0.t/�t D T 0.t/ D c

�
n.t/˛t
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�

(7)

However, the transportation cost T(t) (not �T(t)) is not solely determined by
conditions in region t, instead it shows path dependence:

T.t/ � T .t � 1/ C c

�
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(8)

By the recurrence relation, with boundary conditions T(0) D 0 and n(t C 1) D 0,
Eq. (8) can be written as:
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where k and m are positive constant parameters. Note that, if ˛s is constant for all

regions, i.e., ˛s D ˛, then
tP

sDi
Œn.s/ � n .s C 1/� ˛s D n.i/˛. n(i) is the population

residing beyond distance i, and n(i)˛ is the portion of that population who work in
the CBD region. In this case, Eq. (9) can be simplified into:
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Given transportation cost T(t) computed according to either Eq. (9) or Eq. (10),
and other parameters, the optimization problem in Eq. (6) can be solved from the
following first order necessary conditions:

 
UQ

UX
D Y�T.t/�X.t/

Q.t/

U0 D U .X.t/; Q.t//
(11)

In the closed-city model, U0 can be determined endogenously. In the open-city
model, U0 is usually set as exogenous [22]. In Eq. (6) and Eq. (11), Y and U0 are
exogenous parameters. Y can be considered as the average income level in a given
region (e.g. census tract). U0 can be interpreted as the minimum living standard or
quality of life in the region given the income level Y. The idea is that Y and U0

are not two independently determined parameters. The two parameters can also be
interpreted at individual household level.

The optimum conditions in Eq. (11) are similar to those of spatial equilibrium
models, at least in the mathematical form. The essential difference is that the
transportation cost now depends on the travel demand and transportation capacity
from all previous stages of development. Put another way, the transportation cost
for residents in the newly developed region now reflects the congestion effects
created when they pass through all previously developed regions on the way to the
CBD. Since traffic congestion is a mutual effect, from a social planner’s perspective,
therefore, the extra transportation cost imposed on residents located in previously
developed regions by the congestion effects also needs to be taken into account.

ABM Simulation: Land Development and Congestion

The trade-off between transportation capacity and congestion does not disappear
as long as there exists land scarcity. Traffic congestion is a price that urban
residents have to pay for taking the advantage of concentration of amenities and
economic activities by living in cities. Congestion, as the result of many individual
trip decisions, driving habit, and transportation mode choices, is a complicated
phenomenon to model. As Lindsey and Verhoef [28] point out, there is no single
best way to model traffic patterns and congestion. For the purpose of modeling land
use and transportation planning, it is adequate to capture only the main stationary
relationship. In this section, an ABM simulation is implemented based on the
monocentric urban spatial structure.

The goal of ABM simulation is to explore emergent properties out of a complex
and open-ended system. In the context of urban modeling, ABM complements spa-
tial equilibrium based models in both behavioral foundation (or micro-diversity as
in Crooks et al. [11]) and system dynamics. There are three main components in an
ABM simulation: stochastic component, decision making mechanism, aggregated
representation. Stochastic components are the input to the model, which drives
the process dynamics. Decision making mechanism, usually built upon a set of
rationality and behavioral assumptions and optimization theory, is a simplified
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description of the individual behavior. Aggregated representation is more about
output analysis. The results of ABM simulation are often not as neat as those of
analytical equilibrium models. Therefore, certain level of aggregation (e.g. graphical
and statistical analysis) is necessary to interpret the results and their implications.
One of the concerns on ABM simulation practice is that the theoretical implications
of many simulation models often remain implicit and hidden behind the mask of
ad hoc assumptions about model structure and system process [11]. Therefore, it is
imperative to clarify and lay out these major components in ABM simulations.

In the ABM simulation developed below, the stochasticity comes mainly from
the population (consists of agents) growth process and household (agent) income
variations. The decision making mechanism is designed basing on the open-city
model developed in section “Transportation and Congestion: An Application”. For
computational purpose, some aspects of the structural model may be simplified.

Simulation Setup

In this ABM example on congestion cost, the landscape for model development
is a monocentric circular city which consists of a CBD region in the center and
residential regions surrounding the CBD. To study the urban land development
dynamics, the simulation starts from a city with zero population and none residential
development at the beginning. The development process of the city includes two
sub-processes: population growth and new land development, which are also where
the potential stochastic components come into play. Instead of modeling a birth-and-
death process, the simulation only focuses on the net population growing process,
which is assumed to follow a stochastic arrival process. The income level of each
agent (i.e. household) is drawn from a statistical distribution that defines the range
of income across the city.

Another important input to the simulation is the amount of land devoted to
residential development and transportation capacity in each region. Transportation
capacity can be considered as a local public good, which also has spillover
effects (by reducing congestion effects) to households from other regions. If the
provision of transportation capacity is funded through property tax (by taxing
housing expenditure), then there exists an optimal level of �—the proportion of
land devoted to transportation capacity. The determination of a socially optimal �

is not straightforward, because � apparently depends on the total (taxable) housing
expenditure. At the same time, each individual household’s housing expenditure
depends on the transportation cost and therefore �. To simplify, changes of � can be
considered as exogenous policy shocks. In this simulation, � is assumed to follow
an exogenous distribution with respect to distance t (to be discussed later).

The core element of the decision making mechanism is the household utility
function. For each household, the disposable income is allocated to three different
expenditures: housing, non-housing, and transportation. Given a constant ˛—the
proportion of households working in the CBD, basing on Eq. (10) transportation
cost is same for all households within a given region. Therefore, there are only
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two decision variables left in each household’s consumer problem. The household
decisions on housing and non-housing consumptions are made basing on the optimal
conditions in Eq. (11)5. In this simulation a Cobbs-Douglas utility structure is
specified [29], that is

U .X; Q/ D �0X�X Q�Q (12)

where �0, �X , and �Q are constant parameters. While each household is differenti-
ated by its income level, households may also be differentiated through the relative
preference on housing and non-housing consumption, i.e., choosing different �X and
�Q. Upon solving the household optimization problem, for each residential region
t, all individual optimal housing consumptions constitute the aggregated housing
consumption. The total land available for residential development in region t is
given by 2� t(1 � �(t)). Denoting the aggregated housing consumption in region t as
Ph

iD1 Q�i .t/, with h being as the total number of households in the region, Q�i .t/ the
optimal housing consumption, then a measure for residential development density
(�) in the region can be defined as:

�t D
Ph

iD1 Q�i .t/

2� t .1 � �.t//
(13)

The residential development density, that measures the tension between resi-
dential land demand and supply, is an emergent property in this simulation. More
specifically, the ABM simulation can help to illustrate the dynamic relationship
between transportation cost and land development density, as well as the devel-
opment density distribution with respect to distance. The change of development
density from the scenario with congestion effects to the scenario without congestion
effects is also interesting to explore.

Another interesting emergent property in this simulation is the housing price
dynamics. As being implicit in Eqs. (6) and (11), the (unit) housing price in the
analytical model is endogenously determined. The housing price solved through
Eq. (11) is the individual willingness to pay for housing of each household. The
existence of such heterogeneity of housing prices within a region can be explained
by the residential sorting process [30]. Within a given region, households who are
willing to pay more for a unit of housing are more likely to reside at location with
better amenities or public services. Through the sorting process, household location
choices within the region therefore reflect their willingness to pay. In this simulation,
the micro sorting process is not explicitly modeled. There are two ways to look at
housing price: (1) the cross-sectional housing price distribution within each region;

5Even though the optimal conditions here are derived to maximize land rent from a representative
household (or social planner)’s perspective, they are equivalent to those first order necessary
conditions of a household expenditure minimization problem. The minimized expenditure equals
exactly to the household disposable income net of transportation cost which depends only on
distance t. The reason for this result is that housing price is endogenous in the model, which
exhausts any disposable income net of non-housing and transportation expenditure
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(2) the distribution of housing price with respect to distance. In spatial equilibrium
models, there exists a basic trade-off relationship between transportation cost and
housing price, so that households are indifferent between locations across the city.
In the proposed ABM simulation model, given the existence of congestion effects,
how the relationship would change becomes a policy relevant question. So does the
relationship between housing price and development density.

Parameterization

In this simulation, both the dynamic nature of the system and the open-ended
environment of the model define a terminating simulation—the urban system is
unlikely to reach a steady state. Given the setup of the model, two criteria can
be chosen to terminate the simulation: (1) the simulation terminates after average
housing price reaches certain level, for example, its opportunity cost—agricultural
rent; (2) the simulation terminates after the city expands beyond a given boundary
(e.g. t � 10). Depending on the goal of simulation, either criterion can be a
reasonable choice.

The values of all key parameters in the simulation are set based on the scenario
of large U.S. metropolitan areas. According to the U.S. Bureau of Labor Statistics
Consumer Expenditure Survey in 2011, for instance, urban households on average
spent $50,348; and $17,226 of which was on housing consumption, $2586 of which
was on transportation. Given this empirical evidence on income allocation, the
parameters �X and �Q are set to 0.5 and 0.3, respectively6. According to Arnold
and Gibbons’s [31] analysis of urban impervious surface coverage, about 5 � 10%
of suburban land, 20 � 30% of urban land, and 40 � 60% of commercial center
land is devoted to roads and parking. Therefore, the proportion of land devoted to
transportation capacity, �(t), is specified as a decreasing function of distance t in the
range of 5 � 40%. Similar to Wheaton [22], the parameter ˇ in the transportation
cost is set to 1.1, which is a very conservative specification on congestion effects.
Further sensitivity analysis can be performed to explore the impact of parameter
choices. All simulation parameters are summarized in Table 1.

Simulation Results

The simulations are programmed in MATLAB and implemented on a 64-bit
Windows 7 operating system, with a 3.40 GHz Intel Core i7–2600 processor and
12.0 GB RAM. For a simulation (with graphing) with both congestion scenario and

6The parameter 0.5 and 0.3 are chosen based on relative income allocation. 0.5: 0.3� non-housing
consumption net of transportation cost: housing consumption
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Table 1 Parameters in the ABM simulation

Variable Value Definition

T 10 Number of residential regions
POPt Triangular (2,5,4)a Net population growing process (in 10,000)
�0 1 Utility function parameter
�X 0.5 Utility function parameter
�Q 0.3 Utility function parameter
k 0.01 Transportation cost function parameter
m 1.1 Transportation cost function parameter
˛ 0.5 Proportion of households working in the CBD

�(t)
�

40� 35.t�1/

T�1

�

% Land devoted to transportation capacity

Y Uniform [30,000,100,000] Household income level
U0 U0D Y/2 Household desired utility level

a All generated numbers are rounded to integers

no congestion scenario7, the simulation CPU time ranges from 100 to 130 seconds.
Given the range of the city, the CPU time increases with the number of agents
(population size). There are two major endogenously determined variables in this
simulation: housing price and transportation cost. The two variables are also highly
policy-relevant.

The housing price distributions (kernel density estimation with Epanechnikov
kernel and optimal bandwidth) are presented in Fig. 1. Due to space limitation, four
regions (1, 4, 7, 10) are included only. All housing prices are standardized (divided
by the maximum price and multiplied by 100) so that the maximum price equals
to 100. Note that the graphs only show the relative distribution of housing prices
within each region, which varies from region to region. As the distance to the CBD
increases, moving from the CBD to suburban area, the price distribution becomes
less skewed. That is, housing price is more uniformly distributed across households
in suburban area. One possible explanation for this phenomenon is that, given
household income follows a uniform distribution, in the suburban area household
income level has more impact on the willingness to pay (individual housing price)
for housing consumption.

Another way to look at housing price is through the aggregate housing price
level in each region. Figure 2 shows the relationship between aggregate housing
price and distance to the CBD. The dashed line (red) indicates an approximately
negative linear relationship between housing price and distance to the CBD under
no congestion scenario (see footnote 7). Under no congestion scenario, the marginal
price change with respect to distance to the CBD is constant. With congestion effects

7In the congestion scenario, the transportation cost is calculated according to Eq. (10). In the
no congestion scenario, the transportation cost per unit distance is set equal to the transportation
cost at tD 10 under congestion scenario divided by 10. In other words, at region tD 10, the total
transportation costs in both scenarios are the same (see Fig. 3)
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Fig. 1 Housing price distribution at different regions. Note: All housing prices are standardized
with maximum price equals to 100. The density curves are kernel estimation with Epanechnikov
kernel and optimal bandwidth

considered, housing price decreases quickly first, and then slows down as moving
further from the CBD. Under the congestion scenario, the housing price level change
reflects both a distance effect and a congestion effect. Both effects lower the housing
price. The distance effect reflects the fact that, the further moving from the CBD,
the higher the transportation cost and therefore the lower the housing price. The
congestion effect, on the other hand, has a diminishing effect. In the regions near
to the CBD, congestion tends to be more severe thus dominates the distance effect.
This can be seen from the part where the solid (blue) line is under the dashed line
(red) in Fig. 2. In the regions far from the CBD, the congestion effect is reduced and
the distance effect becomes dominant.

The change of transportation cost works in the opposite direction to the change
of housing price. According to the spatial equilibrium principle, if something is
attractive in one location, then we should expect to see something unattractive
offsetting it in the same location [32]. In this model, housing price and transportation
cost offset each other. In Fig. 3, the dashed line (red) shows the transportation cost
without congestion effects, where total transportation cost is in a direct relationship
with distance to the CBD. The marginal transportation cost in this case is constant
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Fig. 2 Average housing price and distance to the CBD. Note: The aggregate housing prices are
standardized with the price in region 1 equals to 100
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Fig. 4 Residential land development density and distance to the CBD. Note: The density measure
is standardized with density in region 1 equals to 1

(see footnote 7). When there are congestion effects associated with travel, the
total transportation cost becomes higher as expected. The diminishing trend of
marginal transportation cost in this case reflects the fact that congestion effect is
reduced as households reside further from the CBD. One other result to note is
that, the difference between transportation costs under two different scenarios is not
maximized at region 1. The maximum difference is reached around region 3.

As discussed in section “Simulation Setup,” another way to explore the simu-
lation outcome aggregately is to look at residential development density in each
region. In this model, both the housing demand side (population) and housing
supply side (amount of land in each residential region) are exogenously determined.
Given that these two factors directly determines the pressure on land development,
thus the land development density is likely to follow an exogenously determined
pattern as well. In other words, the existence of congestion effects should not have a
strong impact on land development density across all regions. The results presented
in Fig. 4 confirm this conclusion. In Fig. 4, the development density measure is
standardized (divided by the maximum density) with density in region 1 equals to 1.
The development density under two different scenarios is almost overlapping with
each other, even though there indeed exists small differences (see Table 2). Note that
the congestion effects are also a function of distance and the size of the city (e.g. the
radius of urban area in reality), which becomes important especially in an open-city
model.
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Table 2 Residential land development density and distance to the CBD

Region 1 2 3 4 5 6 7 8 9 10

With
congestion

1.0000 0.5255 0.3295 0.2292 0.1905 0.1167 0.1120 0.0912 0.0890 0.0668

No
congestion

1.0000 0.5178 0.3267 0.2270 0.1893 0.1164 0.1133 0.0925 0.0913 0.0694

Note: all numbers reported are corresponding to Fig. 4

Discussion

The advantage of the ABM simulation approach to urban systems is that it has a
solid behavioral foundation of individual decisions. Depending on the context of
modeling, the simulation procedure still needs guidance on model structure from
analytical approach. In the simulation model presented above, we have incorporated
urban spatial structure models and spatial equilibrium theory into simulation. The
strength of these independent theories is that they provide simplified and structural
ways to understand a complex system. Built upon which, simulation models can
become a powerful tool in facilitating structural understanding of urban systems
while with adequate level of spatial details.

The current model still hinges on the classic monocentric urban spatial structure
with homogeneous landscape. The limitations of such models could be relaxed
in at least two ways. First, the literature has long been paying attention on the
development of non-monocentric models. The difficulty with developing non-
monocentric urban spatial structure is mainly on the analytical treatment of spatial
dimensions. This could be a bottleneck in integrating the analytical approach and
the ABM approach, but it also points to a fruitful future research direction. Another
development in the literature that could help to refine the modeling of urban system
dynamics is the residential sorting process. The entire urban area may never reach
an equilibrium. At a smaller scale, however, households can sort across different
locations (e.g. within a community) and reach a local equilibrium. This requires
urban simulation to take into account the existence of microstructures within the
urban system.

Sensitivity analysis, which many existing ABM simulation models fail to empha-
size, is an important part of aggregate representation. In some sense, sensitivity
analysis is as important as parameter calibration. In every simulation model, certain
parameters have to be exogenously given or calibrated. The sensitivity of simulation
results with respect to the choice of exogenous parameters is necessary knowledge
for understanding the results. In the model presented above, parameter m—a
transportation cost parameter—is an important parameter to the model [22]. Figs. 5
and 6 show how the change of m (from 1.0 (Fig. 5) to 1.2 (Fig. 6), the default value
in the model is 1.1) influences the main results of simulation.

Combining Figs. 2, 3, 4, 5, and 6, as parameter m changes, we can see that
the main patterns of housing price, transportation cost, and development density
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Fig. 5 Sensitivity analysis on transportation cost parameter m (mD 1.0)

between congestion scenario and no congestion scenario still hold. The noticeable
changes in the results are mostly from the magnitude of specific measures.
Therefore, as far as the specification on transportation cost function is concerned, the
simulation results are robust. Similarly, sensitivity analysis on other key parameters
(e.g. proportion of households working in the CBD) can be performed.

Relating to the model in this chapter, the commuting cost in the city also depends
on the travel route choice. In this chapter’s simulation model, the transportation
system consists of symmetric ray-style routes and all households choose the shortest
route to commute. An alternative scenario would be allowing households to choose
among different travel routes. Unless the urban configuration is asymmetric and
heterogeneous, then there is only negligible difference between the two scenarios.
On the other hand, allowing for travel mode choice could lead to substantial
difference in the outcomes, because different travel modes directly imply different
levels of transportation cost given other factors.

Though the simulation model is only for illustration purpose, we can still learn
some policy implications from the outcomes. The first policy-relevant result is the
underestimate of transportation cost (in classic spatial equilibrium models) and
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Fig. 6 Sensitivity analysis on transportation cost parameter m (mD 1.2)

the nonlinearity of transportation cost, as shown in Fig. 3. The underestimate of
transportation cost is due to the ignorance of congestion cost. The ABM simulation
helps to inform the nonlinearity of transportation cost, which is valuable for
designing and evaluating public transportation system. A land use policy-relevant
result is that land development density is insensitive to the existence of congestion
costs (Fig. 4). This on the other hand implies that land development density depends
more on overall urban spatial structure and demographics. Therefore, both economic
planning and land use planning have important impacts on land use density.

Concluding Remarks

The modern city is an arrangement between its residents and local governments
from both an institutional and a financial perspective. Seeking for efficient public
policy and proper government intervention is essential to the sustainability of such
an arrangement. Because of the mobility and heterogeneity of the population, it is
often difficult to keep track of all individual household location and consumption
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decisions. On the other hand, public policy tends to provide general prescription for
diversified individual preferences. How to aggregate the individual preferences into
a form that policy makers can practice on is a critical task of urban modeling. The
ABM simulation approach proposes a way to visualize urban systems so that well-
founded social and economic implications can be derived to inform public policy-
making. Though the multi-agent systems introduce solid behavioral foundation to
urban modeling, the current urban simulation methodology still needs emphasis on
structural understanding of urban systems. White and Engelen [33] raise two major
concerns on high-resolution simulation models of urban and regional systems, for
example, regarding the evaluation of simulation results and model predictability.
One solution to address these issues is to incorporate urban spatial structure theory
into urban simulations, which is the main theme of this chapter.

In this chapter, the linkage between major components of urban simulation and
urban spatial structure models are discussed. Upon which, an ABM simulation
model of urban land development is proposed with focus on transportation cost
and congestion effects, to illustrate the role of urban spatial structure in urban
simulation. The goal of the chapter is twofold. The first goal is to stress the
importance of analytical modeling as the skeleton of urban modeling, even with the
simulation approach. A modular architecture of urban simulation is not necessarily
informative regarding results evaluation and model predictability. A further goal is
to emphasize how urban spatial structure models can help to integrate household
behavior, individual decision making, and aggregate model representation together.
The simulation example provided in the chapter, though only for illustration pur-
pose, gives at least some sense on how the combination of analytical modeling and
ABM simulation can be an efficient and informative approach to urban modeling.

Still, there are many challenges ahead in urban modeling. For example, the
development of theories on social interactions, networks, and matching mechanisms
has substantially pushed the limit of our knowledge on human behavior and system
dynamics. How to incorporate these new research into urban modeling is both
a theoretical question and an empirical matter. Another under-researched area of
urban simulation is the model calibration, which plays a critical step towards good
model predictability. Similarly, calibrating model specification and parameters is
also both a theoretical issue and an empirical issue. All these challenges and
therefore potential future research directions will certainly have profound impacts
on urban and regional modeling.

Lastly, the focus of the chapter is to suggest how we could use well-established
urban spatial structure models in economics and urban studies to strengthen current
agent-based urban simulation studies. The chapter does not intend to criticize
current urban spatial models. Instead, the chapter argues that we should incorporate
them to improve current agent-based urban simulation practices.
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The ILUTE Demographic Microsimulation
Model for the Greater Toronto-Hamilton Area:
Current Operational Status and Historical
Validation

Franco Chingcuanco and Eric J. Miller

Introduction

This chapter reports on the Integrated Land Use, Transportation, Environment
(ILUTE) Demographic Updating Module (I-DUM) which updates the residential
population demographics of the ILUTE model system. ILUTE is an agent-based
microsimulation model that dynamically evolves the urban spatial form, economic
structure, demographics and travel behavior over time for the Greater Toronto-
Hamilton Area (GTHA). It has been designed to be a credible, policy-sensitive
decision support tool for transportation and land use planning [1–4].

In particular, the chapter provides a comprehensive update on I-DUM’s opera-
tional status, as well as presents some historical validation tests. I-DUM has recently
undergone significant development and has reached a state of maturity where a
100% synthetic GTHA population of persons, families and households is being
tested against a 20-year historical (1986–2006) period.

Having operational and validated demographic microsimulation models is impor-
tant to integrated urban models in that they:

1. Provide population levels and their attributes, required by behavioral models
(e.g., residential mobility and location choice, automobile ownership, activ-
ity/travel, etc.) [5].
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2. Supply inputs to work and school commuting models.
3. Endogenously maintain the representativeness of model agents and their

attributes as the simulation progresses (e.g., households moving in and out
of the study area) [5].

4. Accommodate the dependency between short-term (e.g., start/finish school) and
long-term (e.g., residential mobility) household decisions throughout different
life-cycle stages [6].

5. Support the implementation of activity-based models (e.g., TASHA [7]) that are
required to address the full range of transportation policies facing twenty-first
century cities [8].

6. Facilitate extending integrated urban models to include other processes of interest
(e.g., urban energy use [9]) by serving as inputs that drive these models.

The more disaggregate nature of a microsimulation is also highly desirable in
order to enhance behavioral fidelity and reduce aggregation bias [5]. It can easily
be argued that the relatively limited impact that disaggregate mode choice models
have had on travel demand modeling can be rooted in the difficulty of projecting the
required population socio-demographic attributes [10].

The rest of this paper is organized as follows. Section “Literature Review” briefly
reviews demographic microsimulation. Readers familiar with this topic should
skip ahead to section “The ILUTE Model System”, which gives an overview of
the ILUTE model system. Afterwards, section “Overview of the ILUTE Demo-
graphic Updating Module” gives a high-level description of I-DUM. In particular,
the section describes its design and implementation, the data sources used, the
demographic attributes generated and maintained throughout the simulation, and
the demographic processes modeled. Section “Descriptions of Individual I-DUM
Processes” then gives a detailed description of each of the I-DUM processes
being modeled. Afterwards, section “Simulation Results” presents and discusses the
results from the full population 20-year validation runs and touches on the model’s
computational performance. Finally, a conclusion follows as well as an outline of
future research directions for the I-DUM.

Literature Review

Microsimulation is a general method to exercise a disaggregate model over time
[5]. It is used to analyze complex and/or dynamic systems with many elements that
interact with each other. For this type of system, a closed-form analytical expression
is often not available due to the complex nature of its processes. In this case,
computer-based simulations offer the best alternative to make intelligent predictions
by evolving the system through time.

In the context of integrated urban modeling, microsimulation derives from
applied econometrics where it was used to apply quantitative methods onmicrodata
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[11]. Due to its disaggregate nature, microsimulation can better capture the complex
interactions between policy and social-economic life [12]. It can also determine the
distributional impacts of policy measures [13].

Demographic Microsimulation Mechanics

A number of demographic microsimulation models have been built in order to
analyze issues such as retirement, population projection, labor supply, and other
matters related to household life-cycle changes. Comprehensive reviews of existing
models can be found in Morand et al. [14] and Ravulaparthy and Goulias [15],
who collectively examine sixteen models built for different regions. For most of
these models, the demographic events represented can be categorized as: population
changes (in- and out-migration, birth and death); household formation (mar-
riage/cohabitation, divorce/separation, children leaving homes); and the education,
health and work status of the population.

Microsimulation models typically have one of two starting points: a cross-section
of the population or a birth cohort. In both cases, the initial step is to define the
agents (e.g., households) where a starting point could be a snapshot of the population
of interest, such as disaggregate records from a census [16]. However, such data
are often not available due to privacy and cost concerns. One way around this is
to use different sources of publicly available aggregate data to synthesize a base
population.

There are two main approaches in synthesizing a population: combinatorial
optimization and synthetic reconstruction [16]. Once a synthetic population has
been created, the microsimulation engine acts on the agents in the simulation. The
occurrences of demographic events (ageing, marriage, etc.) are evaluated for each
member, and their attributes (age, marital status, etc.) are updated once these events
have been identified. The goal is to maintain the representativeness of the base
sample throughout the simulation.

Demographic Microsimulation Typology

Microsimulation models can differ in the way they execute events over time (contin-
uous vs. discrete) and how they manage relationships among population members
(open vs. closed models) [14]. For continuous time models, the durations of all
possible state transition events are generated for each member of the population. The
first event to occur is executed, and this procedure is repeated using the first event
as the starting point. In contrast, discrete time models treat time periods one after
the other, “stepping through” time in the classic sense. These models execute all
possible state transition events that are realized at every time step. While continuous
time models may have some theoretical advantages, they are often more complex to
implement and less transparent than their discrete time counterparts.
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In a closed demographic model, the simulation usually starts with a sample of the
population, which includes links between population members (e.g., family ties).
Members can enter/exit the population through birth/death and in-/out-migration
events. Throughout the simulation, the relationships among the members are tracked
and the changes are propagated throughout their social networks. For instance, if
agents X and Y get married, new links are formed between them. Both agents are
full population members being simulated. In contrast, open models do not maintain
associations. Using the same example, if agent X gets married, a new spouse will be
attached to agent X as an attribute. The new spouse is not a full population member
being explicitly simulated, but only exists to properly model agent X’s marriage and
life path.

ILUTE Demographic Microsimulation

I-DUM is a closed and discrete time demographic model. Being closed, social
networks are maintained throughout the simulation, which can be useful for
modeling social travel behavior [17]. In addition, the spatial distribution of these
social networks (e.g., where one’s parents live) arguably also serve as “anchor
points” that characterize household residential search behavior [18]. With respect
to its treatment of time, ILUTE uses a modified discrete time approach that supports
multiple temporal scales. This allows models with different time periods to be
integrated into the model system in a simple and transparent manner. The next
section first gives a brief overview of ILUTE before I-DUM and the validation
results are discussed.

The ILUTE Model System

ILUTE is an object- and agent-based microsimulation model of an urban system,
where the system state is evolved from an initial base case to some future end state
in discrete time steps. The system state is defined in terms of the individual persons,
households, dwelling units, firms, etc. (the agents) that collectively define the urban
region being modeled. The attributes of these agents are evolved by simulating
their behavior (changes in residential location, labor force activity, etc.) over time.
Figure 1 summarizes key elements of the current implementation.

As shown in this figure, key processes modeled within ILUTE include the
following:

• A 100% synthetic population of persons, families, households and dwelling units
for each census tract in the study area has been constructed from 1986 Census
data using a modified iterative proportional fitting (IPF) procedure [19].
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Fig. 1 The ILUTE model system and key processes modeled

• Resident population demographics are updated each time step, which is the focus
of this chapter.

• The labor market component evolves the labor force in terms of: entry/exit of
persons to/from the labor market; mobility of workers from one job to another;
allocation of job seekers to available jobs; and the determination of worker
salaries/wages. Preliminary models have been developed in [20, 21].

• The housing market component evolves residential locations over time [22, 23].
It includes the endogenous supply of housing by type and location [24], as well
as the endogenous determination of sales prices and rents [25]. Initial results are
presented in [26].

• Household automobile ownership is dynamically evolved using models of
household vehicle transactions and vehicle type/vintage choice [27, 28].

• Once household demographics, labor market characteristics, residential location
and auto ownership levels have been determined, the activity/travel patterns for
each person within each household for a typical weekday are estimated using
the agent-based microsimulation model TASHA (Travel/Activity Scheduler for
Household Agents) developed by the ILUTE team [7].

• There has also been work done on developing environmental [29, 30] and energy
[9] modeling components within ILUTE.

• It is the intent to implement some form of firmographic model within ILUTE.
This has not yet been accomplished, and so for current historical model system
testing purposes, observed employment levels by occupation and industry for
each census track in the study area are exogenous inputs to the simulation. Pre-
liminary firmographic frameworks are presented in [21, 31]. Another long-term
project is to implement a microsimulation-based commercial vehicle movements
model in ILUTE [32].
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Overview of the ILUTE Demographic Updating Module

Given a synthetic base population, I-DUM updates these agents’ attributes at
each time step. New agents are introduced through birth and in-migration, while
agents exit through death and out-migration events. Unions between agents are
formed through a marriage market, while a divorce model dissolves existing ones.
Transitions to new households are also triggered by a move-out model. In addition,
each person’s driver’s license ownership and education level are managed.

Demographic Attributes

Population members in ILUTE are represented by household, family, and person
agents. Households are defined as one or more persons living within the same
dwelling unit. They can consist of any combination of individuals and families.
Families are defined either as husband-wife couples with or without children, or
single parents living with children. Links between these members are explicitly
maintained throughout the simulation, which allows family relationships to be
tracked over time. Note that all families and individuals must belong to a household.

Table 1 lists the demographic attributes of the person class. All these attributes
are maintained and/or modeled for all agents across the entire simulation. Persons
have an exclusive association with a family or a household. Hence, when either
the FamilyId or HouseholdId is non-zero, the other by definition is zero. Agents
maintain family relationships through identifiers (e.g., SpouseId). Sex, MaritalSta-
tus and EducationLevel are enumeration types, which are defined data types of
named constants. There is also a flag to signify driver’s license ownership.

Both family and household classes have member lists: households have a list
of families and individuals and families have a list of members. Like person
agents, families maintain associations with their households through a household
ID. Similarly, households have unique dwelling IDs, which imply a one-to-one
mapping between households and dwelling units.

Table 1 Person class demographic attributes in defined in I-DUM

Attribute Type Attribute Type Attribute Type

MyID int ExSpouseIdList List<int> EducationLevel none
HouseholdId int ChildIdList List<int> kindergarden
FamilyId int SiblingIdList List<int> elementary
MotherId int DriversLicense bool highschool
FatherId int MaritalStatus single college
SpouseId int married undergrad
Age short divorced graduate
Sex male/female widowed
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I-DUM Processes

I-DUM is executed in yearly time-steps. A bottom-up approach is employed in
which the demographic evolution emerges through the sequential updating of each
person. The whole module can be broken down into a sequence of three main
parts. First, demographic events are evaluated for each agent in the simulation. The
process takes a list of agents, uses their attributes to compute transition probabilities
(e.g., age), evaluates these events (e.g., death), and adds the agents to respective
lists (e.g., list of deceased agents). After all the possible state transitions have been
determined for the entire population, all the realized events are processed to reflect
their changes. For instance, the family relationships of deceased agents are managed
(e.g., the spouse is widowed). A cleanup process is executed to delete or convert
invalid families and households after they have been updated.

Table 2 lists the demographic processes modeled as well as the factors that drive
them. Depending on data availability, these models range from simple empirical
probabilities (birth) to more advanced methods such as hazard (divorce) and logit
(education) models. They can also either be static or dynamic. The letters under
the “Data Code” column match the data sources found in Table 3, which describe
the geographic levels of the data. Model outcomes are conditioned on the agent’s
current state. For instance, the likelihood of a birth event is a function of a female’s
age, marital status and current year of the simulation. Each of these models is
described in further detail in the next section.

Table 2 Demographic processes modeled in I-DUM and a summary of factors that drive their
transition probabilities

Process Factors Temporal Type Data code

Birth Age; marital
status

Dynamic Rate-based A, B, C, G, I

Death Age; marital
status; gender

Dynamic Rate-based A, B, C, G, I

Marriage Age; marital
status; gender

Dynamic Rate-based and Logit D, E, H

Divorce Ages; marital
status; years of
birth

Static Hazard J

Move out School/job
changes; gender

Static Hazard K

Driver’s license Age; gender;
geographic
location

Dynamic Rate-based L

Education level Dynamic Logit Under development
Out-migration Dynamic Rate-based F, G
In-migration Dynamic Rate-based F, G
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Table 3 Data sources for the I-DUM models by level of aggregation

Data code Data source and description Sources

A Public Use Microdata Files, by census metropolitan area (1986, 1991,
1996, 2001, 2006)

[33]

B Estimates of population by sex and age group, by census division
(1986–2002) [051–0016]

[34]

C Estimates of population by sex and age group, by census division
(1996–2006) [051–0052]

[34]

D Marriages by marital status and age of groom and bride, Canada
(2000–2002) [101–1005]

[34]

E Estimates of population by marital status, age group and sex, Canada,
provinces and territories (1986–2006) [051–0010]

[34]

F Total population, census divisions and census metropolitan areas
(1986–2006) [051–0034]

[34]

G Components of population growth, by census division (1986–2006)
[051–0035]

[34]

H Estimates of births, deaths and marriages, Canada, provinces and
territories (1986–2006) [053–0001]

[34]

I Ontario births and deaths registry, by municipality (1986, 1991, 1996) [34]
J General Social Survey on the family, Canada (1995) [35]
K General Social Survey on family transitions, Canada (2006) [35]
L Transportation Tomorrow Survey, by wards (1986, 1991, 1996, 2001,

2006)
[36]

In addition to parallelization concerns, I-DUM has also been designed for
modularity. This allows components to be easily replaced. For instance, a hazard
divorce model was recently implemented in place of an older rate-based one, with
very minor code modifications.

Data Sources

A list of the data sources used by the I-DUM models are found in Table 3.
The “Data Code” column matches that of Table 2 to map the respective data
sources to the I-DUM processes they drive. Except for the Ontario birth and death
registries (item I), all the data are publicly available. Data sources B–H are available
through the Canadian socioeconomic information management system, which is a
database maintained by Statistics Canada. Sources A, J and K are housed under
the Computing in the Humanities and Social Sciences (CHASS) data center while
source L is provided by the Data Management Group (DMG). Both CHASS and
DMG are University of Toronto data centers.

Data with varying spatial and temporal levels are used, and the best avail-
able proxy data are employed when needed. Many of the empirical probabilities
employed combine various data sources to get a comprehensive cross-section across
the required socio-demographic dimensions (e.g., age groups, gender, and marital
status) and time periods.



The ILUTE Demographic Microsimulation Model for the Greater Toronto-. . . 175

Descriptions of Individual I-DUM Processes

This section gives detailed descriptions of the individual models used that drive I-
DUM. It also contains estimation results as well as rate calculations that explain how
the agents in ILUTE make demographic decisions, and how the changes from these
events are propagated throughout the simulation. I-DUM manages demographic
relationships and seeks to maintain reasonable population, family and household
counts throughout the simulation. These variables serve as important inputs to other
ILUTE components. For instance, the new households that result from marriages,
births and divorces are key drivers to ILUTE’s residential housing market.

I-DUM is initialized with a set of agents/objects which are synthesized from
base year Census (and perhaps other) data. A 100% population of persons, families,
households and dwelling units for each census tract in the study area has been
constructed for 1986 using a modified IPF procedure [19] that:

• Simultaneously generates these four objects in a fully consistent manner.
• Permits a large number of object attributes to be included in the synthesis.
• Is computationally efficient.
• Makes full use of multiple multivariate tables of observed data.
• Is extendable to include additional elements (e.g., household auto ownership,

which is not yet included in the synthesis procedure).
• For model testing purposes, either the full 100% population can be used, or a

smaller subset, randomly drawn from the full population, can be used to speed
up run times, with all other model elements and processes (e.g., building supply,
etc.) being appropriately scaled.

The education model is not discussed in this chapter but will be presented in a
separate work along with the ILUTE labor force model.

Marriage

Marriages in ILUTE are broken into three main steps: (1) a marriage event occurs
in which potential marriage candidates join a marriage market; (2) a marriage
market is executed where potential grooms and brides are paired off; and (3) the
family relationships and attributes of the new couple are processed (e.g. setting
husband-wife relationships, transferring existing children, etc.). Marriage events,
which trigger an individual to join the marriage market, are driven by rates. These
rates are calculated through empirical probabilities for population cross-sections
across 13 age groups, three marital statuses (single, divorced, widowed), 20 time
periods (1987–2006), and gender.

After a marriage event, the individuals join a marriage market in which they
are paired with other potential brides and grooms. The matching is executed
under a utility maximization framework. A potential bride or groom is randomly



176 F. Chingcuanco and E.J. Miller

chosen from the marriage pool. A choice set is generated for this candidate by
drawing agents of the opposite gender from the pool. The candidate’s utilities
for these matches are calculated based on [37]. These utilities are based on the
potential couple’s incomes, education levels, and the male/female ratios in their
respective geographic areas. These utilities are converted to choice probabilities via
a multinomial logit formulation, and a match is made through simulation. A logit
formulation is used in order to introduce some stochasticity in the matching. The
marriage market is discussed further in [2].

After the marriage market is cleared, the family relationships of the new couple
are updated. Depending on the situations of the individual newlyweds, this could
include forming new households or merging existing ones, as well as transferring
any children over. Newlyweds with new households enter the housing market. Note
that at the start of the ILUTE simulation, marriage durations for the base population
are estimated from census data using a regression model. This is critical for the
operation of the divorce module, which is discussed in the subsection below.

Note that the marriage module intends to include common law unions between
males and females. The authors chose to continue denoting these events as a
“marriage” to follow convention (e.g., “marriage market”), as well as to be
consistent with prior ILUTE work. The authors also caution that there is some
inconsistency with this intention and the data, as the marriage process data (e.g., for
matching males and females) only account for officially recognized marriages. More
importantly, the current marriage module can only handle heterosexual unions.
Same-sex unions are not explicitly modeled, but are implicitly accounted for in the
non-marital household formation process briefly described in subsection “Moving
Out”.

Divorce

The ILUTE divorce process evaluates whether a divorce event occurs for existing
husband-wife couples in the simulation. The agents’ attributes (e.g. marital status)
and family relationships are also updated. A spouse is moved out and a new
household is created for this agent. Custody is also handled according to Ontario
aggregate rates (59% for mother single custody and 33% for joint custody). A
proportional hazards regression model (Table 4) was estimated using the 1995 and
2001 General Social Surveys on the family (source J in Table 3) to model divorce
decisions. Due to a lack of data, the divorce model does not include a temporal
component, i.e., the same regression is applied for all divorces across the 20-year
simulation.
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Table 4 Proportional-hazards regression results for the divorce model

Variable Coef. Exp (Coef.) S.E. t-Stat Pr(>jZj)
hPreviousDivorce 0.675 1.964 0.108 6.243 0.000
wPreviousDivorce 0.571 1.770 0.124 4.610 0.000
hAgeSquaredFrom25 �0.001 0.999 0.001 �2.898 0.004
wAgeSquaredFrom25 0.002 1.002 0.001 2.983 0.003
withIn5Yrs �0.119 0.888 0.073 �1.622 0.105
marriedAfter1960s 0.664 1.943 0.109 6.120 0.000
wMarriedBefore1950s �0.473 0.623 0.325 �1.454 0.146
hMarriedBefore1950s �0.595 0.551 0.323 �1.842 0.065
hBornBefore1945 �0.232 0.793 0.096 �2.404 0.016
wBornBefore1945 �0.391 0.676 0.108 �3.632 0.000
hBornAfter1959 0.129 1.138 0.146 0.885 0.376
wBornAfter1959 0.270 1.310 0.119 2.265 0.023
Number of observations 25,262
Number of events 5012
Likelihood ratio test 9341 on 14 df pD 0
Wald test 11,467 on 14 df pD 0
Score (Logrank) test 29,660 on 14 df pD 0

Birth

The birth process handles all birth related events in ILUTE, including evaluating
the birth event, updating the attributes of the mother, creating the new born baby,
and managing family relationships (e.g. adding parent-child links, creation of a
new family, etc.). The birth rates are calculated through empirical probabilities for
population cross-sections across seven age groups, four marital statuses (single,
married, divorced, widowed) and 20 time periods (1987–2006). If the new mother is
married or already has children, then the new baby is simply added to the mother’s
existing family and household. Otherwise, a new family and household are created,
and the agents enter the housing market.

Death

The death process handles all death related events in ILUTE, including evaluating
the death event, removing the deceased from the simulation, and managing family
relationships (e.g. making the spouse a widow, making the children orphans or
finding new guardians, exiting the housing market if active, etc.). The death
rates are calculated through empirical probabilities for population cross-sections
across 24 age groups, four marital statuses (single, married divorced, widowed), 20
time periods (1987–2006) and gender. When the household head agent of a non-
individual household dies, a new agent is designated.
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Table 5 Proportional-hazards regression results for the move out model

Variable Coef. Exp (Coef.) S.E. t-Stat Pr(>jzj)
LiveParents15 �0.127 0.880 0.002 �54.750 <2e-16
School 1.620 5.053 0.002 817.020 <2e-16
Job 1.259 3.520 0.002 505.970 <2e-16
Male �0.141 0.869 0.002 �80.400 <2e-16
Number of observations 1497
Number of events 906
Likelihood ratio test 748,022 on 4 df pD 0
Wald test 721,136 on 4 df pD 0
Score (Logrank) test 834,458 on 4 df pD 0

Moving Out

A move out process is used to transition young adults into moving out from their
families into their own households. New households are created for transitioning
agents and they enter the housing market. A proportional hazards regression model
was estimated using the 2006 General Social Surveys on family transitions (Source
K in Table 3). Table 5 displays the estimation results. Similar to divorce, the move
out model does not include a temporal component. A complementary household
formation process is used to create and maintain non-family households with more
than one individual (e.g., student roommates, friends sharing an apartment, etc.).

Driver’s License

The driver’s license process has two functions: grant drivers’ licenses to eligible
candidates; and revoke these licenses when drivers get too old to drive. The
Transportation Tomorrow Surveys (Source L in Table 3) was primarily used to
calculate the driver’s license acquisition and revocation rates, which are taken for
cross-sections across three levels of aggregation of the 46 TTS planning districts in
the GTHA, 80 valid ages (16–95), 20 time periods (1987–2006) and gender.

Out-Migration

The out-migration process manages all out-migration related events in ILUTE. Out-
migration numbers for the GTHA census divisions (Toronto, Durham, Peel, York,
Halton and Hamilton) were taken from Statistics Canada. These values were divided
by the corresponding GTHA census division populations to obtain the out-migration
rates for six census divisions and 20 years. Out-migration events are handled in the
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same manner as death, though out-migrating household heads have the decision to
out-migrate their entire families with them. At present, there is a 75% chance of
this happening, and if this event is true, the family members are simply added to the
out-migration persons list.

In-Migration

The in-migration process manages all in-migration related events in ILUTE. Unlike
out-migration, in-migration does not require calculating in-migration rates. Instead,
actual in-migration numbers are used to synthesize in-migrant agents for each year.
The attributes of the in-migrating agents (e.g., age, gender, household status, etc.)
are determined from the data. Note that these in-migration numbers are scaled down
by a factor that corresponds to ILUTE’s base population size, and these factors were
calibrated to get the observed total population numbers per year.

When new agents are immigrated in, their corresponding families and households
are also built. A process that builds familial relationships across a batch of agents,
which is also used by ILUTE’s population synthesizer, is executed. There may be
some advantages of synthesizing in-migrant agents directly from data distributions
instead of randomly drawing from the observed data. This alternative is intended to
be explored.

Simulation Results

This section presents a 20-year (1986–2006) simulation run for a fully synthesized
population against historical data for the GTHA. The simulation starts with over
6.5 million agents (4.1 million persons, 1.1 million families, 1.4 million house-
holds), and the overall number of agents grow past 10 million after a 20-year run.
On a computer with an i7-2600 processor (3.4 GHz, 4 cores) with 16 GB of RAM
running on a 64-bit Windows 7 operating system, the simulation takes just under
10 min to complete, including 2.5 min to load a base population and form the initial
relationships among the agents.

While the figures below aggregate the simulation outputs for the entire region,
each simulation process follows the geographic level of detail afforded by the data,
as defined in Tables 2 and 3. Furthermore, note that the empirical rates to drive these
models are known ex-post, as the objective of this entire section is to illustrate the
performance of running the full I-DUM. That is, the focus is to demonstrate a valid
model system, and less on building accurate individual models (e.g., in-migration
forecasts).

Figures 2 and 3 compare the 1986 and 2006 age distribution of males and females
in ILUTE with historical data. Each of the four sets of bar graphs sum to 100%.
For the most part, the simulation produces the correct age distributions by gender
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Fig. 2 1986 ILUTE vs. historical age distributions for males and females
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Fig. 3 2006 ILUTE vs. historical age distributions for males and females

after 20 years. Although the simulation under predicts females greater than 75 and
over predicts 10–19 year olds, the errors are relatively small (in the order of 1%
absolute error per age group). Figures 4 and 5 add another dimension by plotting
the 2006 distribution of males and females by age and marital status for ILUTE
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Fig. 4 2006 ILUTE vs. historical female population by marital status and age

and their corresponding historical values. The areas under each set of marital status
curves sum to 100%. Note the presence of two axes (married and singles on the left,
widowed and divorced on the right) and the scale difference between the male and
female widowed and divorced axes. Again, the distributions are generally tracked
quite well after the 20-year simulation. The under and over predictions of females
illustrated in Fig. 3 are revealed in Fig. 4 to correspond to widowed and single
agents.

Besides maintaining the proper marital status and age distributions for person
agents, I-DUM also seeks to preserve the correct distribution of household types.
Table 6 presents simulated vs. historical household type distributions for 4 years
(2006 data are not available). ILUTE tends to produce too many single individuals
and too few single families as the simulation progresses. This discrepancy can
be attributed to multiple factors, including: birth and marriage rates being too
low, divorce and move out rates being too high, and the out-migration model’s
insensitivity to socio-demographic factors. The overproduction of female widows
(Fig. 4) can also be related to this issue.

Figure 6 plots the birth, death and out-migration rates (left axis) as well as the
absolute population levels (right axis) for ILUTE and the corresponding historical
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Table 6 ILUTE vs. historical household type distributions

Single
individual (%)

Multiple
individual (%)

Single
family (%)

Single family and
individuals (%)

Multiple
family (%)

Census 1986 20.8 2.8 74.0 2.2 0.1
1991 21.4 3.7 71.6 3.1 0.2
1996 22.0 3.0 72.6 2.2 0.2
2001 22.2 2.9 72.6 2.1 0.2

ILUTE 1986 21.1 3.3 74.1 1.0 0.5
1991 23.3 2.8 71.8 1.8 0.4
1996 25.3 2.4 70.3 1.7 0.3
2001 27.3 2.2 68.7 1.5 0.3

benchmarks. The birth and death rates seem to perform quite well (with a slight
under prediction of deaths), but the out-migration rates start off a bit too high.
While the model corrects itself as the simulation progresses, this may be due to
the population levels increasing faster than they should have. That is, a larger
denominator results in lower out-migration rates. Absolute population levels are
also plotted on the same figure for comparison. While ILUTE starts with about
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300,000 less persons in 1986, the rate of growth seems to match the observed values
quite well. The delta in the base population numbers is an issue with the population
synthesis and is currently being investigated.

Following this, Figs. 7 and 8 demonstrate how social networks are built and
maintained throughout the simulation. At the very start of the simulation, only
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synthesized families have relationships among each other (e.g., parent and child
association). As the simulation progresses, agents start to build secondary associ-
ations (e.g., grandparent-grandchildren links) through intermediate agents (i.e., the
parent). Histories are recorded as shown by the growing ex-spouse list. Note that
the percentage of agents that have relationships plateau out due to agents exiting the
simulation. Figure 8 depicts the population’s growing social network connectivity
throughout the 20 years. As mentioned earlier, these social connections can help
predict the spatial choices of people (e.g., residential location choice, destination
choice, etc.) and is beneficial to be maintained.

Figure 9 compares the distribution of divorces in ILUTE from 1986 to 2006 to
historical values, which illustrates the utility of tracking agent histories across the
simulation. The marriage date of each agent couple is maintained, and this is used in
evaluating divorce decisions. While the plot demonstrates a well performing divorce
model, it also reaffirms the performance of the marriage model. For example, since
the divorce model uses a hazard function with age-related covariates, agents would
have to get married at the right age and find partners with the appropriate age
differences to get the correct divorce distributions shown. Preliminary results of
I-DUM’s marriage market can be found in [1, 2].

Discussion and Future Directions

This paper presents the operational status of the ILUTE Demographic Updating
Module (I-DUM). The performance of I-DUM is then compared against historical
observations across multiple dimensions. In general, I-DUM exhibits a strong
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performance, and the authors have confidence that it can maintain the validity of
inputs to the other behavioral models in ILUTE.

Note that multiple simulation runs have also been conducted to explore the
uncertainty of the outputs, which are important for validating microsimulation
models. The results (not shown here) are distributed very tightly around the single-
run outputs presented in this paper, which is reasonable given that relatively
simple demographic models are used throughout. This also suggests that clear
demographic patterns could emerge across millions of simulated agents, despite
their heterogeneity.

As discussed previously, ex-post values are used in building the individual
models. A focus going forward is to conduct demographic forecasting exercises.
While finding new independent sources of data would be helpful, it is also possible
to estimate the models for half the simulation period (1986–1996) and evaluate its
performance going forward (1997–2006). Some components of I-DUM are still
under development (education and driver’s license), and this is also the focus of
current research. Future research steps include integrating I-DUM with models of
labor force participation and automobile ownership, which require operational and
validated education and driver’s license sub-models.
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Machine Learning and Landslide Assessment
in a GIS Environment

Miloš Marjanović, Branislav Bajat, Biljana Abolmasov, and Miloš Kovačević

Introduction

The synergy of Geographic Information System (GIS) and various computational
methods has stimulated regional spatial modeling in the last couple of decades.
Various research fields, ranging from fundamental and applied environmental
disciplines to natural hazards assessment, have benefited from such trends. Regional
planning and decision-making have also indirectly become easier while the public
is becoming more involved and better informed on the topic. This is reflected by an
increase of interest in spatial modeling, amongst different scientific communities.
Landslide assessment is one of many contemporary topics in environmental research
that can benefit from advances in spatial modeling techniques.

Google’s Insight for Search (covering 2004 – present) indicates a considerable
ascent in an interest for keywords such as “landslide,” “debris flow,” “landslide
hazard,” and “susceptibility.” The interest seems particularly high in areas affected
by these hazards, especially after catastrophic landslide events that are closely
followed by local and international media coverage. According to the Google News
services, there have been nearly 90,000 landslide casualties worldwide in the past
decade, which is more than 5% of the global natural hazard toll [1].

Growth of scientific interest in landslide topics is manifested by increasing
number of academic publishing trends. Various scientific teams have shown interest
in landslide-related topics since the late 1980s till present. In this period, research
activities have grown exponentially resulting in 150–200 scientific articles per
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year [2]. Research is mostly conducted in areas commonly affected by landslides,
such as Circum Pacific Region, mountainous regions in the Alps, the Himalaya,
and other volcanic and seismic areas worldwide. However, relatively few countries
including Italy, USA, Canada, UK, China, France, Japan and Spain report the
majority of landslide research [1–4]. Landslides are one of the most wide-spread
and complex natural phenomena and therefore require a multidisciplinary approach.
It is expected that the number of studies and research in this area will continue to
grow [2, 5].

Some of these global trends have been our principal research motifs, and will
be briefly discussed hereinafter. Particular interests are shown for regional studies
due to their applicability on one hand and scientific contribution on the other. The
modeling of natural hazards such as landslides poses a challenge to researchers and
local planners since they are often of non-linear nature. Machine Learning (ML)
techniques are growing in popularity in environmental science research because they
can be integrated with GIS to solve such non-linear and nonparametric problems
and do not require specific distributions or other constraints over input variables.
Integration with GIS enabled ML regression and supervised classification tasks
which are now essential parts of landslide susceptibility zoning and predictive semi-
automated landslide mapping.

Related Work

Early works in GIS-based landslide susceptibility assessment appeared in the 1970s
when GIS software and computer hardware components became more readily
available [3]. Pioneering attempts involved simple solutions including heuristic
and simple statistical non-predictive models. As technology progressed, these
early approaches rapidly moved towards the implementation of more sophisticated
mathematical and statistical models. Data that existed only in analogue form became
available in digital form so that various mathematical and statistical computations
became possible via GIS. These GIS computations have been recently enriched
by numerous ML techniques that are particularly useful for addressing non-linear
classification problems and include Decision Trees (DT), Artificial Neural Networks
(ANN), Support Vector Machines (SVM) and Logistic Regression (LR).

Machine Learning in Landslide Assessment

Decision Tree (DT) algorithms are often denoted as classification data mining
algorithms that reveal complex relations between data elements, i.e. inputs and
outputs, unlike conventional black-box models that conceal the relation between
inputs and outputs [6]. DTs expose how solution is conceptualized by using tree-
like structure, which starts from the most important inputs and stems onward to the
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least important. Apart from hierarchy of inputs, DTs provide insight into threshold
values of inputs that are critical for achieving classification. For instance, given the
slope and altitude as input variables, a DT can reveal that slope is more important
and that values steeper than e.g. 5ı and higher than 300 m indicate potential
landslides. One of the few attempts to implement Decision Tree algorithms within
a landslide susceptibility framework was a study in South Korea [6] that applies
this technique to data-mining of the national database of engineered slopes. The
objective was to identify the most important attributes that affect slope stability.
Another case study from Japan [7] handled a similar problem. Both studies revealed
some important relations between causal factors and landslides, but yielded models
of landslide susceptibility with accuracy of only 70%. DTs are more applicable
in the Expert Systems design [8] because they give an insight into the particular
conditions that may be related with the actual landslide occurrences and are likely to
provide reliable landslide susceptibility maps. Unfortunately, they can be deficient
in predicting, i.e. mapping new landslide occurrences. One comparative study [9]
asserts that Decision Tree techniques cope with overoptimistic assessments due to
model overfit even with extensive input data pre-processing. In such cases, other
ML techniques, including LR and ANN are more reliable.

One of the most popular and most broadly used techniques in landslide
assessment is multi-layered feed-forward ANN Multi-Layered Perceptron (neurons
are processed from one layer to another), usually in combination with a back-
propagation learning algorithm [10]. A description of pioneering work and a
few comparative studies are worth mentioning here. Initially, problems of multi-
dimensionality and non-linearity in input data were solved by using ANN black-box
algorithms for prediction of a system’s behavior rather than using a complex
and never completely defined deterministic modeling. This approach was first
experimented in the case studies in South Korea [11] where an ANN procedure,
trained over a landslide susceptibility map and based on likelihood ratio technique,
obtained fairly precise models. Therein, overfitting had been addressed as a serious
drawback and the usage of an independent testing area (that was not included
in the training stage) was suggested as a precautionary measure. As in most of
other published studies [12–16], the advantages of the ANN application include
independency from particular data distribution, mixing of ordinal and nominal
data types, and the power to generalize i.e. to spatially/temporally predict new
landslide occurrences. However, at the same time the drawbacks were recognized
in GIS integration issues including time-consuming data preparation, demanding
fitting/optimization of the ANN parameters, and associated optimization problems
of the back-propagation learning algorithm, durable training and evaluation period.
In comparison to other techniques (logistic regression, cluster analysis, fuzzy
approach) applied by the same authors [12–16], ANNs can be characterized as one
of the most successful techniques in landslide susceptibility assessment.

Practice of SVM in geo-spatial modeling is a more recent development. Pio-
neering work in application to landslide susceptibility [17, 18] include comparison
of single-class vs. two-class (binary) SVM in the Hong Kong area. The authors
demonstrate how the latter provided better conditions for algorithm training and
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testing. Another study [19] modeled only one type of landslide phenomena, i.e.
debris flows, by comparing SVM and fuzzy approach. SVM approach outperformed
the fuzzy method in their study and it was considered appropriate and more
convenient for this kind of assessment in the area of interest (Yunnan Province,
China). There have been only a few comparative approaches over individual case
studies. The first concerned a case study from the Ecuadorian Andes [9] and applied
Logistic Regression, Decision Trees and SVM. The author emphasized the necessity
of thorough input data preparation and pointed to the overoptimistic accuracy of
ML techniques, which turned out to be less efficient than Logistic Regression
models. More recent comparative research [20] has given a good insight into
perspectives on landslide assessment methodologies. Various modeling methods
have been compared, showing that several methods including ANN and SVM can
be very accurate. As a result, a host of different case studies have been encouraged
by these findings. Experimenting with SVM and comparing it to the other ML or
conventional methods has thus been furthered [21–26].

Logistic Regression has a longer tradition in natural hazard assessment. It was
proven successful in numerous case studies [27], but has lately been broadly
challenged by other ML techniques. Logistic Regression is typically discussed in
comparative case studies [9, 28, 20], however there are several contributions depict-
ing Logistic Regression in greater detail [29, 30]. Their findings confidently promote
the logistic method as very reliable and very convenient in landslide assessment
framework. In addition, a very interesting approach has been proposed in a Southern
Norway case study [31] wherein Geographically Weighted Regression [32] variants
have been applied with Global regression models (Logistic Regression and Spatial
Regression). They revealed that Geographical Weighting, i.e. incorporating spatial
correlation structure in regression, refines global regression models and enhances
predicting performance.

Current State of the Machine Learning Implementation in GIS

Although promising, ML implementation has encountered numerous issues in
environmental scenarios [33]. GIS has offered the possibility of a hyper-production
of various terrain attributes at unprecedented resolutions which has caused data
overload for many current hardware capacities. For instance, it is quite common
to work on areas of 100 km2 or larger in the regional landslide assessment
framework with fair 10 m resolution, requiring excessively large datasets made up
of millions of pixels. Each pixel is an instance with allocated spatial coordinates and
additional coordinates, which can be represented by geological, geomorphological,
environmental or other information usually called terrain attribute or conditioning
factor. Recent GIS-driven developments in Geomorphometry introduced dozens of
new parameters that describe or quantify the terrain surface or its hydrological fea-
tures. Similarly, various synthetic/statistical parameters became available through
Geostatistics and GIS so that the number of attached coordinates can easily reach
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tens of dozens. One way to resolve the “big data” issue in many fields has been
through the use of cloud computing, a perspective field of computer science. It is
possible to host a computing task on actual and virtual machines or on web-hosted
computer clusters. At present, the integration of cloud computing with GIS software
used in environmental research requires some programming skills and sophisticated
hardware infrastructure.

Integration of ML in GIS is yet another issue. There are several examples of tight
coupling of various ML techniques in GIS platforms. For instance, there are default
modules for Multiple Regression, DTs, and ANNs (Multi-Layered Perceptron, SVM
and Self Organizing Maps) in IDRISI Taiga and ENVI 4C. However, these modules
are more adequate for Remote Sensing and Image Analysis tasks which limits
the type and amount of the input data (multi-channeled images with 8-bit depth
of a single channel are usually required). To our experience, these modules have
also shown instability and are difficult to use with larger datasets. Some default
modules for Multiple Regression are also available in typical commercial (ArcGIS)
and open-source (SAGA GIS, Q-GIS) GIS platforms. Other ML modules are only
available as add-ins such as SpatialDataModellerTools and SVMTools for ArcGIS
10C. They contain either Radial Basis Function ANN modules or SVM modules,
but our impression is that the analysis is limited in terms of data type and size and it
seems to be more Image Analysis oriented, i.e. adapted for specific image types of
according Satellite Sensors. On the other hand, there are comprehensive solutions
such as R Development Core Team [34] and MatLab that offer several different
packages for ML implementation (kernlab, e1071), but require some programming
skills. R has an additional advantage since it is coupled with SAGA GIS open-source
platform. Some other standalone solutions such as MachineLearningOffice1 [35] or
Weka 3C [36] are probably the most convincing solutions. They all suffer from the
same issues in coupling with GIS, however each of them have strong points and
weaknesses uniquely appreciated by different users, making further argument on
this topic relative.

Modeling Principles

Landslide assessment stands for a structured gathering of the available information,
processing/modeling with that information, and forming a judgment about it in a
transient workflow [37, 38]. This workflow unfolds through stages of preprocessing,
implementation or modeling, and post-processing, wherein modeling plays the cru-
cial role. The principal ideas of landslide investigations and the general assessment
of landslides revolve around several postulates [3, 5]:

1This open-source software can only be found on a supplementary CD of the book Kanevsky et al.
2009, which gives practical examples for using the software.
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• Slope failures do not occur randomly or by chance, but rather as a result of the
interplay of different conditions that are governed by different physical processes
and laws;

• Landslides leave more-or-less distinct footprints (upon activation or after reason-
able period of inactivity) that could be mapped in the field or remotely;

• Similar types of landslide movement may result in similar landslide footprints;
• Principle of historical recurrence of landslides implies that the landslides are

likely to reoccur on the same location, once activated in the past;
• Principle of Uniformitarianism (past and present are keys for the future) implies

that the slope failures are more likely to occur under conditions that have led to
instability in the past or in other environmentally similar locations. Therefore, the
knowledge gained on landslides can be generalized and expanded to other areas
where similar conditions apply;

• Implicitly, conditions that are not taken into account in the model do not affect
it drastically, and those conditions that are taken in consideration do not change
systematically over space and time (time/space invariant).

By relying on these postulates, it is possible to propose two types of models:

1. Landslide susceptibility models, which represent zoning of spatial probability of
landslide occurrence on a relative scale, i.e. from 0 to 1 or from low to high
(in this context these are rather re-interpretative than predictive probabilistic
models);

2. Predictive models of landslides, which map new potential landslides (in this
context these are discrete predictive models).

Machine Learning Implementation Via Classification Task

Landslide susceptibility and prediction models can be identified as ML based
classification tasks that should map landslide and non-landslide instances. The
classification task could be automated which leads to the supervised learning
procedure. The procedure assumes that an expert is presented with a possibly small
representative region (training area) with all the necessary data (terrain attributes and
landslide classes). An ML algorithm subsequently uses the available training data to
learn the mapping between the values of various terrain attributes2 that are acquired
for the particular area of interest and the classes. After learning the mapping rule,
the algorithm applies it over the rest of the area and gives an automated prognosis
of the spatial distribution of landslides or their susceptibility zones.

2Input 2D raster datasets are organized in the way that each grid element (pixel) represents a
data instance with attached spatial reference and supplementary thematic information (geological,
morphometric, environmental and their derivatives).
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The corresponding learning problem could be formulated in the following way.
Let P D fxjx 2 Rng be the set of all possible pixels extracted from the raster
representation of a given area. Each pixel is represented as an n-dimensional
real vector x, where coordinate xi represents the value of the ith terrain attribute
associated with the pixel x(x D <x1, x2, : : : , xn>). Further, let Z D fz1, z2, : : : zlg
be the set of l disjunctive, predefined landslide classes (a multi-class case, where
l > 2). A function fc:P ! Z is called a classification if for each x 2 P it holds
that fc(x) D zj whenever a pixel x belongs to the landslide class zj. In practice, for a
given area one has a limited training set of m labeled pairs (x, z) j, j D 1, : : : ,m where
x 2 Rn and z 2 Z. The machine learning approach tries to find a function fc’ which is
a good approximation of a real unknown function fc using only the examples from
the training set and a specific learning method.

A very brief explanation of some of the most common classification techniques
is going to be given here, while more detailed explanations of particular techniques
are easily found elsewhere [35, 39, 40].

Decision Tree (Fig. 1a) is a tree-like graph in which nodes represent testing units
and branches represent outcomes of the tests. In each node a test is performed over
an associated attribute value of the instance that enters the node (here, instances are
terrain pixels in the form of x D <x1, x2, : : : , xn>). Instances flow through the tree
until the terminal nodes (leafs) are reached, and in which classification is performed
by assigning a class label z that corresponds to a particular leaf.

During the training phase, one uses the examples to build the tree in which each
leaf collects the instances of the same class or at least majority of them belong to
the same class. The main task is to select best discriminative attributes starting from
the root node of the tree. Given a node n and the set of input instances Sin, one
tries to select the attribute A that best separates Sin into subsets Sout(A D v). Chosen
attribute A must not been previously used in parent nodes. Each Sout(A D v) contains
instances with the same values v or at least the majority of them are the same, so
that each Sout(A D v) can be assigned one of the z classes. The notion of “best
separation” could be measured using the entropies of resulted subsets concerning
the class labels z of its members. Ideally, each subset would contain all instances
of the same z class (entropy is zero; branches are terminated with leaf nodes). Gain
Ratio measure which is based on the entropy is commonly used to test candidate
attributes for the given node n (higher the value of GR, better the attribute). There
are a lot of possible trees that classify all training examples correctly, but learning
procedures prefer less complex (more general) solutions.

The classification mapping fc’ is reached by converting tree paths into sets of
equivalent rules (usually simplified/pruned) since one could interpret each class z as
a disjunction of conjunctions of constraints over attribute values down the tree path.

ANN are parallel processing devices that mimic the behavior of biological
neurons operating in a living brain. Multilayered Perceptron (MLP) is a type of
ANN in which all neurons are organized into at least two processing levels: output
layer and minimum one hidden layer (Fig. 1b). Inputs to the network represent
attribute values (xi from vector x) and each input is connected to all neurons from
the first hidden layer. While neurons in the same layer are not connected, inter
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Fig. 1 Machine learning classifiers: (a) Example of decision tree; (b) Example of MLP; (c) Binary
SVM classification example (h - hyper plane, h1,-1 - margins, circles are landslides and squares are
non-landslides, bold instances are Support Vectors)

level connections are organized in a following way: from each neuron in a non-
output layer there exists a connection to each neuron in the next layer. Connections
are attributed by real weights that model, to some extent, their significance to the
outcome of the network. A neuron represents a processing unit that calculates
the weighted sum of its inputs and transforms it to the output value using some
predefined sigmoid-shaped transfer function (e.g. logistic). For the purpose of a
binary classification (Fig. 1b) the output layer consists of a single neuron which
outputs zero or one depending on the class z of a landslide instance x.

In the training phase, a network is presented with the training examples (x, z)j,
j D 1, : : : , m and the weights on connections are updated in each iteration in order to
decrease the difference between the outputted value fnetwork(xj) and the desired value
zj. MLP is commonly trained using a back-propagation algorithm which performs a
gradient descent over the surface of the error function fe D fe(w). The initial vector
of connection weights (w) is chosen randomly and fe could be a mean squared
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error function or a cross-entropy function. MLP is very effective classifier, but when
compared to decision trees it lacks in human readability and interpretability of the
produced model.

SVM algorithm is a binary classifier (Fig. 1c) that constructs a classification
boundary by using a simple linear function as a separation hyperplane between
landslide and non-landslide instances in the attributes space (fc0 D sgn(wx C b)).
Many possible separation hyperplanes exist, but the idea of the learning process is
to find the one in the middle of the widest margin between the examples of the two
classes. Further, it allows some examples to lie on the wrong side of the hyperplane
(gray examples from Fig. 1c) while widening the margin. The trade-off between the
margin width (D2/norm(w)) and the number of incorrectly classified examples is
controlled by a real parameter C. The solution for the weight vector w is a linear
combination of some training points called support vectors and the classification
function transforms into:

f 0c .x/ D sgn
m
X

iD1

˛izi .x � xi/ C b (1)

Real coefficients ˛i are found in the training phase. Since the real problems pro-
duce linearly non-separable classes, SVM learning assumes mapping of an original
attribute space into a high dimensional feature space where points become linearly
separable (':x ! '(x)). After mapping, the classification function becomes:

f 0c .x/ D sgn
m
X

iD1

˛izi .' .x/ � ' .xi// C b (2)

However, one does not have to know the mapping function ®(x), and the dot
product from (Eq. [2]) could be calculated using a special family of functions
called kernels in the attribute space: k(x, xi) D ®(x)�®(xi). Kernels enable SVM
to learn complex separating surfaces in the attribute space which transform to linear
hyperplanes in the corresponding feature space. Gaussian Radial Basis Function
exp.(�� jjx-xijj)2 is one of the most common kernel function. It is controlled by the
kernel width parameter � . Like MLP, SVM models cannot be interpreted in a human
readable manner.

Sampling Strategy

Selecting the training area is a very delicate procedure and requires particular
strategies. The optimal approach is to build a sufficiently accurate model with
a smaller number of training examples, leading to a reduced engagement of the
expert, less demand on the hardware, and provides for quicker modeling. This is
usually done by sampling 50–70% of all instances randomly throughout the area,
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for training. The remaining part is reserved for testing the model. On the other
hand, there are predictive models that require a more meaningful sampling, thereby
entailing that the training data are spatially constrained by manual intervention of
an expert (Fig. 3b). The training area sampling is particularly important because of
the risk of overfitting. In overfitting, scenario models that are usually too complex
tend to decrease in training misclassification errors at the expense of increasing
the testing error. Thus, one is forced to trade-off the model’s complexity for its
fitting; i.e. the model’s variance against its bias. However, it is also possible to take
precautionary measures to suppress overfitting such that the aforementioned trade-
offs do not affect the modeling choice overly. There are a number of ways reported
to partly reduce overfitting in models [35, 39].

One solution is to train the algorithm through the k-fold Cross-Validation (CV).
It is based on repetitive learning and validation over the training split. In k-fold CV, k
stands for the number of partitions of the training split and therefore also represents
the number of iterations. In the first run, one partition is taken for validation while
k�1 partitions are merged together for learning. A different partition takes the
validation role for each subsequent iteration, while the remaining k�1 partitions
take over the learning role until all k iterations are finished. In turn, the procedure
yields a result for one configuration/combination of the algorithm parameters. The
CV needs to be repeated for each parameter configuration if one seeks the optimal
parameter combination to give the best generalization. It is therefore preferable that
the algorithm does not have too many parameters to optimize.

Another method is to generate training and testing splits that have balanced class
sizes, and equivalent proportions of instances in the split (i.e. #landslide D #non-
landslide). The latter is not always feasible in spatial modeling due to the usual
abundance of one class and scarcity of another or several other classes (as in the
case of landslide assessment, where non-landslide class is usually much larger).
This is especially pronounced if the adopted training/testing sampling strategy is
spatially constrained by an additional expert’s criterion, as mentioned before.

It is also possible to be more exclusive about the input data (terrain attributes) so
that the sampling noise can be removed at its source. For instance, all auto-correlated
terrain attributes can be removed because they are bringing redundant information
into the model. Further, an attribute selection based on Information Gain [39] for
example, might be performed. The modeling can then be performed iteratively so
that one terrain attribute with the lowest rank is removed from the input dataset
(leave-last-out) after each iteration. The attribute removal is meaningful and justified
if the error threshold decreases or remains the same while the number of inputs
decreases.

Performance Evaluation

Finally, it is necessary to evaluate the model objectively so that it can be criti-
cally assessed and compared with other models. There are numerous evaluation
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parameters that are based on a contingency table, accounting for false positives
and negatives. Receiver Operating Characteristics (ROC) [41] represents one such
evaluation metric that depicts relative trade-offs between benefits and costs, i.e.
evaluating true positive rate (tprate or hit rate) and false positive rate (fprate or false
alarm rate). These are the coordinates of a 2D plot defined as a ROC space. The ROC
curves are functions in that space, given that their contingency table parameters True
Positive Rate and False Positive Rate match ROC space coordinates for a given
probability threshold [42]. Analyzing ROC curves offer additional benefits. Firstly,
there is commonly used Area Under Curve (AUC) parameter for evaluation, but
there is also a possibility to describe the performance of the model qualitatively
based on the curve shape and placement in the ROC space. For instance, the model
with random performance will match the diagonal of the ROC plot area whereas
conservative and liberal models will have skewed curves toward the lower-left sector
and upper right sector of the ROC plot, respectively. Such qualitative descriptions
help in choosing among models with similar AUC values.

Apart from considering AUC and the qualitative characteristics of the curve,
it is also important to adapt to the particular modeling framework. In landslide
assessment for instance, conservative models are preferred as they are on the
safe side. Accordingly, the trade-off between false negatives and false positives is
obvious as the tolerance to false negatives must be minimal and false positives are
even desired. The false negative rate (fnrate) is therefore another important evaluation
parameter that needs to be considered [43].

Promising attempts towards even more specific and more objective evaluation
schemes have been reported [44, 45], but these approaches still need to be tested in
the landslide assessment framework.

Practical Example: Halenkovice Case Study

A practical example of a landslide assessment in the Halenkovice study area in
Czech Republic (Fig. 2) is herein provided in order to illustrate how GIS and ML are
used to address the presented problem. Both landslide susceptibility and predictive
landslide mapping types of the models are going to be discussed. The objective was
to challenge ML techniques, SVM in particular, to see how they perform in landslide
assessment and to experiment with different scale/resolution of training data.

The area is situated near the Halenkovice Plateau in the Outer Western Carpathi-
ans in SE Moravia (Czech Republic) and extends over roughly 60 km2. It is
composed of Mesozoic and Tertiary flysch rock formations and it is segmented
locally by Paleogene basins and grabens with typical marine and locally lacustrine
evolution. Predominant rock types of the flysch formations are stratified sandstones,
alternating with conglomerates. These are inter-layered by thin segments of clay-
slates. These units differ in thickness, hydrogeological function, and mechanical



202 M. Marjanović et al.

Fig. 2 Location of the study area and example of a manual training/testing splitting (red polygons
represent the landslide of earth-slide type)

characteristics, which entails occurrence of very different types of slope instabilities.
In addition, the eluvial and delluvial soil mantle hosts shallow landslides, especially
when it locally thickens to a couple of meters [46, 47].

Shallow earth-slides [48] are the predominant type of slope processes in these
terrains, while earth-flows and rock-falls are not as common. They are all triggered
by rainfall/snow thaw in combination with the undercutting linear erosion [49,
50]. The area is sparsely populated, thus landslides of such typology and slow
displacement rates do not pose a particular threat to the population.

Data

Various terrain attributes have been acquired from different resources. These include
thematic terrain attributes, i.e. geological, geomorphological and environmental
(Table 1). These attributes are commonly considered significant for landslide
assessment. The data have been rasterized and separated in two sets with different
resolutions of 10 and 30 m, respectively. Apart from terrain attributes, a landslide
inventory has also been compiled at these two resolutions. Only the characteristic
earth-slide landslide types are taken into account since they dominate over other
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Table 1 List of used terrain attributes ranked by their Information Gain

Rank Terrain attribute Type, source, resolution/scalea IG

1 Channel network base
elevations

Morphometric, DTM, 10C 30 m 0.28775

2 Digital terrain model
(DTM)

Morphometric, topographic map, 1:10,000 0.26626

3 Ls-factor Morphometric, DTM, 10C 30 m 0.18673
4 Slope Morphometric, DTM, 10C 30 m 0.16417
5 Convergence index Morphometric, DTM, 10C 30 m 0.08129
6 Land useD arable land Environmental, orthophoto, 50 cm 0.06773
7 Aspect Morphometric, DTM, 10C 30 m 0.05638
8 Elevation above channel

network
Morphometric, DTM, 10C 30 m 0.04708

9 GeologyD loess Geological, geological map, 1:50,000 0.04153
10 Channel network buffer Morphometric, DTM, 10C 30 m 0.04139
11 GeologyD Solaň

subunit
Geological, geological map, 1:50,000 0.02930

12 Land useD sparsely
forested areas

Environmental, orthophoto, 50 cm 0.02927

13 Plan curfature Morphometric, DTM, 10C 30 m 0.02722
14 GeologyD delluvium Geological, geological map, 1:50,000 0.02660
15 Topographic wetness

index
Morphometric, DTM, 10C 30 m 0.02274

16 Slope length Morphometric, DTM, 10C 30 m 0.01917
17 GeologyD Zlín subunit Geological, geological map, 1:50,000 0.01228
18 Land useD forest Environmental, orthophoto, 50 cm 0.01227
19 Land useD built-up area Environmental, orthophoto, 50 cm 0.00986
20 Land useD grasslands Environmental, orthophoto, 50 cm 0.00976
21 Orthophoto PC ratio 32 3rd vs. 2nd Princ. Comp, orthophoto, 50 cm 0.00871
22 GeologyD Belovež

subunit
Geological, geological map, 1:50,000 0.00695

23 Profile curvature Morphometric, DTM, 10C 30 m 0.00678
24 GeologyD alluvium Geological, geological map, 1:50,000 0.00348
25 Land useD orchards and

gardens
Environmental, orthophoto, 50 cm 0.00009

26 Land useD water body Environmental, orthophoto, 50 cm 0.00001
aLandslide inventory has been acquired from the 1:10,000 landslide map of Czech Republic

landslide types. Thus, the inventory has been cleaned from the flow-like landslides
and rockfall that might compromise the modeling procedure since their behavior is
completely different and other terrain attributes might apply.

Data have been preprocessed to suit the SVM training requirements. Numerical
data have been normalized and categorical data have been binarized into an accord-
ing number of dummy variables (binary attributes). For instance, the geological
units attribute with six categories was segregated into six binary attributes, whereby
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each category (each geological unit) represented one new binary terrain attribute
in the input dataset. In this way, the categorical data was quantified and fed to the
algorithm without any subjective intervention, e.g. scoring/weighting. A side-effect
of this processing is that the number of input attributes increased.

There were a few differences in sampling strategy for splitting the training and
testing areas since both the susceptibility model and the predictive model types
were regarded. Training instances were balanced and randomly sampled for the first
model type, while more specific sampling strategies were applied for the second
model type (Figs. 2 and 3).

Two processing procedures have been performed over the input data to reduce
noise and redundancy in sampling. Firstly, the attribute selection based on the
Information Gain (IG) parameter [39] has been performed and the attributes have
been ranked accordingly (Table 1). Ranking turned out exactly the same in both
10 m and 30 m datasets. A leave-last-out strategy based on IG ranking was then
applied. It was proven that the accuracy drops as the last ranked attributes have been
removed successively (Fig. 4). Naturally, the accuracy gradually drops from initial
86% as attributes are removed, but at attribute geology D delluvium (ranked 14)
it rises again and reaches nearly 85%. It was therefore justified to remove all of
the instances between 15th and 26th rank (Table 1). This procedure demonstrates
that some reduction is plausible, but the ranking method is not too reliable,
because the threshold estimation with leave-last-out strategy is not very practical
(full experiments had to be completed for each leave-last-out step). The strategy
to wait for the rise in accuracy was successful in this particular case, although
it might not be a good general rule. Second preprocessing procedure included
cross-correlation test. Terrain attributes have been tested for autocorrelation against
the given landslide inventory, while the Variance Inflation Factor (VIF) [51] was
examined as an indicator of multicollinearity between predictors (terrain attributes
themselves). Two attributes were problematic in this respect because the VIF values
for slope (16.463) and ls-factor (14.254) indicate their strong multicolinearity, since
for all attributes with VIF value greater than 5, multicolinearity is considered to
be high. These two attributes have thus been removed from the dataset. However,
some experiments have been performed with these attributes included to test the
procedure. The results showed no significant change in the model’s performance
before and after removal of these attributes.

Results

We have chosen the SVM algorithm for the proposed modeling schemes using the
two equally preprocessed datasets with 30 and 10 m resolution. Our intention here
was somewhat authentic since there were no references on experimenting with
different data resolutions before. As indicated before, we structure our findings
in respect to two different model types, i.e. landslide susceptibility models and
landslide prediction models.
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Fig. 3 Sampling strategies
for training: (a) balanced
random sampling for
landslide susceptibility
mapping; (b) balanced
sampling manually enhanced
by choosing the most
instructive non-landslide area
(wherein non-landslide
instances are selected
randomly)

Landslide Susceptibility Models

The landslide susceptibility models are based on averaging of intermediate models,
generated after each iteration. They depict distribution of susceptibility zones
throughout the spatial extents of the study area. There are usually five High-Low
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Fig. 4 Leave-last-out diagram (the attributes with the lowest rank have been successively removed
from training and the model accuracy has been used to examine the change in model’s perfor-
mance; the attribute’s IG rank is given on the horizontal axis, see Table 1 for details)

or Very High-Very Low classes of susceptibility, a standard we encountered in
authoritative references [3, 5, 37, 48]. Very High and High susceptibility classes are
usually used for cross-correlating the model with the existing landslide inventory,
which enables evaluation of the model’s performance. These two classes can be
considered as matching equivalents to e.g. active, dormant or suspended landslides
in the inventory. Measuring how much they differ gives the model’s performance.

Models from 10 and 30 m sets have been optimized independently. Several C,�
configurations, based on our previous experience with similar case studies [22, 23],
have been paired for tenfold CV. First, the general parameter ranges were narrowed
down to more plausible combinations (Fig. 5). Afterwards, fine tuning determined
the most optimal parameters: for 10 m case C D 100 and � D 30, while for 30 m case
C D 1 and � D 0.5. The latter case notably lessens the level of penalties (smaller
the C, wider the margin and better the generalization), while the kernel width (the
need for hyper-dimensioning of the original feature space) is also relatively small,
indicating that the algorithm generalizes well with 30 m data.

The first landslide susceptibility model with 10 m data was trained iteratively
on the randomly sampled balanced sets. Balanced sets require approximately
equal amounts of training classes (landslides and non-landslides) and have proven
essential to avoid overfitting. There were 57,792 training instances (i.e. 28,895 of
landslide and 28,895 of non-landslide instances) that correspond to 10% of the total
number of instances (577931) and make a reasonably small training sample. After
a series of 10 iterations, a new randomization of training instances took place so
that the final model was achieved by arithmetic averaging. In accordance with the
mentioned relation between the susceptibility classes and the landslide inventory,
the evaluation regarded only Very High susceptibility class that was compared
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Fig. 5 Optimization of the SVM � ,C parameters on 10 m (left) and 30 m data (right); note that
optimal parameters have been chosen on the basis of three different performance metrics; the most
favorable � , C ranges have been further used for fine tuning and optimal parameter selection

Fig. 6 Landslide susceptibility model built on 10 m data (left) and its performance in the ROC
space (right); VL very low, L low, M medium, H high, VH very high susceptibility; dashed contours
represent actual landslides from the inventory

versus unified active and suspended landslides from the inventory. The resulting
model (Fig. 6) maps landslide susceptibility exceptionally well.

The second susceptibility model with 30 m data was also trained on randomly
sampled balanced sets. Due to the increase of pixel size, the number of instances
in the training set has dropped, but the 10% proportion of the training sample size
has been preserved. In effect, 6406 of 64,094 instances have entered the training.
The performance is slightly poorer than the 10 m model but still exceptional with
an AUC of 0.96 and more importantly, low false negatives (Fig. 7).
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Fig. 7 Landslide susceptibility model built on 30 m data (left) and its performance in the ROC
space (right); VL very low, L low, M medium, H high, VH very high susceptibility; dashed contours
represent actual landslides from the inventory

Landslide Prediction Models

These models depict landslides that are predicted outside the spatial extent of
the training inventory, and do not involve zoning. Instead, they predict landslides
labeled the same way as they were labeled in the training inventory.

Without further optimization, the same C,� pairs have been applied for predictive
modeling (for 10 m data C D 100 and � D 30, while for 30 m data C D 1 and
� D 0.5). The crucial task was to select the training and the testing area. Led by
some earlier experiences [22, 23], we decided to reserve (upper) two-thirds of the
entire set for training and the remaining (lower) third for testing (Fig. 2). Separation
of these two areas had to be done carefully, because both training and testing parts
must contain the same classes of categorical attributes, such as geology, land use.
The training area had some further enhancements in sampling strategy (Fig. 3b). A
new training area was manually delineated inside the roughly outlined two-third
training area. It now included all of the available landslide instances as well as
non-landslide instances that are theoretically most appropriate. For instance, all
the areas above the level of existing landslide scarps have been disputed due to
their potential disturbance in the future (general upslope progression tendency of
landslides) and should not be considered as appropriate non-landslide instances.
This is in accordance with what is known as Main Scarp Upper Edge method [52].
Non-landslide instances have been randomly sampled across this new training area
and their number was balanced to the number of landslide instances. The SVM
algorithm was then challenged to make a landslide prediction over the testing area.

The first results for both cases (10 m and 30 m data) were discouraging (Fig. 8),
but we noticed slightly better generalization in the 30 m case (Table 2). It is possible
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Fig. 8 Landslide prediction model for 10 m data (dashed contours represent actual landslides
from the inventory) and its performance evaluation

Table 2 Evaluation of predictive models

SVM model variant and its optimal parameters AUC Kappa index fnrate

Trained on 10 m tested on 10 m (� D 30, CD 100) 0.540 0.097 0.799
Trained on 30 m tested on 30 m (� D 0.5, CD 1) 0.671 0.221 0.775
Trained on 10 m tested on 30 m (� D 30, CD 100) 0.541 0.091 0.807
Trained on 30 m tested on 10 m (� D 0.5, CD 1) 0.696 0.227 0.767
Trained on 30 m tested on 20 m (� D 0.5, CD 1) 0.705 0.237 0.761
Trained on 20 m tested on 10 m (C D 0.1, � D 0.1) 0.741 0.261 0.752

that the landslide size influences the training in 10 m data and evaluation in 30 m
data. Therefore, we decided to cross-scale the models, i.e. to train with 30 m data and
test with 10 m data (Fig. 9). Since the initial results were encouraging, we furthered
the cross-scaling by creating a 20 m dataset variant (that has been optimized by
tenfold CV and optimal parameters were C D 0.1 and � D 0.1) and applied the
same modeling scheme. The model turned out even better (Fig. 10) because its fnrate

is much lower than in any other preceding model (Table 2).

Conclusion

High-quality susceptibility maps are now a reality and represent a product that future
decision-making and regional planning should rely on. Predictive models are less
successful, but still very perspective for further research. They tend to overestimate
landslides on behalf of stable areas (lower fnrate). Such conservative maps can be
suggested only as a helpful background for the actual landslide mapping campaigns.
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Fig. 9 Landslide prediction for a cross-scaled model trained on 30 m data and tested on 10 m data
(dashed contours represent actual landslides from the inventory) and its performance evaluation

Fig. 10 Landslide prediction for a cross-scaled model trained on 20 m data and tested on 10 m data
(dashed contours represent actual landslides from the inventory) and its performance evaluation

It is apparent that landslide susceptibility can be modeled very well by an SVM
algorithm in the demonstrated example of landslide assessment in the Halenkovice
area in Czech Republic (Figs. 6 and 7). However, our findings show that predictive
mapping did not achieve as much success as the susceptibility models did. Results
indicate that data scale/resolution and landslide size and number plays a very
important role and affects the mapping quality. Our crucial findings underline
that the prediction can benefit from mixing scales of training and testing datasets,
thereby leading to the development of a more meaningful prediction. For instance,
meaningful prediction maps the existing landslides well, but proposes locations
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of future landslides in currently undisturbed areas. In other words, meaningful
predictions are those with few false negatives, while other performance parameters
are relatively high (Table 2). Such was the case with our best model (Fig. 10) which
gives logical estimates of new landslides along the valleys and does not make too
many false negatives. In this context, it did not only have fair performance, but visual
appeal, too.

Good attribute selection theoretically reduces computation time and improves
the model performance, but the practical side of the attribute selection proposed in
this work is disputable. Therefore, this issue will remain in our focus in the future.
With respect to the implementation of ML, our further research (with Halenkovice
and other study areas) could be redirected towards other ML techniques, wherein
predictive models seem more challenging and therefore more appealing for ML
implementation. We will also seek improvements in predictive models through post-
processing techniques that have not been reported in this research. Finally, higher
resolution—greater level of detail of input data, new resources and larger number
of inputs for this and other study areas will open new challenges and perspectives
that will inspire our future work. It is also possible to expect more frequent ML-
based modeling examples in this field and in environmental sciences in general
as integration with GIS platforms continues. At present, this integration mostly
remains loose and drives researchers to use standalone products and communicate
with GIS externally.
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Influence of DEM Uncertainty
on the Individual-Based Modeling of Dispersal
Behavior: A Simple Experiment

Vincent B. Robinson

Introduction

Movement behavior has become an important topic in dispersal ecology with
dispersal being central to the development of spatially explicit population models
[1]. Dispersal is an important component of many vertebrate behavioral systems in
that it contributes to the maintenance of a metapopulation in fragmented landscapes
as well contributing to the spread of a species. In most dispersing individuals
of a species, dispersal takes place before first reproduction and is termed natal
dispersal (Howard [46]). It plays an essential role in the spatial dynamics of patchy
populations as well as metapopulation dynamics, including population spread,
recolonization [2], and gene flow [3, 4]. Landscape heterogeneity affects how
animals are spatially distributed [5] as well as influencing the change a habitat patch
is colonized [6]. Stevenson et al. [7] have used global positioning system (GPS)
telemetry to validate modeling of gray squirrel (Sciurus carolinensis) movement
within a fragmented landscape. It is therefore widely recognized that to understand
animal dispersal it is important to consider the complex interaction between the
animal’s behavior and the surrounding landscape [8, 9].

The modeling of animal dispersal provides a useful paradigm for investigating
the complex interactions between animal behavior and landscapes [10]. Modeling
of animal dispersal behavior in relation to landscape is also viewed as a useful
conceptual tool for landscape conservation planning [11–13]. Due to the difficulty
in gathering and analyzing results on animal dispersal processes, simulation models
have become a common, cost-effective approach to studying various aspects of
dispersal dynamics [14, 15]. Simulation models with spatially explicit landscapes
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enable the integration of the relationships between species and the landscape thus
providing explicit representation of the spatial elements that promote or constrain
dispersal. Also, such simulations can be used to suggest habitat management
strategies for focal species (e.g., [16]).

In dispersal modeling the spatial representation of the landscape is usually based
on grid models where the landscape is represented by a finite number of equally
sized cells [17–21]. Each cell contains one or more values, which represent attributes
of the landscape such as vegetation types, land cover, or topography. Representing
the landscape in this way enables flexibility in spatial analysis and mathematical
modelling (Burrough and McDonnell [45]). Most importantly, it is used to formalize
the concept of the perceptual range of an individual. It is through this perceptual
range that an individual is able to gather information about its surroundings. Using
that information the individual makes movement decisions [9, 22].

The perceptual range refers to the maximum distance from which an individual
animal can perceive the presence of remote landscape elements such as habitat
[22]. In a grid-based model this is usually implemented as a window of fixed
size that represents the portion of the landscape that falls within the perceptual
range. It is generally accepted that the perceptual range of an animal towards
different landscape elements can influence its movement through heterogeneous
landscapes. It has been commonly assumed in such models that animals exhibit
fixed isotropic perceptual ranges that are independent of any environmental stimuli.
Due to variations in environmental stimuli, such as topography, perceptual ranges
should take the context into account so that the anisotropic nature of a perceptual
range can be represented in an individual-based simulation model [23]. Topographic
heterogeneity can be a significant source of landscape heterogeneity that influences
the nature of the information about the landscape that falls within the perceptual
range of an individual [24].

There are only a few studies using individual-based simulation models (IBM)
integrating topography to specify anistropic perceptual ranges. Pe’er and Kramer-
Schadt [24] used context-dependent and varying perceptual ranges to study hill-
topping behavior in butterflies. Graf et al. [18] used an IBM that incorporated
the context of topography in a mountainous landscape to study the potential
dispersal behavior of capercaillie (Tetrao urogallus) in central Europe. Robinson
[25] presented an approach based on fuzzy logic that used line-of-sight combined
with landscape heterogeneity to specify a context-dependent perceptual range that
integrated the effect of topography on the dispersal. His model specifications
were used to simulate the dispersal of gray squirrels (Sciurus carolinensis) in a
fragmented forest landscape [20].

The issue of uncertainty is sometimes addressed when simulating dispersal
movements. Ruckelshaus et al. [26] showed through simulations that errors in
dispersal parameters may have significant effects on predicted dispersal success.
The uncertainty related to model parameters such as the perceptual range may be
addressed by sensitivity analysis [18, 27]. Movement rules such as random walks
versus correlated random walks may also be used to study variations in dispersal
possibilities [28]. Given the importance of dispersal modeling and the underlying
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uncertainty regarding the parameters of dispersal models, Robinson [25] theorized
how the logic of fuzzy spatial relations may be used to control the movement of
animal objects in simulations of movement about a landscape.

Although many studies make use of geographic information systems and/or GIS-
based data to provide landscape information (e.g., [18, 19, 28]), it is relatively
uncommon for the uncertainty of that data to be assessed. Ruckelshaus et al.
[26] assumed the landscape classification errors would be relatively minor. In
their simulation study the errors in classification of habitat quality rarely produced
prediction errors that exceeded 15%. However, like many other studies, their work
did not use an anisotropic perceptual range that was a function of topographic
variability which has until recently received little attention in modeling dispersal
(Pe’er et al. [48]; [18]).

Although Pe’er et al. [48] studied the potential effects of topography on butterfly
dispersal, Robinson and Graniero [20] present the only known case of modeling
individual animal dispersal movements using both a fuzzy decision model and an
anisotropic perceptual range in the context of a GIS-based simulation. They accom-
plish this by incorporating digital elevation model (DEM) data in the representation
of the landscape and combining the concept of the perceptual range with line-of-
sight analysis. Elevation data in a DEM are not without some level of uncertainty.
This simple experiment uses the Monte Carlo simulation of DEM uncertainty
methodology of Weschler and Kroll [29] to study the effect DEM uncertainty may
have on the simulated movements of grey squirrels (Sciurus carolinensis). This
study explores whether the uncertainties would lead to variations in the simulated
movement behavior. Of special interest to population modeling would be whether
the individuals ended in the same habitat patch or not.

Methodology

The approach taken in this study is to use Monte Carlo simulation of DEM
uncertainty to generate 100 DEMs each of which represent one possible realization
of the true elevation surface [29]. Then the DEMs plus land cover data is used to
generate 100 landscapes. Upon each of those landscapes the dispersal movements
of a small population of squirrels is simulated (Fig. 1). The results are analyzed with
regards to how the movement patterns and ending habitat patch correspond to the
results of the landscape using the original DEM. The ending habitat patch is the
forest patch where the individual is located at the end of each simulation.

This study simulates movement of the eastern gray squirrel (Sciurus carolinensis)
because it has desirable qualities as a modeling subject; such as an extensive
knowledge base about its ecological behavior especially its perceptual abilities [22]
and it may be of some conservation management interest. In some regions of North
America dispersal of gray squirrels is an important issue because fragmentation of
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Fig. 1 An overview of the experiment construction where each simulated DEM is created using
Monte Carlo simulation. One hundred realizations of a DEM are created. There is only one layer
of forest height. It is added to each DEM to obtain the combined elevation plus forest heights that
is an input to the dispersal model

habitat has led to a noticeable decrease in their population level [30]. In addition, the
dispersal of this species can have effects on other sciurids such as the red squirrel
[19, 31].

Study Area

The study area encompasses a section of the Niagara Escarpment that lies to the
west of Milton, Ontario Canada with an extent of approximately 11.1 km. east/west
and north/south. It is in the Mount Nemo area where Bronte Creek cuts through
the escarpment (Fig. 2). The elevation varies from a maximum of 309 m above sea
level to a minimum elevation of 151 m. The lower elevations to the north-northeast
of the escarpment are characterized by a landscape dominated by cropland with
highly fragmented relatively small forest patches. In contrast the higher elevations
on the escarpment are characterized by a cropland-forest landscape where there
is more area covered by larger forest patches, yet also quite fragmented. All the
simulated individuals start in the lowland so that the escarpment and valleys provide
potentially significant influence on their movement behavior.
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Fig. 2 A three-dimensional depiction of the terrain in the study where the elevation of the forest
land cover has been added to elevation from the DEM. This provides a view of the terrain used
by the model when performing line-of-sight analysis in the construction of the visible perceptual
range. This study area is 11.1 km on each side. Note that the surface varies from a maximum of
324 m to a minimum of 151 m

Individual-Based Simulation Model

The Extensible Component Objects for Constructing Observable Simulation Models
(ECO-COSM) [32] is used to conduct the spatially explicit individual-based
simulations. An overview of the dispersal model is presented here with an emphasis
only on those elements relevant to this experiment. Robinson [25] first presented the
detailed conceptual discussion of the fuzzy decision model that forms the basis of
this model. A subsequent implementation used to simulate dispersal of squirrels in a
fragmented landscape [20] contains more details on the ECO-COSM framework and
how it relates to simulating squirrel dispersal movements based on Robinson [25].

The movement behavior of an individual is modeled as a function of two
decisions—a movement decision and a residence decision. When an individual
is to move from its current location it assesses its surroundings to decide on a
target location. Once at the target location it again evaluates its surroundings by
gathering information to be used in the residence decision. If it finds the location
suitable for taking up residence, it has found a home. Otherwise, it must engage in
movement decision making once again. Both the movement and residence decisions
are determined by an aggregation of fuzzy sets that represent relevant goals and
constraints (Bellman and Zadeh [44]). Each step in the simulation is composed of
both a movement and residence decision.

For the purposes of this experiment the number of steps has been limited to 15.
This provides a definite end so that the individual does not wander an unrealistic
number of steps. Since the normal dispersal range of this species is within just a few
kilometers [33, 34] the 15 steps allows for such a dispersal range. In addition, Wolff
[35] notes that the mean dispersal distance of this species is 0.5 km. Similar to Lurz
et al. [19] it is assumed that an individual that has not found a home range within
the set maximum has died.

The movement decision model (Table 1) constraints consist of locations within
the visible perceptual range and spatially separated from conspecifics. The goal
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Fig. 3 This is the function that assigns a membership value to a location to define the extent of
the perceptual range as a fuzzy set. The distance from the individual is dx. Out to a distance of “

the membership of a location in the perceptual range is 1.0. Membership in the perceptual range
declines as a function of the value of ™. The crossover point (membership D 0.5) as well the
membership curve for the two values of ™ used in the experiment

is to find a location as near the edge of the visible perceptual range as possible
that is considered acceptable as habitat and fits within the set of constraints. An
important social constraint is distance from conspecifics. The goal set is therefore
a function of the spatial arrangement of habitat and the dispersal imperative. The
visible perceptual range is an important influence on the movement decision since
all information used as the basis of this decision is a function of it.

The visible perceptual range is modeled as an aggregation of two fuzzy sets
where one determines the extent of a fuzzy perceptual range while the other
represents the degree to which a location within the extent is visible to the
individual. The perceptual range function assigns a membership value to a location
as a function of distance from the individual (Fig. 3). It is controlled by two
parameters “ and ™. In this study “ D 60 which means that out to 60 m from the
individual membership in the perceptual range is 1.0. It is the rate at which the
membership declines from “ is controlled by ™. It determines how large the fuzzy
extent of the perceptual range will be. In this experiment ™ D f0.003, 0.0015g.
At about 390 m the membership in the perceptual range has fallen to near 0.0 for
™ D 0.003 while it is near 0.5 for ™ D 0.0015. Both membership curves fall close
to lower and upper bounds of perceptual ranges noted for this species (Mech and
Zollner [47]). This is combined with a second fuzzy set that is a function of a line-
of-sight analysis to provide a combined fuzzy membership for locations within a
visible perceptual range (Fig. 4).
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Fig. 4 The fuzzy set of perceptual range (P) is combined with the fuzzy set of visibility (V) to
determine the visible perceptual range. The visibility (V) set is a function of the line-of-sight. The
fuzzy sets P and V are combined using the non-compensatory operator (i.e., min(P,V) which is the
most commonly used fuzzy AND connective

Once a move is made an individual assesses whether the location is suitable
for establishing a home range (Table 2). At this point the density of conspecifics
is a very important parameter as territoriality affects the ease with which an
individual may find a suitable location. A social fence is created when the density
of conspecifics is at such a level that all suitable home range sites are already
occupied. Since this experiment is concerned solely with movement behavior, the
density of conspecifics is represented as a social fence. This forces movement until
the maximum number of steps is reached or the individual moves out of bounds.
The study area is modeled with an absorbing boundary so that when an individual
reaches a zone near the edge of the study area it is considered out of bounds and the
simulation for that individual ends.

Landscape Data

The landscape data used in the model is derived from both elevation and a land cover
classification. The elevation data is the Canadian Digital Elevation Data (030M12)
from Natural Resources Canada at a spatial resolution of 30 m [36]. The land cover
data is from the Ontario Land Cover Database [37] that was produced between
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1991 and 1998 with an original spatial resolution of 25 m that was converted to
30 m to match the resolution of the DEM. It is derived from digital, multispectral
Landsat Thematic Mapper data. The land cover classification was performed using
a supervised classification method, informed by extensive field knowledge of land
cover conditions throughout Ontario. Interactive editing was used extensively to
map certain classes that could not be positively identified without taking pattern
and/or context into account, in addition to spectral values.

Simulating DEM Uncertainty

A methodology based on Weschler and Kroll [29] is used to simulate DEM uncer-
tainty. They apply a stochastic approach to representing DEM error through random
fields and Monte Carlo simulation by considering four random field methods—
unfiltered, neighborhood autocorrelation, mean spatial dependence, and weighted
spatial dependence. In this study the neighborhood autocorrelation filter method is
used. The steps to generate a single realization of a DEM surface incorporating the
simulated error are:

First: Generate a random field with a mean of zero and a standard deviation equal
to the root mean square error (RMSE) for the DEM. In this case a RMSE of 5 m
was used.

Second: Pass a mean 3 � 3 low-pass filter over the surface of the random field.
In this manner, each cell in the random field is replaced by the mean of the value of
the center cell in the filter’s nine-cell window.

Third: The filtered random field is rescaled to a mean of zero and a standard
deviation equal to the RMSE.

Fourth: The rescaled random field is applied to the original DEM.
One hundred simulated DEMs were generated in this manner. The heights of

trees and other landscape features were then added to each DEM. The resulting
landscape terrain is then used in the individual-based simulations of dispersal
movement (Fig. 1).

Dispersal Simulations

All simulations were done using the same starting positions for each of 15
individuals all of whom are located in the fragmented landscape of the lowlands.
The conspecific landscape consisted of a “social fence” which effectively constrains
an individual to search until the maximum number of steps is reached or goes
out of bounds. There were two versions of the perceptual range used. One is very
conservative (™ D 0.003) and the other more liberal in its definition of perceptual
range (™ D 0.0015). Not all individuals in both scenarios completed their movement
up to the maximum number of steps (Table 3). One individual where ™ D 0.0015
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Table 3 For each individual
the total number of
simulations out of the 100
realizations where the
individual completed 15 steps
entirely within bounds

Total number of simulations inbounds
Individual 
D0.0030 
D0.0015

1 81 0
2 100 94
3 100 92
4 100 100
5 100 100
6 100 100
7 100 23
8 100 97
9 100 100
10 100 86
11 100 100
12 100 46
13 91 30
14 98 100
15 100 100

was always out of bounds no matter which realization was used. It is clear that
the case of ™ D 0.0015 led to more cases where individuals did not complete their
movements within the bounds of the study area.

Movement Behavior

In the analysis of the resulting effects of the uncertain DEMs on the simulation of
individuals’ movements two aspects of their movement behavior were measured.
One aspect concerned the movement behavior in terms of walk taken. The other
aspect concerned where the individuals ended, especially in relation to forest
patches. Of the indices of movement behavior that Almeida et al. [38] discuss, the
mean displacement distance (MDD) [39] and straightness (ST) index [40] were used
to provide an indication of how movement behavior might vary as a function of
DEM uncertainty. In addition to comparing the simulated DEM results to baseline
simulations, the degree of variation in results using the two perceptual ranges (i.e.,
™ D f0.003, 0.0015g) can be assessed using ST and MDD well as the similarity of
ending locations.

ST is calculated for each individual for each of the 100 realizations. It is defined
as D/L where D is the Euclidean distance between the beginning and end of the
walk. L is the total length of the path. Each step of an individual’s simulation
produces a leg in the walk. The sum of the lengths of each leg provides the value of
L. The values of ST should vary little, or none at all, within an individual’s set of
simulations if the uncertainty in the DEM has little effect on movement behavior.
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Fig. 5 Concept of how the mean displacement distance (MDD) for each individual is calculated.
Each vertex on the simulated walks of an individual is compared to the corresponding vertex in the
walk of the individual using the baseline simulation

The MDD of Swihart and Slade [39] is used to compare the walk taken using the
original DEM versus the DEMs generated through the Monte Carlo simulation. In
this case MDD is defined for each of k simulations for an individual as:

MDDk D 1

n

n
X

i

q

.xiB � xik/
2 C .yiB � yik/

2 (1)

Where n is the number of vertices in the walk. The coordinates xiB/yiB are those
of the point in the walk taken in the simulation based on the original DEM while
xik/yik are the coordinates for the corresponding point in simulation k (Fig. 5). If
there are no effects of DEM uncertainty then the difference between the baseline
and uncertainty-based simulations should be zero. Since a social fence is used all
individuals that do not go out of bounds will have the same number of steps.

Forest patches were defined using the eight neighbor-tracing rule rather than the
four-neighbor rule [41]. This seems most appropriate given the scale of the raster
layer (i.e., 30 � 30 m) in relation to the typical body size of the individuals being
simulated. Each patch was assigned a unique identifier. Thus, if an individual ended
at any location with the patch then it was noted as having ended its movement in that
forest patch. It is therefore quite possible for individuals to end at different locations
depending on the realization of a DEM being used yet still be in the same patch. If
the DEM uncertainty has no effect then it would be expected that an individual
would always end in the same patch. In this manner, the uncertainty would be
demonstrated as having little effect on a spatially explicit population patch-based
model.
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Software Note

Open source software was used whenever possible to prepare the raster layers
for input to the simulation model of movement and subsequent analysis. The
Geographic Resources Analysis Support System (GRASS) geographic information
system (GIS) [42] was used to generate the error fields and subsequent simulated
DEM layers. It was also used to prepare all raster layers needed by the ECOCOSM
model for simulating squirrel movement. The R package [43] was used for analyzing
the results of this experiment as well as creating barplots and histograms.

Results and Discussion

There are two major aspects of movement behavior to consider. One is the pattern
of movement behavior as measured by ST and MDD. ST is a basic measure of
sinuosity whereas MDD in this case is a measure of deviation of the walk from the
baseline. The other aspect is patch-based to determine if individuals always end in
the same patch regardless of the realization of the DEM in the simulation.

Movement Behavior

The ST results show that walks in the ™ D 0.0015 case tend to vary more as well
as deviate more often from the baseline than in the ™ D 0.003 case (Figs. 6 and 7).
This is not entirely unexpected since the case of ™ D 0.0015 provides more options
for movement due to the larger potential area of visible perceptual difference. For
individual five with ST D 0.73 that is as close as any baseline results came to a
straight-line walk (i.e., when ST D 1.0). All the results from the simulations resulted
in walks with ST values less than 0.73 so that the sinuosity of the walks were always
greater for the simulations. Although ST results in the ™ D 0.003 appear to tend
towards agreement with baseline, it is still the case that search paths did deviate
from the baseline results in all cases. However, individual six is notable by its lack
of variation as well the tendency for the simulation results to cluster tightly within
0.005 of the baseline simulation.

It appears that the uncertainty-based simulations generally differ from the same
walk as the baseline simulation (Figs. 8 and 9), some more than others. Like the
ST results there appears to be more variation in values of MDD for the case of
™ D 0.0015. In the case of individuals like five and nine there appears a distinct
concentration of results but at some deviation from the baseline walk. Although
there is clearly some variation in the results for individuals 6 and 15, there is
a distinct clustering of values near zero for both individuals. This indicates that
their respective walks tended to be similar to the baseline walk for many of the
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Fig. 6 Histograms showing the results of ST for each individual by perceptual range where
™D 0.0030. Lines with the box at the top represent the ST for the baseline simulation

simulations. On the other hand, individuals such as two and ten illustrate cases with
substantial variety in values of MDD. Individuals five and nine show a tendency
for walks to cluster at values that differ quite a bit from the baseline. The case of
™ D 0.0030 is a function of a more limited perceptual range. This is a possible
reason some individuals such as two, three, four, and five, frently have walks that
are very close or the same as the baseline. In the case of individual two this contrasts
sharply with the movement behavior when ™ D 0.0015 even though the landscape
configuration is the same for each realization in both cases. This illustrates well how
differences in perceptual range can affect movement behavior in spatially explicit
simulations of individuals.
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Fig. 7 Histograms showing the results of ST for each individual by perceptual range where
™ D 0.0015. Lines with the box at the top represent the ST for the baseline simulation. Note that
only 14 individuals are shown because one individual went out of bounds in all 100 simulations

Patch Terminus

Although ST and MDD may provide an indication of how the different realizations
of the DEM may affect movement behavior, what may matter more in spatially
explicit population models is whether or not the individuals end in the same
habitat patch as the baseline simulation. It is the patch terminus that will ultimately
affect the results of a spatially explicit population model. The effects of DEM
uncertainty varied greatly between the two versions of perceptual range (Fig. 10).
When ™ D 0.0030 many individuals tended to end their walk in the same habitat
patch as they did in the baseline simulation, whereas there was a noticeable tendency
for them to end their walk in different a different patch when ™ D 0.0015. That is



Influence of DEM Uncertainty on the Individual-Based Modeling of Dispersal. . . 231

Fig. 8 Histograms showing the results of MDD for each individual by perceptual range where
™D 0.0030

not to say there was no variance from the baseline results in the case of ™ D 0.0030.
There are some individuals that did tend to have a patch terminus that differed from
that in the baseline simulation. In a similar manner, there were a few individuals that
tended to have the same patch terminus as in the baseline simulation.

Perceptual range defines the spatial extent of the landscape for which information
is available to make movement decisions. As the extent increases so does the
amount of information about the landscape that becomes part of the movement
decision process. Also, as the extent increases so does the chance that an important
environmental cue (i.e., forest patch) may become evident to the individual. Given
the increased area and chance of new environmental cue’s, it is not entirely
surprising that the patch terminus of individuals showed a greater tendency to differ
from the baseline terminus with ™ D 0.0015 in comparison to ™ D 0.0030. Although
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Fig. 9 Histograms showing the results of MDD for each individual by perceptual range where
™ D 0.0015. Note that only 14 individuals are shown for ™ D 0.0015 because individual one went
out of bounds in all 100 simulations

this is a simple experiment with a small number of individuals, the results suggest
that as the perceptual range increases, that the overall effect of DEM uncertainty
on a spatially explicit population model would be somewhat greater. In one of the
few studies to simulate animal movement incorporating terrain, they noted how
the variation in the perceptual range extent could affect movement behavior of
simulated individuals especially in relation to terrain features [18]. Although they
varied the extent of the perceptual range to arrive at their observation, there was no
attempt to assess how sensitive the results were to DEM uncertainty.
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Fig. 10 Barplots showing the results of the patch terminus analysis for each perceptual range. The
plots are arranged so individual results are arranged from left to right. Since individual one was
out of bounds for all simulations under ™D 0.0015 only individuals two through 15 for both cases
are shown

Concluding Comments

It was shown that the influence of DEM uncertainty on simulations of movement
behavior was affected by the spatial extent of the perceptual range. For each
realization it was determined which forest patch each individual ended in and
compared with the result for the baseline DEM. Significant in relation to spatially
explicit population simulations is the observation that as perceptual range increased
so did the variation in patch-level outcomes that were likely a result of the variations
in movement behavior as measured by ST and MDD. Whether or not individuals
may reach the same forest patch in each simulation holds implications for modeling
metapopulation dynamics. Overall the results are consistent with others that found
that the extent of the perceptual range could have an effect on simulations of
movement behavior since it has an effect on landscape connectivity [16, 18, 23].

The results of this simple experiment indicate that DEM uncertainty can have an
influence on the results of GIS-based simulations using an individual-based model
to study the interplay between landscape and small mammal dispersal. Even with
a small population of individuals it is evident that the use of a DEM is but one
realization of movement behavior. Other realizations were evident based on Monte
Carlo simulations of how elevation values may vary depending on DEM error. This
implies that results of spatially explicit population models incorporating terrain to
construct anisotropic perceptual ranges that drive individual movements may have
results that may vary depending on the realization of DEM that is used.
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A Semi-Automated Software Framework Using
GEOBIA and GIS for Delineating Oil and Well
Pad Footprints in Alberta, Canada

Verda Kocabas

Introduction

An anthropogenic footprint can be defined as any disturbance on the natural
landscape that is caused by human activity, such as well sites, pipelines, seismic
lines and cut blocks, among others. Delineation of anthropogenic footprints such
as oil and gas well pads, pipelines, and access roads play an essential role in
many forms of spatial analysis on the human impact of energy industry activities.
Accurate, detailed and timely mapping of these features over vast geographical
areas is a major challenge in resource management and regulation. The information
is crucial to government administrations, industry operations, and environmental
monitoring. However, the scale and complexity of geospatial data to be acquired and
analyzed can be formidable due to the required manpower, costs, and technology
involved.

Among the anthropogenic footprints, this study’s main focus is to delineate
the disturbance of oil and gas well pads. Recent advances in remote sensing
(RS) and geographic information science (GIScience) provide a potentially low-
cost alternative but require the development of methods to easily and accurately
extract the required information. The current method of mapping oil and gas well
pad footprint requires extensive manual interpretation and it requires assumptions
based on typical or average areas. This draws into question the accuracy of current
products as additional clearings around the well pads cannot be captured with
average size buffers around the wells. For example, Leu et al. [1] have calculated

V. Kocabas (�)
Planet Labs Geomatics, 3528 30th St. N., Lethbridge, AB, Canada, T1H 6Z4

Southern Alberta Institute of Technology, 1301 16th Ave NW, Calgary, AB, Canada, T2M 0L4
e-mail: verdakcb@gmail.com

© Springer International Publishing AG 2018
J.-C. Thill, S. Dragicevic (eds.), GeoComputational Analysis and Modeling
of Regional Systems, Advances in Geographic Information Science,
DOI 10.1007/978-3-319-59511-5_13

237

mailto:verdakcb@gmail.com


238 V. Kocabas

the physical effect area and spatial extent of anthropogenic features including
oil and gas pads by multiplying each feature by predetermined coefficients and
by calculating well point densities within a certain radius. Weller et al. [2] used
manually digitized physical footprint from oil and gas development in their spatial
analysis of the ecological footprints.

Pasher et al. [3] developed a manual approach for mapping disturbances and
was selected over any automatic classification, image segmentation, or object-
based methodology across Canada’s boreal ecosystem. They also concluded that
the Landsat 30 m interpretation detected up only 38% of the seismic lines that were
visible in the 2.5 m resolution imagery for their small test area.

While many generalizations can be made about the well pad footprints, there
is significant variation across the half million oil and gas wells in Alberta. These
features can range in size from square meters to several hectares and can have
various shapes such as rectangular, circular, tear drop, and non-linear. Adding to
the complexity, there are many land cover types around the well sites, different
well types, various stages of reclamation and vegetation encroachment, adjacency
to other anthropogenic footprint features, and data reporting accuracy.

In general, the task of feature delineation could be solved by techniques based on
individual pixel values image classification [4]. However, the pixel based methods
neglects the spatial elements in the image such as shape, context, and texture. In
addition, the high resolution images have more information than medium resolution
ones which result in less accurate classification results when traditional classifiers
are used.

Chen et al. [5] has developed a methodology to delineate linear disturbances such
as roads, seismic lines, and pipelines using time series Landsat 7 images. They have
encountered the limitation of low resolution and low contrast of Landsat imagery.

The proposed methodology utilizes SPOT 5 panchromatic satellite imagery
mosaic of the Western Canadian Sedimentary Basin (WCSB) as it is the largest,
most recent and cloud free high resolution mosaic in Canada for the region of
interest. The individual images are normalized to each other to create a seamless
mosaic. As a result, the well pad detection and delineation algorithm is designed
specifically for SPOT 5 2.5 m panchromatic imagery of the WCSB region. This cre-
ates challenges in the pixel based image classification methods as the panchromatic
images have limited information and they rely on thresholds derived from spectral
information during the detection process [6]. One of the important properties
commonly observed in panchromatic images is the increase in brightness of the
area affected by mining and other anthropogenic causes due to loss of vegetation and
exposure of rock and soil on the well pad area. Therefore, most of the anthropogenic
features show similar spectral characteristics in the panchromatic images which
makes the delineation process challenging as it is difficult to differentiate each
anthropogenic footprint from each other.

Apart from using panchromatic imagery, there are also footprint detection
challenges which can be divided into two categories: image-related and location-
related. Satellite imagery within the WCSB satellite image mosaic varies in data
quality due to a range of acquisition dates which forms the image-related challenges.
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This results in poor accuracy in low image quality areas where it can be very difficult
to detect well pad boundaries, and in areas where the well pads are very small in
size. Location-based challenges can consist of two or more well pads being very
close in proximity, roads or pipeline corridors near the well pad that are too wide
to be detected. As a result, image segmentation or classification on their own is not
enough to overcome all the challenges for high accuracy shape detection.

Therefore, there is a need for a semi-automated software framework for use in an
operational mapping context to overcome the research problem outlined above. The
proposed methodology employs geographic object-based image analysis (GEOBIA)
to achieve the desired results in an intelligent mapping system. Hay and Castilla [7]
describes GEOBIA as sub-discipline of GIScience which develops theory, methods,
and tools to replicate the human interpretation of RS images in automated/semi-
automated ways by partitioning the imagery into meaningful image-objects.

GEOBIA is receiving more popularity in the remote sensing literature due to
the fact that “spatial location” is the key component of the analysis [8]. GEOBIA
does not solely rely on the single pixel spectral values but also on its texture and
pixel spatial continuity. Powers et al. [9] introduced a multi-scale geographic object-
based image analysis (GEOBIA) approach that incorporates new object-based
texture measures and a decision-tree classifier to assess wetlands. Martha et al. [6]
have applied object-oriented image analysis to detect and classify landslides using
Cartosat-1 (2.5 m) and IRS-1D (5.8 m) panchromatic images. Consequently, adding
spatial characteristics (e.g. image texture, contextual information, pixel proximity
and geometric attributes of the features, etc.) to the image analysis give advantages
over pixel –based methods [10, 11].

The overall objective of this study is to create a method to efficiently and
accurately map the well pad and gas plant footprint in Alberta. This paper utilizes
geographic object-based image analysis methodology to extract and delineate
well pads from SPOT 5 2.5 m panchromatic satellite imagery. The proposed
methodology employs unique combination of multiple RS methodologies together
with topological, geometric and geographic properties of the delineated objects as a
part of geographic object-based image analysis. Spatial information of the objects is
utilized by linking the pixels to objects to delineate meaningful objects. Some of the
remote sensing methodologies include image segmentation using watershed trans-
formation, standard Hough transform, region growing, edge delineation, polygon
simplification, texture and contrast differential techniques.

Methodology

Study Area

The region of interest is the province of Alberta which is located in western Canada
with a total area of 661,848 km2. It is the largest producer of conventional crude oil,
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Fig. 1 Province of Alberta with seven Land Use Framework regions

synthetic crude, natural gas, and gas products in Canada. Approximately 70% of
Canada’s natural gas production is from Alberta [12]. Between 10,000 and 15,000
new wells are drilled in Alberta each year [13], and nearly 120 ha of land per day
is being industrialized for oil and gas production. There are over 500,000 oil and
gas well pads and thousands of gas plants in Alberta as of 2010. Each of these
developments has resulted in a footprint on Alberta’s land surface. The Government
of Alberta has started “The Land-Use Framework (LUF)” which is a strategic
planning initiative to manage Alberta’s land and natural resources to achieve long-
term economic, environmental and social goals [14]. The LUF establishes seven
land-use regions (Fig. 1) and calls for the development of a regional plan for each.
As a result, oil and gas footprint layers that this study aims can be as input layers into
modelling and mapping initiatives within Alberta Energy’s operational activities
related to the LUF.

Satellite Image Data

In this study, a well pad detection and delineation algorithm designed specifically
for SPOT 5 2.5 m panchromatic image mosaic of Alberta for the year of 2010 is
presented and rigorously evaluated. This mosaic is the largest high resolution mosaic
in Canada which is cloud free, seamless and up to date, and mostly uses spring and
summer images.
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The mosaic dataset is derived from SPOT 5 2.5 m panchromatic Level 1A (raw
imagery) products. It has been processed using the most accurate control available,
such as Canadian National Road Network, Alberta Government Access Vectors,
and LANDSAT 7 orthorectified imagery supplied by the Government of Canada.
The Canadian Digital Elevation Data (CDED) is used as the Digital Elevation
Model (DEM) source for the orthorectification. The PCI Geomatics High Resolution
Satellite Ortho Package was used to orthorectify image data. The orthorectification
process computes a Rational Functions Math Model. Each individual scene contains
coefficients, called Rational Polynomial Coefficients (RPC), which are used to
define the math model together with the collected high accuracy ground control
points (GCPs). The methodology ensures adequate distribution of the control points
within the image.

Ancillary Datasets

When a well site is drilled, there are two locations associated with the site: Surface
Hole Location (SHL) and Bottom Hole Location (BHL). The surface hole is what is
seen at ground level, the bottom is at its deepest point. If the hole is drilled vertically,
both locations are the same; however, many wells are drilled directionally and some
even horizontally. As this study aims to capture the disturbance of the well on the
ground level, a vector point file containing the surface hole locations for oil and
gas well sites were used as one of the inputs to the system. This file contains: (a)
sub-meter accuracy point locations for the surface hole locations; (b) the latitude
longitude coordinate of the well, activity type, spud date, status of the well and
unique well identifiers (UWI). Therefore, the extraction of oil and gas well pads is
only performed where well site points exist.

The second input to the system was agricultural land cover data for 2006. This
land cover data has nine classes: annual cropland, native posture, improved posture,
hay, forest, wetland, water, barren, and built-up. As the northern and southern
parts of Alberta show different characteristics of land cover, the well pad footprint
characteristics also change. In the north where there is more boreal forest, the
footprints tend to be larger and have more orthogonal shapes. On the other hand,
within the southern region well pad footprints tend to become tear drop shaped from
agricultural activities and/or from natural grassland growth, both of which encroach
on the well pad relatively quickly. Therefore, this study utilizes different delineation
rules based on the land cover data.

Footprint Delineation Rules

A significant challenge in defining the footprint of well pads and gas plants will
be the shape variability caused by both land cover type and the encroachment of
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Fig. 2 Footprint delineation rule examples: (a) Rule 1 (b) Rule 2 (c) Rule 3 (d) Rule 4 (e) Rule 5
(f) Rule (6)

vegetation which dictates how long a footprint will remain visible. For example,
a site in a forested area could have visible footprint for decades. However, in a
grassland area the original footprint might be reduced after only few years. Also
challenging are the varied appearances of the well pads in the mosaic. Many of them
have a clear two-tone appearance, with very bright but irregular central part (most
likely soil surface), and a more subdued original shape (encroaching vegetation).
In some areas, the satellite imagery has a low sun angle which results in less
identifiable well pad boundaries. As a consequence, there is a need to create general
“rules” to dictate how the automated algorithm will decide what to capture as a well
pad footprint. These rules were formed in partnership with regulators, and industry
partners to define the size, shape, and special situations of various well pad types.
They govern the decision flow in the well pad detection and delineation system.

Figure 2 shows six examples from the predefined rules.

(a) Rule 1 (Fig. 2a): Area that is visible around well centers, non-treed (some sort
of a clearing), and a human disturbance should be captured. If there is no well
centre (point) in the clearing, do not capture.

(b) Rule 2 (Fig. 2b): Access roads that are becoming part of the well pad should be
included. If the access road is only passing by and continuing, do not include as
a part of the well pad.

(c) Rule 3 (Fig. 2c): Continuous well pads, i.e. well pads that are next to each other
should be combined as one polygon.

(d) Rule 4 (Fig. 2d): Over time the as built pad area and shape will change because
of ingress from surrounding vegetation. Ingress depends on the age of the well
(spud date on attribute table). The older the well, the greater the ingress of
surrounding vegetation. The older the well the more irregular the pad shape.
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The system will consider the relationship spud year and irregular shapes. In the
figure the well site was drilled in 1968 and the original “as built” pads is barely
visible (green line) but the current foot print is much smaller (red line). The
older the spud date on any given point the higher the irregularity of the captured
well pad. In these cases, the system should capture the red line.

(e) Rule 5 (Fig. 2e): If the well pad location is not distinguishable from its
surrounding, i.e. no definitive tree line, then a square in average (this is
predefined) size of a well pad should be captured around the well site. However,
if the well site metadata indicated “Reclaimed/Pre63/Exempt”, then do not
capture a polygon at all as these are reclaimed and abandoned wells.

(f) Rule 6 (Fig. 2f): If there is a well point and the well is active (i.e. that is
not Abandoned or Reclaimed) but no visible pad on the imagery consider the
following:

• Is the well spud date after the acquisition date of the imagery?
• Is the well site spud date 1912 and ingress from surrounding vegetation has

completely render the original pad indistinguishable from the surrounding
vegetation?

• Is the original pad now within a larger facility location or within a pipeline
corridor?

• Is the pad under permanent water and not visible?

The rule in all of the above cases, where the point data indicates no presence of a
pad and no pad is visible in the imagery, is do not capture any footprints. However,
if the well point is active, but no visible well pad and it does not fall into the above
cases, then a standard polygon needs to be placed.

Automated Footprint Mapping System

The proposed system partitions the SPOT 5 image mosaic into well pad boundary
objects similar to the way humans conceptually organize the landscape to under-
stand it.

Figure 3 shows the designed system workflow for footprint delineation. The
system has two main components: Feature Extraction System and Automated
Quality Control System.

Feature Extraction System

Feature extraction system finds the candidates for each well pad point and sends
the results to the automated quality control system. The system goes through each
well point one by one and defines three neighborhoods around the well point. The
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Fig. 3 System flowchart

defined neighborhood sizes are 150 m (n1), 200 m (n2) and 250 m (n3) (Fig. 4). The
steps described below uses these three neighborhoods for the calculations.

Find panchromatic imagery: The system starts with a well point and then clips
the panchromatic imagery for the 250 m neighborhood around that point.

After finding the imagery, the next step is to adjust the image intensity. This
step involves changing the original pixel values of the image so that more of the
available range is used, which increases the contrast between features and their
backgrounds. This step makes the next step, image segmentation work better to
differentiate well pads from forest, and other land use/cover types. The parameters
of the intensity adjustment changes based on the image characteristics and also the
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Fig. 4 Three neighborhoods defined around the oil and gas well points

input from the checking steps of the automatic quality checking system. The system
chooses the parameters for the intensity adjustment based on image characteristics,
image date or if the previously selected parameters were failed and new ones needed.

Image segmentation: The contrast enhanced image chips then enter into the
segmentation function. The objective of the segmentation is to divide the image into
relatively homogeneous and semantically significant groups of pixels. In this study,
watershed algorithm based on mathematical morphology is employed. Watershed
algorithm in image processing acquires the basics from topography as it treats the
image pixels as the morphological landforms, the peak correspond to the maximum
in the grey scale images, and valley corresponds to the minimum [15, 16].

First, the original image is transformed to a gradient image which represents
the edge strength of each pixel. Thus, the gradient will be high at the borders of
the objects. Second, background and foreground markers are calculated to separate
the main objects from the background objects. When calculating the foreground
markers, the system creates flat maxima inside of each main object. To find the
background objects, the system utilizes both gradient magnitude image and the
foreground markers. The aim is to find background markers not to be too close
to the edges of the objects that are being segmented as “candidate objects”. Third,
the system modifies the gradient magnitude so that the regional minima only occur
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Fig. 5 Example from image segmentation (a) original SPOT 5 panchromatic image (b) segmented
well pad candidate objects

at foreground and background pixels. Last, the system creates a binary image of
candidate objects after cleaning the isolated pixels and the edges of the objects.
Figure 5 shows an example of a segmented candidate objects for a well site.

In this step, well pad boundaries for each well center are identified roughly due to
the fact that some of the features (such as roads) around the well pads have a similar
radiometry and classified with the actual well pad area by the algorithm. After the
classification step, the developed algorithm works on the individual classified pixels
labeled as well pads to remove unwanted features in the candidate objects which
will be explored in the next steps.

It was noted that the 2010 Alberta SPOT 5 mosaic contained late season imagery
in some parts of the province which resulted in poor quality data. Figure 6 shows
an example of a well site with 2009 and 2010 imagery. 2009 imagery clearly shows
the well pad boundary as it has a better acquisition date and higher sun angle than
the 2010 imagery. Lower sun angle, reduced dynamic range and reduced contrast
were a few of the key challenges which required a unique set of steps for proper
feature extraction. As a result, the feature extraction system incorporates a few basic
imagery parameters to determine the quality of the imagery in use and then select the
correct sub-algorithm to perform the feature extraction. These parameters include
image spectral statistics, acquisition date of the imagery, and sun angle at the time
of acquisition. Based on these parameters, different segmentation sub-algorithms
were designed which would be called upon when the specific imagery conditions
present. This leads to a more efficient and consistent feature extraction and the
feature extraction system will have greater adoptability from year to year or region
to region.
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Fig. 6 Comparison of the same well site with 2010 and 2009 imagery (a) 2010 imagery with low
image quality (b) 2009 imagery with high image quality

Automated Quality Control System

Feature extraction system passes the resultant objects to the automated quality
control (QC) system. The resultant objects are checked against rules and certain
criteria. If they pass the QC, they are converted to polygons. If they don’t pass
the QC, the system either sends them back to feature extraction system for different
segmentation or the objects are rejected and the system works on the next well point.

Area properties check: At this step, the system checks the area characteristics
of the candidate object to decide if the first segmentation was successful or not.
The candidate objects go through two check rules, and depending on the results, the
system might run the segmentation steps again with different parameters to achieve
the desired candidate object.

Check rule 1: If the total area of the candidate object is larger than 30,000 pixels
(18.75 ha) in the n3 neighborhood and the well pad status is reclaimed, then the
segmentation result is too large to be a well pad candidate object. Thus, the system
applies the segmentation step with a different image intensity adjustment. If the new
resultant candidate object’s area is still larger than 30,000 pixels (18.75 ha) in the n3
neighborhood and the well pad status is reclaimed, then the system skips this point
with no polygon generated.

Check rule 2: The second rule checks if the area of the candidate object is larger
than 18,000 pixels (11.25 ha) in the n1 neighborhood or if the area of the object
is 0 in the n1 neighborhood. This states that the system found another object that
is far away from the well pad point; hence the system applies the segmentation
step with enhancing the panchromatic image by contrast limited adaptive histogram
equalization [17].

Linear feature removal, edge and skinny pixel group cleanup: After the first
checks, the algorithm works on the candidate well pad objects and the individual
pixels in them which form those objects to remove unwanted linear features. These
linear features are roads that are adjacent to the well pads which are labelled together
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Fig. 7 Linear feature removal (a) original image in n3 (250 m) neighborhood (b) segmented image
in n3 (250 m) neighborhood (c) linear features identified in n1 (150 m) neighborhood (d) final
object boundary after linear feature removal in n1 (150 m) neighborhood

with the well pads as their spectral characteristics are close together. Therefore, this
step finds the linear features in the classified well pad boundary and removes them
from the well pad boundary. Standard Hough Transform (SHT) has been used to
detect the lines in the classified well pad polygons. The SHT is considered as a very
powerful tool in edge linking for line extraction due to its capability to extract lines
even in areas with pixel absence (pixel gaps). SHT proposed by Duda and Hart [18]
is widely applied for line extraction in image processing.

As some well pads have straight orientation and others have diagonal orientation,
the algorithm first finds the orientation of the well pad candidate. In order to do that,
it compares every line that was calculated by the SHT. By calculating the slopes of
each line, it decides on the orientation of the well pad. Then, based on the orientation
and direction, the algorithm rotates the object until it is straight as it eases the linear
feature removal process.

After the rotation, the algorithm focuses on the linear objects that were identified
by the SHT and removes them one by one from the well pad object. For each pixel
belonging to the line, the system calculates its location relative to the rest of the
pixels in the object and its relation to it, i.e. is it still part of the line or does it belong
to a larger group that form the main well pad area. Thus, the pixels belonging to the
linear object are removed until they belong to the main well pad area.

After the removal of the linear features, the resultant well pad object is checked
for any unsmooth edges caused by the removal. The algorithm checks also the area
between n2 and n3 neighborhood to find any skinny pixel groups that are attached
to the well pad. These skinny features are usually the pixels that are incorrectly
segmented or remains of the linear feature removal. Figure 7 shows an example of
before and after the removal process. Figure 7c illustrates the lines that are identified
by the algorithm. Then, these lines were removed and the final well pad object is
obtained in Fig. 7d.

Polygon refinement: Linear feature removal is followed by refining the polygons
so that their shape is close to the actual well pad boundary, i.e. eliminating unwanted
pixels that do not belong to the well pads. This step employs several different
methods to find the unwanted pixels by analyzing three neighbourhoods of the well
center. The algorithm analyses individual cells for each neighbourhood (n1, n2 and



A Semi-Automated Software Framework Using GEOBIA and GIS: : : 249

n3) and runs several algorithms to extract and analyze the regional characteristics
of the cells and decides if the cell belong to the well pad in question or not. These
characteristics include location of the cell compared to the well pad, orientation of
the well pad, extent, area, perimeter, solidity of the well pad, and distance of the cell
to the well pad center.

Results check: The algorithm now checks if there should be polygon based on
the well pad spud year, reclamation status, and the spectral characteristics of the
image chip for the n3 neighborhood. If the algorithm decides that there shouldn’t
be a polygon, then the created object is deleted. For example, if “the well type is
abandoned” and “the reclamation status is reclaimed” and “the spud year is from
1990s” and “the average spectral characteristics around the well point show less
bright areas”, then there shouldn’t be a polygon captured for that well.

At this step, the algorithm also does a final check on the regional characteristics
of the candidate object. It calculates area, perimeter, solidity and extent. By
calculating the regional characteristics of the candidate object, the algorithm decides
if the candidate should or should not have been classified. Extent is the ratio of pixels
in the candidate object to the pixels in the total bounding box of the object. Solidity
is the proportion of the pixels in the convex hull that are also in the candidate object.
If the area and the perimeter of an object is large but the extent and the solidity are
smaller than 0.80, this shows a largely classified object and most likely a wrong one.
Thus, this object should not be classified and deleted from the results.

Final Cleanup: At this step, the algorithm checks if there are more than one
object in the neighborhood n1. If there are, then the algorithm eliminates the objects
that are away from the center. It also evaluates the area proportion of the object in
the neighborhoods. The area proportion check decides if the polygon is small or
large. Small polygons also go through another check and the cleanup procedure that
is designed for their size. Candidate objects that pass are then converted to vector
polygons. The final resultant polygon goes through the shape cleanup. After the
first polygon refinement, the system checks if the resultant polygon has a proper
shape. For example, it checks the number of vertices, and if the shape is orthogonal.
The final polygon refinement algorithms apply generalization operation on the
generated polygons. The algorithm reduces details in the boundaries of well pads,
while maintaining the essential shape and size of the well pads. The simplification
process preserves and enhances the orthogonality for the well pads that are in the
non-agricultural areas. Figure 8 shows an example of a polygon refinement and
polygon simplification. In this example, algorithm refined the polygon so that it is
orthogonal.

Well pads falling in either crop or grass land appear to be consistent as they
are usually a tear drop shape. When the well is drilled, the well pad is a typical
square shape but over time the surrounding vegetation (crop or grass) ingresses
and eventually forms a mature pad in a tear drop shape regardless of cover type.
A mature pad (tear drop) is consistent with the turning radius of well inspection
vehicles. Road maintenance prevents ingress of surrounding vegetation and as a
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Fig. 8 Polygon refinement and simplification (a) before polygon refinement (b) after polygon
refinement

result the tear drop shape is maintained. Thus, for the well pads that are in the
agricultural areas, the algorithm simplifies them so that they are not very complex
in shape.

Results and Discussion

All the algorithm codes were written in Python 2.7 with object-oriented program-
ming using geospatial data abstraction library (GDAL) and Numpy libraries. The
proposed methodology was developed and tested using networked workstations,
multi-core servers and GPU units for high-speed processing. The feature extraction
algorithm processes a minimum of 30 well pads per minute. The proposed system
processes 694 individual well points a day for extracting features and performs QC
whereas using a manual method in standard GIS software, ArcGIS, can process only
321 points a day.

The feature extraction was employed for the whole Alberta region. A total of
409,417 points were processed using the automated system. Table 1 shows the
number of well points per each LUF region. The well point dataset included all
well points that were drilled before the end of 2010. Land cover data for the year
2006 was also employed in the system to help the automation process in the decision
rules as different rules and checks were defined for different land cover types around
the well points.
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Table 1 Total number of
well points per each LUF
region

LUF region Total number of well points

Lower peace 28,538
Lower Athabasca 58,328
Upper peace 30,818
Upper Athabasca 31,632
North Saskatchewan 87,437
Red Deer 73,520
South Saskatchewan 99,144
Total 409,417

From the well point dataset, 20% of the wells were selected to access the
accuracy of the results. Reference inventories were created manually using visual
interpretation technique for those preselected well sites. The accuracy of the results
were calculated through the error Eq. (1).

%Error D
hjShapeArea � ActualAreaj.

ActualArea

i

� 100 (1)

Figure 9 shows some example of the comparison between reference inven-
tory (manually digitized) polygons with automated process results. Based on
the comparisons of the selected wells to that of manually digitized validation
polygons (reference inventories), the automated feature extraction system captured
the 82.37% of the well pad footprint polygons.

The performance of the methodology to detect the oil and gas well pad footprint
is moderately good.

Figure 10 shows some final results. Among all the well site areas, the northern
part of Alberta shows better results than the rest due to the forest land cover type.
The results show that the well sites are more visible when the surrounding land
cover is forested.

As there are cases that multiple well points are within a single well pad area, well
pad attributing rules has to be defined in order to label each well pad polygon with
correct well point attribute. As set of rules were created to attribute the well pad
based on criteria from the various well point attributes. Factors included the type of
well—gas, bitumen, abandoned, reclaimed; date of the well point; and status of the
well point. From the criteria hierarchy, the well pad is attributed automatically with
the correct information. If a single well point intersects a single pad then the pad
should reflect the attribute/commodity tagged to the well point. If a single pad has
two or more well point intersections then the following rules/priority should apply.
The well types priority order is (1) Bitumen (2) Oil (3) Coal based methane (CBM)
(4) Gas (5) Drilled & Cased (6) Other (7) Abandoned (ABD). Highest priority goes
to bitumen and the lowest priority goes to ABD regardless of the number of well
point intersects. If there are more than one well points for the well pad and all
points have the same well type (for example, two oil wells or three Bitumen), then
the well point that has the oldest year takes priority.
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Fig. 9 Comparison of manually digitized polygons and automated process resultant polygons

Fig. 10 Some of the delineated footprints by the automated footprint system
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Table 2 summarizes the average well pad sizes per each well type for each LUF
region which was generated after the well pad attributing rules were applied. It is
obvious from the table that southern regions of the province has smaller well pads
than the northern region as a consequence of the agricultural and grass lands. Lower
Athabasca region also demonstrates similar characteristics as the southern regions
by having smaller size well pads except bitumen well types. The well pads in the
Upper Peace and Upper Athabasca regions incorporate a greater size on average than
in the Lower Peace and Lower Athabasca regions. Although there is oil development
within the Upper Peace and Upper Athabasca, the main development is natural gas.
On the other hand, the development within the Lower Peace and Lower Athabasca is
gas, bitumen and oil. In more recent years horizontal well development with several
horizontal legs being drilled form a single pad has become more common in the
upper regions which result in larger well pads.

In low image quality areas, areas that are very difficult to differentiate the well
pad boundary, and in areas where the well pads are very small in size, feature
extraction system has an accuracy of 77.57%. In the southern region of Alberta
where agricultural and grass land areas exist, the system has a rate of 56.89%. The
challenges in the southern region come from problems in the agricultural areas,
issues caused by saturated imagery (high or low gain), and difficulties due to the fact
that well pads that are too small. Using the land cover dataset in these problematic
areas and defining different parameters in the system was helpful in delineating
some of the problematic well pads.

Conclusion

This study has developed a method to efficiently and accurately map the well pad
and gas plant footprint in Alberta from satellite imagery; and to integrate this
method into a complete semi-automated software solution for the production of
anthropogenic footprint map layers. Multiple remote sensing methodologies in a
GEOBIA framework were used to obtain the footprints in an automated manner,
such as image classification, standard Hough transform, region growing, edge
delineation, polygon simplification, texture and contrast differential techniques. The
results show that the combination of several spatial characteristics such as image
texture, contextual information, pixel proximity and geometric attributes of the
features gives advantages over typical pixel based methods. The algorithm currently
processes a minimum of 30 well pads per minute with an accuracy greater than 80%.

There are area specific situations in which the developed automated feature
extraction process has lower accuracy in delineating the well pad footprints. For
example, scenarios with two or more well pads being very close to each other,
or roads or pipeline corridors near the well pad being too wide for the algorithm
to differentiate from actual well pads are some remaining technical challenges.
Continued development of the algorithm will resolve these challenges and improve
the accuracy results. The innovative approach proposed in this study provides a
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standardized methodology for footprint mapping with quantifiable accuracy, elimi-
nating the need for estimation, which can be useful to private sector, NGO markets
and government ministries. The developed technology can easily be adjusted to map
additional anthropogenic footprint features, such as pipelines, forestry cut blocks,
gravel pits, and resource access roads.
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Modeling Urban Land-Use Suitability with Soft
Computing: The GIS-LSP Method

Suzana Dragićević, Jozo Dujmović, and Richard Minardi

Introduction

Spatial Decision Support Systems (SDSSs) facilitate spatial decision-making using
a hybrid computational and expert knowledge approach for semi-structured decision
tasks [1, 2]. SDSS frameworks combine spatial data management, analytical model-
ing, visualization, and require the interaction of a decision-maker, analyst or group
of stakeholders. SDSSs may function as stand-alone software tools customized
for a narrow application domain or integrated within a Geographic Information
Systems (GIS) framework [3]. A GIS-SDSS integration methodology builds on
the visualization, data processing, and database management capabilities of fully
developed GIS applications. Integration is recognized as an appropriate approach for
implementing SDSS methods and more particular multicriteria evaluation (MCE)
procedures [4].

Spatial multicriteria evaluation (MCE) is a general term given to decision
modeling approaches that can be used within SDSSs operating on geospatial data
[5]. A spatial MCE approach consists of a set of mapped choice alternatives
(locations), a set of preference criteria, and a means of evaluating each choice
alternative based on the criteria set [6]. Alternatives are given cumulative suitability
scores presented cartographically as a mapped suitability index or suitability map.

S. Dragićević (�) • R. Minardi
Spatial Analysis and Modeling Laboratory, Department of Geography, Simon Fraser University,
8888 University Drive, Burnaby, BC, Canada V5A 1S6
e-mail: suzanad@sfu.ca; rdm4@sfu.ca

J. Dujmović
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Suitability maps are the product of a suitability analysis used for the visualization of
preference, likelihood, or consequences surrounding a phenomenon, or activity [7].
For this study, the term MCE refers specifically to a soft computing evaluation logic
approach that is implemented in a raster GIS environment. Soft computing MCE
approaches use inputs encoded as continuous variables ranging from a minimum of
0 (not suitable) to a maximum of 1 (most suitable) [8].

The scientific literature on spatial MCE approaches can be broadly classified as
addressing either applications or theory development. Land use suitability analysis
is one common application area [9–12]. Spatial MCE in land use planning also
forms a significant application area [13, 14]. A prototype urban planning support
tool based on MCE is developed for the Queensland region of Australia [15].
Joerin et al. [16] examined residential suitability under conditions of environmental
noise pollution. Hill et al. [17] presented a decision support system (ASSESS) used
for agricultural land use policy analysis in Australia. Moreover, other application
approaches represent a wide range of spatial decision-making situations includ-
ing habitat suitability [18], agricultural suitability analysis [19], risk and hazard
assessment [20], urban landslide susceptibility [21], infrastructure planning [22, 23],
environmental sustainability [24, 25], and socio-economic analysis [26].

In addition to the various application domains, researchers have focused on
enhancing three theoretical aspects of spatial MCE—decision operators and prefer-
ences, hybrid systems, and uncertainty analysis. Rinner and Taranu [27] developed
an interactive tool for MCE-based decision making dealing with preference eval-
uations. Proctor and Drechsler [28] as well as Feick and Hall [29] developed and
tested an MCE approach for collaborative planning. A GIS-MCE approach is used to
study competing goals in forest conservation planning in Malaysia [30]. Wood and
Dragicevic [31] used a multi-objective GIS decision support framework to identify
optimal marine protection locations based on criteria representing the conflicting
objectives of conservation and resource extraction. Recent work has also dealt with
developing hybrid spatial MCE systems [32, 33] and addressing uncertainty [34,
35].

Spatial MCE approaches based on linear models are conceptually limited since
they produce an oversimplified representation of human reasoning and decision
making [36–38]. These linearized MCE have two key shortcomings: (1) the number
of inputs that may be combined is limited, and (2) the decision logic does not reflect
logic conditions needed for decision problems. These two issues are related to the
linear aggregation process used in the MCE process. A linear additive combination
is used, known as the Weighted Linear Combination (WLC) rule. In the WLC,
criteria are first assigned a weight and subsequently summed returning suitability
scores used to make a suitability map [8]:

S D
n
X

iD1

wixi; 0 < wi < 1; i D 1; : : : ; n;

n
X

iD1

wi D 1; (1)
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where S is the aggregated overall suitability, w is an array of positive normalized
weights representing the relative importance of elementary decision criteria used to
generate an array of n scores (x1, : : : , xn). The WLC rule is compensatory; a low
input score may always be compensated by other higher criteria scores in the same
location. In other words, it is not possible to model mandatory requirements where
the absence of a mandatory input (xi D 0) must not be compensatory and must yield
S D 0.

A second key shortcoming of the WLC systems is their limitation in the number
of data inputs n. As the number of input attributes increases, the significance of each
input decreases. Because the total sum of attribute weights must sum to unity, the
mean value of weights is 1/n and it can become insignificant for large number of
input attributes. For WLC systems the total impact of input xi is:

ıi D S .x1; : : : ; xi�1; 1; xiC1; : : : ; xn/ � S .x1; : : : ; xi�1; 0; xiC1; : : : ; xn/ D wi (2)

The average impact is:

ı D .ı1 C � � � C ın/ =n D 1=n (3)

and as n increases the average impact becomes negligible. In a general case, that is
not a desirable property.

A third key shortcoming of WLC systems is their limitations with respect to
decision logic. In many cases decisions require the application of logic conditions
and requirements to compare and select a set of locations over the alternatives. The
most frequent logic operators are models of simultaneity (AND) and replaceability
(OR). The AND operator denotes partial or full conjunction and is similar to a
minimum function, whereas the OR operator denotes partial or full disjunction and
is similar to a maximum function. The traditional WLC approach yields a fully
neutral decision logic that is neither AND nor OR. Neutral logic is only one of
several necessary logic aggregators. According to Dujmović et al. [39], logical
requirements such as mandatory, nonmandatory, sufficient, mandatory-optional,
sufficient-optional, and others are necessary for real-world decision-making. In
order to practically implement these logic aggregators, the Logic Scoring of
Preference (LSP) method is proposed.

The LSP method is based on the multicriteria decision-making approach but
has origins in soft computing where variables are treated as a matter of degree. A
key feature of the LSP method is the nonlinear attribute criteria and aggregation
structures that model decision requirements. These features make LSP a more
well-suited method to handle complex spatial problems that require numerous
attributes and a high level of detail. The LSP has previously been used as a method
for evaluating software and web interfaces [40–42]. Spatial applications and LSP
suitability map have also been proposed by Dujmović et al. [39] at theoretical level
and hypothetical spatial datasets. The integration of LSP method within GIS and
with use of real geospatial data is at initial stages [43, 44] and yet is to be fully
implemented.
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Therefore the main objective of this study is to develop an integrated GIS and
LSP method for the purpose of defining land use suitability. Suitability is expressed
as raster suitability maps representing a real geographic study area. The model is
built to test the LSP approach in a spatial context using geospatial data in a raster
GIS framework. The LSP approach is also compared to a MCE/WLC structured
approach. The comparison served to: (1) identify the limitations of MCE/WLC
suitability maps, and (2) highlight the relevant qualities of LSP such as nonlinear
aggregation and flexible logic aggregators to address the WLC limitations. The LSP
method is applied to a residential land use suitability analysis procedure for the
Bowen Island Municipality, Canada.

Properties of the Logic Scoring of Preference (LSP) Method

Theoretical Background

The LSP method is outlined below as a novel approach to investigate semi-
structured spatial decision problems in a GIS framework. The LSP is originally
conceived as a general multicriteria approach and used for evaluation of software
systems, web browsers and user interfaces [40]. The approach has also been
extended to the evaluation of complex spatial systems [39]. De Tré et al. [45]
described a framework for building LSP suitability maps, or s-maps. Approaches
for generating LSP-derived suitability maps have been described using empirically
derived data for a hypothetical optimal home location sitting [46]. Dujmović and
De Tre [47] investigated this problem and described an interactive, dynamic web-
based LSP system integrated with Google Maps (publicly available at seas.com
suitability maps) enabling non-expert users to parameterize and customize the
system. A spatial LSP system may be configured to provide analysis of the financial
components and costs related to a decision strategy [45]. De Tré et al. [48] have
proposed suitability maps that express bipolar satisfaction (degrees of satisfaction
and dissatisfaction) of decision criteria incorporating LSP aggregators.

Elements of the LSP

The LSP criterion structure is presented in Fig. 1. LSP criteria are built in three
steps: (1) an attribute tree used to derive n input attributes (a1, : : : , an), (2) a set
of n elementary (attribute) criteria that are functions for evaluation of individual
attributes (x1 D g1(a1), : : : , xn D gn(an)), and (3) an aggregation structure to com-
bine the attribute suitability scores x1 , : : : , xn and generate the overall suitability of
the system x D L(x1, : : : , xn). This criterion structure is consistent with observable
properties of human evaluation reasoning and can be used in each point of a two-
dimensional map to create a suitability score.

http://seas.com
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Fig. 1 Structure of the LSP criterion function

A key feature in LSP suitability modeling is the expression of logic requirements.
The basic logic requirements are simultaneity (partial conjunction function) and
replaceability (partial disjunction function). In many cases criteria may require
mandatory satisfaction, or reflect a requirement that is merely optional. For
example, a slope criterion must be satisfied for many land use decision problems.
However, satisfying various “view criteria” may be entirely optional. Ultimately, if
the mandatory slope criterion is not satisfied (assigned a 0 score on a scale of 0 to 1)
in any location, the result will be a null score for that location. A view criterion with
an optional satisfaction requirement is more replaceable; a null score of an optional
criterion will not disqualify a choice alternative.

Partial conjunction and partial disjunction are fundamental LSP aggregation
operators. The partial conjunction is similar to the traditional (full) conjunction
(and function, or minimum) and the partial disjunction is similar to the traditional
(full) disjunction (or function, or maximum). The degree of similarity between the
partial conjunction and the full conjunction is called andness (’) and it satisfies
0 � ’ � 1. The degree of similarity between the partial disjunction and the full
disjunction is called orness (¨) and it satisfies 0 � ¨ � 1. Furthermore, ’ C ¨ D 1
and the pure conjunction is denoted using ’ D 1, ¨ D 0, and the pure disjunction
is denoted using ’ D 0, ¨ D 1. By selecting andness and orness between 0 and 1
we get a continuous transition from conjunction to disjunction and can select the
desired degree of simultaneity and replaceability. For example, if ’ > 1/2, then we
have a model of simultaneity and by increasing the value of ’ we can increase
the level of penalizing systems that do not simultaneously satisfy a set of criteria.
The arithmetic mean and all MCE/WLC models are a special case characterized as
neutrality, ’ D ¨ D 1/2.

The partial conjunction, disjunction, and neutrality can be interpreted as special
cases of the Generalized Conjunction/disjunction (GCD) function which is usually
implemented as a weighted power mean [39, 49] as follows:

S D
 

n
X

iD1

wix
r
i

!1=r

; 0 < wi < 1; 0 � xi � 1; i D 1; : : : ; n;

n
X

iD1

wi D 1;

� 1 � r � C1; 0 � S � 1: (4)
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Here S represents the aggregated degree of suitability (or a suitability score),
xi denotes an input attribute degree of suitability, wi is the user defined attribute
weight reflecting the relative importance of the selected input, and r is the parameter
that determines the logical behavior of the function (andness/orness). If r D �1
then GCD becomes a pure conjunction (the minimum function) and if r D C1
then GCD becomes a pure disjunction (the maximum function). In the range
�1 � r < 1 GCD has predominantly conjunctive properties and is used for
modeling simultaneity. In the range �1 < r � 0 GCD is called the hard partial
conjunction (HPC) and used for modeling mandatory requirements. For example, if
r D 0 then GCD becomes a geometric mean as follows:

S D
n
Y

iD1

xwi
i (5)

Obviously all inputs are mandatory; if any input is not satisfied (xi D 0),
then S D 0, proving that the satisfaction of all inputs is indeed mandatory. If
0 < r < 1 then GCD becomes a soft partial conjunction (SPC) which has conjunctive
properties, but a single positive input is sufficient to produce the positive output.
In the range 1 < r < C 1 GCD based on weighted power mean has predominantly
disjunctive properties and is used for modeling soft partial disjunction. The hard
partial disjunction can be modeled as a De Morgan dual of hard partial conjunction
[42, 49]. For r D 1 the resulting GCD becomes the neutral arithmetic mean which
has a perfect balance of conjunctive and disjunctive properties. In this research
we use the GCD symbols and parameters presented in Table 1. The soft partial
conjunction with increasing strength is implemented using aggregators C��, C�,
and the hard partial conjunction using aggregators C�C, CA, CC�, CC, and
CCC. Similarly, the partial disjunction is implemented using aggregators D��,
D�, D�C, DA, DC�, DC, and DCC.

The GCD has a spectrum of properties and it is up to decision maker to
select those properties that reflect the desired behavior (the intensity of simultane-
ity/replaceability) of the suitability aggregation function. By combining various
forms of GCD it is possible to create advanced compound functions. The most
frequently used compound function is the conjunctive partial absorption (CPA)
that combines two asymmetric inputs: a mandatory input x and an optional input y.

Table 1 Symbols and parameters of GCD (nD 2)

Orness (¨) 1
15

16

7

8

13

16

3

4

11

16

5

8

9

16

1

2

Symbol D DCC DC DC� DA D�C D� D�� A
r C1 20.6 9.52 5.8 3.93 2.79 2.02 1.45 1

Andness (’) 1
15

16

7

8

13

16

3

4

11

16

5

8

9

16

1

2

Symbol C CCC CC CC� CA C�C C� C�� A
r �1 �9.06 �3.51 �1.66 �0.72 �0.15 0.26 0.62 1
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The output value z D f(x,y) has the following properties: f(0, y) D 0, y � 0, f(x,
0) D x-penalty, x > 0, and f(x, 1) D x C reward, 0 < x < 1. Both the penalty and
the reward are functions of input x and the decision makers determine parameters of
the CPA function by selecting the average desired penalty P and the average desired
reward R. Most frequently the average penalty is selected in the range [10–40%] and
the average reward is selected from R < P. More details are available in Dujmović
[42].

A less frequently used asymmetric aggregation function is the disjunctive partial
absorption (DPA) that combines two asymmetric inputs: a sufficient input x and an
optional input y. The output value z D f(x,y) has the following properties: f(1, y) D 1,
y � 0, f(x, 0) D x—penalty, and f(x, 1) D x C reward, 0 < x < 1.

The degree of suitability can be interpreted simply as a score, but there are two
other more precise interpretations. Each degree of suitability can be interpreted as
the degree of fuzzy membership in the fuzzy set of perfectly suitable systems, or
we can interpret the degree of suitability as the degree of truth of the statement
claiming perfect satisfaction of requirements. All these interpretations are equivalent
and equally convenient in the area of suitability maps. For simplicity, we assume
that “suitability” denotes the degree of suitability (or the suitability score) with
either fuzzy or logic interpretation. The LSP suitability maps rank each geographic
location with a score ranging from 0 (not suitable) to 1 or 100% (most suitable).

The LSP approach and logic aggregation structures process input data more
effectively than an MCE/WLC approach and also provide more data-rich and
expressive suitability models. The weights in LSP models can be determined using
neural network training methods [50], AHP [51], and various auxiliary software
tools. The LSP aggregation process is based on systematic use of hard partial con-
junction, soft partial conjunction, hard partial disjunction, soft partial disjunction,
neutrality, conjunctive partial absorption and disjunctive partial absorption in a way
illustrated in the next section. These fundamental aggregators, as well as hierarchical
aggregation structures built using the superposition of seven fundamental LSP
aggregator types are unique features of the LSP approach and provide more
flexibility than previously used techniques for making criteria based on WLC, AHP,
and OWA [52].

The hierarchical method of aggregation permits a large number of relevant inputs
to be included in an evaluation with minimized data loss. The next section outlines
the approach for creating GIS-LSP suitability maps.

Approach for Designing GIS-LSP Urban
Land Suitability Maps

This section presents the framework for an integrated GIS-LSP prototype model
used to evaluate the urban land use suitability in the Bowen Island, British
Columbia, Canada using raster GIS data sets. The extent of the study is a 14 � 14 km
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area comprised of rugged bedrock-dominated terrain situated at the entrance of
Howe Sound, Canada [53, 54]. Under the pressures of intensified residential
development, Bowen Island has experienced significant changes in its natural
environments. Raster GIS data sets and digital elevation model (DEM) sets acquired
from the Province of British Columbia are used in this study. The main goal is to
illustrate all steps in the process for developing GIS-LSP suitability maps.

Integrating Raster GIS and the LSP Method

The LSP approach assumes a tight integration with raster GIS. A GIS-LSP
framework uses geographically referenced database map layers as input, and relies
on GIS operations to standardize and define elementary attributes, evaluate their
suitability, implement LSP operators, and calculate suitability scores for each choice
alternative. The GIS may be used to formulate a suitability index, or alternatively
select the top ranked locations in the study site. It is assumed that an overall
justifiable LSP suitability score can be computed in each (x,y) point of the analyzed
area. In such a case, inputs and output results can be visualized in map form. With
the support of map visualization, users may perform model validation, a sensitivity
analysis, or create a series of alternative decision scenarios. By changing different
features (the attribute tree, factor weights, LSP aggregators, and the aggregation
structure) of the LSP system a new or series of new output maps can be generated.
The integrated GIS and LSP model involves systematic development the following
stages: (1) development of an attribute tree, (2) elementary criteria definition, (3)
aggregation structure selection, and (4) computation of a global suitability score.

The Attribute Tree

The first step in creating an LSP suitability map involves constructing an attribute
tree that organizes the decision problem and contains all relevant attributes. There
are two considerations when selecting the attributes: (1) the attributes are restricted
to only the data in the GIS database, and (2) the selected attributes must be sufficient
to completely and correctly describe the suitability map criterion based on the needs
and interests of stakeholders.

In the Bowen Island study, the available GIS data included the following
parameters: (1) slope, (2) aspect, (3) road access, (4) water access, (5) ferry terminal
access, (6) natural park access, (7) elevation, (8) stream location, (9) wetland areas,
(10) lakes, (11) public transit locations, (12) forestry data (tree age, average tree
volume), and (13) watershed unit locations. For simplicity, the first six components
from the above list to evaluate the suitability for residential development have been
chosen. Then the structure of the attribute tree is shown in Fig. 2.
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1. Suitability for residential development
1.1. Suitability of site (+)

1.1.1 Basic site properties (+)
1.1.1.1 Slope (+)
1.1.1.2 Aspect (-)

1.1.2 Accessibility and transportation (+)
1.1.2.1 Proximity to roads (+)
1.1.2.2 Proximity to ferry terminal (+)

1.2. Amenities (-)
1.2.1 Proximity to coast (-)
1.2.2 Proximity to parks (-)

Fig. 2 Basic attribute tree for residential development suitability analysis

In Fig. 2, the symbol (C) denotes mandatory inputs and the symbol (�) denotes
optional inputs. Whenever we aggregate two components using weighted power
means there are the following four possibilities:

• Both components are mandatory (if any input suitability is zero, the output
suitability is zero). In such cases the aggregator must be a HPC;

• Both components are optional (the output suitability is zero only if all inputs
are zero). In such cases the aggregator can be a SPC, neutrality, or a partial
disjunction;

• One input is mandatory and the other input is optional (if the mandatory input is
zero the output is zero regardless the value of the optional input; if the mandatory
input x is positive and the optional input y satisfies y > x the output z satisfies
z > x; otherwise, if y < x then z < x). In such cases the aggregator is a CPA;

• One input is sufficient and the other input is optional (if the sufficient input is 1,
the output is 1 regardless the value of the optional input; if the sufficient input
x is positive and the optional input y satisfies y > x the output z satisfies z > x;
otherwise, if y < x then z < x). In such cases the aggregator is a DPA.

A similar reasoning can also be used in cases with more than two inputs. As
shown in Fig. 2, it is possible and useful to identify mandatory and optional (desired,
but nonmandatory) attributes in the earliest stage of designing an LSP criterion. In
our case, the slope is mandatory and the aspect is optional. Similarly, the analyzed
site must be suitable, but the amenities are optional. These decisions must be
justifiable and correctly reflect the stakeholder’s standpoint. In Fig. 2 we defined
six input attributes (1.1.1.1, 1.1.1.2, 1.1.2.1, 1.1.2.2, 1.2.1, and 1.2.2). All other
attributes are compound. Each input attribute should be relevant to the problem at
hand and non-redundant.
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Fig. 3 Elementary criteria for case study evaluation of residential development suitability. (The
variable �1 refers to locations without measurable degree of slope)

Elementary Criteria Definition

The second step of the LSP method defines the elementary criteria with one criterion
function for each input attribute. Each elementary criterion is a function that shows
the degree of satisfaction that corresponds to specific values of the input attribute.
The six elementary criteria for the evaluation of the suitability for residential
development in the Bowen Island study are shown in Fig. 3. The selection of criteria
has been based on the household point of view. The range of suitability is from a
minimum of 0 to a maximum of 1. The suitability score can also be interpreted
as a degree of fuzzy membership or the degree of truth of a value statement. The
descriptions of the criterion logic are provided in Table 2.

The Suitability Aggregation Structure

The third step of the LSP method involves selecting an appropriate aggregation
structure to combine attribute suitability scores. Elementary criteria structured
within the attribute tree described above generate attribute suitability scores that are
used as input to a user-designed aggregation structure. The structure employs user-
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Fig. 4 Suitability aggregation structure for the residential development criterion

selected LSP aggregators based on the GCD function and implemented using the
WPM. The aggregation structure combines criteria according to the categorization
of the attribute tree. Categorically grouped inputs are then aggregated. Aggregation
structure design must follow patterns defined in the attribute tree and must reflect
other stakeholder requirements (relative importance, simultaneity, replaceability,
etc.).

The proposed suitability aggregation structure for the residential development
criterion is presented in Fig. 4. Inputs of all aggregators show the percent weights
that reflect the degrees of relative importance. We use two conjunctive partial
absorption (CPA) aggregators; their parameters are derived from the desired average
penalty (P) and reward (R) that are also shown in Fig. 4.

Generally, it is theorized that system evaluations follow identifiable patterns.
Dujmović and De Tre [47] refer to these evaluation patterns as canonical aggrega-
tion structures (CAS). In an LSP system, criteria are aggregated and combined in a
stepwise, non-linear fashion. As more input attributes are combined into subgroups,
their collective importance and logical strength increases. A conjunctive CAS, for
example, uses less conjunctive logical operators at lower levels in the aggregation
structure. As additional criteria become absorbed into larger aggregate layers, the
level of andness increases in the system. Stronger conjunctive aggregators are
needed to reflect stronger requirements, requiring a hard partial conjunction operator
to derive the final solution.

A series of connected LSP aggregators are implemented with the WPM to
combine each elementary criteria into a comprehensive suitability score. Parameter
values r correspond to the different levels of modeled logical requirements and
are: �3.510 (CC or hard partial conjunction); 1 (A or mean average); and 9.521
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(DC or hard partial disjunction). The land-use suitability assessment is done with
an aggregated mandatory/optional CAS and used as a template for modeling the
decision problem.

First, the categories defined by problem domain are aggregated. The park access
and coast access categories are aggregated using an LSP aggregator representing
SPD (D�) to reflect the optional/replaceable nature of these inputs. The road and
the ferry access criteria are aggregated with a HPC (CA) aggregator reflecting
a mandatory requirement. Aggregation of the slope and the aspect criterion is
accomplished with the application of a CPA structure built from a neutral aggregator
(A) and a HPC aggregator (CA). In this case, the full satisfaction of the optional
criterion (aspect) augments the non-zero score of the mandatory criterion with
a reward, and a null aspect score assigns a penalty to the mandatory criterion.
Ultimately, if the mandatory input (slope) is not satisfied, the optional input has no
compensatory power, and the aggregator returns a zero value. The final aggregator
applied is another CPA structure to combine the mandatory and optional categories
using the A and CC aggregators, as shown in Fig. 4.

GIS-Based LSP Suitability Maps

The input criteria used for the LSP evaluation are derived from GIS data at 25 m
spatial resolution and standardized. Slope and aspect are obtained from a DEM
data set. The road access, ferry terminal access, and park access are obtained
by applying a raster-based GIS Euclidian distance function. Piecewise linear
trapezoidal functions are applied for designing elementary criteria and computing
attribute suitability. As this study investigates novel methodological approaches,
criteria variables are chosen primarily to illustrate the methodology. Each attribute
suitability map is presented in Fig. 5. The final suitability map of Bowen Island
Municipality with obtained scores for urban land-use development is presented
in Fig. 6. The obtained values of suitability scores are based on the aggregation
structure presented in Fig. 4.Values closer to 1 (dark grey and black) indicate the
locations with highest level of suitability based on GIS-LSP model while the lighter
colors (up to 0) indicate unsuitable locations.

It is important to emphasize that the suitability map in Fig. 6 reflects logic con-
ditions specified in the logic aggregation structure (Fig. 4) where the slope, the road
distance and the ferry terminal distance are the mandatory requirements. Therefore,
it is not acceptable to propose development in areas that have unacceptable slope,
or are too far from roads, or too far from the ferry terminal. That is expressed as
white areas in the LSP suitability map presented in Fig. 6. On the contrary, if the
suitability map is based on an equivalent linear WLC-MCE criterion, the result is
shown in Fig. 7, where all areas are grey, indicating that there is no location that is
unsuitable for urban development. The assigned weights with the WLC are selected
for each criteria layer to be as follows: slope (.30), aspect (.10), road access (.30),
coast access (.15), park access (.05), ferry terminal access (.10). These results are
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Fig. 5 Maps for suitability of input attributes based on the selected criteria: (i) slope, (ii) aspect,
(iii) road access, (iv) park access, (v) coast access, and (vi) ferry terminal access
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Fig. 6 GIS-based LSP suitability map with suitability scores

less selective then the ones obtained by the LSP method. For example, suitability
scores sometimes can be meaningless when the linear model would claim that the
location with a very high (or vertical) slope (for example close to 90ı) is suitable
for urban development only because some other properties (e.g. a distance from the
ferry terminal, or the distance from a road) are partially satisfied. Such errors are
the consequence of additive compensatory features of the linear model and do not
occur in the nonlinear LSP suitability maps.

Conclusions

The selection of logic qualifiers and aggregators is by definition subjective and
unique to the decision problem and expertise of the decision-maker. While the model
output is sensitive to the decision maker’s choice of aggregation structure, weights,
and aggregators, the use of the GIS-LSP method provides a tool that decision makers
can efficiently use to precisely express a spectrum of justifiable requirements.
Basically, our study has demonstrated that: (1) the soft computing LSP criteria
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Fig. 7 A linear WLC-MCE criterion and the corresponding suitability map

can be integrated in a GIS for processing data representing real study sites, (2)
the GIS-LSP approach overcomes the unreliable results of WLC-MCE through the
application of modeled logic requirements resulting in more selective and justifiable
suitability maps, and (3) the LSP maps are produced through nonlinear aggregation
and result in more data-rich results than WLC-MCE can provide. Dujmović and
De Tre [47] have started a theoretical study of comparison of different MCE
methods. However, in the GIS area, more detailed work is necessary to perform the
comparisons of LSP method with other ones based on analytical hierarchy process
(AHP), weighted linear combination (WLC), Ordered Weighted Averaging (OWA),
and with the use of geospatial data in real life problems, particularly those with large
number of attributes. This work indicates that the GIS-based LSP approach offers
many opportunities to implement highly complex relationships among factors and
multiple objectives in the analysis of complex spatial suitability problems.
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An Algorithmic Approach for Simulating
Realistic Irregular Lattices

Juan C. Duque, Alejandro Betancourt, and Freddy H. Marin

Introduction

The complexity of computational experimentation in regional science has drasti-
cally increased in recent decades. Regional scientists are constantly developing
more efficient methods, taking advantage of modern computational resources and
geocomputational tools, to solve larger problem instances, generate faster solutions
or approach asymptotics. The first formulation of the p-median problem provides
a numerical example that required 1.51 min to optimally locate four facilities in a
10-node network [52]; three decades later, Church [16] located five facilities in a
500-node network in 1.68 min. As noted by Anselin et al. [7], spatial econometrics
has also benefited from computational advances; the computation of the determinant
required for maximum likelihood estimation of a spatial autoregressive model
proposed by Ord [47] was feasible to apply for data sets not larger than 1000 obser-
vations. Later, Pace and LeSage [48] introduced a Chebyshev matrix determinant
approximation that allows the computation of this determinant for over a million
observations in less than a second. According to Blommestein and Koper [11], one
of the first algorithms for constructing higher-order spatial lag operators, which was
devised by Ross and Harary [54], required 8000 s (approximate computation time)
to calculate the sixth-order contiguity matrix in a 100�100 regular lattice. Anselin
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and Smirnov [5] proposes new algorithms that are capable of computing a sixth-
order contiguity matrix for the 3111 U.S. contiguous counties in less than a second.

An important aspect when conducting computational experiments in regional
science is the selection of the way that the spatial phenomena are represented
or conceptualized. This aspect is of special relevance when using a discrete
representation of continuous space, such as polygons [34]. This representation can
be accomplished through regular and irregular lattices; the use of one or the other
could cause important differences in the computational times, solution qualities
or statistical properties. We suggest four examples, as follows: (1) The method
proposed by Duque et al. [21] for running the AMOEBA algorithm [1] requires
an average time of 109 s to delimit four spatial clusters on a regular lattice with
1849 polygons. This time rises to 229 s on an irregular lattice with the same number
of polygons. (2) For the location set covering problem, Murray and O’Kelly [46]
concluded that the spatial configuration, number of needed facilities, computational
requirements and coverage error all varied significantly as the spatial representation
was modified. (3) Elhorst [24] warns that the parameters of the random effects
spatial error and spatial lag model might not be an appropriate specification when
the observations are taken from irregular lattices.1 (4) Anselin and Moreno [4] finds
that the use of regular or irregular lattice affects the performance of test statistics
against alternatives of the spatial error components form.

However, returning to the tendency toward the design of computational experi-
ments with large instances, there is an important difference between generating large
instances of regular and irregular lattices. On the one hand, regular lattices are easy
to generate, and there is no restriction on the maximum number of polygons. On the
other hand, instances of irregular lattices are usually made by sampling real maps.
Table 1 shows some examples of this practice.

The generation of large instances of irregular lattices has several complications
that are of special interest in this paper. First, the size of an instance is limited
to the number of polygons of the available real lattices. Second, the possibility of
generating a large number of different instances of a given size is also limited (e.g.,
generate 1000 instances of irregular lattices with 3000 polygons). Third, as shown
in Fig. 1, the topological characteristics of irregular lattices built from real maps
change drastically, depending on the region from where they are sampled, which
could bias the results of the computational experiments.2

This paper seeks to contribute to the field of computational experiment design
in regional science by proposing a scalable recursive algorithm (RI-Maps), which
combines concepts from stochastic calculus (mean reversing processes), fractal
theory and computational geometry to generate instances of irregular lattices with
large number of polygons. The resulting instances have topological characteristics
that are a good representation of the irregular lattices sampled from around the

1See also Anselin [3], p. 51.
2Later in this paper, we show that the topological characteristics of Voronoi diagrams are far from
those for an “average” map sampled in different parts of the world.
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Table 1 Annotated chronological listing of studies that use irregular lattices generated by
sampling real maps

Study Purpose Source of irregular lattices

Mur Lacambra [45] Compares different methods to
detect spatial autocorrelation

Spain provinces in 1985 (sizes
14 and 48 polygons)

Anselin et al. [6] Performance of a diagnostic test
for spatial dependence

“COROP” and “economic
geographic” regions in The
Netherlands (sizes 40 and 81,
respectively)

Smirnov and Anselin [55] Performance of a new method
for evaluating the Jacobian term

921 counties (Kreise) for
Germany; 3107 U.S. continental
counties; 3140 U.S. counties
and 29,762 U.S. postal zip
codes

Anselin and Moreno [4] Extend the knowledge about the
properties of spatial correlation
tests, especially in empirical
applications

Spatial grouping of Western
U.S. counties for dimensions
46, 80, 124, 264, 413 and 1013

Duque et al. [23] Performance of an algorithm for
spatial clustering (the
max-p-regions model)

Sacramento census tracks (403),
Colombian municipalities
(1068) and U.S. census tracks
(3085)

Fig. 1 Examples of two instances of 900 irregular polygons. (a) United States. (b) Spain

world. Last, the use of these instances guarantee that the difference in the results
of computational experiments are not consequence of differences in the topological
characteristics of the used lattices.

The remainder of this paper is organized as follows: Section “Conceptualizing
Polygons and Lattices” introduces the basic definitions of the polygons and
lattices and proposes a consensus taxonomy of the lattices. Section “Topological
Characteristics of Regular and Irregular Lattices” presents a set of indicators that
are used to characterize the topological characteristics of a lattice and shows the
topological differences between regular and irregular lattices. Section “RI-Maps:
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An Algorithm for Generating Realistic Irregular Lattices” presents the algorithm
for generating irregular lattices. Section “Results” evaluates the capacity of the
algorithm to generate realistic irregular lattices. Finally, Section “Application of RI-
Maps” presents the conclusions.

Conceptualizing Polygons and Lattices

A polygon is a plane figure enclosed by a set of finite straight line segments.
Polygons can be categorized according to their boundaries, convexity and symmetry
properties, as follows:

(i) Boundary: A polygon is simple when it is formed by a single plain figure with
no holes, and it is complex when it contains holes or multiple parts.3

(ii) Convexity: In a convex polygon, every pair of points can be connected by a
straight line without crossing its boundary. A concave polygon is simple and
non-convex.

(iii) Symmetry: A regular polygon has all of its angles of equal magnitude and all
of its sides of equal length. A non-regular polygon is also called irregular
[19, 38].

A lattice is a set of polygons of any type, with no gaps and no overlaps, that
covers a subspace or the entire space. Next, a more formal definition: A lattice is
the division of a subspace S 	 Rn into k subsets i 	 S such that [i D S and
\i D �, where � is the empty set of Rn [32].4 There exist different taxonomies of
lattices depending on the field of study. In an attempt to unify these taxonomies, a
consensus lattice taxonomy is presented in Fig. 2. This taxonomy classifies lattices
according to the shapes of their polygons, their spatial relationship and the use, or
not, of symmetric relationships to construct the lattice5:

(i) According to the variety of the shapes of the polygons that form the lattice:
Homomorphisms are lattices that are formed by polygons that have the same
shape, and polymorphisms are lattices that are formed by polygons that
have different shapes.

(ii) According to the regularity of the polygons that form the lattice and the
way in which they intersect, each vertex6: Regular, lattices formed by regular
polygons in which all of the vertexes join the same arrangement of polygons
[57]; semi-regular, when the polygons are regular but there are different
configurations of vertexes; and irregular otherwise [28].

3Complex polygons do not refer to polygons that exist in the Hilbert plane [19].
4This paper focuses exclusively on bidimensional lattices (i.e., n D 2).
5An alternative category is proposed for lattices formed by fractal polygons that are informally
defined by Mandelbrot [42] as rough fragmented geometric shapes that could be infinitely divided
into scalable parts.
6Considering the vertexes to be all of the points of the lattice that intersect three or more polygons.
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Fig. 2 Consensus taxonomy of lattices

(iii) According to the existence of symmetric relationships within the lattice7:
Symmetric, when the lattice implies the presence of at least one symmetric
relationship; and asymmetric otherwise.

(iv) According to the symmetric relationship of translation: A lattice is periodic if
and only if it implies the use of translation without rotation or reflection; it is
aperiodic otherwise [57].

Table 2 shows an example of each category of this consensus taxonomy.
The topological characteristics of lattices are usually summarized through the

properties of the sparse matrix that represent the neighboring relationships between
the polygons in the map, the so-called W matrix [8, 12, 30, 41, 50].8 This paper uses
six indicators of which the first three are self-explanatory: The maximum (Mn),
minimum (mn) and average number of neighbors per polygon (�1). The fourth
indicator, the sparseness (S), see Eq. (1), is defined as the percentage of ones entries
with respect to the total number of entries in a binary W matrix (k2, where k is the
number of polygons in the lattice). The fifth indicator is the first eigenvalue of the W
matrix (�1). It is an algebraic construct commonly used in graph theory [26, 58] and
regional science [12–14, 30] to summarize different aspects of the W matrix. The
first eigenvalue, 1, is the maximum real value, , that solves the system given by
Eq. (2), where Ik is the identity matrix of order k � k. The last indicator, (�2), is the

7There are three types of symmetrical relationships: Translation, when the lattice is formed by
translating a subset of polygons; reflection, when there are axes of reflection in the lattice; and
rotation, when it is possible to obtain the same lattice after a rotation process of less than 2� [51].
8 See Anselin [3] for more information about this matrix.
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Table 2 Example lattices

variance of the number of neighbors per polygon. It measures the spatial disorder of
a lattice, and is given by Eq. (3), where Wij denotes the value of W in the row i and
column j.
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S D
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W
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(1)
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Within the field of regional science, lattices are frequently used with two
purposes: First, real lattices can be used to study real phenomena, e.g., to analyze
spatial patterns, confirm spatial relationships between variables and detect spatio-
temporal regimes within a spatial panel, among others. Second, lattices can be used
to evaluate the behavior of statistical tests [4, 45], algorithms [21] and topological
characteristics of lattices [8, 40, 41]. In these cases, it is necessary to use sets of
lattices that satisfy some requirements imposed by the regional scientist, e.g., the
number of polygons, regularity or irregularity of the polygons and the number of
instances. To accomplish this goal, it is a common approach to use a geographical
base for real or simulated data polymorphism irregular aperiodic asymmetric (e.g.,
real lattices and Voronoi diagrams) or homomorphism regular periodic symmetric
lattices (e.g., regular lattices). The following sections are restricted to the second
use of lattices.

Topological Characteristics of Regular and Irregular Lattices

As stated above, regional scientists have the option of using regular or irregular
lattices in their computational experiments. However, this section will show that
there are important topological differences between these types of lattices.

Real lattices have topological characteristics that vary substantially from location
to location. As an example, Fig. 3 presents the topological characteristics of lattices
of different sizes (100, 400 and 900 polygons) sampled in Spain and the United
States. Each box-plot summarizes 1000 instances. Important differences emerge
between these two places: Spanish polygons tend to have more neighbors, are
more disordered and their first eigenvalues are higher in mean and variance.
These differences in the topological characteristics have direct repercussions on
the performance of algorithms whose complexity depends on the neighboring
structure [1, 21].

Regular lattices and Voronoi diagrams are also commonly used for computational
experiments because they are easy to generate, there is no restriction on the size of
the instances (the number of polygons in the map) and their over-simplified structure
allows for some mathematical simplifications or reductions [9, 31, 61]. However,
the topological characteristics of these lattices are substantially different from real,
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Fig. 3 Topological differences of lattices from Spain and the United States

irregular lattices. These differences can lead to biased results in theoretical and
empirical experiments, e.g., spatial stationarity in STARMA models [36], improper
conclusions about the properties of the power and sample sizes in hypothesis testing
[4, 45] and the over-qualification of the computational efficiency of the algorithms
[1, 21], among others. Table 3 shows the topological differences between real maps,
two types of regular lattices and Voronoi diagrams.

To illustrate the magnitude of these differences, we calculated the topological
indicators (Mn, mn, 	1, 	2, S and 1) for six thousand lattices of different sizes
(1000 instances each of 100, 400, 900, 1600, 2500 and 3600 polygons) that
were sampled around the world at the smallest administrative division available in
Hijmans et al. [35]. As an example, Fig. 4 shows seven of those instances. These
real instances are then compared to regular lattices that have square and hexagonal
polygons and Voronoi diagrams.9 To avoid the boundary effect on Mn, mn, 	1 and

9Each one of the six-thousand instances of Voronoi diagrams come from uniformly distributed
points.
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Table 3 Average topological characteristics for real maps, regular lattices and Voronoi diagrams

Number of polygons

81 100 400 900 1,600 2,500 3,600

Real lattices Mn 12.28 13.22 23.22 29.55 42.77 48.53 60.64

˙7.52 ˙9.90 ˙29.89 ˙36.27 ˙50.59 ˙55.07 ˙64.58
mn 2.33 2.13 1.55 1.23 1.04 1.01 1.00

˙1.11 ˙1.06 ˙0.86 ˙0.60 ˙0.22 ˙0.10 ˙0.00
	1 5.57 5.59 5.67 5.69 5.70 5.72 5.72

˙0.65 ˙0.61 ˙0.49 ˙0.45 ˙0.46 ˙0.37 ˙0.37
	2 5.85 6.72 9.76 7.90 8.85 7.73 8.00

˙13.85 ˙22.58 ˙28.79 ˙15.35 ˙12.82 ˙9.39 ˙8.11
S 5.98 4.91 1.30 0.58 0.33 0.21 0.15

˙0.51 ˙0.43 ˙0.11 ˙0.046 ˙0.02 ˙0.01 ˙0.01
1 5.96 6.09 6.89 7.30 8.03 8.33 8.92

˙0.53 ˙0.65 ˙1.52 ˙1.82 ˙2.42 ˙2.62 ˙3.02

Reg. lattice Mn 4 4 4 4 4 4 4

(squares) mn 4 4 4 4 4 4 4

	1 4 4 4 4 4 4 4

	2 0 0 0 0 0 0 0

S 4.44 3.64 0.95 0.43 0.24 0.16 0.11

1 3.80 3.84 3.96 3.98 3.99 3.99 3.99

Reg. lattice Mn 6 6 6 6 6 6 6

(hexagons) mn 6 6 6 6 6 6 6

	1 6 6 6 6 6 6 6

	2 0 0 0 0 0 0 0

S 6.30 5.19 1.39 0.64 0.36 0.23 0.16

1 5.55 5.62 5.88 5.94 5.96 5.97 5.98
Voronoi diagrams Mn 9.15 9.36 10.37 10.90 11.26 11.49 11.71

˙0.77 ˙0.79 ˙0.75 ˙0.74 ˙0.70 ˙0.67 ˙0.68
mn 3.36 3.26 3.00 3.00 3.00 3.00 3.00

˙0.48 ˙0.44 ˙0.03 ˙0.00 ˙0.00 ˙0.00 ˙0.03
	1 5.75 5.77 5.88 5.92 5.94 5.95 5.96

˙0.07 ˙0.05 ˙0.02 ˙0.01 ˙0.00 ˙0.00 ˙0.00
	2 1.68 1.70 1.75 1.76 1.76 1.77 1.77

˙0.31 ˙0.27 ˙0.13 ˙0.09 ˙0.07 ˙0.05 ˙0.04
S 6.67 5.47 1.44 0.65 0.37 0.24 0.17

˙0.08 ˙0.05 ˙0.00 ˙0.00 ˙0.00 ˙0.00 ˙0.00
1 5.88 5.96 6.20 6.26 6.28 6.29 6.30

˙0.05 ˙0.05 ˙0.03 ˙0.02 ˙0.02 ˙0.02 ˙0.02
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Fig. 4 Base map and example of a random irregular lattice obtained from it

	2, the bordering polygons are only considered to be neighbors of interior polygons.
Last, S and 1 are calculated using all of the polygons. Table 3 shows that regular
lattices are not capable of emulating the topological characteristics of real lattices in
any of the indicators: 	2 D 0 and Mn, mn, 	1 D 4 and 6 (for squares and hexagons,
respectively) are values that are far from those of real lattices. The values obtained
for 1 and S indicate that regular lattices of hexagons are more connected than
real lattices, while regular lattices of squares are less connected than real lattices.
With regard to Voronoi diagrams, Mn and mn indicate that they are not capable of
generating atypically connected polygons. The values of 	1 are close to real lattices.
Finally, Voronoi diagrams are more ordered than real lattices, with values of 	2 close
to 1:7, while real lattices report values of 	2 that are close to 8.

RI-Maps: An Algorithm for Generating Realistic
Irregular Lattices

This section is divided into two parts. The first part introduces an algorithm that
generates irregular polygons based on a mean reverting process in polar coordinates,
and the second part proposes a novel method to create polymorphic irregular
aperiodic lattices with topological characteristics that are similar of those from real
lattices.
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Mean Reverting Polygons (MR-Polygons)

The problem of characterizing the shape of irregular polygons is commonly
addressed in two ways, that is, evaluating its similitude with a circle [33] or
describing its boundary roughness through its fractal dimension [10, 25].10 In this
paper, we apply both concepts in different stages during the creation of a polygon:
The similitude with a circle to guide a mean reverting process in polar coordinates,
and the fractal dimension to parameterize the mean reverting process.

Mean Reverting Process in Polar Coordinates

Different indexes are used to compare irregular polygons with a circle: Elongation
ratio [60], form ratio [37], circularity ratio [44], compactness ratio [18, 29, 53],
ellipticity index [56] and the radial shape index [17]. As Chen [15] states, all
of these indexes are based on comparisons between the irregular polygon and
its area-equivalent circle. Under this relationship, an irregular polygon can be
conceptualized as an irregular boundary with random variations following a circle,
which lead us to use a mean reverting process in polar coordinates to create irregular
polygons.11 A mean reverting process is a stochastic process that takes values that
follow a long-term tendency in the presence of short-term variations. Formally, the
process x at the moment t is the solution of the stochastic differential equation (4),
where 	 is the long-term tendency, ˛ is the mean reversion speed, � is the gain in
the diffusion term, x.t0/ is the value of the process when t D 0 and fBtgt�0 is an
unidimensional Brownian [43]. Equation (5) shows the general solution; however,
for practical purposes, hereafter we use the Euler discretization method, which is
given by Eq. (6), where �t is white noise.

dXt D ˛.	 � Xt/dt C �dBt (4)

x.t/ D e�˛.t�t0/

�

x.t0/ C
Z t

t0

e˛.s�s0/˛	ds C
Z t

t0

e˛.s�s0/�dB.s/

�

; (5)

Xt D Xt�1 C ˛.	 � Xt�1/�t C �
p

�t�t (6)

Algorithm 1 presents the procedure for generating an irregular polygon P in polar
coordinates using, as a data generator, a mean reverting process (Xt). This algorithm
guarantees that the distance between two points in Xt, following the process Xt,
is equal to the distance between the same two points in P when following the
process P counterclockwise. The purpose of this equivalence is to preserve the

10Chen [15] established a relationship between these two approaches.
11Polar coordinates allow us to “wrap” a mean reverting process, with fractal characteristics,
around a circle to build a polygon. But, it is important to clarify that once we get those coordinates,
we draw them in the Cartesian coordinate system.
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Algorithm 1 MR-Polygon: mean reverting polygon.
1: function MEANREVERTINGPOLYGON(˛; �; 	; X0; �t)
2: Xt��t D X0 F Initial point of the mean reverting process
3: P D Œ.0; X0/� F Irregular polygon in polar coordinates
4: while 
 < 2� do
5: �t  RandomNormal.0; 1/

6: Xt D Xt��t C ˛.	� Xt��t /�t C �
p

�t�t

7: d distance.Xt; Xt��t /

8: R
  Last radius of the irregular polygon

9: �1 D arccos
�

2R
 ��2
t

2R2



�

10: if Xt � Xt��t then

11: �R D d
�

cos
�

arcsin
�

�t
d cos

�
�1

2

��

� sin
�

�1

2

�
�t
d

��

12: else
13: �R D �d

�

cos
�

arcsin
�

�t
d cos

�
�1

2

��

C sin
�

�1

2

�
�t
d

��

14: end if
15: R
C�1 D R
 C�R

16: Add .
 C �1; R
C�1 / to P
17: Increase 
 in �1

18: end while
19: Replace last point of P to .0; X0/

20: return P
21: end function

Fig. 5 Geometric problem to preserve the length and the fractal dimension of the mean reverting
process when it is used to create an irregular polygon. (a) Xt � Xt��t . (b) Xt < Xt��t

fractal dimension of Xt in P. The angles �R and �1 in Algorithm 1 are the result
of solving the geometric problem presented in Fig. 5. These two angles are used in
Eq. (7) to establish the location of the next point in P. The points of P are denoted
as P
 , with 
 between 0 and 2� .
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P
C�1 D
�

P
 C �R if XtC�t � Xt
P
 � �R if XtC�t < Xt:

(7)

Because the process P depends on the parameters ˛, 	 and � , it is worthwhile to
clarify their effect on the shape of polygon P: ˛ is the speed at which the process
reverts to the circle with radius 	 and � is the scaling factor of the irregularity of
the polygon. High values of ˛ and low values of � generate polygons that have
shapes that are close to a circle with radius 	. Finally, �t is utilized to preserve the
fractal dimension of both processes, X and P, and determines the angular step, �1

(see Fig. 5).

MR-Polygon Parameterization

The process of establishing the values for ˛, 	, � , �t and X0 is not an easy task,
and their values must be set in such a way that the shape of P is similar to a real
irregular polygon. However, how do we determine whether a polygon P satisfies this
condition? In this case, the fractal dimension appears to be a tool that offers strong
theoretical support to assess the shape of a given polygon.

According to Richardson [53], the fractal dimension D of an irregular polygon
(such as a coast) is a number between 1 and 2 (1 for smooth boundaries and 2

for rough boundaries) that measures the way in which the length of an irregular
boundary L (Eq. (8)) changes when the length of the measurement instrument (�)
changes. The fractal dimension is given by Eq. (9), where OC is a constant.

In general, an object is considered to be a fractal if it is endowed with irregular
characteristics that are present at different scales of study [42]. For practical
purposes, D is obtained using Eq. (9) and is given by 1 minus the slope of log.L.�//.
This procedure is commonly known as the Richardson plot.

L.�/ D OC�1�D (8)

log.L.�// D .1 � D/ log.�/ � log. OC/ (9)

In almost all cases, the Richardson plot can be explained with two line segments
that have different slopes; then, two fractal dimensions can be obtained: textural,
for small scales, and structural, for large scales [39]. As illustrated, Fig. 6 shows a
segment of the United States east coast taken from Google maps in two resolutions.
Note that as the resolution increases, some irregularities that were imperceptible
at low resolution become visible. In this sense, it can be said that irregularities at
low resolution define the general shape and are related to the structural dimension,
while irregularities at high resolution capture the noise and are related to the textural
dimension. Regional scientists tend to use highly sampled maps, which preserve the
general shape but remove the small variations. This simplification does not change
the topological configuration of the maps [20]. Figure 7 presents the Richardson plot
of the external boundary of the United States and its textural and structural fractal
dimension.
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Fig. 6 Illustrative example of irregularities explained by the structural and textural dimension

Fig. 7 Richarson plot to estimate the textural and structural dimension of the external boundary
of the United States

In the field of stochastic processes, some approaches, which are based on
different estimations of the length, have been made to characterize them through
their fractal dimension. In our case, an experimental approach based on the fractal
dimension of real polygons is proposed to select an appropriate combination of the
parameters ˛ and � to generate realistic irregular polygons. Because our interest
is on general shape rather than small variations, we account only for the structural
dimension.12 The parameterization process is divided into two parts: In the first
part, the frequency histogram of the fractal dimensions of the real polygons is
constructed. In the second part, we propose a range of possible values for ˛ and � ,
given 	; X0; �t, which generates fractal dimensions that are close to those obtained
in the first part. Because the level of the long-term tendency 	 does not affect the
length of X and because Algorithm 1 guarantees that the length is preserved, 	

12To calculate the structural dimension, we use the EXACT procedure, which is devised by Allen
et al. [2], with a small value for �t. Next, both of the dimensions were determined by using a
k-means clustering algorithm over the cloud of points on the Richardson plot.
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Fig. 8 Stages to find the values of ˛ and � . (a) Fractal dimensions of real polygons. (b) Fractal
dimension of simulated polygons as a function of ˛ and �

can be defined as a constant without affecting the fractal dimension. Hereafter, it is
assumed that 	 D X0 D 10. The value of �t is set to be 0:001 to properly infer both
of the fractal dimensions.

The empirical distribution of the fractal dimension of the irregular polygons is
calculated over a random sample of 10;000 polygons from the world map used in
Section “Topological Characteristics of Regular and Irregular Lattices”. The result
of this empirical distribution is presented in Fig. 8a. To find the fractal dimension
of the MR-Polygons, we generate a surface of the average dimensions as a function
of the values of ˛ and � , which range from 0:01 to 5 with steps of 0:1 (Fig 8b).
The resulting surface indicates that the fractal dimension is mainly affected by � ,
especially when looking at small dimensions. Additionally, it is found that fractal
dimensions close to 1:23 are obtained when � takes on values between 1:2 and 1:5,
regardless of the value of ˛.

Figure 9 presents some examples of polygons using different values of ˛ and � .
The polygons in the second row, which correspond to � D 1:5, produce irregular
polygons that have a realistic structural fractal dimension. Additionally, in the same
figure, both the original (gray line) and sampled (black line) polygons reinforce the
fact that sampling a polygon does not affect the structural dimension. From now on,
we will use sampled polygons to improve the computational efficiency.

Recursive Irregular Maps (RI-Maps)

Up to this point, we were able to generate irregular polygons with fractal dimensions
that are similar to those from real maps. The next step is to use these polygons
to create irregular lattices of any size whose topological characteristics are close
to the average values obtained for these characteristics in real lattices around the
world. For this step, we formulate a recursive algorithm on which an irregular



292 J.C. Duque et al.

Fig. 9 Examples of stochastic polygons generated using Algorithm 1 with different values of �

and ˛

frontier is divided into a predefined number of polygons using MR-Polygons. Our
conceptualization of the algorithm was made under three principles: (1) Scalability:
Preserving the computational complexity of the algorithm when the number of
polygons increases; (2) Fractality: Preserving the fractal characteristics of the
map at any scale; and (3) Correlativity: Encouraging the presence of spatial
agglomerations of polygons with similar sizes, which is commonly present in real
maps in which there are clusters of small polygons that correspond to urban areas.

Algorithm 2 presents the RI-Maps algorithm to create polymorphic irregular
aperiodic asymmetric lattices with realistic topological characteristics. This algo-
rithm starts with an initial empty irregular polygon, pol, (the outer border of the
RI-Map) and the number of polygons, n, to fit inside. In a recursive manner, a
portion of the initial polygon pol starts being divided following a depth-first strategy
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until that portion is divided into small polygons.13 This process is repeated for a
new uncovered portion of pol until the whole area of pol is covered. Because the
recursive partitions are made by using MR-Polygons, we take the values of ˛ from
a uniform distribution between 0:1 and 0:5, and the values of � from a uniform
distribution between 1:2 and 1:5. Regarding 	, X0 and �t, we use values proposed
in Section “Mean Reverting Polygons (MR-Polygons)”. Finally, to guarantee the
computational treatability of the geometrical operations, each polygon comes from
a sampling process of 30 points. The main steps of the RI-Maps algorithm are
summarized in Fig. 10.

The RI-Maps algorithm has three unknown parameters:

• p1: Because each polygon is created by the MR-Polygons using a polar coordinate
system that is unrelated to the map being constructed with RI-Maps, it is

necessary to apply a scaling factor,
q

p1�area.pol/
n���	2 , that adjusts the size of the MR-

Polygon before being included into the RI-Map.
• p2: When a new polygon is used to divide its predecessor, its capacity to contain

new polygons (measured by the number of polygons) is proportional to its share
of the unused area of its predecessor. However, to enforce the appearance of
spatial agglomerations of small polygons, the number of polygons that the new
polygon can hold is increased with a probability of p2.

• p3: When p2 indicates that a new polygon will hold more polygons, the number of
extra polygons is calculated as the p3 percent of the number of missing polygons
that are expected to fit into the unused area of its predecessor polygon. The
number of extra polygons is subtracted from the unused area to keep constant
the final number of polygons (n).

Table 4 illustrates the effect of the parameters p2 and p3 on the topological
characteristics of RI-Maps. In the first row, p2 and p3 equal 0, which generates
highly ordered lattices without spatial agglomerations. The second and third rows
are more disordered than the first row and have spatial agglomerations, with those
in the second row less frequent and evident than those in the third row. As will be
shown in the next section, lattices in the third row are more realistic in terms of their
topological characteristics.

To find a combination of p1, p2 and p3 that generates realistic RI-Maps in terms
of their topological characteristics, we use a standard genetic algorithm, where
the population � at iteration i, denoted as � i, is formed by the genomes � i

j D
Œpi

j1
; pi

j2
; pi

j3
�, where pi

j1
, pi

j2
and pi

j3
are real numbers between 0 and 1, representing

instances of p1; p2; p3, which are denoted as phenomes. In this case, i 2 N between
0 and 20 and j 2 N between 0 and 100. To evaluate the quality of each genome’s
fitness function, F.� i

j / is defined in Eq. (10), where 
 is a set of polygons, �k is

13There is not a proven computational advantage or theoretical reason behind the decision of
implementing a depth-first strategy. We follow this strategy because it simplified the coding
structure.
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Fig. 10 Diagram of the main steps of the RI-Maps algorithm
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Algorithm 2 RI-Map: recursive irregular map.
1: function RECURSIVEIRREGULARMAP(n; pol)
2: .˛min; ˛max; �min; �max; 	; X0; �t/ D .0:1; 0:5; 1:2; 1:5; 10; 10; 0:001/

3: p1 2 R; p2 2 R; p3 2 R

4: if n > 2 then
5: missingPolygons n
6: uncoveredPolygon pol
7: coveredPolygon �

8: polygons Œ�

9: scalingFactor 
q

p1�area.pol/
n���	2

10: while area.uncoveredPolygon/

area.pol/ >D 0:03 do
11: uncovered2select Bigger part of uncoveredPolygon
12: if missingPolygons � area.uncovered2select/

area.uncoveredPolygon/
<D 1:5 then

13: polygons:put.uncovered2select/
14: coveredPolygon coveredPolygon[ uncovered2slect
15: missingPolygons missingPolygons� 1

16: else
17: ˛ RandomUniform.˛min; ˛max/

18: �  RandomUniform.�min; �max/

19: poli  MEANREVERTINGPOLYGON(˛; �; 	; X0; �t)
20: poli  Multiply each ratio of poli by scalingFactor
21: poli  Center poli randomly into uncovered2select
22: poli  .poli � coveredPolygon/\ pol
23: poli  Bigger part of poli
24: ni  missingPolygons� area.poli/

area.uncoveredPolygon/

25: if Uniform.0; 1/ < p2 then
26: ni D ni C missingPolygons � p3

27: end if
28: ni  Round.n1/

29: if ni � 1 then
30: polygonsi  RECURSIVEIRREGULARMAP(ni; poli) F Recursive step
31: polygons polygons[ polygonsi

32: coveredPolygon coveredPolygon[ polygonsi

33: missingPolygons missingPolygons� ni

34: end if
35: end if
36: uncoveredPolygon pol� coveredPolygon
37: end while
38: Append interior holes of coveredPolygon to polygons
39: coveredArea S

polygons
40: while length.polygons/ < n do
41: Append the smaller polygon to its larger neighbor
42: end while
43: while length.polygons/ > n do
44: Divide the larger polygon
45: end while
46: else if nD 1 then F Terminating case
47: polygons Œpol�
48: else F Terminating case
49: pol1; pol2  Divide pol in 2
50: polygons Œpol1; pol2�

51: end if
52: return polygons
53: end function
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Table 4 Examples of RI-Maps of 400, 1600 and 3600 polygons using different combinations of
parameters

the relative importance for a map of k polygons and fk.� i
j / is a function given by

Eq. (11) that measures the average difference between the values of the topological
indicators of real lattices and those values of RI-Maps formed by k polygons using
the phenome � i

j . For the sake of simplicity, in Eq. (11), �k D ŒMn; mn; 	1; 	2; S; 1�

denotes the vector of real indicators and �k.�
i
j / denotes the vector for the mean

values of RI-Maps with k polygons using � i
j . The superindex l is used in � l

k and
� l

k.�
i
j / to refer to the lth indicator in the real and simulated values, respectively.

Finally, ns is the number of simulations to be generated with each genome.
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Fig. 11 Comparison of the topological characteristics of real lattices, RI-Maps and Voronoi
diagrams

F.� i
j / D

�
P

k2
 �kfk.� i
j /
�

P

k2
 �k
(10)

fk.�
i
j / D

P6
lD1

.
Pns

sDi � l
k.� i

j //�ns� l
k

ns� l
k

6
(11)

The algorithm starts with an initial random population of 100 genomes to obtain
the best four genomes. The subsequent populations are composed of two parts. The
first 64 genomes are all of the possible combinations of the last best 4 genomes,
and the other 36 genomes are random modifications of those 64 genomes. Because
of the computational time required to evaluate Eq. (10), only lattices of 400 and
1600 were used, with an importance of �400 D 1 and �1:600 D 2, respectively. The
algorithm reached the optimal value after 13 iterations with p1 D 0:010, p2 D 0:050

and p3 D 0:315.

Results

Figure 11 presents a graphical comparison of the topological characteristics of real
RI-Maps and Voronoi diagrams. The values for the RI-Maps were obtained from 100

instances.14 The results show that RI-Maps have a maximum (Mn) and a minimum

14The code to generate RI-Maps is available to the academic community as a utility within the
module “inputs” in clusterPy V.0.10.0, an open source cross-platform library of spatial clustering
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(mn) number of neighbors that are very close to the values found in the real lattices.
Regarding the average number of neighbors, both RI-Maps and Voronoi diagrams
show similar values that are slightly higher than those observed in real lattices.
However, because the number of neighbors is an integer value, it can be concluded
for all three cases that the average number of neighbors is 6, which verifies the
findings by Weaire and Rivier [59] in irregular lattices. Regarding 	2, RI-Maps are
a better approach to simulate the level of disorder found in real lattices. To facilitate
the visualization, the values of S are reported as S 
 p

n. The results show that RI-
Maps replicate the values of real lattices at any size, while Voronoi diagrams report
higher values that tend to increase with the number of polygons. Last, RI-Maps
have values of 1 that are closer to the values of real lattices, especially for large
instances.

Table 5 presents the average and standard deviation of RI-Maps under the optimal
parameters (p1 D 0:010, p2 D 0:050, p3 D 0:315) found in the previous section.
This table completes the topological information on lattices presented in Table 3.
Figure 12 shows the running times for different instance sizes using a HP ProLiant
DL140 Generation 3 computer running the Linux Rocks 6.0 operating system
equipped with 8 GB RAM and a 2.33 GHz Intel Xeon Processor 5140. The dotted
line shows the x D y values, but its non-linear appearance is due to the quadratic
scale used in the x-axis to improve the visualization of the plot. Although the
reported times correspond to a non-optimized code, the plot shows an almost linear
relationship between the problem size and the running time.15

Table 5 Topological characteristics (mean and standard deviation) for RI-Maps

Number of polygons

81 100 400 900 1600 2500 3600
Mn 26.500 33.100 30.460 41.870 46.760 49.730 54.396

˙ 12.765 ˙14.751 ˙13.664 ˙16.035 ˙16.429 ˙16.886 ˙15.156
mn 1.260 1.140 1.510 1.200 1.040 0.950 0.979

˙0.691 ˙0.513 ˙0.847 ˙0.550 ˙0.374 ˙0.261 ˙0.204
	1 5.347 5.388 5.855 5.909 5.937 5.952 5.957

˙0.333 ˙0.304 ˙0.093 ˙0.052 ˙0.036 ˙0.032 ˙0.027
	2 17.397 21.313 9.722 10.708 10.426 10.443 11.276

˙13.734 ˙14.729 ˙6.189 ˙3.831 ˙2.277 ˙1.506 ˙1.229
S 5.974 4.879 1.372 0.620 0.353 0.226 0.157

˙0.324 ˙0.219 ˙0.020 ˙0.006 ˙0.002 ˙0.001 ˙0.001
1 7.431 7.969 7.931 8.724 8.993 9.299 9.449

˙0.804 ˙0.808 ˙0.979 ˙0.962 ˙0.960 ˙0.957 ˙0.798

algorithms written in Python [22]. To access the repository go to: https://code.google.com/p/
clusterpy.
15Future research will be devoted to reduce computational time and exploit the possibilities of
parallelization.

https://code.google.com/p/clusterpy
https://code.google.com/p/clusterpy
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Fig. 12 Running times of RI-Maps while the number of areas increases

Table 6 Kolmogorov-Smirnov test to compare the distributions of AMOEBA execution times
using different lattices

Regular lattices RI-Maps Real maps

Regular lattices 0.00 (p=1) 0.51 (p=0.0e�4) 0.61 (p=2.8e�5)

RI-Maps 0.51 (p=0.0e�4) 0.00 (p=1) 0.19 (p=0.607)

Real maps 0.61 (p=2.8e�5) 0.19 (p=0.607) 0.00 (p=1)

Application of RI-Maps

In this section, we present an example of the use of RI-Maps based on the
computational experiments designed by Duque et al. [21] to compare the efficiency
of the improved AMOEBA algorithm. To present the results, Duque et al. [21]
proposed three computational experiments; one of them reports the running time of
AMOEBA as the number of polygons of regular lattices increases. In this paper, we
will run the same algorithm not only for regular lattices but also for real irregular and
simulated irregular lattices (RI-Maps). First, we want to see whether the conclusions
that are obtained for regular lattices can be extrapolated to irregular lattices. Second,
we want to see if the results obtained with RI-Maps are also valid for real irregular
maps. This experiment was executed with a HP ProLiant DL140 Generation 3
computer running the Linux Rocks 6.0 operating system equipped with 8 GB RAM
and a 2.33 GHz Intel Xeon Processor 5140.

In the generated experiment, for each type of lattice, there were 30 instances
with 1600 polygons. For each instance, we generated a spatial process that had
four clusters, each using the methodology proposed by Duque et al. [21]. Last, the
instances for real maps were obtained from sampling the same world map that was
used in previous sections. Figure 13 presents the distribution of the running times
obtained for each type of lattice, and Table 6 compares the distributions with the
two-sided Kolmogorov-Smirnov test [27]. The null hypothesis of the Kolmogorov-
Smirnov test is that the two samples come from the same probability distribution.
Regarding the first question, it is clear that using a regular lattice for testing the
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Fig. 13 Execution times of AMOEBA over regular lattices and RI-Maps of 1600

AMOEBA underestimates the execution times. On the other hand, the distribution
of the running times obtained for real maps and RI-Maps is statistically equal, which
shows the benefits of using RI-Maps because it can automatically generate instances
without limiting the maximum number of polygons.

Conclusions

This paper introduces an algorithm that combines fractal theory, the theory of
stochastic processes and computational geometry for simulating realistic irregular
lattices with a predefined number of polygons. The main goal of this contribution
is to provide a tool that can be used for geocomputational experiments in the fields
of exploratory spatial data analysis, spatial statistics and spatial econometrics. This
tool will allow theoretical and empirical researchers to create irregular lattices of any
size and with topological characteristics that are close to the average characteristics
found in irregular lattices around the world.

As shown in the last section, the performance of some geocomputational
algorithms can be affected by the topological characteristics of the lattices in
which these algorithms are tested. This situation can lead to an unfair comparison
of algorithm performances in the literature. With the algorithm proposed in this
paper, the differences in the computational performances will not be affected by the
topological characteristics of the lattices.

This paper also shows that the topological characteristics of regular lattices (with
squared and hexagonal polygons) and Voronoi diagrams (commonly used to emulate
irregular lattices) are far from the topological characteristics that are found in real
lattices.
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A Robust Heuristic Approach for
Regionalization Problems

Kamyoung Kim, Yongwan Chun, and Hyun Kim

Introduction

Geographical districting is a process of partitioning a large areal unit into a fixed
number of sub-regions. In practice, sub-regions are constructed by aggregating
smaller areal units within a larger areal unit. This process is implemented to achieve
a solution that produces an optimal outcome based on preset criteria. These criteria
are generally set to achieve a maximum balance among resulting sub-regions or the
maximum homogenous characteristic of each sub-region. Hence, an optimization
model is often used for geographical districting problems. Geographical districting
has been utilized in various fields, such as school attendance zone design [1],
functional region delineation [2], census region redistricting [3], police district
design [4], and hazards and disasters management [5]. Specifically, one well-known
application is political districting [6].

Political districting (also known as electoral districting) is a process to define
political boundaries with a fixed number of districts in which an election is
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performed. “Fairness” and “balance” are well emphasized in political districting
because political districting can favor a specific political party or group (e.g.,
Gerrymandering). Although various factors are well-recognized, three fundamental
factors commonly identified in the literature are equal population, spatial contiguity,
and compactness (e.g., [7, 8]). Equal population (or population balance) ensures the
comparable sizes of political districts, while spatial contiguity ensures that each
individual district does not have an isolated portion or hole within its boundary.
The compactness, which refers to how contorted a political district is, can be used
to avoid intentional manipulations, such as the 12th congress district of North
Carolina in 1992 (see [9]). Another factor recognized in the literature is the respect
of pre-existing boundaries (e.g., [10]). These pre-existing boundaries can include
natural boundaries, such as major water bodies (e.g., rivers) and administrative
or political subdivisions. Because physical and social barriers can represent social
and geographical integrity, incorporating these pre-existing boundaries may lead to
better solutions for political districting problems.

Spatial optimization approaches are generally utilized for political districting.
Although an exact approach can be applied (e.g., [11]), heuristic methods have been
often involved due to the complex and multi-criteria nature of political districting.
For example, heuristic approaches include not only a simple greedy method (e.g.,
[12]), but also meta-heuristic methods such as tabu [10], simulated annealing [13],
and genetic algorithm [14, 15]. However, the performance of heuristic and meta-
heuristic methods may vary considerably depending on how to deal with constraints,
calling into question the robustness of these methods in many cases.

This paper focuses on the development of a robust heuristic method for polit-
ical districting problems. Specifically, this paper investigates the robustness of
the heuristic method with a physical barrier in the model in addition to the
common three criteria. Although real physical barriers exist in many regions,
the incorporation of physical barriers in heuristic modeling is scarce (e.g., [10]).
Many exact solutions and heuristic approaches do not incorporate the presence of
physical barriers when they are developed because of the difficulty in explicitly
prescribing the barriers’ characteristic form in the model. This paper proposes a
new heuristic method to effectively search an optimal solution with physical barriers
as constraint. The rest of this paper is organized as follows. Section “Literature
Review” briefly reviews related studies for political districting and related methods.
Section “Problem Statement” describes the proposed heuristic algorithms, and
section “Application Results” presents an application for the city of Seoul, South
Korea with the Han River as a physical barrier. Conclusions and implications are
provided in section “Conclusions”.

Literature Review

There are several important conditions in political districting problems. The main
goal of political districting problems is to group similar spatial units into a fixed
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number of political boundaries while satisfying criteria. The districted boundaries
are created for legislative purposes, including elections, taxes, and governance.
From a modeling perspective, the objective function of a political districting prob-
lem is either to maximize social and geographical equity or minimize the difference
between them among districted regions. The most common attribute in the objective
function is the population size in each district. Some essential constraints for
spatial characteristics include spatial contiguity, compactness, and physical barriers.
Spatial contiguity means that the spatial extent of a constructed district should not be
fragmented. Compactness can be formulated as the district’s area to perimeter ratio.
Physical barriers, such as rivers and mountains, are recognized as pre-boundary
conditions because they affect the integrity of districted regions directly. In other
words, the resulting districts by pre-defined physical barriers greatly influence the
direction of political decisions, the consolidation of residents, and the integrity of
the community within a district [8, 16, 17]. Although physical barriers have not been
well-addressed, notable research contributions exist in literature. Mills [18] utilized
a permanent assignment method to determine electoral boundaries to ensure that a
particular population group is assigned to a specific unit. Segal and Weinberger [19]
used an adjacency graph where adjacency among spatial units is represented as link
in a graph form. This method represents the contiguity of spatial units involved
in natural barriers. As a districting method, they employed a shortest algorithm
to identify districts by calculating the shortest paths between each center and all
the candidate units in a pre-defined set. As a way to avoid unnecessary splitting
of communities of common interests and crossing natural barriers, George et al.
[20] proposed algorithms which solve the districting problem using the a piecewise-
linear objective function and a prespecified radius constraints (i.e., previously
existing electoral districts) to avoid the undesirable splits of geographic units. To
ensure a similar population size with a tolerance among districts, the algorithm
employed a penalty function that limits the sum of population flows below the
target value. As an application for the sales territory alignment problem, Zoltners
and Sinha [21] introduced an adjacency tree structure which explicitly takes into
account nontraversable geographic obstacles such as mountains, lakes, and rivers as
well as traversable road network.

In response to the need for realistic political redistricting problems with various
criteria, developing an appropriate automated process based on mathematical
programming is necessary. Unfortunately, as criteria become more complicated
and the applications expand, most exact-solution seeking models quickly become
intractable for formulating optimal solutions, such that only small instances are
solvable. Hence, many political districting problems are solved by taking algorith-
mic approaches rather than mathematical programming to compromise between the
quality and solvability of solutions. However, algorithmic approaches do not always
guarantee optimal solutions.

According to Duque et al. [22], regionalization problems are classified into
two categories according to the design of their models: the model with explicit
contiguity constraints or implicit contiguity constraints. Because of the difficulty
to incorporate spatial contiguity constraints into models, many algorithmic solution
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approaches have been proposed to improve the solvability of the problems without
explicit contiguity conditions [22]. Hess et al. [12] developed a political districting
problem that was formulated using the structure of a location-allocation model.
Their mathematical formulation is known as an effective regionalization approach.
However, this approach does not guarantee the spatial contiguity requirement for
resulting districts; therefore, they provided a method to resolve the contiguity
problem using a greedy-based heuristic method where the solution is completed
only after non-contiguous spatial units are reassigned, which assures contiguity.
Garfinkel and Nemhauser [11] proposed a multi-step algorithm to ensure the
contiguity of boundaries in districting regions. They used a set of pre-defined
districts to improve solvability, and the algorithm was designed to check for spatial
contiguity requirements while districting. However, this study implies that the
results are not consistently generated and lead to a large variation in district size
because the districts generated by the solution are considerably dependent on what
pre-defined feasible solution is used.

In contrast, many exact solution approaches using mixed integer programming
(MIP) have also been proposed in regionalization problems. The most difficult
part of the solution is prescribing the spatial contiguity requirement with explicit
mathematical forms. Zoltners and Sinha [21] proposed an efficient formulation to
maintain the contiguity of a region using the concept of the connectedness of the
tree that is formed among the units within each district. Shirabe [23] proposed flow-
based contiguity constraints to avoid fragmented regions. The constraints use the
concept of p-partitioned tree networks for a given number of areal units. Spatial
units are represented as network nodes where the flow from a seed unit should
be connected to other units in the region. As discussed by Duque et al. [24], the
various strategies for contiguity requirements in exact solution approaches, such as
tree-associated, ordered-area assignment, and flow-based constraints, help to solve
regionalization problems, but the MIP models are inherently NP-hard, where the
solution is only valid for a limited instance. Alternatively, a stepwise MIP solution
approach, Analytical Target Reduction (ATR) by Kim et al. [2], was proposed to
improve the capability of determining the optimal solution for a large instance.
The main concept of the ATR is focused on reducing the solution space of hard
problems by using the set of known solutions. For example, the optimal solutions
for the instances of low computational complexity can be a pre-solution in other
hard instances. However, the method does not directly reduce the complexity of the
model itself.

As non-exact solution search methods, heuristic approaches are preferred in non-
tractable instances. Heuristic approaches for districting or regionalization problems
are capable of generating near-optimal or optimal solutions, although the quality
of solution is not always consistently maintained due to the characteristics of the
constraints that are required in districting problems. A simple approach includes
clustering or partitioning methods to quickly determine a solution (see [25–28]).
Such methods often require additional processes to ensure the spatial contiguity of
the resulting regions.
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Meta-heuristic approaches have been applied to districting problems since the
1990s. The goal of a meta-heuristic approach is to provide a higher level of
frameworks when a certain type of heuristic algorithm is implemented for particular
optimization problems [29]. The meta-heuristic strategies consist of diversification
and/or intensification to avoid solutions entrapped in local optima. Diversification
refers to a way that the solution space is explored, while intensification is an
accumulation process for improving solutions based on the search experience. Both
strategies expand the set of starting points in solution space by prohibiting particular
moves to produce a new best solution. Classical regionalization problems employed
greedy frameworks or simple hill-climbing techniques for the diversification of
solution space [30–32]. Tabu search (hereafter TABU) uses a set of tabu lists that
suppress units in short- and long-term memory to explore a new local solution space.
The main principle of TABU is to overcome local optima using tabu lists when
the procedure moves from one solution to another. An element in the tabu lists is
defined as a move that is used in a current solution but cannot be released as a
solution element until the objective function reaches a certain expiration level to
avoid entrapment into sub-optima (see [29] in detail). This meta-heuristic is also
commonly found in the literature for districting problems (for example, [3, 10,
33–36]).

Simulated annealing (SA) is used as an effective solution method for redistricting
problems that consider multi-attribute criteria. The SA allows deteriorated solutions
with a certain probability to avoid local optima [37]. Since its introduction by
Browdy [16], this method has become popular in political districting problems with
several variants [13, 35, 38].

The SA method is focused on the strategy of diversification, particularly how
to effectively swap the basic spatial units among districts and build the local search
method to reduce computational time, while improving the objective function. In the
context of the districting problems, the strategy is basically performed on the move
of a basic spatial unit from one region to one of the neighboring regions because
the quality of the solutions depends on the handling of the move among adjacent
districts [2, 34]. In detail, because the complexity of the MIP approach is due to
the constraints of spatial contiguity, any greedy or meta-heuristic approach suffers
from computational burden when checking for spatial contiguity among spatial
units. To address this issue, Openshaw and Rao [3] and MacMillan [38] proposed
spatial contiguity checking procedures using matrix operations. These methods are
simple and very effective in identifying the adjacent spatial units that need to be
swapped between adjacent districts. However, the procedures require considerable
computational time if the adjacent matrix becomes large, which degrades the
performance for finding good solutions. In addition, the performance of meta-
heuristic approaches is contingent upon establishing parameters to control random
components. In other words, many trials and errors may occur before the best set of
parameters for a given instance is determined.
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Problem Statement

In this section, we present the problem statement for political redistricting that
motivates the development of a new robust heuristic algorithm, named the Dissolv-
ing/Splitting heuristic algorithm (DS). The performance of this algorithm will be
compared with two generic meta-heuristic approaches, TABU and SA. As men-
tioned in the previous section, heuristic algorithms should establish the rule needed
to move a basic spatial unit from its current district to an adjacent district, leading
to the creation of a new neighboring solution. The DS algorithm is expandable
to the other regionalization problems because the main purpose of the algorithm
is the enhancement of the regrouping of districts (or regions) with neighborhood
spatial units, rather than providing a general framework at a higher level. We
consider three main criteria for the political districting problem: population equality,
spatial contiguity, and compactness. These criteria are considered in the three
heuristics presented in this chapter (e.g., [7, 8]). Additionally, we hypothesize that
a physical barrier is a critical factor that influences the performance of heuristic
approaches, which may cause the entrapment of solutions in local solution space.
For this purpose, we add a physical barrier constraint to the model formulation and
implement it in the case study of Seoul, Korea, where the Han River is recognized
as a natural barrier for delineating political districts.

We first use the objective function that is generally adopted in existing political
districting research, namely minimizing population deviation among districts [3, 35,
36]. The objective function is formulated as follows:

Minimize Z D
k
X

jD1

ˇ
ˇpj � p

ˇ
ˇ (1)

where

k D the number of districts to be delineated
pj D population of district j
p D average district population, p D P

j pj=k.

The objective function minimizes the difference between the average population
(p) and the population of each district. The p value is calculated a priori.

Second, compactness is considered as a constraint. As found by Young [39], there
are different versions of compactness measures for a district, but we adopt a simple
measure of compactness that has previously been used by Bozkaya et al. [10], Wei
and Chai [36], and Ricca and Simeone [35]. The area and perimeter of each basic
spatial unit are calculated using the geometry function in geographic information
systems (GIS) software as a part of data preprocessing. Based on these input data,
the area of a district can be obtained by summing the area of basic spatial units when
assigned to the district. In detail, the compactness measure Sk is defined as:
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Sk D Perimeterk

2
p

�
p

Areak
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where the perimeter of district k is computed as:

Perimeterk D
X

j2Nk

Perimeterj � 2
X

i2Nk

X

j2Nk

lij (3)

Here lij is the length of shared boundaries between spatial units i and j, and Nk

is set of spatial units assigned to district k. Note that the equation of Perimeterk of
district k should consider only the outer boundaries of spatial units of district k, and
the lengths of all shared boundaries among spatial units within district k should be
excluded.

Third, in this study, we consider the additional spatial constraint that a linear
spatial feature such as a river may entail as physical barrier, when the algorithm
couples two spatial units in a district, k. The principle is as follows. If spatial units
i and j share a boundary, but the physical barrier is on the boundary between them,
the algorithm manages the spatial units as separate while delineating the districts.
Three algorithms, SA, TABU and DS, are structured accordingly with these model
components.

Simulated Annealing (SA)

We construct an SA algorithm for comparison purposes. The SA algorithm for the
political districting problem is formulated on the basis of the structure suggested by
previous research, such as Kirkpatrick et al. [40], Openshaw and Rao [3], and Duque
et al. [34]. The common structure of their algorithms is as follows. After generating a
feasible initial solution by grouping n basic spatial units into p regions, the algorithm
randomly selects a region and moves its basic spatial unit into a neighboring region
under the contiguity constraint. If the move improves the objective value, then the
move is accepted. Moves that do not improve the objective value, i.e., bad moves, are
accepted to explore more of the solution space and to escape from local optima. Such
moves are allowed if the acceptance probability R(0, 1) < e��H/T , where R(0, 1) is a
random number in the interval [0, 1]. �His the change in the objective value caused
by the move, and T is the current temperature. The temperature is lowered with a
predefined cooling schedule. The acceptance probability of bad moves decreases as
T is lowered. The SA is terminated when topping criteria are satisfied, that is, when
T reaches a predefined tolerance or the algorithm iterates a predefined number of
times without an improvement in the objective value. In detail, the procedure of the
SA algorithm is as follows:

• Step 1: Set initial temperature T, cooling rate ˛, tolerance ", and the maximum
number of non-improving moves max_it.
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• Step 2: Randomly generate an initial set of p districts from n basic spatial units
under the contiguity requirement (p < n), and calculate the objective value of the
initial solution.

• Step 3: Randomly select a district and generate a list of its edge spatial units
that share a boundary with the adjacent districts without violating the contiguity
requirement.

• Step 4: Randomly select an edge spatial unit from the list and move it to an
adjacent district. Then, calculate the objective value of the new solution.

– Step 4.1: If the objective value is improved, then accept the move, k D 1.
– Step 4.2: If the move does not improve the objective value, accept it only if

R(0, 1) < e��H/T and reduce the temperature with a cooling rate and increase
the iteration count, k: T D ˛T, k D k C 1.

• Step 5: Update the list of edge spatial units and return to step 4 until all spatial
units in the list have been processed.

• Step 6: Repeat Steps 3–5 until T < " or k > max_it.

TABU

In this section, we describe a simple TABU algorithm that has a structure based on
the work by Openshaw and Rao [3] and Duque et al. [34]. Our TABU algorithm
uses a tabu restriction and an aspiration criterion as the means for constraining and
guiding the search process to the best districting set. To generate an environment
similar to previous studies, only short-term memory is considered in our algorithm.
The algorithm starts with a feasible initial solution and then identifies all possible
moves (i.e., all possible alternative solutions) in the current solution. The best move
among all possible moves is accepted if it improves the current objective value.
In the case that no improving moves exist, the algorithm selects moves randomly
or selects the best move and accepts them, even if it results in a worse objective
value. In our experiment, random selection provides better results than accepting
the best move because non-best moves allow the algorithm to explore a new solution
space. To prevent cycles, the reverse move is prohibited during tabu tenure (i.e., tabu
restriction). In particular, the tabu tenure of our algorithm is changed adaptively
with the improvement of the current solution. A move in the tabu list (i.e., a tabu
move) is allowed only if it produces a better solution than the local best solution,
which is the aspiration criterion. The TABU algorithm is terminated when it reaches
the maximum number of iterations (i.e., max_it) without improving the aspiration
criterion. The procedure of TABU search is described as follows:

• Step 1: Set the length of tabu list tabulist and the maximum number of non-
improving moves max_it.
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• Step 2: Randomly generate an initial set of p districts from n basic spatial units
under the contiguity constraint (p < n), and calculate the objective value of the
initial solution. The initial solution becomes the current and local best solution.

• Step 3: For the current solution, find all possible moves M between two
neighboring districts and identify the best move (the move with the biggest
improvement in the objective value) among them.

• Step 4: Accept the best move if it yields a solution better than the local best
solution. The solution accepting the best move becomes the current and local
best solution. Set k D 1 and proceed to step 3.

• Step 5: If no move improves the solution, then consider a tabu move. If a tabu
move yields a solution better than the local best solution, then accept it and delete
it from the tabu list. The solution accepting the tabu move becomes the current
and local best solution. Set k D 1 and proceed to step 3.

• Step 6: If there is no improving move in M and the tabu list, randomly select a
move from M and allow it, even if a worse objective value is returned. Add the
move to the tabu list, set k D k C 1, and proceed to step 3.

• Step 7: Stop the tabu search algorithm when k > max_it.

A Robust Heuristic Algorithm: The Dissolving–Splitting (DS)
Algorithm

In general, the meta-heuristics, such as SA and TABU, can produce higher quality
solutions than traditional greedy algorithms because meta-heuristics explicitly
implement strategies for widening the solution space. In the context of districting
problems, the search capability by meta-heuristics may be restricted because most
diversification strategies regarding local moves are made by the handover of a
basic spatial unit from its region to a neighboring region or the exchange of
basic spatial units among regions under spatial contiguity. In particular, meta-
heuristic algorithms based on a local move become more inherently restricted when
physical barrier constraints are involved in districting procedures. For example, it is
reasonable that physical barriers, such as rivers and mountain ranges, become the
outer boundaries of a region rather than the interior boundaries among the basic
spatial units of a district (or region). Therefore, switching the basic spatial units of a
district with other neighboring or adjacent districts can entail inefficient procedures,
resulting in increased computational time, and performance degradation towards
improving the quality of solution.

In contrast, often in districting problems, a greedy-based algorithm is more
straightforward for finding a higher quality solution compared to meta-heuristics.
Our robust heuristic algorithm, called the dissolving-splitting algorithm (DS), is
also based on the framework of a greedy-search method rather than a meta-
heuristic approach. The DS is designed to effectively explore the solution space
and avoid deteriorated solutions without parameter settings, which are required in
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meta-heuristics. The DS consists of two sub-procedures, the DS procedure of dis-
tricts and the intensive local search, where the objective value is gradually improved
by moving a basic spatial unit from its current district to a neighboring region.
As implied by the term dissolving-splitting, the procedure focuses on randomly
dissolving small districts into a larger district while simultaneously splitting a larger
population district into two districts to achieve the equality of the population, thus
satisfying the objective of the districting problem. Spatial contiguity is checked
during the dissolving and splitting procedures. The DS procedure is specified as
follows:

• Step 1: Randomly generate an initial set of p districts from n basic spatial units
under the contiguity constraint (p < n). The initial solution becomes the current
solution and global best solution.

• Step 2: Dissolving-splitting procedure

– Step 2.1: Randomly select a district from the current solution and dissolve
it. That is, the spatial units consisting of the selected district are randomly
assigned to neighboring districts.

– Step 2.2: Select a district with the largest population and split it into two
districts. That is, randomly select two seeds (spatial units) among the spatial
units of the selected district. Then, assign the remaining spatial units to the
seeds with the contiguity constraint. The result of this procedure becomes the
DS solution.

• Step 3: Local search procedure

– Step 3.1: Calculate the objective value (local objective) of the DS solution.
– Step 3.2: Randomly select a district and generate a list of its edge spatial

units that share a boundary with their adjacent districts and can be assigned to
adjacent district(s) without violating the contiguity requirement.

– Step 3.3: Randomly select an edge spatial unit from the list and move it to an
adjacent district. Then, calculate the objective value of the new solution.

– Step 3.4: If the objective value is improved compared with local objective,
then accept the move and update local objective.

– Step 3.5: Update the list of edge spatial units and return to step 3.3 until all
spatial units in the list have been examined.

– Step 3.6: Repeat Steps 3.2–3.5 until there is no improvement in local
objective. The result of this local search procedure becomes the local best
solution.

• Step 4: Comparison of global and local best solutions

– Step 4.1: If the local best solution is better than the global best solution,
then the local best solution becomes the current solution and the global best
solution. Proceed to step 2.

– Step 4.2: Otherwise, proceed to step 2.

• Step 5: Repeat steps 2–4 until there is no improvement in the objective value.
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The procedure of DS is similar to the merge–split methods devised by Sammons
[41] and Openshaw [42]. Sammons’s algorithm considers particular districts with
a considerably large population to be divided into two sub-districts, and only two
neighboring districts with small populations are merged together into a district. In
Openshaw’s [42] approach, merging and splitting are allowed only when the value
of the objective function is improved. However, these predefined conditions of the
merging and splitting procedures often prevent the algorithms from exploring other
solution spaces, resulting in the entrapment of solution at local space. Compared to
these previous methods, the DS algorithm allows any district to be dissolved and
split without any constraint.

Application Results

Data and Design for the Experiments

The proposed method is applied to a political districting problem in the city of
Seoul, South Korea. Redistricting is an important issue, as South Korea elects the
National Assembly every 4 years. In the 2012 South Korea legislative election, 48
electoral districts were defined in the city, with each district represented by one seat
in the National Assembly. We investigate the performance of the DS algorithm in
comparison to the SA and TABU algorithms by constructing 48 electoral districts
based on the level of dong, the lowest administrative unit in Korea. Figure 1 displays
424 dongs, with their population sizes based on the 2010 Population and Housing
Census of Korea: the total population is approximately ten million (9,804,065).
Specifically, the population equality and compactness (or conformity) of districts are
the most critical factors in redistricting for the legislative election [43]. A physical
barrier is incorporated in addition to the three common factors in this political
districting problem. The Han River, which passes through Seoul, is widely accepted
as a boundary of economic and cultural disparities between the River North (or
Gangbuk) and River South (or Gangnam) regions in Seoul. Additionally, as a natural
barrier, the river is used to construct the subdivisions of Seoul. Hence, it is not
desired for any single district to be drawn across the river in the political districting
problem.

The performance of the DS method is compared with those of two other heuristic
methods, SA and TABU. Each method produces results with 100 random initial
feasible solutions for each of four scenarios with different numbers of districts
(p D 30, 40, 48, and 50). Regarding population equality, the ideal population sizes
for each district are 326,802 (p D 30), 245,102 (p D 40), 204,251 (p D 48), and
196,081(p D 50). In each solution, compactness is maintained less than or equal
to 2.0 of the compactness measure (Sk). To compare the performance among the
methods, we set parameter values to make the computation times comparable. The
parameter values for the SA are set as follows: initial temperature T D 100,000,
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Fig. 1 Population distribution of Seoul Metropolitan City (2010)

cooling rate ˛ D 0.997, tolerance " D 5 and the maximum number of non-improving
moves max_it D 2000. The length of tabulist is 30 and the maximum number
of non-improving moves max_it is set to 2000 for the TABU. A wide range of
parameter values are explored for these models through a number of solutions with
a different parameter set each time. The parameter values that produced the best
results are chosen. In addition, computational time balance among three heuristics
is considered. These three algorithms are programmed in Microsoft Visual Studio
2010 Express with Visual Basic.NET. The problem instances are solved on a
machine with an Intel Core(TM) i5–3.40 GHz processor and 4 GB RAM on the
Windows 7 operating system.

Comparison of Performance

Table 1 summarizes the computational results of three algorithms considering
no physical barrier in the model. Descriptive statistics for the 100 solutions are
also provided. The column labelled improved rate (%) measures the degree of
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improvement on the objective value from that of each initial solution for each
method. There is a noticeable difference in the mean and standard deviation of
the results among the three methods with DS clearly outperforming the other
methods. In general, the DS produces better solutions than the SA and the TABU.
For example, the mean of the DS for p D 30 is 137,737 which is much lower
than the TABU (372,293) and SA (404,077). This tendency is observed in other
p levels. Considering the standard deviation and range of the 100 solutions, the
solution quality of the DS algorithm appears very consistent compared to the other
methods. Although the SA and TABU may produce better solutions than the DS in
some instances, our experiments show that the DS clearly outperforms the meta-
heuristics in most cases. The compactness values (Sk) of the solutions by the
three heuristics get larger than those of the initial solutions. This indicates that
compactness deteriorates, which is a result of controlling only the upper bound of
the compactness measure in the three methods Note that the solution time of the DS
is more sensitive to the number of districts than the SA and the TABU, because the
frequency of the DS is a function of p.

To compare the consistency of the solutions, for an initial solution, we also
examine the histograms of the objective values. As shown in Fig. 2, the three

Fig. 2 Histogram of objective values of 100 simulations for an initial solution (pD 30)
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algorithms produce different distributions of 100 objective functions due to their
random components. The SA and TABU form a positively skewed distribution with
the largest range between the best and worst solutions. This skewed distribution
indicates that the SA and TABU may produce good but also poor solutions over a
wide range. The modes of the meta-heuristics range from 100,000 to 150,000 and
at a range of greater than 2,000,000 for the worst solutions. In contrast to those
two meta-heuristics, the objective values of the DS are intensively concentrated
between 50,000 and 200,000, with very small variances. For example, even the
worst solution is smaller than 300,000. From this observation, the consistency in
generating solutions is well maintained in the DS, while the SA and the TABU
are considerably dependent on the random components in their algorithms. The DS
process ensures a better quality of solutions with a less variation and is less affected
by the quality of initial solutions. One notable fact from Table 1 and Fig. 2 is that
the DS algorithm can be improved further by allowing the moves that give rise to a
deteriorated result like the SA or the TABU.

Table 2 summarizes the results of the three algorithms when a physical barrier,
the Han River, is considered. Notice that the solution times of the three methods
decrease compared to the results of the instances without a physical barrier. This
can be explained by the decreased number of move cases among districts because
the number of neighbor units is reduced due to the presence of the physical barrier.
The quality of the solutions from the SA and the TABU decreases for the range,
standard deviation, and mean in problems with physical barriers than those with
non-physical barriers. However, the DS solutions are not negatively influenced by
physical barriers. In terms of the quality of the solutions, the DS clearly outperforms
the two meta-heuristics. In many instances, the worst solutions of the DS are better
than the best solutions of the SA and TABU. This is because the dissolving and
splitting procedure is very effective in handling spatial contiguity and districting
spatial units compared to the traditional meta-heuristics.

Figure 3 shows the spatial configuration of 48 districts derived from three
heuristics for an initial solution. In these maps, red and green symbolize districts
with larger and smaller populations than the average district population (204,251),
respectively. In the SA and the TABU districting problems without physical barrier
constraints, random components heavily influenced the results, generating poor
objective values. For example, Fig. 3a and b show that districts with positive or
negative population deviations are spatially clustered. In this situation, any local
move could not improve the objective value even when allowing deteriorated
solutions. Comparatively, in the case of the spatial solution of the DS without the
physical barrier constraint (Fig. 3c), the population deviation of districts is greatly
reduced, and districts with a larger or smaller population deviation are spatially
dispersed. When considering the physical barrier constraint, the computational
results of the SA and the TABU depend heavily on initial solutions. For example,
the number of districts in the South of Han River at the initial solution is 20, but
this number of districts is kept in the solutions of the SA and the TABU (see
Fig. 3d and e). As a result, while districts with positive deviation are distributed
in the south of the Han River, districts with negative deviation are distributed in
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Fig. 3 Spatial solutions of three heuristic algorithm for an initial solution (average district
populationD 204,251)

the North of it, producing large objective values. The main reason for this result
is that local moves were restricted by the physical barrier. In the case of the DS,
due to dissolving/splitting procedures, the algorithm can overcome the effect of
the physical barrier. As a result, the number of districts in the South of the Han
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River changed from 20, at the initial solution, to 25 at the final solution, producing
a greatly improved objective value compared to the other two meta-heuristics
(Fig. 3f).

Conclusions

Many exact solution approaches using spatial optimization have been developed for
political districting problems. The major drawback of the exact solution approach
is the limited solvability for large instances that are common in real-world applica-
tions. In particular, the complexity in handling spatial contiguity and compactness
is a major concern. To make heuristic approaches more promising, producing
consistently high-quality solutions with little variation is a key component. This
study developed a robust heuristic method for political districting problems using a
simple procedure, dissolving/splitting (DS) algorithm, for districting spatial units.
When compared with traditional meta-heuristic approaches, the DS outperforms the
SA and TABU in terms of solution time and solution quality. The DS algorithm
is effective, especially when a physical barrier is explicitly incorporated along
with population equality, contiguity, and compactness. Because the proposed DS
is simple and the structure does not rely on the meta-heuristic frameworks that are
sensitive to random components, we believe this algorithm can be used to solve
other regionalization problems as well as districting problems.

References

1. Armstrong MP, Lolonis P, Honey R (1993) A spatial decision support system for school
redistricting. J Urban Reg Inf Syst Assoc 5:40–52

2. Kim H, Chun Y, Kim K (2015) Delimitation of functional regions using a p-regions problem
approach. Int Reg Sci Rev 38(3):235–263. doi:10.1177/0160017613484929

3. Openshaw S, Rao L (1995) Algorithms for reengineering 1991 census geography. Environ Plan
A 27:425–446

4. D’Amico SJ, Wang S-J, Batta R, Rump CM (2002) A simulated annealing approach to police
district design. Comput Oper Res 29:667–684

5. Cutter SL (ed) (2001) American hazardscapes: the regionalization of hazards and disasters.
Joseph Henry Press, Washington, DC

6. Barkan JD, Densham PJ, Rushton G (2006) Space matters: designing better electoral systems
for emerging democracies. Am J Polit Sci 50:926–939

7. Fryer RG Jr, Holden R (2011) Measuring the compactness of political districting plans. J Law
Econ 54(3):493–535

8. Ricca F, Scozzari A, Simeone B (2011) Political districting: from classical models to recent
approaches. 4OR 9:223–254

9. Webster GR (1997) The potential impact of recent supreme court decisions on the use of race
and ethnicity in the redistricting process. Cities 14(1):13–19

http://dx.doi.org/10.1177/0160017613484929


A Robust Heuristic Approach for Regionalization Problems 323

10. Bozkaya B, Erkut E, Laporte G (2003) A tabu search heuristic and adaptive memory procedure
for political districting. Eur J Oper Res 144:12–26

11. Garfinkel RS, Nemhauser GL (1970) Optimal political districting by implicit enumeration
techniques. Manag Sci 16:495–508

12. Hess SW, Weaver JB, Siegfelat HJ, Whelan JN, Zitlau PA (1965) Nonpartisan political
redistricting by computer. Oper Res 13(6):998–1006

13. MacMillan W, Pierce T (1994) Optimization modeling in a GIS framework: the problem of
political redistricting. In: Fotheringham S, Rogerson P (eds) Spatial analysis and GIS. Taylor
and Francis, London, pp 221–246

14. Bação F, Lobo V, Painho M (2005) Applying genetic algorithms to zone-design. Soft Comput
9:341–348

15. Forman SL, Yue Y (2003) Congressional districting using a TSP-based genetic algorithm. Lect
Notes Comput Sci 2724:2072–2083

16. Browdy M (1990) Simulated annealing: an improved computer model for political redistricting.
Yale Law Policy Rev 8(1):163–179

17. Williams JC (1995) Political redistricting: a review. Pap Reg Sci 74:13–40
18. Mills G (1967) The determination of local government electoral boundaries. Oper Res Q

18:243–255
19. Segal M, Weinberger DB (1977) Turfing. Oper Res 25(3):367–386
20. George JA, Lamar BW, Wallace CA (1997) Political district determination using large-scale

network optimization. Socio Econ Plan Sci 31(1):11–28
21. Zoltners AA, Sinha P (1983) Sales territory alignment: a review and model. Manag Sci

29:1237–1256
22. Duque JC, Ramos R, Surinach J (2007) Supervised regionalization methods: a survey. Int Reg

Sci Rev 30(3):195–220
23. Shirabe T (2005) A model of contiguity for spatial unit allocation. Geogr Anal 37(1):2–16
24. Duque JC, Church RL, Middleton RS (2011) The p-regions problem. Geogr Anal 43:104–126
25. Fischer MM (1980) Regional taxonomy: a comparison of some hierarchic and non-hierarchic

strategies. Reg Sci Urban Econ 10:503–537
26. Masser I, Scheurwater J (1980) Functional regionalisation of spatial interaction data: an

evaluation of some suggested strategies. Environ Plan A 12(12):1357–1382
27. Openshaw S, Wymer C (1995) Classifying and regionalizing census data. In: Openshaw S (ed)

Census users handbook. GeoInformation International, Cambridge, pp 239–270
28. Openshaw S (1973) A regionalisation program for large data sets. Comput Appl 3(4):136–147
29. Glover F (1989) Tabu search-part I. ORSA J Comp 1(3):190–206
30. Liittschwager J (1973) The Iowa redistricting system. Ann N Y Acad Sci 219:221–235
31. Nagel S (1965) Simplified bipartisan computer redistricting. Stanford Law Rev 17(5):863–899
32. Openshaw S (1977) A geographical solution to scale and aggregation problems in region-

building, partition and spatial modeling. Trans Inst Br Geogr 2(4):459–472
33. Blais M, Lapierre S, Laporte G (2003) Solving a home-care districting problem in an urban

setting. J Oper Res Soc 54(11):1141–1147
34. Duque JC, Anselin L, Rey SJ (2012) The max-p-regions problem. J Reg Sci 52(3):397–419
35. Ricca F, Simeone B (2008) Local search algorithms for political districting. Eur J Oper Res

189:1409–1426
36. Wei BC, Chai WY (2004) A multiobjective hybrid metaheuristic approach for GIS-based

spatial zoning model. JMMA 3:245–261
37. Goldern B, Skiscim C (1986) Using simulated annealing to solve routing and location

problems. Nav Res Logist Q 33:264–280
38. MacMillan W (2001) Redistricting in a GIS environment: an optimization algorithm using

switching-points. J Geogr Syst 3:167–180



324 K. Kim et al.

39. Young HP (1988) Measuring the compactness of legislative districts. Legis Stud Quart
13(1):105–115.

40. Kirkpatrick S, Gelatt DC, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680

41. Sammons R (1978) A simplistic approach to the redistricting problem. In: Masser I, Brown P
(eds) Spatial representation and spatial interaction. Martinus Nijhoff, Leiden, pp 71–94

42. Openshaw S (1978) An optimal zoning approach to the study of spatially aggregated data.
In: Masser I, Brown P (eds) Spatial representation and spatial interaction. Martinus Nijhoff,
Leiden, pp 95–113

43. Kim MJ, Kim K (2013) Spatial optimization approaches to redistricting for National Assembly
election: a case study on Yongin city. J Korean Geogr Soc 48(3):1–15



iGLASS: An Open Source SDSS for Public
School Location-Allocation

Min Chen, Jean-Claude Thill, and Eric Delmelle

Introduction

Every year a large budget is spent on public education in the United States. Optimal
public school location and assignment are essential for school operation to keep
budgets under control and deliver the school service to population consistently with
the core property of public good. Although these planning activities have been
studied for many years, solving them is not easy, especially when the capacity of
schools must be respected (i.e. how much demand a facility can accommodate) and
assignment of pupils to their closest school is intended. Previous work has focused
on the location phase of the problem, taking the closest assignment in the allocation
phase for granted. However, the enforcement of school capacity constraints may
render the closest assignment difficult or even impossible to implement. In such
case simple solution strategies applied in the allocation phase fall short of meeting
the needs of the problem at hand and more contextualized approaches need to
be adopted because demand allocation directly influences the objective function
and changes the location selection accordingly. For planners and decision-makers,
an interactive Spatial Decision Support System (SDSS) integrating Geographic
Information Systems (GIS) and optimal location-allocation models is also desired
to solve the problem and display the solutions in a more interpretable way. In
such SDSS, various objectives can be considered by school planners as part of the
planning process, such as minimizing the pupils’ travel time, minimizing their travel
distance, maximizing the number of students assigned to their closest school, and
minimizing the number of students who would travel over a distance deemed so
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long that their parents would wage complaints against the school district. In this
research, we will keep these three objectives in mind as functional requirements of
the proposed system.

The contribution of this research is threefold. First, we formulate a generalized
model for the school location-allocation problem incorporating minimum and
maximum school capacity constraints. In this model, the main objective is to
minimize the total travel time or distance for all the students attending public
schools. Additionally, to make the model more practical, maximizing the number of
students who would be assigned to their closest schools or minimizing the number
of students sent to remote schools is taken into consideration.

The second contribution is the development of a new operational approach
integrating Tabu Search to solve the school location selection problem and Greedy
Algorithm/Genetic Algorithm for the student allocation problem with the aim of
overcoming the limitations of exact algorithms. The proposed heuristic algorithm
considers both the location and the allocation phases jointly.

The third main contribution of this chapter is the implementation of a SDSS for
school location and allocation based on an open source GIS, called the “interactive
Graphical Location-Allocation System for Schools” (iGLASS). The SDSS provides
planners with interactive ways to select the location of new schools, for closing
existing schools, and to decide the modalities of allocating students to schools.

The remainder of this chapter is organized as follows. In the second section, the
literature regarding location-allocation modeling and the contributions of geospatial
analysis to location science is reviewed. In the third section, we present in detail
the proposed capacitated school location-allocation problem, while the algorithm
proposed to solve this optimization problem is outlined in section “Solution
Algorithms”. Then the iGLASS decision tool will be discussed in section “iGLASS
Implementation”. Finally, a case study of Charlotte-Mecklenburg Schools is studied
as a demonstration of the school location problem and its implementation. Conclud-
ing remarks and directions for future research are given in section “Conclusions”.

Literature Review

Location-Allocation Problems

Location-allocation problems are typical combinational problems and have widely
been studied in different fields, including economics, industrial engineering, oper-
ations research, regional science, urban planning, geography, computer science
and mathematics [1, 2]. Location-allocation models have benefited much from
development in computing technologies and from the interest of scholars in diverse
areas, who have contributed diverse perspectives towards the analytics of facility
location and facility service areas. For example, GIS has contributed greatly to
location analysis in terms of data input and management, visualization, problem
solution and theoretical advances [1].
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Location problems deal with locating one or more facilities in such a way
to optimize one or multiple objectives [3]. Location-allocation problems form an
important class of location problems, rooted in location theory and whose purpose
is to “locate a multiple number of facilities and allocate the demands served by
those facilities so that the system service is as efficient as possible” [3]. Location
theory was not formalized until Weber’s seminal 1909 [4] treatise on industrial
location [5]. Most discussions about location-allocation problems were triggered
by Hakimi [6], after he developed a formulation for finding one or more facilities
on a graph to minimize the sum of the distances or the maximum distances between
facilities and points on the graph. Since his work, application of location-allocation
models has blossomed and a number of different location-allocation models have
been identified.

Francis, McGinnis, and White [7] suggested that the literature on location-
allocation modeling is organized in four classes according to the discrete versus
continuous characteristics of the space where facilities are sited. For the discrete
scenarios, the facilities can only be built at a restricted number of discrete candidate
locations, while for the continuous scenarios, the facilities can be built anywhere
in the region they are designed to serve. These classes are the continuous space,
discrete space, mixed space and discrete network location-allocation problems.
Brandeau and Chiu [5] presented a survey of over 50 location problems and
gave a broad overview of location problems studied before 1989 by providing a
framework of classification based on their objective functions, system parameters
and decision variables. This paper can be viewed as an excellent starting point to
get an overview of the research work in the location and location-allocation area
before the 1990s. About the same time, Current, Min, and Schilling [8] pointed
out that there are often multiple objectives to implement in location (including
location-allocation) problems, rendering the search for solutions more complex.
Four main categories of objectives were uncovered in their work: minimizing the
operating cost, minimizing the travel impedance (e.g., distance or time), maximizing
the coverage and maximizing the demand assignments.

In the class of discrete location-allocation problems, there are four typical
problems: the p-median problem, the p-center problem, the uncapacitated and
capacitated facility location problem (UFLP/CFLP) and the quadratic assignment
problem (QAP) [9]. The p-median problem is known as a minisum location-
allocation problem, which means that the objective is to minimize the total distances
or costs between demands (customers) and providers (facilities). The p-median
problem was first studied by Hakimi [6, 10]. ReVelle and Swain [11] mathematically
formulated the p-median problem, presenting it as an integer programming problem.

Location-allocation problems are combinational optimization problems, for
which a solution contains the information of where facilities can be located, given
the spatial distribution of demand within the area, to minimize the total cost (travel
time, distance or other impedances) or to minimize the operating cost or some other
overall objective. It is non-trivial to solve in that it has a very large solution space,
and it is NP-hard, and there is no way to find the exact optimal solution within
polynomial time. Traditional exact algorithms of linear programming provided by
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commercial software like CPLEX or Lingo [3] are not efficient for large-scale
problem. Consequently, many heuristic algorithms have been proposed to solve
location problems. Among them, greedy [12], alternate [13] and vertex substitution
[14] were applied earlier on. Later, especially in the last decade, more advanced
heuristics and metaheuristics were proposed to solve the p-median problem, just to
list a few: Genetic Algorithms [15], Tabu Search [16], simulated annealing [17] and
ant colony optimization algorithms [18]. Bischoff and Dächert [19] used different
methods to solve the generalized class of location-allocation problems, in which
N new uncapacitated facilities are to be located in the plane with respect to M
objects, and their performances are compared. More specifically, they compared the
multi-start, (variable) neighborhood search, tabu search, simulated annealing, and an
evolutionary algorithm. Their numerical results show all the methods perform very
similarly to each other, while the termination criterion may change the computation
time and quality of the objectives.

Planning for Public Services and School Locations

Teitz [20] advocated for the systematic study of location of public facilities as a sys-
tem [2]. He stressed the necessity to balance efficiency (similar to the optimization
objective) and equity in public facility locations [21]. Thus, public facilities should
be distributed and established mainly by government guided by governmental
welfare criteria within budgetary constraints, rather than determined by profit-
making, which governs private sector operations [21]. After Teitz’s advocacy for
location modeling in the domain of public service planning and delivery, location-
allocation models became more widely used for various public facilities such as
schools, hospitals, libraries, fire stations and police stations. Various objectives have
been identified as pertinent when designing the distribution of public facilities [22]:
(1) minimize the total travel time or distance (p-median, see Hakimi [6], Hillsman
[23]), (2) minimize the maximum travel time or distance that separates a user
from his/her closest public facility [24], (3) minimize the number of necessary
facilities while keeping a certain level of coverage (Location Covering Set Problem)
[24]. All these models have been extensively studied and applied under different
scenarios. Their general goal is to minimize travel impedance from an agglomerative
or individual perspective; hence they require all the demand nodes to be assigned
to their closest facility, or a facility to be located within an acceptable distance
from each demand node. However, they inherently lack the functionality to address
capacity constraints (i.e. how much demand should be reached to open a facility
and how much demand a facility can accommodate at most), so that Ellwein and
Gray [25] and others have proposed an alternative model to handle the capacity and
regional constraints to make sure an acceptable level of service will be provided by
these facilities.

Education is one of the most expensive public services provided by government
entities in the United States. The State of North Carolina spent 38.5% of its general
state funds on public schools in 2011–2012 [26]. It is essential to optimize the
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location of public schools not just to minimize the system efficiencies from a user
perspective but also to make sure that a high level of equity is offered. Public school
location-allocation problems have caught much attention since the beginning of
location analysis and especially in recent years. We discuss hereafter some of the
challenges associated with school location analysis that have been highlighted in
the literature.

(i) Capacitated Models. In early location models, no capacity constraints were
taken into consideration. Following Ellwein and Gray [25] and Mirchandani and
Francis [9], Murray and Gerrard [27] proposed to add capacity constraints for each
school. These authors also tried to address the efficient and effective provision of
services, regional or zonal requirements, aside from preventing excessive facility
workload. A solution approach based on Lagrangian relaxation was developed.
Capacitated location problems reflect the capacity constraints that must be con-
sidered by location planners or decision-makers. Given the existence of maximum
capacity constraints, the sum of the demand assigned to a particular facility cannot
exceed the upper bound of the capacity; in the case of schools location-allocation
problems, minimum capacity constraints are also regarded as essential, and when
these constraints are added [17], students may be forced to cross school district
boundaries in order to meet minimum capacity requirements. Also under-utilized
schools (schools with fewer students than the minimum capacity constraint) may
be suggested as candidates for closing because of the excessive operating costs per
student, while over-utilization (overcrowding) can only be addressed by increasing
the capacity of the school or adding new schools. When the school authority
wishes to reduce class sizes, capacity adjustment is also required. A recent study
by Delmelle et al. [28] accounts for adjustable school capacity in a longitudinally
dynamic environment.

(ii) Assignments to Closest Facilities. In location-allocation problems, it is ideal
if all the demands can be sent to their closest facilities, and in many studies closest
assignments have been taken for granted. However, this ideal situation may be
violated in practice due to the inherent constraints on facility capacity or because
the closest facility is not available to be used. In the case of school location-
allocation problem, although in certain circumstances, a student may be willing to
travel a longer distance to attend a school that offers special programs [29], it is
always desirable to send as many students as possible to their closest school [30]
or minimize the number of non-closest assignments. Generally speaking, the non-
closest assignment in school allocation problems is mainly due to the maximum
capacity constraints; hence, increasing the capacity of schools will generally result
in a higher rate of closest assignments. Gerrard and Church [31] addressed closest
assignment constraints in integer-linear location-allocation models, and they also
gave a summary of the applications with closest assignments, and presented some
improvements. Delmelle et al. [28] proposed a mathematical formulation that
alleviates the incidence of non-closest assignments.

(iii) Modifying an Existing Facilities Network. In urban regions with high
population growth, adding new facilities or augmenting the capacities of existing
facilities may be required, while closure and capacity reduction may be deemed
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necessary in areas with population decline. In a location-allocation modeling
context for public schools, Antunes and Peeters [17, 32] and Antunes et al. [33]
introduced a p-median problem with minimum-maximum constraints capable of
handling the opening of new schools and closing of existing schools to address
the variations of enrollment. By examining the school capacity utilization after
consolidation, Church and Murray [34] addressed the analytical issues in school
closure and consolidation. However, their proposed model cannot force facilities to
remain open until they reach a certain age in order to reach scheduled amortization.
This functionality is an integral part of the model proposed by Delmelle et al. [28].

(iv) Multi-periods Planning Problem. Due to the dynamic characteristics of
school systems, some scholars have proposed to incorporate temporal issues into
school location-allocation models. Wesolowsky [35] extended the static location-
allocation problem into a multi-period one. A model was provided in their paper, and
a possible solution was also discussed. The dynamic modeling of a school network
is particularly challenging for several reasons: (1) demand is likely to fluctuate over
time, requiring the opening of new schools and the closing of existing ones [17, 28,
32]; (2) capacity regulates how much demand can be served at a particular time [32];
(3) the uneven quality of enrollment forecasts degrades the reliability and efficiency
of planning decisions [28, 36]; and (4) social costs arise with the reassignment of
students to a different school over successive periods over the planning horizon.

(v) Ethnic and Racial Balance. In societies with significant ethnic and racial
diversity, social inclusion policies may dictate that a certain level of social and ethnic
balance must be maintained in each school [37, 38], which may increase overall
travel time in the student population. Clarke and Surkis [39] developed a system
called “MINTRAN” to alleviate the racial segregation problems in public schools
by assigning students to schools in an efficient way, given the racial distribution of
students and locations and capacities of schools.

(vi) School Choice. An increasingly popular practice in public education is to
allow parents and students some choice of the school to attend. This serves to
alleviate political backlash associated with other policies and restore confidence in
decision makers and managers. Thus assignment is modeled through multivariate
choice modeling modules. Such approaches are presented by Church and Schoepfle
[40] and Müller, Haase, and Kless [41].

In this research we address the first three considerations in our model, leaving
the remaining three issues for future research.

GIS, SDSS, and Location Science

Although the development of location theory is independent of the development
of GIS and major advances in location science come from the development of
mathematical models [1], the integration of location and location-allocation models
in GIS provides new insights and visualization of solution results [3]. In the early
stage of location science, most location-allocation models were operations research
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based rather than GIS-based, but later, commercial GIS software like ArcGIS started
to provide functionalities to meet the application requirements of the locational
planning process. For example, ArcGIS 10.4 [42] provides toolboxes to solve six
different types of location-allocation problems: minimize impedance, maximize
coverage, minimize facilities, maximize attendance maximize market share and
target market share, respectively.

Church [43] and Murray [1] summarized the contributions of GIS to location
science developments in terms of data input, visualization, problem solution and
theoretical advances, and argued that the role of GIS in location models should not
be confined as a “mere spatial data input mechanism”, which is commonly held
by researchers in location sciences. GIS as a data input tool have been extensively
used, and the simplest application is to identify the set of potential sites of
public facilities based on basic requirements (e.g., distance from existing facilities,
population density and topological requirements). These potential locations can be
retrieved by basic functionalities (buffering and overlay, map algebra) provided
by GIS. Regarding the visualization, GIS can be used as a powerful tool to
display solutions interpretable to even inexperienced user, and more meaningful
patterns can be discovered from the location-allocation maps. Armstrong and
Densham [44] suggested a new cartographic framework to visualize network-based
location-allocation solutions with a goal to support collaborative group decision-
making. In this framework, the synthetic maps were created by decomposing the
location-allocation solution map into atomic elements, and were accessible to group
members. In turn, group members can discover the similarities and dissimilarities
in alternative solutions and work collaboratively.

A few operational systems have integrated location-allocation models and GIS
along the lines of a full-fledge decision-support environment aiming at providing
semi-structured or unstructured spatial decisions. SDSS is a computer-based system
providing interactive ways for decision-makers to assist them to solve complex
spatial problems [45]. A typical SDSS contains three main components: a database
management system, a library of models used to solve the problems and an interface
to aid users to modify the parameters and analyze outcome of different decisions. In
particular, research on SDSS for resource allocation applications has caught on by
integrating Artificial Intelligence (AI) techniques with GIS (e.g., [46]). In the field
of location analysis, efforts dedicated to developing such a system where GIS plays
an integral part remain weak. A majority of research has used a loose coupling
approach: exporting data and displaying results in GIS software and solving the
location-allocation problem by optimization software like CPLEX or Lingo. Ribeiro
and Antunes [47] developed such a system by using MapObjects components of
ArcGIS.

Planners and decision makers need a flexible and portable SDSS integrating
GIS and location-allocation modeling functionality that provides them with an
interactive way to design new school distributions and student allocations. In
particular, it is critical to be able to selected different objectives on the fly and
evaluate associated solution outcomes to better inform the decision process.
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Problem Formulation

We present a min-max capacitated school location-allocation model with multiple
objectives. First, we aim to assign all the students to their closest school. However,
schools with an excessive number of students will provide very poor services to
them; as a result, it is necessary to place maximum capacity constraints on the
schools. Minimum capacity constraints are significant when considering limited
budgets. In most cases, it is easier to expand the capacity of an existing school
than opening a new one regarding both the money required at the startup stage and
maintenance phase. So when it is possible, we would like to recommend expanding
the maximum capacity of an existing school rather than opening a new school.
When capacity constraints are placed on the problem, it may become impossible
to assign all the students to their closest school. Consequently, the objective morphs
from single (minimize the total travel time or distance) to multiple, which include
minimizing the total time or distance travelled by students, maximizing the number
of students sent to their closest school, and minimizing the number of students sent
to a school that is much further than their closest one.

Our capacitated school location-allocations problem can be formulated as an
integer-linear programming model, subject to a fixed number of facilities and max-
min-capacity constraint with the objectives described above. We use the following
notation.

Indexation and Sets

i, I D index and set of demand nodes (student).
j, J D index and set of school locations.

Parameters

aiD demand at node i.
dijD travel impedance (distance, time, or cost) between locations i and j.
pD number of schools that can be opened.
C�j D minimum capacity of school site j.

CCj D maximum capacity of school site j.

Decision Variables

Xij D
�

1; if we assign a student i to school j
0; otherwise
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Yj D
�

1; if we locate a school at j
0; otherwise

Derived Variables

Ii0 D
�

1; if student i assigned to their closest school
0; otherwise

Iic D
8

<

:

1; if student i assigned much further than their closest school;
which would arouse complaints

0; otherwise

Formulation

Extending the p-median, a generic formulation of the school location problem is as
follows.

Minimize Z D
X

i2I

X

j2J
ai 
 dij 
 Xij (1)

Maximize A D
X

i2I
ai 
 Ii0 (2)

Minimize C D
X

i2I
ai 
 IiC (3)

Subject to:

X

j2J
Xij D 1 8i 2 I (4)

Xij � Yj 8i 2 I; 8j 2 J (5)

X

j2J
Yj D p (6)

C�j �
X

i2I
ai 
 Xij 8j 2 J (7)

CCj �
X

i2I
ai 
 Xij 8j 2 J (8)
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Xij 2 f0; 1g 8i 2 I (9)

Yj 2 f0; 1g 8j 2 J (10)

Yj D 1 8j 2 Jo (11)

Yj D 1 8j 2 Jc (12)

where:
Yj D 1 means that the j-th school will be open, otherwise, it will be closed,
Xij D 1 means the student in the i-th demand will be assigned to the j-th school.
Objective (1) is to minimize the aggregated travel impedance (time or distance)

for all the students in the school system; objective (2) is to maximize the number
of students sent to their closest school, while (3) is to minimize the number of
students sent so far away that they will file complaints with the school district.
Constraint (4) ensures that each student is assigned to a school, while constraint (5)
stipulates that a student can be allocated to a school only if that school is currently
open. Constraint (6) restricts the number of open schools to a certain number (p).
Minimum and maximum capacity constraints (7) and (8) limit the flow of students
to each facility. Integer constraints (9) prevent fractional assignments. If certain
schools must remain open (for instance due to political pressure, or if a school is
a neighborhood landmark or if a school was just opened), this can be enforced by
introducing a new set JO which is the set of schools that must remain open. Similarly,
JC is the set of schools that must close.

In order to combine the three objectives from Eqs. (1)–(3), a standardized
objective function can be formulated as Eq. (13), where (�1 , �2 , �3) reflects the
importance imputed to each sub-objective by the community and decision makers:

Minimize Z D ”1

X

i

X

j
aidijXij�”2


X

i
aiIi0C”3


X

i
aiIic (13)

It should be noted that the model in Eqs. (4)–(13) can be made dynamic by
including a temporal component. However, the number of time periods over which
the problem is optimized will increase the number of location-allocation variables
dramatically, thus affecting the run time and making heuristic methods a more
appealing solution approach.

Solution Algorithms

Location-allocation is an NP-hard problem, rendering it impossible to solve in poly-
nomial time when an exact optimal solution is intended. Heuristic algorithms have
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been proposed to efficiently solve these location-allocation problems, especially
when the problem becomes very large. In this section, a two C one-phase approach
consisting of Tabu Search (TS) and Greedy Algorithm/Genetic Algorithm (GA) will
be presented. TS and Greedy Algorithm/GA will be used to solve the location of
schools and the allocation of students to schools, respectively. The heuristic ends
with a local re-optimization of the solution achieved through the earlier two-phase
iterative process.

Overview of the Two C One-Phase TS-Greedy/GA Approach

We propose an algorithm with two main phases, location and allocation. The
location phase is guided by TS, while the allocation phase is solved by greedy
algorithms or GA. For the school location phase, the sequence is as follows. First, a
fixed number of (p) schools are selected randomly from the set of school candidates.
Then, demand nodes are assigned to each school according to some priority score
assigned to the demand nodes; the priority score is devised on the basis of some
exogenous considerations relevant to the student assignment problem at hand. The
process ends with the best solution when the solution found has not changed for a
certain number of iterations. The flowchart of the algorithm is illustrated in Fig. 1.

The best solution comprises the set of schools and associated student assignments
that minimizes the objective function; it is called the incumbent solution. At
each iteration, the incumbent solution becomes the new, initial solution, and is

Start with a randomly proposed solution

Generate neighbor solutions
from the proposed solution

Allocation demands to schools and obtain the cost

Sort the neighor solutions based on the cost value

Proposed a new solution 
(best solution in the neighbors)

and remove it from the neighbors

Solution not in 
the tabu list?

Update the tabu listMeet the aspiration 
criteria?

Update the Best-so-far
solution

Ending criterion
is met?

Local re-optimization

Allocating demand nodes to schools

No

Yes

Is the best-so-far
solution?

YesNo

No

Yes

Stop

Start

Fig. 1 Flowchart of public school location-allocation heuristic (with location selection as frame-
work)
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changed by generating a new set of schools (swapping opened and closed schools,
respectively), and students are reassigned to schools that are open. The process is
repeated until the best solution found cannot be improved over a preset number of
consecutive iterations.

The two phases of the heuristic are discussed in more detail in sections “Phase 1:
Tabu Search Approach for School Location” and “Phase 2: Greedy Algorithms and
GA for Allocating Students to Schools”, respectively, while local re-optimization is
presented in section “Local Re-optimization”.

Tabu, Greedy, and Genetic Algorithms

In the search for solution to location-allocation problems, an array of heuris-
tic algorithms have been applied. Among them, the Genetic Algorithms [15],
Tabu Search [16], and simulated annealing [17] have become rather commonplace.
Compared with exact solution methods, heuristics provide an efficient way to find
the solution. A heuristic algorithm is an ad hoc and rule-of-thumb way [48] to find
the approximate optimal solution rather than exact best solution for an optimization
problem. Among these heuristic algorithms, Tabu Search and Genetic Algorithms
belong to the most efficient heuristic techniques in that they can find high-quality
solutions in relatively short run time.

TS was first proposed by Glover and McMillan [49] and formulated by Glover
[50]. It was introduced as a local solution searching strategy addressing combi-
natorial optimization problems, and was initially applied in fields like scheduling,
computer channel balancing, cluster analysis, space planning, travelling salesman,
and graph coloring [50]. For the TS algorithm, a random solution is initially
generated, and its direct neighbors in the solution space are examined to find a
better solution for the problem; then the neighbors of the last selected solution are
examined again; the searching loop continues until the stopping criteria are reached.
In order to prevent the solution from falling into sub-optimal regions or on plateaus
where most of the solutions have the same objective function, memory structures
are used as forbidden neighbors, and in this way a global optimal (or approximate
optimal) solution can be obtained.

Greedy algorithms [51] are trying to find the best solution by choosing the next
optimal step which will provide an immediate benefit to the problem. It is myopic
in that locally optimal choice in every step does not guarantee a global optimal
solution. However, greedy algorithms are attractive due to their simplicity and easy
implementation, and in most cases, they can provide a solution that is close to the
global optimum.

Genetic algorithm (GA) was first introduced by Holland [52]. It mimics the
natural evolution theory and can be used to find approximate optimal solutions
to a wide range of problems. GA is capable of escaping a local optimal solution
and finding the global optimum. Hosage and Goodchild [53] is among the first
researchers to apply GA to solve location-allocation problems. Although their result
showed that GA is unlikely to have the same efficiency as other heuristics, they
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proved the applicability of GA for this class of optimization problems. Furthermore,
GA can be used to find optimal solutions with multiple objectives, providing
alternative solutions for decision-makers. For instance, Zhang and Armstrong [54]
proposed a multi-objective GA for corridor selection problems, and a large set of
Pareto-optimal and near-optimal solutions were provided to the decision-makers for
evaluation. Evolutionary Algorithms (EAs), as an extension of GA, have also been
used by researchers when they faced multiple objectives during site searches [55].

Phase 1: Tabu Search Approach for School Location

The following components need to be given careful consideration when we the TS
algorithm is implemented: the representation of a solution and the definition of
its neighbors; the contents of the tabu list, including its length and the aspiration
rules; and the stopping criteria. Intuitively, the neighbors should be rather similar
to each other, yet different; here we define neighbors as those solutions consisting
of identical schools, except for one. More detail regarding these components are
reported hereunder.

(1) Let us assume there are n candidate locations from which p school sites will
be selected. Then, to represent a solution, an array of n binary values is constructed,
where each digit represents the status of a site. A value of 1 means that a school will
be built at that site, and 0 otherwise (Fig. 2 shows an example of 5 school sites out
of 7 candidates).

(2) Neighbors are generated by swapping the status (open or close) of any two
candidates whose status differs (see Fig. 2).

(3) A tabu list records the swaps that occurred in the previous steps, while the tabu
length is the maximum number of swaps the list is able to keep in memory; solutions
generated by the swaps in the tabu list cannot be selected as the next solution unless
an aspiration rule is satisfied.

Fig. 2 Representation of a location solution and its neighbors in Tabu Search
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(4) An aspiration rule is defined here as when the solution generated by the swap
in the tabu list is the best-so-far solution, which means that if the swap for a new
solution that resides in the tabu list but the solution is better than all the previously
visited solutions, then this swap can be taken and the solution can be selected as the
next solution.

(5) The stopping criterion states that when the best-so-far solution does not
change for a certain number of steps, it will be treated as the optimal solution and
the process ends.

To be more specific, TS starts with an initial location solution of fixed schools.
The set N of neighboring solutions is generated by swapping one currently open
school with one that is closed and vice versa. This yields a N-number of potential
solutions. A tabu list keeps track of these location swaps. The algorithm will not
revisit solutions that have already been explored, unless an aspiration criterion is
met. The aspiration criterion allows the algorithm to visit a move currently in the
tabu list provided it is better than the previously visited solutions. The use of a tabu
list and neighboring solutions allows the algorithm to escape from a local optimum.

Phase 2: Greedy Algorithms and GA for Allocating Students
to Schools

In the allocation phase, students are allocated to one of the p school sites in the
solution set following a greedy (myopic) approach (either based on the magnitude
of the demand, proximity, or regret) or a GA approach (the fitness function can be
given by eqs. (1), (2) or (3)).

Capacity constraints make school location-allocation problems much harder to
solve than regular p-median problems. In order to provide a high level of service
to students, the number of students sent to each school cannot exceed a certain
quota dictated by its design (maximum capacity constraints), while to make more
efficient use of the investments in building a new school, the number of students
should be higher than a certain threshold number (minimum capacity constraints).
In capacitated location-allocation problems, the strategy to implement the allocation
step is assumed to be the closest assignment; however, the capacity constraints make
the closest assignment difficult or even impossible to implement. In this algorithm,
we will consider the allocation phase explicitly and treat the maximization of the
number of students sent to their closest school or minimization of the number of
students sent much further than their closest school as an additional objective, aside
of the objective of minimizing the total travel time or distance. This is handled
through assignment priority lists: a priority value is associated with each demand
node; the node with a higher priority will be considered ahead of others in the
assignment decisions; thus it has a higher possibility to be sent to its closest school.
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Greedy Algorithms

In many situations, a greedy algorithm cannot yield the optimal solution; however,
it may produce a locally optimal solution that is close to a global optimum in a
relatively shorter time frame. When using greedy algorithms to allocate demand
nodes to schools, two kinds of priority lists of the demand nodes are maintained.
One priority list is for all the demand nodes; the priority is calculated by their
distance/population/regret value, which will be described later. The other kind of
priority list is constructed specifically for each site on the solution list, with the
priority score determined by geographic proximity.

From Eq. (1), we can identify that two variables (number of demands and
distance) contribute to the objective function. It would be easy to conceive of three
different greedy ways of minimizing the objective by:

(1) minimizing the weights on population, that is to say we set the priority based
on the population. For the entire school district, we sort the demand values from
highest to lowest (nodes with larger demand have higher priority), in this way we
are trying to assign as many students as possible to their closest school at every step
with a global goal of minimizing the total cost (impedance). In a sequential fashion,
the demand nodes with the highest value are assigned to their closest schools. When
a demand node cannot be assigned to its closest school, due to capacity constraints,
the demand is allocated to the second-closest school, or third closest, and this
continues in this fashion until a school can accommodate the student demand.

(2) minimizing the weights on distance, that is to say we calculate the priority
based on distance. A list of demand nodes sorted by distance is generated for
each school in the solution set. Demand is assigned based on its proximity, until
the school has reached its maximum capacity. Once that school capacity level is
reached, the algorithm moves to the next open school (in a random order) and
assigns students in a similar fashion. At the end of the iteration, the remaining school
demand that could not be assigned within the user-defined bound is pooled together
into one set, and allocated to remaining schools according to the priority list.
Figure 3 shows how to assign demand nodes to its closest school until the school is
fully utilized; first, we need to find all the closest demands to that school, and then
try to assign as many members in the closest demands list as possible to the school;
a common list of unassigned demands was maintained as well.

(3) minimizing the product of the two variables (demands of node by distance
to its assigned school) at every step. Priority assignment lists are designed, where
the priority score incorporates the concept of regret, or excess travel time that
would be incurred if a demand node was not assigned to its closest school. The
regret Rj is defined as the difference in travel distance (or time) between the closest
school (distance di
) and the school (distance dij) where the demand is assigned to,
weighted by the population at that demand node. Nodes are assigned to the schools
based on this regret value. Specifically:

Rj D aj

�

dij�di

�

(14)
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Fig. 3 Proximity-based assignment in greedy heuristic. TAZ, traffic analysis zone

For those demands that were not allocated in the first step, a priority list for all
the unallocated demands will be generated, and they will be assigned in sequence
to the remaining capacity of the schools (see Fig. 4). The details on how to do
Allocate(Schools[j]) is illustrated in Fig. 3; after all schools have accepted as many
closest demands as they can, a common list of unassigned demands (TAZs in Fig.
4) will be generated; the list of TAZs will then be sorted based on their priority (e.g.
regret value between the closest school (not able to accept all the students from this
demand) and the closest school which may still be able to accept all the students
from this demand). Every time the assignment failed, the order of the unassigned
TAZs must be updated based on the new priority of the unassigned TAZ we are
working on. The program will stop until all TAZs were assigned to some school.

Genetic Algorithm

Genetic algorithms have been widely used in many optimization problems. GA was
used to solve location problems as well [56], but so far they have not been used
for the allocation phase when the assignment of all demand nodes to their closest
facility is impossible. When capacity constraints are enforced, the assignment of all
demand nodes to the closest school may become impossible, but the sequence of the
assignment of the demand nodes may be exploited towards the overall performance
of closest assignments, and eventually contribute to the objective functions (1),
(2) and (3) since different assignment sequences will result in different values of
the objective functions. Consequently, the sequence of allocation of the demands
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Fig. 4 Assignment of unallocated students to the schools in greedy heuristic

to schools will be used in the design of the representation of GA individuals
(assignment instances). Our objective is to find the best assignment sequence that
will generate the optimal objective functions. In the design of the GA, every
assignment sequence will be treated as an individual and they are coded by their
orders. More details on the essential components in the GA design are provided
hereunder.

(1) The representation of an individual in the allocation phase is based on the
assignment orders of all the demand nodes. Figure 5 is a simple illustration of
how the GA operations are designed in our approach. Every demand node has a
unique id, and for every individual, it is coded by the order when the demand node
is assigned to the schools. For example, if there are seven demand nodes and they are
considered in the sequence of 1, 2, 3, 4, 5, 6, 7 (which means the first demand node
will be assigned to school first, the second demand node will be assigned after the
first demand node has been assigned to a school, and so on, until the seventh demand
node, which will be considered only after demands of 1, 2, 3, 4, 5 and 6 have been
assigned to a school) and the individual’s gene will be coded as 1,234,567.

(2) For the selection operation, a tournament selection strategy is applied, which
means two individuals are compared each time, and the one with relatively better
fitness will be selected. The fitness can be determined by the total cost (lower total
cost has higher fitness), closest assignment percentage (the higher, the better), or
further assignments (the lower, the better).
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Fig. 5 A simple example of the GA design in the allocation phase

Fig. 6 A demo of how a child is reproduced

(3) The generation of new individuals (allocation solutions) is conducted from
their selected parents by crossover and mutations, and order crossover of two parents
is used. Crossover is defined as follows: (1) a crossover point is randomly selected,
and every parent is partitioned into two sub-sets of genes; (2) the first sub-set of
genes (c1) from the first parent (p1) is copied to the child; (3) eliminating the
genes in c1 from the second parent (p2); (4) the remaining genes (c2) of p2 after
elimination is concatenated to c1 and form the genes of the child. For example, two
individuals of 1,234,567 and 3,756,214 crossover between the third and fourth codes
(Fig. 5); then two children 1,237,564 (the assignment sequence of demand nodes 1, 2
and 3 were determined by the first parent, and the assignment sequence of remaining
demand nodes, that is 4, 5, 6 and 7, were determined by the second parent, and the
sequence turns out to be 7, 5, 6 and 4) and 3,751,246 will be generated (see Fig. 5).
Figure 6 shows more details regarding how a child is generated from their parents.

(4) With this design, the mutation operation is easy. It is implemented by
swapping the order of any two demand nodes or multiple demands nodes, which
depends on the mutation probabilities set by the user.
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Local Re-optimization

Once the algorithm has iterated through the phases to identify school locations and
allocate students to schools to its completion, a local re-optimization is conducted.
Local re-optimization is implemented to reduce the incidence of assignment of
children to a school other than their closest. This proceeds as follows. We treat
each school and its q closest schools as a group, and the students assigned to any
of them through the global location and allocation heuristics will be processed as a
small-scale allocation problem. The assignment of students will be executed again
for these students and schools using the same heuristic option as for the global
optimization until the stopping point.

iGLASS Implementation

To implement the “interactive Graphical Location-Allocation System for Schools”
(iGLASS), we follow a tight-coupling design approach, where the communication
between the DSS and GIS is facilitated by an interface and DSS modules are
executed from within the GIS environment. This strategy minimizes data conversion
and keeps run time to a minimum, which is an essential consideration for interactive
sessions on large scale problems, possibly involving various community stakehold-
ers. Ribeiro and Antunes [47] adopted a similar strategy.

We integrate TS and Greedy/GA algorithms with an open-source GIS envi-
ronment to provide a SDSS (Fig. 7) for school location-allocation modeling and
planning. The stand-alone iGLASS tool is developed based on a scalable open
source GIS platform—DotSpatial 1.3, which “is a geographic information system
library written for .NET 4. It allows developers to incorporate spatial data, analysis
and mapping functionality into their applications or to contribute GIS extensions to
the community. DotSpatial provides a map control for .NET”.1 We implement the
extension of location-allocation modeling with the C# programming language. The
model parameters and input data can be altered on the fly through the graphical user
interface (GUI) (such as modification of their capacities). Visualization components
pertain to student assignments to school and school utilization.

iGLASS is designed to provide great flexibility to users who can customize the
system to the specific needs of a case study. It allows users to modify the demand
attributes and school capacities on the fly, which enables rapid sensitivity analysis
(Fig. 8). Second, demand nodes can be fractioned into smaller demand nodes, with
a threshold defined by the user. This property allows to allocate demand associated
to a single node (such as a neighborhood) to multiple schools when capacities are
very tight, thus achieving a greater school utilization value. Third, parameters for

1http://dotspatial.codeplex.com/.

http://dotspatial.codeplex.com/
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Fig. 7 The iGLASS Interface

the TS, Greedy and GA heuristics can be modified as an option by the users.
Fourth, at the end of the main location-allocation processes, the user can choose
to re-optimize the best solution found so far to reduce the incidence of non-closest
assignments, as discussed in section “Local Re-optimization”. Re-optimization is
conducted among every set of q nearby schools at a time, but only for schools with
non-closest assignments. For each school, the algorithm identifies its q-1 closest
schools; a smaller instance of the allocation programming model is run then. If the
new solution improves the objective value, it is adopted.

Visual outputs include spider maps that reflect the assignment of students to
a school (and the magnitude of this allocation); different symbolism is used for
the school status (open or close). Schools can also be visualized based on their
utilization. Additionally, iGLASS is flexible to add ancillary geographic information
in the form of shapefiles to the map display, such as school district boundaries, and
highlight the assignments to user-selected schools (Fig. 9).
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Fig. 8 Demand attribute (left) and school capacities (right) can be modified on the fly

Fig. 9 School district boundaries associated with each school and optimal student assignment.
The allocation to each school can be highlighted interactively and displayed by different color

Case Study

Case Study Area

We illustrate the behavior of iGLASS powered by the heuristic algorithms of
location-allocation on the case study of high schools in the Charlotte Mecklenburg
Schools (CMS) system, which serves the city of Charlotte (North Carolina, USA)
and its surrounding county. The case study involves the optimization of the location
of public high schools in the CMS system, given the demands and sites that
are candidates for schools. The school system has experienced rapidly expanding
enrollment over the past 30 years, as a result of one of the highest population
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Fig. 10 Open and proposed schools in the CMS system (a) and spatial distribution of school
demand at the TAZ level (b)

growth rates in the United States. In North Carolina alone, the state had a projected
enrollment growth of 37% from 1999 to 2009, with the CMS system one of the
fastest growing. Population increase in the Charlotte area has had a direct impact on
the opening/closing of new and existing schools and the ability of CMS to increase
school capacity in the short run.

In 2008, the CMS system operated 20 public high schools (see Fig. 10a) with
several additional high schools under consideration to address increasing school-
age population. Actual enrolment as well as minimum and maximum capacities of
each school were provided by CMS administration. We use the estimated population
of children in age of attending high school (14–17 years old) to estimate the demand
to be served by CMS high schools. This total demand consists of 37,851 students.
The distributed demands within each traffic analysis zone (TAZ) is aggregated into
one demand node (n D 1057 demand nodes) (Fig. 10b).

Location-Allocation Results

In this case study, the travel distance estimated on the generalized multimodal
network of the Charlotte Department of Transportation is used as impedance
from each TAZ (demand node) to potential school sites. All the experiments with
iGLASS are done on a computer configured with Intel Pentium (R) CPU B940
(2.00 GHz) with 4.00 GB RAM. The location-allocation solutions will be compared
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Fig. 11 Location-allocation solution by CPLEX (left) and iGLASS (right) with the number of
facilities p D 20 in both cases (school locations were not fixed). The allocation in iGLASS is
based on the minimization of the regret

with each other by using different allocation methods, and a benchmark generated
by the mathematical programming solver CPLEX on the mathematical program
formulation by objective (1) and constraints (4)–(12) will also be demonstrated.

As a first scenario, we assume that 20 schools should be open out of a feasible
set of 25 sites (as shown in Fig. 10). Figure 10 compares the solution obtained by
heuristic optimization in iGLASS with the one obtained with CPLEX. The run time
for the CPLEX solution is 122.02 s, much more than the iGLASS run time, which
is 23.38 s. The objective function obtained by iGLASS is only slightly higher than
the CPLEX solution (about 4.5% worse). As far as the school sites in the solution
set are concerned, we find that CPLEX and iGLASS locations are identical when
the school candidates are broadly dispersed across the service area. However, when
there are several candidates bunched up in a small geographic region of the broader
study area, CPLEX and iGLASS produce different solutions. This can be seen in
the central and northern parts of the study area in Fig. 11. From the maps, we can
see that the allocations obtained from iGLASS and CPLEX are similar when the
location of schools is dispersed widely, while in regions with multiple options for
students (where there are several schools close to each other, that is in the central
part of the service area), differences between iGLASS and CPLEX are much greater
regarding the allocations.
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Fig. 12 Location-allocation solution by CPLEX (left) and iGLASS (right) with the number of
facilities p D 20 in both cases (school locations were determined in CPLEX and are fixed in
iGLASS). The allocation is based on the minimization of the regret

In a second test scenario, we focus on demand allocations. To this end, we first
solve the location-allocation problem with CPLEX. The solution of 20 optimal
locations is then used as feasible set in iGLASS to derive demand allocations
and compare them to those found with the CPLEX solver. Figure 12 contrasts
the CPLEX allocation solution and the iGLASS solution derived with the Greedy
algorithm in conjunction with the regret-based priority listing. The difference is in
the allocation of pupils to schools, which is influenced by the assignment criterion.
We report in Table 1 three performance metrics for each solution method, namely
the total travel cost, the percentage of students assigned to their closest school, and
the percentage of students assigned to a school that is twice as far as the closest
school (labelled as ‘further assignment’). By and large, we find that all the heuristic
algorithms perform rather similarly to each other as well as to the CPLEX solver.
This will be discussed in more detail below. iGLASS’s Greedy algorithm with a
regret specification and re-optimization is the heuristic with the lowest total travel
(only 3% worse than CPLEX), while performance of the others lags behind a little.
Clearly, the run time is the critical advantage of the iGLASS heuristic toolbox:
iGLASS requires 11.48 s in comparison with 64.29 s for CPLEX. iGLASS is nearly
five times faster that CPLEX, which is a significant benefit when a large real-world
problem is analyzed.
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Table 1 Comparison of different solution strategies applied to the allocation phase of iGLASS.
CPLEX is used as a benchmark (data in the parenthesis are the results generated after local re-
optimization)

Methods
Total impedance
(�10 million)

Closest assignment
(%)

Further
assignment (%)

CPLEX 1.383 75.45 2.68
iGLASS (greedy,
population)

1.469 (1.447) 69.2 (73.3) 7.6 (6.75)

iGLASS (greedy, distance) 1.453 (1.448) 73.9 (73.6) 6.98 (6.7)
iGLASS (greedy, regret) 1.469 (1.424) 80.52 (80.61) 7.46 (5.13)
iGLASS (GA, fitness
criterion: Min Total cost)a

1.480 82.50 6.50

iGLASS (GA, fitness
criterion: Max closest)a

1.510 83.00 7.70

iGLASS (GA, fitness
criterion: Min further)a

1.490 81.50 6.20

aLocal re-optimization is not applied

Detailed analysis of the results in Table 1 leads to several interesting observa-
tions: (1) generally speaking, while heuristic algorithms used in iGLASS have better
performance regarding the run time than CPLEX (where a linear programming
algorithm is applied), they generate worse values on the total impedance objective
function (1.448E8 meters and higher, versus 1.383E8 meters) and the incidence
of further assignments (5.13% or higher, versus 2.68%); (2) in different runs,
greedy allocation algorithms always generate the same allocation solution when
the location of schools are fixed, which indicates this solution is stable; the regret-
based greedy method gets the best total impedance, highest closest assignments and
lowest further assignments after re-optimization. These results are not consistent
with the initial expectations: the population-based greedy algorithm was assumed to
get the highest closest assignment percentage because, at every step, we try to send
as many students as possible to their closest school, while the greedy method based
on the regret value was intended to get the solution with lowest cost in that, at every
step, we try to firstly allocate those demands with highest regret value; (3) when
the assignment priority is based on regret minimization in iGLASS, the number of
closest assignments is slightly higher than with CPLEX; however the same does
not apply when the criterion for prioritization is distance or population; (4) the
GA algorithm cannot promise a stable solution (there may be some differences
according to the fitness function), but it can obtain better rates of closest assignments
and of further assignments when these factors are used as fitness functions; actually
the final solution generated by GA is highly dependent on how we generate the
initial population, here we generate the initial population randomly; (5) in most
cases, local re-optimization can improve the solution regarding the total cost, closest
assignment and further assignment as a whole.
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Conclusions

Location-allocation problems are non-trivial geospatial problems and public school
location-allocation is particularly difficult to solve, one reason being that capacity
constraints in practice should be incorporated into the model. Moreover, students
should be ideally assigned to their closest schools, but the maximum capacity of
schools may prevent such outcome from materializing. In this chapter, we addressed
several modeling challenges associated with school location-allocation problems
when the capacities of the schools are incorporated, and an approach was proposed
to solve the location and allocation phases explicitly. It is fair to say that research is
lacking on explicitly modeling the allocation phase when the requirement of closest
assignment does not hold for all demands. Thus we proposed a generalized multi-
objective model of school location that minimizes total travel impedance of all
students in the system, while maximizing the number of students assigned to their
closest school and minimizing the incidence of “unusually” long trips to school. The
model was formulated as a capacitated p-median model. We proposed to solve this
complex problem as a two C one-phase heuristic process incorporating Tabu Search
in the location phase, and Greedy and Genetic Algorithms in the allocation phase;
re-optimization contributes to enhance the optimality of the heuristic solutions. It
was implemented as an SDSS based on an open source GIS platform.

The iGLASS executable and stand-alone application gives the user the oppor-
tunity to interactively change (1) school capacities; (2) the demand associated
with high-school population at each node, (3) local re-optimization to improve the
solution. The results from the pilot testing of the interactive and geocomputational
iGLASS toolbox presented here are close to those obtained with the CPLEX solver
in all respects, but most importantly (1) the run time is significantly reduced, (2) the
user has the capacity to change parameters on the fly, and (3) multiple objectives can
be effectively handled to support policy and decision making. This is an appealing
feature for decision-makers, who may need to weigh different scenarios, such as
changes in school capacity, or travel penalties associated with school closing and
their objectives when allocation is performed. Furthermore, a range of feasible
location-allocation alternatives were provided to the users by iGLASS so they can
make decisions accordingly.

We see a number of avenues for further improvement of the work reported in
this chapter. First, the initial population for the GA heuristic can be improved by
generating a greedy solution rather than by randomly generating it (e.g. initial
population would be generated by greedy methods), and different initial populations
should be used to evaluate the performance (e.g. stability and improvement of
objectives) of GA process in iGLASS. Second, the model can easily be extended
to reflect dynamic changes in demand over the time. Third, the impact of the
uncertainty in (1) the attribute of the demand and (2) its geographic location need to
be evaluated. One way to address the latter is by splitting demand nodes into nodes
of smaller demand, which can be redistributed in their respective neighborhood area
(geographic perturbation). Finally, further benchmarking should be conducted to
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fully evaluate the performance of the iGLASS location-allocation toolbox against
the full range of solutions that can be generated through trade-offs afforded with the
multi-objective formulation embodied in Eq. (13).
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A Space-Time Approach to Reducing Child
Pedestrian Exposure to Motor-Vehicle
Commuter Traffic

Nikolaos Yiannakoulias and William Bland

Introduction

Pedestrian Injury and Pedestrian Activity

Until the 1990s, pedestrian injury caused by motor-vehicles was one of the leading
causes of death in children in North America and Western Europe [1, 2]. Since then
the incidence and mortality of child pedestrian injuries has declined in many regions
of the world [3–8]. Changes in urban design, traffic engineering, legislation and
safety behaviour may have contributed to a noteworthy (though non-linear) decline
in traffic-related injury and mortality in recent decades [9]. This is a widespread
trend in transportation safety generally, where some of the greatest improvements
have benefitted drivers—particularly in the development of motor-vehicle occupant
safety technology [10]. Some have argued that the emergence of features of
the urban environment—such as single-use zoning, curvilinear street design and
hierarchical road plans—may have contributed to a safer pedestrian experience as
well [11]. Smaller scale interventions—such as traffic calming infrastructure and
intersection controls—also show some promise in reducing the risk of injury and
mortality among pedestrians, particularly for children, and have been thought to
explain recent declines in pedestrian injury incidence and mortality [12].

An alternative perspective suggests the declines in pedestrian injury risk may
simply be a matter of reduced exposure; with less independent pedestrian activity,
children are less exposed to the hazards of the transportation environment, and less
likely to be harmed in a collision with a motor-vehicle. There is a general consensus

N. Yiannakoulias (�) • W. Bland
School of Geography and Earth Sciences, McMaster University, 1280 Main Street West,
Hamilton, ON, Canada L8S4K1
e-mail: yiannan@mcmaster.ca

© Springer International Publishing AG 2018
J.-C. Thill, S. Dragicevic (eds.), GeoComputational Analysis and Modeling
of Regional Systems, Advances in Geographic Information Science,
DOI 10.1007/978-3-319-59511-5_18

355

mailto:yiannan@mcmaster.ca


356 N. Yiannakoulias and W. Bland

that children engage in less independent outdoor play than in the past, and are less
likely to adopt active transportation options [13, 14]. The consequences of declining
physical activity are of considerable interest and importance in the public health
community, particularly as obesity prevalence continues to rise among school-aged
children [15]. While unravelling the relative contributions of safer environments,
motor-vehicle engineering, safety education and reduced exposure is challenging,
there is a clear tension between maximizing the safety of children and maximizing
their physical activity levels in the current transportation environment.

While this tension has been trending towards lower child physical activity levels,
there have been attempts to increase safe pedestrian activity within the constraints of
existing urban environments—specifically, increasing the levels of activity without
an offsetting increase in pedestrian risk. For example, walking school busses—
where children, holding hands, walk to school in large, visible groups—have been
used in a number of regions to varying levels of success [16, 17]. After successful
pilot programs in California and Massachusetts, the Unites States government
dedicated federal funding for ‘Safe Routes to School’ programs emphasizing the
importance of active transportation to school. As of 2012, U.S. funding for Safe
Routes to School exceeded $1 billion, with similar programs now in Canada,
New Zealand and several Western European countries [18]. These programs have
signaled an important shift injury prevention strategy—ensuring that children are
encouraged to be active, but in a way that does not increase the risk of harm.

Temporal Intervention

Child pedestrian injuries involving collisions with motor-vehicles occur when
motor-vehicles and children arrive at the same location in space at the same time.
In the language of time geography, these represent bundles of activity, but in a less
commonly used sense, since they are unproductive or ‘negative bundles’, as the
outcome of the interaction is undesirable, i.e., a child injury or fatality.

As noted above, small-scale attempts to reduce the negative bundling of child
pedestrians and motor-vehicles are thought to have had some success in reducing
the risk of child pedestrian injury in recent years. Most of these preventative
measures can be classified into one of two types: (1) measures that reduce the
spatial convergence of children and motor-vehicles in the transportation system or
(2) measures that reduce the speed or design of vehicles to minimize harm when
convergence of these agents occurs. Less often considered are measures that reduce
the temporal convergence of agents, and in particular, how changes in the timing
of trips to school taken by child pedestrians could reduce their exposure to motor-
vehicle traffic. Currently, the times children commute to school typically coincide
with periods of highest traffic volume, particularly in the morning hours [19–21].
This observation suggests that it may be possible to reduce the risk of pedestrian
injuries caused by motor-vehicles by having children travel to school either before
or after the peak periods of local traffic intensity. This general strategy would reduce
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the bundling of travel paths of motor-vehicles and child pedestrians by de-bundling
the temporal component, and has the secondary benefit of reducing exposure to
motor-vehicle related air pollutants.

Developing such a strategy would have to be based on spatial and temporal
information about traffic intensity and child pedestrian routes to school, however
some general observations are possible. Assuming a general traffic flow model from
suburban areas to downtown areas, suburban motor-vehicle commuters would have
to depart from work at earlier times than motor-vehicle commuters living closer to
downtown areas in order to arrive on time. It follows that traffic volume would be
high in residential suburban areas at earlier times than it would be for downtown
areas. Hence, any scheduling of school times that takes area-specific traffic volumes
into account should result in spatially patterned optimal school start times—for
example, with schools in some areas starting later (after the period of highest traffic
volume) and schools in other areas starting earlier (before the period of highest
traffic volume). The precise scale and magnitude of these patterns will depend on
features of the traffic volume by time.

Earlier work by the authors showed that changing travel times could reduce the
negative bundling of pedestrians and motor-vehicles on a real transportation network
[22]. However, this study assumed that children take the shortest walking trips to
school, something that is often not observed in practice [23]. Given the important
role of ‘safe’ route choices in existing prevention efforts, the purpose of this research
is to use simulations of pedestrian activity on a synthesized street network to
determine how the interaction between route choice and route timing may affect
exposure to traffic. Our analysis will help us answer two specific questions: (1) is the
timing of a trip less important when the route choice is safe? and (2) do safe routes
and safe times combine (in an additive or multiplicative form) to make walking trips
safer?

Method

We use the term exposure to describe the negative bundling between motor-vehicles
and child pedestrians in space and time. Exposure does not necessarily imply harm,
but simply instances in which child pedestrians and motor-vehicles are close enough
in spatial and temporal proximity that a child is at risk of harm. The simplest way
to reduce (or even entirely eliminate) this exposure is to do away with all child
pedestrian travel; however, this is not a preferred option given the physical and
psychological benefits of walking. Instead, the modern problem of child pedestrian
safety attempts to maximize safety without reducing the frequency of pedestrian
trips made overall. With this in mind, our objective is to reduce this risk per child by
reducing the number of motor-vehicles children encounter on their walk to school—
either at intersections or mid-block. Traffic volume is a predictor of collisions
involving pedestrians and motor vehicles at intersections and mid-block locations
[24, 25]. We therefore assume that all else being equal, the more motor-vehicles a
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child is exposed to on a given pedestrian trip, the more likely that the child will be
involved in a collision. To conceptualize this, assume that the composite of factors
that determine the hazardousness of an instance of exposure at a location on a street
network is represented by v. v would include driver distractedness, speed, reaction
time, features of the road environment and a variety of other factors. It follows that

pi D 1

1 C e�vi
; (1)

where p is the probability that a child pedestrian will be struck by a vehicle at this
instance of exposure, i, which represents a location on the street network in which a
motor-vehicle and child pedestrian bundle in space and time. Furthermore,

' D
n
X

iD1

pi; (2)

where ' the cumulative probability of a child being struck by a car on a pedestrian
journey to school with n instances of exposure. Child pedestrian injury strategies
involving environmental modification typically target a reduction in the magnitude
of some of the factors that comprise v at locations where the probability of collision
is considered high. On the other hand, child education strategies target changes
in behaviour that would reduce the magnitude of v for many or most instances of
exposure on a journey to school.

A space-time intervention augments these other prevention efforts collision by
reducing the instances of exposure, n. This can be achieved by de-bundling the
temporal schedules of child pedestrians and motor-vehicles; for example, having
children walk to school at times when local motor-vehicle traffic activity is lower.
In earlier work we proposed that this could be achieved by making small changes
to the times that children walk to school [22]. However, it remains unclear how the
proposed system would perform in light of safe route to school strategies, which can
include changing the routes that children walk to school.

Transportation Model

We address the research questions by analyzing the space-time interactions of child
pedestrians and motor-vehicles. The first step is to obtain paths and travel times
of motor-vehicle drivers and child pedestrians. At small scales such data can be
based on empirical observation—for example, observing sites around schools and
taking inventory of the time and location of contact between pedestrians and motor-
vehicles. However, at larger scales data on all travel paths is required, and collecting
such data would be expensive and time consuming. As an alternative, it is possible
to model of the general properties of motor-vehicle and child pedestrian travel, and
then use the output of this model to approximate real data.
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The general properties of this model are as follows. Our model is comprised of
schools, workplaces, a transportation network and households. Households consists
of one adult driver and zero or one children. All children are assigned to a school,
and all adults are assigned to a workplace. In the model all children are assumed
to arrive at school at exactly their school’s start time. This approximates the reality
that parents usually have a window of only a few minutes during which to leave
their children at school; after the bell, the children will be late for school, but if they
arrive too early, children may be left unsupervised. Every adult is assumed to work
at a workplace outside the home at which they must arrive by a certain work start
time. Adult motor-vehicle commuters in households with no children are assumed to
drive directly to work, arriving exactly at their work start time. Adults with children
may drive directly to work, in which case their children walk to school, or they
may drive their children to school before continuing to work. Motor-vehicle and
pedestrian trips occur on the transportation network according to some route choice
option such that each agent in the system has a time-stamped trip—where the time
at each location in the network is known.

Computing Exposure

The transportation model we describe above facilitates a simple method for
computing precise exposure to traffic—in space and time—for all children walking
to school. Once all pedestrian and all motor-vehicle space-time paths are generated,
it is trivial to determine exposure by simply enumerating all instances in which the
agents come into contact. Exposure is calculated for intersections and mid-block
and summed for each school as well as the system as a whole. Calculating exposure
works as follows. First, an instance of exposure at an intersection is defined as an
occasion when a motor-vehicle and child pedestrian arrive at an intersection within
some interval of time, for example, 30 s. This takes into consideration the role of
traffic control measures in extending potential contact between agents. Varying this
window size changes the absolute quantity of exposure for a given child, but has
no observable effect on the patterns of exposure [22]. An instance of exposure at a
midblock location occurs when the two agents cross paths at any location on a road
segment. At a micro-scale, children use sidewalks and motor-vehicles use roads such
that the paths of these agents do not normally cross. However, given the important
role of midblock collisions on child safety [26], we treat these instances of exposure
as potentially harmful. We sum up all the instances of exposure for all locations on
the network, and also calculate the average time of exposure at each intersection
(calculated by summing the times of all exposure for each child at the intersection
and dividing it by the instances of exposure). The former is used to set the optimal
school schedule and the latter can be used to visualize the space-time pattern of
exposure.
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Optimization

The final task is to identify a school schedule—comprised of a specific start time for
each school—that reduces children’s exposure to traffic without also reducing the
number of pedestrian trips to school. The problem involves assigning each school,
n, one of m possible start times in a way that minimizes total exposure per child
pedestrian. For any problem with more than a very small number of schools, the
number of possible schedules is mn, too many to compute exhaustively.

Instead, we reduce the complexity of the problem by treating each school as
independent of all other schools. The optimization strategy involves, for each
school, assigning each of the m possible times in turn, while assigning all other
schools the same default start time (say, 8:30 a.m.). Once this is done for all
schools, each school has a start time for which none of the other possible start
times result in lower total child pedestrian exposure for that school. The number
of schedules under this scheme is nm, few enough that we can compute the total
child pedestrian exposure for each school and potential start time. Solutions from
the procedure as described are independent of one another, since changing a school’s
start time should have no effect on the traffic flow at any other school, and therefore,
each locally best start time contributes to a globally optimal schedule of school
start times. A more complex scenario—where one school’s schedule may influence
traffic flow near another school, or where school times could affect a parent’s
decision to drive their child to school or not—could benefit from optimizing the
overall schedule rather than at each school individually.

Application

Data Requirements

In order to identify the best school schedule for minimizing exposure in a particular
setting, a variety of data are required (Table 1). In previous research we applied the
model, exposure calculation and a different optimization procedure to a dataset of
schools, street network and journey to work information based on data on the city
of Hamilton, Ontario, Canada [22]. While this exercise helped to contextualize the
problem, uncertainties associated with some of the data sources left the potential
of the findings unclear. Several sources of data required to solve this problem
are widely available: digital street network, the location of schools and school
catchment areas. Other data are not as commonly available except in geographically
aggregated samples: such as the residential locations of child pedestrians and adult
motor-vehicle commuters. Yet other data required for the model are generated on
assumptions of behaviour—specifically, the modelling of travel paths and the work
start times.



A Space-Time Approach to Reducing Child Pedestrian Exposure to Motor-Vehicle. . . 361

Table 1 Data requirements for school schedule optimization model

Model input Certainty

Locations of schools and school catchment
areas

Very high. Based on publicly available data
manually geocoded onto a digital
transportation network

Digital transportation network High. Based on digital street data from several
sources

Locations of households with adults that drive
motor-vehicles to work (including knowing
which households have school-aged children)

Moderate. Used census data to estimate these
locations as well as the populations of adults
and children in households at the census tract
level

Locations of work Moderate. Some data from census on the
location of work

Work start time Low. General estimates are probably
reasonable, but would require a survey of
working adults to obtain precise information

Paths from households to work Low. Data from the Census provide start and
end points at an aggregate geographic level,
but the path actually taken by drivers is
unknown. There is evidence that drivers
generally prefer to minimize travel time

Paths from households to school Low. Start and end points are known from
municipal data on school locations and census
data on child populations, but the path actually
taken by child pedestrians is unknown

In order to address the questions specific to this study (is the timing of a trip more
or less important when the route choice is safe? and do safe routes and safe times
combine to make walking trips safer?) we used a synthesized transportation network
as well as synthesized locations of trips. This gives an experimental framework to
specifically answer the research questions that would be difficult to address if we
were to use real data; specifically, we control for the location of households, location
of schools and the structure of the road network by ensuring that these parts of the
synthetic data are spatially homogeneous.

Experiment

We generate a simple ‘city’ with schools, workplaces, households and an hierar-
chical road network with speeds selected to facilitate efficient traffic flow (Fig. 1).
We choose four motor-vehicle road speeds: 40, 50, 60 and 70 Kph. Roads with
speeds of 50, 60 and 70 Kph are visible on the map but the 40 Kph are immediately
adjacent to schools, and not visible. Motor-vehicle drivers are assumed to take the
fastest route to work, reflecting the importance of travel time in route decisions [27].
Pedestrians are assumed to walk along sidewalks adjacent to roads, and therefore are
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Fig. 1 Infrastructure of the simulated city

assumed to use the same potential paths as motor-vehicles. Child pedestrians are
assumed travel at 1.1 m per second based on recommended intersection clearance
times for pedestrians less than 65 years of age [28]. Motor-vehicles are assumed to
travel at the posted speed limit. In order to observe the effect of route choice on
child pedestrian exposure to motor-vehicle traffic under different school scheduling
schemes, pedestrian route choices are assumed to be influenced directly by the speed
limit of the roadway, where roads with faster speed limits are avoided over roads
with slower speed limits. We assign a weight, A, to all roads to determine their
attractiveness to a child pedestrian commuter where

A D .S=40/“; (3)

S is the road speed and “ is a constant determining the degree to which child
pedestrians avoid high speed roadways. The product of A and the length of the road
segment determine the travel cost of the road that comprises potential travel paths.
The rationale for calculating travel cost as a product of perceived safety and road
length is that parents have some underlying awareness that risk is at least partly
proportional to exposure—all else being equal, the longer the trip a child takes,
the greater the risk of collision. Child pedestrians are assumed to take the path to
school with the lowest travel cost, but where cost is a function of distance and some
preference for safety. When “ D 0 all road segments are treated equally safe, and
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children take the shortest path to school. As “ increases, higher speed roadways
become increasingly unattractive, which may result in longer trips to school to avoid
roadways that are perceived as more dangerous. We test out several different values
of “ in order to observe how safe route choice interacts with the school schedule
optimization scheme.

We populate this network with 30,000 households (three at each of the 10,000
intersection locations), 500 workplaces and 25 schools. Households are distributed
uniformly across the network. Workplaces are distributed in a cluster around the
centre of the network (Fig. 1). Each household is assumed to have a working adult,
and 10,000 households (1 at each intersection location) have one child walking to
school. The ratio of three drivers to one pedestrian is close to the ratio of drivers to
elementary school-aged children in Canada as of 2011. All workers are assumed to
attend a workplace, selected at random with replacement, at the fixed time 8:30 a.m.
There are 25 schools, each with a population of 400 students. Children go to the
school associated with the catchment area in which they reside. The catchment areas
boundary are defined by the 70 Kph freeways (Fig. 1). The optimization procedure
is limited to finding an optimal schedule where all schools operate between 8:20 and
8:40 a.m.

The model, exposure calculation and optimization routines were programmed in
the CCC language.

Results

Figure 2 is a map of average exposure time and frequency by school catchment
areas. The shading on the map is used to delineate the times of exposure, and
the numeric labels represent the counts of exposure. For this map, all schools are
assumed to have the same schedule, and children travel the shortest path to school
with no consideration of road speed (“ D 0). There is a clear pattern in time of
exposure, where more peripheral areas see exposure earlier in the morning and
more central areas see exposure later in the morning. Children in the most central
catchment area experience the highest exposure by a considerable margin, but there
is little obvious pattern in exposure beyond this.

Figure 3 summarizes the change in total exposure per child for different values
of “ for both an optimized scheme (found using methods described above) and an
homogenous scheme where all schools share the identical start time of 8:30 a.m.
Total exposure per child is calculated by dividing the total instances of exposure at
midblock locations and at intersections by the number of children walking to school.
In spite of the narrow range of times available to select from (8:20 to 8:40 a.m.) the
optimized scheme is still superior to the homogenous scheme for all values of “.
The optimized scheme and homogeneous schemes are most similar when children
have no preference for safe routes (“ D 0). Exposure associated with an optimized
school schedule is lowest when “ D 0.5, and increases slightly for larger values of
“, though in all cases remains lower than for the homogeneous schedule.
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Average time of exposure
before 8:18 am
8:18 - 8.20 am

8:21 - 8.23 am
8:24 - 8.25 am
8:26 - 8.27 am

after 8.27 am
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4100

3775
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Fig. 2 Map of exposure and average time of exposure for school catchment areas (8:30 a.m. school
start times, “D 0)

Fig. 3 Total exposure per child pedestrian with changes in the safe route preference, “
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Table 2 Exposure and trip time for the optimized scheme as safe route preference (“) increases

“D 0 “D 0.5 “D 1.0 “D 1.5 “D 2.0
Midblock

Mean 5.688 1.647 2.508 3.192 3.743
Standard deviation 3.193 1.960 2.406 3.084 3.735
Maximum 19.038 7.323 9.650 13.943 20.045
Minimum 0.890 0.135 0.335 0.720 1.103

Intersection
Mean 7.959 4.136 4.275 4.132 3.739
Standard deviation 12.975 5.602 6.363 5.229 3.152
Maximum 70.003 25.813 34.018 27.895 15.490
Minimum 0.415 0.190 0.403 0.945 1.033
Average pedestrian trip time (min) 15.000 16.439 18.048 19.850 21.865

In Table 2 we aggregate total exposure per child across the 25 schools stratified
for midblock and intersection locations, and summarize the mean, standard devia-
tion, minimum and maximum exposure per child for the different values of “. As
seen in Fig. 3, the mean exposure per child is highest when “ D 0, and lowest
when “ D 0.5. For intersection locations, as “ increases, maximum exposure and
variance of exposure per school decline, however for midblock locations all metrics
of exposure decline when “ D 0.5, but rise as “ approaches 2. Interestingly, as “

increases, variation in intersection exposure declines, particularly with respect to
the maximum value. When “ D 2.0, the school with the highest exposure per child
is 15.49, less than 25% the school with highest exposure per child when “ D 0.
As “ increases, the average time spent walking to school also increases for child
pedestrians, from 15 min when “ D 0 to almost 22 min when “ D 2.

In Fig. 4A and B we show the spatial pattern of exposure for the homogenous
start times in which children travel the shortest route to school (“ D 0) and a
preference for a safer route (“ D 1). Each dark line on the graph defines the
boundary of a school catchment area. Dark points on the maps indicate the locations
of exposure, and in all cases, represent at least dozens (and in some cases hundreds)
of instances of exposure. The spatial patterns do not apparently differ for these two
schemes, although as shown in Table 1, there is less exposure when pedestrians
prefer safe routes (“ D 1) than when they choose the shortest path (“ D 0). The
pattern of clustering within the catchment areas appears to vary; for the central
catchment area, for example, exposure clusters much closer to the school than it
does for the peripheral catchment areas.

In Fig. 4C and D, we show the spatial pattern of exposure by time for the
optimized schemes in which children travel the shortest route to school (“ D 0) and
a preference for a safer route (“ D 1). Here the spatial patterns differ considerably
more across catchment areas. In 4C, the pattern looks somewhat like the patterns for
homogeneous time schemes—where exposure clusters around schools—but in some
peripheral catchment areas, the pattern is more irregular, with exposure occurring in
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Fig. 4 Locations of exposure for scenarios A–D

more outlining parts of the catchment area. In 4D, there emerges a clearer pattern
at two different geographic scales. Within more peripheral catchment areas and the
catchment area in the centre of the map, exposure occurs peripherally rather than
clustered around schools. Within the eight catchment areas surrounding the centre
of the city, exposure is clustered around schools.
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Discussion

The well-known association between periods of peak hourly traffic flow and peak
hourly child pedestrian injury risk suggests that a judicious school schedule may
help reduce exposure to motor-vehicle traffic, and in turn, reduce injury and fatality
risk. Since the objective of selecting such school times is to de-bundle the space-
time travel paths of pedestrians from the space-time travel paths of motor-vehicles,
it seems reasonable to view this strategy as complementary to strategies for finding
and/or creating safe walking routes to school. Our results are consistent with the
hypothesis that the time of morning a child walks to school and the route they take
to school both influence their exposure to motor-vehicle traffic. Our results also
suggest that combining safe time scheduling with safe route selection may be the
best option for reducing child pedestrian exposure to traffic. Safe route selection
can reduce exposure independent of the school schedule, and remains an important
part of existing strategies to increase pedestrian safety. Safe time scheduling appears
to further reduce exposure to motor-vehicles regardless of whether or not children
select safer routes. When combined, these strategies may offer the greatest reduction
in exposure to motor-vehicle traffic.

Our analysis is based on synthesized data, so it provides only theoretical support
for the idea that changes in school scheduling can lead to measurable changes in
exposure. The advantage of this approach is that it allows us to limit the problem to
a smaller number of parameters than we would see in the real world. As such, our
analysis is specific to the safety and timing of pedestrian trips independent of the
many other factors that could influence child safety—such as large and small scale
urban design and driver and child behaviour. We now discuss specific observations
from our results: (1) the timing of exposure, (2) the safe route paradox, and (3) the
emergence of space-time patterns in exposure.

Timing of Exposure

A simple and tempting alternative might be to set all school arrival times to very
early in the morning, well before most motor-vehicle commuters are on the road.
This would ensure less exposure to traffic, however in high latitude regions, early
start times could result in children walking to school before sunrise for certain times
of the year. Commuting in poor lighting conditions has been shown to increase risk
of collisions in higher latitude regions [29]. This could also expose children to other
risks that may concern parents and children (such as fear of strangers) as well as
exposure to ‘drowsy drivers’, who are less alert, and more likely to pose a hazard
on the road [30]. Uniformly later start times may also seem an attractive alternative,
though this could face logistical challenges such as leaving children unsupervised
in the home after parents leave for work, or shortening the school day.
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A more practical challenge is ensuring that any proposed new schedule is
reasonably close to what is already employed in practice. Schools are unlikely to
adopt any major change to their existing schedules for various reasons—including
maintaining labour agreements with staff and accommodating the habits of local
parents. We constrained the feasible school schedules to a 20 min window of time
in order to approximate the challenge of identifying practical school start times. In
spite of this, we still observed a reduction in exposure when the school schedule
is optimized; specifically, we saw a 10–50% reduction in exposure for optimized
school time schedules depending on the route choices taken by pedestrians. Whether
or not such a reduction would occur in the real world is unclear, but seems likely
to be at least partly influenced by the temporal concentration of peak commuter
traffic volumes. Specifically, the more temporally compact the peak period of traffic
volume, the smaller the change in school time required to separate the two agents in
time on the network.

Our results suggest that the timing of peak exposure may not be spatially
homogeneous. We synthesized a city with a spatially homogenous distribution of
drivers and children and relatively centralized work destinations for motor-vehicle
drivers. This resulted in earlier exposure in more outlying regions where drivers
needed to embark earlier on their trips to arrive at work on time and later exposure
in more central areas where drivers could embark later. Other urban structures
would likely result in different patterns; for example, a city with multiple centres
of workplace activity could see a more complex pattern of peak exposure times,
or even the potential for multi-modal distributions of exposure. This would make
the planning of safe travel times a more complex endeavour, but also suggests the
importance of local information on exposure for planning school times. It is quite
likely that there is no general conceptual model for setting safe school walking times
in the real world, but that local information on the flow of traffic and the available
walking routes can be vital for planning at the local school catchment level.

A Safe Route Paradox

As noted above, our results suggest that combining safe routes with safe school
schedules can reduce child pedestrian exposure to motor-vehicle traffic more than
either one of these strategies could do independently. However, our results also
highlight a potential challenge in safe route selection; specifically, that the route to
school that appears safest at the road level (which determines route choice) may take
a child on a longer walking trip, which could actually increase total trip exposure
as well as risk of collision. Our experiment used road speed as the determinant
of perceived road safety where high speed roads were deemed less safe. As the
safe route preference value, “, increases children increase the relative importance
of safety over road length in their route choice decisions, and thus total trip time
increased. In our experiment we observed that as child pedestrians place increasing
importance on the safety of a route to school (as “ increases from 0.5 to 2), the
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total exposure at mid-block locations increased. This change was not observed for
intersections, which saw a more systematic decline in exposure with increased safe
route selection.

In our experiment, this trade-off emerges because pedestrian exposure is a
function of total exposure to traffic for the entire journey to school. So while
choosing a relatively safer road decreases the risk of collision on that road compared
to another less safe road, choosing this safer road may increase the length of the
total journey to school. At some point safer walking trips may become so long as to
increase total journey exposure level even if each individual road and intersection
may be safe. This results in a curious paradox—where route planning based on
avoiding unsafe intersections and roads could result in a less safe journey overall.
The point at which this apparent paradox would emerge in the real world is context
specific, but the results of our experiment suggest that this problem could be avoided
by focussing on a journey-based planning approach rather than education about
specific intersections or roads that are deemed unsafe or safe. This would reduce
the likelihood of encouraging children to take journeys that are less safe overall in
order to avoid specific intersections that may be less safe than other intersections,
but part of an overall safer route to school.

Emergence of Space-Time Patterns in Exposure

The emergence of distinct spatial patterns of exposure in Fig. 4A–D illustrates
an interesting space-time dynamic in the synthesized environment presented here.
Since all motor-vehicle commuters are expected to arrive at work at the same time
in our model, commuter traffic emerges as a wave of activity, where the first motor-
vehicle drivers to depart their homes are in the peripheral areas, where they have
the longest commutes to work. We see this expressed in the timing of exposure—
where children are exposed earlier in the morning in peripheral areas, and slightly
later in more central areas. As the morning commuting period progresses, centrally
located motor-vehicle drivers enter the system up to the point where all arrive at
their workplaces on time. Under the homogeneous school scheduling schemes,
child pedestrians are behaving in precisely the same manner, but at a smaller
geographic scale; the first children to leave home for school are in the periphery
of the catchment area, and as the morning progresses, more and more children enter
the system until they all arrive at school on time. For the homogeneous school time
scheme, exposure is highest clustered around schools, but the level of clustering
varies. This indicates that these two waves of commuting activity converge with
greatest frequency around school locations, but the convergence is less spatially
concentrated for school catchment areas farther from the central region of the city—
where workplaces tend not to be located.

Under the optimized school scheduling schemes, the location of exposure is more
complex. For the most peripheral school catchment areas, the spatial pattern of
exposure emerges in a ring-like pattern near the periphery of the catchment area. For
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other catchment areas, the spatial pattern of exposure clusters around schools. This
is a clear illustration of the impact of time on spatial interaction. For the optimized
school scheme, times are selected that minimize the contact between pedestrians
and motor-vehicles using information about where motor-vehicles are located at
certain times. As such, the optimization routine is attempting to de-synchronize the
intersection of these two waves of commuters, and does so in a way that can result
in interesting looking spatial patterns.

In a general sense, these observations suggest that safety interventions meant
to reduce exposure at specific locations (such as intersection crossing guards and
street modifications) should take some consideration of the space-time interaction
of motor-vehicles and pedestrians. There is empirical evidence of clustering of child
pedestrian injuries near schools [20], and typically, intersection crossing guards,
speed controls and other interventions are concentrated at or near these locations.
But it could be that for some schools, the highest exposure is elsewhere simply
because of the timing of pedestrian and driver commuting waves. Indeed, our
model may suggest that in more outlying regions of a city—where drivers have
to depart earlier from their homes to get to work on time—exposure may occur
farther away from schools than is typically thought. Such spatially diffuse exposure
could require an alternative strategy for intervention in some areas. For example,
it may recommend placing crossing-guards at more strategic locations away from
schools, or moving crossing-guards between locations as the morning commuting
period progresses.

Limitations

We use a synthesized environment as a framework for experimentation. While
the synthesized city has some general attributes similar to real-world urban
environments—a hierarchy of roads and centrally located workplaces—it does
not approximate the spatial or other features of any city precisely. As such, it is
unclear how meaningful our findings are in any real-world context. We would
suggest, however, that the findings are an important exploratory exercise, since any
empirical work in this area could be costly, and even risky to the child pedestrian
population. This work provides exploratory information based on a simple agent-
based model, and as such, resides somewhere between inductive and deductive
social science [31]. We hope to use more real world data in real world environments
in future models to help test the generalizability and accuracy of our findings.

Our traffic estimation model does not account for congestion. Traffic congestion
can affect driver route choice; changes in the routes of motor-vehicle travel due to
traffic congestion could affect the estimates of magnitude of exposure, particularly
at busy intersections—over-estimating exposure at some intersections. However,
it seems unlikely that congestion would have greatly affected the spatial and/or
temporal patterns of exposure in a way that would have greatly changed our
observations. Another related limitation is that our model does not take into account
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non-commuter traffic (such as trucks, buses or cars travelling on non work related
journeys), or traffic in the city that originates from outside the city. Nevertheless,
motor-vehicle commuters represent an important source of risk to pedestrians
independent of other traffic, so our findings are unchanged—though the overall
impact on the safety of children could be less than what our findings suggest.

Conclusion

Increasing the rates of active transportation to school—either by walking or
cycling—may help to reduce rates of child obesity, a public health issue of growing
concern, particularly in North America. Pedestrian activity may also be important
for child development generally, as it provides children opportunities to build rela-
tionships, make decisions and explore their environment, all essential components
in their cognitive and emotional development. Parental concerns about the safety of
the urban environment may explain observed declines in child pedestrian activity in
recent years, and strategies for improving safety need to respond to these somewhat
competing realities. Safe route to school are important for ensuring that children
have the opportunity for routine pedestrian activity, and based on our findings, trip
timing can enhance the effectiveness of safe routes at reducing exposure to motor-
vehicle traffic. Our findings also suggest that safe route planning may need to be
journey based; rather than identifying the safe walking locations for child pedestrian
commuters, emphasis needs to be on identifying trips that minimize exposure to
traffic as a whole.
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Decomposing and Interpreting Spatial Effects
in Spatio-Temporal Analysis: Evidences
for Spatial Data Pooled Over Time

Jean Dubé and Diégo Legros

Introduction

Spatial dependence and spatial correlation among observations have been suspected
for many years [1]. Anselin and Bera [2] define spatial autocorrelation as the
coincidence of value similarity with locational similarity. As opposed to the
unidirectional autocorrelation, such as comparable sales, the particularity of spatial
autocorrelation lies in its multidirectional effect. Its complexity explains why spatial
autocorrelation has received such attention since spatial data is now widely available
and used. Spatial autocorrelation among residuals of a statistical model can have
various consequences on estimated coefficients and variances, depending on sample
size [3–5].

Spatial autocorrelation is also the starting point of the development of spatial
econometrics begun at the end of the 70s [6]. The most recent development in
the field focuses on spatial panel models and the development of an appropriate
estimation procedure [7]. Most of the literature now focuses on how it can be
possible to takes into account the spatial characteristics of the data, while using
the temporal source of variability as well. Essentially, these approaches apply very
well to data representing given geometric delimitation, such as a region, provinces,
states or countries. However, there are many databases that do have both dimensions,
spatial and temporal, but that are clearly different from the panel case.
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Real estate transactions are different from panel data. In such a case, spatial, or
cross-sectional, databases are pooled over time: individual spatial data are usually
only observed once1 (not repeated) over time. This is also the case for business
openings (or)/closings, crime location, innovation, and so on. For these cases, the
panel procedures cannot be applied. Of course, it is possible to build spatial (pseudo)
panel data from such observations, by pooling individual data into a geometric
form imposed by the researcher. However, such an approach necessarily implies
a spatial aggregation choice which, in turn, can yield three problems: (1) a loss
of variability of data, given the fact that the new spatial data express the mean
characteristics (a pseudo-panel); (2) the fact that a different spatial aggregation can
yield different results (the modifiable areal unit problem—MAUP); and (3) the fact
that the inference on individual spatial units is impossible (ecological fallacy).

In short, spatial data collected over time is clearly different from the spatial
panel case, but it has received little attention and not much has been done about
the modeling strategies for such data. In practice, spatial data pooled over time have
been treated has being purely spatial data and the usual spatial econometric methods
and models are applied. The introduction of time dummy variables to control for
the nominal aspect of the data or for the temporal global trend does not ensure
that time dimension is fully adequate, since it only controls for the nominal price
evolution. Time dimension can play an even more important role, introducing a
spatial autocorrelation pattern respecting temporal directionality: multidirectional
spatial effect and unidirectional spatial effect [8].

This chapter endeavors to determine the impact of omitting to decompose
the spatial effect (multidirectional and unidirectional) using spatial data pooled
over time. This is done by presenting the data generating process (DGP) using
a Monte Carlo experiment. The results clearly suggest that neglecting one of the
spatial effects generates bias on the spatial (autoregressive) effect, which leads
to erroneous interpretation of the marginal effect. This exercise is complemented
by an empirical example based on transactions occurring in Paris between 1990
and 2003. The results largely confirm the Monte Carlo results and an out-of-
sample prediction shows that the estimation performance of a complete model
controlling for spatial multidirectional and unidirectional effect outperforms all the
other modeling strategies.

This chapter is divided into five sections. The next section presents the list of the
authors that have addressed the question of spatio-temporal modeling using spatial
data pooled over time in real estate. Emphasis is placed on the possible ways the spa-
tial autoregressive (SAR) model can be extended to account for a complete decom-
position of the spatial effect considering the temporal dimension. The third section
presents a brief discussion on the estimation method in the spatio-temporal frame-
work. The fourth section presents a Monte Carlo framework used to evaluate the
impact of neglecting the decomposition of the spatial effect using spatial data pooled

1Or very few times. It is common, when one point is repeated twice, to assume that this recurrence
is strictly related to hazard.
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over time with particular emphasis placed on the interpretation of the marginal effect
in such context. The fifth section presents an empirical example based on apartment
transactions in Paris between 1990 and 2003 and compares the out-of-sample
prediction power of the different specifications before turning to the conclusion.

Spatial and Spatio-Temporal Modeling in Real Estate
Literature

Hedonic pricing models (HPM) have been used extensively since the formal work of
Rosen [9] and the formalization of the hedonic theory. Many empirical applications
are based on HPM. In statistical terms, the HPM usually expresses the (log) price
of a complex good i, such as a real estate good, sold in time period t, noted yit,
as a function of all its characteristics, intrinsic and extrinsic, stocked in a vector
Zit (Eq. 1). Given the fact that transactions occurred in time, it is usual practice to
control for the nominal evolution of real estate price by including a set of dummy
variables, in a vector noted Dit, indicating the time period in which the house was
sold.

yit D ˛š C Dit• C Zit“ C ©it (1)

Transactions databases consist of a set of individual cross-sectional layers (i is
different for all observations), while the spatial layers of data are pooled over time
(see Fig. 1). Thus, both subscripts are necessary, but the interpretation is different
from the panel data case because the subscript i is never (or rarely) repeated.
Recurrences of house sales are usually treated as random events. In such a case,
the total number of observations is noted NT D P

tNt where Nt is the total number
of observations in one time period t: for t D 1, 2, : : : , T.

Time
(t)

t = 1

Red arrow (          ) are multidirectional effectLegend:

Grey arrow (          ) are unidirectional effect

t = 2 t = 3

Fig. 1 Distinction between multidirectional and unidirectional spatial effect. Red arrow are
multidirectional effect. Grey arrow are unidirectional effect
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In consequence, the vector yit is of dimension (NT � 1), the vector š is of
dimension (NT � 1), the matrix Dit is of dimension (NT � (T�1)), where T is the
total number of time periods, and the matrix Zit is of dimension (NT � K), where
K is the total number of independent variables. The vectors of parameters • and “

are, respectively, of dimension ((T�1) � 1) and (K � 1) and the parameter ’ is a
scalar. The vector of parameter • allows control for the nominal aspect of the price
(and recompose a general price index), while the vector of parameter “ expresses the
(mean) implicit price of the individual amenities of the house. Finally, the vector of
perturbations ©it is of dimension (NT � 1), assumed of homogenous variance and not
spatially correlated. However, these last assumptions are rarely satisfied in practice.

Since 1990, it is widely recognized that the error terms of the hedonic pricing
model of real estate studies are spatially correlated [10–12]. Various techniques
have been developed to deal with spatial autocorrelation among residuals, such
as geo-statistical techniques [13–15], coefficient expansion method [16, 17], local
regression techniques [18–21] and spatial econometric models [22–24]. If there is
still debate about how spatial dimension should be taken into account (geostatistical
models or spatial econometric models), there is no doubt that spatial dimension is
important in the data generating process of real estate data.

Spatial Econometrics and Hedonic Pricing Models

Spatial econometrics directly addresses the problem of spatial autocorrelation
among residuals of ordinary least squares (OLS) models by proposing an autore-
gressive specification to be incorporated in the HPM. There is still much debate
on which specification should be used. Some argue that both processes are not
necessarily related to any theory [25], while others argue that spatial econometrics
is clearly an appropriate way to deal with issues [26]. Without entering this debate,
it must be noted that spatial econometrics are largely related to the way the spatial
weights matrix, W, is constructed.

One popular model in spatial econometrics is the spatial autoregressive (SAR)
model (Eq. 2). In such a case, it is assumed that the price of a house is related to
and explained by the other sale prices occurring in the vicinity (Wyit). This may be
largely related to what real estate professionals refer to as being the “comparable
sales” approach. This approach is also popular among regional scientists since
it captures the (spatial) spillover effect. Thus, price is not only determined by
the individual characteristics of the house, but also by a spatial effect related
to environmental amenities, market conditions, or any other phenomenon that is
internalized through the sale price of other houses.

yit D ¡Wyit C ’š C Dit• C Zit“ C ©it (2)
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Notwithstanding, the spatial autoregressive (SAR) specification2 is based on the
definition of the general elements, wij, of the spatial weights matrix W of dimension
(NT � NT). Usually, the general elements are uniquely based on spatial distances.
The particularity with such specification is the fact that a single parameter “k can no
longer determine the marginal effect [4], except if the effect comes from a strictly
pecuniary effect [27].

Spatio-Temporal Hedonic Pricing Models

The spatial specification of the HPM neglects the fact that data are collected over
time and that the spatial multidirectional effect is subject to temporal constraints
[28]. There has been some work trying to incorporate both dimensions, spatial and
temporal, in hedonic pricing models through the construction of a spatio-temporal
weights matrix (Table 1). In all cases, the construction of the weights matrix is
usually based on a priori temporal chronological ordering, ensuring that the first
line of the database corresponds to the oldest transactions, while the last line of
the database corresponds to the latest transactions. With such a specification, it is
possible to decompose the weights matrix in its triangular parts [28, 43]. This has
been the main idea underlying the seminal work of Pace et al. [30, 31], which has
influenced the way many empirical analyses have been conducted [33, 34, 36, 40].

Table 1 List of spatio-temporal modeling strategies in HPM

Authors Years City Sample size (NT)

Can and Megbolugbe [29] 1990 Miami 944
Pace et al. [30] 1966–1991 Fairfax County 70,822
Pace et al. [31] 1984–1992 Baton Rouge 5243
Gelfand et al. [32] 1985–1995 Baton Rouge 1327
Tu et al. [33] 1992–2001 Singapore 2950
Sun et al. [34] 1990–1999 Singapore 54,282
Smith and Wu [35] 2004–2005 Philadelphia 400
Nappi-Choulet and Maury [36] 1991–2005 Paris 2587
Huang et al. [37] 2002–2004 Calgary 5000
Nappi-Choulet and Maury [38] 1991–2005 Paris 220,418
Thanos et al. [39] 1995–2001 Athena 1613
Dubé and Legros [28] 1993–1998 Lucas County 25,237
Liu [40] 1997–2007 Dutch Randstad 437,734
Dubé and Legros [41, 42] 1990–2001 Paris 10,000

2It is also the case for most of the geostatistical and local models.
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The spatio-temporal model developed by Pace et al. [30], and the extensions
proposed, have the advantage of controlling for the spatial and the temporal
dimensions using spatial (S) and temporal (T) weights matrices taking both a lower
triangular specification. The spatio-temporal dimension is isolated using a cross-
product of the two matrices (ST and TS), which act as a filter to control for the
complexity of the interaction effects [31]. However, the interpretation of the cross-
product of the spatial and temporal weights matrices is not trivial and is only an
indirect measure of the spatio-temporal effect [35], which makes it hard to isolate
the unidirectional and multidirectional spatial effects3 (Fig. 1).

For these reasons, other spatio-temporal models have been based on the extension
of the SAR model (Eq. 2), taking into account the temporal constraints related to
spatial relations. One of the first attempts in such a context was proposed by Can
and Megbolugbe [29], who developed a weights matrix based on the transactions
occurring 6 month before. The weights matrix is lower triangular and allows to
capture the effect of the “comparable sales”, since it only accounts for the effect
of past transactions on actual sales. The relations among observations are no
longer multidirectional, but subject to temporal constraints: the past observations
can influence the actual realizations, but the inverse is not possible (unidirectional
spatial effect). In this case, the spatio-temporal model is simply an adaptation of
the SAR model where the weights matrix expresses the spatial links from previous
observations to actual observations and where § capture the (dynamic) effect
spatially located (Eq. 3). In real estate applications, such dynamic effect can be
seen as a “comparable sales” effect on price determination process.

yit D §Wyit C ’š C Dit• C Zit“ C ©it (3)

A similar approach is used by Gelfand et al. [32] for transactions occurring
between 1985 and 1995 in Baton Rouge, by Smith and Wu [35] for transactions
occurring between January 2004 and September 2005 in Philadelphia, and by
Thanos et al. [39]4 for transactions occurring between January 1995 and December
2001 in Athena. This idea was also reintroduced by Des Rosiers et al. [44], but in
a different way: accounting for the mean sale price in a predefined neighborhood in
the previous quarter.

Smith and Wu [35] and Huang et al. [37] have extended this concept and have
proposed a general framework to develop a unique spatio-temporal weights matrix,
W, simultaneously integrating spatial and temporal distances and constraints using
the Hadamard product (�) between a (full) spatial weights matrix, S, and a temporal
weights matrix, T. The term-by-term operation (W D S � T) indicates that a general
element of the matrix is defined by wij D sij � tij.

3This can partly explain why Nappi-Choulet and Maury [38] have proposed a specification using
only the spatial, S, and temporal, T, weights matrices.
4The authors explicitly consider the temporal distances by weighting the spatial elements by the
inverse of time elapsed between sales.
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The temporal elements, tij, can be seen as a filtering process, allowing the
isolation of different spatial effects related to different temporal specifications [8].
Numerous scenarios are possible: defining the tij elements as taking a value of
one if observation i is collected before observation j and zero otherwise gives a
spatio-temporal weights matrix where only the lower triangular part have non-zero
elements, and thus measure the unidirectional spatial effect § (Eq. 3); defining the
tij elements as taking a value of one if observation i is collected during the same time
period as observation j and zero otherwise gives a block diagonal (spatial) weights
matrix allowing to measure multidirectional spatial effect, ¡ (Eq. 4) [42].

yit D ¡Syit C ’š C Dit• C Zit“ C ©it (4)

Of course, the two spatial effects, multidirectional and unidirectional, can be
isolated by introducing the lower triangular weights matrix, W, and the block
diagonal weights matrix, S, in the same equation (Eq. 5). Such functional form
avoids the pitfall of multiple weights matrices for the dependent variable [45] since
the term Wyit expresses the mean sale price for houses sold previously within a
predefined spatial zone of influence. This new variable is thus completely exogenous
from the point of view of the transaction occurring in the actual time period.

yit D ¡Syit C §Wyit C ’š C Dit• C Zit“ C ©it (5)

The advantage of the latter specification is that the spatial effect can be expressed
as the sum of two distinct components.5 The spatial multidirectional effect is similar
to what is usually captured through a SAR model estimated on cross-sectional
data, while the spatial unidirectional effect is similar to the dynamic effect in time
series analyses, except that it is spatially localized. This approach shows promising
avenues by correctly isolating the spatial effect in the actual time period, as well as
the dynamic spatial effect measured through observations collected in the previous
time period. These effects have been shown to be significant for transactions
occurring in Lucas County (Ohio) between 1993 and 1998 [8] and in Paris between
1990 and 2001 [41].

To summarize, spatio-temporal models for spatial data pooled over time can
be based on a simple extension of the spatial econometric specification, by
accounting for the temporal dimension in the construction of the weights matrix.
The representation of the DGP for spatial data pooled over time underlines the
pertinence, as mentioned by the literature, of thinking about how the database
structure should be analyzed before doing any mechanical construction of the
weights matrix. According to some authors, the weights matrix should be based on

5The construction of a spatio-temporal weights matrix can also be done with the construction of
a temporal weights matrix. However, the decomposition presented here can simplify the exercise
by introducing constraints on the spatial weights matrix through a block diagonal decomposition
([42], Chap. 5).



380 J. Dubé and D. Legros

a priori theoretically-defendable knowledge [46, 47]. This idea is also supported by
the work of Pinkse and Slade [48] who suggest that approaches should be developed
from an empirical perspective, and by McMillen [49] who stresses that what really
matters when working with spatial data is the relative position of the observations.
To some extent, these restrictions to modeling strategies were previously highlighted
by what Legendre [50] calls the new paradigm of spatial autocorrelation. In short,
the DGP for spatial data pooled over time is different from the spatial case, where
all relations are multidirectional.

Estimation Methods

In spatial econometrics, a general step before estimating the models is to row-
standardize the final form of the weights matrix (Eqs. 2–5). The row-standardization
procedure is a common practice that ensures the comparability of the usual statistic
tests as well as the autoregressive estimated coefficients [42]. There is also a
computational advantage of row-normalizing the weights matrix (see [4, 51]).

For functional forms based solely on the unidirectional spatial effect (Eq. 3) or
introducing multidirectional and unidirectional spatial effects (Eq. 5), an adjustment
is necessary. Since the weights matrix is based on a lower (block diagonal) triangular
specification, the first N1 elements are set to 0. A simple way to avoid the issue
related to false 0 values is to drop the first N1 observations from the database and
not use them in the estimation process. Consequently, the model is not estimated
using the whole sample size, NT, but instead is estimated using NT�1 observations,
where NT�1 D NT�N1. In the end, the final sample size is reduced by the total
number of observations in the first time period, N1 (see [52]).

The same procedure is used when dealing with dynamic spatial panel data.
Since it is impossible to have information on the initial time period (t D 0), this
transformation is necessary to avoid false zero values in the time lag variable for
t D 1 and introduce potential bias on the § parameter. Thus, the vectors of variables
are now of dimension (NT�1 � 1) and the weights matrices are of dimension
(NT�1 � NT�1).

After reducing the total sample size, models using only the lower triangular
specification (Eq. 3) can be estimated by OLS (or generalized least squares—GLS)
method,6 while the other specifications (Eqs. 2, 4, and 5) can be estimated using
the maximum likelihood (ML) method7 [54, 55], two step estimation process [56],
method of moments [57], or the new HAC method [58–60].

6The model uses a variable based on realizations recorded one period before, Wy, and thus
assumed exogeneity in the actual time period (see [31]).
7See LeSage [53] for a complete presentation of such methods using MatLab software.
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A Monte Carlo Experiment

Given the complete decomposition of the spatial effect from spatial data pooled over
time, a Monte Carlo experiment is conducted to see what happens to the estimated
parameters when the modeling strategies are omitted to account for one or the other
spatial effects. To do this, it is assumed that the DGP is constructed using the full
decomposition of the spatial effects (multidirectional and unidirectional—Eq. 6)
while the different specifications proposed in the literature (Eqs. 2–5) are estimated
using the adequate specifications of the weights matrices.

y D .I–¡S–§W/�1 Œ’š C z“ C ©� (6)

Where y is the vector of the dependent variable to be constructed of dimension
(NT � 1), z is a vector of the independent variable of dimension (NT � 1) and can
be seen as resulting from a principal component analysis (PCA) summarizing all
the pertinent information in a unique variable, and © is a vector of an independent
and identically distributed error term of dimension (NT � 1). I is the identity matrix,
and S and W are row-standardized weights matrices, all of dimension (NT � NT).
The S matrix is a spatial weights matrix accounting for the spatial multidirectional
relations occurring in the same time period (block diagonal), and the W is a spatio-
temporal weights matrix accounting for the spatial unidirectional (lower triangular)
relations occurring from the observations collected in the previous time period.

The ¡ coefficient represents the usual spatial spillover (multidirectional) effect,
the § coefficient measures the comparable sales (unidirectional) spatial effect, the
’ coefficient represents the constant term, and the “ coefficient measures the effect
of the independent variable on the dependent variable. For simplicity’s sake, all
coefficients are scalars in this framework.

The Monte Carlo Set up

To conduct a Monte Carlo experiment,8 we must first fix the variables and the
parameters related to the DGP (Table 2). The first step is to build the individual spa-
tial units and declare where, in time, these observations are collected. The individual
spatial units are drawn from a square spatial grid of dimensions 10 � 10. The spatial
units can be seen as kilometers for instance and or obtained through a uniform law
(0, 10). The temporal dimension is set in a similar way. The t variable is expressed in
a continuous way, varying from 0 to 10, and is simulated using a uniform law (0, 10).
These three variables are fundamental to build the spatio-temporal weights matrices,
S and W. The weights matrix controlling for observations collected in the same

8See Adkins and Gade [61] for an interesting discussion about how to conduct Monte Carlo
experiments and Dubé and Legros [62] for an application.
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Table 2 Set up of the Monte
Carlo experiment

Variables Distribution
z N(0.9)
" N(0.1)
X U(0.10)
Y U(0.10)
t U(0.10)

Parameters Values
’ 0.5
“ 1
¡ 0.2; 0.4; 0.6
§ 0.2; 0.4; 0.6
NT 2500
# of draws 1000

Weights matrices Cut-off criteria
Inverse distance dc � �d(i)

Negative exponential dc � �d(i)

Nearest neighbors 25

time period (S) controls for observations occurring in �t � j0.25j surroundings
temporal units, while the weights matrix controlling for previous observations (W)
considers all observations collected before this temporal window (�t > 0.25) and
the temporal weight gives more weight to temporally close observations. Moreover,
the spatial weights are built using three specifications: (1) an inverse distance matrix
with cut-off distance criteria; (2) an exponential negative distance matrix with cut-
off distance criteria; and (3) a 25-nearest neighbors matrix.

Since the DGP depends on the value of the independent variable, z, and the error
term, ©, these two variables are generated using a normal distribution (Table 2).
The simulations are based on 1000 repetitions of 2500 observations (NT D 2500).
Since the objective of the paper is to explore the effect of neglecting the temporal
dimension of the DGP on the autoregressive parameter, the parameter “ is set to 1,
while the parameter ’ is set to 0.5. Only the autoregressive parameters, ¡ and §,
can vary in the simulations. The values of the parameters ¡ and § are set to 0.2; 0.4;
and 0.6. Thus, using the values of the parameters and the value of the independent
variable as well as the value of the error term, it is possible to recompose the value
of the dependent variable.

In the end, the values of the dependent variables expressed in Eq. (7) are
recomposed and all the models proposed in the literature (Eqs. 2–5) are estimated
using the different specification of the weights matrices. The resulting parameters
are stored and the distribution is compiled and compared to the true values
postulated by the experiment.
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Monte Carlo Results

Two statistics are used to evaluate the impact of using one or the other autoregressive
specification on the estimated coefficients: (1) the bias (Eq. 7); and (2) the mean
square error (Eq. 8). Here, ™ indicates the true value of the parameter (fixed in the
Monte Carlo set up), while b represents the estimated values of the parameter. These
statistics are calculated for each coefficient and each specification.

Bias D E .b/ – ™ (7)

MSE D E.b – ™/2 (8)

The main concern here lies with regards to the possible bias on the “ coefficient,
as well as the different autoregressive parameters, ¡ and §. For the “ parameter, the
biases are small for all values of the ¡ and § parameters, except for the specification
using the nearest neighbor’s weights matrix (Table 3). The MSE are very low for all
specifications and slightly higher for specifications based on the nearest neighbor’s
weights matrix (Table 4). Thus, independent of the specification of the weights
matrix, the bias appears to be negligible for the “ parameters. This is good news
since the main interest in econometric specifications lies on the “ parameters.

Concerning the autoregressive parameters (¡ and §), the bias and the MSE are
somewhat more pronounced, given the form of the weights matrix used. This is
particularly true for the model using the strictly spatial weights matrix (first three
columns at the bottom of the tables). In such a case, bias is positive and increases
with the value of §, as do the MSE. This results can be explained by the fact that
in such a case, the two spatial effects are amalgamated in only one single statistic
capturing the multidirectional and the unidirectional spatial effect. Moreover, this
specification of the weights matrix can introduce some over-connectivity problems,
introducing a bias in the estimated autoregressive coefficient [63].

For the two other specifications using the multidirectional spatial effect (second
three columns at the bottom of the tables) or the unidirectional spatial effect (last
three columns at the bottom of the tables), the bias is less pronounced. However,
when the omitted spatial effect (¡ or §) is high, the bias increases. Once again,
the omitted spatial effects are then internalized, at least partly, through the other
parameter. This problem is more pronounced using the nearest neighbors to build
the spatial relations. In this case, the bias is noted, except when ¡ and § are low
(¡ D § D 0.2).

Why do these results matter? Because omitting to decompose the spatial effect
into multidirectional and unidirectional effects leads to potential bias and erroneous
interpretation of the source of spatial variability of the phenomenon under study.
For the multidirectional spatial effect, the marginal effect is usually decomposed
into two components: the direct and the indirect effect. Both effects compose the
total marginal effect and are expressed, for a row-stochastic matrix, by (1�¡)�1“k

([4], p. 38), where “k is the coefficient associated with the kth independent variable.
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In consequence, a bias in the autoregressive coefficient is of prime importance if
the goal is to have a full consideration of the total marginal effect, including spatial
spillover (feedback loops). Thus, an overestimation of the ¡ coefficient leads to over-
estimation of the total marginal effect.

For the unidirectional effect, there is a problem related to the calculation of the
marginal effect on the short- and the long-term. In such a case, the marginal effect
of a one-unit change in xk leads to a change of “k in time t. The same one-unit
change in xk in time period t, leads to a change of §“k in time t C 1. Thus, bias in
the coefficient § can lead to an erroneous conclusion about the effect on the next
time period. Moreover, the marginal effect on the long-term is equal to “k/(1�§),
or, equivalently, to (1�§)�1“k. Once again, an overestimation of the § parameter
leads to an overestimation of the short- and long-term marginal effect.

In all cases, the omission of the decomposition of the spatial effects into its
multidirectional and unidirectional components can lead to the erroneous inter-
pretation of the marginal effect on the spatial equilibrium, as well as on the
temporal equilibrium. Allowing only for a block-diagonal or a lower triangular
specification of the weights matrix does not solve all the problems: the omission
of the unidirectional spatial effect introduces bias on the estimated autoregressive
coefficients when the omitted spatial effect is high. The consideration of the two
effects (multidirectional and unidirectional) is thus a necessity for spatial data
pooled over time to ensure a correct interpretation: a direct, indirect and total
marginal effect is usually captured through the spatial multidirectional effect (based
on the estimation of the ¡—[4]), while a dynamic effect (short- and long-run)
is captured through the unidirectional effect (based on the estimation of the §

coefficient—[64]).

An Empirical Application

To see the impact of the different specifications on the results obtained through
an empirical application, an HPM model is estimated based on transactions of
apartments in Paris between 1990 and 2003. The transactions come from the Base
d’Informations Economiques Notariales (BIEN), compiled by French notaries. The
database has recently been used by Dubé and Legros [65] for a similar exercise.9

The full database consists of 294,768 observations and contains the exact address
of the property sold in Paris. The database also contains information about the
characteristics of the dwelling: type of dwelling, date of sale, living area (in m2),
date of construction, number of rooms, mean area/room, number of bathrooms,
number of garages or parking spaces, and for apartments, floor level and presence
of an elevator, and number of service rooms.

9However, the transactions only include those occurring between 1990 and 2001.



Decomposing and Interpreting Spatial Effects in Spatio-Temporal Analysis:. . . 387

To compare the impact of the choice of a given spatio-temporal specifications,
we have built two sub-samples: (1) one that contains 15,000 observations and serves
to estimate the coefficients; and (2) another one that contains 7500 observations
and serves for an out-of-sample prediction exercise. Six models are estimated:
(1) the usual OLS specification (Eq. 1); (2) the SAR specification based only on
spatial relations with no regard to temporal constraints (Eq. 2); (3) the SAR model
accounting only for transactions occurring in the same month (Eq. 4); (4) the STAR
model, controlling for comparable sales approach using transactions occurring one
quarter before (Eq. 3); and (5) the complete STAR model that distinguishes between
multidirectional spatial effect and unidirectional spatial effect (Eq. 5).

The spatial weights matrix is built using the negative exponential transformation,
whilethe spatial relations are limited using cut-off criteria based on the mean
distance for each of the observations. All the past transactions are accounted for in
the lower triangular specification (W), but a higher weight is given to transactions
occurring in a close temporal window. This is achieved using an inverse temporal
distance transformation, where the time distance is calculated using the number of
months that have passed between two transactions (see [66]).

The comparison shows some major divergence in the autoregressive coefficients
(Table 5). For the SAR specification using the full spatial weights matrix (Eq. 2), a
high coefficient is obtained, even after introducing some distance cut-off criteria.
Thus, the empirical results support the fact that the lack of constraints on the
individual weights can potentially lead to a bias in the estimated autoregressive
coefficient. As compared to the autoregressive coefficient using the block diagonal
specification (S�Eq. 3), the amplitude is highly reduced (0.2950 vs. 0.9760). The
difference is even larger when the unidirectional and the multidirectional spatial
effects are accounted for (0.0639).

A quick comparison with the specification using only the unidirectional effect
(Eq. 3) proposes that the main part of the spatial effect can be attributable to this
“comparable sales” effect since the value of the coefficient is 0.8140. A comparison
with the full specification supports this assumption since the coefficient associated
with the unidirectional spatial effect is high (0.7667) and highly significant.

It is assumed that a technological change, such as the development of a new
mass transit system, impacts the sale price of houses located within a distance of
500 m of the station. This effect is estimated to be 5% (“k D 0.05). The estimation
results obtained in Table 5 suggest that the total marginal effect10 using the SAR
model will result in a change of more than 208% in housing prices for those located
within 500 m. In comparison, the total marginal effect using the specification in Eq.
(4) would be 7 and 5.3% for the specification using the complete decomposition
of the spatial effect (Eq. 5). Of course, the specification using the unidirectional
effect gives no spatial spillover effect for the same time period since spatial effect is
assumed to come from the previous time period.

10All the effects are obtained using the formula identified in section “A Monte Carlo Experiment”:
(1�¡)�1 � “.
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The same changes lead to price movement in the next time periods if the
spatial effect is unidirectional (and dynamic).11 For the specification using only the
unidirectional effect (Eq. 3), the increase of the house price in the next time period
is 4.1%, while it is equal to 3.8% when using the specification in Eq. (5). Similarly,
these two models also suggest an important appreciation of prices in the long-run,
equivalent to 26.8% with the specification using only the multidirectional effect
(Eq. 3) and equivalent to 21.4% with the specification using the full decomposition
of the spatial effect (Eq. 5). The difference does not appear so large however, applied
to the total housing stock, the difference in total added value, in dollars, can be quite
considerable.

In the end, only the specification using the multidirectional and the unidirectional
spatial effect (Eq. 5) is able to decompose the spatial effect of the price determina-
tion process over time. The consideration of both spatial effects correctly addressing
the question of the spatial (spillover and dynamic) effects suggests that the total
price appreciation is of 5.3% in the initial time period, of 4.1% in the next time
period, and returns a total impact of 22.9% in the long-run.12

The advantage of the full STAR specification including multidirectional and
unidirectional spatial effects is also revealed through the out-of-sample performance
of the different models (Table 6). The correlation between the true values and the
predicted values is over 0.9 for the specification using only the lower triangular
part (0.9158) and the lower triangular part and the block diagonal part, while
accounting for distinct effects on both matrices (0.9150). Thus, the full spatio-
temporal specification not only helps in decomposing the spatial effect, but clearly
helps improving the predictions of the models, reinforcing the necessity to account
for both effects.

Thus, there is a need, in a spatio-temporal context, to decompose the spatial effect
to account for the temporal reality of cross-section data pooled over time.

Table 6 Out-of-sample
performance of the different
specifications, Paris
1990–2003

Out-of-sample performance index
¡y,ŷ (ŷ-y) < ¢y

yOLS 0.8863 96.42%
ySAR(S) 0.8294 86.63%
ySAR(S) 0.8762 86.54%
ySTAR(W) 0.9158 99.81%
ySTAR(S C W) 0.8502 98.96%
ySTAR(S & W) 0.9150 99.22%

11All the effects are obtained using the formulas identified in section “A Monte Carlo Experiment”:
for the short-run (§ � “); and the long-run [(1�§)�1 � “].
12These effect include the spatial spillover effect. The short run effect is obtained from
the formula § � [(1�¡)�1 � “], while the long-run effect is obtained from the formula
[(1�§)�1 � f(1�¡)�1 � “g].
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Conclusion

In this chapter, we have proposed a method/framework to decompose the spatial
effect into two different components for spatial data pooled over time by extending
the spatial autoregressive (SAR) model specification: (1) a spatial multidirectional
effect; and (2) a spatial unidirectional effect. Both spatial effects can be isolate
by building appropriate and distinct weights matrices that correctly expresses the
different spatial relations. Monte Carlo results clearly show that isolating both
spatial effects through appropriate weights matrix has a major impact on the
calculation of the marginal effects.

The results clearly conclude that using a spatial specification can lead to a
potential problem, while only controlling for spatial multidirectional effects or
unidirectional spatial effects does not help in solving the problem. Since spatial
econometrics modeling is gaining in popularity and because many software pro-
grams now offer packages to perform tests and estimations, these conclusions are
fundamental for empirical analysis.

Even if there is no evidence of a large bias on the “ parameters according to
the choice of the functional form with or without taking into account the spatial
unidirectional and multidirectional effects, the interpretation of the spatial effect
is different regarding the form of the weights matrix used. Assuming that the
spatial effect is multidirectional (unidirectional), using a block diagonal (lower
triangular) weights matrix leads to a completely different interpretation. In such a
case, the spatial effect is assumed to be simultaneous (dynamic), with the actual
(past) observations depicting influence on the actual observations. An empirical
analysis on real estate transactions in Paris between 1990 and 2003 is in line with
the conclusions drawn from the Monte Carlo experiment. Using an out-of-sample
prediction, the results show that the decomposition of the spatial effect, through
multidirectional and unidirectional effects, provides better performance.

Given the fact that the goal of the econometric modeling remains the same—
identifying the marginal mean effect of a given variable on a particular outcome—
the conclusions should be of primal importance for those who work with spatial
data pooled over time, such as in real estate analysis, crime detection, business
start-ups and closings and so on. However, what is less clear at this stage is how
the temporal dimension should be treated. As is the case with spatial data (the
Modifiable Areal Unit Problem—MAUP), the effect of the temporal aggregation,
in time period equivalent to a month or a quarter, on the results needs to be explored
in detail since this can also have a potential effect on the estimated coefficients. It
is possible to treat temporal dimension in a different way, based on time windows,
considering a given number of days before and after a particular transaction as a
better tool to isolate spatial multidirectional effect.

Acknowledgement This research was funded by the Fonds de recherche québécois sur la société
et la culture (FRQSC).
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An Open Source Spatiotemporal Model for
Simulating Obesity Prevalence

Jay Lee and Xinyue Ye

Introduction

Obesity is an exceedingly complex public health problem with hypothesized causes
at multiple interacting levels that are embedded in the very structure of society [1, 2].
This complexity appears to be the reason that most one-dimensional preventive or
therapeutic interventions have not been very successful. For example, the Foresight
causal map prepared by UK Government Office illustrates the inherent complexity
of obesity as a public health problem [3]. The Foresight map was built around energy
balance and mammalian physiology, but the model rapidly expanded to include
individual and collective physical activity, the built environment, individual and
collective psychology, industrial food production, and population food consump-
tion. Even with the expanded list of variables, obesogenic policy determinants of
the relevant environments were excluded which seems to limit the validity of that
approach. Obesity, per se, is only a small part of a larger public health problem
that includes obesogenic policy, environments, and population characteristics. These
population characteristics include unhealthy dietary habits and sedentary behavior,
a high prevalence of obesity, high obesity-related morbidity and mortality, and
high rates of diabetes or cardiovascular diseases among historicallydisadvantaged
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groups. Thus the obesity problem includes long-standing area disparities in health.
Addressing these disparities, their spatio-temporal components, and their determi-
nants requires new approaches.

Obesity prevalence has been predicted by using statistical models and simple
dynamic models. However, they predicted only the size of the obese population as a
whole without further distinguishing the population to various levels of obesity [4].
Such models over-generalized the movements of subpopulations between different
levels of obesity. In addition, the simple models from current literature (e.g., [5, 6])
are often too simplified in the following ways: modeling future trends of obese
population at a geographic scale that is often too coarse to be useful in revealing
area disparities. Finally, most models, in order to accommodate the statistical and
simple dynamic modeling structure, often miss important factors, such as death
rates, birth rates of the population, and more importantly; lumping all levels of
normal weight/overweight/obese/extremely obese subpopulations into one.

As such, the results of statistical analysis and predictions have limited practical
use in assisting policy-making process by public health districts when designing and
implementing more geographically- and temporally-focused intervention programs.
Auchincloss and Roux [7] pointed out the weaknesses of traditional epidemio-
logic approaches when dealing with complex multilevel data with spatio-temporal
components. They noted that traditional regression-based approaches to analyzing
multi-level exposures and health disparities are limited by a variety of assumptions.
These assumptions include the requirements that realizations of each independent
variable do not influence one another, and that there are no feedback loops to
address the interactions among variables. These requirements do not fit well with the
complex realities of obesogenic policy, environments, and population characteristics
where dependencies and feedback loops are common.

Obesity may be the single most challenging example for a condition with causes
and consequences at multiple levels and with multiple feedback loops among the
causes. New approaches are obviously needed. The principal research question of
our work is: can we develop a prototype for a comprehensive simulation mechanism
for estimating obesity prevalence and obesity-related disease or disparities that (1)
addresses obesogenic policy, environments, and population characteristics; and (2)
is calibrated against obesity-related morbidity and mortality?

Obesity studies have been, and continue to be challenged by dealing with
temporal trend of geographic patterns and spatial dynamics of health development.
There is an imperative need for effective and efficient methods to represent and
examine the coupled space-time attributes of obesity phenomena in the comparative
context. As a multi-dimensional and multi-scale phenomenon, obesity studies
witness the role of geography and the awakening emphasis on space among public
health practitioners. As discussed above, it is clear that a space-time perspective has
become increasingly relevant to our understanding of public health dynamics. To
this end, we argue that an open source solution is needed to systematically integrate
space and time so to share and promote any advances in this direction. Though
rich conceptual frameworks have highlighted the complexity of obesity dynamics,
the gap has been widening between empirical studies and theories. Hence, the
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most crucial step is to systematically understand obesity dynamics data from the
theoretical and policy context. Thus, the availability of codes and tools to support
space-time data analysis are vital in the adoption of such a perspective in obesity
studies.

An Open Source Approach to Obesity Simulations

The prevalence of obesity among adults and children in the United States has
increased dramatically in recent decades [8]. This is a public health issue as obesity
causes many other chronic health conditions, such as, hypertension, cardiovascular
disease, type II diabetes, among others. Increasing obesity prevalence in a region
affects the life expectancy and quality of its residents. It also increases social costs
in many ways.

The basic cause of obesity is the imbalance between the amount of energy
taken in through eating and drinking and the amount of energy expended through
metabolism and physical activity [9]. To offset excessive energy intake, increased
physical activity is encouraged as a way to keep energy in balance. However,
energy imbalances appear to be encouraged by features of the physical, social, and
economic environments. Lee et al. [10] found that the density of fitness centers and
non-fresh food outlets are related to the prevalence of obesity, and that an analysis of
smaller geographic units provides more details regarding area disparities in health
than analyses carried out with larger geographic units.

Most of the obesity studies that have looked at the food environment have
concentrated on the hypothesized effect of non-fresh food (fast-food, packaged
food, pre-processed food, etc.) consumption on people’s diet and public health.
With today’s fast-paced life styles and intensive marketing of various types, non-
fresh food outlets have become an important part in people’s daily diet because of
convenience, price, distance and other cultural factors [11]. The literature in this
area suggests a positive correlation between regularly consuming non-fresh food
and the prevalence of obesity unless daily physical activities are performed on a
regular basis [12]. Positive correlation means, the more frequently one eats from
non-fresh food outlets over time, the higher are the chances of being obese [13].

A study on non-fresh food consumption and obesity among Michigan adults
suggested that regular fast food consumption was higher among younger adults
and men [8]. In that study, the prevalence of obesity increased consistently with
frequenting non-fresh food outlets, from 24% of those going less than once a week
to 33% of those going three or more times per week. The predominate reason for
choosing fast food was convenience. Another study found that youths 11–18 years
old ate at non-fresh food outlets an average of twice per week [14], which also points
to the alarming possibility of increasing obesity rates among young people.

Non-fresh food consumption has been found to be highly correlated with the
prevalence of obesity. Reasons that may affect the consumption of non-fresh food
are the price of the food, the walking or driving distance, and various cultural,
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behavioral, or environmental factors [8, 15]. In addition, marketing campaigns of
non-fresh food outlets could play a significant role in the consumption of unhealthy
food [9]. If marketed well, non-fresh food outlets can attract a significant number of
customers, which can later lead to increases of overweight and obese people. Most
often non-fresh food outlets are unhealthy because of the way foods are cooked
and the high calories per “serving”. The increased supply of non-fresh food outlets
has a significant impact on obesity. Frequently eating at non-fresh food outlets is
becoming an important issue in the public health literature because of the apparent
health effects.

Physical activity and the distribution of fitness centers can have a significant
impact on the prevalence of obesity if exercise is taken regularly [16]. Over
the last few years, there have been studies focused on the relationship between
the built environment and physical activity [16]. However, there were no other
studies besides Lee et al. [10] that examine the relationship between distances from
fitness centers and obesity rates by using small geographical units such as tracts
or block group. The proximity of fitness centers could change the prevalence of
overweight and obesity in some neighborhoods. A relevant study in New Zealand
neighborhoods found evidence of a relationship between beach access and body
mass index (BMI) and physical activities [17]. Several other studies reported a
positive association between the recreational environment and physical activity for
both adults and children [18, 19]. Going to recreational centers regularly increased
physical activity; therefore, lower rates of obesity and overweight can be expected
in neighborhoods with sufficient access to fitness centers. Mobley et al. [20] found
there is a lower average BMI in areas with more fitness centers. In addition,
Boehmer et al. [21] reported that having fewer fitness centers within close proximity
was associated with higher likelihood of obesity among women but not men.

Furthermore, being obese was found to be significantly associated with per-
ceived absence of sidewalks, unpleasant communities, lack of interesting sites, and
presence of garbage [21]. Several studies show that people tend to increase their
frequencies of visiting fitness centers when the distance between home and facilities
decreases [22]. For long-term health benefits, people should focus on improving
fitness by increasing physical activity rather than relying only on diet for weight
control [23]. It should be noted, however, that going to fitness centers maybe a
critical behavior, but there are multiple factors that may discourage or encourage
this key behavior (such as the price of membership, geographical (distance), time
required for finding a parking space, etc.)

Our review of the literature in obesity suggests that a comprehensive computation
model of obesity-related disparities with extensive calibration is possible. Some
basic components of the model have been developed, but key components of
a comprehensive model have been omitted from prior work. Calibration is also
insufficient. As far as we know, no one has developed a comprehensive model of
obesity and related area disparities with extensive calibration against obesity-related
morbidity and mortality. Our innovative project has scientific merit because of the
breadth of the proposed model and the possible calibration of the simulation against
hard outcomes including obesity-related morbidity and mortality. A strength of our
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approach is that it may be possible to use a multi-year sample of geocoded individual
inpatient discharge data from all hospitals in a representative urban-suburban county
(such as Summit County, Ohio) where the simulation will be anchored as well as a
corresponding sample of geocoded death certificates, US Census data, and geocoded
environmental data from Summit County Public Health, the Ohio Department of
Health, and other sources. Use of real world geocoded individual health outcome
data in this research project will provide more robust tests of a given modeling
strategy in nearly all circumstances.

In terms of obesity simulations, there have been various attempts discussed in
obesity literature. In their review of obesity simulations, Levy et al. [24] list two
agent-based models (ABM) and seven Markov models. Burke and Heiland’s ABM
[25] looks at the obesity epidemic in terms of food prices and social norms, while
the Hammond and Epstein [26] ABM looks at obesity in terms of the physiology
of dieting and socially influenced weight changes. More recently, Auchincloss et al.
[27] models residential segregation, income disparities, and diet quality; while Yang
et al. [28] models disparities and walking behaviors in an urban setting. While these
obesity simulations achieved the objectives of estimating obesity prevalence in some
ways, they all fell short of allowing more detailed classification of population (e.g.,
grouping populations into normal/overweight/obese/extremely obese) and allowing
movements between subpopulations. Furthermore, the geographic units of these
simulations are mostly too big to have practical uses in assisting policy-making
processes for intervention programs.

Overall, from many of the analyses we reviewed, they showed that obesity ratios
are indeed affected by educational attainment, income level, and unemployment
level (see reviews in [10]). In addition, obesity ratios also show the expected
relationships with densities of fitness centers and non-fresh food outlets. While
such relationships are all statistically significant, it is important for us to explore in
more detail where inside the county we can expect such relationships to be stronger
or weaker. This is so that, when making policies on how to promote health and
allocating funding to different areas in the county. For example, area disparities in
health can be incorporated for more effective outcomes at neighborhood level.

In terms of implementing a software tool for simulating obesity prevalence,
we argue that both space and time are critical components in such simulations.
Spatial turn in many socioeconomic theories has been noted in many disciplines,
encompassing both social and physical phenomena [29–31]. This intellectual and
technological change has yielded important insights on physical sciences, social
sciences and the humanities, with an explosion of interest across disciplines [32].
During the past several decades, a number of efforts have been witnessed on the
development and implementation of spatial statistical analysis packages, which
continues to be an active area of research [33]. Meanwhile, spatial public health
analysis is increasingly being supported by the emergence of advanced analytical
methods in space-time data analysis and data visualization. The interactive spatial
data analysis has motivated, if not directly provoked, new queries on spatial public
health theories. Therefore, the current research implements the new methodological
advances in an open source environment for exploring data that has both temporal
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and spatial dimensions, which lend support to the notion that space and time cannot
be meaningfully separated.

The fast growth of spatial public health analysis is increasingly seen as
attributable to the availability of spatio-temporal datasets. By contrast, most public
health geographers have been slow to adopt and implement new spatially explicit
methods of data analysis due to the lack of extensible software packages, which
becomes a major impediment to promoting spatial thinking in public health studies.

ABM is not new to public health inequality studies, whereas an open source
solution would give better support for the scientific investigation and management
of data sets, including its description, representation, analysis, visualization, and
simulation. Additionally, comparative space-time analysis enables access to a much
wider thinking that addresses the role of space at different stages and thus identifies
the research gaps and opportunities for more in-depth study.

Obesity Prevalence Simulator: A Case Study of Summit
County, Ohio

Timely and rigorous analysis of obesity will open up a rich empirical context for
the social sciences and policy interventions. The Obesity Prevalence Simulator
(ObPSim) was developed in Python programming language with funding provided
by the Summit County Public Health District of Summit County, Ohio. Python
is a versatile language that is free to acquire, install, and use. Python is also a
cross-platform programming language, which means a python script can be used by
computers with one platform of operating system and be usable in other operating
system platforms. In addition, many libraries that process GIS and other forms of
data have been developed and are freely available in public domain. This allows
further improvements and updates for existing codes to be carried out easily.
The open source environment offers a straightforward way of benefiting wider
community.

While Lee et al. [10] used Summit County, Ohio as a case study because of the
availability of key data and the project’s funding, their findings may be applicable
to many other geographic locations since demographic and socio-economic profiles
in this area are very close to the national average in the US.

The objective of the study reported here is to model known multiple parameters
associated with changes in body mass index (BMI) classes and to establish
conditions under which obesity prevalence will plateau. Following Thomas et al.
[4], a differential equation system is adopted that predicts population-wide obesity
prevalence trends. The equation system is complex but very logical and practical.
Interested readers can find the equation set in Thomas et al. [4].

The model considers both social and non-social influences on weight gain,
incorporates other known parameters affecting obesity trends, and allows for
country specific population growth. With 2011 data from American Community
Survey (Census Bureau, 2011) and the 2008–2013 BMI data from the Bureau of
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Fig. 1 Obesity and overweight ratios in Summit County, Ohio based on driver licenses. Data
sources: BMI data from Ohio Bureau of Motor Vehicles, 2008–2013; population data from
American Community Survey of the US Census Bureau, 2011

Motor Vehicles, Summit County has 452 census block groups with a wide spectrum
of obesity ratios (ranging from 16 per 1000 population to 549 per 1000 population)
and overweight ratios (ranging from 32 per 1000 population to 541 per 1000
population).

As can be seen in the two maps in Fig. 1, (1) obese population, though still are
in lower ratios than those of overweight population, does seem to have a geographic
clustering patterns in the county, (2) overweight population prevails in most of the
county with exceptions of only a few census block groups, and (3) the use of census
block groups as the unit for geographic analysis indeed reveals more detail of how
obesity prevails in the county than using the entire county as an analytic unit.

We adopted the concept of the susceptible, infected, and recovered (SIR)
framework to divide a population into subpopulations categorized as normal weight,
overweight, obese, and extremely obese by BMI data. To estimate the population
moving between these categories, we use a simulation approach that allow analysts
to specify the ratios that subpopulations change in between categories. The relation-
ships and potential movements between subpopulations are shown in the diagram in
Fig. 2 below:

In each neighborhood (i.e., census block group in this project), population is
categorized into six (6) subpopulations:

• Normal weight (S_T),
• Overweight (1_T),
• Obese (2_T),
• Extremely Obese (3_T),
• Exposed (E_T, or S_T ➔ 1_T), and
• Recovered (R_T, or 1_T ➔ S_T).

The ratios that define how subpopulations move in between categories are

• ˛1 (1_T ➔ 2_T),
• ˛2 (2_T ➔ 3_T),
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Fig. 2 The susceptible, infected, and recovered (SIR) framework for obesity prevalence simula-
tion

• ˇ1 (3_T ➔ 2_T),
• ˇ2 (2_T ➔ 1_T),
• ‡1 (S_T ➔ 1_T), and
• ‡2 (1_T ➔ S_T).

Following Thomas et al. [4]:

• Total population at time0 (TotalPopulation) D S_T C 1_T C 2_T C 3_T C
E_T C R_T

• The exposed subpopulation (E_T) are individuals who are exposed to either
social or non-social influences that lead to weight gain and these individuals will
eventually become overweight.

• The subpopulation (R_T) are individuals who have weight loss under social or
non-social influences.

• Social interactions between compartments are governed by the law of mass action
and modeled by multiplying the population numbers in each class.

• Estimated subpopulations at time1 can be derived as solutions for ˛1, ˛2, ˇ1, ˇ2,
‡1, and ‡2 from a set of differential equations as proved in Thomas et al. [4].

• For the purpose of modeling and simulations, initial values for model parameters
are estimated from publications in the obesity literature:

• The probability of being born in obesogenic environment is set to be 0.55 of
females of reproductive age who are overweight or obese, based on Balcan et al.
[34].

• Birth rate is set to be 0.0144, based on Jacobson et al. (2007).
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• Baseline prevalence rates are set to be 0.32 for overweight, 0.22 for obese, 0.03
for strictly obese, based on Flegal et al. [35].

• Social influence by overweight and obese are set to be 0.4 for overweight
subpopulation and 0.2 for obese subpopulations, both are based on fitting to
initial trends as discussed in Flegal et al. [35].

• Spontaneous rate of weight gain to each class are set to be: exposed (0.05),
overweight (0.14), obese (0.08), and extremely obese (0.014), also based on
Flegal et al. [35].

• Rate of weight loss to each class are set to be: extremely obese to obese (0.05),
obese to overweight (0.03), and overweight to normal weight (0.033), also based
on Flegal et al. [35].

• Rate of weight regainers transitioning from normal weight to overweight is set to
be 0.04, also beased on Flegal et al. [35].

• Death rate of obese and extremely obese populations is set to vary between 16.5
to 22 per 1000 population as suggested by Oizumi [36].

ObPSim comes with a sample data file in shapefile format (ESRI, Inc., Redlands,
California). Users of the ObPSim can use it to work with any customized shapefile
data. The only requirement for the shapefiles is to have the following columns in the
attribute table:

• S_T: the number of people in each neighborhood who are in normal weight range
(BMI < D 25)

• 1_T: the number of people in each neighborhood who are considered overweight
(20 < BMI < D 30)

• 2_T: the number of people in each neighborhood who are considered obese
(30 < BMI < D 40)

• 3_T: the number of people in each neighborhood who are considered extremely
obese (BMI > 40)

• E_T: the number of people in each neighborhood who are exposed to possibility
of changing from normal weight to overweight

• R_T: the number of people in each neighborhood who may have weight loss so
to return from overweight to normal weight.

In the obesity prevalence folder of the sample data set, a shapefile subfolder holds
a set of shapefiles, entitled SummitBG. This can be used to test run the Obesity
Prevalence Simulator. Please note that the boundary data for block group polygons
were downloaded from http://www.esri.com. Data for the S_T, 1_T, 2_T, and 3_T
subpopulations were calculated using height/weight data derived from drivers’
license data from the Ohio Bureau of Motor Vehicles. E_T and R_T data were
derived from geographically weighted regression of the following relationships:

ET D function .ST; density non-fresh food outlets/

RT D function .1T; Distance to nearest fitness centers/

http://www.esri.com
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It should be noted that estimations for E_T and R_T with the above regression
are provided here purely for the purpose of demonstrating the usage of ObPSim.
Additional studies and analysis may be needed in order to derive better or more
precise estimates.

The estimates for E_T and R_T should be done so each neighborhood has its
own estimates. The examples included in the sample shapefile were derived using
the relationships

• between S_T and the density of non-fresh food outlets in each neighborhood for
estimating E_T and

• between 1_T and the distance to the nearest fitness centers from the neighbor-
hood center for estimating R_T.

A simulation control panel, entitled Simulation, shows the various simulated
year, parameters, and the Update button as below:

Please note that the parameters in Fig. 3 are set to their initial values (default
values), which can be changed in simulation runs. Please note that parameters
such as birth rates and death rates are assumed to be the same across the entire
county. This is because a county is a small geographic area and there wasn’t any
such data available for any geographical units inside a county. Other parameters
may be formulated such that local conditions (i.e., unique parametric values for
census blockgroups) can be reflected by the different values describing each
neighborhood’s unique characteristics.

Needless to say, any of the parameter values in this model can be changed to
reflect the conditions of the simulated area. Essentially, we implemented the model
described by Thomas et al. [4] for each neighborhood (census block groups) in
Summit County. We developed ObPSim by using years as the temporal unit of
analysis. The modeling process as described in Thomas et al. [4] was repeated for
each neighborhood. With this approach, ObPSim allows users to

• Observe the spatial distribution of obesity prevalence at any given year.
• Observe the changes in each neighborhood’s obesity prevalence over time.
• Observe the spatio-temporal patterns by neighborhoods by changing one or more

parameter values.
• Each round of simulation will generate an output file.

For example, Fig. 4 below shows the simulated obesity prevalence by neighbor-
hoods from 2013 to 2019. As shown in this table, obesity prevalence does seem to
plateau into future years. As can be seen in this series of maps, Summit County
was simulated to evolve from having many neighborhoods (census blockgroups)
seeing fast growth of obesity ratios (shown in bluish colors) in 2013–2015 to having
much slowed growth of obesity ratios (shown in reddish colors 0 in 2016–2019.
When obesity ratios are increasing (or growing) fast, the obesity prevalence is high.
On the other hand, when obesity ratios are already high and only change little, the
obesity prevalence is plateaued.

The advantage of using ObPSim to estimate obesity prevalence is the ability to
change values of model parameters by holding all others constant while varying
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Fig. 3 Control panel for simulation parameters in Obesity Prevalence Simulator

only one or only a few parameter values in simulation runs. In Fig. 5 below, obesity
prevalence is simulated for year 2018, by setting social influence value to be 0.2,
0.3, 0.4, and 0.5.

As can be seen in the progressive changes of obesity prevalence by increasing
social influences on overweight and holding that influence on obese constant, above
figure shows that higher levels of social influence seem to be important in shaping
simulated obesity prevalence. As a comparison, Fig. 6 below shows the insensitivity
of social influence on obese subpopulation while that influence on overweight is
held constant at 0.20. Figures 5 and 6 are listed here to demonstrate the influence of
model parameters in the simulated pace of obesity prevalence.

The concept of exploratory space-time data analysis is strongly associated with
visualization because graphical presentation enables the analyst to open-mindedly
explore the structure of the data set and gain some new insights. Shneiderman [37]
argues that exploratory data analysis can be generalized as a three-step process:
“overview first, zoom and filter and then details-on-demand”. More importantly, it
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Fig. 4 Example runs of obesity prevalence simulations. Note: Increase rates are calculated with
reference to baseline figures in 2013

Fig. 5 Effects of social influence changes in obesity prevalence

Fig. 6 Insensitivity of social influence on obese subpopulation while that influence on overweight
is held constant at 0.20

is worth noticing that this process should be iterative, and the methods implemented
in the current research addressed the challenge. To explain the observed patterns
and trends, a follow-up research is needed on collecting determinants of economic
growth.
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As the last, but the most important step in an analysis such as using ObPSim to
investigate spatio-temporal changes in obesity prevalence is the calibration of the
model. If (and when) actual data are available for simulated years, it is possible
to run the simulations retroactively for a target year and then calibrate the model
parameters by incorporating actual data. For example, one can first simulate obesity
prevalence in 2012 by using 2000 data and then calibrate the model with actual
2012 data. Such calibration would help to derive a set of parametric values that
best approximates simulated results to actual trends in 2012. Understandably, the
calibration processes can be tedious and repetitive, they are, however, necessary
steps in ensuring simulations are meaningful and applicable.

Concluding Remarks

This paper explores the potential for the new open source tool to function in
obesity studies. In other words, the current work is mainly from an exploratory
perspective, which can motivate scholars to design a series of analysis questions
and formulate new hypotheses from theoretical and policy perspectives. This space-
time work provides an important contribution to the current literature, which lacks
in comparative space-time studies. Although this comparative study stems from the
analysis of obesity dynamics, it broadly aims to analyze the role of geography and
location in public health phenomena. In addition, the methods are built in open
source environments and thus easily extensible and customizable.

Obesity is an exceedingly complex public health problem with hypothesized
causes at multiple interacting levels that are embedded in the very structure of
society. This complexity appears to be the reason that one-dimensional preventive
or therapeutic interventions are not very successful. The traditional epidemiologic
approaches fail to address complex and multilevel data with spatial components.
These simplifications do not fit well with the complex realities of obesogenic policy,
environments, and population characteristics where dependencies and feedback
loops are common. Hence, the reported research extends traditional regression-
based approaches to multi-level exposures through a set of differential equation
system. This project also integrates the following elements: spatial components, the
influence among realizations of each independent variable, as well as feedback loops
between outcomes and independent variables.

Given this, new approaches are needed to fully understand the complexities
associated with obesity. ObPSim developed in this project is a new, more compre-
hensive, decision support tool for policy makers. The implementation of policies
that effectively combat obesity would improve the health and well-being of a
high percentage of the population, including both adults and children, as well as
greatly reducing associated economic costs to society such as obesity-related health
care expenses and loss of productivity. Based on the susceptible, infected, and
recovered (SIR) framework, ObPSim is featured by categorizing the population
into subpopulations of normal weight, overweight, obese, and extremely obese.
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Furthermore, ObPSim allows population to be moved between subpopulations. Such
movements can be defined by any reasoning from the various physical environ-
ments, food environment, built environment, and socio-economic environments of
the neighborhoods.

Beyond the features of categorizing a population to subpopulations and allowing
people to move between subpopulations, ObPSim also allows users to set a suite
of model parameters in estimating future obesity prevalence. These parameters
do affect how estimations are calculated. However, the parameters as defined by
the local conditions allow the simulations to be executed with spatial variations
and with localized conditions. Finally, ObPSim provides a means of studying
obesity prevalence at a very fine geographic scale. By using census block groups
as neighborhoods, ObPSim goes beyond the conventional approaches of studying
obesity prevalence at the scale of census tracts. The additional details reveal by using
smaller geographic units certainly allow us to better understand spatial patterns and
processes of obesity prevalence.

Beyond the scope of this project, studies that compare how simulated obesity
prevalence levels react to different values of the model’s parameters would be
valuable to engage. By fixing all but one parameter to vary in simulations, estimated
obesity prevalence patterns can be used to related to how that particular parameter
changes. If desired, multiple parameters can be allowed to change simultaneously
so observations can be made to see how they affect obesity prevalence as a whole.
This paper thus demonstrates an example to interface public health analysis with the
open source revolution, which is among the burgeoning efforts seeking the cross-
fertilization between the two fast-growing communities.

The ObPSim package is entirely open source, which can promote collaboration
among researchers who want to improve current functions or add extensions to
address specific research questions. Based on the strength of scientific visualization
techniques, this paper stresses the need to study the space-time dimension underly-
ing obesity data sets. Finally, a new interactive tool is suggested and demonstrated as
providing an explanatory framework for space-time data. On this basis, the sincere
hope here is that this dialogue between public health scholars and geographers will
embrace the real world challenges of inequality issues.
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