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Abstract. Process mining aims to turn event data into insights and
actions in order to improve processes. To improve process performance
it is crucial to get insights into the way people work and collabo-
rate. In this paper, we focus on discovering social networks from event
data. To be able to deal with large data sets or with an environment
which requires repetitive discoveries during the analysis, and still pro-
vide results instantly, we use an approach where most of the computation
is moved to the database and things are precomputed at data entry time.
Differently from traditional process mining where event data is stored in
file-based system, we store event data in relational databases. Moreover,
the database also has a role as an engine to compute the intermediate
structure of social network during insertion data. By moving computa-
tion both in location (to database) and time (to recording time), the
discovery of social networks in a process context becomes truly scalable.
The approach has been implemented using the open source process min-
ing toolkit ProM. The experiments reported in this paper demonstrate
scalability while providing results instantly.

Keywords: Social network · Process mining · Relational database ·
Repetitive discovery

1 Introduction

Consider the following example: a production process in a company is conducted
by several branches. Each branch has a dedicated group of responsible resources,
and a resource may collaborate with other resources from the other branch.
Based on the report from company’s business analysts, some branches are well-
performing, but in some other branches there may be performance problems. In
order to solve this problem, the production manager needs information about
resource performance in problematic batches; how each resource collaborates
with others, how they maintain collaboration with good branches, whether there
are under-utilized resources, etc. These questions can be addressed by social
network analysis in a process mining context.

Suppose that the production manager instructs the company’s business ana-
lysts to give a report in each month for checking the progress since the beginning
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of the year. In this case, the business analysts need to repeatedly look at results
based on event logs that grow over time. For the report in January, they look
at results based on logs recorded in January. For the report in February, they
analyze results based on logs in January plus February, and so on.

Process mining is a research discipline where the aim is to improve organiza-
tion’s process given the information from the so called event logs. The application
of social network analysis in process mining was firstly studied in [16,17]. The
combination of these two research disciplines has proven to be valuable: novel
insights in business processes performance can be obtained by combining both.

In traditional process mining, we import an event log when we want to per-
form an analysis and need to do an end-to-end computation at analysis time.
This approach suffers from two main problems. First of all, we need to load all
event data into main memory to do the computation. For larger event logs the
data needs to be partitioned to perform the computation. Second, the computa-
tion may be very time consuming. Hence, it may take some time to get results
if all of this is done on-demand. Third, in an environment where some repetitive
discoveries are required, as illustrated in the example, unnecessary reloading and
mining the prior data must be performed.

In this paper, we propose a solution to tackle these problems using mature
and established relational database technology. We first move event data to a
relational database, define a notion of intermediate structures in social networks,
pre-compute the intermediate structure inside the database, and set up a con-
nection between the database and process mining tools. By this technique, we
easily pass the intermediate structures to existing social network algorithms. The
algorithms will run normally and not be aware that the intermediate structures
are retrieved from the database. They run even faster because some computa-
tions have been already done inside the database. Furthermore, the intermediate
structures are always kept alive, i.e., they are always updated when a new data is
inserted, hence this technique is well-applied for the needs of repetitive discovery
for event data that grows over time.

While many discovery techniques can be identified, this paper focuses on the
social network analysis particularly the handover of work network. In handover
of work network, we analyze how a task is passed over from one resource to the
other in the context of a process instance. From the handover of work metric
we can get insights into how job allocation is done, whether a resource is always
busy compared to others, or whether unnecessary handovers of work happen. In
spite of that, the work trivially extends to other types of social networks as long
as we can identify an intermediate structure used by the technique which can be
updated when inserting new events into the database.

This paper is organized as follows. In Sect. 2, we present some related work. In
Sect. 3, we give general overview of process mining and the computation of han-
dover of work network. Then, in Sect. 4, we explain how to enable social network
discovery in database. In Sect. 5 we introduce the step-by-step to mine social
networks instantly. We explain the implementation and experimental results in
Sects. 6 and 7 respectively. Finally, Sect. 8 concludes the paper.
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2 Related Work

How social network analysis and process mining can be combined was first shown
in [17]. This work gave a foundation of social network metrics in the context
of process mining. Based on a log data consisting resource information, one can
mine organizational perspective using notions such as handover of work, working
together, and subcontracting. As an extension of this work, the authors presented
concrete metrics and demonstrated them using a case study in [16].

Visualizing social networks, especially with huge volume of data, is a challeng-
ing task. The work in [9] supports social network analysis using chord diagram
where nodes are represented by arcs and chords represent interactions among
nodes. Each element is defined formally and the results showed that this app-
roach can support investigation of new insights from the social network better
than the traditional approach.

To deal with large event logs, the work in [19] presented a streaming-based
framework that defines online cooperative network discovery in a generic way.
It considers the organizational perspective using real time, online, and, infinite
event streams. Stream representation of event logs has also been adapted in [1].
The method uses time-based window model in a finite streams of events. It first
transforms the event log into a finite stream of events, then it divides the stream
into windows.

Differently from streaming-based technique, the work in [5] employed a hier-
archical clustering to deal with large event logs. By clustering the users and
considering the working together metric, it discovers a community structure in
social networks.

A study in [10] examined multiple online social network at a big data scale.
It studied the structural perspective of social network. The data showed that
social networks are structurally different from the web network. Social networks
have a much higher fraction of symmetric links and also exhibit much higher
levels of local clustering.

Social network analysis based on Hadoop was investigated in [20]. This work
introduced a framework called big cloud-parallel data mining but only focused on
huge scale telecom data. Moreover, social network analysis based on the MapRe-
duce framework was investigated in [14]. However, this work only discussed about
social influences in social network analysis.

The use of relational databases in process mining has been investigated ear-
lier. For example, the ontology-based approach in [4] provides on-demand access
to the data in the database using query unfolding and rewriting techniques in
Ontology-based Data Access [3,11]. Furthermore, RXES presented in [18] intro-
duced the relational representation of XES.

Building on top of RXES, the work in [12] introduced an approach to discover
resource assignment constraints by means of SQL queries. The queries can be
customized in order to analyze the interplay of different perspectives, specifically
to discover the influence of resources on the control flow of the process. However,
this technique does not handle live event data, the focus is on static data that
has been imported in a database.
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As an improved version of RXES, DB-XES was introduced in [13]. DB-XES
defined a basic schema which resembles the standard structure of event data,
i.e., the XES standard [8]. To enable a specific family of discovery techniques,
this basic schema was extended with directly follows relations (DFR). More-
over it introduced a technique to precompute the DFR inside DB-XES. Using
experiments on real-life data, it was shown that storing event data and DFR in
DB-XES not only leads to a significant reduction in memory use of the process
mining tool, but can even speed up the analysis of process discovery. However,
this technique is limited to the control flow perspective only.

To the best of our knowledge, this is the first work that considers the organi-
zational perspective in process mining while moving computation to the database
and recording time such that it is able to discover social networks instantly.

3 Preliminaries

3.1 Process Mining

Process mining is a research discipline that sits between machine learning and
data mining on the one hand and process modeling and analysis on the other
hand. The goal of process mining is to turn event data into insights and actions
in order to improve processes. Three main tasks in process mining are process
discovery, conformance checking, and enhancement [15].

Process mining requires an event log, i.e., a set of traces of events, as the input.
Each event has properties called event attributes, such as timestamp when the
event is executed, activity name which represents the task name, and resource
who conduct the event. In this paper, we focus on two particular relations
between events, namely the Directly Follows Relation (DFR) and the Causality
Relation (CR). DFR is a pair of two consecutive events happened in a trace, and
CR is a pair of events (x, y) where x is sometimes directly followed by y but y
is never followed by x. Formally, they are defined as follows.

Definition 1 (Event Log). Let E be a set of events. An event log L ⊆ E∗ is a
set of event sequences (called traces) such that each event appears precisely once
in precisely one trace.

Definition 2 (Event Attributes). Let E be a set of events and let X be a set
of attribute names. For any event e ∈ E and name x ∈ X: #x(e) is the value
of attribute x for event e, #x(e) = ⊥ if there is no value. {activity, resource,
timestamp} ∈ X are standard event attributes, such that:

– #activity(e) is the activity name of event e.
– #resource(e) is the resource who executes event e.
– #timestamp(e) is the timestamp when event e is executed.

Note that each event is unique and appears only once in the event log. There
may be many event sequences that follow the same sequence of activities. How-
ever, these are all distinguishable and events in these sequences may have differ-
ent timestamps, resources, etc.
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Definition 3 (Directly Follows Relation). Let L ⊆ E∗ be an event log.
x is directly followed by y, denoted x >L y, if and only if there is a trace
σ = 〈e1, e2, ..., en〉 ∈ L and 1 ≤ i < n such that #activity(ei) = x and
#activity(ei+1) = y.

Definition 4 (Causality Relation). x is in causality relation with y, denoted
x →L y, if and only if y sometimes directly follows x but never the other way
around, i.e., x >L y and y 	>L x.

3.2 Social Network Analysis

Social network analysis is an approach for investigating social structures where
the context of the social actor, or the relationships between actors are consid-
ered [6]. Social networks are applicable to a wide range of substantive domains,
ranging from the analysis of concepts within mental models to the study of war
between nations. Network methods can also be applied to intrapersonal net-
works, as well as developmental phenomena such as the structure of individual
life histories [2].

In process mining context, social network analysis is harnessed to mine orga-
nizational relation. Resource utilization, performance issues, and hierarchical
structure within an organization are some examples of the social network usage
in process mining. In this context, we derive social networks from the informa-
tion in the event log. In the following we list some examples of social network
analysis in process mining [16]:

– Subcontracting. The main idea is to count the number of times individual r2
executed an activity in-between two activities executed by individual r1. This
may indicate that work was subcontracted from r1 to r2.

– Working-together. Working-together metric counts how often two resources
are working together in the same case. For example, resource r1 and r2 work
together in twenty cases, while r1 and r3 only work together in two cases. In
this example, the relation between r1 and r2 is stronger than r1 with r3.

– Reassignment. Reassignment metric measures how often a resource r1 reas-
signs the work to another resource r2. This arises if there is reassign status in
the lifecycle extension (one of the standard extension in [8]) stated in the log.
This metric provides insight about hierarchical relation of an organization. If
r1 frequently delegates work to r2 but not vice versa, it is likely that r1 is in
a higher hierarchy than r2.

3.3 Handover of Work

Handover of work is one of the social network analysis. Within a trace (i.e.,
process instance), there is handover of work from individual r1 to individual r2
if there are two subsequent activities where the first is completed by r1 and the
second by r2. In [16], there are three kinds of refinement applied to handover
of work metrics. First of all, one can differentiate with respect to the degree of
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causality, e.g., the length of handover. It means that we can consider not only
direct succession but also indirect succession. Second, we can ignore multiple
transfers within one process instance or not. Third, we can consider arbitrary
transfers of work or only consider those where there is a causal dependency.

In this paper we focus on causality relations with degree one, i.e., the directly
follows relation. We differentiate the metrics into four categories: (1) absolute
handover of work, is the basic metric where arbitrary transfers of work with
length one are considered, (2) boolean handover of work, is the metric for arbi-
trary transfers of work and ignores multiple transfers within one trace, (3)
absolute causal handover of work, is similar to (1) but takes into account the
causality relation, and (4) boolean causal handover of work, is similar to (2) but
plus causality.

Suppose we have log L = {〈aAlif, bBerli, cCharlie, dDania, eEliaz〉, 〈aAlif,
bBerli, dDania, cCharlie, eEliaz〉}, with xy denotes that an activity x is executed
by a resource y. Based on this log, we mine four types of handover of work as
depicted in Fig. 1. The figure shows that the structure of absolute and boolean
handover of work is the same, however later we will see that the handover values
in the two networks are different. Moreover, the difference between non-causal
(Fig. 1a) and causal (Fig. 1b) handover of work is in the edges between Charlie
and Dania. Handover of work which takes into account the causality relation
does not have those edges since activity c and d are not in causality relation.

Fig. 1. Handover of work networks for log L

Formally, the four categories of handover of work are formalized as fol-
lows [16].

Definition 5 (�, �). Let L ⊆ E∗ be a log, A be a set of attributes and R = {r |
∃σ∈L ∃e∈σ r = #resource(e)} be a set of resources. For a1, a2 ∈ A, r1, r2 ∈ R,
and σ = 〈e1, e2, ..., en〉 ∈ L:

– r1 �σ r2 = ∃1≤i<|σ| #resource(ei) = r1 ∧ #resource(ei+1) = r2

– |r1 �σ r2| =
∑

1≤i<|σ|

{
1, if#resource(ei) = r1 ∧ #resource(ei+1) = r2

0, otherwise

– r1�σr2 = ∃1≤i<|σ| #resource(ei) = r1 ∧ #resource(ei+1) = r2 ∧
#activity(ei) →L #activity(ei+1)

– |r1�σr2| =
∑

1≤i<|σ|

⎧
⎪⎨

⎪⎩

1, if#resource(ei) = r1 ∧ #resource(ei+1) = r2 ∧
#activity(ei) →L #activity(ei+1)

0, otherwise
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Definition 6 (Handover of Work Metrics). Let L be a log and R be a set
of resources. For r1, r2 ∈ R, we define:

– r1 �L r2 =
(∑

σ∈L |r1 �σ r2|
) / ( ∑

σ∈L(|σ| − 1)
)

as Absolute Handover of Work.
– r1 �·

L r2 =
(∑

σ∈L ∧ r1�σr2
1
) / (∑

σ∈L 1
)

as Boolean Handover of Work.
– r1�Lr2 =

(∑
σ∈L |r1�σr2|

) / ( ∑
σ∈L(|σ| − 1)

)

as Absolute Causal Handover of Work.
– r1�

·
Lr2 =

(∑
σ∈L ∧ r1�σr2

1
) / (∑

σ∈L 1
)

as Boolean Causal Handover of Work.

If we apply log L from the previous example to the metrics above, we get
the following handover values: Charlie �L Dania = 1

8 , Charlie �·
L Dania = 1

2 ,
Charlie �LDania = 0, and Charlie �·

LDania = 0.

4 Enabling Social Network Discovery in Database

As mentioned before, process mining needs the so-called input event log. This
log is a file-based system and imported to process mining tools every time we do
process mining analysis. Existing process mining techniques can handle event log
that fits into computer’s memory fast. However, the process becomes slower when
the log size exceeds the memory since swapping to disk needs to be performed. It
becomes more challenging for repetitive discovery where we need to repeatedly
mine event data that grows over time.

In this paper, we utilize relational database technology to enable social net-
work discovery. The database is used both for storing event data and computing
social network metrics. We choose database technology as the data storage since
it is persistent and we can always retrieve back the data when needed. Further-
more, the metrics computed inside the database are designed to be aware of new
addition in data, hence there is no need to reload the data as in the case of tra-
ditional repetitive discovery. Aside from database, any other persistent storages
such as Hadoop and Google File System could also be exploited.

We use a database schema called DB-XES as presented in [13]. On top
of this schema, we add handover of work tables for each type of the met-
rics introduced in Definition 6, namely tables Absolute HoW, Boolean HoW,
Absolute Causal HoW, and Boolean Causal HoW. With these tables, we enable
social network discovery through DB-XES. Formally, the handover of work tables
are defined as follows.

Definition 7 (Handover of Work Tables). Let L ⊆ E∗ be an event log,
N = {n | ∃σ∈L ∃e∈σ n = #activity(e)} is the set of activity names, and R = {r |
∃σ∈L ∃e∈σ r = #resource(e)} is the set of resources. We define:
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– #activity(e) >L #activity(e′) if and only if
∃〈e1,...,en〉∈L ∃1≤i<n e = ei ∧ e′ = ei+1

– f(r1, r2, e1, e2) := r1 = #resource(e1) ∧ r2 = #resource(e2) ∧
#activity(e1) >L #activity(e2)

– g(n1, n2, r1, r2, e1, e2) := n1 = #activity(e1) ∧ n2 = #activity(e2) ∧
r1 = #resource(e1) ∧ r2 = #resource(e2) ∧
#activity(e1) >L #activity(e2)

– Absolute HoW ∈ R × R � N where:
• dom(Absolute HoW) = {(r1, r2) ∈ R × R | ∃e1,e2 f(r1, r2, e1, e2)}
• Absolute HoW(r1, r2) =∑

〈e1,...,en〉∈L |{i ∈ {1, ..., n − 1} | f(r1, r2, ei, ei+1)}|
– Boolean HoW ∈ R × R � N where:

• dom(Boolean HoW) = {(r1, r2) ∈ R × R | ∃e1,e2 f(r1, r2, e1, e2)}
• Boolean HoW(r1, r2) = |{〈e1, ..., en〉 ∈ L | ∃1≤i<n f(r1, r2, ei, ei+1)}|

– Absolute Causal HoW ∈ N × N × R × R � N where:
• dom(Absolute Causal HoW) =

{(n1, n2, r1, r2) ∈ N × N × R × R | ∃e1,e2 g(n1, n2, r1, r2, e1, e2)}
• Absolute Causal HoW(n1, n2, r1, r2) =∑

〈e1,...,en〉∈L |{i ∈ {1, ..., n − 1} | g(n1, n2, r1, r2, ei, ei+1)}|
– Boolean Causal HoW ∈ N × N × R × R � N where:

• dom(Boolean Causal HoW) =
{(n1, n2, r1, r2) ∈ N × N × R × R | ∃e1,e2 g(n1, n2, r1, r2, e1, e2)}

• Boolean Causal HoW(n1, n2, r1, r2) =
|{〈e1, ..., en〉 ∈ L | ∃1≤i<n g(n1, n2, r1, r2, ei, ei+1)}|

There are some differences between the handover of work metrics (Defini-
tion 6) and the handover of work tables (Definition 7). First, the handover of
work tables only store the numerator of the handover of work metrics. Second,
the handover of work tables only incorporate the directly follows relations, while
the handover of work metrics incorporate causality relations. This design choice
is preferred because of the nature of intermediate structures which is explained
in the next section.

5 Mining Social Networks Instantly

To analyze event data, process mining algorithms typically create an interme-
diate structure, which is an abstraction of event data in a structured way, e.g.,
the directly follows relation, a prefix-automaton, etc. [13]. In the context of han-
dover of work, the four tables mentioned in Definition 7 are such intermediate
structures.

Defining an intermediate structure is not trivial. We have to consider which
operation is more suitable to be handled by executing SQL queries over rela-
tional databases, which operation can be executed on the fly during analysis.
Such design choices heavily influence the performance. Since the intermediate



Discovering Social Networks Instantly 59

structure reflects the abstraction of event data, it should cover operations related
to events, e.g., a new insertion of event, the order of events, events removal, etc.
In other words, the intermediate structure should accommodate all changes in
the event data.

In the handover of work case, operations related to events are captured in
the numerator of the metrics. Moreover, the causality relations can be derived
from the directly follows relations. Therefore, the handover of work tables only
store the numerator values and count based on the directly follows relations. As
defined in Definition 7, the intermediate structure in handover of work is a pair
of resources ( r1, r2) (possibly with the corresponding activity names) where r1
directly handed over the work to r2, followed by the frequency of how often this
pair appears in the log.

In this paper, the computation of the intermediate structures is done inside
DB-XES, unlike traditional process mining which compute these intermediate
structures only when a social network is constructed. This migration obviously
will accelerate the analysis time since the intermediate structures are now avail-
able beforehand. Besides, this approach is well-suited for analysis in increasing
data since new insertions in data are automatically captured by the intermediate
structures. Figure 2 describes four main steps to mine social networks instantly:
(a) initialization, (b) update, (c) retrieving the intermediate structure, and (d)
mining the social network.

Fig. 2. The steps for mining social networks instantly

Initialization. The initialization step is done before process mining analysis.
During this step, we create intermediate structures from the last snapshot of DB-
XES, i.e., we incorporate all elements that are currently stored in DB-XES. For
each type of handover of work, we create a SQL query and execute it against DB-
XES. For example, to obtain the intermediate structure for absolute handover
of work, the SQL query extracts all pairs of resources whose events happened
one after another, and then counts how often it takes place in a particular log
(as pointed in the SQL query below; we omit some parts in < ... > for readabil-
ity). Note that in order to create the intermediate structure for boolean (causal)
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handover of work, we need a temporary intermediate structure. These types of
handover of work ignore multiple transfers within one trace, hence we need a
temporary intermediate structure to keep track whether a pair of resources has
been observed in the same trace. After the initialization step is done, the inter-
mediate structures for four handover of work metrics are ready to be accessed
by process mining tools at any time for further analysis.

1 SELECT id, resource1, resource2, count(*) as freq
2 FROM ( /* get pairs of consecutive events */
3 SELECT <...>
4 FROM trace_has_event as t1
5 INNER JOIN trace_has_event as t2
6 ON t1.trace_id = t2.trace_id
7 WHERE t1.sequence = t2.sequence - 1
8 ) as pairs_of_events,
9 attribute as a1, attribute as a2,

10 event as event1, event as event2, log_has_trace
11 /* join condition to take resource values
12 (resource1 of event1 and resource2 of event2)*/
13 WHERE <...>
14 GROUP BY id, resource1, resource2

Update. One key advantage of mining social networks within the database is
the availability of intermediate structures before analysis time. However, this
pre-computation will be useless if it is not aware of changes in the event data.
Therefore, the update step becomes crucial in order to keep the intermediate
structure up-to-date with the latest view of DB-XES. Note that having live
intermediate structures will avoid unnecessary reloading the increasing data in
repetitive discovery. To this end, we use SQL trigger features for doing the
update. When there is a new event inserted to a trace, the trigger takes the last
event in the trace, retrieves its corresponding resource and activity name, and
then updates the intermediate structure tables.

Retrieving the intermediate structures. Once the intermediate structures
are available, we can easily access them by executing SQL queries over DB-
XES. In general, this operation is relatively fast since the size of intermediate
structures is far less than the log size. In the worst case, the size of intermediate
structures is as big as the log size, when each resource only executes one event.
However, this would be a very atypical scenario where it would not be worthwhile
to create a social network.

Mining the social network. The next step is to compute the handover of
work values between pairs of resources. As explained before, the intermediate
structure only captures the metric’s numerator, hence we need to compute the
denominator in order to get the handover values. Computing the denominator
(i.e., counting the number of events and traces in the log) is a constant oper-
ation, hence it can be done during the analysis time. Moreover, we have to
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deal with causality relation since the intermediate structure only captures the
directly follows relation. Given the directly follows graph and causal handover
of work tuples (n1, n2, r1, r2, f) with n1, n2 are the activity names, r1, r2 are the
resources, and f is the frequency number, we select the pair of resources (r1, r2)
such that the causality relation n1 →L n2 is preserved in log L. Checking causal-
ity relation is a linear operation to the size of intermediate structures. Due to
this simplicity, we can compute it on the fly during the analysis and still provide
instant mining time.

For the visualization of the network, users can set a threshold value to show
the most important relation between two resources. In the node representation,
users can select to show the name of resource, the name of event, or combination
of both of them.

6 Implementation

We implement this work as a ProM plug-in called Database Social Network and
it is distributed within the DatabaseSocialNetwork package (https://svn.win.tue.
nl/repos/prom/Packages/DatabaseSocialNetwork/Trunk/).

The DatabaseSocialNetwork plug-in requires a database configuration of DB-
XES as the input, which includes username and password, database name, server,
and a log identifier which the handover of work will be built upon. After the plug-
in establishes a connection to DB-XES, it retrieves all necessary rows from the
handover of work tables in DB-XES. Based on these row values, it constructs the
network representations using Java objects. To visualize the network, it uses the
GraphViz library [7] and the current implementation provides support for four
types of handover of work:AbsoluteHandover ofWork,BooleanHandover ofWork,
Absolute Causal Handover of Work, and Boolean Causal Handover of Work. To
incorporate causality relations, the plug-in gives options to display the activity
names executed by the resources. In addition, the plug-in provides a feature to
filter infrequent handover values. If the threshold is set to 0.8, for instance, it keeps
handover values which are greater or equal than 80% of the maximum value.

Figure 3 shows handover of work mining from a real dataset of a company
which contains 154 resources and 846 handovers between resources. The process
pertains to the data entry operations of insurance claim forms. These forms
are sent by insurance companies; they are sorted, classified, scanned, and some
automated OCR (Optical Character Recognition) are done. They are then sent
for manual data entry which could happen at different locations based on the
type of form. Once the manual data entry is done, the entries are checked for
quality and then archived.

Figure 3 shows handover of work before applying any filtering. This spaghetti-
like network is not readable hence it is difficult to grasp any insights. Therefore,
we set the threshold value to remove some infrequent edges and nodes as depicted
in Fig. 4a. The network in this figure is simpler and easier for getting the insights.
For example, the network shows that there are handovers of work in both direc-
tions between Mr. Auto and Mr. CorrAck. Moreover, the self loop in Mr. Auto

https://svn.win.tue.nl/repos/prom/Packages/DatabaseSocialNetwork/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/DatabaseSocialNetwork/Trunk/
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Fig. 3. Social network based on handover of work before applying any filtering

Fig. 4. (a) Social network based on handover of work after setting the threshold value,
(b) Social network based on handover of work with activity name information

indicates that there are some activities which are executed consecutively by the
same resource.

In order to see the activity name executed by these resources, the plug-in
provides a feature to display nodes with resources and activity names informa-
tion. In Fig. 4b, we see that after Mr. Auto did “Enrollment Tracker”, he handed
over the work to Mr. CorrAck to do the “Transmit ACK”. Then, Mr. CorrAck
handed back the work to Mr. Auto for doing “OCR Review”, and finally Mr.
Auto himself who “Clean up” the process.

7 Experimental Result

This section discusses the experimental result. We conducted two different exper-
iments: (1) an experiment to show that the time spent in handover of work
analysis based on DB-XES is less than the traditional approach, ignoring the
in-database computations, and (2) an experiment to show the running time of
each step in mining a handover of work from DB-XES and the feasibility of the
approach for repetitive discovery.

In the first experiment, we used a real dataset from a company with some
extensions in the number of traces, events and attributes. We extend the dataset
by inserting copies of the original dataset with some modifications in the identi-
fier, activity name, and timestamp. More precisely, we extend the dataset to be
two, three, four, six, and eight times bigger than the original dataset.
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Fig. 5. Comparison between mining handover of work using traditional approach and
DB-XES (Color figure online)

The result from the first experiment is shown inFig. 5.Herewe compare two dif-
ferent approaches for mining absolute handover of work. The first approach (shown
as a red line in the figure) used DB-XES for storing the event data and comput-
ing the intermediate structure. The second approach (shown as a blue line in the
figure) used the traditional way where the event data is stored in XES file and
imported to ProM. In this figure, the x-axis represents the normalized number of
traces, events, and attributes. For example, “2” in x-axis means that the number of
traces, events, and attributes is twice bigger than the original dataset. The y-axis
represents the running time for mining the network in seconds scale.

As shown in Fig. 5, both approaches present a linear trendline. However, the
gradient of the traditional approach is higher than the DB-XES approach. This
is due to the fact that the handover of work algorithm passes through the log and
counts how many times a handover happens between two resources. Therefore,
the increasing log size gives linear impact to the running time of the algorithm.
In contrast, the increasing log size does not give significant influence to DB-
XES since the number of resources does not necessarily increase linearly too.
Note that during the mining time, the DB-XES approach only retrieves pre-
computed values from the database and computes a handover network based on
these. Most of the computation has been already done before the mining time.
This experiment proves that the total time needed by users to mine a handover of
work from DB-XES is less than the current existing approach when intermediate
structures are present in the database.

In the second experiment (as depicted in Fig. 6), we use a real dataset which
includes 460 different resources, around one million traces, and fifteen million
events spanning one month. The goal of this experiment is to analyze the end-to-
end steps of mining handover of work in DB-XES and to show that the technique
is well-suited for repetitive discovery.

At the first step we imported one hundred thousand traces into the database.
Then we initialized the intermediate structures. In this step we created the
intermediate structures from scratch and the running time is shown by the green
triangle in the figure. Then we updated the database by inserting ten thousand
traces. In each insertion, a trigger function is automatically called to update
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Fig. 6. Running time of each step in mining handover of work from DB-XES: initial-
ization, update, and mining are plotted to the left y-axis; update per event is plotted
to the right y-axis (Color figure online)

the intermediate structure. The running time to insert ten thousand traces and
call the triggers is depicted by the blue dots in the figure. The total number
of inserted events in each update is variable, hence we also count the average
time to insert a single event. In other words, the average time is the total time
to update ten thousand traces divided by the number of events. This average
time is depicted by the red cross in the figure. After ten times doing update, i.e.,
after one hundred thousand new traces were added to the database, we mined
the handover of work. The running time for mining the network is shown by the
orange square. In each mining, the network size was increasing since we added
traces every time we did the update (typical scenario in repetitive discovery).

Figure 6 shows four types of marks. The green triangle, blue circles, and orange
squares are plotted according to the first y-axis on the left hand side, while the red
crosses are plotted according to the secondary y-axis on the right hand side. The
x-axis represents time of process where each unit of work is undertaken, the left y-
axis represents the running time in seconds scale, while the right y-axis represents
the running time for an event update in milliseconds scale.

From Fig. 6 we see that the average time needed to insert an event and call
the trigger to update the intermediate result (red crosses) is relatively fast, i.e.,
0.8 milliseconds. The update time for a set of traces (blue dots) are variable
since the number of imported events in each trace is diverse as well. The mining
time (orange squares) are always close to 0, and this shows the increase of log
size does not really influence the mining time as the number of resources does
not increase dramatically. This also shows that the time in each mining does
not really change and quite stable, hence it matches with the needs in repetitive
discovery. Moreover, the mining time is always faster than the initialization
and update time, which generally can be ignored since these steps can be done
offline and run automatically. Our approach always provides immediate answers
because there is no need to traverse the event log and reload the prior data.
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8 Conclusion

This paper focuses on scalability in social network discovery. We use DB-XES
[13] as the relational representation of event log to store event data and shift the
work from analysis time to insertion time. On top of the core DB-XES schema,
we add specific intermediate structures for social network mining. We define the
intermediate structure for handover of work metrics by determining which part
should be computed in the database and be kept up-to-date when inserting new
events into the database, and which part should be computed on the fly during
the analysis time.

The paper explains the approach step-by-step and shows that the time
required for mining the result is less than the time required for initialization
and update which can be done offline and automatic. Moreover, using exper-
iments on real-life data, the paper shows that the time spent in handover of
work analysis based on DB-XES is far less than the existing techniques (thereby
ignoring the in-database computations done at insertion). The experiment also
shows the compatibility of applying the technique for repetitive discovery where
we repeatedly do mining to the data that grows over time.

This paper uses handover of work as the social network. However, the work
trivially extends to other types of social networks as long as we can identify
an intermediate structure used by the technique which can be updated when
inserting new events into the database. For example, in working-together net-
work, a new inserted event will trigger an update in the intermediate structure
by looking into all preceding events in the trace. Not only for organizational
mining, it is also feasible to apply the approach into others discovery techniques,
such as control flow discovery. In fact, the approach has been successfully imple-
mented to do process discovery using Inductive Miner algorithm [13]. Finally, as
a concrete research product, this work has been implemented in ProM.

For future work, we plan to implement more social network metrics, such as
working together and subcontracting. We also plan to encompass other process dis-
covery paradigms, e.g., declarative process discovery. Besides, we aim to improve
the updating process of the intermediate structures by looking at a batch of new
inserted events. Hence we reduce the updating time of the intermediate structures
which now is always triggered every time a new event comes. Furthermore, we
plan to implement also the removal of events such that the intermediate structures
remain consistent under both insertion and deletion of events.
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