
Chapter 7
Applications

Abstract Applications of the formalism of finite quantum systems, to angle and
angular momentum operators, interferometry, orbital angular momentum states, etc,
are briefly discussed.

In this chapter we discuss applications of the formalism into the area of Quantum
Optics andQuantum Information, and also into other areas. Each of these applications
is a subject in its own right, and here we briefly define the basic quantities and guide
the reader through the literature.

7.1 Angle States and Angular Momentum States

In this section we apply the general formalism of finite quantum systems, to a system
with angular momentum j . In this case d = 2 j + 1 where j is an integer (‘Bose
case’), and the variables take values in Z(2 j + 1). The relevant Hilbert space is
H [Z(2 j + 1)], which in this chapter we denote for simplicity H(2 j + 1).

The analogue of themomentumstates are here the usual angularmomentumstates,
which we denote as |J ; j m〉. The extra J to the usual notation is not a variable, but
it simply indicates angular momentum states. The analogue of position states are the
angle states [1], which we denote as |θ; j m〉, and which are defined through Fourier
transform below.

The angular momentum operators Jz , J+, J−, form the SU (2) algebra

[Jz, J+] = J+; [Jz, J−] = −J−; [J+, J−] = 2Jz . (7.1)

The Casimir operator is

J 2 = J 2
z + 1

2
(J+ J− + J− J+) = j ( j + 1)1. (7.2)
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Then

J+|J ; j m〉 = [ j ( j + 1) − m(m + 1)]1/2|J ; j m + 1〉
J−|J ; j m〉 = [ j ( j + 1) − m(m − 1)]1/2|J ; j m − 1〉
Jz|J ; j m〉 = m|J ; j m〉
J 2|J ; j m〉 = j ( j + 1)|J ; j m〉. (7.3)

The Fourier transform in the present context is

F = 1√
2 j + 1

∑

m,n

ω(mn)|J ; j m〉〈J ; j n|; F4 = 1. (7.4)

Acting with it on the angular momentum states, we get angle states:

|θ; j m〉 = F†|J ; j m〉 = 1√
2 j + 1

∑

n

ω(−mn)|J ; j n〉 (7.5)

Also acting with it on the angular momentum operators we get the angle operators

F† Jz F = θz; F† J+F = θ+; F† J−F = θ− (7.6)

which form the SU (2) algebra

[θz, θ+] = θ+; [θz, θ−] = −θ−; [θ+, θ−] = 2θz (7.7)

The corresponding Casimir operator is

θ2 = θ2
z + 1

2
(θ+θ− + θ−θ+) = j ( j + 1)1. (7.8)

Relations analogous to Eqs. (7.3), also hold for angle operators and angle states
(because we have performed a Fourier transform, which is a unitary transform):

θ+|θ; j m〉 = [ j ( j + 1) − m(m + 1)]1/2|θ; j m + 1〉
θ−|θ; j m〉 = [ j ( j + 1) − m(m − 1)]1/2|θ; j m − 1〉
θz|θ; j m〉 = m|θ; j m〉
θ2|θ; j m〉 = j ( j + 1)|θ; j m〉 (7.9)

We next introduce a polar decomposition of the ‘Cartesian operators’ J+ and J−
in terms of the ‘radial operator’ Jr and the ‘exponential of the phase operator’ Z :
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J+ = Jr Z; J− = Z† Jr
Jr = (J+ J−)1/2 = [ j ( j + 1)1 − J 2

z + Jz]1/2; [Jr , Jz] = 0

Z =
∑

m

|J ; j m + 1〉〈J ; j m| (7.10)

The dual relations to them are

θ+ = θr X; θ− = X†θr

θr = (θ+θ−)1/2 = [ j ( j + 1)1 − θ2
z + θz]1/2; [θr , θz] = 0

X =
∑

m

|θ; j m + 1〉〈θ; j m|. (7.11)

We can show that the X, Z obey Proposition4.2, with the following correspondence:

|X;m〉 → |θ; j m〉; |P;m〉 → |J ; j m〉. (7.12)

Also the analogue of Eq. (4.18), is here

X = exp

[
−i

2π

d
Jz

]
; Z = exp

[
i
2π

d
θz

]
. (7.13)

Therefore all the formalism in Chap.4, can be used here also.

7.1.1 The Schwinger Representation

We consider a two-mode harmonic oscillator withHilbert spaceH1 × H2. Let a
†
1, a1

and a†2, a2 be the creation and annihilation operators for the two modes, and |N1, N2〉
the number eigenstates:

a†1a1|N1, N2〉 = N1|N1, N2〉; a†2a2|N1, N2〉 = N2|N1, N2〉. (7.14)

In the Schwinger representation of SU (2) [2], the angular momentum operators
are expressed as

J+ = a†1a2; J− = a1a
†
2; Jz = 1

2

(
a†1a1 − a†2a2

)
. (7.15)

The Casimir operator is

J 2 = ns (ns + 1) ; ns = 1

2
(a†1a1 + a†2a2)

[ns, J+] = [ns, J−] = [ns, Jz] = 0. (7.16)

http://dx.doi.org/10.1007/978-3-319-59495-8_4
http://dx.doi.org/10.1007/978-3-319-59495-8_4
http://dx.doi.org/10.1007/978-3-319-59495-8_4
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The number eigenstates play the role of the angular momentum states, as follows:

|N1, N2〉 ↔ |J ; j m〉; j = 1

2
(N1 + N2); m = 1

2
(N1 − N2) (7.17)

With this correspondence, we can easily show that the standard angular momentum
relations in Eq. (7.3) hold. Here the (2 j + 1)-dimensional Hilbert space H(2 j + 1),
contains superpositions of the states

H(2 j + 1) = {|N , 2 j + 1 − N 〉 | N = 0, ..., 2 j + 1} (7.18)

Then the Hilbert space H1 × H2 can be written as the direct sum:

H1 × H2 = HB ⊕ HF

HB =
⊕

j

H(2 j + 1); j = 0, 1, 2, ...

HF =
⊕

j

H(2 j + 1); j = 1

2
,
3

2
, ... (7.19)

HB is the Bose Hilbert space (the direct sum of spaces with integer j), andHF is the
Fermi Hilbert space (the direct sum of spaces with half-integer j). HB is spanned
by number eigenstates with an odd total number of photons in the two modes. HF

is spanned by number eigenstates with an even total number of photons in the two
modes.

As an application of this we consider a two-mode system described by the fol-
lowing Hamiltonian, which is used for the description of frequency converters in
Quantum Optics:

H = E1a
†
1a1 + E2a

†
2a2 + λa†1a2 + λ∗a1a†2

= (E1 + E2)ns + (E1 − E2)Jz + λJ+ + λ∗ J− (7.20)

Systems with this Hamiltonian can be studied with the above formalism.

7.1.2 Angle States and Angular Momentum States inHB

Let α, β be spherical coordinates describing the points on a two-dimensional sphere
S2, with radius one. We define the following angular momentum states in HB :

|J ;α, β〉 =
∑

j,m

Y ∗
jm(α, β)|J ; j m〉; 0 ≤ α ≤ π; 0 ≤ β < 2π (7.21)
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Y jm(α, β) are the usual spherical harmonics. We also introduce the ‘dual spherical
harmonics’ [3] which are related to the usual spherical harmonics through a finite
Fourier transform:

X jn(α, β) = 1√
2 j + 1

∑

m

Y jm(α, β)ω(nm) (7.22)

We define angle states in HB , as:

|θ;α, β〉 =
∑

j,m

Y ∗
jm(α, β)|θ; j m〉 =

∑

j,m

X∗
jm(α, β)|J ; j m〉. (7.23)

The states |θ;α, β〉 and also the states |J ;α, β〉 form orthonormal bases inHB .

∫
|θ;α, β〉〈θ;α, β|d cosαdβ =

∫
|J ;α, β〉〈J ;α, β|d cosαdβ = 1. (7.24)

An arbitrary state | f 〉 inHB , can be represented with the functions

f J (α, β) = 〈J ;α, β| f 〉; fθ (α, β) = 〈θ;α, β| f 〉. (7.25)

7.1.3 Area Preserving Diffeomorphisms on a Sphere

Above we discussed angle and angular momentum operators based on the SU (2)
group. The SU (2) is locally isomorphic to SO(3) which describes rotations of a
solid sphere.

A more general group is the SDi f f (S2) of area preserving diffeomorphisms on
a sphere S2. They describe general transformations of a perfect liquid on a sphere.
Since rotations of a solid sphere are a very special case of these transformations, we
expect that this more general formalism will lead to the standard angular momentum
operators plusmany other operators. Such groups for a sphere and also other surfaces,
have been studied in the context of string theory [4–10].

We consider the following transformations from (cosα, β) to

cos γ = A (cosα, β); δ = B(cosα, β)

∂(cos γ, δ)

∂(cosα, β)
= ∂ cos γ

∂ cosα

∂δ

∂β
− ∂δ

∂ cosα

∂ cos γ

∂β
= 1. (7.26)

Since the Jacobian is equal to one, the area is preserved under these transformations.
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An infinitesimal version of these transformations is

cos γ = cosα + A(cosα, β)ε; δ = β + B(cosα, β)ε

∂A

∂ cosα
+ ∂B

∂β
= 0. (7.27)

ε is an infinitesimal parameter. The last equation comes from the fact that the Jacobian
is equal to one, and for topologically trivial manifolds like a sphere, implies the
existence of a function g(α, β) such that

A = −∂g

∂β
; B = ∂g

∂ cosα
. (7.28)

We consider two bases |J ;α, β〉 and |J ; γ, δ〉, where γ, δ are related to α, β

through the infinitesimal transformations in Eq. (7.27). We represent an arbitrary
state | f 〉 inHB , with the functions

f (α, β) = 〈J ;α, β| f 〉; f (γ, δ) = 〈J ; γ, δ| f 〉. (7.29)

Then

f (γ, δ) − f (α, β)

ε
≈ ∂(g(α, β), f (α, β))

∂(cosα, β)
. (7.30)

This leads to the following definition.

Definition 7.1 The operator Jg acts on f J (α, β), as follows:

Jg f (α, β) = 〈J ;α, β|Jg| f 〉 = ∂(g(α, β), f (α, β))

∂(cosα, β)
. (7.31)

In analogous way we define the operators θg . The following proposition describes
some properties of Jg .

Proposition 7.1 (1) The commutator of Jg and Jh, is given in terms of the Poisson
bracket of g, h (with respect to cosα, β), by

[Jg, Jh] = J{g,h}; {g, h} = ∂g

∂ cosα

∂h

∂β
− ∂h

∂β

∂g

∂ cosα
. (7.32)

(2) Jg acts on the sum of two functions as follows:

Jg[μ1 f1(α, β) + μ2 f2(α, β)] = μ1 Jg f1(α, β) + μ2 Jg f2(α, β). (7.33)

(3) Jg acts on the product of two functions as follows:

Jg[ f1(α, β) f2(α, β)] = f1(α, β)Jg f2(α, β) + f2(α, β)Jg f1(α, β). (7.34)
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(4) The exponential of Jg acts on the sum of two functions as follows:

exp(λJg)[μ1 f1(α, β) + μ2 f2(α, β)] = μ1 exp(λJg) f1(α, β)

+ μ2 exp(λJg) f2(α, β). (7.35)

(5) The exponential of Jg acts on the product of two functions as follows:

exp(λJg)[ f1(α, β) f2(α, β)] = [exp(λJg) f1(α, β)][exp(λJg) f2(α, β)]. (7.36)

Proof For the proof we refer to Ref. [11].

We expand the function g(α, β) in terms of spherical harmonics, as

g(α, β) =
∑

j,m

g jmY jm(α, β). (7.37)

Then

Jg =
∑

j,m

g jm Jjm; Jjm f (α, β) = ∂(Y jm(α, β), f (α, β))

∂(cosα, β)
. (7.38)

In particular

JjmY�n(α, β) = 〈J ;α, β|Jjm |J ; � n〉 = ∂(Y jm(α, β),Y�n(α, β))

∂(cosα, β)
. (7.39)

The Poisson bracket of Y j1m1(α, β) and Y j2m2(α, β), is given by

{Y j1m1 ,Y j2m2} =
∑

�,n

τ( j1,m1; j2,m2|�, n)Y�n . (7.40)

The structure constants τ( j1,m1; j2,m2|�, n) are given in [5]. Consequently

[Jj1m1 , Jj2m2 ] =
∑

�,n

τ( j1,m1; j2,m2|�, n)J�n. (7.41)

The Jjm are generalizations of the angular momentum operators. The J1m are simply
the standard angular momentum operators J+, Jz, J− (with a different normaliza-
tion).

This formalism has been used in string theory, but it might also be useful in the
general area of quantum optics and quantum information, because it generalizes the
angular momentum formalism.
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7.2 Interferometry in Multimode Systems

In this section we use the formalism of finite quantum systems, in the context of
interferometry that involves d harmonic oscillators. The overall Hilbert space in this
problem is Hosc ⊗ ... ⊗ Hosc, where Hosc is the infinite-dimensional Hilbert space
of the harmonic oscillator. The mode index is the ‘position’ in this problem, and it
takes values in Z(d). Through a finite Fourier transform of the d modes, we get a
dual mode index which plays the role of ‘momentum’, and which also takes values
in Z(d). So in this context, the Z(d) × Z(d) is a ‘mode phase space’.

The formalism has important applications inmetrology, because it leads to resolu-
tions below the standard quantum limit [12]. It has been studied extensively bothwith
photons and also with Bose-Einstein condensates. Here we present briefly the link
between this area, and the formalism of finite quantum systems studied in Chap. 4.
We refer to the literature for more details, and for practical applications of these
devices [13–23].

We consider a system comprised of d harmonic oscillators. The creation and
annihilation operators corresponding to the m-th mode, are:

a†m = 1 ⊗ ... ⊗ a† ⊗ ... ⊗ 1; am = 1 ⊗ ... ⊗ a ⊗ ... ⊗ 1

[am, a†n] = δ(m, n); m, n ∈ Z(d). (7.42)

Let Λ be a d × d Hermitian matrix, and U the unitary operator

U = exp

[
i
∑

m,n

a†mΛmnan

]
. (7.43)

It is known (e.g. [24]) that

bm = UamU
† =

∑

n

Vmnan; b†m = Ua†mU
† =

∑

n

V ∗
mna

†
n

V = exp(−iΛ); VV † = 1. (7.44)

The vacuum state remains invariant under these transformations. Also the total av-
erage number of photons in a state remains invariant under the U transformations:

U |0, ..., 0〉 = |0, ..., 0〉;
∑

m

b†mbm =
∑

m

a†mam . (7.45)

http://dx.doi.org/10.1007/978-3-319-59495-8_4
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7.2.1 Fourier Interferometry and Applications to Metrology

A special case of the formalism above, is the Fourier transform of the modes:

UF = exp

[
i
∑

m,n

a†mΛmnan

]
; Λ = i ln F; ; (UF )4 = 1, (7.46)

where F is the d × d Fourier matrix, in Eq. (4.2). Then

bm = UFamU
†
F = 1√

d

∑

n

ω(mn)an

b†m = UFa
†
mU

†
F = 1√

d

∑

n

ω(−mn)a†n (7.47)

The dual mode index related to bm, b†m plays the role of momentum. So in the present
context position and momentum is the mode index related to the am, a†m and bm, b†m ,
correspondingly. Experiments that use beam splitters to implement these transforms
have been discussed in [14]. The use of the factorization in Sect. 4.9 reduces the
number of beam splitters, as discussed in [23].

There are various applications of these devices. As an example, we consider the
case where the input is a number state with N photons in them-th mode, and vacuum
in the other modes:

|s〉 = |0, ..., 0, N , 0, ...0〉 (7.48)

Then in the large d limit, the phase uncertainty in the m-th output is [20]

Δθm ∼
√
d

N
. (7.49)

This is below the standard quantum limit and can have applications in metrology.
It is seen that the formalism of finite quantum systems presented in this mono-

graph, can also be used for the study of interferometry in multimode systems (with
a finite number of modes).

http://dx.doi.org/10.1007/978-3-319-59495-8_4
http://dx.doi.org/10.1007/978-3-319-59495-8_4
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7.2.2 Other Types of Interferometry

Here we consider other special cases of the general operators U in Eq. (7.43). The
first one, is:

UX = exp

[
i
∑

m,n

a†mΛmnan

]
; Λ = i ln X; (UX )d = 1. (7.50)

where X is the d × d matrix, in Eq. (4.19). Then

bm = UXamU
†
X = am+1

b†m = UXa
†
mU

†
X = a†m+1 (7.51)

This shifts the modes by one place (and the last mode becomes first). In other words,
it shifts the modes in the ‘mode-position’ direction, in the Z(d) × Z(d) mode phase
space.

Another special case is

UZ = exp

[
i
∑

m,n

a†mΛmnan

]
; Λ = i ln Z; (UZ )d = 1. (7.52)

where Z is the d × d matrix, in Eq. (4.19). Then

bm = UZamU
†
Z = amω(m)

b†m = UZa
†
mU

†
Z = amω(−m). (7.53)

This multiplies each mode am by ω(m), i.e., it shifts the modes in the ‘mode-
momentum’ direction, in the Z(d) × Z(d) mode phase space.

We next divide the Hilbert space Hosc ⊗ ... ⊗ Hosc, into d ‘sectors’:

Hosc ⊗ ... ⊗ Hosc =
d−1⊕

n=0

Hn

Hn = span{|N0, ..., Nd−1〉 | N0 + ... + Nd−1 = n(mod d)}; n ∈ Z(d). (7.54)

The sector Hn is spanned by number eigenstates, with a total number of photons
equal to n(mod d). We call πn the projector toHn . It can be shown that πn commutes
with both UX ,UZ , and we define the:

http://dx.doi.org/10.1007/978-3-319-59495-8_4
http://dx.doi.org/10.1007/978-3-319-59495-8_4
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UXn = UXπn; UX =
d−1∑

n=0

UXn; [UX , πn] = 0

UZn = UZπn; UZ =
d−1∑

n=0

UZn; [UZ , πn] = 0. (7.55)

Then theUXn,UZn formaHeisenberg-Weyl groupwithinHn ,which has been studied
in [21]:

Uα
XnU

β

Zn = Uβ

ZnU
α
Xnω(−nαβ); α, β ∈ Z(d). (7.56)

So apart from the Fourier interferometry devices, there are many other devices which
can have various applications in Quantum Optics and Quantum Information.

7.3 Orbital Angular Momentum States

The paraxial wave equation in cylindrical coordinates, leads to the Laguerre-Gauss
modes

unm(r, φ) ∼ r |m|L |m|
n

(
2r2

w2

)
exp

(
− r2

w2

)
exp(−imφ) (7.57)

Here L |m|
n are Laguerre polynomials, and n,m are the radial quantum number, and the

orbital angularmomentum quantum number, correspondingly. The physical meaning
of the radial quantum number n is discussed in [25]. w describes the width of the
beam. Photons in these beams have angular momentum m.

These solutions describe the orbital angular momentum states or twisted light
[26–29], and they are an important tool in modern quantum optical technologies.
They are created experimentally by imposing exp(imφ) phase structure on a laser
beam. There is currently much work on the generation of orbital angular momentum
states and their applications (e.g., [30–34]). They are robust in noisy environments
(e.g., [35]), and therefore important for quantum communications.

In our context, they are important because they provide an experimental imple-
mentation of a quantum system with a finite dimensional Hilbert space. The whole
formalism of this monograph can be used in the context of orbital angular momen-
tum states.Mutually unbiased bases with orbital angular momentum states have been
studied in [36, 37], and entanglement in [38]. Applications to quantum cryptography
have been discussed in [39].
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7.4 Other Applications

Wediscussed above applications in the area of quantum optics and quantum informa-
tion. Applications in other areas include quantum maps [40–45], two-dimensional
electron system in a uniform magnetic field and the magnetic translation group [46–
50], and the quantum Hall effect [51, 52].

All these ideas are also used in the context of Signal Processing, where the dual
variables position and momentum become time and frequency [54, 55]. For exam-
ple, the factorization discussed in Sect. 4.9, is inspired by Ref. [56] on fast Fourier
transforms, in the context of Signal Processing.

Work related to the formalism of finite quantum systems, in the context of Applied
Mathematics is summarized in [57].
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