Structured Behavioral Programming Idioms

Adiel Ashrov', Michal Gordonz, Assaf Marron® , Arnon Sturml(g), and Gera Weiss'

! Ben Gurion University of the Negev, Beer Sheva, Israel
{ashrov,geraw}@cs.bgu.ac.il, sturm@bgu.ac.il
2 Holon Institute of Technology, Holon, Israel
michaligordon@gmail.com
3 The Weizmann Institute of Science, Rehovot, Israel
assaf.marron@weizmann.ac.il

Abstract. Behavioral Programming (BP) is a modelling and programming tech-
nique proposed for specifying and for implementing complex reactive systems.
While effective, we report on a weakness that stems from the verbosity and from the
complexity of the programming constructs in BP. Our analysis, described in this
paper, shows that developers who work with BP use specific patterns that allow
them to control the complexity of their specification. Thus, the main contribution
of this paper is a set of specification constructs that represent those patterns. We
report on the design of the new idioms, termed structured constructs for behav-
ioral programming and on an empirical evaluation in a controlled experiment that
proved their effectiveness. In particular, the experiment examined the comprehen-
sibility differences between behavioral specifications with non-structured BP
programming idioms and with the structured ones. The results indicate that the new
structures improve the comprehension of the behavioral specification.

Keywords: Behavioral modeling - Behavioral specification - Behavioral
programming - Experimentation - Abstraction - Comprehension

1 Introduction

Behavioral specifications play a crucial role in systems’ specifications, in particular,
reactive ones. Such specifications are rich and complex and both the research and
industry communities are in continuous search for balancing the expressiveness and ease
of use of languages and methods that support behavioral specification. A major tool for
addressing this challenge is the use of abstraction.

While abstractions, as provided, e.g., by structured idioms, may help developers,
they may also be counterproductive in some cases. In [1], for example, the authors show,
via empirical evaluation, that the abstraction provided by software visualizations can
provide measurable benefits in program comprehension tasks. In [2], however, the
authors found that the abstraction provided by object-oriented design documents may
be less effective than traditional design documents. The challenge is, of course, to iden-
tify those abstractions and structures that simplify the specification without sacrificing
the naturalness of the semantics. See, for example, [3] where implementations of a
specific set of solutions to problems in several languages are compared.

© Springer International Publishing AG 2017
I. Reinhartz-Berger et al. (Eds.): BPMDS/EMMSAD 2017, LNBIP 287, pp. 319-333, 2017.
DOI: 10.1007/978-3-319-59466-8_20

320 A. Ashrov et al.

In a sense, introducing modelling idioms that encapsulate existing idioms but subject
them to certain design patterns, facilitates, and encourages the use of, such patterns [4].
This has been demonstrated by many studies on design and programming patterns
including proposals for programming structures, for teaching methodologies, for
supporting tools, etc. [5-8]. Usually, reports on the effects of patterns are available in
anecdotal form from various practitioners [5], yet there are also cases that contain quan-
titative assessments and include empirical studies [9, 10].

The focus of this paper is on extracting patterns and structures in a particular behav-
ioral specification approach called behavioral programming (BP) [11]. BP is an approach
to software development, designed to allow developers to align their implementation
with how people often describe a system’s behavior. BP is an extension and generali-
zation of scenario-based programming originally introduced with the visual language
of live sequence charts (LSC) [12, 13], which has been implemented in several textual/
procedural/imperative programming languages including Java [14], C++, Erlang, C,
Javascript, and Blockly [15].

The structured idioms that we propose in this paper are in the context of behavior
threads in an imperative language as proposed in [14]. In this context, developers specify
short concurrent procedures, using standard imperative programming idioms that jointly
specify how the system should respond to external events. In this paper, we propose a
set of structured idioms for BP and evaluate them in an experiment. For the experiment,
we use the Blockly library [15] that allows behavioral specification with a graphical
interface through which subjects (software engineering students) construct imperative
programs by dragging and dropping blocks (which combine text and graphic cues) on
a canvas. Beyond shortening the learning phase and allowing us the flexibility to intro-
duce the structures in a systematic manner, the use of an environment that the subjects
were unfamiliar with contributes to the generality of our conclusion (that structures help
developers) as the experiment by passes prejudiced preferences or habits.

The contribution of the paper is twofold: (1) A new set of idioms for BP specification
is proposed. (2) An empirical evaluation that validates the improvement in comprehen-
sion of the new idioms in comparison to the existing idioms is reported upon.

The rest of the paper is organized as follows: In Sect. 2, we introduce the general
principles of BP and their application to Blockly as well as the new structured idioms
we devised. In Sect. 3 we described the empirical evaluation of the structured idioms in
comparison to the previous, direct idioms. Finally, in Sect. 4 we conclude and outline a
plan for future research.

2 Behavioral Programs and Specification Idioms

A behavioral program consists of a set of independent components called behavior
threads (b-threads for short) that control the flow of events and synchronize via an
enhanced publish/subscribe protocol, as follows. Each b-thread is a procedure running
in parallel to the other b-threads. When a b-thread reaches a synchronization point, it
waits until all other b-threads also reach synchronization points in their own flow. When
entering a synchronization points, each b-thread refers to three sets of events:

Structured Behavioral Programming Idioms 321

1. Requested events - the thread proposes that these events be considered for triggering,
and asks to be notified when any of them occurs;

2. Waited-for events - the thread does not request these events, but asks to be notified
when any of them is triggered; and

3. Blocked events - the thread forbids triggering of these events.

When all b-threads are at a synchronization point, an event that is requested by at
least one b-thread and not blocked by any other b-thread is chosen. The selected event
is then triggered by resuming all the b-threads that either requested or waited for it. Each
of these resumed b-threads then proceeds with its execution, all the way to the next
synchronization point, where it again presents new sets of requested, waited-for, and
blocked events. The other b-threads remain at their last synchronization points, oblivious
to the triggered event, until an event that they have requested or are waiting for is
selected. When all b-threads are again at a synchronization point, the event selection
process repeats. The translation between inputs, and the events that represent them, and
between program-driven events and program outputs are handled by separate sensor and
actuator code which of secondary importance in the present discussion.

In this work, to enable experimenting with subjects who have minimal background
in BP, we used the Blockly library [15] to implement a BP workbench and developed a
tutorial that introduces this environment. Blockly is a library for building Scratch-like
[16] visual programming environments. In the Blockly environment, we initially intro-
duced the most basic BP idiom, bSync, shown below, very similarly to the way it is used
by b-threads in the textual language implementations of BP (Java, C++, etc.) to declare
the sets of requested, waited-for and blocked events:

With this construct, developers can set the b-threads as ordinary software procedures,
as follows. Each b-thread procedure consists of internal computations and bSync blocks.
In the internal computation, the b-thread has access to the all events in the model and,
when ready, it can declare requested, waited-for, and blocked events by plugging them
into the empty slots in the bSync construct. For example, assume that we want to program
a robot (drawn as a pegman) to reach a target (drawn as an inverted-drop-shaped icon)
moving along a desired path in a maze:

Repeat forever

bSync request= move forward | wait-for= ‘ block= 1
S

, Repeat forever
bSync request= ‘ wait-for= (| path left block= ‘

bSync request= | turnleft = wait-for= ‘ block= 1

& bSync request= move forward wait-for= ‘ block= ‘

Each of the two disconnected groups of blocks represents a function that acts as a b-
thread. The first (top) function always requests a ‘move forward’ actuation event.

322 A. Ashrov et al.

The second (bottom) b-thread, waits for a ‘path left’ sensor event and, when it is
triggered, requests a ‘turn left’ followed by a ‘move forward’ actuation events.
The joint execution of these two b-threads is as follows:

1. Both b-threads run in parallel until both reach their first bSync. The first b-thread
requests the event ‘move forward’ and the second b-thread waits for the event
‘path left’.

2. The event ‘move forward’ is triggered

3. The first b-thread is resumed and returns to the same bSync. The second b-thread is
not resumed because the triggered event is neither requested nor is waited-for.

4. The above two steps are repeated while a hidden actuator causes the pegman to step
forward every time the ‘move forward’ event is triggered. After several such
rounds, a hidden sensor causes the triggering of the event ‘path left’ when the
pegman arrives at a location where there is a path to its left.

5. The triggering of the ‘path left’ event causes the second b-thread to advance to
its second state where it requests the event ‘turn left’. Atthis point, two events,
namely ‘turn left’ and ‘move forward’, are requested and none of them is
blocked. When there are several possible events, the present mechanism triggers the
first event in a predetermined order: sensing events come first, then turn events, and
then the ‘move forward’ event. In our case, the ‘turn left’ eventis selected.
(In other implementations, event selection priorities are replaced, e.g., by additional
b-threads that block the selection of events that would be undesired at that state).

6. Inthe next step, both b-threads request the ‘move forward’ eventsoitis selected.
Note that subject to the event selection process described above, the two concurrent
requests are satisfied by one triggering of the event, a mechanism termed unification
of events (see [13] for a detailed discussion on the power of event unification).

7. The run continues similarly until the pegman is at its goal, at which point a corre-
sponding sensor and actuator display an appropriate message and stop the run.

This demonstrates the coding style before the idioms proposed in this paper were
introduced, only with the, so-called, bSync idiom. The motivation for designing a new
set of idioms for BP came from an examination of how the bSync idiom set is used in
practice. We noticed that developers, ourselves included, utilized several patterns while
developing applications (see [14, 15]). We then proceeded to extract these patterns into
a new set of idioms. The development of the idioms is inspired also by the structures
that existed already in the LSC language (see [12, 13, 17]).

The first pattern we noticed was that developers often use bSync with one parameter,
which is either a requested or a waited-for event. Our initial simplification, then, was to
add an idiom for only requesting events and an idiom for only waiting-for events; these
are the Request and Wait-for idioms:

Wait for |

FR\equ&st [, turn left , move forward

Request | move forward

Structured Behavioral Programming Idioms 323

These two idioms are similar to executed and monitored events in LSC [17].
While the use of only Wait-for and Request idioms may suffice for specifying
simple b-threads, we did find examples where these alone are not enough:

‘ épeat forever
bSync request= ‘ wait-for= (| path right = block= ‘

bSync request= turn right | wait-for= ‘ block= turn left

bSync request= move forward | wait-for= 1 block= turn left
N—

Specifically, we identified cases, as seen in the above example, where developers
used more than one parameter of a bSync. We then tried to categorize the needs for such
usage, and came with two specific patterns as follows. The desired behavior, imple-
mented above, is to complete a right turn while forbidding left turns. A right turn
maneuver is composed of two requested events, ‘turn right’ and ‘move
forward’. The desired behavior is implemented by blocking the event ‘turn
left’ in every synchronization point that takes place while the right turn process is
happening. More generally, the pattern is a sequence of bSync declarations with an
unwanted event being blocked in each declaration.

Once such a pattern was identified, we designed a language structure to facilitate its
use. Specifically, we propose the Blocking structure. The Blocking structure can
be specified with an event and be associated with a scope of a sequence of blocks stacked
together. The idiom specifies that the unwanted event is implicitly declared as blocked
in each synchronization point under its scope. In the following, we see an equivalent to
the b-thread shown above where the bSync was transformed to wait-for and request and
event blocking declarations are specified using the new structure:

Repeat forever
Wait for | path right
Blocking turn left
Request turn right

Request move forward
| —

The structure demonstrated in the above specification forces discipline in the sense
that it does not allow for developers to specify arbitrary blocking declarations, except
for the form of a construct that specifies a scope for each blocking specification.

The second construct proposed in this paper originated from the following issue: We
saw in various behavioral specifications that developers deal with situation where an
event triggers some fragment of behavior but, before the fragment of the behavior is
completed, some other event indicates that the fragment needs to be aborted. For
example, imagine two b-threads in a system:

324 A. Ashrov et al.

1. A b-thread for handling a right turn by blocking ‘turn left’ while turning right.
A b-thread that requests the ‘turn left’ event. (In this example, this b-thread is
purposely “naive”, in that it does not block any event, and, in particular, does not
cause the appearance of a potential deadlock).

When the pegman is faced with a T-junction, both ‘path left’ and ‘path
right’ will be triggered and both b-threads will be notified about the appropriate event
and will progress to the next synchronization point. The b-thread responsible for making
a left turn will be blocked by the first b-thread and, as a result, the pegman will turn
right. When the first b-thread finishes the turn, it will no longer block the ‘turn
left’ and the second b-thread will be able to proceed. As a result, the pegman will turn
left and try to move forward. However, it is unknown if there is a path to the left at the
updated location of the pegman. Clearly, this delayed left turn was not intended.

There is a need for stopping and breaking from a block of specification if there is a
change in the assumed state for the operation. An example that uses standard Blockly
control-flow constructs for the pattern that we want to enforce is the following:

Repeat forever

bSync request= ‘ wait-for= create list with

path left [block= o

move forward

If last event == move forward

I-EUA Label 1
N—

bSync request= turn left = wait-for= move forward = block= turn right

If last event == move forward

break (ELTIN)
N—

bSync request= move forward = wait-for= ‘ block= turn right
N

Here, the “if last_event==" construct is used together with the “break”
command to test the last event and skip the rest of the sequence of requests if needed.

In general, the pattern we identified is a fragment of the specification in which the
developers wish to abort preemptively when a certain event arrives. To allow this, we
propose the idiom of ‘break-upon’. The specification below has the same logic
presented above. We wait-for a ‘path left’ event and then perform two requests in
order to turn left. These instructions are under the scope of the break-upon idiom speci-
fied with ‘move forward’. This induces await-for ‘move forward’ declara-
tion in each of the nested synchronization points. If this event is triggered, the flow
breaks from the break-upon scope and go back to the beginning of the loop.

Structured Behavioral Programming Idioms 325

i Repeat forever

} Wait for | , path left

| Request tum left
|
|
|

Request move forward
S

break upon move forward
S

Note that the semantics of the two idioms allow nesting:

Repeat forever

Blocking tum left
Blocking turn right
Wait for [no path left
Wait for [path ahead
Request move forward
.

break upon move forward
S

Formally, the semantics (and the implementation) of the new idioms is as follows:
Request andWait for are defined as a bSync call with two of the event sets being
empty; the blocking idiom adds the blocked events to the blocked-event set in each
synchronization point within its scope; and, the break-upon idiom adds to the waited-
for event set in each of the synchronization points in its scope the referenced event, and
adds after each such synchronization point the statement “if lastEvent==<the
break-upon event> then break”. A synchronization point can be nested in
several scopes, as shown in the above example, in which case multiple such actions may
apply to it.

To summarize, in this paper we are proposing new idioms for behavioral program-
ming specification. These idioms where identified by an examination of behavioral
specification and of the needs of developers that work with the language. We have proved
that the new set of idioms, called structured idioms below, is equivalent in expressive
power to the base language, called bSync (see the Appendix).

3 Evaluating BP Structured Idioms

To evaluate the benefits of using the BP structured idioms introduced before, we
conducted a controlled experiment to compare the usage of the bSync and the Struc-
tured idioms with respect to the comprehension of a BP specification. In particular, we
were interested in comparing two issues related to comprehension. The first is the
execution semantics, i.e., the order of handled events and the second is the intention
behind the developed specification. Our initial conjecture was that with respect to
execution semantics comprehension, the results would be in favor of the bSync idioms

326 A. Ashrov et al.

since the statements are explicated in one block, in particular, in simple cases. With
respect to the comprehension of the specification intention, our hypothesis was that the
results would be in favor of the Structured idioms as the specification is more organized.
We followed the experiment model that appears in Fig. 1.

Independent Variables

BP Version .
’ Dependent Variables
bSync BP Structured BP X

Comprehension

Controlled Variables ¢ Time
> .
Subjects * Level of understanding
Homogeneous group of students

Tasks

Understanding ~Answering a questionnaire with two type of
questions: execution semantics and intention

Fig. 1. The experiment model

3.1 The Experiment Settings

The Independent Variable. As the objective of the experiment was to evaluate the
comprehension of the two BP versions over a set of dependent variables, the independent
variable is the BP version used, i.e., bSync versus Structured.

The Dependent Variables. Following the experiment goal, the dependent variables
are the level of understanding a behavioral specification and the time it takes to reach
that understanding. The level of understanding was determined by a set of multiple-
choice questions and the time was self-measured by the subjects.

Subjects. In the experiment, 49 software engineering students in their third year of
studies participated; 22 were assigned to the Structured based specifications and 27
were assigned to the bSync based specification. They were randomly assigned to the
specific set of idioms. Examining both the students’ GPA and their grade in the “Topics
in Software Engineering” course (from which the students were volunteered), we found
no statistically significance differences (T-test: p > 0.51, p > 0.69). All subjects were at
an advanced stage in their studies and already took courses related to programming and
modeling. The participation in the experiment was on a voluntary basis. Yet, in order to
motivate and encourage the subjects to participate (and in an effective way), they were
told in advance that they would get a bonus in the aforementioned course based on their
performance in the experiment. In addition, all participants signed a consent form on
which they were explicitly informed that they could withdraw from the experiment at
any time.!

" The experiment design and execution was also approved by an ethical committee.

Structured Behavioral Programming Idioms 327

Training. In the beginning of the semester, the students were provided with a lecture
about behavioral specification. In addition, the first part of the experiment was devoted
to introduce the subjects with their assigned behavioral specification idioms set. It was
an online tutorial to Behavioral Programming using a Maze? application, which we
mentioned in the previous section. The main purpose of the tutorial was to teach BP
principles using the assigned set of idioms. We believe that the fact that Blockly and BP
are not common development environments that students interacted with during their
studies, freed them from existing knowledge and beliefs, and allowed them to experience
the tutorial from a fresh point of view. The tutorial consisted of nine challenges (levels)
in solving mazes where every challenge introduced new concepts/idioms. In every chal-
lenge, the goal was to develop a behavioral specification, which will lead a pegman to
a destination.

Task. Upon completing the introductory tutorial, the subjects were requested to answer
a questionnaire consisting of questions about their perceptions over BP, in general, and
to its specific concepts and mechanisms, followed by 16 BP specification questions>.
The latter were classified as appears in Table 1.

Table 1. BP specification question classification

Execution Intention
Request + Wait (RW) Ql1, Q9, Q4, Q12
Request + Wait + Blocking (RWBL) Q3,Ql1 Q5, Q13
Request + Wait + Breaking (RWBR) Q2, Q10 Q6, Q14
Request + Wait + Blocking + Breaking (RWBLBR) Q7,Q8, Q15, Q16

Execution. The experiment took place in several sessions within a lab, in which the
subjects started with a tutorial demonstrating and teaching the BP concepts and then
answered the questionnaire. Each session (including the tutorial) lasted one and half-
hour long.

3.2 Experimental Results

We first review the students’ perception over the knowledge and understanding of BP.
Table 2 summarizes the results, where the average of the scores given by the students
is in the scale of [0-4], are shown for each question and for each version of BP. It seems
that from the lecture on BP the students who were assigned the bSync version perceived
their understanding of BP a bit better than those who were assigned with the Structured
version (yet, this was not statistically significant). This might be because the bSync
version is related to the code version shown in class. Nevertheless, based on the tutorial,
it seems that the students that were trained with the Structured version perceived their
BP understanding higher than those who were trained with the bSync version. Applying

: https://bp-new-blockly-exp-2.appspot.com/static/apps/mazeBP/index.html?
version=1(version=2). Designed to work with the Firefox web browser.
’ The questionnaires can be found in https://tinyurl.com/h3bzphs, https://tinyurl.com/zah4ap3.

https://bp-new-blockly-exp-2.appspot.com/static/apps/mazeBP/index.html?version=1(version=2)
https://bp-new-blockly-exp-2.appspot.com/static/apps/mazeBP/index.html?version=1(version=2)
https://tinyurl.com/h3bzphs
https://tinyurl.com/zah4ap3

328 A. Ashrov et al.

the Mann-Whitney test, we found that the differences were statistically significant. In
general, in both groups, the students perceived their understanding of the BP concepts
in the order for high to low comprehension level: blocking, breaking out, multiple events,
and the execution mechanism.

Table 2. Students Perecptions over BP

Question Structured | bSync Sig. (M-W)
To what extent did you understand the concept of BP from | 1.64 1.78 0.497
that lecture?

Do you perceive the BP tutorial helpful? 2.55 2.04 0.004
Do you understand the execution mechanism of BP 2.59 2.00 0.000
(i.e., how events are chosen)?

Do you understand the concept of having the same event | 2.77 2.30 0.012
requested by multiple threads/scenarios?

Do you understand the concept of event blocking? 3.14 241 0.001
Do you understand the concept of “breaking out” from a | 2.86 241 0.002
scope in the program?

Next, we review the results of the questions that objectively examined the students’
understanding of BP. As shown in Table 3, in general, the level of understanding of BP
(measured by the number of correct answers) both with respect to the execution seman-
tics and with respect to the intention was in favor of the students who were trained and
questioned with the Structured version. Those differences were also statistically signif-
icant. Nevertheless, no statistical significant differences were found with respect to the
time it took to answer the various questions.

Table 3. Comprehension average scores (and standard deviation) on BP specification questions

Level of understanding Time (min)
bSync Structured | Sig. (T-test) | bSync Structured | Sig. (T-test)
Total 7.41(2.17) | 1091 <0.001 24.30 23.23 0.61
(2.83) (8.02) (6.39)
Execution |3.19 (1.39) |4.95(2.06) | <0.001 9.48 (3.77) |9.86 (4.14) | 0.74
semantics
Intention 4.22(1.37) |5.95(1.46) | <0.001 14.81 13.36 0.25
(4.97) (3.66)

We further drilled down to check what concepts or mechanisms caused that differ-
ences between the comprehensions of the two idioms set.
Table 4 shows the results with respect to the categories defined in Table 1. It seems

that the most significant concepts that caused the difference in understanding the spec-
ification is the breaking out concept (RWBR-E), that also appeared in the more complex
specifications (RWBLBR-I).

Structured Behavioral Programming Idioms 329

Table 4. Comprehension average scores (and standard deviation) on BP specification questions

with respect to BP concepts

RW- E RWBL-E |RWBR-E |RWBL-I RWBR-I RWBLBR-I
Structured | 2.14 (1.13) | 1.27(0.77) | 1.55(0.67) |1.77(0.53) |1.45(0.51) |2.73(0.88)
bSync 1.89(0.93) |1.04(0.81) |0.26(0.45) |1.67(0.48) |1.19(0.74) | 1.37(0.93)
Sig. (T-test) | 0.41 0.30 0.00 0.47 0.14 0.00

* E- Execution, I- Intention

3.3 Discussion

The results confirmed our conjecture regarding the intention comprehension but not our
conjecture regarding the execution semantics. As we further look for explanations for
the results, we opt for ontological analysis of language grammars [18] in which the
mapping process of the language grammar (BP version, in our case) to the ontological
world (the execution semantics and intention, in our case) may suffer from various
deficiencies. One such deficiency is the construct overload: “Construct overload occurs
when one design construct maps into two or more ontological constructs”. In bSync (a
design construct) this is exactly the case in which one statement is mapped into several
event types (ontological constructs). This deficiency, that affects the mapping to the
actual execution of the program, seems, according to our findings, to be the root cause
for the results we get in the experiment.

Another alternative for interpreting the results is to look at cognitive analysis frame-
works. The COGEVAL is one such framework [19]. We find it appropriate for our
analysis as it refers to various cognitive aspects of modeling and because the framework
has been demonstrated to be useful in many cases.

The framework consists of several propositions among which we found the following
well fitted to our case:

P1: “The greater the degree of chunking supported by a model, the greater the modeling
effectiveness.”

The results suggest that the structured BP increases the degree of chunking with
respect of treating events as it has a unique concept that treats each event type separately.
Thus, in simple cases of request, wait-for, and blocking no chunking was required (as
these were simple to understand), no statistically significant differences were found
between the comprehension of the two sets of BP idioms. However, in the case of the
more complex tasks, consisting the breaking out, chunking was beneficial and as the
Structured BP increases the degree of chunking and using it was found useful in terms
of effectiveness (correctness).

As for the other way around, considering that increased chunking may be of a disad-
vantage in some aspects, COGEVAL suggest that:

P2: “The greater the number of simultaneous items required (over seven) to create
schema segments or chunks, the lower the modeling effectiveness of the model.”

330 A. Ashrov et al.

In our case, the Structured BP uses a limited number (three) of simultaneous items
to specify the same concept as in the bSync BP. This explains the reason that the
Structured BP did not negatively affect the effectiveness.

3.4 Threat to Validity

Several threats to the validity may be encountered when discussing the experiment.

Conclusion validity concerns with issues that affect the ability to infer the correct
conclusion regarding the relations between the treatment and the outcome of the experi-
ment. As we believe that the only variable that was changed during the experiment was
the used version of BP, we believe that our conclusions are valid and no major treat
exists.

Internal validity is the degree to which conclusions can be drawn about the causal
effect of the independent variables on the dependent variables. By randomly assigning
the subjects to the two versions, we neutralized most of the possible effects that may
have influenced the independent variable of participants, such as experience, training,
and personal characteristics. An additional threat to internal validity is the quality of
training, which in our case was the tutorial. It might be that such a training is not enough;
yet, the scope of the training for both groups was the same.

External validity concerns with the ability to generalize experimental results outside
the experimental settings. An external validity threat is always present when experi-
menting with students, as the issue of whether they are representative of software
professionals is raised. However, in this experiment, we checked differences among
similar groups, the experiment theme is not familiar to professionals, and as the students
are in their third year, they have already gained some experience. Another external
validity issue, which is unfortunately inherent to controlled experiments, is the size and
complexity of the tasks used. The size of the various tasks is small; nevertheless,
controlled experiments require that subjects complete the assigned task in a limited
amount of time and without interruption to keep variables under control.

4 Conclusions

We addressed the concern of behavioral specification abstraction. In particular, we
referred to a specific approach to behavioral specification called behavioral program-
ming (BP) that was equipped with modeling capabilities of Blockly. Within the context
of that language we compared existing idioms (bSync) with a new set of structured
idioms. Our comparison was in terms of understanding behavioral specification. The
results of the controlled experiment indicated that abstracting the specification leads to
a higher level of understanding. This was evident in particular in cases when a main
flow allows for breaking out.

The results of the evaluation performed in this research indicate that it is desirable
to abstract specification constructs (i.e., modeling or programming idioms) without
scarifying their expressiveness as their usability is better than their low-level counter-
parts. This is particularly relevant when complex constructs are introduced.

Structured Behavioral Programming Idioms 331

Clearly, such results should be taken with caution and further examination is
required. Thus, in the future, we plan to further experiment the two versions (and maybe
other alternatives) to further understand the conceptual differences among them so to
better design the right abstractions, in BP and in other languages.

Acknowledgement. This research was partially supported by the Israel Science Foundation, the
Philip M. Klutznick Research Fund, and the Dora Joachimowicz research grant.

Appendix

While the focus of this work is on empirical evaluation of the idioms, in terms of their
usability to programmers, we hereby provide a proof for the expressiveness equivalence
of the two sets of idioms.

Claim 1: Every b-thread developed with the structured idioms can be translated to a
semantically equivalent b-thread that applies only the bSync idiom using
If last_event==x {} and break.

Proof: By structural induction.

Induction base: if there is no Break-upon or Bl ocking structures in the program,
replace each request (x) and each wait-for(y) with, respectively, a
bSync (x, none, none) and a bSync (none, y,none).

Induction step: Assume, by induction, that the claim is true for programs with at
most nlevels of nesting of the Break-upon or Blocking structures. Given a program
with n + 1 levels of nesting we can replace each block of maximal nesting level as
follows. If the nesting level of the block is less than n + 1, it can be replaced by a code
that uses only bSync by the induction assumption. For a block of the form
blocking (x) { P}, where P is some code with n levels of nesting, let P’ be a code,
given by the induction assumption, that is semantically equivalent to P and uses only
the bSync idiom. Let P” be the code obtained by adding x to the list of blocked events
in every bSync in P’. We can now replace the code Blocking (x) {P} with P".
Similarly, for a block of the form { P} break-upon (x), where P is some code with
n levels of nesting, let P’ be a code, given by the induction assumption, that is semanti-
cally equivalent to P. Let P” be the code obtained by adding x to the list of waited-for
events in each bSync in P’. Let label be a name that does not appear as a label in P” and
let P’ be the code obtained by adding the commands If last_event==x {break
label } after each bSync in P”. We can now replace the code { P} break-upon (x)
with label: {P"}. Clearly, the code obtained after all the above replacements contains
only bSync, with no application of the structured idioms, and is semantically equivalent
to the original code. This proves our claim. i

In fact, the above proof follows the way we have implemented the structured idioms.

Another issue that should be clarified in the above proof is the semantics of waiting-
for or requesting an event while, at the same time, blocking it. This can be done with
bSync, when some event is specified both in the waited-for orinthe requested

332 A. Ashrov et al.

lists and in the blocked list. It can also be done with the structured idioms, when an
event is requested or waited-for in the scope where it is specified as blocked or abreak
upon event. In this case, one must decide which specification takes priority — whether
to ignore the blocking or to ignore the request or wait-for. It easy to verify that the above
proof is correct as long as we use the same priority order in both the bSync and in the
structured idioms.

Claim 2 Every b-thread developed with bSync idiom can be translated to a semanti-
cally equivalent b-thread that uses only the structured idioms.

Proof Replace each bSync(x,y,z) with blocking (x) {break-upon (y)
{request (x)}}.1

References

1. Hendrix, T.D., Cross I, J.H., Maghsoodloo, S., McKinney, M.L.: Do visualizations improve
program comprehensibility? experiments with control structure diagrams for Java. ACM
SIGCSE Bull. 32(1), 382-386 (2000)

2. Briand, L.C., Bunse, C., Daly, J.W., Differding, C.: An experimental comparison of the
maintainability of object-oriented and structured design documents. Empirical Softw. Eng.
2(3), 291-312 (1997)

3. Feo,].T.: A Comparative Study of Parallel Programming Languages: The Salishan Problems.
Elsevier, North Holland (2014)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Boston
(1995)

5. Beck, K., Crocker, R., Meszaros, G., Vlissides, J., Coplien, J.O., Dominick, L., Paulisch, F.:
Industrial experience with design patterns. In: Proceedings of the 18th International
Conference on Software Engineering (1996)

6. Budinsky, F.J., Finnie, M.A., Vlissides, J.M., Yu, P.S.: Automatic code generation from
design patterns. IBM Syst. J. 35(2), 151-171 (1996)

7. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, New York (1996)

8. Florijn, G., Meijers, M., Winsen, P.: Tool support for object-oriented patterns. In: Aksit, M.,
Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 472-495. Springer, Heidelberg
(1997). doi:10.1007/BFb0053391

9. Prechelt, L., Unger, B., Philippsen, M., Tichy, W.: Two controlled experiments assessing the
usefulness of design pattern information during program maintenance. IEEE Trans. Software
Eng. 28(6), 595-606 (2002)

10. Prechelt, L., Unger, B., Tichy, W.F., Brossler, P., Votta, L.G.: A controlled experiment in
maintenance: comparing design patterns to simpler solutions. IEEE Trans. Softw. Eng. 27(12),
1134-1144 (2001)

11. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7), 90-100
(2012)

12. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. J. Formal Methods
Syst. Des. 19(1), 45-80 (2001)

13. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, Heidelberg (2003)

http://dx.doi.org/10.1007/BFb0053391

14.

15.

16.

17.

18.

19.

Structured Behavioral Programming Idioms 333

Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250-274. Springer, Heidelberg (2010). doi:
10.1007/978-3-642-14107-2_12

Ashrov, A., Marron, A., Weiss, G., Wiener, G.: A use-case for behavioral programming: an
architecture in JavaScript and Blockly for interactive applications with cross-cutting
scenarios. Sci. Comput. Program. 98(Part 2), 268-292 (2015)

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch: Programming for all.
Comm. ACM 52(11), 60-67 (2009)

Maoz, S., Harel, D., Kleinbort, A.: A compiler for multi-modal scenarios: transforming LSCs
into Aspect]). ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(4) (2011). Article 18
Wand, Y., Weber, R.: On the ontological expressiveness of information systems analysis and
design grammars. Inform. Syst. J. 3, 217-237 (1993)

Bajaj, A., Rockwell, S.: COGEVAL: applying cognitive theories to evaluate conceptual
models. In: Advanced Topics in Database Research, pp. 255-282 (2005)

http://dx.doi.org/10.1007/978-3-642-14107-2_12

	Structured Behavioral Programming Idioms
	Abstract
	1 Introduction
	2 Behavioral Programs and Specification Idioms
	3 Evaluating BP Structured Idioms
	3.1 The Experiment Settings
	3.2 Experimental Results
	3.3 Discussion
	3.4 Threat to Validity

	4 Conclusions
	Acknowledgement
	Appendix
	References

