
Chapter 3
An application: Optimising the layout of tidal
turbine arrays

3.1 Introduction

The motivation for this application comes from the desire to generate renewable
energy from the tides in the Earth’s oceans. Tides are a consequence of the gravi-
tational attractions experienced within the Earth-Moon-Sun system. As this system
evolves in time the cumulative gravitational forces vary and this has the effect of
driving ocean (or tidal) currents which periodically and locally increase and de-
crease the depth of the oceans at global scales. As these tidal motions move from
the deep ocean into the shallower continental shelf regions, conservation of volume
accelerates the currents. They may then be even further accelerated as they interact
with coastal features such as headlands and as they are constrained through narrow
straits between islands. We thus have a situation where significant amounts of ki-
netic energy is contained within the coastal ocean relatively close to locations on
shore where electricity is required. This has naturally led to significant interest in
exploiting this resource through the renewable generation of electricity from tidal
currents. Tides have the significant advantage over other renewable energy sources,
such as solar, wind or wave, in that they are periodic and predictable, and hence
do not suffer from supply reliability drawbacks. This tidal energy can be captured
through tidal turbines in the case of the kinetic energy of currents discussed above,
as well as barrages or lagoons in the case of the potential energy contained within
tidal highs and lows. Here we consider the former case where potentially hundreds
of tidal turbines may be deployed in arrays (Fig. 3.1), in much the same way that
arrays of wind turbines operate.
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Fig. 3.1: Illustration of a tidal stream generator array. Image credit: MeyGen Lim-
ited.

Once tidal turbines are installed within a tidal current they will alter the flow
across a range of scales. For example, a turbulent wake will be formed in the imme-
diate lee of the turbine where the current speed is reduced, with locally accelerated
flow above, below and to either side of the turbine and its wake (the bypass flow re-
gion). The power generated by a turbine is approximately dependent on the cube of
the current speed it experiences. Hence, whether a down-stream turbine is installed
within a wake zone or within the locally accelerated bypass flow will have a signifi-
cant effect on the power yield of that turbine. Furthermore, large arrays can not only
affect the local currents, but also the tidal resource at a regional scale. This regional
effect limits the overall energy that can be extracted from a tidal array.

The optimal design of a tidal turbine array, in terms of the array location, the total
number of turbines making up the array, and their individual locations (or micro-
siting), is thus important in terms of array power yield and hence economic viability.
The turbine layout optimisation problem is however very challenging: it has a large
number of design parameters and, as discussed above, is coupled to the nonlinear
hydrodynamics across a range of scales. Different approaches have been proposed
to solve this problem, see for example [6, 9, 15, 17, 18], and for an overview see
[20].

The goal of this chapter is to formulate the array layout problem as a PDE-
constrained optimisation problem and solve it with the techniques presented earlier
in this book. The hydrodynamic model will be based on the nonlinear shallow wa-
ter equations, discretised with the finite element method on an unstructured mesh.
One option to incorporate tidal turbines into the model is through locally enhanced
seabed friction values at each turbine location. However, this approach requires rel-
atively high mesh resolution and hence computational cost, because the size of a tur-
bine is typically small with respect to the region considered for the (tidal/resource-
scale) simulation. To mitigate this cost, here we represent the entire tidal array con-
figuration via a turbine density function [5, 11, 19]. This density function is then
used to locally increase the seabed friction coefficient to account for the impact of
the local density of turbines on the flow. This “continuous turbine approach” allows
for the optimisation of large arrays, or even multiple arrays close enough to interact
with one another, within a regional context with relatively coarse meshes. An opti-
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mised turbine density function can then be used to infer the individual locations of
turbines, and/or used as an initial guess at the array layout for a more costly discrete
micro-siting optimisation [11].

3.2 Problem formulation

We treat the problem of finding the optimal configuration of a continuous tur-
bine density function (or equivalently an enhanced seabed friction field) as a PDE-
constraint optimisation problem:

max
u,η ,d

J(u,η ,d),

subject to F(u,η ,d) = 0,
0≤ d ≤ du,

(3.1)

where u is the horizontal (depth-averaged) velocity vector, η is the free surface
displacement from a state of rest, d is the turbine density function, J(u,η ,d) ∈ R
is the functional of interest, F(u,η ,d) = 0 represents the nonlinear shallow water
equations, and du is a upper bound for the turbine density function. The choice of
the function space D containing d is essential for this work and is discussed in Sect.
3.2.3.

Assuming that through the PDE constraint equation F(u,η ,d) = 0, any given
d ∈ D is uniquely mapped to a solution u,η through the shallow water equations,
we may regard u,η as implicit functions of the design parameters d, that is u≡ u(d)
and η ≡ η(d). By substituting this into the functional of interest J, one obtains the
reduced optimisation problem

max
d∈D

J(u(d),η(d),d),

subject to 0≤ d ≤ du.
(3.2)

3.2.1 Design parameters and box constraints

The design parameter d is a continuous turbine density function on the domain of
interest Ω . More specifically, d|A ≡ 0 for some area A⊂Ω implies that no turbines
are deployed inside A, whereas d|A� 0 implies that turbines are densely deployed
within A. The turbine density field can be regarded as an approximation for the
actual placement configuration of turbines within the array. The integrated turbine
density function additionally provides an approximation for the number of turbines
N of the configuration:
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N =
∫

Ω

d(x)dx. (3.3)

The point-wise bound constraint in (3.2) restricts d to feasible values. Firstly, the
turbine density may only take non-negative values. Secondly, non-zero values are
only expected in areas that are suitable for turbine placement. For instance, if an
area A is too steep, too shallow, or environmentally protected, no turbines should be
placed there, i.e. du|A ≡ 0. All other locations combine to form valid array area(s),
denoted Ωarray. In addition, the turbine density is assumed to be bounded above by
a constant d̄ > 0. This bound takes into account that the number of turbines per unit
area is limited, for example by a minimum feasible distance between any two tur-
bines, or by hydrodynamic, installation and maintenance constraints. We conclude
that

du(x) =

{
d̄ if x ∈Ωarray

0 if x ∈Ω \Ωarray.
(3.4)

3.2.2 The PDE constraint

The optimisation problem (3.1) is subject to physical laws which are incorporated
via the PDE F(u,η ,d) = 0. Here, the PDE represents the nonlinear shallow water
equations in steady state, that is

u ·∇u−ν∇
2u+g∇η +

cb + ct(d)
H

‖u‖u = 0,

∇ · (Hu) = 0,
(3.5)

where u : Ω → R2 and η : Ω → R denote the depth-averaged horizontal velocity
vector and free-surface displacement respectively, H : Ω→R is the total water depth
(that is, H = η +h, where h is the water depth at rest, see Fig. 3.2), g ≈ 9.81ms−2

is the gravitational acceleration, ν > 0 is the kinematic viscosity coefficient, cb :
Ω → [0,∞) denotes the natural or background seabed friction value which may be
spatially varying if this knowledge/data is available, and ct(d) : Ω → [0,∞) is the
additional ‘friction’ exerted on the flow by the presence of the turbines as encoded
by the turbine density field d. The shallow water equations will be derived in detail
in Sect. 3.3.
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Fig. 3.2: Variables for the shallow water equations

3.2.3 The class of turbine density functions

When considering the optimisation problem (3.1), the question arises as to what
class of functions are reasonable to consider for the turbine density d. At first glance,
we expect the total number of turbines given by (3.3) to be finite, that is d ∈ L1(Ω).
If we were to assume that d ∈ L2 , a simple calculation using Cauchy-Schwarz
and the finiteness of Ω convinces us that this implies that d ∈ L1(Ω):

‖d‖L1(Ω) =
∫

Ω

d(x)dx = 〈d,1〉L2(Ω) ≤ ‖d‖L2(Ω) · |Ω |
1/2 < ∞,

where (·, ·)L2(Ω) denotes the inner product in L2(Ω), and ‖ · ‖L2(Ω) and ‖ · ‖L1(Ω)

denote the norms in L2(Ω) and L1(Ω), respectively. L2(Ω) has the advantage over
L1(Ω) of being a Hilbert space, that is, it possesses an inner product and strong func-
tional analytical results are valid such as the Riesz representation theorem. There-
fore, functionals on L2(Ω) have a unique representative in L2(Ω) for their Fréchet
derivative. This becomes particularly relevant when solving (3.1) using gradient-
based methods which naturally require that representative. The question arises why
not considering d ∈W k,2(Ω) for k > 1, such as H1(Ω) for example. Such functions
have weak derivatives that are L2(Ω)-integrable. That means they satisfy smooth-
ness assumptions that we do not necessarily expect from, nor wish to impose on,
the turbine density function. In fact, the continuous turbine approach is a practi-
cal means to approximate the optimal distribution of real, i.e. discrete individual,
turbines. In reality, we naturally expect to observe discontinuities in the turbine dis-
tribution as at every point of the domain there is either a turbine in place or not, as
well as the fact that the domain is made up of discrete regions where turbines are
permitted. Therefore, we shall use a space that reflects this non-smoothness. In this
context and for the reasons mentioned above, we believe that the choice of L2(Ω)
as the class of turbine density functions is sensible.

(Ω)
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3.2.4 Relationship between turbine density and seabed friction

Referring to [11], the force exerted on the flow due to the enhanced friction term
ct(d) produced by the turbine field in the shallow water equations (3.5) is given by

Farray =
∫

Ωarray
ρct(d(x))‖u(x)‖u(x)dx. (3.6)

Using a common parameterisation for the drag force exerted by an individual turbine
in 3D, the drag force exerted by an array of N turbines can be approximated as

Farray =
N

∑
i=1

1
2

ρCtAt‖u∞,i‖u∞,i, (3.7)

where Ct denotes the thrust coefficient corresponding to an individual turbine and
At its cross-sectional area. Here we assume that all turbines are identical and are
always aligned with the flow and so have common values for Ct and At . Further,
u∞,i denotes the free-stream or undisturbed velocity, i.e. the velocity that would be
encountered at the ith turbine’s location without the presence of the turbine. Here
we simply take this to be the velocity at the turbine location from the model and note
that this is a reasonable approximation as the local velocity of the model gets closer
to the free-stream velocity the more the turbine density field is ‘spread’ through use
of a relatively coarse computational mesh. See [1, 11, 12] for further discussions on
this point, including corrections that are possible as mesh resolution is increased.

Re-formulating the drag force from its discrete version in (3.7) into a continuous
one by replacing the sum by an integral containing the turbine density field yields

Farray =
∫

Ωarray

1
2

ρCtAtd(x)‖u(x)‖u(x)dx. (3.8)

Equating with (3.6) leads to an expression for the friction function ct in terms of the
turbine density function d:

ct(d) =
1
2

CtAtd. (3.9)

3.2.5 The functional of interest

The functional of interest J in the optimisation problem (3.1) refers to the quantity
that is to be maximised. In what follows we define two reasonable expressions for
the functional of interest.
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3.2.5.1 Power functional

One natural choice for the functional of interest is the total power which the array
(or here the turbine density field) extracts from the flow. From (3.6) and the formula
for mechanical power, P = Farray ·u, this functional can be expressed as:

Jpower(u,d) =
∫

Ωfarm

ρct(d(x))‖u(x)‖3 dx. (3.10)

Note that the actual electricity produced by the turbine array is only a fraction
of 3.10, as the functional as written also includes energy losses due to wake mixing
effects behind turbines. Furthermore, one needs to account for the power losses due
to power transformation to electrical energy, losses due to transporting the energy
from turbines to the grid, and by the presence of turbine support structures which
contribute part of the turbine induced friction.

3.2.5.2 Profit functional

In the context of evaluating possible turbine arrays from an economic perspective, a
reasonable choice for the functional of interest is the profit of an array represented
by its density function, generated over its entire lifetime. A simple choice for a profit
functional is

Jprofit(u,d) = Revenue(u,d)−Cost(d)

= IkT Jpower(u,d)−C
∫

Ω

d(x)dx,
(3.11)

where Jpower(u,d) as given in (3.10) is the extracted power, T a turbine’s average
lifetime, k ∈ (0,1) is a turbine efficiency coefficient, I is an income factor stating
the financial value of the power generated, and C is the cost of installing and main-
taining one turbine. Recall from (3.3) that the integral of d gives the total number of
installed turbines. See [11] for further details.

3.3 Shallow water equations

In this section, for completeness, we review the derivation of the shallow water
equations which are the partial differential equations that describe the flow of the
system we consider. The shallow water equations are a two-dimensional (depth-
averaged) approximation to the three-dimensional Navier-Stokes equations and are
valid for scenarios in which the horizontal length scale is much greater than the
vertical length scale.
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3.3.1 Physical principles

The shallow water equations are based on depth-integrating or averaging the Navier-
Stokes equations and therefore are a consequence of the principles of conservation
of mass and momentum. Thus, we begin by briefly deriving these principles.

3.3.1.1 Conservation of mass

One essential law of physics is the conservation of mass. It states that the rate of
change of the total mass within an arbitrary control volume V equals the net mass
flux across its boundary ∂V . Mathematically, this can be expressed as

d
dt

∫
V

ρ dx =−
∫

∂V
ρu ·ndA, (3.12)

where ρ is the density of the fluid, u is the fluid velocity and n is the outward pointing
unit normal vector to ∂V . Let us assume that V does not vary in time and that ρ is
smooth. Applying Gauss’s theorem to the right hand side allows us to write∫

V

(
∂ρ

∂ t
−∇ · (ρu)

)
dx = 0. (3.13)

As V was an arbitrary control volume, we can conclude the pointwise relationship

∂ρ

∂ t
+∇ · (ρu) = 0. (3.14)

Note on the other hand that Eq. (3.14) trivially implies (3.12), and hence is equiva-
lent to mass conservation. The PDE (3.14) is referred to as the continuity equation.

3.3.1.2 Conservation of momentum

Following Newton’s second law, the rate of change of the total momentum in a
control volume V equals the net flux of momentum across ∂V plus any internal
forces exerted within V and any external forces exerted on ∂V . Mathematically this
can be written as

d
dt

∫
V

ρudx =−
∫

∂V
(ρu)u ·ndA+

∫
V

ρ fint dx+
∫

∂V
SndA,

where fint denotes the internal force density and S denotes the Cauchy stress tensor.
Examples of internal forces are those due to gravity, Coriolis (which is actually a fic-
titious force that is required when we make the usual ocean modelling assumption of
considering our domain in a non-inertial, i.e. here a rotating, reference frame), elec-
tric or magnetic forces. Assuming that the momentum ρu is smooth and applying
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Gauss’s theorem results in∫
V

(
∂

∂ t
(ρu)+∇ · (ρuuT )−ρ fint−∇ ·S

)
dx = 0. (3.15)

Since again V was chosen arbitrarily, we deduce that

∂

∂ t
(ρu)+∇ · (ρuuT )−ρ fint−∇ ·S = 0. (3.16)

The PDE (3.16) encodes the concept of conservation of momentum and is referred
to as the momentum equation.

3.3.2 Navier-Stokes equations

In the following, we derive the Navier-Stokes equations for an incompressible New-
tonian fluid using the principles of conservation of mass and momentum. For a New-
tonian fluid, we have the stress tensor

S =−pI3 + τ, (3.17)

where p denotes the pressure, I3 the identity matrix in R3 and τ is the deviatoric
stress tensor. Stokes’ stress constitutive equation used for incompressible fluid states
that

τ = µ

(
∇u+(∇u)T

)
, (3.18)

where µ is the, assumed constant, dynamic viscosity coefficient of the fluid (µ = ρν

where ν is termed the kinematic viscosity). Thus, we find for the divergence of the
Cauchy stress tensor:

∇ ·S =−∇p+µ∇
2u. (3.19)

Neglecting all internal forces besides gravity, we have fint = g, where g is the grav-
itational acceleration vector. In addition to incompressibility, which states that ρ is
independent of p, we assume that ρ is a constant in time and throughout the fluid,
e.g. ignoring thermal effects. Applying (3.19), we therefore may infer from the mass
continuity equation (3.14) and the momentum equation (3.16) the following system
of PDEs:

∇ ·u = 0,
∂u
∂ t

+∇ · (uuT )−ν∇
2u+

1
ρ

∇p−g = 0.
(3.20)
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The equation pair (3.20) are known as the isothermal Navier-Stokes equations for
an incompressible Newtonian fluid. If f contains another internal forcing vector, i.e.
fint = g+ f , we get an additional f term on the right hand side of (3.20).

3.3.3 Shallow water equations

In what follows we sketch the derivation of the shallow water equations via the
depth-integration, or averaging, of the Navier-Stokes equations (3.20). For a more
complete derivation and mathematical discussions see [21], [3]. With u=(u1,u2,u3)

T ,
the momentum equation in (3.20) may be written in non-vector form as

∂u1

∂ t
+

3

∑
i=1

ui
∂u1

∂xi
−ν

3

∑
j=1

∂ 2u1

∂x2
j
+

1
ρ

∂ p
∂x1

= 0,

∂u2

∂ t
+

3

∑
i=1

ui
∂u2

∂xi
−ν

3

∑
j=1

∂ 2u2

∂x2
j
+

1
ρ

∂ p
∂x2

= 0,

∂u3

∂ t
+

3

∑
i=1

ui
∂u3

∂xi
−ν

3

∑
j=1

∂ 2u3

∂x2
j
+

1
ρ

∂ p
∂x3

+g = 0,

(3.21)

where g now represents the magnitude of the gravitational acceleration vector. Fur-
ther, the continuity equation in (3.20) may be written as

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0. (3.22)

The shallow water equations are based on the essential assumption that the hor-
izontal length scale of the dynamics, e.g. its wavelength, is much larger than the
vertical length scale, e.g. the water depth at rest. Based upon this and via a scaling
analysis of the terms in the vertical momentum equation we may conclude that ver-
tical acceleration as well as viscous effects are small, and that this equation reduces
to the so-called hydrostatic balance relation

1
ρ

∂ p
∂x3

=−g, (3.23)

This states that pressure in our system is well approximated by its hydrostatic value,
i.e. the weight of water above the location in question. Integrating (3.23) in the
vertical, i.e. with respect to x3, yields

p = ρg(η− x3)+ pa, (3.24)

where η is the free-surface displacement from a state of rest (Fig. 3.2), and pa =
p(x1,x2,η) denotes the atmospheric pressure. For the sake of simplicity we further
assume that ∇pa = 0. For applications where this term becomes relevant, e.g. storm
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surge modelling, it can easily be incorporated as an additional source term in the
final equations. Differentiating (3.24) in the horizontal yields

∂ p
∂x1

= ρg
∂η

∂x1
,

∂ p
∂x2

= ρg
∂η

∂x2
. (3.25)

Noting that this pressure gradient forcing is independent of depth, x3, allows us to
conclude from the horizontal momentum equations that if the horizontal velocities
are initially independent of depth then they will remain so. While this is the case
we assume here, and is entirely consistent with the simulation of tidal dynamics
at large scales, it should be noted that this assumption would break down at small
scales including when the flow interacts with individual turbines. The use of fully-
3D equation sets and models in the design of turbine arrays is the subject of ongoing
and future work, e.g. see [1].

We can thus interpret the horizontal velocities as depth-averaged values, or depth-
integrals following multiplication by the layer depth, and within the horizontal mo-
mentum equations ignore all derivatives with respect to x3. More rigorous deriva-
tions, including arriving at a similar result from the vertical integration of the mo-
mentum equations, may be found in [21], [3]. We are thus left with new shallow
water momentum equations

∂u1

∂ t
+

2

∑
i=1

ui
∂u1

∂xi
−ν

2

∑
j=1

∂ 2u1

∂x2
j
+g

∂η

∂x1
= 0,

∂u2

∂ t
+

2

∑
i=1

ui
∂u2

∂xi
−ν

2

∑
j=1

∂ 2u2

∂x2
j
+g

∂η

∂x2
= 0.

(3.26)

We can now also remove the presence of the vertical derivative of u3 in the con-
tinuity equation (3.22) by integrating over the total water depth:∫

η

−h
∇ ·udx3 =

∫
η

−h

(
∂u1

∂x1
+

∂u2

∂x2

)
dx3 +u3|x3=η −u3|x3=−h

=
∂

∂x1

∫
η

−h
u1 dx3 +

∂

∂x2

∫
η

−h
u2 dx3−

(
u1|x3=η

∂η

∂x1
+u1|x3=−h

∂h
∂x1

)
−
(

u2|x3=η

∂η

∂x2
+u2|x3=−h

∂h
∂x2

)
+u3|x3=η −u3|x3=−h,

(3.27)

where h denotes the bathymetry, i.e. the water depth at rest. The following so-called
kinematic boundary conditions state that the normal components of the flow at the
bottom of the domain (x3 =−h) and at the free surface (x3 = η) are equal to zero:
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u1

∂h
∂x1

+u2
∂h
∂x2

+u3

)∣∣∣
x3=−h

= 0,(
∂η

∂ t
+u1

∂η

∂x1
+u2

∂η

∂x2
−u3

)∣∣∣
x3=η

= 0.
(3.28)

This states that particles cannot traverse these surfaces. Since the horizontal veloci-
ties are assumed to be independent of x3 we have

∂

∂xi

∫
η

−h
ui dx3 =

∂

∂xi
(Hui) ∀ i = 1,2, (3.29)

where H = h+η denotes the total water depth. Applying the boundary conditions
(3.28) to (3.27) then results in

∂η

∂ t
+

∂

∂x1
(Hu1)+

∂

∂x2
(Hu2) = 0. (3.30)

Equation (3.30) is termed the depth-averaged continuity equation. In 2D vector no-
tation (3.30) and (3.26) may be written as

∂η

∂ t
+∇ · (Hu) = 0, (3.31)

∂u
∂ t

+u ·∇u−ν∇
2u+g∇η = 0, (3.32)

which we term the nonlinear shallow water equations. It is straightforward to see
that in the case where we have an additional term F in the momentum equation
(3.16) representing a force or source vector, it has to be added in the momentum
equation (3.32). In this work, we have an additional bottom friction term given by
the quadratic drag

F =−cb + ct(d)
H

‖u‖u, (3.33)

where cb is the natural bottom friction coefficient and ct(d) the coefficient corre-
sponding to the friction field induced by the turbine density d. Thus, the shallow
water momentum equation we consider in this work takes the form

∂u
∂ t

+u ·∇u−ν∇
2u+g∇η +

cb + ct(d)
H

‖u‖u = 0. (3.34)

Finally, the steady form of the system (3.31) and (3.34) follows from neglecting
the time derivative terms and is often considered in situations where the velocity
can be assumed to be time independent, or the fully time-dependent simulation is
numerically too costly. With this simplification, we arrive at the PDE system stated
in (3.5).
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3.4 Aspects of numerical solution

This section discusses details of the numerical solution of problem (3.2). First, the
shallow water equations are stated in their weak form and solved by applying a fi-
nite element discretisation (Sect. 3.4.1). From the resulting discrete solutions, the
discrete adjoint equations are derived (Sect. 3.4.2). Their solution provides the dis-
cretised derivative of the functional of interest with respect to the turbine density,
which is used in several gradient-based optimisation methods. Section 3.4.3 pro-
vides an illustration of what happens during one iteration of the optimisation loop
performed in order to solve (3.2), describes the Python libraries used and performs
an implementation verification via a Taylor remainder test.

3.4.1 Solving the shallow water equations

In what follows, we briefly explain the derivation of the weak formulation of the
shallow water equations (3.5) in steady state and discuss how their weak form is
solved using the finite element method. One derives the weak formulation of the
shallow water equations by multiplying them by test functions Ψ ∈ V and Φ ∈ Q,
respectively, integrating over the domain Ω and applying integration by parts to the
viscosity and divergence terms. Using the notation 〈·, ·〉A := 〈·, ·〉L2(A) for A ⊂ Ω ,
this yields

〈u ·∇u,Ψ〉
Ω
+ν 〈∇u,∇Ψ〉

Ω
+ g〈∇η ,Ψ〉

Ω
+

〈
cb + ct(d)

H
‖u‖u,Ψ

〉
Ω

= 0,

−〈Hu,∇Φ〉
Ω
+ 〈Hu ·n,Φ〉

∂ΩIn
= 0,

(3.35)
where ∂ΩIn denotes the inflow boundary, on which strong Dirichlet conditions are
imposed for the normal component of the velocity vector u. To ensure that all
terms in (3.35) are well-defined, a natural choice for the test function spaces is
V = [H1(Ω)]2 and Q = H1(Ω). The domain boundary can be decomposed into
∂Ω = ∂ΩIn ∪ ∂ΩOut ∪ ∂ΩCoast, where ∂ΩIn denotes the inflow boundary, ∂ΩOut
the outflow boundary and ∂ΩCoast the coastal boundaries. For the weak formulation
(3.35), we have used the following integration by parts relation:

〈∇ · (Hu),Φ〉
Ω
=−〈Hu,∇Φ〉

Ω
+ 〈Hu ·n,Φ〉

∂Ω
(3.36)

=−〈Hu,∇Φ〉
Ω
+ 〈Hu ·n,Φ〉

∂ΩIn
, (3.37)

where we applied an either weakly or strongly imposed homogeneous Dirichlet
boundary conditions on ∂ΩCoast. Further, a strong Dirichlet boundary condition on
η was imposed on the outflow boundary ∂ΩOut, hence the test function Φ vanishes
on the boundary and thus the integral over ∂ΩOut vanishes as well. Integration by
parts has also been applied to the viscous term:
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−〈∆u,Ψ〉
Ω
= 〈∇u,∇Ψ〉

Ω
−〈∇u ·n,Ψ〉

∂Ω
(3.38)

= 〈∇u,∇Ψ〉
Ω
. (3.39)

The inflow boundary term disappears since strong Dirichlet boundary conditions are
imposed on ∂ΩIn, and therefore the test function Ψ vanishes. The outflow boundary
term equals zero due to the velocity-pressure duality which, because of the strong
Dirichlet boundary condition on η , imposes a zero Neumann boundary condition
on u.

Problem (3.35) is solved using a finite element approach. The function spaces
V and Q are replaced by finite-dimensional subspaces Vh ⊂ V and Qh ⊂ Q using a
triangulation of the domain. Vh and Qh are chosen as the Taylor-Hood P2-P1 mixed
finite element pair which satisfies the desirable inf-sup or Ladyzhenskaya-Babuka-
Breezi (LBB) stability condition; see [2, Sect. 12.5] for details.

3.4.2 Adjoint equations

The adjoint equations can be derived with the approach presented in Sect. 1.4. The
adjoint shallow water equations are

(∇ ·u)λu−u ·∇λu−ν∇
2
λu−H∇λη +

cb + ct(d)
H

(
‖u‖λu +

u ·λu

‖u‖
u
)
=

∂J∗

∂u
,

−g∇ ·λu−∇λη ·u−
cb + ct(d)

H2 ‖u‖u = 0,
(3.40)

where λu is the adjoint velocity and λη the adjoint free-surface displacement. For a
detailed derivation of (3.40), we refer to [10, Appendix C]. The functional gradient
for a given turbine density field d is computed in three steps:

1. Solve the weak formulation of the shallow water equations given by (3.35) for u
and η .

2. Solve (3.40) for λu and λη . Using the same finite element discretisation as in step
1 ensures that the gradient is consistent with the discrete shallow water model.

3. Evaluate the functional gradient using (1.149). The only term in the shallow
water equations which explicitly depends on d is the one containing ct(d)with
ct =

1
2CtAtd. Therefore,

∂F
∂d

(u,η ,d;λu,λη) =
1
2

CtAt

H
‖u‖u ·λu,

and the gradient is evaluated as

dJ
dd

(u,η ,d) =−1
2

CtAt

H
‖u‖u ·λu +

∂J
∂d

(u,η ,d).
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3.4.3 Implementation

The implementation of the turbine layout optimiser is available in the open-source
package OpenTidalFarm. Figure 3.3 visualises the optimisation loop and the soft-
ware components that are used internally.

  

Optimisation step
Improve turbine density

PDE solve
Solve shallow water equations
Evaluate functional of interest

Adjoint PDE solve
Solve adjoint equations
Evaluate functional gradient

+

Initial turbine density as user input
 

Fig. 3.3: The optimisation loop of the turbine layout designer: Initialised by a user-
defined turbine density d, the FEniCS framework [13] is employed to solve the
shallow water equations. In the next step, the adjoint shallow water equations and
the functional gradient are derived and calculated using dolfin-adjoint [8]. In the
optimisation step, we use either the interior point method from Optizelle [22] or
the LMVM method provided by TAO [14]. This yields an improved turbine density,
which is given to the PDE step and the procedure is iterated until a convergence
criteria is met

To test the correctness of the adjoint equation and the functional gradient, a
Taylor convergence test can be performed as described in Sect. 1.4.6. The Taylor
convergence tests are performed here for three different choices of turbine friction
functions, defined by
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ct,1(x,y) = 0.03,

ct,2(x,y) = 3 ·10−9 ·
(

1+ x2 +2y2
)
,

ct,3(x,y) = 0.01 ·
(

2+ sin(2πx)− cos(2πy)
)
,

for (x,y) ∈ Ωarray = [1500,2500]2, and equal to zero on Ω \Ωarray with Ω =
[0,4000]2. By applying the relation di = 2ct,i/(CtAt) with Ct = 0.6 and At =
314.15m2, this corresponds to the turbine density functions given by

d1(x,y) = 3.183 ·10−4,

d2(x,y) = 3.183 ·10−11 ·
(

1+ x2 +2y2
)
,

d3(x,y) = 1.061 ·10−4 ·
(

2+ sin(2πx)− cos(2πy)
)
,

for (x,y) ∈ Ωarray and equal to zero on Ω \Ωarray, where the physical unit m-2 is
omitted.

The example turbine densities d1,d2 and d3 all satisfy the inequality condition
in (3.1) with du given in (3.4) with d̄ ≈ 6.25 · 10−4 m-2. The d̄ value is derived
from d̄ = 1/D2

min with a realistic minimal distance Dmin ≈ 40m between individual
turbines. Moreover, d1,d2 and d3 produce outcomes for the power functional in a
range that we also encounter in our more realistic simulations.

All other parameters relevant for the turbine array optimisation problem, partic-
ularly the model parameters used in the shallow water equations, can be found in
table 3.4, except the viscosity which is chosen here as ν = 50 m2/s. In the model,
homogeneous Dirichlet boundary conditions for u are applied at the Northern and
Southern boundaries to the domain. On the western boundary, an inflow is gener-
ated by imposing η = 0.1 while at the eastern outflow boundary η = 0 is imposed.
The turbine density is represented by cubic Lagrange finite elements and the unde
lying mesh contains 10,202 elements.

The test results for the first and second-order Taylor remainders for d1,d2 and
d3 are given in tables 3.1, 3.2 and 3.3, respectively. The first-order Taylor remain-
ders decrease roughly by half between subsequent evaluations, and the second-order
Taylor remainders decrease roughly by four. The convergence order should be equal
to one for first-order Taylor remainders and two for second-order Taylor remainders.
The results of the Taylor remainder demonstrate the expected orders of convergence,
giving confidence that the adjoint and gradient computations are correct.

3.5 Mesh dependence in tidal turbine array layout optimisation

In this section, we analyse mesh-dependent convergence in the PDE-constraint
optimality problem presented in Sect. 3.2 with respect to different Riesz gradi-
ent representations for the functional of interest. Here, the functional of interest

P3 r-
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h R0(hδd) order R1(hδd) order

0.01 2.412 ·106 4.020 ·105

0.005 1.302 ·106 0.89 1.055 ·105 1.93
0.0025 0.677 ·106 0.94 0.270 ·105 1.96
0.00125 0.345 ·106 0.97 0.068 ·105 1.98
0.000625 0.174 ·106 0.99 0.017 ·105 1.99

Table 3.1: Taylor reminders R0 = |J(d1 + hδd)− J(d1)| and R1 = |J(d1 + hδd)−
J(d1)−h∇J(d1)δd| for the turbine layout example with functional given by (3.10).
The perturbation direction δd is a function nodal values given by random sam-
ples from [0,1]

h R0(δd) order R1(δd) order

0.01 1.620 ·106 2.752 ·105

0.005 0.876 ·106 0.89 0.720 ·105 1.93
0.0025 0.455 ·106 0.94 0.184 ·105 1.97
0.00125 0.232 ·106 0.97 0.046 ·105 1.98
0.000625 0.117 ·106 0.99 0.012 ·105 1.99

Table 3.2: Taylor reminders R0 = |J(d2 + δd)− J(d2)| and R1 = |J(d2 + δd)−
J(d2)−∇J(d2)δd| for the turbine layout example with functional given by (3.10).

ples from [0,1]

h R0(δd) order R1(δd) order

0.01 4.192 ·106 6.965 ·105

0.005 2.261 ·106 0.89 1.834 ·105 1.93
0.0025 1.175 ·106 0.94 0.471 ·105 1.96
0.00125 0.599 ·106 0.97 0.19 ·105 1.98
0.000625 0.302 ·106 0.99 0.030 ·105 1.99

Table 3.3: Taylor reminders R0 = |J(d3 + δd)− J(d3)| and R1 = |J(d3 + δd)−
J(d3)−∇J(d3)δd| for the turbine layout example with functional given by (3.10).

ples from [0,1]

P3

The perturbation direction δd is a function nodal values given by random sam-P3

The perturbation direction δd is a function nodal values given by random sam-P3



96 3 An application: Optimising the layout of tidal turbine arrays

is chosen as the profit functional from (3.11), using a profit margin m = 0.4, i.e.
Jprofit = 0.4 ·Revenue, and a cost coefficient C/(IkT ) = 452.39 kW . The other rel-
evant parameters for our simulations are stated in table 3.4. Further, we define the
domain Ω = [0,2000]× [0,1000] and the farm area Ωarray = [750,1250]× [350,650]
with an initial turbine friction equal to zero (no turbines placed within the array). In
the model, weak homogeneous Dirichlet boundary conditions for u are applied on
the Northern and Southern boundaries of the domain. On the western side boundary,
an inflow is generated by imposing u = (2,0)T strongly, with the outflow boundary
condition on the eastern boundary strongly imposed by η = 0. The turbine density is
represented by discontinuous Galerkin finite elements. The underlying meshes used
contain between 1258 and 8604 elements, depending on the mesh refinement (see
Sect. 3.5.1). The optimisation problem is solved using a primal log-barrier interior
point method [22] that allows for user-defined inner products. The optimisation is
terminated when the L2(Ω) norm of the functional gradient, computed using the
L2(Ω) inner product, is smaller than 10−7.

The reader is reminded that this is a continuous optimisation problem, that is the
turbine density with respect to which the optimisation is performed is a member of
an infinite-dimensional function space, namely given by L2(Ω). A discussion of this
choice of function class was given in Sect. 3.2.3. Besides the PDE-constraint, which
here is given by the nonlinear shallow water equations in steady-state form, the opti-
misation problem is subject to inequality constraints, that is a lower and upper bound
for the turbine density function. For the optimisation step, the interior point method
presented in Sect. 1.5.5 is applied, where its implementation allows the choice of the
underlying inner product. Throughout this section, linear Lagrange finite elements
were used for the spatial discretisation of the turbine density function.

Table 3.4: Parameters for the shallow water equations and the tidal turbine farm used
for the continuous turbine density optimisation

Parameter Symbol Value Units

Water density ρ 1000 kg/m3

Viscosity ν 5 m2/s
Water depth h 50 m
Gravity g 9.81 m/s2

Natural bottom friction cb 0.0025 −
Turbine radius 10 m
Minimum distance between turbines 40 m
Maximum turbine density d̄ 6.25 ·10−4 m−2

Maximum turbine friction 0.059 −
Thrust coefficient Ct 0.6 −
Turbine cross section At 314.15 m2
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3.5.1 Mesh refinement

For the numerical analysis of the mesh-dependent behaviour when solving this op-
timisation problem, two approaches for a non-uniform refinement of the underlying
meshes are considered.

In the first approach, meshes are refined according to a random refinement rule:
starting with a mesh that is uniform in the turbine farm area in the middle of the
rectangular mesh, the (i+1)th mesh is given by randomly refining the farm region
in the ith mesh, i.e. the refinement schema introduced in 2.3.2.1 is applied. The prob-
ability with which an element is labelled for refinement equals 0.15. The resulting
randomly refined meshes used in the experiments are presented in Fig. 3.4.

In the second refinement approach, only a region around a single location within
the mesh is refined. Starting with a mesh that is uniform in the turbine area, the
resolution in element size around this point increases by a factor of five for every
refinement. For the sake of saving space and due to the smaller complexity of this
refinement schema, only one of these so-called point refined meshes is displayed,
see Fig. 3.5.

Fig. 3.4: Successively, randomly refined meshes in the turbine array area used for
the simulations with results given in Fig. 3.8 and 3.9
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Fig. 3.5: Mesh with increased resolution around one point located on the boundary
of the turbine region

3.5.2 Numerical experiments

In this section, the impact of using the `2 and L2 Riesz representations of the func-
tional derivative on the numerical solutions is analysed. Figure 3.6 displays the evo-
lution of the profit functional with respect to iteration numbers for successively
refined meshes.

The results for the randomly refined meshes are shown in Figs. 3.7a and 3.7b.
We make the following observations: for the uniform mesh (refinement level 0), the
algorithm using the `2 representation of the functional derivative converges to the
optimal value in fewer iterations than with the L2 representation. However, succes-
sively refining the mesh decreases the rate of convergence behaviour for the `2 based
algorithm. Furthermore, the optimal profit functional value achieved decreases with
increasing mesh refinements.

Other than for the case with the uniform mesh, the speed of the algorithm with
respect to both the iteration number as well as the convergence limit for the reduced
functional is larger if the functional derivative representation in L2 is used in the
optimisation. The convergence limit and speed is stable for the optimisation method
using L2 Riesz represented gradients over the range of the underlying meshes con-
sidered.

Overall, similar behaviour in the numerical results between randomly refined
and point refined meshes from Figs. 3.7c and 3.7d is observed. However, the point
refinement rule does not lead to convergence limits of the profit functional in the `2

case that lie significantly below the optimum achieved using L2 Riesz represented
gradients. The convergence limit of the profit functional is reached after around 30
iterations using the L2 inner product, independent of the refinement level. Using the
`2 inner product, the iteration number increases with refinement. On the finest mesh,
around 80 iterations are necessary.

The gradients with respect to both inner product representations have a different
geometrical structure, see Fig. 3.7. In the first iteration (d(x) = 0), the gradients
represented with respect to L2 demonstrate a mostly flat increase of the friction
field over the entire turbine area. It is further interesting to observe the Galerkin
mass matrix scaling in the point refinement case for the `2 gradient representation
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(a) L2 representation & random refinement
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(b) `2 representation & random refinement
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(c) L2 representation & point refinement
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(d) `2 representation & point refinement
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Fig. 3.6: Functional of interest given by the profit functional plotted as a function
of optimisation iterations using L2 and `2 gradient representations for successively
refined meshes. For the upper figures, the random refinement rule is applied. For the
lower figures, the point refinement rule is applied. The numbers in the legend state
the degree of refinement of the underlying mesh

in such a clear manner: The smaller the size of the underlying element, the smaller
the gradient values on this element.

Figures 3.8 and 3.9 present plots of the optimal friction field associated with
the optimal turbine density function, obtained using the L2 and `2 inner product
representation for the optimisation method, respectively. The underlying meshes
correspond to those shown in Fig. 3.4 (randomly refined meshes).

The reader is reminded that the boundary conditions for the shallow water equa-
tions, that are discussed in Sect. 3.4.1, describe a constant inflow from the western
side of the domain towards the eastern side, and in this simple flat-bottomed channel
geometry the flow remains close to west to east throughout the domain. Based on
this information, the following consideration for an optimal turbine density distri-
bution can be made: To maximise the power output (as part of the profit functional),
a friction field associated with the turbine density field is formed that extracts the
most possible power from the flow. Starting from d = 0, it makes sense if a con-
siderable part of the increased friction field is orthogonal to the velocity. Due to the
presence of increased friction in the farm area, and a consequent ‘blockage’ effect,
the flow is diverted towards the Northern and Southern boundaries of the domain. To
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(a) L2 representation & random refinement (b) `2 representation & random refinement

(c) L2 representation & point refinement (d) `2 representation & point refinement

Fig. 3.7: Plots of the L2 and `2 representations of the functional derivative on the
finest mesh for both refinement schemas (top: random refinement; bottom: point
refinement) for d = 0

‘capture’ most of the flow, and hence maximise energy extraction, the friction along
the Northern and Southern boundaries of the turbine region might be expected to
increase. Summarizing, one might expect the optimal friction distribution to have
a “U” shape with the open side to the western side of the domain. This physical
intuition is confirmed by the results given in Fig. 3.8, where the L2 inner product
was used. In this case, the overall friction field distribution does not change signifi-
cantly when refining the underlying mesh, which confirms the observation of mesh
independence in the optimisation for the reduced functional above.

Considering the results for the optimal friction distribution displayed in Fig. 3.9
(using `2) we observe that the friction field in this case does change with mesh
refinement. Distributions that contradict the physical consideration from above yield
slightly (refinement levels 2 and 4) to significantly (refinement level 5) lower profits.

To confirm the dependence of the `2 based algorithm on the non-uniformity in
the mesh, a series of experiments using a series of uniformly refined meshes were
performed as a reference (not displayed). For these the iteration number to reach
convergence is observed to not increase using the `2 (as well as L2) based algo-
rithm with refinement. Analogously, the final optimal friction field (and hence profit
functional value) does not change significantly.
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Fig. 3.8: Results of turbine density optimisation using the L2 representation of the
functional derivative for successively finer meshes corresponding to Fig. 3.4 (ran-
dom refinement)

A Python script that performs the tidal turbine array optimisation with the config-
uration from this chapter can be found in [16]. In the optimisation step, the bounded
LMVM method in the TAO library [14] is used.

3.6 Tidal resources assessment in the Pentland Firth, Scotland

In this example we apply the turbine layout optimisation to a realistic domain: the
Pentland Firth between mainland Scotland and the Orkney Islands. The Pentland
Firth is considered highly suitable for tidal turbine deployments [7], due to its fast
tidal streams of up to 5 m/s speed in certain locations.

The aim of our experiment is to identify suitable deployment areas for tidal tur-
bine farms. More specifically, the idea is to use the layout optimisation method as
described in the previous sections, but apply it to all suitable areas across the Pent-
land Firth where turbines could be deployed. Since current tidal turbine technology
can typically only be installed in waters with a certain depth range, we define this
permissible area here as:
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Fig. 3.9: Results of turbine density optimisation using the `2 representation of the
functional derivative for successively finer meshes corresponding to Fig. 3.4 (ran-
dom refinement)

Ωfarm = {x ∈Ω with 25 m≤ h(x)≤ 60 m}. (3.41)

Figure 3.10a shows the domain of interest, and the sub-domain of potential turbine
installations. The discretised domain is shown in Fig. 3.10b. The mesh element sizes
are approximately 15 m in the proximity of the coast and vary up to 500 m in the
deeper coastal ocean.



3.6 Tidal resources assessment in the Pentland Firth, Scotland 103

(a) Potential turbine area in red (b) Domain and mesh

Fig. 3.10: The domain, mesh and potential turbine areas (Ωfarm) of the Pentland
Firth example. The Pentland Firth is located in Scotland, UK and is of high interest
for tidal turbine array development

The formulation of the farm optimisation problem (3.1) was extended to capture
the reversing flood-ebb flow of a tidal cycle by replacing the single shallow water
constraint by two subsequent, steady-state shallow water solves. Each solve corre-
sponds to one peak (flood and ebb) flow within one tidal cycle. For our experiment,
the specific date stamps were 13:55 on the 18 September 2001, yielding a east-west
flow, and 20:10 on the 18th September 2001, yielding a west-east flow in the Pent-
land Firth.

The objective functional is defined as the sum of the power productions (using
(3.10)) at the two peak flows and a regularisation term:

JP(u1,d)+ JP(u2,d)+C
∫

Ωfarm

‖∇d(x)‖2dx,

where ui, i= 1,2 are the horizontal velocities from the two shallow water solves, d is
the farm turbine density, and C > 0 is the regularisation coefficient. The H1

0 regular-
isation term helps to enforce smoothness in the turbine density function, and is used
to avoid infeasible “checkerboard” configurations. A list of the model parameters is
shown in table 3.5. Overall, the parameters were chosen more as a demonstration
setup for the numerical technology rather than to provide physically realistic pre-
dictions. In particular, the viscosity needed to be chosen artificially high in order for
the steady-state solvers to converge. A more accurate model would therefore use a
time-dependent shallow water solver.

The problem was solved with the bounded LMVM method in the TAO library
[14]. To study the mesh dependency of this problem, the solver was executed both
with the `2 and the L2 inner products for the control variable. The convergence
plots for both optimisations are plotted in Fig. 3.11. In both cases, the optimisation
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Table 3.5: Parameters for the shallow water equations and the tidal turbine farm used
for the continuous turbine density optimisation

Parameter Symbol Value Units

Water density ρ 1000 kg/m3

Viscosity ν 10,000 m2/s
Water depth h [4] m
Gravity g 9.81 m/s2

Natural bottom friction cb 0.0025
Maximum turbine friction ct(1) 10.0
Regularisation coefficient C 104

algorithm terminates in less than 25 iterations. The optimisation with the L2(Ω)
inner product can be seen to reach an optimum with a higher functional value.
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Fig. 3.11: The optimisation with the `2 inner product terminates after 17 iterations
with a functional value of 17,889. The optimisation with the L2 inner product termi-
nates after 23 iterations with a functional value of 19,136.

The optimal turbine configuration obtained for both the `2 and the L2 based al-
gorithms is shown in Fig. 3.12. The difference in the two solutions is clearly visible.
In particular, in the south-east region, the configuration with the L2 inner product
(3.12a) deploys significantly more turbines compared to the solution with the `2 in-
ner product (3.12b). Figures 3.12c and 3.12d provide a close-up view to the area east
of Stroma island. In these figures, the `2-based solution shows the mesh-dependent
structure, while the L2-based solution is smoother and shows no mesh dependency.
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Fig. 3.12: The optimised turbine densities for the Pentland Firth example, computed
with the L2 inner product (figure a) and the `2 inner product (figure b). Figures c and
d show a zoom of the region to the east of Stroma Island.

(a) L2(Ω)

(b) `2

(c) L2(Ω) (zoom) (d) `2 (zoom)
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