
Chapter 5
Finite Geometries and Mutually Unbiased
Bases

Abstract Finite geometries, mutually unbiased bases, and weak mutually unbiased
bases, are discussed.

In this section we first discuss the Z(d) × Z(d) as a finite geometry [1–3], and its
link to the subject of mutually unbiased bases [4–22]. There are deep mathematical
problems related to these bases, and they also have important applications in quan-
tum communications and quantum cryptography. For these reasons, they have been
studied extensively in the literature.

We make the distinction between two cases:

• d = p, where p is a prime number. In this case, Z(p) is a field. Z(p) × Z(p)
is a near-linear finite geometry, based on the axiom that two lines have at most
one point in common. The number of mutually unbiased bases is p + 1 and there
is a duality between the finite geometry and the mutually unbiased bases. These
results can be extended to the case that d = pe, using the Galois field GF(pe), as
discussed later in Sect. 9.7.

• d is not a prime number. In this case, Z(d) is a ring. Z(d) × Z(d) is a non-near-
linear finite geometry, and two lines might have more than one point in common
(the axiom that two lines have at most one point in common does not hold). The
number of mutually unbiased bases is not known, but it is probably smaller than
d+1 (although there is no rigorous proof of this). Here there is no duality between
the finite geometry and the mutually unbiased bases. Motivated by this, Refs. [23–
26] have introduced weak mutually unbiased bases, which are dual to lines in the
finite geometry Z(d) × Z(d). In order to avoid a complex notation, and without
loss of generality, we discuss the case with d = p1 p2, where p1, p2 are odd prime
numbers, different from each other.
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5.1 The Z(d) × Z(d) as a Non-near-linear Finite Geometry

A finite geometry [1–3] is a finite set P of points, and a set L of some subsets
of P which are called lines. In our context, P = Z(d) × Z(d). The geometry
(P, L) satisfies certain axioms. A special class of finite geometries are the near-linear
geometries, with the axiom that two lines have at most one point in common.Wewill
see below, that this axiom is valid when d is a prime number (in which case Z(d) is a
field), but it is not valid when d is not a prime number (in which case Z(d) is a ring).
Therefore our geometry is a non-near-linear geometry, in the case of non-prime d.

A line through the point (α, β) is the set of points

L(ρ, σ |α, β) = {(τρ + α, τσ + β)|τ ∈ Z(d)}; ρ, σ, α, β ∈ Z(d) (5.1)

Belowwe only consider lines through the origin (0, 0), which we denote as L(ρ, σ ):

L(ρ, σ ) = {(τρ, τσ )|τ ∈ Z(d)}. (5.2)

Mathematically this is a cyclic module generated by (ρ, σ ), but in a physical context
we will use the intuitive term line. In this section we present three propositions which
describe Z(d) × Z(d) as a finite geometry [23–26].

Proposition 5.1 (1) The number of points in L(ρ, σ ) is d/GCD(ρ, σ, d). We call
maximal lines the ones with d points (i.e., the lines with GCD(ρ, σ, d) = 1).

(2) If λ is an invertible element in Z(d) (λ ∈ [Z(d)]∗), then L(ρλ, σλ) = L(ρ, σ ).
If λ is a non-invertible element, then L(ρλ, σλ) ⊂ L(ρ, σ ).

(3) The intersection of two lines L(ρ1, σ1) and L(ρ2, σ2) is a line, which we call
subline. The number of common points between these two lines, is a divisor of
d.

Proof (1) For a given ρ, as τ takes all values in Z(d), the ρτ takes d/GCD(ρ, d)

different values, because there are δ = GCD(ρ, d) different values of τ which
give the same ρτ . We next need to find how many different values of τσ , corre-
spond to these δ values of τ (which give the same ρτ ).

The δ values of τ , lead to δ values of στ , but using the same argument we find
that only δ/GCD(σ, δ), are different from each other. Therefore the total number
of pairs (ρτ, στ) is

d

GCD(ρ, d)

δ

GCD(σ, δ)
= d

GCD(d, ρ, σ )
. (5.3)

(2) For any λ ∈ Z(d), if (ρλτ, σλτ) is a point in L(ρλ, σλ) then this point can
also be written as (ρτ ′, σ τ ′) with τ ′ = λτ and therefore it belongs to the line
L(ρ, σ ). This proves that L(ρλ, σλ) ⊆ L(ρ, σ ).
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For λ ∈ [Z(d)]∗, if (ρτ, στ) is a point in L(ρ, σ ) and then this point can also
be written as (ρλτ ′, σλτ ′) with τ ′ = λ−1τ , and therefore it belongs to the line
L(ρλ, σλ). This proves that for an invertible element λ, L(ρλ, σλ) = L(ρ, σ ).

(3) If (ρ, σ ) ∈ L(ρ1, σ1) and also (ρ, σ ) ∈ L(ρ2, σ2) then clearly for any τ ∈ Z(d),
we have (ρτ, στ) ∈ L(ρ1, σ1) and also (ρτ, στ) ∈ L(ρ2, σ2). Therefore the
common points of two lines, form a line (which we call subline, and which
according to the first part of the proposition, has a divisor of d as number of
points).

In the case d = p where p is a prime number, the Z(p) is a field. In this case the
only divisor of p is 1, and two lines through the origin have one point in common.
Consequently the geometry Z(p) × Z(p) is a near-linear geometry. In the case of
non-prime d, the Z(d) is a ring (which is not a field). In this case the geometry is a
non-near-linear geometry, and has both maximal lines and sublines.

Example 5.1 Examples of maximal lines in Z(15) × Z(15) are

L(1, 2) = {(0, 0), (1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12), (7, 14),
(8, 1), (9, 3), (10, 5), (11, 7), (12, 9), (13, 11), (14, 13)}, (5.4)

and

L(1, 7) = {(0, 0), (1, 7), (2, 14), (3, 6), (4, 13), (5, 5), (6, 12), (7, 4),
(8, 11), (9, 3), (10, 10), (11, 2), (12, 9), (13, 1), (14, 8)}. (5.5)

The L(3, 6) is an example of a line through the origin which is not maximal line (it
has 5 points):

L(3, 6) = {(0, 0), (3, 6), (6, 12), (9, 3), (12, 9)}. (5.6)

The intersection of the maximal lines L(1, 2) and L(1, 7), is L(3, 6):

L(1, 2) ∩ L(1, 7) = L(3, 6). (5.7)

This is shown in Fig. 5.1.

5.1.1 Symplectic Transformations in the Finite Geometry
Z(d) × Z(d)

In order to perform symplectic transformations on a point (ρ, σ ) ∈ Z(d) × Z(d),
we multiply the row (ρ, σ ) times the matrix g(κ, λ|μ, ν) ∈ Sp[2,Z(d)]:

g(κ, λ|μ, ν) ◦ (ρ, σ ) = (ρ, σ )g(κ, λ|μ, ν) = (κρ + μσ, λρ + νσ) (5.8)
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Fig. 5.1 The maximal lines L(1, 2) (circles), and L(1, 7) (triangles) in the Z(15) × Z(15) finite
geometry

This is consistent with the ‘right multiplication rule’ in Eq. (3.35). In particular we
note that the Fourier matrixF of Eq. (3.41) maps the points (α, 0) on the ‘horizontal
axis’, to the points (0, α) on the ‘vertical axis’:

F◦(α, 0) = (α, 0)g(0, 1| − 1, 0) = (0, α) (5.9)

Symplectic transformations on points lead to symplectic transformations on lines:

g(κ, λ|μ, ν) ◦ L(ρ, σ ) = L(κρ + μσ, λρ + νσ). (5.10)

In particular, with the Fourier matrix we get:

F ◦ L(ρ, σ ) = L(−σ, ρ). (5.11)

Example 5.2 In Z(15) we act with the matrix g(3, 4|2, 8) ∈ Sp[2,Z(15)] on the
line L(1, 2) and we get:

g(3, 4|2, 8) ◦ L(1, 2) = L(7, 5). (5.12)

This is shown in Fig. 5.2.

Proposition 5.2 For prime p, the geometryZ(p) × Z(p) is a near-linear geometry,
which has only maximal lines with p points, given in terms of symplectic transfor-

http://dx.doi.org/10.1007/978-3-319-59495-8_3
http://dx.doi.org/10.1007/978-3-319-59495-8_3
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Fig. 5.2 The maximal lines L(1, 2) (circles), and L(7, 5) = g(3, 4|2, 8) ◦ L(1, 2) (triangles) in
the Z(15) × Z(15) finite geometry

mations as

g(0,−1|1, ν) ◦ L(0, 1) = L(1, ν). (5.13)

The L(0, 1) together with the L(1, ν) with ν = 0, ..., p − 1, form the set of all
ψ(p) = p + 1 lines through the origin, in this geometry (ψ is the Dedekind psi).

Proof For the proof we use symplectic transformations in conjunction with Propo-
sition 5.1.

Notation 5.1 For a prime p, we introduce the notation

L (ν) = L(1, ν); L (−1) = L(0, 1). (5.14)

InL (ν), the ν takes the ψ(p) = p + 1 values −1, ..., p − 1.

5.1.2 Factorization of the Finite Geometry Z(d) × Z(d)
Based on the Chinese Remainder Theorem

As we mentioned earlier, for simplicity and without loss of generality, we consider
the case where d = p1 p2 where p1, p2 are odd prime numbers. The following
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proposition describes the maximal lines through the origin in Z(p1 p2) × Z(p1 p2),
as products of lines in Z(p1) × Z(p1) and Z(p2) × Z(p2).

There is an analogy between the factorization of the finite geometry, and the
factorization of position and momentum states in Sect. 4.9, with the points (α, 0) in
the ‘horizontal axis’ corresponding to position states, and the points (0, β) in the
‘vertical axis’ corresponding to momenta. Motivated by this we factorize the points
(α, β) using the dual map in Eq. (3.22) for α, and the map of Eq. (3.21) for β:

(α, β) ↔ ((α1, β1), (α2, β2)); αi , βi ∈ Z(pi ). (5.15)

This is consistent with the relation of Eq. (3.52) that factorized the Fourier matrix.
Indeed

F ◦ (α, β) = (−β, α) ↔ ((β1, α1), (β2, α2)) (5.16)

Also

F ◦ (α, β) ↔ (g1(0, r1| − t1, 0) ◦ (α1, β1), g2(0, r2| − t2, 0) ◦ (α2, β2)) (5.17)

with

g1(0, r1| − t1, 0) ◦ (α1, β1) = (β1, α1)

g2(0, r2| − t2, 0) ◦ (α2, β2) = (β2, α2). (5.18)

Proposition 5.3 There areψ(p1 p2)maximal lines through the origin inZ(p1 p2) ×
Z(p1 p2), which belong to one of the following four categories:

(1) If ν1 ∈ Z(p1) and ν2 ∈ Z(p2)

L (ν1, ν2) ≡ L1(1, ν1) × L2(1, ν2) = L(p1 + p2, ν1s1 + ν2s2) (5.19)

There are p1 p2 lines in this category,with ν1 = 0, ..., p1−1, and ν2 = 0, ..., p2−
1. The L (ν1, ν2) is another notation for these lines, which we call ‘factorized
notation’. We call the L(p1 + p2, ν1s1 + ν2s2), unfactorized notation.

(2) If ν2 ∈ Z(p2)

L (−1, ν2) ≡ L(0, 1) × L(1, ν2) = L(p1, s1 + ν2s2) (5.20)

There are p2 lines in this category, with ν2 = 0, ..., p2 − 1. L (−1, ν2) is the
factorized notation for these lines.

(3) If ν1 ∈ Z(p1)

L (ν1,−1) ≡ L(1, ν1) × L(0, 1) = L(p2, ν1s1 + s2) (5.21)

http://dx.doi.org/10.1007/978-3-319-59495-8_4
http://dx.doi.org/10.1007/978-3-319-59495-8_3
http://dx.doi.org/10.1007/978-3-319-59495-8_3
http://dx.doi.org/10.1007/978-3-319-59495-8_3
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There are p1 lines in this category, with ν1 = 0, ..., p1 − 1. L (ν1,−1) is the
factorized notation for these lines.

(4)

L (−1,−1) ≡ L(0, 1) × L(0, 1) = L(0, 1). (5.22)

L (−1,−1) is the factorized notation for this line.

Proof From Eq. (5.10) follows that

g(κ, λ|μ, ν) ◦ L(0, 1) = L(μ, ν). (5.23)

We note here that the L(μ, ν) does not depend on κ, λ, and this should be compared
and contrasted with Eq. (4.53). The proof then follows immediately from Corollary
3.1.

Example 5.3 In Z(15) × Z(15) there are ψ(15) = 24 maximal lines through the
origin. As an example we consider the following line

L (2, 1) = L1(1, 2) × L2(1, 1) (5.24)

L1(1, 2) is a line in Z(3) × Z(3), and L2(1, 1) is a line in Z(5) × Z(5). In the
unfactorized notation theL (2, 1) is L(8, 2s1 + s2). We have seen in Eq. (3.30) that

Table 5.1 The points in the line L(1, 7) = L (2, 1) (in the unfactorized and factorized notations).
The corresponding points in the first factor line L1(1, 2) (in Z(3) × Z(3)), and in the second factor
line L2(1, 1) (in Z(5) × Z(5)) are also shown

L(1, 7) L1(1, 2) L2(1, 1)

0 0 0 0 0 0

1 7 2 1 2 2

2 14 1 2 4 4

3 6 0 0 1 1

4 13 2 1 3 3

5 5 1 2 0 0

6 12 0 0 2 2

7 4 2 1 4 4

8 11 1 2 1 1

9 3 0 0 3 3

10 10 2 1 0 0

11 2 1 2 2 2

12 9 0 0 4 4

13 1 2 1 1 1

14 8 1 2 3 3

http://dx.doi.org/10.1007/978-3-319-59495-8_4
http://dx.doi.org/10.1007/978-3-319-59495-8_3
http://dx.doi.org/10.1007/978-3-319-59495-8_3
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s1 = 10 and s2 = 6, and therefore 2s1 + s2 = 26 = 11 (mod 15). Therefore in the
unfactorized notation the L (2, 1) is L(8, 11) = L(1, 8−1 × 11) = L(1, 7). The
points in this line, and also in its factor lines L1(1, 2) and L2(1, 1) are shown in
Table5.1.

5.2 Mutually Unbiased Bases

There is a lot of work on various aspects of mutually unbiased bases [4–22]. Their
study incorporates many areas of discrete Mathematics. Below we summarize the
main points. Mutually unbiased bases in systems with variables in Galois fields, are
discussed later in Sect. 9.7.

Definition 5.1 A set of orthonormal bases in H [Z(d)] are called mutually unbiased,
if the vectors in any two of these bases obey the relation

|〈X;m|Y ; n〉|2 = 1

d
; m, n ∈ Z(d). (5.25)

for all m, n.

Proposition 5.4 The number of mutually unbiased bases in H [Z(d)], is

M (d) ≤ d + 1. (5.26)

Proof Ameasurement with the projectors |X;m〉〈X;m| gives d probabilities, d − 1
of which are independent. A density matrix has d2 − 1 degrees of freedom, and
therefore we need at least d + 1 measurements in order to get all the information in
it. If the information that we get from each measurement is totally independent from
the information that we get from the other measurements, then the total number of
measurements needed is exactly d + 1. This is the case with the mutually unbiased
bases. Indeed

〈X;m|ρ|X;m〉 = 1

d
+

∑

n1 �=n2

〈X;m|Y ; n1〉〈Y ; n1|ρ|Y ; n2〉〈Y ; n2|X;m〉. (5.27)

This shows that the information obtained from the measurement with the projec-
tors |X;m〉〈X;m|, is contained entirely in the off-diagonal terms 〈Y ; n1|ρ|Y ; n2〉
with n1 �= n2. The measurement with the projectors |X;m〉〈X;m| gives totally
independent information from the measurement with the projectors |Y ;m〉〈Y ;m|.
Consequently, the maximum number of mutually unbiased bases is d + 1. We note
that the argument does not guarantee the existence of d+1 mutually unbiased bases.

In systems with prime, or power of prime dimension, the inequality in Eq. (5.26)
becomes equality. In the following proposition we consider a system with prime

http://dx.doi.org/10.1007/978-3-319-59495-8_9
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dimension p, and construct a set of M (p) = p + 1 mutually unbiased bases.
The construction is based on symplectic transformations. This result is generalized
to systems with power of prime dimension pe, and variables in the Galois fields
GF(pe), later in Sect. 9.7.

5.2.1 Mutually Unbiased Bases in H[Z( p)]

Notation 5.2 In H [Z(p)] where p is an odd prime, we consider the p orthonormal
bases

|X (ν);m〉 = S(0,−1|1, ν)|X;m〉; ν,m ∈ Z(p) (5.28)

where S(0,−1|1, ν) are symplectic matrices (discussed in Sect.4.5). In the case
ν = 0, this is the basis of momentum states:

|X (0);m〉 = S(0,−1|1, 0)|X;m〉 = F†|X;m〉 = |P;−m〉. (5.29)

In addition to them, we also consider the orthonormal basis of position states, and
we use the convention

|X (−1);m〉 = |X;m〉. (5.30)

So we have p + 1 orthonormal bases

|X (ν);m〉; ν ∈ {−1} ∪ Z(p). (5.31)

There should be no confusion between the ν = −1 which is used as an extra element
that indicates position states, and the p − 1 = −1 (mod p) which is an element of
Z(p).

Proposition 5.5 For ν �= ν ′,

|〈X (ν ′); n|X (ν);m〉|2 = 1

p
; ν, ν ′ ∈ {−1} ∪ Z(p). (5.32)

Therefore they are a set of p + 1 mutually unbiased bases.

Proof We consider the following four cases.

(1) In the first case ν, ν ′ = 1, ..., p − 1. We use Eq. (4.65) with d = p, κ = 0,
λ = −1, μ = 1, and we get

|X (ν);m〉 = 1

p
G[−2−1ν−1;Z(p)]

∑

r

ω(2−1r2ν − rm)|X; r〉. (5.33)

http://dx.doi.org/10.1007/978-3-319-59495-8_9
http://dx.doi.org/10.1007/978-3-319-59495-8_4
http://dx.doi.org/10.1007/978-3-319-59495-8_4
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Here G is the Gauss sum. Therefore

〈X (ν ′); n|X (ν);m〉 = 1

p2
G[−2−1(ν ′)−1;Z(p)]G[−2−1ν−1;Z(p)]

×
∑

r

ω(−2−1r2ν ′ + rn + 2−1r2ν − rm). (5.34)

We replace the variable r with R = r + (ν − ν ′)−1(n − m) and we show that

〈X (ν ′); n|X (ν);m〉 = 1

p2
G[−2−1(ν ′)−1;Z(p)]G[−2−1ν−1;Z(p)]

× G[2−1(ν − ν ′);Z(p)]
× ω(−2−1(ν − ν ′)−1(n − m)2]. (5.35)

This result is actually true for any odd dimension. We now use the fact that for
prime p and α �= 0, we get |G[α;Z(p)]| = √

p (see Eq. (3.9)). Therefore

〈X (ν ′); n|X (ν);m〉 = 1√
p
. (5.36)

(2) In the second case ν = 1, ..., p − 1 and ν ′ = −1, and we prove that

|〈X; n|X (ν);m〉| = 1√
p
. (5.37)

Eq. (5.38) gives

〈X; n|X (ν);m〉 = 1

p
G[−2−1ν−1;Z(p)]ω(2−1n2ν − nm). (5.38)

Taking into account Eq. (3.9), we prove Eq. (5.37).
(3) In the third case ν = 1, ..., p − 1 and ν ′ = 0, and we prove that

|〈P; n|X (ν);m〉| = 1√
p
. (5.39)

The proof here is very similar to the previous cases.
(4) In the fourth case ν = −1 and ν ′ = 0 and we see immediately that

|〈P; n|X;m〉| = 1√
p
. (5.40)

This completes the proof.

http://dx.doi.org/10.1007/978-3-319-59495-8_3
http://dx.doi.org/10.1007/978-3-319-59495-8_3
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Table 5.2 The six lines through the origin in the finite geometryZ(5) × Z(5), and the corresponding
mutually unbiased bases in H [Z(5)]
Lines in Z(5) × Z(5) Bases in H [Z(5)]
L (−1) = L(0, 1) |X (−1);m〉 = |X;m〉
L (0) = L(1, 0) = F † ◦ L(0, 1) |X (−0);m〉 = F†|X;m〉 = |P; −m〉
L (1) = L(1, 1) = g(0,−1|1, 1) ◦ L(0, 1) |X (1);m〉 = S(0,−1|1, 1)|X;m〉
L (2) = L(1, 2) = g(0,−1|1, 2) ◦ L(0, 1) |X (2);m〉 = S(0,−1|1, 2)|X;m〉
L (3) = L(1, 3) = g(0,−1|1, 3) ◦ L(0, 1) |X (3);m〉 = S(0,−1|1, 3)|X;m〉
L (4) = L(1, 4) = g(0,−1|1, 4) ◦ L(0, 1) |X (4);m〉 = S(0,−1|1, 4)|X;m〉

Proposition 5.6 There is a duality between the ψ(p) = p + 1 lines through the
origin in the near-linear finite geometry Z(p) × Z(p), and the ψ(p) = p + 1
mutually unbiased bases in the Hilbert space H [Z(p)], where

L (ν) ↔ {|X (ν);m〉}; ν = −1, ..., p − 1. (5.41)

The p points in the lineL (ν) correspond to the p vectors in the basis {|X (ν);m〉}.
Proof We compare and contrast Eqs. (5.13), (5.14) with Eqs. (5.28), (5.29), (5.30).
We get

L (−1) = L(0, 1) ↔ |X (−1);m〉 = |X;m〉 (5.42)

for ν = −1, and

L (ν) = g(0, −1|1, ν) ◦ L(0, 1) ↔ |X (ν);m〉 = S(0,−1|1, ν)|X;m〉 (5.43)

for ν = 0, ..., p − 1. This proves the proposition.

Example 5.4 In the finite geometry Z(5) × Z(5) there are six lines through the
origin, shown in Table5.2. The corresponding mutually unbiased bases in H [Z(5)]
are also shown.

We note that the above duality betweenmutually unbiased bases and finite geome-
tries, does not hold for non-prime dimensions. This motivates the revision of the con-
cept of mutually unbiased bases into another concept (which we call weak mutually
unbiased bases), so that this duality is preserved. This is studied in the section below.



68 5 Finite Geometries and Mutually Unbiased Bases

5.3 Weak Mutually Unbiased Bases and Duality with Finite
Geometries

In systems where the variables take values in a field (Z(p) or GF(pe) with prime p)
the number of mutually unbiased bases is equal to the maximum possible value d+1
(where d is the dimension of the system). In systems where the variables take values
in a ring (Z(d) with non-prime d), it seems that the maximum number of mutually
unbiased bases is smaller than d + 1 (but there is no rigorous proof of this). The
existence of non-invertible elements (apart from zero) in rings, seems to be linked to
the fact that the number of mutually unbiased bases is smaller than d + 1.

In this section we discuss the concept of weak mutually unbiased bases [23–
26] which is tailored for rings, in the sense that there is a duality (correspondence)
between the finite geometryZ(d) × Z(d) (discussed in Sect. 5.1) and weakmutually
unbiased bases in H [Z(d)]. This is a strong motivation for their study.

As the name indicates, the weak mutually unbiased bases are weaker structures
thanmutually unbiased bases, and this is related to the fact that rings areweaker struc-
tures than fields. Roughly speaking, we replace the requirement |〈X;m|Y ; n〉|2 = 1

d

in Eq. (5.25), with the requirement that |〈X;m|Y ; n〉|2 is 1
ei
where ei is a divisor of

the dimension d. In the case of prime dimension there are no non-trivial divisors,
and the weak mutually unbiased bases are mutually unbiased bases.

The number of weak mutually unbiased bases is shown to be ψ(d) (the Dedekind
psi function). For non-prime d we have ψ(d) > d + 1, and measurements with the
weak mutually unbiased bases provide (d − 1)ψ(d) probabilities, which is greater
than the d2 − 1 degrees of freedom in a density matrix. Therefore weak mutually
unbiased bases do not provide independent information, and Eq. (5.27) does not hold.

As above, we consider the case where the dimension d is the product of two odd
prime numbers d = p1 p2, which are different from each other.

Definition 5.2 A set of orthonormal bases in H [Z(p1 p2)] is weakly mutually unbi-
ased, if the vectors in any two of these bases |X;m〉 and |Y ; n〉, obey the relations in
one of the following three categories:

(1)

|〈X;m|Y ; n〉|2 = 1

p1
; if n = m (mod p2)

|〈X;m|Y ; n〉|2 = 0; otherwise (5.44)

(2)

|〈X;m|Y ; n〉|2 = 1

p2
; if n = m (mod p1)

|〈X;m|Y ; n〉|2 = 0; otherwise (5.45)
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(3)

|〈X;m|Y ; n〉|2 = 1

p1 p2
. (5.46)

Apart from the third option which is the standard definition of mutually unbiased
bases, we have here two more options. Therefore any set of mutually unbiased bases
in H [Z(p1 p2)], can be regarded as a subset of a bigger set of weakmutually unbiased
bases.

Proposition 5.7 We factorize the system Σ[Z(p1 p2)] as Σ[Z(p1)] ⊗ Σ[Z(p2)],
as discussed in Sect.4.9. For any set SWMUB of weak mutually unbiased bases in
H [Z(p1 p2)], there exists a set |X1(ν1);m1〉 ofmutually unbiased bases in H [Z(p1)],
and a set |X2(ν2);m2〉, of mutually unbiased bases in H [Z(p2)], such that the

Smax
WMUB = {|X1(ν1);m1〉 ⊗ |X2(ν2);m2〉}

ν1 = −1, ..., p1 − 1; ν2 = −1, ..., p2 − 1 (5.47)

is a set of weak mutually unbiased bases, and SWMUB ⊆ Smax
WMUB. The cardinality of

Smax
WMUB is ψ(p1 p2).

Proof Let |X;m〉 and |Y ; n〉 be two bases in H [Z(p1 p2)], which are factorized as

|X;m〉 = |X1;m1〉 ⊗ |X2;m2〉; |Y ; n〉 = |X1; n1〉 ⊗ |X2; n2〉
m1, n1 ∈ Z(p1); m2, n2 ∈ Z(p2). (5.48)

We assume that the relations in the Definition 5.2 hold, and we will construct the cor-
responding set Smax

WMUB of weak mutually unbiased bases. We consider the following
three cases:

(1) In the case that Eq. (5.44) holds, we get

|〈X1;m1|Y1; n1〉||〈X2;m2|Y2; n2〉|2 = 1

p1
. (5.49)

The condition n = m (mod p2) gives n2 = m2. As (n,m) take all values in
Z(p1 p2) × Z(p1 p2) such that n = m (mod p2), the (n1,m1) take all values in
Z(p1) × Z(p1). From Eq. (5.49), it follows that

|〈X1;m1|Y1; n1〉|2 ≥ 1

p1
;

∑

m1

|〈X1;m1|Y1; n1〉|2 = 1 (5.50)

The first of these relations follows from Eq. (5.49). From this we conclude that

|〈X1;m1|Y1; n1〉|2 = 1

p1
; |〈X2;m2|Y2;m2〉| = 1. (5.51)

http://dx.doi.org/10.1007/978-3-319-59495-8_4


70 5 Finite Geometries and Mutually Unbiased Bases

Therefore the |X1;m1〉, |Y1; n1〉, ..., are mutually unbiased bases in H [Z(p1)].
In this case the |X2;m2〉 is the same basis as |Y2; n2〉, so we have the tensor
product of mutually unbiased bases in H [Z(p1)], with one basis in H [Z(p2)].

(2) The case where Eq. (5.45) holds, is similar to the above case.
(3) In the case that Eq. (5.46) holds, we get

|〈X1;m1|Y1; n1〉|2|〈X2;m2|Y2; n2〉|2 = 1

p1 p2
(5.52)

We also consider the overlap of |X;m〉 with another vector |Y ; n′〉 in the second
basis, such that n = n′ (mod p1). Then n1 = n′

1 and as n′ takes all values in
Z(p1 p2) subject to the constraint n = n′ (mod p1), the n′

2 takes all values in
Z(p2). We get

|〈X1;m1|Y1; n1〉|2|〈X2;m2|Y2; n′
2〉|2 = 1

p1 p2
(5.53)

From Eqs. (5.52), (5.53) we see that |〈X2;m2|Y2; n2〉| is constant for all n2 ∈
Z(p2). This and the relation

∑

n2∈Z(p2)

|〈X2;m2|Y2; n2〉|2 = 1 (5.54)

prove that |〈X2;m2|Y2; n2〉|2 = 1
p2
. Therefore the |X2;m2〉, |Y2; n2〉 aremutually

unbiased bases in H [Z(p2)].
In a ‘dual’waywe prove that |〈X1;m1|Y1; n1〉|2 = 1

p1
, and therefore the |X1; n1〉,

|Y1;m1〉 are mutually unbiased bases in H [Z(p1)].
The number of mutually unbiased bases in H [Z(p1)] is p1 + 1, and in H [Z(p2)]

is p2 + 1. Therefore the maximum number of weak mutually unbiased bases in
H [Z(p1 p2)] is ψ(p1 p2) = (p1 + 1)(p2 + 1).

Notation 5.3 We use an alternative ‘factorized notation’ for the states in Eq. (5.47),
which is analogous to the ‘factorized notation’ for lines

|X (ν1, ν2);m1,m2〉 = |X1(ν1);m1〉 ⊗ |X2(ν2);m2〉
|X (−1, ν2);m1,m2〉 = |X1;m1〉 ⊗ |X2(ν2);m2〉
|X (ν1,−1);m1,m2〉 = |X1(ν1);m1〉 ⊗ |X2;m2〉
|X (−1,−1);m1,m2〉 = |X1;m1〉 ⊗ |X2;m2〉. (5.55)

In order to establish a correspondence between the factorized and unfactorized nota-
tions for the weak mutually unbiased bases, we need the following corollary, which
is analogous to Corollary 3.1.

http://dx.doi.org/10.1007/978-3-319-59495-8_3
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Corollary 5.1 Let S1, S2, S be symplectic transformations in H [Z(p1)], H [Z(p2)]
and H [Z(p1 p2)], correspondingly. Then
(1) If ν1 ∈ Z(p1) and ν2 ∈ Z(p2)

S1(0,−1|1, ν1) ⊗ S2(0,−1|1, ν2)
= S(0,−s1t1 − s2t2|p1 + p2, ν1s1 + ν2s2) (5.56)

(2) If ν2 ∈ Z(p2)

1 ⊗ S2(0,−1|1, ν2) = S(s1,−s2t2|p1, s1 + ν2s2) (5.57)

(3) If ν1 ∈ Z(p1)

S1(0,−1|1, ν1) ⊗ 1 = S(s2,−s1t1|p2, ν1s1 + s2) (5.58)

(4)

1 ⊗ 1 = 1. (5.59)

Proof The proof is analogous to the one in Corollary 3.1, because the matrices g and
S are different representations of the same group (the symplectic group).

The following proposition gives the relation between the factorized and unfactor-
ized notation, for the weak mutually unbiased bases in H [Z(p1 p2)].
Proposition 5.8 The correspondence between the factorized notation for weak
mutually unbiased bases, and the unfactorized one (for which the notation in
Eq. (4.53) is used), is as follows.

(1) If ν1 ∈ Z(p1) and ν2 ∈ Z(p2), then

|X (ν1, ν2);m1,m2〉 = |X (α, β);m〉
α = p1 + p2; β = ν1s1 + ν2s2; m = m1 p2 + m2 p1. (5.60)

(2) If ν2 ∈ Z(p2), then

|X (−1, ν2);m1,m2〉 = |X (α, β);m〉
α = p1; β = s1 + ν2s2; m = m1 p2 + m2 p1 (5.61)

(3) If ν1 ∈ Z(p1), then

|X (ν1,−1);m1,m2〉 = |X (α, β);m〉
α = p2; β = ν1s1 + s2; m = m1 p2 + m2 p1 (5.62)

http://dx.doi.org/10.1007/978-3-319-59495-8_3
http://dx.doi.org/10.1007/978-3-319-59495-8_4
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(4)

|X (−1,−1);m1,m2〉 = |X;m〉
m = m1 p2 + m2 p1 (5.63)

Proof The proof follows immediately from Corollary 5.1.

Our notation and terminology so far, aimed to show the existence of duality
between maximal lines in Z(p1 p2)×Z(p1 p2) and weak mutually unbiased bases in
the Hilbert space H [Z(p1 p2)]. This is formalized in the proposition below.

Proposition 5.9 There is a duality between the ψ(p1 p2) maximal lines through the
origin in the non-near-linear finite geometry Z(p1 p2) × Z(p1 p2) and the ψ(p1 p2)
weak mutually unbiased bases in the Hilbert space H [Z(p1 p2)], where

L (ν1, ν2) ↔ {|X (ν1, ν2);m1,m2〉}
ν1 = −1, ..., p1 − 1; ν2 = −1, ..., p2 − 1. (5.64)

The d = p1 p2 points in the maximal line L (ν1, ν2) correspond to the d = p1 p2
vectors in the basis {|X (ν1, ν2);m1,m2〉}.
Proof For the proof we compare and contrast Propositions 5.3, 5.8, using the corre-
spondence

L(0, 1) ↔ |X;m〉
g(κ, λ|μ, ν) ↔ S(κ, λ|μ, ν). (5.65)

For ν1 = −1 and ν2 = −1, we get

L (−1,−1) = L1(0, 1) × L2(0, 1) ↔
|X (−1,−1);m1,m2〉 = |X1;m1〉 ⊗ |X2;m2〉. (5.66)

For ν1 = 0, ..., p1 − 1 and ν2 = −1, we get

L (ν1,−1) = [g1(0,−1|1, ν1) ◦ L1(0, 1)] × L2(0, 1) ↔
|X (ν1,−1);m1,m2〉 = [S1(0,−1|1, ν1)|X1;m1〉] ⊗ |X2;m2〉. (5.67)

For ν1 = −1 and ν2 = 0, ..., p2 − 1, we get

L (−1, ν2) = L1(0, 1) × [g2(0,−1|1, ν2) ◦ L2(0, 1)] ↔
|X (−1, ν2);m1,m2〉 = |X1;m1〉 ⊗ [S2(0,−1|1, ν2)|X2;m2〉]. (5.68)

For ν1 = 0, ..., p1 − 1 and ν2 = 0, ..., p2 − 1, we get
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L (ν1, ν2) = [g1(0,−1|1, ν1) ◦ L1(0, 1)] × [g2(0,−1|1, ν2) ◦ L2(0, 1)] ↔
|X (ν1, ν2);m1,m2〉 = [S1(0,−1|1, ν1)|X1;m1〉]

⊗[S2(0,−1|1, ν2)|X2;m2〉]. (5.69)

These equations show the exact analogy between maximal lines through the origin
in the finite geometry and weak mutuall unbiased bases, and prove the proposition.

Example 5.5 In Z(15) × Z(15) there are ψ(15) = 24 maximal lines through the
origin. The dual statement is that in H [Z(15)] there are ψ(15) = 24 weak mutually
unbiased bases. In the factorized notation for both lines and bases, the duality between
them is

L (ν1, ν2) ↔ {|X (ν1, ν2);m1,m2〉 | m1 ∈ Z(3); m2 ∈ Z(5)}
ν1 = −1, ..., 2; ν2 = −1, ..., 4. (5.70)

This is shown in Table5.3. Both the factorized and unfactorized notations are used
(the correspondence is given in Proposition 5.3 for the lines, and in Proposition 5.8
for the bases).

We conclude this section with a brief summary on weak mutually unbiased bases
and their duality to the finite geometries. In the case of prime dimension d = p,
the weak mutually unbiased bases, are the same as mutually unbiased bases (prime
numbers have only trivial divisors). In this case:

• Measurements with the ψ(p) = p + 1 mutually unbiased bases in H [Z(p)]
provide independent information. Each basis is associated with p−1 independent
probabilities. The total number of independent probabilities is (p − 1)ψ(p) =
p2 − 1, and is equal to the number of degrees of freedom in a density matrix.

• The ψ(p) = p + 1 lines through the origin in the finite geometry Z(p) × Z(p),
have no points in common, apart from the origin. Each line consists of p−1 points,
in addition to the origin. The total number of points is (p − 1)ψ(p) = p2 − 1,
plus the origin.

In the case of non-prime dimension d, theweakmutually unbiased bases, are different
from mutually unbiased bases (non-prime numbers have non-trivial divisors). In this
case:

• Measurements with the ψ(d) weak mutually unbiased bases in H [Z(d)], provide
ψ(d)(d − 1) probabilities. Since ψ(d)(d − 1) is greater than d2 − 1 (which is
the number of degrees of freedom in a density matrix), these probabilities are not
independent.

• The ψ(d) maximal lines through the origin in the finite geometry Z(d) × Z(d),
have a total of ψ(d)(d − 1) points, apart from the origin. Since ψ(d)(d − 1) is
greater than d2 − 1 (which is the number of points in Z(d) × Z(d) apart from the
origin), two lines might have more points in common apart from the origin.
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Table 5.3 The 24 maximal lines through the origin in the finite geometry Z(15) × Z(15) and the
corresponding weak mutually unbiased bases in H [Z(15)]. Both the factorized and unfactorized
notation, are used

Lines in Z(15) × Z(15) Bases in H [Z(15)]
L (−1,−1) = L(0, 1) |X (−1,−1);m1,m2〉 = |X (0, 1); 5m1+3m2〉
L (−1, 0) = L(3, 10) |X (−1, 0);m1,m2〉 = |X (3, 10); 5m1 + 3m2〉
L (−1, 1) = L(3, 1) |X (−1, 1);m1,m2〉 = |X (3, 1); 5m1 + 3m2〉
L (−1, 2) = L(3, 7) |X (−1, 2);m1,m2〉 = |X (3, 7); 5m1 + 3m2〉
L (−1, 3) = L(3, 13) |X (−1, 3);m1,m2〉 = |X (3, 13); 5m1 + 3m2〉
L (−1, 4) = L(3, 4) |X (−1, 4);m1,m2〉 = |X (3, 4); 5m1 + 3m2〉
L (0,−1) = L(5, 6) |X (0,−1);m1,m2〉 = |X (5, 6); 5m1 + 3m2〉
L (0, 0) = L(8, 0) |X (0, 0);m1,m2〉 = |X (8, 0); 5m1 + 3m2〉
L (0, 1) = L(8, 6) |X (0, 1);m1,m2〉 = |X (8, 6); 5m1 + 3m2〉
L (0, 2) = L(8, 12) |X (0, 2);m1,m2〉 = |X (8, 12); 5m1 + 3m2〉
L (0, 3) = L(8, 3) |X (0, 3);m1,m2〉 = |X (8, 3); 5m1 + 3m2〉
L (0, 4) = L(8, 9) |X (0, 4);m1,m2〉 = |X (8, 9); 5m1 + 3m2〉
L (1,−1) = L(5, 1) |X (1,−1);m1,m2〉 = |X (5, 1); 5m1 + 3m2〉
L (1, 0) = L(8, 10) |X (1, 0);m1,m2〉 = |X (8, 10); 5m1 + 3m2〉
L (1, 1) = L(8, 1) |X (1, 1);m1,m2〉 = |X (8, 1); 5m1 + 3m2〉
L (1, 2) = L(8, 7) |X (1, 2);m1,m2〉 = |X (8, 7); 5m1 + 3m2〉
L (1, 3) = L(8, 13) |X (1, 3);m1,m2〉 = |X (8, 13); 5m1 + 3m2〉
L (1, 4) = L(8, 4) |X (1, 4);m1,m2〉 = |X (8, 4); 5m1 + 3m2〉
L (2,−1) = L(5, 11) |X (2,−1);m1,m2〉 = |X (5, 11); 5m1 + 3m2〉
L (2, 0) = L(8, 5) |X (2, 0);m1,m2〉 = |X (8, 5); 5m1 + 3m2〉
L (2, 1) = L(8, 11) |X (2, 1);m1,m2〉 = |X (8, 11); 5m1 + 3m2〉
L (2, 2) = L(8, 2) |X (2, 2);m1,m2〉 = |X (8, 2); 5m1 + 3m2〉
L (2, 3) = L(8, 8) |X (2, 3);m1,m2〉 = |X (8, 8); 5m1 + 3m2〉
L (2, 4) = L(8, 14) |X (2, 4);m1,m2〉 = |X (8, 14); 5m1 + 3m2〉

5.4 Other Topics

There has been an enormous amount of work on various aspects ofmutually unbiased
bases. We summarize some problems, which are not discussed here:

(1) The problem of finding the maximum number of mutually unbiased bases, in
a system with dimension which is not a power of a prime number. This is a
difficult problem even in the simple case of dimension d = 6 [27–31].

(2) The study of various finite geometries, related to finite quantum systems
[32–38].

(3) Related to mutually unbiased bases is the so-called ‘King’s problem’ [39–41].
(4) Acting with a unitary transformation on a set of mutually unbiased bases, we

get another set of mutually unbiased bases. But there are unitarily inequivalent
mutually unbiased bases which have been discussed in [42].
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(5) There are links between mutually unbiased bases and latin squares [43] which
have been studied in [44–47].

(6) There are links between mutually unbiased bases and designs [48] which have
been studied in [49, 50].

(7) We can approach mutually unbiased bases, and also weak mutually unbiased
bases, using the formalism of analytic representations discussed in Sect. 4.10.
In particular it is interesting to study the zeros of the analytic functions that
represent the vectors in mutually unbiased bases, and also in weak mutually
unbiased bases. It has been shown in [26], that the duality discussed above is
extended to a triality, that involves

• the maximal lines in the finite geometry
• the weak mutually unbiased bases
• the zeros of the analytic functions that represent the vectors in weak mutually
unbiased bases.

(8) There is a partial order in the set of all finite geometries Z(d) × Z(d), where
Z(e) × Z(e) is a subgeometry of Z(d) × Z(d), when e is a divisor of d.
Through duality, there is also a partial order in the set of all weak mutually
unbiased bases [51].

(9) Mutually unbiased bases in systems with dimension d = 2N have been studied
in [52, 53].

(10) Deep links between mutually unbiased bases and path integrals, have been
studied in [54].

(11) Symmetric informationally complete positive operator valued measures, have
been studied in [55–58].
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