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2 DIID, Università degli Studi di Palermo, Palermo, Italy
valeria.seidita@unipa.it

Abstract. The basic ideas of self-adaptive systems are not a novelty in
computer science. There are plenty of systems that are able of monitor-
ing their operative context to take run-time decisions. However, more
recently a new research discipline is trying to provide a common frame-
work for collecting theory, methods, middlewares, algorithms and tools
for engineering such software systems. The aim is to collect and clas-
sify existing approaches, coming from many different research areas. The
objective of this work is providing a unified metamodel for describing the
various categories of adaptation.

1 Introduction

Today’s society always more depends on complex distributed software systems
available 24 h and with minimal human supervision and maintenance effort dur-
ing the operating phase. The more software systems grow in complexity and size,
the more management automation, robustness, and reliability become central:
it becomes essential to design and implement them in a more versatile, flexible,
resilient and robust way.

In [17] authors discuss how an ambient intelligent system (AmI) plunges
into the real world. The authors underline that, in such complex systems, the
boundary between software and society blends and often disappears. The social
environment is enriched with artificial intelligence to support humans in their
everyday life. The IBM manifesto of autonomic computing [11] suggests a promis-
ing direction for facing software complexity through self-adaptation.

A self-adaptive system is a system with the ability to autonomously modify
its behavior at run-time in response to changes in the environment [5,7,21]. The
vision of a computing system that can manage itself is fascinating [5,7]: to mod-
ify the behavior at run-time for maintaining or enhancing its functions [5]. This
vision has deep roots in several research fields, as for instance, artificial intelli-
gence, biologically inspired computing, robotics, requirements/knowledge engi-
neering, control theory, fault-tolerant computing, and so on. In the last decade,
the vast and heterogeneous number of works concerning self-adaptation inves-
tigated several aspects of the problem, for instance, specific architectures for
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implementing adaptive control loops [14], self-organizing paradigms [1], adaptive
requirements [6] and so on. However, to date, many of these problems remain
significant intellectual challenges [5,7]. For instance, general purpose software
engineering approaches are still missing for the provision of self-adaptation [5].
The long-term objective is to establish the foundations for the systematic devel-
opment of future generations of self-adaptive systems.

This work resembles existing approaches for systematically engineering self-
adaptive system and proposes a unified metamodel of the four types of adap-
tation. The objective is to provide a framework for identifying and classifying
smart systems according to their self-adaptive properties. A metamodel supports
this framework for aiding the designer to choose the most appropriate category
of systems, depending on the problem statements. The description reports the
main components and some illustrative case studies for each type of adaptation.

The paper is structured as follows: Sect. 2 analyzes definitions of self-adaptive
systems in state of the art. Section 3 presents the unified metamodel and
describes the four categories in details. Finally, Sect. 4 reports the conclusions.

2 Related Work

In last decade, the definition of adaptation has been deliberately generic to
gather many sub-fields under a common umbrella and produce interesting syn-
ergy. However, this trend has generated some sub-definitions with sometimes
significant differences. For instance, in [5,7] a self-adaptive system can modify
its behavior in response to changes in the environment. For the models@run.time
community [12], a dynamically adaptive system (DAS) can be conceptualized as
a dynamic software product line in which variabilities are bound at runtime for
improving the quality of service (QoS).

Unifying different definitions is required. Salehie and Tahvildari [20] identify
two categories of self-adaptation based on impact (the scope of system effects)
and cost factors (in terms of time, resources and complexity). The weak adapta-
tion mainly involves modifying parameters using pre-defined static mechanisms
(limited impact/low cost). Conversely, the strong adaptation deals with high-
cost/extensive impact actions such as adding, replacing, removing components.

In [16], the authors provide a classification scheme for four categories of
self-adaptive systems: Type 1 consists in anticipating both changes and the
possible reactions at design-time: the system follows a behavioral model that
contains decision-points. For each decision point, the solution is immediately
obvious given the current perceptions and the acquired knowledge about the
environment.

Type 2 consists of systems that own many alternative strategies for react-
ing to changes. Each strategy can satisfy the goal, but it has a different impact
on some non-functional requirement. Selecting the best strategy is a run-time
operation based on the awareness of the different impact towards these external
aspects. Typically the decision is taken by balancing trade-offs between alterna-
tives, based on the acquired knowledge about the environment.
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Type 3 consists of systems aware of its objectives and operating with uncer-
tain knowledge about the environment. It does not own pre-defined strategies but
it rather assemblies ad-hoc functionalities according to the execution context.

Type 4 is inspired by biological systems that are able of self-modifying their
specification when no other possible additions or simple refinements are possible.

In [2], authors face the same point, but from a requirement engineering per-
spective. The premise is that requirement engineering task is to determine the
kinds of input of a system and the possible responses to these inputs. There-
fore they identify four types of requirement engineering activities concerning a
self-adaptive system.

Level 1 activities are done by humans and resemble the traditional RE activ-
ities. The analysts determine all the possible domains to be considered by the
system (inputs) and all the possibility system functionalities (reactions).

The system executes Level 2 ’s activities. Whereas the analysts have deter-
mined a set of possible behaviors (i.e. reactions), the system can identify the
functionality to execute next, when the environment does not match any of the
input domains.

Conversely, Level 3 activities are done by humans for implementing the
decision-making procedure that allows the system to apply level 2. Level 3 often
includes a meta-level reasoning, that exploits determined program-testable cor-
respondences to environmental changes that trigger adaptation.

Implementing the adaptation mechanism (i.e. the feedback loop) is a Level 4
activity, for which humans are responsible.

3 The Proposed Metamodel

A smart system is often immersed in a pre-existing world (or environment)
populated by objects and persons it interacts with, it influences and is influenced.
Boundaries between the software realizing the smart system and the environment
are becoming lighter, more and more, and they are almost disappearing. All
this significantly affects the design of smart systems. In this section, we present
a framework for identifying and illustrating which may be the minimal set of
elements (Fig. 1) a system as to own for being classified self-adaptive of the four
cited types.

The metamodel in Fig. 1 is composed of two parts: the first part includes
all the generic elements of a smart system, whereas the second part embraces
all the elements implementing the different types of self-adaptation. The first
part comes from a previous study of some authors of this paper [17], where
a set of abstractions for representing smart systems in an Ambient Intelligent
context has been explored and experimented. All the elements in the second part
have been identified reviewing the literature and definitions about managing and
designing self-adaptive systems.

We argue that, in general, abstractions representing a smart system are
mainly the environment and all the entities it is composed of. There may be,
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passive, dumb and smart entities, all of them present a state that may be per-
ceived and changed during the running phase of the system. Smart entities are
cognitive, intentional and rational entities, able to perform actions according to
the principle of rationality. Dumb and passive entities are elements of the envi-
ronment, the former are resources (software applications, physical devices, . . . )
and the latter are simply objects in the environment such as physical or digital
objects; both of them are part of the environment and influence the actions of
the smart system.
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Fig. 1. Portion of metamodel that describes the four types of self-adaptive systems.

The second part of the metamodel shows all the elements of a self-adaptive
system. As it may be deduced by the definitions, the set of elements for each
type is contained in the higher ones. A smart system belongs to the first type of
self-adaptation if it owns a kind of smart entity, the Adaptive System composed
of the elements necessary to know the environment and to act on it. The second
type principally requires an Awareness Engine qualified to know the model at
run-time of the system and to change or influence the solution strategy built
at design time. The third type involves a more complex element that is the
Solution Builder, this is able to build a completely new solution strategy by
using a repository of established functionalities. Finally, the fourth type requires
the Evolution Engine that is able to set up a Solution Builder.
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In the following, each type is broadly described. It is important to note
that Design Artifact, Run-Time Model, Awareness Engine, Solution Builder,
Evolution Engine are not classic elements of a problem domain you may find in
a metamodel but are strictly related to the software solution. This is to stress
the fact that self-adaptive systems cannot be conceived or designed if not as an
alive part of the domain.

3.1 Type I

Adaptation of Type I is the simplest implementation of smart systems. It arises
from a deep analysis of the domain for analyzing all the possible changes the
system will observe and react to. The design activity includes the study of all the
possible reactions the system will enact. The design leads to the definition of a
behavioral model that contains decision-points: a decision point is analogous to
a ‘if...then...else’ statement, whereas conditions typically depend on perceptions
of the execution environment.

Problem Statement. The Adaptation of Type I is a good choice when:

– it is necessary a smart system able to operate in different ways, according to
the state of the environment, acquired by perceptions;

– changes mainly affect observable attributes of the environment;
– it is possible to anticipate (at design-time) all the environment changes that

are of interest for the system;
– dealing with uncertainty is not central in the implementation.

System Description. An Adaptive System of Type I is a specific class of
artificial system, i.e. a smart entity that operates in an environment. An Adaptive
System of Type I owns effectors for changing the state of the environment and
perceptors (Env Monitor) for acquiring the current state of the environment.
Decisions points are rules that connect knowledge and perception (cause) to an
effector (consequence).

Known Usage. An illustrative scenario for Type I is the Robotic Navigation
System presented in [5]. The scenario illustrates autonomous control software
system of unmanned vehicles (UVs). The adaptation system must consider the
regular traffic environment, including the infrastructures and other vehicles. A
cause of adaptation can be an unexpected obstacle (people crossing the road). To
this aim, it is necessary to monitor the environment (perceptors) and to detect
possible obstacles in front of the vehicle. An example of a cause-consequence rule
is: IF an obstacle is in front of the vehicle THEN maneuver around the obstacle
for avoiding a collision.

Another example is a smart information system for airports [15]. A cause
of adaptation occurs when a flight delays. According to the importance of the
delay, the system may select different actions: inform the traveler, rebook the
flight as soon as possible, book a hotel and re-plan the flight the next day.
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Limits. Do not use Type I:

– if the system decision must deal with non-functional aspects; for instance, to
rebook a service as soon as possible, or to change the itinerary for maintaining
the traveler’s satisfaction.

– if a flexible strategy for changing user’s goals is required.

3.2 Type II

Adaptation of Type II consists of complex systems that offer many alternative
strategies for addressing the same goal. Different strategies encompass different
operative situations and provide a different impact on the non-functional require-
ments. This situation requires revising the traditional analysis of requirements
phase for including the detailed exploration of a large problem space. Selecting
the contextual strategy to apply is a run-time decision that considers complex
trade-offs among the state of the environment and the desired quality of service.
This decision requires a higher level of knowledge than Type I. It must include
the awareness of functional/non-functional requirements, and the different way
each operation impacts on them.

Problem Statement. The Adaptation of Type II is a good choice when:

– it is necessary a smart system that can detect and recover run-time deviations
between behavior and requirements;

– it is not possible to anticipate all the environment changes at design-time, and
therefore it is preferable to discover them at run-time;

– changes can also affect requirements;
– it is necessary to incorporate a degree of uncertainty in requirements.

System Description. An Adaptive System of Type II contains a set of effectors
and perceptors as well as the Type I and extends it with a set of solution strate-
gies and an awareness engine. A solution strategy is a plan which actions are
the monitors and effectors. A solution strategy (or its components) is linked to
some functional requirement that motivates its execution. Moreover, the solution
strategy (or its components) may also be related to one or more non-functional
requirements, describing the kind of expected impact of its execution. This com-
plex model is often a run-time artifact that the Awareness Engine acquires and
manages.

Known Usage. An example of Type II adaptation is contained in the scenario
of London Ambulance Service (LAS) [10]. According to official recommenda-
tions, such a system must involve a full process of consultation between manage-
ment, staff, trade union representatives and the Service’s information technology
advisers. Authors have identified many solutions for the main goal (to respond
emergency calls within a specific time). A solution is composed of many tasks,
each one addressing a specific subgoal. The system follows an adaptation of Type
II because it may enact alternative functions. The system reasons on which task
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to select (and therefore which is the best solution) according to quality aspects,
for instance, the time, the efficiency and the reliability. Authors used a goal
model [9] for depicting the problem requirements together with tasks and qual-
ity aspects. This goal model is implemented as a run-time model the system
receives as an input for taking contextual decisions.

Another example comes from dynamic workflow execution engines. In [4] the
authors provide a workflow execution engine where tasks are related to abstract
services. Each abstract service is the high-level description of many actual ser-
vices provided by different providers. A real service owns some quality of services.
The execution of the workflow requires selecting among alternative concrete ser-
vices. The choice is to optimize one of the global quality of service assets [8]:
different solutions occur if the user decides to optimize the total cost or the total
time to complete.

Limits. Do not use Type II:

– if user’s functional/non-functional requirements are dynamics;
– if you desire a flexible way for extending system functionalities.

3.3 Type III

Adaptation of Type III represents an advanced implementation of a smart system
that is instructed with a set of basic functionalities. The system can use for
assembling ad-hoc behaviors not contained in any of the predefined solution
strategies. This kind of system is particularly suitable for working with uncertain
knowledge about the environment and the requirements.

Problem Statement. The Adaptation of Type III is a good choice when:

– the problem domain is not entirely anticipated at design-time,
– requirements evolve frequently due to business rules or societal norms;
– it is necessary to assemble ad-hoc functionalities on the fly;
– system functionalities are open to third-party providers and dynamics

(depending, for instance, from network conditions).

System Description. An Adaptive System of Type III owns the core charac-
teristics of Type II, but it supports a new component, called Solution Builder.
This element can access to a (dynamic) repository of functionalities and build
one or more new solution strategies for addressing an unanticipated problem.
Selecting among many solutions frequently implies an optimization phase that
also considers non-functional aspects.

Known Usage. An example of Type III adaptation is a smart travel assistance
system [18]. Such a system can compose a trip itinerary according to user’s pref-
erences and create travel service as the composition of multiple atomic services
(flight booking, hotel reservation, local transportation tickets and so on). The
system is also able to monitor either possible problems during the journey, or
changes in user’s preferences, and to optimize the travel itinerary consequently.
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The new frontier of service composition over the cloud is called cloud mashup.
The adaptive scenario –described in [19]– includes on-demand, on-the-fly appli-
cation mashup for addressing a set of designer’s goals. The customer does not
provide goals, so the designer can not incorporate them into the orchestration
model. An adaptation system of type III allows injecting goals at run-time.
Consequently, the system builds a new mashup by aggregating existing cloud
services, according to availability, cost and reliability [13].

Limits. Do not use Type III:

– for real-time systems;
– if the system should be able of inspecting itself and autonomously evolving its

functionality.

3.4 Type IV

Adaptation of Type IV is the higher level of a smart system that is able of
inspecting itself, learning from experience and self-modifying its specification.
They are designed to afford the worst cases of adaptation: when the system does
not own suitable actions/strategy to be used, and it is not capable of generating
any one. In this case, the system is able of revising its run-time model, thus
to produce a new version of the software. In this category of adaptation, it is
more appropriate to refer to evolution. Indeed these systems are inspired by
biological systems that own the ability to cope with environment variance by
genetic changes.

Problem Statement. The Adaptation of Type IV is a good choice:

– when developers deal with incomplete information about the highly complex
and dynamic environment, and, consequently, incomplete information about
the respective behavior that the system should expose;

– the system must be able of interpreting incomplete run-time models, and
applying –when necessary– changes to those, in order to regulate its behavior;

– the system must be able of generating, at the best of its possibilities, a suitable
strategy even when some basic functionality lacks.

System Description. Whereas in classical conception of a self-adaptive system
(Type I, II, and III) the system can modify its behavior according to the specifi-
cations and to the environment changes, the self-adaptive systems of Type IV are
also able of changing their specification. It may be considered as a strong form
of learning. This could include some run-time technique for validating the new
specification, performing, when necessary, possible trade-off analysis between
several potentially conflicting goals.

Known Usage. To the best of our knowledge, there are not popular examples
of self-adaptive systems of Type IV.

A case study that could benefit from this kind of adaptation could be a
smart firewall [5]. It is a system able to respond to cyber-attacks, but it can not
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possibly know all attacks in advance since malicious actors develop new attack
types all the time. So far, this kind of systems is yet a challenge for artificial
intelligence and computer science. It implies a high level of self-awareness and
the ability to learn, to reason with uncertainty and to generate new code for
coping with unexpected scenarios.

4 Conclusions

All the types of self-adaptive systems share a shift of some design decisions
towards run-time in order to improve the control over the behavior.

In practice, the reader has to focus on run-time activities and in particular
on the decision-making process. This latter is the algorithm/technique used for
directing the system behavior.

This paper proposes a framework for classifying systems and their self-
adaptive attributes by means of a set of abstractions grouped into a metamodel.
The metamodel offers the designer the possibility to select the right elements
related to the chosen self-adaptive type. From a designer point of view, the
power of this metamodel is that it considers the smart system and the envi-
ronment it operates in strictly tied each other: the environment is part of the
software solution and in the same way the system at run-time, with its design
artifacts, algorithms and so on, is part of the environment thus realizing the feed-
back loop regulating all the activities of a self-adaptive system [3]. The monitor
senses the environment and collects relevant data and events for future reference.
The analyzer compares data in order to evaluate differences between the actual
and the expected behavior. The planner uses these data for taking decisions
about the behavior to be executed. Finally, the execute (or act) module applies
the planned decisions through its effectors.

Moreover, in order to classify a smart system according to the type of adap-
tation, the following guideline focuses on the kind of perception ability and
decision-making process. If the run-time activity is the enactment of a set of
hard-coded actions (selected and/or configured according to the operative con-
text), then the adaptation is of Type I. If the system owns a set of pre-defined
strategies (each strategy is an aggregation of actions) and if the strategy is
selected and/or configured at run-time, according to quality aspects, then the
adaptation is of Type II. If the system is able of assembling a new strategy
at run-time, then the adaptation is of Type III. If the system can modify its
run-time models for generating new functions, then the system is of Type IV.
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