
Chapter 11
A Quantum System with Positions
in the Profinite Group Z p

Abstract Quantum systems with positions in Zp and momenta in Qp/Zp, are dis-
cussed. The Schwartz-Bruhat space of wavefunctions in these systems, is presented.
The Heisenberg-Weyl group as a locally compact and totally disconnected topologi-
cal group, is discussed.Wigner andWeyl functions in this context, are also discussed.

In a mathematical context, there is a lot of work on functional analysis on p-adic
numbers[1–6], and on wavelets with p-adic numbers [7–12]. There is also a lot of
work on various problems in mathematical physics with p-adic numbers [13–32].
Work on condensed matter with p-adic numbers is discussed in [33–36], on particle
physics and string theory in [37–41], and on path-integrals in [22, 42]. The use of
p-adic numbers in classical computation is discussed in [43].

In this chapter we discuss the quantum systemΣ[Zp, (Qp/Zp)], with positions in
the profinite groupZp, and momenta in its Pontryagin dual groupQp/Zp. Intuitively
Σ[Zp, (Qp/Zp)] is the systemΣ[Z(pe)], with e = ∞. All finite systemsΣ[Z(pe)],
are subsystems of Σ[Zp, (Qp/Zp)].

The set of the systemsΣ[Z(pe)]where e ∈ N, with the order subsystem, is a chain.
This chain is not complete, but when we add the ‘top element’ Σ[Zp, (Qp/Zp)], it
becomes complete.

This chapter belongs to the general area of p-adic physics, but we approach this
area from a novel angle. We use inverse and direct limits and profinite groups, to
provide a rigorous approach to study of the systems Σ[Z(pe)], with very large e.

11.1 Locally Constant Functions with Compact Support

Wedefine the concepts of locally constant functions (at small distances) and functions
with compact support (at large distances). They reduce the integrals into finite sums,
and ensure convergence.
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162 11 A Quantum System with Positions in the Profinite Group Zp

Definition 11.1 A complex function f p(ap) with ap ∈ Qp, is locally constant with
degree n, if f p(ap + bp) = f p(ap) for all |bp|p ≤ p−n . Such a function is effectively
defined on Qp/pnZp. We denote this as

LC[ f p(ap)] = n. (11.1)

Definition 11.2 A complex function f p(ap) with ap ∈ Qp, has compact support
with degree k, if f p(ap) = 0 for all |ap|p > pk . Such a function is effectively defined
on p−k

Zp. We denote this as

CS[ f p(ap)] = k. (11.2)

Notation 11.1 We use the notation Ap(k, n) for the set of functions

Ap(k, n) = { f p(ap) | CS[ f p(ap)] ≤ k and LC[ f p(ap)] ≤ n}. (11.3)

We also use the notation

Ap(k, ∗) =
⋃

n

Ap(k, n); Ap(∗, n) =
⋃

k

Ap(k, n); Ap =
⋃

k,n

Ap(k, n). (11.4)

The star in Ap(k, ∗) indicates that n can take any finite value, and similarly for
Ap(∗, n).

Clearly Ap(k1, n1) ⊆ Ap(k2, n2) if k1 ≤ k2 and n1 ≤ n2.

Remark 11.1 • All functions f p(ap) with ap ∈ Qp/Zp have LC[ f p(ap)] = 0, and
therefore they belong to Ap(∗, 0). These functions obey the relation f p(ap) =
f p(ap + 1).

• All functions f p(a)with ap ∈ Zp haveCS[ f p(ap)] = 0, and therefore they belong
to Ap(0, ∗).

• A function with LC[ f p(ap)] = n and CS[ f p(ap)] = k, is effectively defined on
p−k

Zp/pnZp
∼= Z(pn+k), and it can be represented as a pn+k-dimensional vector.

11.2 Integrals of Complex Functions on Q p

Integrals of complex functions overQp use theHaarmeasure,with the normalization:

∫

Zp

dap = 1. (11.5)

The integral over Qp, of a function f p(ap) ∈ Ap(k, n), is given by
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∫

Qp

f p(ap)dap = p−n
∑

f p(a−k p
−k + ... + an−1 p

n−1). (11.6)

The sum is over all a−k, ..., an−1. It is a finite sum with pn+k terms, and therefore
it converges. The fact that LC[ f p(ap)] = n, ensures that if we truncate the sum at
n + m ≥ n, we get the same result:

p−(n+m)
∑

f p(a−k p
−k + ... + an+m−1 p

n+m−1)

= p−n
∑

f p(a−k p
−k + ... + an−1 p

n−1). (11.7)

The fact that CS[ f p(ap)] = k, ensures that if we truncate the sum at k + m > k, we
get the same result :

p−n
∑

f p(a−(k+m) p
−(k+m) + ... + an+m−1 p

n−1)

= p−n
∑

f p(a−k p
−k + ... + an−1 p

n−1). (11.8)

The following proposition is helpful if we want to change variables.

Proposition 11.1 Let f p(ap) where ap ∈ Qp, be a complex function in Ap(k, n).
Also let Fp(ap) = f p(λap), where |λ|p = ps. Then:

(1) The function Fp(ap) belongs to Ap(k − s, n + s).
(2)

∫

Qp

f p(ap)dap = ps
∫

Qp

Fp(ap)dap (11.9)

If we call a′
p = λap, then we can express this as

da′
p = |λ|pdap. (11.10)

If λ, p are coprime then da′
p = dap. If λ = p, then d(pap) = p−1dap.

Proof (1) The function f p(ap) has LC[ f p(ap)] = n, and therefore

Fp(ap + bp) = f p(λap + λbp) = f p(λap) if |λbp|p ≤ p−n . (11.11)

This gives |bp|p ≤ p−n−s , and therefore the function Fp(ap) has LC[Fp(ap)] =
n + s.
The function f p(ap) has CS[ f p(ap)] = k, and therefore

Fp(ap) = f p(λap) = 0 if |λap|p > pk . (11.12)

This gives |ap|p > pk−s . Therefore the function Fp(ap) has LC[Fp(ap)] =
k − s.
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(2) The integral for the function f p(ap) ∈ Ap(k, n), has the prefactor is p−n in
Eq.(11.6). The integral for the function Fp(ap) ∈ Ap(k − s, n + s), has the pref-
actor is p−n−s , and it needs to be ‘corrected’ with multiplication by ps . It is seen
that the ps in Eq.(11.9) (or the |λ|p in Eq.(11.10)), compensate the change in the
degrees of local constancy and compact support in the function Fp(ap), which
affects the prefactor in Eq.(11.6).
If λ, p are coprime then |λ|p = 1.

Example 11.1 For p = 3, we consider the following function in A3(0, 2):

f p(0 + a2 p
2 + a3 p

3 + · · · ) = 1 − i

f p(1 + a2 p
2 + a3 p

3 + · · · ) = 2

f p(2 + a2 p
2 + a3 p

3 + · · · ) = 2 + i

f p(0 + p + a2 p
2 + a3 p

3 + · · · ) = −1

f p(1 + p + a2 p
2 + a3 p

3 + · · · ) = 0

f p(2 + p + a2 p
2 + a3 p

3 + · · · ) = 1 − i

f p(0 + 2p + a2 p
2 + a3 p

3 + · · · ) = 1 − i

f p(1 + 2p + a2 p
2 + a3 p

3 + · · · ) = 2

f p(2 + 2p + a2 p
2 + a3 p

3 + · · · ) = 2 + i (11.13)

Also for a−k 
= 0 with k > 0, we get

f p(a−k p
−k + a−k+1 p

−k+1 + · · · ) = 0. (11.14)

In this case
∫

Qp

f p(ap)dap = 1

9
(10 − i). (11.15)

11.3 Integrals of Complex Functions on Q p/Z p and Weil
Transforms

Let gp(pp) be a complex function of pp ∈ Qp/Zp, with CS[gp(pp)] = k. We have
explained earlier that such a function belongs to Ap(k, 0). Its integral over Qp/Zp
is

∫

Qp/Zp

gp(pp)dpp =
∑

gp
(
p−k p

−k + p−k+1 p
−k+1 + ... + p−1 p

−1
)

. (11.16)

The counting measure is used here.
The pp are cosets and we represented them with the element that has zero integer

part. If we represent them with elements that have non-zero integer part, we get the
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same result. Indeed, let cp = pp + bp ∈ Qp, where bp ∈ Zp. The function gp(pp)

assigns a single complex value to each coset pp ∈ Qp/Zp, and this implies that
gp(pp + bp) = gp(pp). We rewrite the above integral as an integral over Qp, as

∫

Qp

dcpgp(cp) =
∫

Qp/Zp

dpp

∫

Zp

dbp gp(pp + bp)

=
∫

Qp/Zp

dpp gp(pp)

∫

Zp

dbp =
∫

Qp/Zp

dpp gp(pp). (11.17)

The counting measure for integration over Qp/Zp ensures that this relation holds.
More generally let gp(pp) be a complex function of pp ∈ Qp/p−s

Zp, with
CS[gp(pp)] = k. Such a function belongs to Ap(k,−s), and its integral over
Qp/p−s

Zp, is

∫

Qp/p−sZp
gp(pp)dpp

= ps
∑

gp
(
p−k p

−k + p−k+1 p
−k+1 + ... + p−s−1 p

−s−1
)

=
∑

gp
(
p−k p

−k + p−k+1 p
−k+1 + ... + p−s−1 p

−s−1 + ... + p−1 p
−1

)
(11.18)

Here the function gp does not depend on p−s, ..., p−1 and this gives the prefactor
ps in the second expression.

Proposition 11.2 Change of the variable pp into p′
p = λpp, is performed with the

relation

|λ|p
∫

Qp/|λ|pZp

gp(λpp)dpp =
∫

Qp/Zp

gp(p
′
p)dp

′
p. (11.19)

Therefore

dp′
p = |λ|pdpp. (11.20)

If λ, p are coprime then |λ|p = 1. If λ = p, then d(ppp) = p−1dpp.

Proof Wefirst point out that if pp ∈ Qp/|λ|pZp, then p′
p = λpp ∈ Qp/Zp. Therefore

the domain of integration changes.
Equation (11.19) follows from Eq.(11.18). The |λ|p ‘corrects’ the prefactor, as

already discussed in the proof of Proposition 11.1.



166 11 A Quantum System with Positions in the Profinite Group Zp

Example 11.2 For p = 2, we consider the following function in A2(2, 0), which is
described with 4 complex values:

gp(p
−2 + a0 + a1 p + ...) = 1 − i

gp(p
−2 + p−1 + a0 + a1 p + ...) = 2

gp(p
−1 + a0 + a1 p + ...) = 2 − i

gp(a0 + a1 p + ...) = −1 (11.21)

Also for a−k 
= 0 with k > 2, we get

gp(a−k p
−k + a−k+1 p

−k+1 + ...) = 0. (11.22)

In this example

∫

Qp/Zp

gp(pp)dpp = 4 − 2i. (11.23)

11.3.1 Weil Transforms

Given a function Fp(cp) with cp ∈ Qp, which is locally constant and has com-
pact support, we express cp as cp = pp + bp, where pp ∈ Qp/Zp and bp ∈ Zp. The
Weil transform [44], maps the function Fp(cp) in Qp, into the following function in
Qp/Zp:

f (pp) =
∫

Zp

Fp(pp + bp)dbp. (11.24)

We note that for any ep ∈ Zp, we get f (pp) = f (pp + ep). Then

∫

Qp/Zp

f (pp)dpp =
∫

Qp

Fp(cp)dcp. (11.25)

Example 11.3 For p = 2, we consider the following function onQp, which belongs
to A2(1, 2):

Fp(p
−1 + 1 + p + a2 p

2 + a3 p
3 + · · · ) = 1

Fp(0p
−1 + 1 + p + a2 p

2 + a3 p
3 + · · · ) = 2 − i

Fp(p
−1 + 0 + p + a2 p

2 + a3 p
3 + · · · ) = 3
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Fp(p
−1 + 1 + 0p + a2 p

2 + a3 p
3 + · · · ) = 1 − i

Fp(0p
−1 + 0 + p + a2 p

2 + a3 p
3 + · · · ) = 1 + i

Fp(0p
−1 + 1 + 0p + a2 p

2 + a3 p
3 + · · · ) = i

Fp(p
−1 + 0 + 0p + a2 p

2 + a3 p
3 + · · · ) = −i

Fp(0p
−1 + 0 + 0p + a2 p

2 + a3 p
3+) = 0 (11.26)

Also for a−k 
= 0 with k > 1, we get

Fp(a−k p
−k + a−k+1 p

−k+1 + ...) = 0. (11.27)

The Weil transform of this function is the following function on Qp/Zp, which
belongs to A2(1, 0):

f p(p
−1) =

∫

Zp

Fp(p
−1 + bp)dbp = 1

4
[Fp(p

−1 + 1 + p)

+ Fp(p
−1 + 0 + p) + Fp(p

−1 + 1 + 0p) + Fp(p
−1 + 0 + 0p)]

= 1

4
[5 − 2i], (11.28)

and

f p(0) =
∫

Zp

Fp(p
−1 + bp)dbp = 1

4
[Fp(0p

−1 + 1 + p)

+ Fp(0p
−1 + 0 + p) + Fp(0p

−1 + 1 + 0p) + Fp(0p
−1 + 0 + 0p)]

= 1

4
[3 + i]. (11.29)

In this case
∫

Qp/Zp

f (pp)dap =
∫

Qp

Fp(cp)dcp = 1

4
[8 − i]. (11.30)

11.3.2 Delta Functions

Delta function in the present context, is a function δp(xp) where xp ∈ Zp, such that

∫

Zp

dxp f p(xp)δp(xp − ap) = f p(ap). (11.31)

It is a generalized function. It does not belong toAp because it is not locally constant.
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We also introduce the following function Δp(pp) where pp ∈ Qp/Zp:

Δp(0) = 1

Δp(pp) = 0 if pp 
= 0. (11.32)

Then
∫

Qp/Zp

dppFp(pp)Δp(pp − ap) = Fp(ap). (11.33)

The following relations are useful later:

∫

Zp

dxpχp(xppp) = Δp(pp)

∫

Qp/Zp

dppχp(xppp) = δp(xp). (11.34)

11.4 The Quantum System Σ[Z p, (Q p/Z p)]

We define the Schwartz-Bruhat spaceB[Zp, (Qp/Zp)], which is the space of com-
plex wavefunctions for the quantum system Σ[Zp, (Qp/Zp)]. The definition [4–6]
aims to ensure convergence of the scalar products of the wavefunctions. Below we
usually use fraktur letters for elements of Qp/Zp.

Definition 11.3 The Schwartz-Bruhat spaceB[Zp, (Qp/Zp)] consists of functions
f p(xp) ∈ Ap(0, ∗) where xp ∈ Zp, or equivalently of functions Fp(pp) ∈ Ap(∗, 0)
where pp ∈ Qp/Zp. The scalar product is given by

( f, g) =
∫

Zp

dxp f p(xp)gp(xp); (F,G) =
∫

Qp/Zp

dpp Fp(pp)Gp(pp). (11.35)

The Fourier transform in this space, is defined as follows:

Definition 11.4 The Fourier transform of a function f p(xp) ∈ B[Zp, (Qp/Zp)]
where xp ∈ Zp (such a function belongs to Ap(0, ∗)), is the function

(Fp f p)(pp) = f̃ p(pp) =
∫

Zp

dxp f p(xp)χp(−xppp), (11.36)

which is defined on Qp/Zp, and belongs to the set Ap(∗, 0).
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Proposition 11.3 (1) The inverseFourier transformof a complex function f̃ p(pp) ∈
B[Zp, (Qp/Zp)], where pp ∈ Qp/Zp (such a function belongs toAp(∗, 0)), is

(F−1
p f̃ p)(xp) = f p(xp) =

∫

Qp/Zp

dpp f̃ p(pp)χp(xppp). (11.37)

It is a complex function on Zp, which belong to the set Ap(0, ∗).
(2)

LC[ f̃ p(pp)] = CS[ f p(xp)]; CS[ f̃ p(pp)] = LC[ f p(xp)]. (11.38)

Therefore if f p(xp) ∈ Ap(k, n), then its Fourier transform f̃ p(pp) ∈ Ap(n, k).
(3)

F4
p = 1. (11.39)

(4) Parceval’s theorem holds:

∫

Zp

dxp f p(xp)gp(xp) =
∫

Qp/Zp

dpp f̃ p(pp)g̃p(pp) (11.40)

Proof (1) We prove that Eqs.(11.36),(11.37) are compatible using Eq.(11.34).
(2) If the function f p(xp) has LC[ f p(xp)] = n, then for all |αp|p ≤ p−n we get

f p(xp + ap) − f p(xp) = 0 and we rewrite this as

∫

Qp/Zp

dpp χp(xppp) f̃ p(pp)[1 − χp(αppp)] = 0. (11.41)

It is seen that the Fourier transform of f̃ p(pp)[1 − χp(αppp)] is zero. Con-
sequently, f̃ p(pp)[1 − χp(αppp)] = 0. But for |αp|p ≤ p−n and |pp| > pn the
1 − χp(αppp) 
= 0 and therefore f̃ p(pp) = 0. This proves thatCS[ f̃ p(pp)] = n.
In a similar way we prove the other relation.

(3) The proof of this is based on Eq.(11.34).
(4) The proof of this is based on Eq.(11.34).

Remark 11.2 Equation (11.34) can be interpreted as follows:

• the Fourier transform of the function f p(xp) = 1 on Zp, is the function Δp(pp)

on Qp/Zp.
• the Fourier transform of the function f̃ p(pp) = 1 onQp/Zp, is the function δp(xp)
on Zp.
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11.5 The Heisenberg-Weyl Group
HW [(Q p/Z p),Z p, (Q p/Z p)]

The phase space of the system Σ[Zp, (Qp/Zp)] is Zp × (Qp/Zp), and we define
displacement operators and the Heisenberg-Weyl group [27].

Definition 11.5 The displacement operators Dp(ap, bp) where bp ∈ Zp and ap ∈
Qp/Zp, are defined by one of the following ways, which are equivalent to each other:

(1) They act on the wavefunctions f p(xp) ∈ Ap(0, ∗) where xp ∈ Zp, as follows:

[Dp(ap, bp) f p](xp) = χp
(−apbp + 2apxp

)
f p(xp − bp). (11.42)

(2) They act on the wavefunctions Fp(pp) ∈ A (∗, 0), where pp ∈ Qp/Zp as fol-
lows:

[Dp(ap, bp)Fp](pp) = χp
(
apbp − bppp

)
Fp(pp − 2ap). (11.43)

The equivalence of the definitions, is easily proved with a Fourier transform.

Proposition 11.4 The displacement operators Dp(ap, bp)χp(cp) forma representa-
tion of the Heisenberg-Weyl group HW [(Qp/Zp),Zp, (Qp/Zp)] (the notation indi-
cates the sets in whch the variables ap, bp, cp belong).

Proof Using the definition in Eq.(11.42), we prove the multiplication rule

Dp(ap, bp)Dp(a
′
p, b

′
p)

= Dp(ap + a′
p, bp + b′

p)χp(apb
′
p − a′

pbp). (11.44)

Taking into account the Definition 4.2, we conclude that the Dp(ap, bp)χp(cp) form
a representation of the Heisenberg-Weyl group.

11.5.1 HW [(Q p/Z p),Z p, (Q p/Z p)] as a Locally Compact
and Totally Disconnected Topological Group

We define the following subgroups of HW (Qp/Zp,Zp,Qp/Zp):

HW 1(Qp/Zp) = {Dp(ap, 0) | ap ∈ Qp/Zp} ∼= Qp/Zp

HW 2(p
e
Zp) = {Dp(0, bp) | bp ∈ peZp} ∼= peZp

HW 3(Qp/Zp) = {χp(cp) | cp ∈ Qp/Zp} ∼= Qp/Zp. (11.45)

http://dx.doi.org/10.1007/978-3-319-59495-8_4
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If e1 ≤ e2 then HW 2(pe2Zp) ≺ HW 2(pe1Zp). The set

Np = {HW [(Qp/Zp),Zp, (Qp/Zp)]} ∪ {HW 2(p
e
Zp) | e ∈ Z

+
0 } (11.46)

with the order subgroup, is a chain.
If A, B are subsets of a group G and g ∈ G, we use the notation:

gA = {ga|a ∈ A}; gAg−1 = {gag−1|a ∈ A}
AB =

⋃

a∈A

aB; A−1 = {a−1|a ∈ A}. (11.47)

Proposition 11.5 We regard the set Np in Eq.(11.46), as a fundamental system
of open neighborhoods of the identity of HW [(Qp/Zp),Zp, (Qp/Zp)]. Then the
HW [(Qp/Zp),Zp, (Qp/Zp)] becomes a topological group, which is totally discon-
nected and locally compact.

Proof We prove that the elements ofNp, satisfy the following properties of a funda-
mental system of open neighborhoods of the identity (e.g.Sect. III.1.2 in [45]). These
properties ensure compatibility between the group structure and the topology.

• Given any U ∈ Np there exists V ∈ Np such that VV ≺ U . This holds because
for U = HW 2(pnZp), all the V = HW 2(pkZp) with k ≥ n satisfy this.

• Given any U ∈ Np there exists V ∈ Np such that V−1 ≺ U . This holds because
for U = HW 2(pnZp) all the V−1 = V = HW 2(pkZp) with k ≥ n satisfy this.

• Given any element D(a, b)χp(c) of HW [(Qp/Zp),Zp, (Qp/Zp)] and any U ∈
Np, there exists V ∈ Np such that

V ≺ [
D(a, b)χp(c)

]
U

[
D(−a,−b)χp(−c)

]
. (11.48)

This holds because for U = HW 2(pnZp), we get

D(a, b)χp(c) D(0, b′) D(−a,−b)χp(−c) = D(0, b′)χp(ab
′); (11.49)

where b′ ∈ pnZp. Any subgroup V = HW 2(pkZp) with k ≥ max(n,−ord(a))
satisfies Eq.(11.48).

Therefore HW [(Qp/Zp),Zp, (Qp/Zp)] is a topological group.
Wenext show that it is totally disconnected and locally compact. HW 1(Qp/Zp) ∼=

Qp/Zp is a discrete locally compact topological group. HW 2(Zp) ∼= Zp is a profi-
nite group, i.e. a totally disconnected compact topological group. Since both of
these groups are totally disconnected and locally compact, it follows that the
HW 1(Qp/Zp) × HW 2(Zp) with the product topology, is a totally disconnected
and locally compact topological group.
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HW 3(Qp/Zp) is a normal subgroup of HW (Qp/Zp,Zp,Qp/Zp). We consider
the quotient group

HW (Qp/Zp,Zp,Qp/Zp)/HW 3(Qp/Zp)

∼= HW 1(Qp/Zp) × HW 2(Zp). (11.50)

Both the HW 1(Qp/Zp) × HW 2(Zp) and HW 3(Qp/Zp) are totally disconnected
and locally compact topological groups. Consequently, HW (Qp/Zp,Zp,Qp/Zp)

is a totally disconnected and locally compact topological group.

Remark 11.3 For completeness we define another representation of the Heisenberg-
Weyl group, although it is not relevant for Physics. This is the profinite Heisenberg-
Weyl group HW (Zp,Zp,Zp), and is different from the HW [(Qp/Zp),Zp,

(Qp/Zp)] (which is not profinite).
The HW (Zp,Zp,Zp) is defined as the inverse limit of the finite Heisenberg-Weyl

groups HW [Z(pe),Z(pe),Z(pe)]. For k ≤ n we define the homomorphisms

ϕ̃kn : HW [Z(pk),Z(pk),Z(pk)] ← HW [Z(pn),Z(pn),Z(pn)], (11.51)

where

ϕ̃kn[D(αpn , βpn )ωpn (γpn )] = D(αpk , βpk )ωpk (γpk )

αpk = ϕkn(αpn ); βpk = ϕkn(βpn ); γpk = ϕkn(γpn ). (11.52)

The map ϕkn has been defined in Eq.(10.43). The ϕ̃kn are compatible, and the
{HW [Z(pn),Z(pn),Z(pn)], ϕ̃kn} is an inverse system, whose inverse limit we
denote as HW (Zp,Zp,Zp). The elements of this group areDp(ap, bp)χp(cp)where

Dp(ap, bp) = (D(αp, βp), D(αp2 , βp2), ...)

χp(cp) = (ωp(γp), ωp2(γp2), ...); ap, bp, cp ∈ Zp

ap = (αp, αp2 , ...); bp = (βp, βp2 , ...); cp = (γp, γp2 , ...). (11.53)

We stress that the Dp(ap, bp) where ap, bp ∈ Zp, is very different from the
Dp(ap, bp) where ap ∈ Qp/Zp and bp ∈ Zp (see also Remark 10.2).

Multiplication of these elements is componentwise, and obeys the rule in the
Definition 4.2. Therefore we have a representation of the Heisenberg-Weyl group.
But the Pontryagin dual group to Zp does not appear here. Consequently, the
HW (Zp,Zp,Zp) cannot be associated with displacements of dual quantum vari-
ables, and it is not relevant to quantum mechanics. Pontryagin duality of the groups
of positions and momenta is an essential feature of quantum mechanics.

http://dx.doi.org/10.1007/978-3-319-59495-8_10
http://dx.doi.org/10.1007/978-3-319-59495-8_10
http://dx.doi.org/10.1007/978-3-319-59495-8_4


11.6 Wigner and Weyl Functions 173

11.6 Wigner and Weyl Functions

In this section we discuss Wigner and Weyl functions in the present context[27, 32].
We point out from the outset, that there are differences between the two cases p = 2
and p 
= 2. Some of the integrals have domain of integration Qp/|2|pZp, and also
the prefactor |2|p. This is related to change of variables using Eq.(11.19), and it is
analogous to our comment in the context of finite quantum systems earlier, that there
are technical differences in the two cases of even or odd dimension. We recall that

|2|p = 1 if p 
= 2

|2|2 = 1

2
. (11.54)

We consider an operator θ(xp, yp) where xp, yp ∈ Zp, and let

θ̃ (pp, p
′
p) =

∫

Zp

dxp

∫

Zp

dypθ(xp, yp)χp(−xppp + ypp
′
p), (11.55)

where pp, p
′
p ∈ Qp/Zp. θ acts on a function f p(xp), and its Fourier transform f̃ p(pp),

as follows:

(θ f p)(xp) =
∫

Zp

dypθ(xp, yp) f p(yp)

(θ f̃ p)(pp) =
∫

Qp/Zp

dp′
p θ̃ (pp, p

′
p) f̃ p(p

′
p) (11.56)

The trace of θ is given by

trθ =
∫

Zp

dxpθ(xp, xp) =
∫

Qp/Zp

dpp θ̃ (pp, pp) (11.57)

Definition 11.6 The parity operator with respect to the point (ap, bp) in the phase
space (Qp/Zp) × Zp, is

Pp(ap, bp) = [Dp(ap, bp)]† F2
p Dp(ap, bp)

= [Dp(2ap, 2bp)]† F2
p = F2

p Dp(2ap, 2bp) (11.58)

In particular the parity operator with respect to the point (0, 0) is Pp(0, 0) = F2
p.

Proposition 11.6 (1) The parity operator acts on wavefunctions in
B[Zp, (Qp/Zp)], as follows:

Pp(ap, bp) f p(xp) = χp(−4apbp − 4apxp) f p(−xp − 2bp)

Pp(ap, bp) f̃ p(pp) = χp(4apbp + 2ppbp) f̃ p(−pp − 4ap). (11.59)
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(2)

[Pp(ap, bp)]2 = 1; Pp

(
ap + 1

4
, bp

)
= Pp(ap, bp). (11.60)

Proof (1) This is proved using Eqs.(11.42), (11.43).
(2) Using Eq.(11.59) we easily prove that [Pp(ap, bp)]2 = 1. Also using the second

of Eqs.(11.59), we prove that Pp
(
ap + 1

4 , bp
) = Pp(ap, bp).

Remark 11.4 For p 
= 2, the 1
4 ∈ Zp, and for p = 2, the 1

4 ∈ 2−2
Zp. For any

cp ∈ Zp, we get Pp(ap + cp, bp) = Pp(ap, bp). Therefore the Pp(ap + 1
4 , bp) =

Pp(ap, bp) is a new result, only for p = 2.

Definition 11.7 The Weyl function of an operator θ , is defined as:

W̃ (ap, bp; θ) = tr[Dp(−ap,−bp)θ ]; ap ∈ Qp/Zp; bp ∈ Zp. (11.61)

The Wigner function of an operator θ , is defined as:

W (ap, bp; θ) = tr[θ Pp(ap, bp)]; ap ∈ Qp/Zp; bp ∈ Zp. (11.62)

Proposition 11.7 (1) The Weyl function is given by

W̃ (ap, bp; θ) =
∫

Qp/Zp

dpp χp
(
apbp + ppbp

)
θ̃ (pp + 2ap, pp) (11.63)

(2) The Wigner function is given by

W (ap, bp; θ) =
∫

Qp/Zp

dpp χp(−4apbp − 2ppbp)θ̃(pp, −pp − 4ap). (11.64)

Proof (1) We act with Dp(−ap,−bp) on the kernel θ̃ (pp, p
′
p) of the operator θ and

we get

[Dp(−ap, −bp)θ̃](pp, p′
p) = χp

(
apbp + ppbp

)
θ̃ (pp + 2ap, p

′
p) (11.65)

Therefore its trace, which is the Weyl function, is

W̃ (ap, bp; θ) = tr[Dp(−ap, −bp)θ ]
=

∫

Qp/Zp

dpp χp
(
apbp + ppbp

)
θ̃ (pp + 2ap, pp) (11.66)

(2) We act with Pp(ap, bp) on the kernel θ̃ (pp, p
′
p) of the operator θ and we get

[Pp(ap, bp)θ̃](pp, p′
p) = χp

(
4apbp + 2ppbp

)
θ̃ (−pp − 4ap, p

′
p) (11.67)
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Therefore its trace, which is the Wigner function, is

W (ap, bp; θ) =
∫

Qp/Zp

dpp

∫

Qp/Zp

dp′
p χp

(
4apbp + 2ppbp

)

× θ̃ (−pp − 4a, p′
p)Δp(pp + p′

p + 4ap)

=
∫

Qp/Zp

dpp θ̃ (pp,−pp − 4ap)χp(−4apbp − 2ppbp). (11.68)

Proposition 11.8 The parity operators are related to the displacement operators
through a Fourier transform:

Pp(ap, bp) =
∫

Qp/Zp

da′
p

∫

Zp

db′
p Dp(a

′
p, b

′
p)χp(2a

′
pbp − 2apb

′
p). (11.69)

Also theWigner function is related to theWeyl function through a Fourier transform:

W (ap, bp; θ) =
∫

Qp/Zp

da′
p

∫

Zp

db′
p W̃ (−a′

p,−b′
p)χp(2a

′
pbp − 2apb

′
p). (11.70)

Proof We act with the right hand side of Eq.(11.69) on an arbitrary function Fp(pp),
and we get

∫

Qp/Zp

da′
p χp(2a

′
pbp)Fp(pp − 2a′

p)

∫

Zp

db′
p χp[b′

p(a
′
p − pp − 2ap)]

=
∫

Qp/Zp

da′
p χp(2a

′
pbp)Fp(pp − 2a′

p)Δp(a
′
p − pp − 2ap)

= χp(4bpap + 2bppp) Fp(−pp − 4ap) = Pp(a, b)Fp(pp). (11.71)

From this we prove Eq.(11.70), using the definitions for the Wigner and Weyl func-
tions.

Proposition 11.9 Let θ be a trace class operator acting on functions in B[Zp,

(Qp/Zp)]. Then
(1)

|2|p
∫

Qp/|2|pZp

dap

∫

Zp

dbp Dp(ap, bp) θ [Dp(ap, bp)]† = 1trθ. (11.72)

(2) θ can be expanded in terms of displacement operators, with the Weyl function
as coefficients:

θ = |2|p
∫

Qp/|2|pZp

dap

∫

Zp

dbp Dp(ap, bp)W̃ (ap, bp; θ). (11.73)
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Proof (1) We act with Dp(ap, bp) θ [Dp(ap, bp)]† on a function Fp(pp) ∈ B[Zp,

(Qp/Zp)] and we get

[
Dp(ap, bp) θ [Dp(ap, bp)]†Fp

]
(pp)

=
∫

Qp/Zp

dp′
p χp(2apbp − ppbp + p′

pbp)

×θ(pp − 2ap, p
′
p) Fp(p

′
p + 2ap). (11.74)

The scalar product of thiswith an arbitrary functionGp(pp) ∈ B[Zp, (Qp/Zp)],
gives

|2|p
∫

Qp/|2|pZp

dap

∫

Zp

dbp
(
Gp, Dp(ap, bp) θ [Dp(ap, bp)]†Fp

)

= |2|p
∫

Qp/|2|pZp

dap

∫

Zp

dbp

∫

Qp/Zp

dpp

∫

Qp/Zp

dp′
p [Gp(pp)]∗

×χp(2apbp − ppbp + p′
pbp)θ(pp − 2ap, p

′
p) Fp(p

′
p + 2ap)

= |2|p
∫

Qp/|2|pZp

dap

∫

Qp/Zp

dpp

∫

Qp/Zp

dp′
p [Gp(pp)]∗

×Δp(2ap − pp + p′
p)θ(pp − 2ap, p

′
p) Fp(p

′
p + 2ap) (11.75)

We now change the variable 2ap into a′
p, taking into account Eq.(11.19). We

get:

∫

Qp/Zp
dpp [Gp(pp)]∗ Fp(pp)

∫

Qp/Zp
dp′

p θ(p′
p,p

′
p) = (Gp, Fp)tr(θ). (11.76)

This proves the proposition.
(2) The operator in Eq.(11.73) acts on an arbitrary function Fp(pp) ∈ B[Zp,

(Qp/Zp)], as follows (use Eq.(11.63)):

|2|p
∫

Qp/|2|pZp

dap

∫

Zp

dbp

∫

Qp/Zp

dpp

∫

Qp/Zp

dp′
p χp

(
apbp + ppbp

)

×θ̃ (pp + 2ap, pp)χp
(
apbp − p′

pbp
)
Fp(p

′
p − 2ap)

= |2|p
∫

Qp/|2|pZp

dap

∫

Qp/Zp

dpp

∫

Qp/Zp

dp′
p θ̃ (pp + 2ap, pp)

×Δp(2ap + pp − p′
p)Fp(p

′
p − 2ap) (11.77)

We now change the variable 2ap into a′
p, taking into account Eq.(11.19). We get

∫

Qp/Zp

dpp

∫

Qp/Zp

dp′
p θ̃ (p′

p, pp)Fp(pp) (11.78)

This proves the proposition.
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Proposition 11.10 Let θ be a trace class operator acting on functions in the
Schwartz-Bruhat space B[Zp, (Qp/Zp)]. Then
(1)

|2|3p
∫

Qp/|4|pZp

dap

∫

|2|pZp

dbp Pp(ap, bp) θ Pp(ap, bp) = 1trθ. (11.79)

(2) θ can be expanded in terms of parity operators, with the Wigner function as
coefficients:

θ = |2|3p
∫

Qp/|4|pZp

dap

∫

|2|pZp

dbp Pp(ap, bp)W (ap, bp; θ). (11.80)

Proof (1) We substitute ap with 2ap and bp with 2bp in Eq.(11.72), and change
accordingly the domains of integration. We get

|2|3p
∫

Qp/|4|pZp

dap

∫

|2|pZp

dbp Dp(2ap, 2bp) θ [Dp(2ap, 2bp)]†

= 1trθ. (11.81)

Then we multiply each side with F2
p on the left and with (F2

p)
† on the right, and

we prove the statement.
(2) We substitute Eq.(11.64) on the right hand side of Eq.(11.80), and act on an

arbitrary function Fp(pp), in order to prove that this is the operator θ acting on
Fp(pp):

(|2|p)3
∫

Qp/|4|pZp

dap

∫

|2|pZp

dbp

∫

Qp/Zp

dp′
p θ̃ (p′

p,−p′
p − 4ap)

×χp(−4apbp − 2p′
pbp)χ(4apbp + 2ppbp)Fp(−pp − 4ap) (11.82)

Integration over 2bp gives,

|4|p
∫

Qp/|4|pZp

dap

∫

Qp/Zp

dp′
p θ̃ (p′

p,−p′
p − 4ap)

×Δp(pp − p′
p)Fp(−pp − 4ap)

= |4|p
∫

Qp/|4|pZp

dap θ̃ (pp,−pp − 4ap)Fp(−pp − 4ap) (11.83)

Now we change the variable−pp − 4ap into qp, taking into account Eq.(11.19).
We prove that the right hand side of Eq.(11.80), is equal to the operator θ .
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11.7 The Complete Chain of Subsystems of Σ[Z p,

(Q p/Z p)]

In sect. 10.8 we studied the complete chainN(G,G̃)
S (p)which contains pairs of groups

(Z(pk),C(pk)) which are Pontryagin dual to each other. To each of these pairs
corresponds a quantum system, as follows:

(Z(pk),C(pk)) → Σ[Z(pk)]; k ∈ N

(Zp, (Qp/Zp)) → Σ[Zp, (Qp/Zp)] (11.84)

We denote as NQ
S (p), the set of these quantum systems (the superfix Q indicates

quantum systems). It is a complete chain

Σ[Z(p)] ≺ Σ[Z(p2)] ≺ ... ≺ Σ[Zp, (Qp/Zp)], (11.85)

with the order subsystem [32]. NQ
S (p) is order isomorphic to N

(G,G̃)
S (p) and also to

NS(p):

N
Q
S (p) ∼= N

(G,G̃)
S (p) ∼= NS(p). (11.86)

Belowwe give some technical details related to the fact thatΣ[Z(pk)] is a subsystem
ofΣ[Zp, (Qp/Zp)]. We define a subspaceB[Z(pk)] ofB[Zp, (Qp/Zp)], and show
that it is isomorphic to the space H [Z(pk)], which describes the system Σ[Z(pk)].
Definition 11.8 The subspace B[Z(pk)] of B[Zp, (Qp/Zp)] is defined by one of
the following ways, which are equivalent to each other:

(1) It contains functions f p(xp) ∈ A (0, k), where xp ∈ Zp. These functions can be
regarded as functions f (m) where m ∈ Zp/pkZp

∼= Z(pk). The scalar product
of Eq.(11.35) reduces to

( f, g) = 1

pn
∑

m∈Z(pk )

[ f (m)]∗g(m). (11.87)

(2) It contains functions Fp(pp) ∈ A (k, 0), where pp ∈ Qp/Zp. These functions
can be regarded as functions F(n) where n ∈ p−k

Zp/Zp
∼= Z(pk). In this case

the scalar product of Eq.(11.35) reduces to

(F,G) =
∑

n∈Z(pk )

[F(n)]∗G(n). (11.88)

http://dx.doi.org/10.1007/978-3-319-59495-8_10
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In the subspace B[Z(pk)], the Fourier transform of Eq.(11.36), reduces to
the finite Fourier transform used in the space H [Z(pk)] for the quantum system
Σ[Z(pn)]:

F(n) = 1

pn
∑

m∈Z(pn)

f (m)ωpn (−mn); m, n ∈ Z(pn). (11.89)

Therefore the subspaceB[Z(pk)] is isomorphic to the spaceH [Z(pk)], that describes
the quantum system Σ[Z(pn)].

The systems Σ[Z(pe)] are subsystems of Σ[Zp, (Qp/Zp)]. The chain of all
Σ[Z(pe)]with e ∈ N is not complete. By adding the ‘top element’Σ[Zp, (Qp/Zp)]
(which describes regorously the case e = ∞), we make it complete.
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