DroidMark: A Lightweight Android Text
and Space Watermark Scheme Based
on Semantics of XML and DEX

Lingling Zeng', Wei Ren'™) | Min Lei?, and Yu Yang?

! School of Computer Science, China University of Geosciences, Wuhan, China
weirencs@cug.edu.cn
2 Information Security Center, Beijing University of Post and Telecommunications,
Wuhan, China
leimin@bupt.edu.cn

Abstract. Android platform induces an open application development
framework to attract more developers and promote larger market occu-
pations at the same time. However, the open architecture also makes
it easier to reverse engineering and application piracy. These result in
the property loss for developers and companies, and increase the risks of
mobile malicious code. Copyright protection for android application is
thus of significant importance. Currently, many solutions for application
copyright protection apply overload methods, assuming the availability
of source code, which could be impractical for a large scale application
protection. In this paper, we propose a lightweight copyright protection
method for android application called DroidMark. The copyright is pro-
tected by text and space watermark based on semantics of xml and dex.
Functional files are chosen as watermark carriers to increase watermark
semi-fragileness and concealment. And the DroidMark can be accom-
plished without secret keys. Models and algorithms are proposed and
analyzed all sidedly. The experiment results and analysis justified that
DroidMark is secure and efficient.

1 Introduction

In recent years, copyright consciousness has been highly valued unprecedentedly.
The copyright in Apps shows its value in both economy and society.

For example, “Repackage”, one of the android potential safety hazard [1] for
application copyright, is a technique to produce fake Android applications on the
basis of the legit App. Fake Apps cause damage to the legit achievements and
benefits of the developer, while reduce the user experience for customers at the
same time. Moreover, fake Apps may be embedded malicious codes, which may
threat to user privacy and property security. Therefore, as the most widely use
mobile platform worldwide, copyright protection for large-scale Android appli-
cations attracts more and more attentions in research communities.

© Springer International Publishing AG 2018

L. Barolli et al. (eds.), Advances in Internetworking, Data € Web Technologies,
Lecture Notes on Data Engineering and Communications Technologies 6,

DOI 10.1007/978-3-319-59463-7_75

DroidMark: A Lightweight Android Text and Space Watermark Scheme 757

Till now, many schemes have been proposed in app copyright protection.
However, those methods induce a large amount of computation overhead such
as reverse engineering detection and code manipulation, which may not be suit-
able for the app protection in a large scale. Therefore, a lightweight and covert
method in terms of computation cost will be more applicable. Watermarking is
a technique to provide data integrity and authenticity in public or in private.
For this perfect attribute, watermarking can be applied in application copyright
protection.

Current methods for watermarking-based application protection can be
roughly divided into three folders. First of all, put copyright information directly
into the APK provides chances to adversaries to extract the watermark by key-
word search, and modify and forge the information without detection. Secondly,
encrypts the information with asymmetric key brings high challenge for key
storage and distribution in an open environment. Lastly, the method embeds
the watermark in an additional carrier file will be noticed and separated eas-
ily, resulting in the loss of the watermark. Although several watermarking-based
schemes have been proposed, most of them are not suitable enough for applica-
tion copyright protection.

Through the analysis above, we can conclude that the watermarking-based
copyright protection should accurately tackle three aspects: good choice of car-
riers, message pretreatment for hiding, and easiness of embedding and extract-
ing algorithms for requirement of lightweight and large-scale. For these regards,
we proposed a novel android watermark method for the protection of Android
application copyright, called DroidMark. The method is designed to be consist of
DroidMark-XML and DroidMark-DEX, distinguished on the basis of the choice
of the carrier files.

The contribution of this paper can be summarized as follows:

1. Secret key and encryption is avoided. The embedding and extracting process
only need to scan the carrier file for characteristic strings and fields, and
embed or extract watermarking information on the basis of the features and
semantics of the carrier file.

2. The modification of the application is able to tracked. The watermark is semi-
fragile, therefore, DroidMark can detect the modification of Apps and main-
tain the copyright information in Apps. Any modification of Apps, repackage,
re-optimization, will be noticed.

The rest of the paper is organized as follows. Section 2 gives an overview on
relevant prior work. And Sect.3 provides the detailed description of our pro-
posed methods and algorithms. Analyzation and evaluation for both security
and performance of the scheme are provided in Sect.4. Finally, we conclude the
paper in Sect. 5.

2 Related Work

Some android copyright protection schemes are proposed recently. Sanghoon
Choi et al. [2] proposed a copyright protection technology based on forensic mark,

758 L. Zeng et al.

which is marked in the classes.dex file using the IMSI of the buyer to identify
illegal Apps. This method aimed at personal software validation, but not sim-
plified for the software copyright protection. Sung Ryul Kim et al. [3] proposed
a hybrid copyright protection design on android applications that combines two
proposed techniques: online execution class and encryption-based copyright pro-
tection. This method needs the participation of secret key, which is hard on
preservation and distribution with software.

Wu Zhou et al. [8] proposed Applnk, which designs a dynamic graph based
watermarking mechanism for Android Apps. This scheme involves secret key,
and the key is needed before extract, therefore, the key cannot be embedded in
watermark and is not suitable for negotiability. Yingjun Zhang and Kai Chen
[7] proposed a picture-based watermark for Android Apps. The extraction of
the scheme has to use the same sequence of events to find basic blocks in the
execution path, which has the same problem with the former scheme. To solve
these problems, we suggest text watermarking, which doesn’t require keys in the
process.

To satisfy the resistance of compilation and packaging, the watermark for
Android copyright protection can based on text semantics. Some watermarks
schemes depend on the semantics of the text. Mikhail J. Atallah et al. [4,5]
first proposed the natural language watermarking scheme, using the syntactic
structure of the text. This method preserves the inherent properties of the text
while embedding. Hassan et al. [6] proposed the natural language watermarking
algorithm by performing the morphosyntactic alterations to the text. Mercan et
al. proposed an algorithm by using typing errors, acronyms and abbreviations
like cursory text in char, emails etc. However, none of these methods may not be
suitable for android applications, and the efficiency and capacity is still waiting
to be improved.

3 Proposed Scheme - DroidMark

3.1 Design Goals

To insure the efficiency of the design, our scheme should achieve the following
properties:

e Identifiability: It ensures that the scheme can identify the correct water-
mark in the carrier file. This is the basic property for extraction.

e Concealment: It guarantees that the attacker cannot distinguish the water-
mark information even if they obtain the carrier file. This property requires
that the string added to carrier should be similar to the original content, and
be as natural as possible.

e Transparency: After addition of the watermark information into the xml
file, the APK should be able to operate normally, which indicates that the
addition of watermark information should not be detected by operating the
APP.

DroidMark: A Lightweight Android Text and Space Watermark Scheme 759

o Semi-fragile: It ensures the stability of the watermark in the circumstance
of being recompiled and attacked. Besides, the modification or damage of the
watermark can be able detected.

e Capacity: The high capacity will improve the robustness and applicability of
the scheme, especially when watermarks have large volume but carriers have
small volume. Achieving high capacity as possible is a necessary goal for the
proposed scheme.

e Efficiency: It ensures the high performance of embedding and extracting in
terms of computation overhead and timing cost.

3.2 Notations

For fast checking the short notation for Sect. 3, we list the major notations used
in the remainder of the paper in Table 1.

Table 1. Notation

Symbol Meaning

w Array W[0,1 ...L—1] to store watermark in a format

L Length of the array W

Loc Array Loc[0,1 ...N—1] to save field location

N Length of the array Loc

S, S1 String “</application>" and “<application>
< /application>”

Sz, S5 String “/>” and “</>"

Ss, S4 String “</activity>" and “<activity>
android:name=Cache.i”

S3Name Content of Row With String “android:name”

Cache String in the cache

APK,,,APK, | Apk File with or without Watermark

CAR,,CAR, | AndroidManifest.xml file with or without Watermark

WTM,, WT M, | Plaintext or Binary watermark information

i,e,b Random number, 7 € [1,10], e € {1,3,5,7,9} and
be{2,4,6,8,10}

Seed Seed of random-number generator

T Length of Seed

H[j] Array to save random address

3.3 Scheme Construction

In this section, we will present our scheme construction for lightweight copy-
right protection for Android applications. The scheme is described as follows in
algorithm form, followed by explanations:

760 L. Zeng et al.

3.3.1 Scheme Construction for DroidMark-XML
¢ Embedding Procedures of DroidMark-XML

1.

Pretreat: Before embedding watermark into the APP, pretreat the watermark
information and prepare the carrier file.

a. APK, — CAR,: get the AndroidManifest.xml file as the carrier file by
decompiling the APK, of the application to be marked.

b. WT'M, — WTMy: turn the watermark into binary data, and save the
data in W[0,1...L — 1]. Calculate the array length as L.

Embed: Scan AndroidManifest.xml file from beginning to the end successively
for S1, Sz and S3, and embed the binary data W[0,1...L — 1] in turn by
adding strings S, S} and S% respectively at the corresponding position in the
following rules:

a. fembed,: 51,52 — CAR,. After find Sy (or Ss), identify W[j], 5 € (0, L—1).
If Wj] = 0, generate b, and put equivalent amount of string S1’ (or S2’)
after S1 (or S2). While if W[j] = 1, generate e, and do the same as afore-
mentioned.

b. fempeds: S3 — CAR,. At the process of scanning, Cache will just record
the latest string after string S3yame. After find Sy in the carrier, identify
Wj], and generate random number b or e. Also, add string S3’ after S3.

Recompile: feompite,. When j = L, which identifies the end of embedding,
stop scanning and save the new AndroidManifest.xml. Recompile APK with
the new file with watermark to get APK,,, in this case, the watermark will
be embedded into an application.

e Extracting Procedures of DroidMark-XML

1.

Decompile: Decompile APK to get AndroidManifest.xml file, which is the
CAR,,, before extracting watermark from APK,,.

Extract: Scan CAR,, from beginning to the end successively for the specified
strings S7, S5 and S%, and extract the binary data in turn in the following
rules:

a. fextract;: CARy — S, Sy. After find S7 or S in the CAR,,, count the
amount of successive strings as x, an even x represents binary 0, while
the odd z represents binary 1.

b. fextracts: CARy, — S%. Set the initial value of Cache as “null”. At the
process of scanning, compare the latest S3yeme with Cache. If S3name
contains C'ache, which means S3nqame is an anthropogenic watermark, get
the rest part of S3yame as “.i”. Judge i if it’s an even or an odd and get

the binary data as above.

¢. Transform: Scan to the end of the CAR,,, and record the binary data
successively in a new file. Finally, turn WT'M; into WT'M,,. In this case,
we can extract the watermark information.

DroidMark: A Lightweight Android Text and Space Watermark Scheme 761

3.3.2 Scheme Construction for DroidMark-DEX
¢ Embedding Procedures of DroidMark-DEX

1. Pretreat: Before embedding watermark into the APP, pretreat the watermark
information and prepare the carrier file.
a. APK, — CAR,: Get the classes.dex file by decompressing APK, to be
marked.
b. WT'M, — WTMy: Turn the plaintext or cryptographic text watermark
into hexadecimal data.
c¢. CAR, — Loc: For the present dex file, some fields keep empty or insignif-
icance in the whole lifecycle of the application. For this reason, these
fields can be used for watermarking or digital forensics. As far as we
know, there’s redundancy information exist between Header_item and
Map_list. In this experiment, we scan for the field unused in Mapyist.
And store the corresponding location of file in the array Loc.
2. Embed:
a. Seed: H[j]: generate a number as Seed to produce random numbers in the
function RAN D(Seed), calculate the length of Seed as T'. If the address
is used, generate H[j] = H[j] + 1;
b. WM, H[j] — CAR, : WT' M, Seed: Embed Seed in the first T unit of
Loc, and WM in the corresponding Loc[H [7]].
3. Repackage: CAR,, — APK,,: After finish embedding, recalculate checksum
of dex file, and repackage the APK into APK,,. In this case, the watermark
will be embedded into an application.

e Extracting Procedures of DroidMark-DEX

1. Decompress:Decompress its APK to get classes.dex file, which is CAR,,,
before extracting watermark from APK,,.
2. Extract:

a. CAR,: Seed, Loc: Scan for satisfactory fields and number these locations
in hexadecimal unit. Then store the corresponding location of file in the
array Loc.

b. Seed: H[j|; CAR,, H[j] — WM : WTM,: Extract the first T" unit of
Loc to get Seed. Generate the random address using function. If the
generation repeated, extract from one unit after. In this way, the WT M,
is extracted.

3. Transform: Finally, turn WT' My, into WT M,,. In this case, we can extract the
watermark information.

4 Security Analysis and Performance Evaluation

In this section, we evaluate the security and property performance of scheme in
experiments. All the following experiments are based on language C and python,
and tested on hardware AMD Athlon(tm) IT X4 630 with Intel Pentium 2.7 GHz
processor and 6 GB memory.

762 L. Zeng et al.

4.1 Security Analysis

To evaluate the security performance of the scheme, we analyze the four security
properties in its design goal for DroidMark to evaluate its security performance.
We analyze the security of our proposed scheme in the following two aspects
under the assumption that APK is arranged:

e Soundness and Concealment:

DroidMark cannot be perceived by mainstream watermark detector.

<2xml version="1.0" encoding="UTF-8"?>
<manifest android:versionName="1.0" android:versionCode="1" package="com.Jara.lightesms" xmins:android="http://schemas.android.com/apk/res/android">
<uses-sdk android:targetSdkVersion="21" android:minSdkVersion="8"/>
e
- <application android:theme="@style/AppTheme" android:label="@string/app_name" android:icon=" /ic_| " android:allowBackup="true">
- <activity android:label="@string/app_name" android:screenOrientation="portrait" android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
][RR
<category android:name="android.intent. y.LA />

.
</intent-filter>

</activity>

<activity android:name="android.intent.category.LAUNCHER.5"/>

android:configChang
<activity android:name=
<activity android:screent
<activity android:name=".SMSListActivi
<activity android:screenOrientation="portrait" android:name=".MessageBoxList"> </activity>
<activity android:name=".MessageBoxList.5"/>

</application>

<application/>

<application/>

<application/>

<application/>

<application/>

<application/>

<uses-permission android:name="android.permission.SEND_SMS"> </uses-permission>

<uses-permission android:name="android.permission.READ_SMS"> </uses-permission>

<uses-permission android:name="android.permission.WRITE_SMS"> </uses-permission>

<uses-permission android:name="android.permission.RECEIVE_SMS"> </uses-permission>

<uses-permission android:name="android.permission.READ_CONTACTS"/>

<uses-permission android:name="android.permission.WRITE_CONTACTS"/>

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>
</manifest>

Fig. 1. Effect of embedding in XML

We put an small-scale experiment on DroidMark-XML, and the effect is
shown in Fig.1. The binary data embedded is “1, 1, 0, 1, 0, 0, 1, 0”, and the
random number generated by the tool is “7, 9, 4, 5, 2, 2, 5, 67, which has the
same oddity as the binary data. From Fig.1 we can see that the embedding
of watermark uses three methods to induces only slightly modification on the
basis of original strings conform to the file semantics. In this way, the format
of file embedded watermark is similar to the normal AndroidManifest.xml file.
Therefore, the watermark is hard to be distinguished apart from the carrier.
Watermark embedding and extracting rely on the detection and judgment of
characteristic strings rather than the secret “Key”. The scheme is free of inse-
curity in the process of “Key” distribution.

o Identifiability:

DroidMark can extract watermark accurately. DroidMark achieves good con-
fusion by using the semantics of carrier files, and is secure in the mainstream
watermark detector. Instead, DroidMark can extract the watermark embedded
in carriers accurately.

DroidMark: A Lightweight Android Text and Space Watermark Scheme 763

e Transparency:

DroidMark has no influence on the operation of the APP. We did experiment
on 100 different APKs of embedding watermark in the two carrier files. The
experiment indicates the overhead on the installation and operation are the
same in millisecond. Therefore, we conclude that DroidMark has no influence on
APP’s operation.

e Semi-fragile:

On the one hand, DroidMark can defend against the attack of decompilation and
recompilation, on the other hand, the artificial modification will be aware of. We
simulate attacks of recompiling and decompiling, turn out that the watermark
in both xml and dex file are stable in the experiment. Therefore, the experiment
justified that DroidMark can defend both attack. Besides, AndroidManifest.xml
is a configuration file, while classes.dex is for execution, both are the essential
part for an APP. If the adversary modifies the app artificially, both file will have
to be modified incidentally. The destruction of the watermark will be simulta-
neous with the modification of carrier files. The damage of the watermark can
thus both confirm the counterfeit of the APP.

4.2 Performance Analysis

The performance of DroidMark can be evaluated in two folders: efficiency of
embedding and extraction, and capacity of watermark. Efficiency is related to
the pretreatment of scanning for the location, and the process of embedding and
extracting the watermark. Meanwhile capacity is influenced by the size and type
of the carrier files, and the algorithm for watermarking as well.

4.2.1 Efficiency

During the process of embedding and extraction, the cost of computation
is mainly induced by two aspects: carrier file scan, watermark implant and
extraction.

In our algorithm, the length of watermark decide the time for scanning for
embedding, while in the process of extraction, it’s decided by the size of carrier
file. Therefore, the efficiency cost grows along with the scale of the watermark
and the length of carrier file. Further more, to inquire which element has more
influence, we design two experiments as follows.

e Efficiency of DroidMark-XML:

Firstly, we embedded and extracted different watermark in the same Android-
Manifest.xml file to control the environment variables of the length of the car-
rier file. Watermarks range from 1 to 1600 bits increasing by 100 bits, and the
Fig. 2 shows that the overhead of the whole process of embedding and extracting
watermarks. We can see that the cost of time is linearly other than exponen-
tially increasing with the number of bit of watermarking, which indicates that

764 L. Zeng et al.

the overhead increases along with the size of the watermark embedded is within
a controllable scale. That is also the inevitable cost for embedding and extract-
ing operations. Therefore, we can conclude that the cost of this proposed scheme
is efficient and stable.

Secondly, the length of the file only has fatal effect on the scanning overhead
of watermark’s extraction. To explore the relationship between the scanning
overhead and the length of the carrier file, we design the experiment to embed
and extract the same watermark in 8 bits in a series of incremental size of car-
rier files. We keep the content of watermark as 8 bits to ensure the same cost
of embedding and extracting, so that to achieve the influence of the scanning
only. Besides, the increasing content of the carrier file is the repetition of cen-
tral body in 1271 characters based on 1527 characters of the original file. We
adopt this method to guarantee the validity of AndroidManifest.xml file, and
the arithmetic progression is in favor of statistics of overhead as well. The result
of the experiment is shown in the Fig. 3. The graph indicates that the overhead
of scanning increases only less than 2 seconds in the file augment of more than
20 thousand characters, which is much less than the overhead of the process of
embedding and extracting.

40000 18500

38000

18000

36000

34000

17500

32000

17000

The cost of embedding and extracting(ms)
The cost of embedding and extracting(ms)

30000

28000 1
[200 400 600 800 1000 1200 1400 1600 5000 10000 15000 20000 25000

The scale of watermarking(bit) The size of carrier file(char)

Fig. 2. Overhead in different length of Fig. 3. Overhead in different size of file
watermark

e Efficiency of DroidMark-DEX:

In the process of DroidMark-Dex, the extra overhead compares to the
DroidMark-XML is the confusion of embedding location, which is proved to
be low-time-consuming operation. Hence the overhead of DroidMark-DEX has
the similar tendency with DroidMark-XML. And for this circumstance and space
limitations, the DroidMark-DEX experimental result is abridged.

Therefore, we can draw the conclusion that, the overhead mainly comes from
the process of embedding and extraction, and the linearly growth with in a small
scale justifies the efficiency and stability of our scheme.

DroidMark: A Lightweight Android Text and Space Watermark Scheme 765

4.2.2 Capacity

The capacity refers to how much bits of the original content are needed to
hide one bit watermark information. Under the requirement of practicability
and security, the higher capacity indicates the greater ability, applicability, and
efficiency of watermark algorithm.

e Capacity of DroidMark-XML:

In order to detect the capacity of DroidMark-XML, we choose 100 different
AndroidManifest.xml files decompiled from 100 Apps. And we calculate each
characters of xml file as the x axis, while collect the totality location for water-
mark embedding as the y axis. The relationship between x and y is shown in
Fig. 4. According to Fig.4, we draw a baseline slopes 0.2, representing that the
capacity of the AndroidManifest.xml is around 20 percent of the full text, which
is pretty high compares to other android watermark algorithms. Therefore, we
can conclude that the this proposed scheme is stable and high-capacity.

4500

4000 - °

3500 ° ® °

The capacity of watermark(bit)

= = N N w

o a o a S

s} o S I=3 S

=) S) o S
]

v
=3
S

o

100 200 300 400 500 600 700 800
The total characters of xml file(bit)

o

Fig. 4. Capacity of DroidMark-XML

e Capacity of DroidMark-DEX:

As for the capacity of DroidMark-DEX, the location in which the watermark
is properly embedded is relatively fixed. Therefore, the capacity of DroidMark-
DEX is fixed in a range rather than grows linearly. On account of redundancy
between Header_item and Map_list in classes.dex, the available field of dex file
we choose are “unused” fields in each “map_list_item[]” which is used to format
the alignment. The amount of unused field is usually less than 20. Calculate this
fields, we can conclude that the capacity of DroidMark-DEX is 2028 = 320 bits
at most, which is much less than what in DroidMark-XML. But at the watermark
in DroidMark-DEX has better effect of confusion and has tighter organization,
which will offer better protection of watermark integrity.

766 L. Zeng et al.

5 Conclusions

In this paper, we proposed an watermark tool, called DroidMark, to protect
the copyright of android applications. This method embeds the watermark in
application configuration files, which achieves great concealment. At the same
time, the semi-fragile property insure the authenticity for DroidMark. More over,
the method achieves the disuse of secret key in the process of embedding and
extracting, which caters applications property of circulation and lightweight.
DroidMark is designed to achieve Android copyright protection, and can also
be used in information hiding, secrete communication, provenance-based foren-
sics, and key distribution. The watermarking algorithms and carrier selection
guarantee the reliability and applicability of DroidMark. The achievements of
security, high-performance and lightweight property of DroidMark is extensively
analyzed and thoroughly verified by experiments.

Acknowledgements. The research was financially supported by the National Natural
Science Foundation of China under Grant No.s 61310306028.

References

1. Sufatrio, Tan, D.J.J., Chua, T.-W., Thing, V.L.L.: Securing android: a survey, tax-
onomy, and challenges. ACM Comput. Surv. 47, 58-102 (2015)

2. Choi, S., Jang, J., Jae, E.: Android applications copyright protection technology
based on forensic mark. In: Proceedings of the 2012 ACM Research in Applied
Computation Symposium (RACS 2012), pp. 338-339 (2012)

3. Kim, S.R., Kim, J.H., Kim, H.S.: A hybrid design of online execution class and
encryption-based copyright protection for android apps. In: Proceedings of the 2012
ACM Research in Applied Computation Symposium (RACS 2012), pp. 342-343
(2012)

4. Atallah, M.J., McDonough, C., Nirenburg, S., Raskin, V.: Natural language process-
ing for information assurance and security: an overview and implementations. In:
Proceedings of the 2000 Workshop on New Security Paradigms (NSPW 2000), pp.
51-65 (2000)

5. Atallah, M.J., Raskin, V., Crogan, M., Hempelmann, C., Kerschbaum, F.,
Mohamed, D., Naik, S.: Natural language watermarking: design, analysis, and a
proof-of-concept implementation. In: Moskowitz, I.S. (ed.) TH 2001. LNCS, vol. 2137,
pp. 185-200. Springer, Heidelberg (2001). doi:10.1007/3-540-45496-9_14

6. Meral, H.M., et al.: Natural language watermarking via morphosyntactic alterations.
Comput. Speech Lang. 23, 107-125 (2009)

7. Zhang, Y., Chen, K.: AppMark: a picture-based watermark for android apps. In:
Eighth International Conference on Software Security and Reliability (SERE 2014),
pp. 58-67 (2014)

8. Zhou, W., Zhang, X., Jiang, X.: Applnk: watermarking android apps for repackaging
deterrence. In: Proceedings of the 8h ACM SIGSAC Symposium on Information,
Computer and Communications Security (ASTA CCS 2013), pp. 1-12 (2013)

http://dx.doi.org/10.1007/3-540-45496-9_14

	DroidMark: A Lightweight Android Text and Space Watermark Scheme Based on Semantics of XML and DEX
	1 Introduction
	2 Related Work
	3 Proposed Scheme - DroidMark
	3.1 Design Goals
	3.2 Notations
	3.3 Scheme Construction

	4 Security Analysis and Performance Evaluation
	4.1 Security Analysis
	4.2 Performance Analysis

	5 Conclusions
	References

