
Chapter 1
Introduction to PDE-constrained optimisation

The use of computational models based on the numerical solution of partial differ-
ential equations (PDEs) to simulate physical processes is a powerful complement
to physical experiments. Simulations can be undertaken to consider scenarios for
which experiments are impossible, such as climate physics or the dynamics of black
holes and galaxies. However, a particular strength of simulations is in answering
the inverse problems which pervade science and engineering: to which inputs of
my system are my output results most sensitive? Is this system stable or unstable?
Which configuration or design produces the best outcome? This last question can
be rephrased as the core problem of PDE-constrained optimisation: which input pa-
rameters minimise some output measurement, given the constraint that the system
state must be a solution to a given PDE.

In engineering, the need for optimisation emerges regularly when seeking im-
proved designs. A classical example is concerned with a key element in aeronautical
engineering:

What is the optimal shape of an aerofoil?

In the pioneering work of [20], this question is considered as an optimisation prob-
lem governed by the Euler equations for compressible flow. A similar design prob-
lem is investigated in Chap. 3 of this work. It considers the situation where a large
number of tidal turbines are to be deployed within an array in order to extract energy
from tidal currents. The investigated optimisation problem is:

What is the optimal spatial distribution of the tidal turbines?

A common task in the geosciences is to determine unknown parameters such that
a computer model best reproduces existing measurements [13]. For example, satel-
lite imagery can provide detailed surface information about the ocean, but in general
little is known about its interior [35]. The ECCO2 project incorporates most oceano-
graphic and meteorologic measurements available to date into an ocean simulator to
create an accurate description of the time-evolving state of the ocean [25]. Here, the
problem formulation is:

1© The Author(s) 2017
T. Schwedes et al., Mesh Dependence in PDE-Constrained
Optimisation, Mathematics of Planet Earth,
DOI 10.1007/978-3-319-59483-5_1

2 1 Introduction to PDE-constrained optimisation

What is the state of the ocean at the beginning of the observation interval that
minimises the difference between simulation and measurements?

Despite the variety of these tasks, they can all be formulated as optimisation prob-
lems constrained by PDEs. In this work we will employ the finite element method
to produce numerical solutions, so the PDEs will be stated in weak, or variational,
form. The generic form of a PDE-constrained optimisation problem is then:

min
u∈V
m∈M

J(u,m)

subject to F(u,m;v) = 0 ∀v ∈V ′,
(1.1)

where M is the space of all possible values of optimisation parameters, and V , V ′

are suitable function spaces – indeed in most cases V =V ′. Further, J : M⊗V → R
is the functional of interest that is to be minimised, and F(u,m;v) = 0 is a PDE
parametrised by m with solution u for all values of the test function v.

As an example, reconsider the optimal design of the aerofoil. In this case, the
parameter m contains the parametrised shape of the aerofoil, for example the coef-
ficients of its Bézier curve. The physics are described by the Euler equations, which
yield the pressure and velocity for a given aerofoil design. Finally, the functional of
interest J computes some performance metric for the aerofoil, for example by eval-
uating the drag-lift ratio. The issue where a performance metric is to be maximised
while formulation (1.1) actually describes a minimisation problem is easily resolved
by seeking to minimise the negative of J instead.

The necessary ingredients for solving such optimisation problems numerically
are the following: first, we need to be able to approximate the solution u of
F(u,m;v) = 0, the underlying PDE. To that end, the finite element method is in-
troduced in Sect. 1.1. There are a number of factors motivating the adoption of
the finite element method in this work rather than any of the other commonly em-
ployed numerical methods for PDEs. The finite element method combines geomet-
ric flexibility, the availability of a wide range of discrete function spaces enabling
practitioners to choose those with optimal properties for a given problem, and a par-
ticularly elegant mathematical representation which facilitates rigorous analysis. In
particular, the finite element method makes the role of particular discrete function
spaces, and their dual spaces, explicit in the discretisation. As will become appar-
ent, the relationship between these function spaces and mesh dependence is critical.
The choice of the finite element method also presents the opportunity to present the
derivation of the adjoint PDE in Sect. 1.4 in the setting of a variational problem. This
is in contrast to the common practice in works such as [17] of deriving the adjoint of
the strong form of the PDE. It is hoped that the variational derivation presented here
will be particularly useful to those who employ the finite element method. How-
ever, it is important to note that the issues considered in this work carry over to
other discretisation approaches: it is not possible to avoid mesh dependence simply
by switching to a finite difference or finite volume formulation.

Second, we must be able to compute derivatives of J with respect to the param-
eters m. Many problems arising in PDE-constrained optimisation have the common

1.1 The Finite element method 3

feature that the solution of the governing PDE is computationally demanding and
that a large number of parameters need to be optimised. Naı̈ve differentiation meth-
ods scale linearly with the number of parameters, which makes them computation-
ally too costly for many applications. However, these drawbacks can be overcome
through use of the adjoint approach for computing derivatives, which is introduced
in Sect. 1.4.

Finally, suitable optimisation methods must be employed. In many applications
the situation arises in which the parameters m denote a function rather than a set of
numbers. For example, the shape of the aerofoil in the above mentioned example can
be considered as a function. Optimisation methods that are formulated on abstract
spaces, including functions spaces and Euclidean spaces, are introduced in Sect. 1.5.

1.1 The Finite element method

The finite element method approximates the solution of the weak form of a PDE
by replacing the infinite-dimensional spaces of solution functions and test functions
with finite-dimensional subspaces. This is achieved by decomposing the underlying
domain into a collection of subdomains, or cells, on each of which the admissible
functions are a defined set of polynomials. Discrete integral operators are evalu-
ated on each cell and the results recombined to form and solve the global problem
over the entire domain. In this section the concept of finite elements is introduced
using two simple but representative PDEs, namely, Poisson’s equation and the time-
dependent viscous Burgers equation. The latter is nonlinear and its numerical so-
lution additionally requires a discretisation of the temporal dimension. The former
is linear and is the classical example used when introducing finite elements. It is
therefore the starting point of this section.

1.1.1 Poisson’s equation

The Poisson equation,

−∆u = f on Ω , (1.2)

is the simplest elliptic partial differential equation and will serve as a prime example
for the derivation of the finite element method. Here we will assume that we are in
two spatial dimensions and thus

∆ :=
∂ 2

∂x2
1
+

∂ 2

∂x2
2
, (1.3)

4 1 Introduction to PDE-constrained optimisation

denotes the Laplace operator (or Laplacian) for functions on R2. Moreover, f is
a real-valued source function on the domain Ω ⊂ R2 and u the associated real-
valued solution. The solution u also satisfies boundary conditions defined on the
boundary ∂Ω of the domain. For the sake of simplicity we only introduce the two
most common boundary conditions given by:

Dirichlet-type: u = gD on ∂ΩD, (1.4)

Neumann-type:
∂u
∂n

= gN on ∂ΩN , (1.5)

where ∂ΩD∪∂ΩN = ∂Ω and ∂ΩD∩∂ΩN = /0. Furthermore, n = (n1,n2)
T denotes

the unit outward normal vector to ∂Ω and

∂u
∂n

=

(
∂u
∂x1

,
∂u
∂x2

)
· (n1,n2)

T . (1.6)

Thus, a Neumann boundary condition prescribes the derivative of the solution in
the direction pointing directly outwards relative to the domain, whereas a Dirichlet
boundary condition prescribes the value of the solution itself on the boundary. In the
case where ΩD = /0 we speak of pure Neumann boundary conditions, and if ΩN = /0
we speak of pure Dirichlet boundary conditions. Poisson’s equation 1.2 together
with the boundary conditions (1.4, 1.5) is called a boundary value problem.

1.1.1.1 Derivation of weak solutions

A function u that is sufficiently smooth and satisfies (1.2) as well as (1.4, 1.5) is
called a classical solution to the boundary value problem. In the case of Dirichlet
boundary conditions, a classical solution u must be twice differentiable on Ω and
continuous on the closure Ω̄ , i.e. u ∈C2(Ω)∩C0(Ω̄). It can be shown analytically
that for sufficiently smooth source data f and boundary ∂Ω , a classical solution
exists and is unique. However, many problems lack these smoothness or regularity
conditions such that the classical formalism becomes unsuitable. This can be the
case for non-convex domains; see [9, p.11-13]. Further, consider the case in which
f in (1.2) is a discontinuous function. Were there a classical solution u, one would
have f = ∆u ∈C0(Ω) contradicting the assumption on the discontinuous nature of
f .

Discontinuous sources are physically perfectly reasonable. In thermodynamics,
the Poisson equation describes the steady-state temperature profile u under some
heating source f . If f = 1 on one part of the domain, and f = 0 on the rest of the
domain, this corresponds to a constant heating applied to only part of the domain.

In order to overcome the limitations of classical solutions, we relax the regu-
larity properties required of the solution by adopting an alternative formulation of
the boundary value problem. To this end, we suppose that the solution u : Ω → R
belongs to some suitable function space V . We multiply both sides of (1.2) by an ar-
bitrary test function v ∈V ′ from some appropriate set of test functions and integrate

1.1 The Finite element method 5

over the whole domain. The problem thus becomes, find u ∈V such that

−
∫

Ω

∆u(x)v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈V ′. (1.7)

Applying integration by parts to the left hand side yields∫
Ω

∇u(x) ·∇v(x)dx−
∫

∂Ω

∂u
∂n

(s)v(s)ds =
∫

Ω

f (x)v(x)dx, (1.8)

where ∇ := (∂

∂x1
, ∂

∂x2
) denotes the nabla operator. A function u satisfying (1.8) is

called a weak solution since it requires less smoothness than a classical one. Indeed,
a weak solution u does not need to be twice differentiable. Instead regularity con-
ditions on the spaces V and V ′ required to make (1.8) well-posed are formulated
in terms of the integrability of functions and their first derivatives. One important
function space in this context is the space of Lebesgue square-integrable functions

L2(Ω) :=
{

u : Ω → R
∣∣∣∣ ∫

Ω

u2(x)dx < ∞

}
, (1.9)

with the associated inner product

〈u,v〉L2(Ω) :=
∫

Ω

u(x)v(x)dx, (1.10)

and norm

‖u‖L2(Ω) :=
(
〈u,u〉L2(Ω)

)1/2
=

√∫
Ω

u2(x)dx. (1.11)

Applying pure Neumann conditions to (1.8) yields∫
Ω

∇u(x) ·∇v(x)dx−
∫

∂Ω

gN(s)v(s)ds =
∫

Ω

f (x)v(x)dx. (1.12)

Note that any solution to (1.12) is only defined up to a constant. Uniqueness holds
if some of the Neumann boundary is replaced by a Dirchlet boundary.
For (1.12) to be well-defined we require every integral term to be finite. For the
forcing term to be finite obviously requires f ,v ∈ L2(Ω). For the boundary term
we additionally require that gN ∈ L2(∂Ω) and the so called trace inequality, which
relates an integral over the boundary to an integral over the whole domain; see [8,
Sect. 1.5.1] for details. For the Laplacian term we note that if ∂u

∂xi
, ∂v

∂xi
∈ L2(Ω) for

all i then

6 1 Introduction to PDE-constrained optimisation∣∣∣∣∫
Ω

∇u(x) ·∇v(x)dx
∣∣∣∣=
∣∣∣∣∣∑i

∫
Ω

∂u
∂xi

(x)
∂v
∂xi

(x)dx

∣∣∣∣∣ (1.13)

≤∑
i

∣∣∣∣∣
〈

∂u
∂xi

,
∂v
∂xi

〉
L2(Ω)

∣∣∣∣∣ (1.14)

< ∞. (1.15)

From these considerations, we conclude that a natural space for both the weak so-
lution u of (1.12) as well as the associated test functions v to exist in is the Sobolev
space H1(Ω) defined by

H1(Ω) :=
{

u : Ω → R
∣∣∣∣u ∈ L2(Ω),

∂u
∂xi
∈ L2(Ω) ∀i

}
. (1.16)

In summary, while a classical solution of the boundary value problem (1.2) and
(1.4, 1.5) for Poisson’s equation must be twice differentiable, a weak solution need
only be square integrable and have square-integrable first derivatives.

1.1.1.2 Weak solutions for higher-order PDEs

In a manner analogous to that presented above for Poisson’s equation, higher-order
partial differential equations whose classical solutions require higher-order differ-
entiability (triple or more) can be rewritten in their weak integral form by applying
integration by parts. The regularity conditions posed on the (weak) solution thereby
reduce again to integrability conditions on the solution itself and derivatives of lower
order than in the classical formalism. Consider for example the biharmonic equation

∆
2u = f , (1.17)

with ∆ 2 = ∑
2
i=1 ∑

2
j=1 ∂ 2

i ∂ 2
j . Multiplying (1.17) by a test function, integrating, and

applying integration by parts twice naturally leads to integrability conditions on the
second derivatives of the solution. A natural choice for the space of solutions is the
Sobolev space H2(Ω) given by

H2(Ω) :=
{

u : Ω → R
∣∣∣∣u ∈ L2(Ω),

∂u
∂xi
∈ L2(Ω),

∂ 2u
∂xi∂x j

∈ L2(Ω) ∀i, j
}
.

(1.18)

1.1.1.3 Weak derivatives

The partial derivatives appearing in H1(Ω) and H2(Ω) are not understood in the
usual strong sense. Recall the usual definition

1.1 The Finite element method 7

∂u
∂xi

(x) = lim
ε→0

u(x+ εei)−u(x)
ε

, (1.19)

where ei denotes the unit vector in the xi direction for i = 1,2. Instead, in a man-
ner analogous to the weak formulation, they are understood in a spatially averaged
way with respect to a set of test functions. These derivatives are therefore called
weak derivatives, and can be defined for locally integrable functions, i.e. that are
integrable over compact sets inside Ω . The space of these functions is denoted by
L1

loc(Ω). We say that u ∈ L1
loc(Ω) has a weak derivative with respect to xi, denoted

by Dxi
wu, if there is a function wxi ∈ L1

loc(Ω) such that∫
Ω

wxi(x)v(x)dx =−
∫

Ω

u(x)
∂v
∂xi

(x)dx ∀v ∈C∞
0 (Ω), (1.20)

where C∞
0 (Ω) is the set of smooth functions on Ω with compact support. In that

case, we set Dxi
wu = wxi . Definition (1.20) can be easily generalised for higher-order

partial derivatives, appearing for instance in H2(Ω).
It follows immediately from the integration by parts formula that any differen-

tiable function is also weakly differentiable. Weak derivatives are useful since they
allow for important classes of functions to have a (weak) derivative where classi-
cally they would not. For instance, H1(Ω) contains piecewise linear polynomials,
which are an essential class of functions used for finite element approximations. We
shall return to this later when finite element spaces are introduced.

1.1.1.4 Weak formulation

In order to solve the generic integral form (1.8) of the boundary value problem with
boundary conditions (1.4, 1.5), let us assume that

∫
∂ΩD

ds > 0, i.e. the boundary
conditions are not purely Neumann. Following [8, Sect. 1.2], we define the solution
and test function spaces by

H1
D :=

{
u ∈ H1(Ω)

∣∣u = gD on ∂ΩD
}
, (1.21)

H1
0 :=

{
v ∈ H1(Ω)

∣∣v = 0 on ∂ΩD
}
, (1.22)

respectively. The Dirichlet boundary conditions are contained in the set H1
D of weak

solutions while the test function space vanishes over the corresponding part of the
boundary. The Neumann boundary conditions do not explicitly restrict the solution
or the test functions.

The complete weak formulation of the boundary value problem can now be spec-
ified as follows: find u ∈ H1

D(Ω) such that∫
Ω

∇u(x) ·∇v(x)dx−
∫

∂ΩN

gN(s)v(s)ds =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0 (Ω). (1.23)

8 1 Introduction to PDE-constrained optimisation

The reader might reasonably ask what the physical interpretation of a weak solution
to a PDE might be in contrast to a classical one. In the classical formalism, the PDE
solution is prescribed by the equations of the PDE at every point of the domain and
its boundary. However, any PDE is just a mathematical representation that approx-
imates an actual physical phenomenon, whose observations can never be perfectly
localised. It is therefore physically more meaningful, and conforms with what is ac-
tually observed in an experiment of the real world, to instead consider what happens
on average over a small region of space. This is precisely what is described in the
weak formulation of a PDE. This can be seen if we take a smooth test function v
whose support is a small neighbourhood of some point x0 ∈ Ω and whose integral
is equal to one. In this case ∫

Ω

u(x)v(x)dx (1.24)

represents a spatial average of the values of u in a small neighbourhood of x0. Fur-
ther, the solutions to many physical problems contain discontinuities such as shock
waves. The weak formulation allows for the existence of these solutions in a math-
ematically rigorous framework.

1.1.1.5 Galerkin finite element method

The function spaces H1
D and H1

0 from (1.21, 1.22) are of infinite dimension. To see
this for H1

0 suppose Ω = (0,π)2 ⊂ R2, then the set of functions {λk}k∈N with

λk(x1,x2) := sin(kx1)cos
(

kx2 +
π

2

)
∀(x1,x2) ∈Ω , (1.25)

are linearly independent, and λk ∈ H1
0 (Ω) ∀k ∈ N. Thus, H1

0 (Ω) cannot be of finite
dimension.

Since computational resources are finite, numerically solving the weak form
(1.23) requires a finite-dimensional approximation. Let us therefore choose an ap-
propriate subspace V0,h ⊂ H1

0 of test functions of dimension d ∈ N, which we call a
finite element space. Any vh ∈V0,h can be represented with respect to a set of basis
functions {ϕ1, . . . ,ϕd} for V0,h, which we shall call shape functions, and coefficients
vh,1, . . . ,vh,d ∈ R, by

vh =
d

∑
i=1

vh,iϕi. (1.26)

The Dirichlet boundary condition in the solution is interpolated by an additional
set of shape functions {ϕd+1, . . . ,ϕd+dD} and associated coefficients gh,i. Thus, the
finite element solution uh ∈ VD,h, where VD,h ⊂ H1

D is spanned by the set of basis
functions {ϕd+1, . . . ,ϕd+dD ,ϕd+1, . . . ,ϕd+dD}, can be expressed in a unique way via
the coefficients uh,1, . . . ,uh,d and gh,d+1, . . .gh,d+dD by

1.1 The Finite element method 9

uh =
d

∑
i=1

uh,iϕi +
d+dD

∑
i=d+1

gh,iϕi. (1.27)

Replacing u ∈ H1
D(Ω) and v ∈ H1

0 (Ω) in the weak formulation (1.23) by uh ∈ VD,h
and vh ∈V0,h, respectively, yields the finite-dimensional approximation we are look-
ing for, which is commonly termed the Galerkin finite element approximation, i.e.
find uh ∈VD,h such that∫

Ω

∇uh(x) ·∇vh(x)dx−
∫

∂ΩN

gN(s)vh(s)ds =
∫

Ω

f (x)vh(x)dx ∀vh ∈V0,h.

(1.28)

Making use of the representations (1.26) and (1.27) of vh and uh with respect to their
basis functions, respectively, (1.28) is equivalent to

d

∑
j=1

uh, j

∫
Ω

∇ϕ j ·∇ϕi dx =
∫

Ω

ϕi f dx+
∫

∂ΩN

ϕigN ds

−
d+dD

∑
j=d+1

uh, j

∫
Ω

∇ϕ j ·∇ϕi dx ∀i = 1, . . . ,d.

(1.29)

This system of equations can be rewritten in matrix form, which we term the
Galerkin system and is given by

Au = f, (1.30)

where u := (uh,1, . . . ,uh,d)
T , the entry Ai j of the ith row and jth column of A is given

by

Ai j =
∫

Ω

∇ϕ j ·∇ϕi dx, (1.31)

and the ith component fi of the vector f is given by

fi =
∫

Ω

ϕi f dx+
∫

∂ΩN

ϕigN ds−
d+dD

∑
j=d+1

uh, j

∫
Ω

∇ϕi ·∇ϕ j dx. (1.32)

The matrix A is usually referred to as the stiffness matrix, while f is often termed
the load vector.

Spatially, the domain Ω ⊂ R2 is divided into a mesh of polygons such as tri-
angles or quadrilaterals, or indeed other two-dimensional shapes; these are termed
the elements or cells. The finite element spaces are chosen such that the basis func-
tions ϕ1, . . . ,ϕd have compact support, i.e. they are each only locally nonzero on the
mesh, thereby creating local matrix and vector contributions which are in general far
smaller than A and f. The local matrix and vector quantities can easily be computed

10 1 Introduction to PDE-constrained optimisation

and can then be assembled into the global Galerkin system that models the entire
problem.

1.1.1.6 Triangular Lagrange finite elements

For the sake of simplicity and following [8, Sect. 1.3.1], let us assume that the
domain Ω is polygonal, i.e. Ω can be tessellated entirely with triangles ∆k ⊂Ω for
k = 1, . . . ,K, i.e.

∪K
k=1∆̄k = Ω̄ , (1.33)

∆k ∩∆` = /0 ∀k 6= `. (1.34)

We shall call the set {∆1, . . . ,∆K} a triangulation and denote it by Th. The edges and
vertices of the set of triangles form a mesh, and we shall refer to each triangle as a
cell or an element. The finite element spaces we shall consider are the continuous
piecewise polynomials of degree p. This means that the space restricted to any cell
is the space of polynomials of degree p on that cell, and with the space constrained
to be continuous along the interior edges and at every vertex of the mesh. The natu-
ral basis functions for this space are polynomials of degree p which take the value
1 at a particular nodal point and vanish at the nodal points for all other basis func-
tions. The simplest choice for such basis functions is the set P1(Th) of piecewise
linear polynomials. Any ϕ j ∈ P1(Th) is a linear function on each of the surrounding
elements of vertex j and is identically equal to zero on all other elements. Figure
1.1 shows an example of a P1 basis function which is nonzero on six elements of a
triangular mesh. Clearly, ϕ j is not differentiable (at vertex j and along the border
of the patch of its surrounding elements). However, it is simple to show that ϕ j is
weakly differentiable and therefore that P1(Th)⊂ H1(Ω).

Fig. 1.1: P1 basis function

The definition of the set P2(Th) of piecewise quadratic functions requires addi-
tional nodes located at the mid-point of each mesh edge. As with P1, a basis function
ϕ j ∈ P2 ⊂ H1(Ω) is nonzero only on the elements surrounding node j. More pre-

1.1 The Finite element method 11

cisely, any ϕ j ∈ P2(Th) is a quadratic function on each of the elements adjacent to
node j and is identically equal to zero on all other elements. Further, ϕ j is equal to
one at node j and equal to zero on all other nodes in the mesh. Figure 1.2 shows the
two types of P2 basis functions, the first one being equal to 1 on an edge mid-point
of an element and the second one being equal to 1 on a vertex. Finite elements can
be defined in a similar manner for piecewise polynomial functions of arbitrary order
p ∈ N.

(a) being equal to 1 on the common edge
node of two elements

(b) being equal to 1 on the common vertex
node of six elements

Fig. 1.2: P2 basis functions

The Galerkin matrix A created by this choice of basis functions is sparse. For
example, on a perfectly regular mesh, each interior vertex is surrounded by six tri-
angles, so the matrix rows associated with the P1 nodes at each interior vertex have
seven non-zeros. More generally the number of non-zeros on each row depends only
on the local mesh topology: it does not increase as the mesh is refined or the domain
extended. Similarly, the rows corresponding to the interior vertex nodes of P2 on
a completely regular mesh have 19 nonzeros, while the rows associated with edge
nodes have 9 nonzeros. The sparsity of A is exploited to solve the Galerkin system
(1.30) efficiently. A discussion of efficient sparse linear solvers however is beyond
the scope of this work, but the interested reader is referred to [6], [8] and [32] for
details.

1.1.1.7 Assembly of the Galerkin system

Having created a triangulation of the domain Ω with an associated set of basis func-
tions ϕ1, . . . ,ϕd , the linearity of integration can be exploited to decompose the as-
sembly of the Galerkin system (1.30) into a local integral on each cell and boundary
facet. For example, we can rewrite the global stiffness matrix (1.31) as

12 1 Introduction to PDE-constrained optimisation

Ai j =
∫

Ω

∇ϕ j ·∇ϕi dx,

= ∑
∆k∈Th

∫
∆k

∇ϕ j ·∇ϕi dx.
(1.35)

On every element ∆k there are only a small number nk ∈N of basis functions which
are nonzero. For instance a P1 space has only three such basis functions per element
while for P2, there are six. For each cell k, we can define a function, sk(), which
maps the local basis function index to the corresponding global index i . From this
we can define the element scatter matrix Sk[i, j] = δ (sk(), i), and hence write the
global stiffness matrix as a sum of local contributions:

A = ∑
k

SkAkST
K , (1.36)

with the local stiffness matrix on cell k given by

Ak[,] =
∫

∆k

∇ϕsk()
·∇ϕsk() dx. (1.37)

Note that the local stiffness matrix is a dense nk × nk matrix which contributes a
sparse update to A with sparsity given by the element scatter matrix. In practice,
the element scatter matrix is not actually constructed. Instead, the scatter function
sk is employed directly to add contributions to the appropriate entries of A. Any
essential boundary conditions are neglected in the local stiffness matrix. They are
instead applied by modifying the global stiffness matrix A, either during or after
the addition of the local contributions. This process applies mutatis mutandis to the
assembly of the global load vector from local contributions.

Fig. 1.3: Diffeomorphic mapping ρk for the P1 element ∆ k

î

î

î îĵ ĵ

î

1.1 The Finite element method 13

A convenient mechanism for the construction of the local stiffness matrix is to
evaluate all element integrals on a single reference element ∆ ∗ which is tied to
each global element ∆k by a diffeomorphic mapping, ρk. Here, ∆ ∗ is formed by
the vertices (0,0),(0,1) and (1,0). As illustrated by Fig. 1.3, ∆ ∗ is mapped onto
the local element ∆k with vertices a = (a1,a2),b = (b1,b2) and c = (c1,c2) with ρk
defined by,

ρk (ζ1,ζ2) = aτ1 (ζ1,ζ2)+bτ2 (ζ1,ζ2)+ cτ3 (ζ1,ζ2) (1.38)
= (x1,x2), (1.39)

where:

τ1 (ζ1,ζ2) = 1−ζ1−ζ2, (1.40)
τ2 (ζ1,ζ2) = ζ1, (1.41)
τ3 (ζ1,ζ2) = ζ2. (1.42)

This enables us to define a set of nk local basis functions for our finite element space
over ∆ ∗: {ψ } with the property that ψ (ζ) = ϕsk()

(ρk(ζ)), where ζ = (ζ1,ζ2). For
clarity, the associated ϕsk()

are also called global basis functions. The local basis
functions enable us to pull back the local stiffness contributions to the reference
space: ∫

∆k

∇ϕsk()
·∇ϕsk() dx =

∫
∆∗

(
JT

k ∇ζ ψ
)
·
(

JT
k ∇ζ ψ

)
|J|dζ , (1.43)

where ∇ζ :=
(

∂

∂ζ1
, ∂

∂ζ2

)T
is the gradient operator in local coordinates and J := ∇ζ ρ

is the cell Jacobian1:

Jα,β =
∂xα

∂ζβ

= aα

∂τ1

∂ζβ

+bα

∂τ2

∂ζβ

+ cα

∂τ3

∂ζβ

.

(1.44)

The identity ∇ = JT ∇ζ follows immediately by the chain rule. The details of the
assembly process are beyond the scope of this work, however the interested reader
is referred to [2, Sect. 0.6], [8, Sect. 1.4], and [23, Chap. 6].

1.1.1.8 Example problem

Let us consider the boundary value problem (1.2, 1.4, 1.5) for Poisson’s equation
with parameters

1 Note that the Jacobian, J, is a totally separate concept from the functional to be optimised from
(1.1), which is also written J.

î î î

î ĵ ĵî

î

14 1 Introduction to PDE-constrained optimisation

Ω = [0,1]2, (1.45)
∂ΩD = {x1 = 1}∪{x2 = 1}, (1.46)
∂ΩN = Ω \∂ΩD, (1.47)

gD = 0 on ∂ΩD, (1.48)
gN = 0 on ∂ΩN , (1.49)

f (x1,x2) = χ{x1+x2<1} sin(4πx1)cos(4πx2) ∀(x1,x2) ∈Ω . (1.50)

A plot of the source function f is displayed in Fig. 1.4a. Since f is discontinuous,
there is no classical solution to this problem. However, it can be proved that there
is a weak solution u and that u is unique, which is a direct consequence of Lax-
Milgram’s theorem. For details, the interested reader is referred to [2, Sect. 2.7].

An approximate solution uh to the weak boundary value problem (1.23) with
parameters (1.45−1.50) is computed numerically using the finite element method
embedded within the Firedrake framework [31]. Firedrake is an automated system
for the portable solution of PDEs using finite elements. It allows for a succinct
implementation for a large variety of discretisations and PDEs. For an introductory
tutorial to the usage of Firedrake, we refer to [11]. The code used to generate the
corresponding solution in Python can be found in [33]. Here, the weak solution uh
is approximated using P1 finite elements. A plot of uh is displayed in Fig. 1.4b.

(a) Source f (b) Solution uh

Fig. 1.4: Plots of the discontinuous source function f and the finite element solution
uh to the weak boundary value problem (1.23) for Poisson’s equation with parame-
ters (1.45−1.50)

1.1.2 Burgers’ equation

The viscous form of Burgers’ equation

∂u
∂ t

+(u ·∇)u−η∆u = 0 on [0,T]×Ω , (1.51)

1.1 The Finite element method 15

is a fundamental nonlinear partial differential equation describing the advection and
diffusion of u, a velocity field. Here, η > 0 denotes an assumed to be constant
viscosity or diffusion coefficient and u : [0,T]×Ω → R2 the associated solution
field over the time interval [0,T], T > 0, and the domain Ω ⊂ R2. Further,

∆u := (∆u1, ∆u2)
T , (1.52)

denotes the vector Laplacian of u := (u1,u2)
T . By simple vector computations, one

finds

(u ·∇)u =

(
u1

∂u1

∂x1
+u2

∂u1

∂x2
, u1

∂u2

∂x1
+u2

∂u2

∂x2

)T

. (1.53)

The solution of (1.51) is assumed here to satisfy Neumann boundary conditions
given by

(n ·∇)u = 0 on [0,T]×∂Ω , (1.54)

for which the vector term can simply be written as

(n ·∇)u =

(
∂u1

∂n
,

∂u2

∂n

)T

. (1.55)

Since the problem at hand is time dependent, an initial condition, i.e. a condition for
the state of the system at time t = 0, is given by

u(0,x) = u0(x), (1.56)

for a given function u0 : Ω → R2. Combining Burgers’ equation (1.51) with the
initial condition (1.56) forms a so called initial value problem. Together with the
boundary condition (1.54), it is also a boundary value problem.

1.1.2.1 Weak formulation

Using vector multiplication to multiply both sides of (1.51) by a test function v :
Ω → R2 from some appropriate test function space and integrating over the whole
domain yields ∫

Ω

∂u
∂ t
· vdx+

∫
Ω

(u ·∇)u · vdx−η

∫
Ω

∆u · vdx = 0. (1.57)

Applying the integration-by-parts formula to the Laplace term yields

∫
Ω

∂u
∂ t
· vdx+

∫
Ω

(u ·∇)u · vdx+η

∫
Ω

∇u : ∇vdx = 0, (1.58)

16 1 Introduction to PDE-constrained optimisation

where

∇u : ∇v := ∇u1 ·∇v1 +∇u2 ·∇v2. (1.59)

The boundary term arising from integrating by parts has disappeared here due to the
application of the Neumann boundary condition (1.54).

1.1.2.2 Time discretisation

Since we are dealing with a time dependent problem, we need to discretise (1.162)
in time. For simplicity and stability, the backward Euler discretisation is used. For a
given number of time steps N and associated time step size dt = T/N, we solve∫

Ω

un+1−un

dt
· vdx+

∫
Ω

(
un+1 ·∇

)
un+1 · vdx

+η

∫
Ω

∇un+1 : ∇vdx = 0 ∀n = 0, . . . ,N−1,
(1.60)

where un = u(n · dt, ·) and thus u0 = u(0, ·) = u0. Note that every un is now a time
independent function, i.e. un : Ω → R2 ∀n = 0, . . . ,N−1. The natural space for the
solution and test functions in (1.60) is the tensor product Sobolev space H1(Ω)2 :=
H1(Ω)⊗H1(Ω), i.e.

H1(Ω)2 =

{
u : Ω → R2

∣∣∣∣ui,
∂ui

∂x j
∈ L2(Ω) ∀i, j

}
. (1.61)

The complete weak formulation of the Burgers’ initial value problem can now be
written as follows: find un+1 ∈ H1(Ω)2 such that∫

Ω

un+1−un

dt
· vdx+

∫
Ω

(
un+1 ·∇

)
un+1 · vdx

+η

∫
Ω

∇un+1 : ∇vdx = 0 ∀v ∈ H1(Ω)2 ∀n = 0, . . . ,N−1.

(1.62)

1.1.2.3 Galerkin approximation

Consider a finite-dimensional subspace Vh ⊂ H1(Ω)2. Any uh ∈ Vh can be repre-
sented as

uh =
d

∑
i=1

uh,iϕi. (1.63)

1.1 The Finite element method 17

In contrast to the previous, scalar, Poisson equation, the solution to Burgers’
equation is vector-valued. We can construct a suitable finite element space by taking
the tensor product of two scalar valued finite element spaces. Suppose Wh ⊂H1(Ω)
is some such space with basis ω1, . . . ,ωd . Then a basis for Vh = Wh⊗Wh is given
by:

{e1ωi 0 < i≤ d}
⋃

{e2ωi 0 < i≤ d} , (1.64)

where e1 and e2 are the unit vectors in the x1 and x2 directions respectively.
The Galerkin approximation of Burgers’ equation is a finite-dimensional approx-

imation of the weak formulation (1.62), which can be expressed as follows: Find
un+1

h ∈Vh such that

∫
Ω

un+1
h −un

h
dt

· vh dx+
∫

Ω

(
un+1

h ·∇
)

un+1
h · vh dx

+η

∫
Ω

∇un+1
h : ∇vh dx = 0 ∀vh ∈Vh ∀n = 0, . . . ,N−1.

(1.65)

1.1.2.4 Residual form

Unlike the Poisson problem, the weak formulation (1.62) of Burgers’ initial value
problem is nonlinear in the solution u. As a consequence, the discretised problem
does not simply result in a matrix system which can be solved using linear algebra
techniques. Instead, Newton-like nonlinear solvers are typically employed. The first
step is to express the system in what is termed residual form. For the weak form of
Burgers’ equation (1.65) this is: find un+1

h such that

F(un+1
h ;vh) = 0 ∀vh ∈Vh, ∀n = 0, . . . ,N−1, (1.66)

where the residual, F , is defined by

F(un+1
h ;vh) =

∫
Ω

un+1
h −un

h
dt

· vh dx+
∫

Ω

(
un+1

h ·∇
)

un+1
h · vh dx (1.67)

+η

∫
Ω

∇un+1
h : ∇vh dx. (1.68)

The semicolon indicates that F is linear in the argument to the right of the semicolon.
Note that F is not linear in the first argument. Since the residual is linear in vh, it
is sufficient that (1.66) holds for every test function in the basis of Vh. That is, the
problem reduces to finding un+1

h ∈Vh such that

F(un+1
h ;ϕ j) = 0 ∀ j = 1, . . . ,d, ∀n = 0, . . . ,N−1. (1.69)

18 1 Introduction to PDE-constrained optimisation

1.1.2.5 Linearisation

The residual form (1.66) can be employed to formulate the linearisation of the prob-
lem as required by Newton-like methods.

The linearisation of the residual F requires its differentiation with respect to its
first argument un+1

h . For the sake of simplicity we shall omit the upper ‘n’ index for
the time discretisation in the following, i.e. un+1

h is replaced by uh. Since at every
time step n = 0, . . . ,N−1 an equation with equivalent structure is solved, there is no
loss of generality in what follows. Since uh is not an element of a Euclidean space
but is a function, a more general notion of differentiability than for functions on
Euclidean spaces is needed. The Gâteaux derivative of F(· ;vh) at uh is given by

dFuh(uh;vh, û) = lim
ε→0

F(uh + ε û;vh)−F(uh;vh)

ε
∀û ∈Vh. (1.70)

In other words, dFuh(uh;vh, û) denotes the directional derivative of F(· ;vh) with
respect to uh, at the current value of uh and in the “direction” û. The subscript will
be omitted when there is no ambiguity about the variable with respect to which the
derivative is being taken. A more formal introduction to Gâteaux derivatives is given
in Sect. 1.2.

The Gâteaux derivative of the Burgers’ residual can be explicitly computed by

dF(uh;vh, û) = lim
ε→0

[∫
Ω

(
û
dt

+(û ·∇)uh +((uh + ε û) ·∇) û
)
· vh (1.71)

+η∇û : ∇vh dx
]

(1.72)

=
∫

Ω

(
û
dt

+(û ·∇)uh +(uh ·∇) û
)
· vh +η∇û : ∇vh dx. (1.73)

It is easy to see that dFuh is linear in both vh and û. This linearity will be used to
solve the residual form of Burgers’ initial value problem.

1.1.2.6 Solving the residual form

Since the derivative of the residual is available, a straightforward way to solve the
residual form (1.66) is to apply Newton’s method. Just as in the Euclidean case,
Newton’s method on function spaces consists of approximating the function, in this
case the residual, by its Taylor expansion only up to the linear term and solving for
the update that will set the approximation to zero. The linear Taylor series approxi-
mation of F(· ;vh) at a perturbed solution uh + û is given by

F(uh + û;vh)≈ F(uh;vh)+dF(uh;vh, û) ∀vh ∈Vh. (1.74)

Thus, if we write the (k+1)th Newton iterate uk+1
h as

1.1 The Finite element method 19

uk+1
h = uk

h + û, (1.75)

then the update û ∈Vh is the solution to

dF(uk
h;vh, û) =−F(uk

h;vh) ∀vh ∈Vh. (1.76)

Due to the linearity of dF(uk
h;vh, û) in û, Eq. (1.76) is simply a linear finite ele-

ment problem. More precisely, using the linearity of dF(uk
h;vh, û) in û and the linear

independence of different basis functions in Vh this can be written as

d

∑
j=1

dF(uk
h;ϕi,ϕ j)û j =−F(uk

h;ϕi) ∀i = 1, . . . ,d, (1.77)

where û1, . . . , ûd are the coefficients of the expansion of û in terms of the basis
functions. In matrix form, the last equation can be written as

Âû = f̂, (1.78)

where the entry in the ith row and jth column of Â is given by

Âi j = dF(uk
h;ϕi,ϕ j) (1.79)

=
∫

Ω

(
ϕ j

dt
+(ϕ j ·∇)uk

h +
(

uk
h ·∇

)
ϕ j

)
·ϕi +η (∇ϕ j : ∇ϕi) dx ∀i, j = 1, . . . ,d,

(1.80)

û = (û1, . . . , ûd), and f̂ = (f̂1, . . . , f̂d) with

f̂i =−F(uk
h;ϕi) ∀i = 1, . . . ,d. (1.81)

As was the case for Poisson’s equation (1.30), this is a linear system which can be
solved using standard linear algebra techniqes. In essence, Newton’s method con-
verts the nonlinear system into a (hopefully convergent) series of linear problems.
More sophisticated nonlinear solvers such as line search Newton methods are avail-
able, but the core process of linearising the equations to produce a sequence of linear
finite element problems is common to these approaches.

Under certain conditions, Newton’s method is guaranteed to generate a sequence
(uk

h)k of approximations that converges to the correct solution of the original nonlin-
ear problem. However, we still need to decide when to stop the algorithm and accept
the most recent update as a solution. This requires more involved consideration of
the appropriate norms to employ. We therefore postpone its consideration to Sect.
1.3.3.

20 1 Introduction to PDE-constrained optimisation

1.1.2.7 An example problem

Let us now consider the Burgers’ initial value problem (1.51, 1.54, 1.56) with pa-
rameters

Ω = [0,1]2, (1.82)
T = 1, (1.83)
η = 0.01, (1.84)

u0(x1,x2) =

(
exp
[
−20 ·

((
x1−

1
2
)2

+
(
x2−

1
2
)2
)]

, 0
)
∀(x1,x2) ∈Ω . (1.85)

An approximate solution uh to the weak formulation (1.62) of Burgers’ initial value
problem with parameters (1.82−1.85) is computed numerically using finite ele-
ments in Firedrake. The code that was used to generate the corresponding solution
in Python can be found in [33]. Here, the vector-valued weak solution uh is approx-
imated using P2 vector-valued finite elements. A plot of the first vector component
u1h of uh at successive points in time is displayed in Fig. 1.5.

(a) t = 0 (b) t = 1/3

(c) t = 2/3 (d) t = 1

Fig. 1.5: Plots of the first vector component u1h of the finite element solution uh
to the weak Burgers’ initial value problem (1.62) with parameters (1.82−1.85) at
successive points in time

1.2 Hilbert spaces 21

1.2 Hilbert spaces

The structure of a Hilbert space arises naturally in the finite element method since
the weak formulation of a PDE involves an inner product with the test functions. One
of the key properties of a Hilbert space is its close relationship with its dual space.
The key result characterising this relationship is the Riesz representation theorem.

A Hilbert space is a complete vector space equipped with an inner product, 〈·, ·〉.
The availability of the inner product makes it possible to measure the angles be-
tween, and the length of, vectors in a Hilbert space. Completeness is the property
that any Cauchy sequence in a Hilbert space converges to a limit in that space. This
ensures that there are no “missing” limits with the consequence that the usual tech-
niques of limit calculus can be applied. Here, we only consider Hilbert spaces over
the real field, but most of the results here can be generalised to Hilbert spaces over
other (for example complex) fields.

The inner product on a Hilbert space induces a norm defined for any u ∈ H by:

‖u‖H =
√
〈u,u〉. (1.86)

1.2.1 Dual spaces and the Riesz representation theorem

Let F : H→ R be a linear functional on a Hilbert space H. We call F continuous if

∃c > 0 : |F(u)| ≤ c‖u‖H ∀u ∈ H. (1.87)

The set L (H,R) of continuous linear functionals on H is called the dual space of
H and is also denoted by H∗, i.e.

H∗ := {F : H→ R | F is linear and continuous} . (1.88)

The Hilbert space H induces on its dual space H∗ an operator norm ‖ · ‖H∗ defined
by:

‖F‖H∗ := sup
‖u‖H=1

|F(u)| ∀F ∈ H∗. (1.89)

The one fundamental relationship between a Hilbert space H and its dual space H∗ is
that these spaces are isometrically isomorphic to each other. In more comprehensible
terms, this property is expressed in the following theorem.

Theorem 1.1 (The Riesz representation theorem). Let H be a Hilbert space with
inner product 〈·, ·〉H . For any F ∈ H∗ there is a unique uF ∈ H such that

F(v) = 〈uF ,v〉H ∀v ∈ H,

and that ‖F‖H∗ = ‖uF‖H . Conversely, for any u ∈ H the functional Fu defined by

22 1 Introduction to PDE-constrained optimisation

Fu(v) := 〈u,v〉H ∀v ∈ H, (1.90)

is an element of H∗.

The map RH : H∗ → H that sends F to its unique representative uF ∈ H is called
the Riesz map. Further, RH(F) = uF is called the Riesz representer of F in H.

In simple terms, the theorem sates that any element of the dual space H∗ can be
uniquely represented by an element in the primal space H and vice versa, while their
respective norms are equivalent.

The Riesz representation theorem is of essential importance for this work and
will be used repeatedly. It is therefore appropriate to provide a proof, which follows
[1, Sect. 6.1].

Proof (Riesz representation theorem). It is enough to show that the inverse mapping
of the Riesz map τ := R−1

H given by

τ(u)(v) 7→ 〈u,v〉H ∀u,v ∈ H, (1.91)

is an isometric isomorphism. Let u ∈ H. Obviously, τ(u) is linear. The Cauchy-
Schwarz inequality yields

|τ(u)(v)| ≤ ‖u‖H · ‖v‖H ∀v ∈ H. (1.92)

Therefore, τ(u) is continuous, which means τ(u) ∈ H∗, and ‖τ(u)‖H∗ ≤ ‖u‖H
by definition of the operator norm. But since ‖τ(u)(u)‖ = ‖u‖2, we also have
‖τ(u)‖H∗ ≥ ‖u‖H . Hence, τ is an isometry. Let u0 ∈ H such that τ(u0) = 0 ∈ H∗.
Then,

0 = ‖τ(u0)‖H∗ = ‖u0‖H , (1.93)

and thus u0 = 0∈H. Hence, τ is injective due to its linearity in u. It remains to show
that τ is surjective. Consider 0 6=F0 ∈H∗ and let P be the orthogonal projection from
H onto the closed null space

N (F0) := {u ∈ H : F0(u) = 0} . (1.94)

The existence and uniqueness of P is ensured by the projection theorem [1, Sect.
4.3]. Let e ∈ H such that F0(e) = 1, and define

u0 := e−Pe. (1.95)

Hence, F0(u0) = F0(e)−F0(Pe) = 1, which implies u0 6= 0. Using the characteristic
property of the projection, i.e. e−Pe ∈N (F0)

⊥, we have

〈u0,v〉H = 0 ∀v ∈N (F0). (1.96)

As F0(u−F0(u)u0) = F0(u)−F0(u) ·1 = 0, (1.96) implies that

1.2 Hilbert spaces 23

〈u0,u〉H = 〈u0,u−F0(u)u0〉H + 〈u0,F0(u)u0〉H (1.97)
= 〈u0,F0(u)u0〉H (1.98)

= F0(u)‖u0‖2 ∀u ∈ H. (1.99)

Dividing by ‖u0‖2 yields

F0(u) =
〈

u0

‖u0‖2 ,u
〉

H
= τ

(
u0

‖u0‖2

)
(u) ∀u ∈ H, (1.100)

which concludes the proof.

1.2.2 Fréchet derivatives

Fréchet differentiability is a generalisation of the differentiability from functions on
Euclidean space to more general spaces such as Hilbert spaces. Using the Fréchet
derivative it is possible to extend core results from Euclidean analysis such as Tay-
lor’s theorem to a more general setting.

Let F : U ⊂ H→ R be a functional on an open set U 6= /0 of some Hilbert space
H. We call F directionally differentiable if

dF(u;h) := lim
ε→0+

F(u+ εh)−F(u)
ε

, (1.101)

exists for all u,h ∈ U . We call F Gâteaux-differentiable if F is directionally dif-
ferentiable and the directional derivative dF(u; ·) : h 7→ dF(u;h) is continuous and
linear , i.e. dF(u; ·) ∈ H∗ ∀u ∈U . Further, we call F Fréchet-differentiable if F is
Gâteaux-differentiable and if

lim
‖h‖H→0

‖F(u+h)−F(u)−dF(u;h)‖
‖h‖H

= 0 ∀u ∈U. (1.102)

Since dF(u; ·) ∈ H∗,

dF(u;v) = 〈R(F ′(u)),v〉H ∀v ∈U, (1.103)

where R(dF(u, ·)) denotes the Riesz representer of dF(u; ·) in H. That is, the
Fréchet derivative of a functional on H can be represented with respect to an el-
ement of H.

If F is Fréchet-differentiable and dF(u; ·)∈L (U,R) is also Fréchet-differentiable,
then F is called twice Fréchet-differentiable. We denote by dF(2)(u; ·, ·)

the second Fŕechet derivative of F at u. The nth Fréchet derivative of
F for any n∈N can be defined accordingly.
∈L (U,L (U,R))

24 1 Introduction to PDE-constrained optimisation

The following result generalises Taylor’s theorem to functionals on Hilbert
spaces. Analogous statements hold for operators between Banach spaces. For a de-
tailed proof, the interested reader is referred to [14, Theorem 5].

If F is n-times Fréchet-differentiable, we have

F(u+h) = F(u)+dF(u;h)+
1
2

d(2)F(u;h,h)+ . . .

+
1
n!

dF(n)(u;h, . . . ,h︸ ︷︷ ︸
n times

)+O(‖h‖n+1
H) ∀u,h ∈U.

(1.104)

1.2.3 Partial derivatives and the chain rule

In the derivation of the adjoint to a PDE, it will also be necessary to differentiate
between partial and total derivatives. Define F : U ×U → R with U an open subset
of some Hilbert space H, and u : U →U . Then

∂Fm(u(m),m;h) = lim
ε→0+

F(u(m),m+ εh)−F(u(m),m)

ε
, (1.105)

is the partial derivative of F with respect to m while

dFm(u(m),m;h) = lim
ε→0+

F(u(m+ εh),m+ εh)−F(u(m),m)

ε
, (1.106)

is the corresponding total derivative. As is the case in Euclidean space, the partial
and total derivatives are related by the chain rule, which in this case is given by

dFm(u(m),m; ·) = ∂Fu(u(m),m;dum(m; ·))+∂Fm(u(m),m; ·). (1.107)

Omitting function arguments, this produces the familiar form

dFm = ∂Fudum +∂Fm. (1.108)

1.3 The relation between primal and dual finite element spaces

As previously seen for Burgers’ equation, a finite element problem can be formu-
lated in terms of its residual. The root of the residual corresponds to a solution of
the problem, which leads to the archetypal formulation of a finite element problem,
find u ∈U such that

F(u;v) = 0 ∀v ∈V, (1.109)

where U and V are suitable finite element spaces. In general, we call U the trial
function space and V the test function space.

1.3 The relation between primal and dual finite element spaces 25

The weak formulation is derived by multiplying the original PDE with a test
function v and integrating over the domain. Due to the linearity of integration F(u;v)
is therefore linear in v for any given u ∈U . Further, for many PDEs it is straightfor-
ward to show that F(u; ·) is continuous and therefore that F(u; ·) ∈ V ∗. If we recall
the definition of the operator (or dual) norm, then (1.109) can be written: find u ∈U
such that

‖F(u; ·)‖∗ = 0. (1.110)

Similarly, the archetypal linear problem, find u ∈U such that

a(u,v) = L(v) ∀v ∈V, (1.111)

can equivalently be written, find u ∈U such that

‖a(u, ·)−L(·)‖∗ = 0. (1.112)

In other words the weak form of a PDE is actually an equation between linear oper-
ators, with equality defined in terms of the appropriate operator norm.

Naturally, this is also reflected in the nature of the assembled matrices and vectors
which result from actually invoking the finite element method. Recall that v∈V can
be represented with respect to a basis P = {φ1, . . . ,φd}:

v =
d

∑
i=1

viφi. (1.113)

When we represent a function within a finite element space as a vector, it is of course
this set of coefficients vi that we are storing within an implementation in code.

P also induces a unique dual basis for V ∗, P∗ = {φ ∗1 , . . . ,φ ∗d }. The defining
property of the dual basis is its orthogonality to P:

φ
∗
i (φ j) = δi j ∀i, j = 1, . . . ,d. (1.114)

This immediately results in the fundamental identity relating the dual basis, P∗,
and the coefficients of the primal basis, P:

∀v ∈V, v =
d

∑
i=1

viφi ⇐⇒ vi = φ
∗
i (v) ∀i = 1, . . . ,d. (1.115)

Conversely, assembling a finite element operator as a vector simply amounts to ex-
pressing the operator as a linear combination of the basis functions for the dual
space. In this case, the primal basis functions define the coefficients:

∀F ∈V ∗, F =
d

∑
i=1

Fiφ
∗
i ⇐⇒ Fi = F(φi) ∀i = 1, . . . ,d. (1.116)

26 1 Introduction to PDE-constrained optimisation

1.3.1 Example: application of assembled finite element operators

A straightforward consequence of the above is that we can explain why the appli-
cation of a finite element operator to a function is equivalent to the (`2) dot prod-
uct of the associated assembled vectors. Suppose we have v(= ∑i viφi) ∈ V and
F(= ∑i Fiφ

∗
i) ∈V ∗. Then

F(v) =
d

∑
i=1

Fiφ
∗
i

(
d

∑
j=1

v jφ j

)

=
d

∑
i, j=1

Fiv jφ
∗
i (φ j)

=
d

∑
i, j=1

Fiv jδi j

=
d

∑
i=1

Fivi

= F ·v,

(1.117)

where F and v are the vectors of basis function coefficients corresponding to F and
v, respectively. It is helpful in this context to follow [21] and introduce an operator,
I : R|V |→V , defined by

I (v) =
d

∑
i=1

viφi. (1.118)

In other words, I −1 takes functions v∈V to their representation as a vector of basis
function coefficients. We define a similar operator for the dual space, I ∗ : R|V |→
V ∗:

I ∗(F) =
d

∑
i=1

Fiφ
∗
i . (1.119)

1.3.2 The primal and dual norms for L2 and H1

We will return to the choice of an appropriate norm in a subsequent chapter, however
it may be helpful in understanding the relationship between the primal function
space V and its dual V ∗ to work through the evaluation of a particular operator
norm. For this purpose, we choose the most basic norm on finite element spaces, L2,
and let trial and function space coincide. Recall that for u ∈V ⊂ L2,

‖u‖2
L2 =

∫
Ω

u2 dx. (1.120)

1.3 The relation between primal and dual finite element spaces 27

Equivalently, the L2 inner product is given by:

〈u,v〉L2 =
∫

Ω

uvdx ∀u,v ∈V. (1.121)

Simply by writing u = ∑i uiφi, v = ∑ j v jφ j, we can transform this into the matrix
expression

〈u,v〉L2 = uTMv, (1.122)

where
Mi j =

∫
Ω

φiφ j dx, (1.123)

is commonly referred to as the mass matrix. Now, for any u ∈ V , we can define a
functional Fu ∈L (L2,R) via

Fu(·) = 〈u, ·〉L2 . (1.124)

It immediately follows that

I ∗−1(Fu) = Fu = Mu. (1.125)

Conversely, for any F ∈ V ∗, the uniqueness of the Riesz representation guarantees
that

I −1 (RL2(F)) = M−1I ∗−1(F) = M−1F. (1.126)

In other words, the L2 Riesz representer of a functional F is obtained by multiplying
the corresponding coefficient vector by the inverse mass matrix.

The Riesz representation theorem also enables us to understand the role of the
mass matrix in evaluating the L2 operator norm. Recall that, for any F ∈V ∗

‖F‖L2∗ = ‖RL2(F)‖L2 , (1.127)

which implies that

‖F‖2
L2∗ = 〈I (M−1F),I (M−1F)〉L2

= FTM−1MM−1F

= FTM−1F
= F (RL2(F)) .

(1.128)

An analogous argument to that given above applies to finite element subspaces
of H1 with inner product given by

〈u,v〉H1 =
∫

Ω

∇u ·∇v+uvdx. (1.129)

In this case, if V ⊂ H1 and F = I ∗−1(F) with F ∈V ∗ then

RH1(F) = A−1F, (1.130)

28 1 Introduction to PDE-constrained optimisation

where
Ai j =

∫
Ω

∇φi ·∇φ j +φiφ j dx. (1.131)

1.3.3 Convergence criteria for Newton’s method

Having established the relationship between finite element solutions and residuals,
and their corresponding norms, we can now return to the question of convergence
criteria for nonlinear solvers, which we postponed from Sect. 1.1.2.6.

One possibility is use the magnitude of the residual as the stopping criterion, pos-
sibly normalised by the magnitude of the residual at the initial guess. The residual
measures the extent to which the current iteration fails to be a solution to the dis-
cretised PDE, and this approach essentially coincides with the usual approach for
determining convergence in linear systems. Since the residual is an functional in the
dual space to the solution, the natural norm in which to evaluate this residual is the
dual norm appropriate to the finite element space under consideration. However, as
shown in the previous section, this amounts to solving a matrix system, which seems
an expensive operation given that the result merely indicates convergence and does
not actually improve the solution in any way.

One widely adopted work-around for this solution is to employ a more conve-
niently calculated norm. The obvious and usual choice is to observe that the vector
of coefficients of the residual vector is isomorphic to a vector in Rd and to employ
the `2 norm of that vector:

‖F‖`2 =
√

F ·F, (1.132)

where F=I ∗−1(F). It is simple to show that this is indeed a norm on V ∗. However,
what has been lost by discarding the factor of M−1 or A−1 is the notion that the
norm in which we measure the residual is a discrete approximation to the norm
on the original, continuous, Sobolev space. In fact, as the example of the stiffness
matrix in Sect. 1.1.1.7 shows, the discretisation is explicit in the mesh cell Jacobian
entries that appear in the transformation of the integral measure and, in the H1 case,
in the gradient operator. This situation is, in fact, a close analogy of the problem
that we analyse in much more depth in Chapt. 2. Rather than restate that analysis
here, we will simply note that the impact of discarding the mesh operator from the
norm is that the value of the `2 norm of the residual is entirely dependent on the
mesh chosen. This has a number of undesirable consequences, including that the
number of iterations required to achieve convergence is mesh-dependent, and that
candidate solutions on different meshes which differ by arbitrarily small amounts in
the primal norm, can result in residuals whose `2 norms differ by arbitrarily large
factors. In short, the `2 norm is simply not a good indicator of the magnitude of the
residual. Note that this problem arises through the infinite-dimensional formulation
of the underlying problem. On finite-dimensional spaces, all norms are equivalent.

If the operator norm is inconvenient to evaluate, and other norms applied to the
residual are poor indicators of convergence, how then should convergence be mea-

1.4 Adjoint and tangent linear equations 29

sured? One solution is to use the magnitude of the update step û, which is an estima-
tor for the error in the solution at the previous step of the iteration. Note that û ∈V
so the natural norm only involves multiplication by a sparse and easily assembled
matrix. Given a tolerance ε > 0, one terminates the algorithm if

‖uk+1
h −uk

h‖V
‖uk

h‖V
< ε. (1.133)

The best norm to use depends on the Sobolev space in which the solution is sought.
For the examples we have considered, this is the H1 norm. For a much more in-depth
analysis of nonlinear solvers for numerical PDE problems, the reader is referred to
[7]. The Riesz map also emerges as an important consideration in the precondition-
ing of the linear systems which emerge from the numerical solution of PDEs. The
interested reader is referred to [21].

1.4 Adjoint and tangent linear equations

Recall the generic formulation of a PDE-constrained optimisation problem

min
u∈V
m∈M

J(u,m) (1.134)

subject to F(u,m;v) = 0 ∀v ∈V ′, (1.135)

where J : V ⊗M→ R is the objective functional, m ∈M is the control variable, and
u ∈ V is the weak solution of the parametrised PDE. In the context of the adjoint
equations (1.135) is referred to as the forward model. We assume that the forward
model yields a unique solution for any control value, so that we can define the solu-
tion operator u(·) : M→V which maps a control value to the associated solution of
the forward model. Of course the explicit form of u(m) is not known for many PDEs,
but a finite element solver might be used instead as an approximation. Substituting
the solution operator into (1.134) yields the reduced functional

J̃(m) = J (u(m),m) , (1.136)

and the associated reduced optimisation problem

min
m∈M

J̃(m). (1.137)

Most efficient optimisation algorithms for solving (1.137) require evaluations
of the functional gradient with respect to the control variable, i.e. dJ̃m(m; ·) =
dJm(u(m),m; ·) ∈M∗. Table 1.1 lists common techniques for computing the gradi-
ent, together with an estimate of their computational expense. For PDE-constrained
optimisation, the number of input parameters (the dimension of M) is typically large,
typically ranging from 102 when optimising the positioning of wind turbines to

30 1 Introduction to PDE-constrained optimisation

Method Number of PDE solves
Finite difference approximation i
Complex step approach i
Tangent linear approach i
Adjoint approach o

Table 1.1: Number of PDE solves required to compute the derivative of a computer
model with i input and o output parameters for different methods. The PDE solves
are typically the principle computational cost factor, and hence provide a good esti-
mate for the total expense. PDE-constrained optimisation problems have o = 1 and i
� 1, and hence the adjoint approach is by far the most efficient method

> 109 when optimising the initial state of the ocean in the ECCO2 ocean model [34].
At the same time, the number of output values is one (the functional value). Exam-
ining table 1.1 reveals that the adjoint approach is the most effective option for eval-
uating the functional gradient as the required number of PDE solves is independent
of the number of input parameters.

1.4.1 A finite-dimensional example

To understand how the adjoint approach computes the functional derivative so effi-
ciently, let us consider a finite-dimensional example. Consider the functional

J(u,m) := jT u+
1
2

mT m, (1.138)

with j ∈ Rn given and a parameter vector m ∈ Rm. Furthermore, let u ∈ Rn be the
solution of the linear system

Au = Bm, (1.139)

with A ∈ Rn×n invertible and B ∈ Rn×m.
Our aim is to compute the total derivative of the functional (1.138) with respect

to m. Since A is invertible, we can solve (1.139) for u and substitute it into (1.138)
to obtain the reduced functional:

J̃(m) := jT A−1Bm+
1
2

mT m. (1.140)

From that, we can compute the total derivative with respect to m:

dJ̃(m) = jT A−1B+mT . (1.141)

Depending on the order in which we evaluate these terms, we obtain the tangent
linear or the adjoint approach:

1.4 Adjoint and tangent linear equations 31

Tangent linear approach

1. Solve the tangent linear system Aµ = B for the tangent linear solution µ ∈Rn×m.
2. Evaluate the gradient with jT µ +mT ∈ Rm.

Adjoint approach

1. Solve the linear system AT λ = j for the adjoint solution λ ∈ Rn.
2. Evaluate the gradient with λ T B+mT ∈ Rm.

The two different approaches are visualised in figure 1.6. The computational cost of
the tangent linear approach is dominated by the solution of the tangent linear system
Aµ = B. Figure 1.6 reveals that the right hand side of this linear system is a matrix
with m columns, corresponding to the number of parameters. One option to solve
this system is to invert the matrix A explicitly (for example with a LU decompo-
sition) and to perform a matrix-matrix multiplication to compute µ . Alternatively,
m iterative solves can be performed for each column vector in B. However, in both
cases, the computational cost scales linearly with m.

In contrast, the right hand side of the adjoint equation AT λ = j consists of a single
column vector. Hence, the computation of the adjoint solution λ requires only one
linear solve, independent of the dimension of m. Since the dominant computational
cost is the solution of the linear systems, the adjoint approach yields a computational
cost that is practically independent of m.

λ︷ ︸︸ ︷

jT × A−1

−1

× B

︸ ︷︷ ︸
µ

+ mT

Fig. 1.6: The dimensions of the terms in the gradient (1.141) visualised. The tangent
linear solution µ ∈Rn×m requires the solution of m linear systems, while the adjoint
solution λ ∈ Rn requires only one linear solve

32 1 Introduction to PDE-constrained optimisation

1.4.2 The infinite-dimensional case

Let us return to the case where the function spaces in (1.135) are infinite-dimen-
sional. For brevity we omit operator arguments, that is, we write J ∈ R instead of
J(u,m) ∈ R and F ∈V ′∗ instead of F(u,m; .) ∈V ′∗.

Taking the derivative of Eq. (1.136) and applying the chain rule on its right hand
side yields:

dJm = ∂Judum +∂Jm ∈M∗. (1.142)

Here we assumed that the solution operator u(m) is continuously Fréchet differ-
entiable, which follows if J and F are continuously Fréchet differentiable and if
the linearised PDE operator ∂Fu(u(m),m; ., .) is invertible for any m ∈M, see [19,
Sect. 1.4.2] and [19, Sect. 1.6]. If Eq. (1.142) was used directly to compute the
functional gradient, all three terms on the right hand side would be needed. For
the terms involving J this is straightforward: the functional of interest is typically
given explicitly and its partial derivatives can therefore be readily derived. However,
dum ∈L (M,V) is typically not known explicitly, since u is the solution of the PDE.

The state equation (1.135) provides us a way to compute dum: Since F(u(m),m)=
0 for all m ∈M, rule
on the left hand side yields:

∂Fudum +∂Fm = 0 ∈M∗. (1.143)

Since it was assumed that ∂Fu is invertible, we can substitute (1.143) into (1.142) to
obtain an equation for the functional gradient:

dJm =−

=λ︷ ︸︸ ︷
∂Ju ∂F−1

u ∂Fm︸ ︷︷ ︸
=µ

+∂Jm. (1.144)

The order in which the right hand side is evaluated leads to two different approaches:
one involves solving the tangent linear model for µ , and the other one solves the
adjoint model for λ ∈V ′.

1.4.2.1 The tangent linear approach

The tangent linear approach first solves the weak tangent linear model for µ ∈
L (M,V):

∂Fu(u,m;v,µ) = ∂Fm(u,m;v) ∀v ∈V ′, (1.145)

and then uses (1.144) to compute the functional derivative with

dJm(u,m; ·) =−∂Ju(u,m; µ(·))+∂Jm(u,m; ·). (1.146)

 ∗

its derivative dmF(u(m),m) must be zero. Applying the chain

1.4 Adjoint and tangent linear equations 33

Note that the linearised forward model (1.143) and the tangent linear model (1.145)
are equivalent apart from the sign, and hence µ =−dum.

1.4.2.2 The adjoint approach

The adjoint approach solves the equation: Find λ ∈V ′ such that:

∂F∗u (u,m;v,λ) = ∂Ju(u,m;v) ∀v ∈V. (1.147)

or equivalently,
∂Fu(u,m;λ ,v) = ∂Ju(u,m;v) ∀v ∈V. (1.148)

Here, the adjoint equation is stated in the familiar form of a variational problem, with
a bilinear operator on the left hand side and a linear operator on the right hand side
and can be solved with the finite element method. The adjoint operator is based on
the linearisation of the original PDE operator, so its computational cost is expected
to be equal or less than that of the original PDE.

Once the adjoint solution has been computed, the functional derivative is ob-
tained with

dJm(u,m; ·) =−∂Fm(u,m; ·,λ)+∂Jm(u,m; ·). (1.149)

1.4.2.3 Alternative approaches

There exist alternative approaches to compute the functional gradient. Two common
methods are the finite difference and the complex-step approaches which will be
briefly discussed in this section.

The finite difference approach approximates the functional gradient in the direc-
tion δm by computing the difference quotient. The central difference formula for
example yields:

dJ̃m(m;δm) =
J̃(m+hδm)− J̃(m−hδm)

2h
+O(|h|2) as h→ 0.

The main advantage of the finite difference approach is its easy implementation:
the model can be treated as a black box since only functional evaluations are re-
quired. However, the determination of a suitable step length h can be difficult: from
a mathematical perspective, h should be chosen as small as possible to improve the
approximation, but due to numerical cancellation the smallest suitable h value is
bounded by round-off errors [27, pp. 166–169].

The complex-step approach [24] avoids this problem by using complex calcu-
lus. It considers the reduced functional in the complex plane and uses the Cauchy-
Riemann equations to derive following approximation of the directional derivative:

dJ̃m(m;δm) =
Im
(
J̃(m+ ihδm)

)
h

+O(|h|2) as h→ 0.

34 1 Introduction to PDE-constrained optimisation

Since no difference operation is performed, this evaluation is not subject to sub-
tractive cancellation errors. From an implementation perspective the complex-step
approach is more intrusive, since the underlying code must be modified to support
complex numbers.

Both the finite difference and the complex step approach only yield the deriva-
tives in a particular direction. To obtain the full functional derivative, the directional
derivatives for all basis functions in the parameter space must be computed sepa-
rately. As a consequence the computational complexity increases linearly with the
dimension of M. Nevertheless, the finite difference method is popular due to its
straightforward implementation and is a useful verification tool.

1.4.3 Higher-order derivatives

It is possible to compute higher-order derivatives by recursively applying the ad-
joint or tangent linear approach. One application of second-order information is in
the context of optimisation with PDE constraints, for example for design optimisa-
tion [16] and optimal control [18, 30]. For brevity we only state a short derivation of
the second order adjoint equations here. A more detailed derivation of second-order
adjoints can be found for example in [15, Sect. 13.4], [19, Sect. 1.6.5], [36, Sect.
4.6], and [5].

The action of the Hessian H is the transpose of the total derivative of the first
derivative in a particular direction δm. Applying the total derivative to (1.149) and
omitting the arguments for brevity, we find:

(Hδm)∗ = d(dJm)m δm =− λ̇
∗
∂Fm

−λ
∗d(∂Fm)m δm

+d(∂Jm)m δm, (1.150)

where
λ̇ = dλmδm (1.151)

is the tangent linearisation of the adjoint solution λ in the direction δm. λ̇ denotes
the second order adjoint solution, which is derived by taking the total derivative of
the adjoint equation (1.148):

∂F∗u λ̇ =
(
∂

2Juuu̇
)∗

+
(
∂

2Jmuδm
)∗

−
(
∂

2Fuuu̇
)∗

λ −
(
∂

2Fmuδm
)∗

λ .

Evaluating the directional Hessian is computationally quite more expensive than a
gradient evaluation. In particular, to compute the functional, only the forward PDE
needs to be solved. To compute the functional’s gradient, the forward and adjoint
PDEs need to be solved. However, to compute the Hessian in one direction, the
forward and adjoint PDEs, a tangent linear PDE and a second order adjoint PDE

1.4 Adjoint and tangent linear equations 35

need to be solved. This comparable high cost will play an important role for the
design of optimisation algorithms in section 1.5.

1.4.4 Example: Adjoint Poisson’s equation

Recall from (1.12) the variational form of the Poisson’s equation with pure Neu-
mann conditions: find u ∈V = H1(Ω) such that∫

Ω

∇u ·∇v dx−
∫

∂Ω

gNv ds =
∫

Ω

f v dx ∀v ∈V ′ = H1(Ω). (1.152)

with f ∈ L2(Ω) and together with the functional 1
2
∫

Ω
u · u dx + α

2
∫

Ω
f 2 dx with

α ≥ 0.
We can write this problem in the canonical form (1.135) by defining following

operators:

F(u, f ;v) =
∫

Ω

∇u ·∇v dx−
∫

∂Ω

gNv ds−
∫

Ω

f v dx, (1.153)

J(u, f) =
1
2

∫
Ω

u ·u dx+
α

2

∫
Ω

f 2 dx. (1.154)

For the operators in the adjoint equation (1.148) we obtain

∂F∗u (u,m;v,λ) = ∂Fu(u,m;λ ,v) =
∫

Ω

∇v ·∇λ dx, (1.155)

∂Ju(u, f ;v) =
∫

Ω

uv dx. (1.156)

Hence, the adjoint Poisson’s equation for the functional is: Find λ ∈V ′ such that∫
Ω

∇v ·∇λ dx =
∫

Ω

u · v dx ∀v ∈V, (1.157)

or in strong form:

−∆λ = u in Ω , (1.158)
∂u
∂n

= 0 on ∂Ω . (1.159)

Given λ , the functional derivative can be evaluated as:

dJ f (u, f ; ·) =−∂Ff (u, f ; ·,λ)+∂J f (u, f ; ·) =
∫

Ω

(λ +α f) · dx. (1.160)

Similarly, we could also evaluate the functional derivative with respect to the
Neumann boundary values:

36 1 Introduction to PDE-constrained optimisation

dJgN ·=−∂FgN ·+∂JgN ·=
∫

∂Ω

λ · ds. (1.161)

1.4.5 Example: Adjoint Burgers’ equation

Next we derive the adjoint equation of the time-dependent viscous Burgers’ equation
with Neumann boundary conditions. The weak formulation of the Burgers’ equation
was derived in Sect. 1.1.2.1: find u ∈V = H1(Ω)2 such that∫

Ω

(
∂u
∂ t
· v+(u ·∇)u · v+η∇u : ∇v

)
dx = 0 ∀v ∈V ′ = H1(Ω)2. (1.162)

At this point we have two choices. Either we discretise the equation in time as in
section 1.1.2.2, and derive the adjoint from the semi-discretised equation. Or derive
the adjoint equation directly from the non-discretised form (1.162). We follow the
latter strategy and extend the variational formulation such that our test and trial
spaces are functions in time and space. Consequently, we extend the variational
form by a time-integral and incorporate the initial condition into the variational
formulation: Find u ∈ L2(0,T ;V)∩H1(0,T ;V ∗) such that∫ T

0

∫
Ω

(
∂u
∂ t
· v+(u ·∇)u · v+η∇u : ∇v

)
dxdt

+
∫

Ω

(u(0)−u0) · v(0)dx = 0 ∀v ∈ L2(0,T ;V ′)∩H1(0,T ;V ′∗).
(1.163)

The adjoint PDE operator is obtained by linearising in direction λ , and forming its
transpose by swapping test and trial functions:∫ T

0

∫
Ω

(
∂v
∂ t
·λ +(v ·∇)u ·λ +(u ·∇)v ·λ +η∇v : ∇λ

)
dxdt +

∫
Ω

λ (0) · v(0)dx.

(1.164)

Integrating the time-derivative term by parts yields:∫ T

0

∫
Ω

(
−∂λ

∂ t
· v+(v ·∇)u ·λ +(u ·∇)v ·λ +η∇v : ∇λ

)
dxdt +

∫
Ω

λ (T) · v(T)dx

(1.165)

Note that the integration by parts results in the term −
∫

Ω
λ (0) · v(0)dx which can-

cels with the last term in (1.164). Eq. (1.165) is the weak adjoint operator for Burg-
ers’ equation and can be discretised and solved with the finite element method.
The strong form can also be obtained through integration by parts. For a functional
J(u,m) one obtains:

1.4 Adjoint and tangent linear equations 37

−∂λ

∂ t
− (u ·∇)λ +(∇u)∗λ −η∆λ = ∂J∗u in [0,T]×Ω ,

(n ·∇)u = 0 on [0,T]×∂Ω ,

λ = 0 on {T}×Ω .

(1.166)

The adjoint of Burgers’ equation (1.166) reveals some general properties about
the adjoint of a time-dependent problem: the resulting PDE is linear with initial
conditions at the end of the time interval. Consequently it is solved backwards in
time. Furthermore, the adjoint PDE depends on the forward solution u, and therefore
the forward model must be solved beforehand.

The derivation and implementation of the adjoint system can be laborious for
complex PDEs. To avoid the need for explicit adjoint derivations, special software
tools have been developed that aim automate the derivation process.

1.4.6 Taylor tests for adjoint implementations

Verification, or correctness testing, is an essential component of the implementation
of any numerical algorithm on a computer. This is particularly true for the techni-
cally complex software required to implement the numerical solver for an adjoint
PDE. A Taylor test computes approximate convergence rates of Taylor remainders
which can be used to compare to theoretical convergence rates based on Taylor’s the-
orem. Solving the adjoint PDE is a mechanism for evaluating the Fréchet derivative
of the reduced functional with respect to the control parameters, so the applicable
form of Taylor’s theorem is that given in Sect. 1.2.

Recall that J̃(m) := J(u(m),m) is the reduced functional and let δm be an arbi-
trary perturbation of the control m. Applying Taylor’s theorem to this situation, we
find for R 3 h→ 0 ∣∣∣J̃(m+hδm)− J̃(m)

∣∣∣= O(h), and (1.167)∣∣∣J̃(m+hδm)− J̃(m)−hdJ̃(m;δm)
∣∣∣= O(h2). (1.168)

The expression in (1.167) is referred to as the first-order Taylor remainder while that
in (1.168) is called the second-order Taylor remainder.

Let us consider the situation where computer implementations of J̃ and dJ̃ are
given and it is claimed that dJ̃ correctly implements the Fréchet derivative of J̃. One
may numerically test this claim by computing the second-order Taylor remainder
for a fixed but arbitrary choice of δm, and an exponentially decreasing sequence of
values of h. If the implementation is correct then for sufficiently small h, the Talyor
remainder will decrease as O(h2).

Similarly, one can employ higher order Taylor remainders to test implementa-
tions of higher order Fréchet derivatives. For example the third-order remainder can
be used to test implementations of the second derivative:

38 1 Introduction to PDE-constrained optimisation∣∣∣J̃(m+hδm)− J̃(m)−hdJ̃(m;δm)− 1
2

h2 d(2)J̃(m;δm,δm)
∣∣∣= O(h3). (1.169)

Clearly in this case the expected convergence rate is O(h3). Since the Taylor test for
the second derivative requires a correctly implemented first derivative, it is highly
advisable to first conduct a Taylor test of the first derivative.

1.5 Optimisation methods

The preceding sections introduced the theory and practice of solving PDE problems
using the finite element method, and the efficient computation of derivatives of func-
tionals of the associated PDE solutions. On this basis it is now possible to introduce
algorithms which employ these solution techniques and the resulting gradient in-
formation to solve PDE-constrained optimisation problems. Here we will introduce
several iterative approaches which are well-known in the optimisation community.
In contrast with most introductory works, we will formulate these algorithms in a
general Hilbert space, rather than assuming that the optimisation problem is set in
Euclidean space.

1.5.1 Steepest descent method

The steepest descent method is an optimisation algorithm which is based upon the
observation that a differentiable function decreases fastest in the proximity of the
current iterate in the direction of its negative gradient. This principle naturally gen-
eralises to functionals. As before, we formulate the optimisation problem in terms
of the reduced functional:

min
m∈M

J̃(m) (1.170)

where J̃ : M → R is the reduced functional defined over a control parameter
drawn from a Hilbert space M. For any sufficiently small α > 0 and with m′ :=
m−αR(dJ̃(m; ·)) for any m∈M not a local minimiser of J̃, we obtain J̃(m′)< J̃(m).
Recall that R(dJ̃(m; ·)) ∈M is the Riesz representer of the the Fréchet derivative of
J̃ at point m. Iterating this approach yields

mk+1 = mk−αkR(dJ̃(mk; ·)) ∀k ∈ N0, (1.171)

such that J̃(mk+1)≤ J̃(mk).
If dJ̃ : M → M∗ is uniformly continuous on bounded sets and J̃ is uniformly

convex, there is a unique global minimum. If further αk satisfies the so called Wolfe
conditions, the sequence {mk} converges strongly to the global minimum [12].

1.5 Optimisation methods 39

In Eq. (1.171), there are several possible choices for the step size length αk. The
simplest is αk = α ∀k ∈ N0 for a sufficiently small, fixed α > 0. Another choice,
which is introduced next, is to apply a so called exact line search.

The Taylor series of J̃(mk+1) around the point mk is given by

J̃(mk+1) = J̃
(
mk +αkR

(
dJ̃(mk; ·)

))
(1.172)

= J̃(mk)−αkdJ̃(mk;R
(
dJ̃(mk; ·))

)
+

α2
k

2
dJ̃(2)(mk;R

(
dJ̃(mk; ·)

)
,R
(
dJ̃(mk; ·)

)
)

+α
3
k O(‖R

(
dJ̃(mk; ·)

)
‖3

M).

(1.173)

Note that the last term on the right hand side vanishes in the case where f is
quadratic, i.e. J̃(n) ≡ 0 for any n > 2. Equivalently, simply dropping the error term
results in a quadratic approximation to J̃(mk+1). Differentiating this approximation
with respect to αk and setting the result equal to zero leads to

α̂k =
dJ̃
(
mk;R

(
dJ̃(mk; ·)

))
dJ̃(2)

(
mk;R

(
dJ̃(mk; ·)

)
,R
(
dJ̃(mk; ·)

)) . (1.174)

Under suitable hypotheses, among others convexity, α̂k defines the unique step
length which minimises the quadratic approximation of J̃(mk+1). If M = Rn, the
positive definiteness of the Hessian of J̃ is sufficient. The iterative approach induced
by the step length αk = α̂k is called exact line search. Algorithm 1 shows the pseu-
docode for the steepest descent method with an exact line search.

Algorithm 1: Steepest descent with exact line search in a Hilbert space M

Input: Initial m0 , convergence tolerance ε > 0;
while ‖R(dJ̃(mk; ·))‖M > ε do

αk← dJ̃(mk;R
(
dJ̃(mk; ·)

)
)/dJ̃(2)(mk;R

(
dJ̃(mk; ·)

)
,R
(
dJ̃(mk; ·)

)
);

mk+1← mk−αkR(dJ̃(mk; ·));
end

1.5.2 Inexact line search and the Wolfe conditions

The exact line search procedure requires the evaluation of the functional Hessian
which, as is discussed below, may not be easily or affordably computable. Con-
sequently, more heuristic approaches have been developed, along with appopriate
criteria under which they generate convergent optimisation schemes.

All of the methods we will consider produce iterative updates to the control m,
of the form:

mk+1 = mk +αk pk. (1.175)

40 1 Introduction to PDE-constrained optimisation

αk, a scalar, is referred to as the step length while pk, which lies in the same space
as m, is the search direction. The Wolfe conditions [37] are conditions on αk which,
given suitable conditions on the functional to be minimised, are sufficient to show
that the optimisation converges. A more complete discussion of the Wolfe condi-
tions is to be found in [3].

The first condition is the sufficient decrease condition:

J̃(mk+1)≤ J̃(mk)+λαkdJ̃(mk; pk) (1.176)

for a small parameter λ > 0. This condition, also called the Armijo condition, effec-
tively prevents large steps which only cause small functional decreases. The second
condition is the curvature condition:

|dJ̃(mk+1; pk)| ≤ β |dJ̃(mk; pk)| (1.177)

A popular and effective inexact line search strategy is to progressively decrease
candidate αk values until these conditions are met. This approach is known as back-
tracking.

1.5.3 Line search Newton-CG

As the name suggests, the line search Newton conjugate gradient (Newton-CG)
algorithm is Newton’s method augmented by a line search for the update size, and
employing the conjugate gradient method to invert the Hessian. Newton’s method
amounts to approximating the system to be optimised by the leading terms of the
Taylor series and solving for the fixed point given by the Jacobian being zero:

0 = dJ̃(mk+1; ·) (1.178)
= dJ̃(mk + pk; ·) (1.179)

≈ dJ̃(mk + pk; ·)+d(2)J̃(mk; pk, ·). (1.180)

The procedure is to solve (1.180) for the search direction pk and then to employ a
line search to establish the step size.

The Newton-CG algorithm in Rn is given in [26, Sect. 7.1], while its generali-
sation to functionals on Hilbert spaces, achieved by carefully applying the correct
inner products and norms, is given in algorithm 2. In this algorithm, the inner itera-
tion sequence converges to the Newton step pk in (1.180) and at each outer iteration,
a tolerance εk > 0 for the accuracy of the computed pk is specified. In the inner it-
eration, which corresponds to the conjugate gradient method, the search directions
are denoted by d j. The fallback case for negative curvature, d(2)J̃(mk;d j,d j) ≤ 0,
ensures that the search direction pk is always descending.

1.5 Optimisation methods 41

Algorithm 2: Line Search Newton-CG in Hilbert space
Input: Initial m0 ;
for k = 0,1, . . . do

Define tolerance εk > 0;
z0← 0;r0←R(dJ̃(mk; ·));d0←−r0;
for j = 0,1, . . . do

if d(2)J̃(mk;d j,d j)≤ 0 then
if j = 0 then

pk←−R(dJ̃(mk; ·));
break;

else
pk← z j;
break;

end
end
β j ← 〈r j,r j〉M/d(2)J̃(mk;d j,d j);
z j+1← z j +β jd j;
r j+1← r j +β jR(d(2)J̃(mk;d j, ·));
if ‖r j+1‖M < εk then

pk← z j+1;
break;

end
γ j+1← 〈r j+1,r j+1〉M/〈r j,r j〉M ;
d j+1←−r j+1 + γ j+1d j;

end
Compute αk using an appropriate line search;
mk+1← mk +αk pk;

end

1.5.4 BFGS

Newton-CG and other Krylov-based methods require many evaluations of the exact
Hessian of the objective functional. Recall that, for a PDE-constrained optimisation
problem, this in turn requires composed solutions of a (potentially time-varying)
adjoint problem. To address this issue, it may be possible to employ optimisation
algorithms which avoid the need to evaluate the Hessian.

In its original, Euclidean formulation the Broyden-Fletcher-Goldfarb-Shanno
method is an optimisation algorithm for problems of the type

min
x∈R

f (x) (1.181)

with f : Rn→ R.
The BFGS method is one of the most successful and applied algorithms in uncon-

strained nonlinear optimisation [26]. As a quasi-Newton method, it does not require
evaluations of the Hessian of the objective function, but only of the gradient and of
the objective function itself. An approximation for the Hessian is computed using

42 1 Introduction to PDE-constrained optimisation

the difference between successive iterates and the corresponding gradient vectors.
In this respect, quasi-Newton methods can be understood as a generalisation of the
secant method for finding roots of first derivatives. One advantage of the Hessian
approximation is that it is always positive definite while the Hessian itself might
merely be positive semi-definite and therefore not invertible.

In a manner analogous with Newton’s method, we consider a quadratic model
for the objective function. At a current iterate xk ∈ Rn, this model is given by:

qk(x) = f (xk)+∇ f (xk) · (x− xk)+
1
2
(x− xk)

T ·Bk · (x− xk), (1.182)

where Bk ∈ Rn×n denotes the approximation of the Hessian of f evaluated at mk.
Since qk is convex, one easily computes the unique minimum in the substituted
variable pk = x− xk as

pk =−B−1
k ·∇ f (xk). (1.183)

Taking (1.183) as the line search direction, one may proceed as in Newton’s method
to compute the next iterate xk+1 by

xk+1 = xk +αk pk,

where αk > 0 denotes the step length satisfying sufficient decrease and curvature
conditions given by the Wolfe conditons [26, Sect. 3.1]. The major difference from
Newton’s method is that Bk is an approximation to the Hessian and not the Hessian
itself. The update of the quadratic model with k→ k+1 is achieved by updating the
Hessian approximation Bk→Bk+1. In fact, the BFGS algorithm explicitly constructs
and updates Hk ≡ B−1

k . This avoids the need to solve the linear system in (1.183) at
each iteration.

How, then, do we construct and update Hk? It is a direct consequence of Taylor’s
theorem in Rn that

∇
2 f (xk) · (xk+1− xk)≈ ∇ f (xk+1)−∇ f (xk) for ‖xk+1− xk‖� 1, (1.184)

where ∇2 f (xk) ∈ Rn×n denotes the Hessian of f evaluated at xk. We impose the
analagous condition on Bk+1 resulting in the so called secant equation,

Bk+1 · (xk+1− xk) = ∇ f (xk+1)−∇ f (xk), (1.185)

or, equivalently,

Hk+1 · (∇ f (xk+1)−∇ f (xk)) = xk+1− xk, (1.186)

The Wolfe conditions on αk are sufficient to guarantee a solution to (1.186) [26,
Sect. 6.1].

Choosing Hk+1 as the closest matrix H to Hk with respect to a weighted Frobe-
nius norm under the constraints that H is symmetric and satisfies (1.186) yields the

1.5 Optimisation methods 43

unique solution:

Hk+1 =V T
k HkVk +ρksksT

k , (1.187)

where

sk = xk+1− xk = αk pk, (1.188)
yk = ∇ f (xk+1)−∇ f (xk), (1.189)

ρk =
1

yT
k sk

, (1.190)

Vk = I−ρkyksT
k . (1.191)

One could also define a BFGS algorithm based on Bk instead of Hk. Using the
Sherman-Morrison-Woodbury formula [26, Appendix] applied to (1.187), we ob-
tain for the Hessian approximation Bk+1:

Bk+1 = Bk−
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

. (1.192)

We refer to the Eqs. (1.187) and (1.192) as the BFGS updating formulae. Observe
that if Bk is symmetric then the update formula guarantees that Bk+1 will be too. For
more details of the derivations above and for algorithm 3, we refer to [26, Chap. 6].

Algorithm 3: BFGS in Rn

Input: Initial x0, convergence tolerances ε∇,ε > 0, initial inverse Hessian
approximation H0;

k← 0
while ‖∇ fk‖> ε∇ and (fk− fk+1)/max(| fk+1|, | fk|,1)> ε do

pk←−Hk∇ fk;
Compute αk using an appropriate line search;
sk← αk pk;
xk+1← xk + sk;
yk← ∇ fk+1−∇ fk;
Compute Hk+1 according to (1.187);
k← k+1

end

1.5.4.1 BFGS in Hilbert spaces

We now return the the problem of minimising the reduced functional:

min
m∈M

J̃(m) (1.193)

44 1 Introduction to PDE-constrained optimisation

where M is a Hilbert space with inner product 〈·, ·〉M and J̃ is assumed to be a
twice continuously Fréchet-differentiable real-valued functional. The extension of
the BFGS method to this situation simply requires careful attention to the appropri-
ate application of this inner product. The quadratic model now becomes:

qk(p) = J̃k + yk(p)+
1
2

Bk(p, p), (1.194)

where Bk ∈L (M,M∗) is invertible and yk = dJ̃(mk) ∈M∗. Note that we can con-
sider functions in L (M,M∗) to have either one argument in M and return values in
M∗, or to have two arguments in M and return values in R. We will use whichever
version is most applicable in a given circumstance. The linear and continuous oper-
ator Bk is an approximation of the second Fréchet derivative of J̃. In order to find a
pk such that

qk(pk)≤ qk(p) ∀p ∈M, (1.195)

it is necessary that
dqk(pk; ·) = yk(·)+Bk(p, ·) = 0. (1.196)

This is typically referred to as the first order optimality condition. Therefore, the
search direction we require is

pk =−B−1
k (yk), (1.197)

where B−1
k ∈ L (M∗,M). The linearity and boundedness of B−1

k can be demon-
strated as follows. For any m,n ∈ M, there are m∗,n∗ ∈ M∗ such that B−1

k m∗ = m
and B−1

k n∗ = n. Using the linearity of Bk yields

Bk(m+ γn) = Bkm+ γBkn (1.198)

⇔ Bk(B−1
k m∗+ γB−1

k n∗) = m∗+ γn∗ ∀γ ∈ R. (1.199)

Applying B−1
k from the left hand side shows that B−1

k is linear. Further, the open
mapping theorem states that any surjective bounded linear operator between two
Banach spaces is an open map, i.e. maps open sets onto open sets. Thus, for any
U ⊂M open we have (B−1

k)−1(U) = Bk(U) open in M∗. Hence, B−1
k is continuous.

A symmetric rank two update that meets the secant condition is the Hilbert space
version of the BFGS formula (1.192), given by

Bk+1(m,n) = Bk(m,n)− Bk(sk,m)Bk(sk,n)
Bk(sk,sk)

+
yk(m)yk(n)

yk(sk)
, (1.200)

where the function arguments are m,n ∈M. The updating formula corresponding to
the approximation Hk+1 of the Hessian inverse in (1.187) is given by

1.5 Optimisation methods 45

Hk+1(m∗) = Hk(m∗)−
m∗(sk)

yk(sk)
Hk(yk)−

yk(Hk(m∗))
yk(sk)

sk (1.201)

+
m∗(sk)yk (Hk(yk))

(yk(sk))2 sk +m∗(sk)sk (1.202)

=

(
IdM−

sk

yk(sk)
yk

)(
Hk(m∗)−Hk(yk)

m∗(sk)

yk(sk)

)
+m∗(sk)sk (1.203)

=

(
IdM−

sk

yksk
yk

)(
Hk

(
m∗− m∗(sk)

yk(sk)
yk

))
+m∗(sk)sk (1.204)

= Vk (Hk (V
∗

k (m∗)))+m∗(sk)sk, (1.205)

with m∗ ∈ M∗ arbitrary and Hk ∈L (M∗,M). Here, Id :M M→ M is the identity
operator on the space M. Further, Vk : L (M,M) and V ∗k : L (M∗,M∗) are given by

Vk(m) = m− sk

yk(sk)
yk(m), (1.206)

V ∗k (m∗) = m∗− m∗(sk)

yk(sk)
yk, (1.207)

with m ∈M and m∗ ∈M∗ arbitrary.
Using the Riesz representation theorem, formula (1.200) can be written as

Bk+1(m,n) = Bk(m,n)− 〈R(Bk(sk)),m〉M〈R(Bk(sk)),n〉M
〈R(Bksk),sk〉M

+
〈R(yk),m〉M〈R(yk),n〉H

〈R(yk),sk〉M
. (1.208)

Of course we are primarily interested in the case where H is finite-dimensional. In
the particular case where M = Rn, we have 〈a,b〉M = aT b and R(a) = aT . In this
special case (1.208) is equivalent to (1.192). In contrast, if M is a finite-dimensional
subspace of, for example, H1 or L2 then (1.208) demands that the corresponding
inner product is employed.

The question arises which algorithm among all Hilbert space BFGS versions,
or equivalently, what inner product to choose for numerically solving an optimisa-
tion problem. Letting ourselves be led by the structure of the problem ,it is natural
to choose the inner product space that corresponds to the space of the optimisation
controls. The same space should be the basis for any finite-dimensional numerical
method.

It turns out that optimisation algorithms that do not respect the natural and correct
inner product of the control space lead to mesh-dependent and generally suboptimal
solutions. Chapt. 2 and Chap. 3 are dedicated to a deeper discussion of these phe-
nomena.

46 1 Introduction to PDE-constrained optimisation

1.5.4.2 Limited memory Hessian approximation

The inverse Hessian approximation, Hk, introduced in the previous section for Rn is
a dense n×n matrix. The storage of this matrix is impractical for all but the smallest
problems. Fortunately, this is also unnecessary since only the action of this matrix
is required. Instead, the sequence of vectors yk and sk can be stored, and −Hk∇ fk
computed on the fly using the recursion formular for Hk without ever constructing
the matrix. Of course this still requires an increasingly large number of vectors to
be stored and the computation of the matrix action becomes increasingly expensive.
In contrast, [3] present an approach in which only information from the most recent
iterations is stored. The justification for this approach, which is similar in character
to restarted GMRES, is that the vectors essentially encode curvature information,
and that the curvature information from the most recent iterations is likely to have
the greatest impact on the Hessian behaviour of the current iteration [26, Sect. 7.2].

By repeated application of the BFGS formula (1.187), one can easily see that Hk
is given recursively by

Hk = (V T
k−1 · . . . ·V T

k−m)Hk−m(Vk−m · . . . ·Vk−1)

+ρk−m(V T
k−1 · . . . ·V T

k−m+1)sk−msT
k−m(Vk−m+1 · . . . ·Vk−1)

+ρk−m+1(V T
k−1 · . . . ·V T

k−m+2)sk−m+1sT
k−m+1(Vk−m+2 · . . . ·Vk−1)

...

+ρk−2V T
k−1sk−2sT

k−2Vk−1

+ρk−1sk−1sT
k−1,

(1.209)

where 1 ≤ m ≤ k and Hk−m is the approximation of the Hessian inverse at the (k−
m)th iterate. The main idea of the limited BFGS method is now to replace Hk−m
in (1.209) by some initialisation matrix γkI with γk > 0. The reader is referred to
[3, Sect. 3] and [4, Sect. 3], for a more compact representation of Hk under further
curvature conditions.

In a Hilbert space setting, (1.209) becomes

1.5 Optimisation methods 47

Hk(m∗) = (Vk−1 ◦ . . .◦Vk−m)
(
Hk−m(V

∗
k−m ◦ . . .◦V ∗k−1(m

∗))
)

+
Vk−1 ◦ . . .◦Vk−m+1

yk−msk−m

(
sk−m ·

(
V ∗k−m+1 ◦ . . .◦V ∗k−1(m

∗)
)
(sk−m)

)
+

Vk−1 ◦ . . .◦Vk−m+2

yk−m+1sk−m+1

(
sk−m+1 ·

(
V ∗k−m+2 ◦ . . .◦V ∗k−1(m

∗)
)
(sk−m+1)

)
...

+
Vk−1

yk−2sk−2

(
sk−2 ·V ∗k−1(m

∗)(sk−2)
)

+
sk−1m∗(sk−1)

yk−1sk−2
,

(1.210)

with m∗ ∈M∗ arbitrary.

1.5.5 Primal log-barrier interior point method

The concept of barrier methods for constrained optimisation relies on reformulating
the constrained problem as a sequence of unconstrained problems. In that, a com-
posite function is minimised which accounts both for the original objective function
as well as the constraints. The interior point method used in 3.5 is closely related to
the classical barrier interior point method summarised in [38], which is introduced
in what follows. Consider the following inequality constrained nonlinear optimisa-
tion problem

min
m∈M

J̃(m)

subject to ci(m)≥ 0,
(1.211)

where J̃ : M→ R and ci : M→ R for i = 1, . . . ,n. The optimisation method intro-
duced in the following aims on solving (1.211) iteratively by requiring their iterates
to belong to the interior of the feasible region, i.e. to satisfy the inequality con-
straints strictly. For (1.211), we can define the so called logarithmic barrier func-
tional β µ : M→ R by

β
µ(m) = J̃(m)−µ

n

∑
i=1

log(ci(m)) , (1.212)

where µ > 0 is referred to as the barrier parameter. Note that the logarithmic terms
are well-defined for ci(m)> 0 but tend to infinity for ci(m) approaching zero. Intu-
itively, for small µ the minimum of β µ is close to a solution of (1.211). In the case
H = Rn and under sufficient optimality conditions on a minimiser m̂ of (1.211),
one can show ([38]) that for a monotonically decreasing sequence of sufficiently

48 1 Introduction to PDE-constrained optimisation

small values of µ , there is a sequence mµ of unconstrained minimisers of the barrier
function (1.212) with

lim
µ→0

mµ = m̂. (1.213)

Under appropriate smoothness assumptions, the sequence {xµ} of points define a
smooth curve and converges non-tangentially from the strict interior of the feasible
region to the minimiser m̂ [38].

The Fréchet derivative of the logarithmic barrier functional with respect to m∈H
is given by

dβ
µ(m; ·) = dJ̃(m; ·)−

n

∑
i=1

µ

ci(m)
dci(m; ·). (1.214)

Using the product rule for differentiation, the barrier Hessian is computed as

d(2)β µ(m; ·, ·) = d(2)J̃(m; ·, ·)−
n

∑
i=1

µ

ci(m)
d(2)ci(m; ·, ·) (1.215)

+
n

∑
i=1

µ

c2
i (m)

dci(m, ·) ·dci(m, ·) (1.216)

To compute the step pk ∈ H to move from a current iterate mk
µ to mk+1

µ , i.e.

mk+1
µ = mk

µ + pk, (1.217)

we apply Newton’s method to the quadratic model of the barrier function. This leads
to solving the so called primal Newton barrier equation

d(2)β µ(m; pk, ·) =−dJ̃(m; ·)+
n

∑
i=1

µ

ci(m)
dci(m; ·). (1.218)

Iterating this leads to an approximation of a stationary point of the barrier function
(1.212). In the case H = Rn and under suitable differentiability assumption on β µ ,
it can be shown that {mk

µ} indeed converges to a stationary point and thus satisfies
the necessary conditions to minimise the barrier function.

1.6 Optimal control of the Poisson equation

In this section, the principle of PDE-constrained optimisation is illustrated with a
simple and generic example. The problem chosen is the optimal control of a system
constrained by the Poisson equation. Physically, this problem can be interpreted as
finding the ideal heat source in order to translate the state of the system into a de-
sired temperature profile. Mathematically, the problem is to minimise the following

1.6 Optimal control of the Poisson equation 49

tracking type functional

min
m∈M

1
2
‖u−d‖2

L2(Ω)+
α

2
‖m‖2

M, (1.219)

subject to the Poisson equation with Dirichlet boundary conditions given by

−∆u = m in Ω (1.220)
u = 0 on ∂Ω , (1.221)

where Ω = [0,1]2, M = L2(Ω) or H1(Ω), u : Ω → R is the unknown temperature,
m∈M is the unknown control function acting as source term (m(x)> 0 corresponds
to heating and m(x) < 0 corresponds to cooling), d ∈ L2(Ω) is the given desired
temperature profile and α ∈ [0,∞) is a Tikhonov regularisation parameter. For a
proof of existence and uniqueness of the solution, we refer to [29, Sect. 1.5]. Using
the formulation from 1.4, the objective functional for this problem is

J(u,m) :=
1
2
‖u−d‖2

L2(Ω)+
α

2
‖m‖2

M. (1.222)

An iterative approach towards a solution is achieved using methods introduced pre-
viously. In a first step, a solution u0 to the PDE constraints for a given user-defined
initial control m0 is computed using finite elements. In a second step, the Fréchet
derivative of the reduced functional J̃ of J with respect to m0 is computed using the
adjoint approach. Using the derivative of J̃, an optimisation method is then applied
in a third step, producing a new, better control m1. This procedure is then iterated
until a convergence criterion is met.

Based on this approach, a numerical solution of (1.219) satisfying (1.220, 1.221)
using linear Lagrange finite elements for both m and u can be computed. Results are
shown in Fig. 1.7. The parameters for the problem are

Ω = [0,1]2, (1.223)

d(x1,x2) =
1

2π2 sin(πx1)sin(πx2), (1.224)

α = 10−6, (1.225)
m0 = 0. (1.226)

The underlying optimisation method is an implementation of the limited memory
BFGS algorithm from Sect. 1.5.4 provided by Moola [28]. While many widely used
optimistation packages assume that the problem is posed in Rn, this implementation
respects the native structure of problems posed in arbitrary Hilbert spaces. In other
words, the inner product native to the control space, is applied in the determination
of search directions and convergence criteria. Respecting the inner products leads to
mesh-independent convergence of the optimisation algorithm, which is explored in
more detail in Chap. 2. For solving the finite element problem, the FEniCS frame-

50 1 Introduction to PDE-constrained optimisation

work [23] was used. Similar to Firedrake, FEniCS enables the automated solution of
differential equations. For an open access FEniCS tutorial we refer to [22]. Further,
we made use of dolfin-adjoint [10] for the computation of adjoints. For the Python
code used to produce the numerical solutions in this section, we refer to [33].

(a) M = L2 (b) M = H1

Fig. 1.7: Plots of m̂ minimising (1.219) under the PDE-constraints (1.220, 1.221)

1.7 References

[1] Hans Wilhelm Alt. Linear functional analysis: an application-oriented intro-
duction. Springer, 2016.

[2] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. 3rd Edition, Springer Science+Business Media, LLC, 2008.

[3] J. Nocedal Byrd R. H. and R. B. Schnabel. “Representations of quasi-Newton
Matrices and their Use in Limited Memory Methods”. In: Mathematical Pro-
gramming 63 (1994), pp. 129–156.

[4] Richard H Byrd et al. “A limited memory algorithm for bound constrained
optimization”. In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–
1208.

[5] Alexandru Cioaca, Mihai Alexe, and Adrian Sandu. “Second-order adjoints
for solving PDE-constrained optimization problems”. In: Optimization Meth-
ods and Software 27.4-5 (2012), pp. 625–653. DOI: 10.1080/10556788.
2011.610455.

[6] Timothy A Davis. Direct methods for sparse linear systems. Vol. 2. Siam,
2006.

[7] Peter Deuflhard. Newton methods for nonlinear problems: affine invariance
and adaptive algorithms. Vol. 35. Springer Series in Computational Mathe-
matics. Springer, 2011.

[8] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast it-
erative solvers: with applications in incompressible fluid dynamics. USA:
Oxford University Press, 2005.

http://dx.doi.org/10.1080/10556788.2011.610455
http://dx.doi.org/10.1080/10556788.2011.610455

1.7 References 51

[9] Howard C Elman, David J Silvester, and Andrew J Wathen. Finite elements
and fast iterative solvers: with applications in incompressible fluid dynamics.
Oxford University Press (UK), 2014.

[10] P. E. Farrell et al. “Automated derivation of the adjoint of high-level transient
finite element programs”. In: SIAM Journal on Scientific Computing (2012).
accepted.

[11] Firedrake documentation. URL: http://firedrakeproject.org/
documentation.html.

[12] Fernando Andrés Gallego, John Jairo Quintero, and Juan Carlos Riano. “Con-
vergence of the steepest descent method with line searches and uniformly
convex objective in reflexive Banach spaces”. In: Mathematical Communica-
tions 20.2 (2015), pp. 161–173.

[13] Michael Ghil and Paola Malanotte-Rizzoli. “Data Assimilation in Mete-
orology and Oceanography”. In: Advances in Geophysics. Ed. by Renata
Dmowska and Barry Saltzman. Vol. 33. Elsevier, 1991, pp. 141–266. DOI:
10.1016/S0065-2687(08)60442-2.

[14] Lawrence M Graves. “Riemann integration and Taylor’s theorem in gen-
eral analysis”. In: Transactions of the American Mathematical Society 29.1
(1927), pp. 163–177.

[15] A. Griewank and A. Walther. Evaluating derivatives: Principles and tech-
niques of algorithmic differentiation. Second. Philadelphia, PA, USA: SIAM,
2008. ISBN: 0898714516.

[16] P. Guillaume and M. Masmoudi. “Computation of high order derivatives in
optimal shape design”. In: Numerische Mathematik 67.2 (1994), pp. 231–
250.

[17] M. D. Gunzburger. Perspectives in Flow Control and Optimization. Ad-
vances in Design and Control. Philadelphia, PA, USA: SIAM, 2003. ISBN:
089871527X.

[18] M. Hinze and K. Kunisch. “Second Order Methods for Optimal Control of
Time-Dependent Fluid Flow”. In: SIAM Journal on Control and Optimization
40.3 (2001), pp. 925–946. DOI: 10.1137/S0363012999361810.

[19] M. Hinze et al. Optimization with PDE constraints. Vol. 23. Mathemat-
ical Modelling: Theory and Applications. Berlin, Heidelberg, New York:
Springer-Verlag, 2009. ISBN: 978-1-4020-8838-4.

[20] A. Jameson. “Aerodynamic design via control theory”. In: Journal of Scien-
tific Computing 3.3 (1988), pp. 233–260.

[21] Robert C Kirby. “From functional analysis to iterative methods”. In: SIAM
review 52.2 (2010), pp. 269–293.

[22] H.P. Langtangen and A. Logg. Solving PDEs in Python: The FEniCS Tutorial
I. Simula SpringerBriefs on Computing. Springer International Publishing,
2017.

[23] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution
of differential equations by the finite element method: The FEniCS book.
Vol. 84. Springer Science & Business Media, 2012.

http://firedrakeproject.org/documentation.html
http://firedrakeproject.org/documentation.html
http://dx.doi.org/10.1016/S0065-2687(08)60442-2
http://dx.doi.org/10.1137/S0363012999361810

52 1 Introduction to PDE-constrained optimisation

[24] J. N. Lyness and C. B. Moler. “Numerical differentiation of analytic func-
tions”. In: SIAM Journal on Numerical Analysis 4.2 (1967), pp. 202–210.

[25] D. Menemenlis et al. “ECCO2: High resolution global ocean and sea ice data
synthesis”. In: Mercator Ocean Quarterly Newsletter 31 (2008), pp. 13–21.
DOI: 10.1007/s10236-006-0082-1..

[26] J. Nocedal and S. Wright. Numerical Optimization. Springer Science+Business
Media, LLC, 2006.

[27] J. Nocedal and S. J. Wright. Numerical optimization. 2nd ed. Berlin, Heidel-
berg, New-York: Springer-Verlag, 1999.

[28] M Nordaas and Simon W. Funke. The Moola optimisation package. https:
//github.com/funsim/moola. 2016.

[29] Rene Pinnau and Michael Ulbrich. Optimization with PDE constraints. Vol. 23.
Springer Science & Business Media, 2008.

[30] R. L. Raffard and C. J. Tomlin. “Second order adjoint-based optimization of
ordinary and partial differential equations with application to air traffic flow”.
In: Proceedings of the 2005 American Control Conference. 2005, pp. 798–
803. DOI: 10.1109/ACC.2005.1470057.

[31] Florian Rathgeber et al. “Firedrake: Automating the Finite Element Method
by Composing Abstractions”. In: ACM Trans. Math. Softw. 43.3 (Dec. 2016),
24:1–24:27. ISSN: 0098-3500. DOI: 10.1145/2998441. URL: http:
//doi.acm.org/10.1145/2998441.

[32] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.
[33] Tobias Schwedes, David Ham, and Simon W Funke. Code for simulations in

Chapter 1 of ResearchBrief. Dec. 2016. DOI: 10.5281/zenodo.223099.
URL: https://doi.org/10.5281/zenodo.223099.

[34] Detlef Stammer and Carl Wunsch. Computational requirements for ECCO in
support of CLIVAR and GODAE. The ECCO Report Series 2. Boston, USA:
Scripps Institution of Oceanography, Massachusetts Institute of Technology,
1999.

[35] D. Stammer et al. “Ocean state estimation and prediction in support of
oceanographic research”. In: Oceanography 2.13 (2000), pp. 51–56.

[36] D. Thevenin and G. Janiga. Optimization and computational fluid dynam-
ics. Berlin, Heidelberg, New-York: Springer-Verlag, 2008. DOI: 10.1007/
978-3-540-72153-6.

[37] Philip Wolfe. “Convergence Conditions for Ascent Methods”. In: SIAM Re-
view 11.2 (1969), pp. 226–235.

[38] Margaret Wright. “The interior-point revolution in optimization: history, re-
cent developments, and lasting consequences”. In: Bulletin of the American
mathematical society 42.1 (2005), pp. 39–56.

http://dx.doi.org/10.1007/s10236-006-0082-1.
https://github.com/funsim/moola
https://github.com/funsim/moola
http://dx.doi.org/10.1109/ACC.2005.1470057
http://dx.doi.org/10.1145/2998441
http://doi.acm.org/10.1145/2998441
http://doi.acm.org/10.1145/2998441
http://dx.doi.org/10.5281/zenodo.223099
https://doi.org/10.5281/zenodo.223099
http://dx.doi.org/10.1007/978-3-540-72153-6
http://dx.doi.org/10.1007/978-3-540-72153-6

	Chapter 1 Introduction to PDE-constrained optimisation
	1.1 The Finite element method
	1.1.1 Poisson’s equation
	1.1.2 Burgers’ equation

	1.2 Hilbert spaces
	1.2.1 Dual spaces and the Riesz representation theorem
	1.2.2 Fréchet derivatives
	1.2.3 Partial derivatives and the chain rule

	1.3 The relation between primal and dual finite element spaces
	1.3.1 Example: application of assembled finite element operators
	1.3.2 The primal and dual norms for L2 and H1
	1.3.3 Convergence criteria for Newton’s method

	1.4 Adjoint and tangent linear equations
	1.4.1 A finite-dimensional example
	1.4.2 The infinite dimensional case
	1.4.3 Higher-order derivatives
	1.4.4 Example: Adjoint Poisson’s equation
	1.4.5 Example: Adjoint Burgers’ equation
	1.4.6 Taylor tests for adjoint implementations

	1.5 Optimisation methods
	1.5.1 Steepest descent method
	1.5.2 Inexact line search and the Wolfe conditions
	1.5.3 Line search Newton-CG
	1.5.4 BFGS
	1.5.5 Primal log-barrier interior point method

	1.6 Optimal control of the Poisson equation
	1.7 References

