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Abstract. Encryption algorithms in Internet of Things are a piece
of small area with small-scale, it need some light weight encryption
algorithms. This paper focuses on the component of encryption algo-
rithms, some light weight of the rotation boolean permutations are per-
fectly characterized by the matrix of linear expressions. Three methods
of rotation nonlinear boolean permutations are constructed. The sub-
functions of the three permutations have three monomials, hight degree,
2-algebra immunity. All three classes of rotation nonlinear boolean per-
mutations are fully determination by the first component Boolean func-
tion, respectively.

1 Introduction

Internet of Things is an up-and-coming information and technology industry,
the project of Internet of Things which is a piece of small area with small-scale
and self-system obtain gratifying achievement and bright future. But there are
some serious hidden danger and potential crisis problems [1,2]. For example,
security issues. Wireless sensor network’s characteristics present new challenges
in information security area. Along with one-time, unattended, wireless commu-
nications, low-cost and resource-constrained, sensors easily appear to abnormal-
ities, physical attacks by attackers, Trojan attacks, virus damage, keys decryp-
tion, DOS, eavesdropping and traffic analysis are really threats. The trouble is
a challenge that design of key storage, distribution, encryption and decryption
mechanism caused by wireless sensor network’s large and resource constraints.

In order to design encryption algorithms using in resource constraints, we
need design some basic components of encryption algorithms. In collaborative
networks, there are some symmetric algorithms which ensure the security of
many data. Stream cipher is an important class in symmetric cryptosystem. It
is because a good Stream cipher is faster in implementation, and it can pro-
duce sequences with large period and good statistical properties. Thus, in order
to design a good Stream cipher, one should design some good components, for
example Linear feedback shift registers (LFSR), S-box, Maximum Distance Sep-
arable (MDS) and so on.
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In this paper, we study rotation-invariant n-bit invertible (bijective) func-
tions, this component was firstly introduced in Daemen’s 1995 PHD Thesis [5].
The defining property of shift-invariant transformations is the commutativity
with translation. Shift-invariant transformations on binary vectors have a num-
ber of properties that make them suitable components for the state updating
transformation of cryptographic finite state machines.

For hardware, these transformations can be implemented as an intercon-
nected array of identical 1-bit output processors. The shift-invariance ensures
that the computational load is optimally distributed.

For software, their regularity allows efficient implementations by employing
bitwise logical operations. Moreover, binary shift-invariant transformations can
be specified by a single Boolean function.

In 2006, SMS4 [12] was used for WAPI (Wireless LAN Authentication and
Privacy Infrastructure) in China, this block cipher used a binary shift-invariant
transformation: C(x) = x ⊕ (x <<< 2) ⊕ (x <<< 10) ⊕ (x <<< 18) ⊕ (x <<<
24), where x ∈ F

32
2 , it had good cryptographic properties, for example the dif-

ferential branch number and the linear branch number of this transformation
was five, this is one of the best transformations of linear functions. And in
2015, Markku Juhani O. Saarinen [11] submit to the CBEAMr1 authenticated
encryption algorithm for the first round CAESAR Competition. CBEAMr1 uses
a slightly different notation from Daemen who used φ to denote non-invertible
as well as invertible rotation-invariant functions.

Note that the permutation (f, · · · , f
︸ ︷︷ ︸

n

) fall into the categories linear (with

respect to bitwise addition) and nonlinear. In the nonlinear case, [5] obtained a
distinction is made between transformations with finite and those with infinite
neighborhood. And dedicated to the study of the propagation and correlation
properties of binary shift-invariant permutations with finite neighborhood. [11]
used the rotation boolean function (f(x0, x1, x2, x3, x4) = x0x1x3x4 ⊕ x0x2x3 ⊕
x0x1x4⊕x1x2x3⊕x2x3x4⊕x0x3⊕x1x3⊕x2x3⊕x2x4⊕x3x4⊕x1⊕x3⊕x4), xi ∈
F2, 0 ≤ i ≤ 4) for CBEAMr1 authenticated encryption, but this function is very
complexity for hardware, since this function can not be implemented with less
than eight logical instructions, so this encryption defined a new data type in
order to fit into the register sets of various CPU architectures.

By [5,11], we find that they did not give how to construct this permutation
(named by rotation boolean permutation) as simply as possible from crypto-
graphical security. Based on the above consideration, we study the following
questions:

(1) What is the property of the rotation linear boolean permutations?
(2) How to construct the rotation nonlinear boolean permutations.

The organization of this paper is as follows. In Sect. 2, the basic concepts
and notions are presented. In Sect. 3, rotation linear boolean permutations is
perfectly characterization. Three method to construct rotation nonlinear boolean
permutation are presented, and its hardware implementation consumption can
be analysis in Sect. 4. Finally, Sect. 5 concludes this paper.
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2 Preliminaries

Let Bn denote the set of n variables Boolean functions. We denote by ⊕ the
additions in F2, in F

n
2 and in Bn. Every Boolean function f(x) ∈ Bn admits a

unique representation called its algebraic normal form (ANF ) as a polynomial
over F2:

f(x1, · · · , xn) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj ⊕ · · · ⊕ a1,··· ,nx1x2 · · · xn

where the coefficients a0, ai, ai,j , · · · , a1,··· ,n ∈ F2. The algebraic degree, deg(f),
is the number of variables in the highest order term with non-zero coefficient. The
support of a Boolean function f(x) ∈ Bn is defined as Supp(f) = {(x1, · · · , xn) |
f(x1, · · · , xn) = 1}. We say that a Boolean function f(x) is balanced if its truth
table contains an equal number of ones and zeros, i.e., if its Hamming weight
equals 2n−1. A Boolean function is affine if there exists no term of degree > 1 in
the ANF and the set of all affine functions is denoted by An. An affine function
with constant term equal to zero is called a linear function.

Definition 1. The Walsh spectrum of f(x) ∈ Bn is defined as

F (f ⊕ ϕα) =
∑

x∈F
n
2

(−1)f(x)⊕αx,

where ϕα = αx = α1x1 ⊕ α2x2 ⊕ · · · ⊕ αnxn.

Definition 2. The cross-correlation function between f(x), g(x) ∈ Bn is defined
as

�f,g(α) =
∑

x∈F
n
2

(−1)f(x)⊕g(x⊕α), α ∈ F
n
2 .

If f(x) = g(x), then �f (α) =
∑

x∈F
n
2

(−1)f(x)⊕f(x⊕α).

Denoted �min = min{|�f (α)|α ∈ F
n
2 , α �= 0n}.

Two n-variable Boolean functions f(x), g(x) are called to be perfectly uncor-
related if �f,g(α) = 0 for all α ∈ F

n
2 , and are called to be uncorrelated of degree

k if �f,g(α) = 0 for all α ∈ F
n
2 such that 0 ≤ wt(α) ≤ k.

The two indicators are called the global avalanche characteristics of Boolean
functions( GAC [6]): σf =

∑

α∈F
n
2

�2
f (α),�f = maxα∈F

n
2 ,wt(α) �=0 | �f (α) | .

In order to study cross-correlation distributions between any two Boolean
functions, we need the following definition:

Definition 3. [14] Let f(x), g(x) ∈ Bn. If Da(f, g) : x �→ f(x) ⊕ g(x ⊕ a) is
constant, a is said to be a linear structure of f and g. For convenience, let

U0
f,g = {a ∈ F

n
2 | f(x) ⊕ g(x ⊕ a) = 0,∀x ∈ F

n
2};

U1
f,g = {a ∈ F

n
2 | f(x) ⊕ g(x ⊕ a) = 1,∀x ∈ F

n
2};

If 0n ∈ Uf,g, it is easy to know that U0
f,g and Uf,g = U0

f,g ∪ U1
f,g are linear

subspaces of Fn
2 .
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In Definition 3, if f(x) = g(x), then U0
f = {a ∈ F

n
2 | f(x)⊕f(x⊕a) = 0,∀x ∈

F
n
2}; U1

f = {a ∈ F
n
2 | f(x) ⊕ f(x ⊕ a) = 1,∀x ∈ F

n
2}. U0

f and Uf = U0
f ∪ U1

f are
linear subspaces of Fn

2 .
For f(x) ∈ Bn, the annihilators of f is the set Ann(f) = g ∈ Bn : f · g = 0.

The algebraic immunity AI(f) is the minimum degree of nonzero functions g ∈
Bn such that gf = 0 or g(1 ⊕ f) = 0. Namely, AI(f) = min{deg(g) : 0 �= g ∈
ANN(f) ∪ Ann(1 ⊕ f) = (f ⊕ 1) ∪ (f)}.

Definition 4. Let F (x) = (f1(x), f2(x), ..., fn(x)) ∈ F
n
2 and fi(x) ∈ Bn, x ∈ F

n
2 .

F (x) is called to a boolean permutation, if F (x) is an one to one mapping from
F

n
2 to F

n
2 .

Lemma 1. Let F (x) = (f1(x), f2(x), ..., fn(x)) ∈ F
n
2 and fi(x) ∈ Bn, x ∈ F

n
2 .

F (x) is a boolean permutation if and only if
⊕n

i=1 cifi(x) is a balanced function,
where (0, 0, ..., 0) �= (c1, c2, ..., cn) ∈ F

n
2 .

In this paper, we will study a specially permutation, named the rotation
boolean permutation.

Definition 5. Let f(x1, x2, ..., xn−1, xn) ∈ F
n
2 . F (x) is called a rotation boolean

permutation(denoted by RBP ), if F (x) = (f0(x), f1(x), ..., fn−1(x)) is a
boolean permutation, where

f0(x) = f(x1, x2, ..., xn−1, xn),
f1(x) = f(x2, x3, ..., xn, x1),
...

fn−1(x) = f(xn, x1, ..., xn−2, xn−1).

For example, if f(x1, x2, x3) = x1x2⊕x3, then f1 = x2x3⊕x1, f2 = x3x1⊕x2.
It is easy to know fn = f0 = f(x).

In term of Definition 5, we know that F (x) is fully determined by f(x0 , x1

, · · · , xn−1). So, we called f(x0, x1, · · · , xn−1) a basic function of a rotation
boolean permutation F (x). Thus, the set of n-bit rotation boolean function can
be partitioned into 4 subsets:

(1) Basic function: f(x0, x1, · · · , xn−1);
(2) Reverse of basic function: fr(x0, x1, · · · , xn−1) = f(xn−1, xn−2, .., x1, x0);
(3) Complement of basic function: fc(x0, x1, · · · , xn−1) = 1 ⊕ f(x0, x1, x2, ...,

xn−2, xn−1);
(4) Reverse complement of basic function: frc(x0, x1, · · · , xn−1) = 1 ⊕ f(xn−1,

xn−2, ..., x1, x0).

That means, if we find a basic function of a rotation boolean permutation,
then we can obtain three classed permutation: reverse, complement and reverse
complement rotation boolean permutations. Thus, how to find a basic rotation
boolean permutation is important.



Designing the Light Weight Rotation Boolean Permutation 111

3 Rotation Linear Boolean Permutation

At first, we give a result about rotation linear boolean permutation.

Theorem 1. Let f(x1, x2, ..., xn−1, xn) = a1x1 ⊕ a2x2 ⊕ · · · cnxn ⊕ a0 ∈ Bn,
a)i ∈ F

n
2 (0 ≤ i ≤ n − 1). Then F (x) = (f0(x), f1(x), ..., fn−1(x)) is a rotation

boolean permutation if and only if

A =

⎛

⎜

⎜

⎜

⎜

⎝

a1 a2 a3 · · · an−1 an

an a1 a2 · · · an−2 an−1

an−1 an a1 · · · an−3 an−2

· · · · · · · · · · · · · · · · · ·
a2 a3 a4 · · · an a1

⎞

⎟

⎟

⎟

⎟

⎠

is a reversible matrix on F2.

Proof. It is easy to proof. ��
For a rotation linear boolean permutation, we know that this rotation boolean

permutations are fully determined by the reversible matrix. So the number of
rotation linear permutations is at most the number of the reversible matrix.

4 Rotation Nonlinear Boolean Permutation

In this section, we will analyze rotation nonlinear boolean permutation, and give
three constructions at first, then analysis its hardware implementation consump-
tion.

4.1 The First Construction

Construction 1. Let

f(x1, x2, ..., xn−1, xn) = x1 ⊕ x2x3 · · · xn−1 ⊕ x2x3 · · · xn−1xn

be a Boolean function with n(n ≥ 4)-variable. Then F (x) = (f0, f1, f2,
· · · , fn−1) is a rotation boolean permutation.

Proof. According to the ANF of f(x), then f0 = x1 ⊕ x2x3 · · · xn−1(1 ⊕
xn), f1 = x2 ⊕ x3x4 · · · xn(1 ⊕ x1), f2 = x3 ⊕ x4x5 · · · x1(1 ⊕ x2), · · · ,fn−1 =
xn ⊕ x1x2 · · · xn−2(1 ⊕ xn−1). There are four cases:
(1) When wt(x) < n−2. Then x2x3 · · · xn−1=x3x4 · · · xn=· · · =x1x2 · · · xn−2=0,
that is, F (α) �= F (β) for any α, β ∈ F

n
2 satisfying 0 ≤ wt(α), wt(β) < n − 2 and

α �= β.
The number (denoted byT1) of α ∈ F

n
2 (wt(α) < n − 2) in this case is T1 =

∑n−3
i=0

(
n
i

)

.
(2) When wt(x) = n − 2. Then only one of x2x3 · · · xn−1, x3x4 · · · xn,

· · · , x1x2 · · · xn−2 is equal to 1. For simplicity, let x2x3 · · · xn−1 = 1, we have
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x2 = x3 = · · · = xn−1 = 1 and x1 = xn = 0. Thus if α = (0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−2

, 0),

then F (α) = (1, 1, · · · , 1
︸ ︷︷ ︸

n−1

, 0). Denoted by the set A = {(0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−2

, 0),

(0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−2

), · · · , (1, 1, · · · , 1
︸ ︷︷ ︸

n−2

, 0, 0)}. It is easy verifies that F (α) �= F (β)

if α, β ∈ A and α �= β.
Then let B = {α ∈ F

n
2 | wt(α) = n − 2, α /∈ A}. | B |= (

n
n−2

)− | A |=
(

n
n−2

) − n. Note that x2x3 · · · xn−1=x3x4 · · · xn=· · · =x1x2 · · · xn−2=0, if x ∈ B.
This means α = F (α) �= F (β) = β if α, β ∈ B and α �= β.

The number (denoted by T2) of α ∈ F
n
2 (wt(α) = n − 2) in this case is

T2 =
(

n
n−2

)

.
(3) When wt(x) = n − 1. That is, let xi = 0 and xj = 1 for 1 ≤ i �= j ≤ n.

So, α = (1, 1, · · · , 1, 0
︸︷︷︸

i

, 1, · · · , 1) ∈ F
n
2 , F (α) = (1, 1, · · · , 1

︸ ︷︷ ︸

i−1

, 0, 0, 1, · · · , 1
︸ ︷︷ ︸

n−i−1

).

The number(denoted by T3) of α ∈ F
n
2 (wt(α) = n − 1, n) in this case is

T3 =
(

n
n−1

)

+ 1 = n + 1.
(4) wt(x) = n, that is, if wt(α) = n, then F (α) = (1, 1, · · · , 1, 1).
Combining the above four cases, we know that the number (denoted by T )

of value with F (x) is T = T1 + T2 + T3 =
∑n−3

i=0

(
n
i

)

+
(

n
n−2

)

+ n + 1 = 2n.
Thus, F (x) is a rotation boolean permutation on F

n
2 . ��

Remark 1. In Construction 1.

(1) We call f(x1, x2, ..., xn−1, xn) = x1 ⊕x2x3 · · · xn−1 ⊕x2x3 · · · xn−1xn a basic
function, denoted by f0

bf .
(2) It is easy to find that this boolean permutation F (x) = (f0, f1, · · · , fn−1)

has some fixedly points, that is, F (x) = x. For example x = (0, 0, · · · , 0).
In order to eliminate these fixedly points, we can change F (x) =
(f0, f1, · · · , fn−1) by G(x) = (f0 ⊕ 1, f1, · · · , fn−1), or by G(x) = (f0, f1 ⊕
1, · · · , fn−1), etc.

Lemma 2. Let f(x1, x2, ..., xn−1, xn) = x1x2x3 · · · xn−1xn be a Boolean func-
tion with n-variable. Then the Walsh spectrum is three values for any α ∈ F

n
2 :

F (f ⊕ ϕα) =

⎧

⎨

⎩

2, wt(α) ≡ 0 mod 2, wt(α) > 0;
−2, wt(α) ≡ 1 mod 2;
2n − 2, wt(α) = 0.

.

Theorem 2. Let f(x1, x2, ..., xn−1, xn) = x1 ⊕ x2x3 · · · xn−1 ⊕ x2x3 · · · xn−1xn

be a Boolean function with n-variable. Then f satisfies the following properties:

1. balanced;
2. deg(f) = n − 1;
3. AI(f) = 2;
4. Nf = 2;
5. The Walsh spectrum is four values: {0,±4, 2n − 4}.
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Proof. According to the definition of Walsh spectrum and Lemma 2, we have

F (f ⊕ α) =
∑

x∈F
n
2

(−1)f(x)⊕α·x

=
∑

x∈F
n
2

(−1)x1⊕x2x3···xn−1⊕x2x3···xn−1xn⊕α1x1⊕α2x2···⊕αnxn

= (1 + (−1)1⊕α1)
∑

(x2,x3,··· ,xn)∈F
n−1
2

(−1)x2x3···xn−1⊕x2x3···xn−1xn⊕α2x2···⊕αnxn

= (1 − (−1)α1)[
∑

(x2,··· ,xn−1)∈F
n−2
2

(−1)x2x3···xn−1⊕α2x2⊕···⊕αn−1xn−1 +

(−1)αn
∑

(x2,··· ,xn−1)∈F
n−2
2

(−1)α2x2⊕···⊕αn−1xn−1 ]

=

⎧
⎪⎪⎨

⎪⎪⎩

0, α1 = 0, αi ∈ F2, 2 ≤ i ≤ n;
−4, α1 = 1, wt((α2, · · · , αn−1)) ≡ 1 mod 2, αn ∈ F2;
4, α1 = 1, wt((α2, · · · , αn−1)) ≡ 0 mod 2, αn ∈ F2;
2n − 4, α1 = 1, wt(α2, · · · , αn−1, αn)) = 0.

Based on the distribution of Walsh spectrum, 1,4 and 5 are easy to be proved.
It is easy to find the annihilator of f(x) is (1 ⊕ x1)xn. Thus, AI(f) = 2. ��

Example 1. (1) For n = 4, then the truth table of this function in Theorem 2 is
f = (0x02, 0xfd) (in hexadecimal). The Walsh spectrum is F = (0, 0, 0, 0, 0, 0,
0, 0, 12,−4, 4, 4, 4, 4,−4,−4);

(2) For n = 5, then the truth table of this function in Theorem 2 is f = (0x00,
0x02, 0xff , 0xfd). The Walsh spectrum is F = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 28,−4, 4, 4, 4, 4,−4,−4, 4, 4,−4,−4,−4,−4, 4, 4).

(3) For n, then the truth table of this function in Theorem 2 is f =
(0x00, · · · , 0x00
︸ ︷︷ ︸

2n−4−1

,0x02, 0xff, · · · , 0xff
︸ ︷︷ ︸

2n−4−1

, 0xfd).

4.2 The Second Construction

Construction 2. Let

f(x1, x2, ..., xn−1, xn) = xn ⊕ xn−1xn−2 · · · x5x3x2x1 ⊕ xnxn−1 · · · x5x3x2

be a Boolean function with n(n ≥ 5)-variable. Then F (x) = (f0, f1, f2, · · · ,
fn−1) is a rotation boolean permutation.

Proof. According to the ANF of f(x), then f0 = xn ⊕xn−1xn−2 · · · x5x3x2(x1⊕
xn), f1 = x1 ⊕ xnxn−1 · · · x6x4x3(x2 ⊕ x1), f2 = x2 ⊕ x1xn · · · x7x5x4(x3 ⊕
x2), · · · fn−1 = xn−1 ⊕ xn−2xn−3 · · · x4x2x1(xn ⊕ xn−1). There are five cases:
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(1) When wt(x) < n − 3. Then xn−1xn−2 · · · x5x3x2 = xnxn−1 · · · x6x4x3 =
· · · = xn−2xn−3 · · · x4x2x1 = 0, that is, if α, β ∈ F

n
2 satisfying 0 ≤

wt(α), wt(β) < n − 3 and α �= β, then F (α) �= F (β) .
The number(denoted byT1) of α ∈ F

n
2 (wt(α) < n − 3) in this case is T1 =

∑n−4
i=0

(
n
i

)

.
(2) When wt(x) = n − 3. Then only one of xn−1xn−2 · · · x5x3x2,

xnxn−1 · · · x6x4x3, · · · , xn−2xn−3 · · · x4x2x1 is equal to 1. For simplicity, let
xn−1xn−2 · · · x5x3x2 = 1, we have x2 = x3 = x5 = · · · = xn−2 = xn−1 = 1
and x1 = x4 = xn = 0. Thus if α = (0, 1, 1, 0, 1, 1, · · · , 1

︸ ︷︷ ︸

n−5

, 0), then F (α) =

(0, 0, 1, 1, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−5

).

By the same method of Construction 1, denoted by the set A =
{(0, 1, 1, 0, 1, 1, · · · , 1

︸ ︷︷ ︸

n−5

,0), (0, 0, 1, 1, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−5

), · · · , (1, 1, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−5

, 0, 0)}. It

is easy verifies that F (α) �= F (β) if α, β ∈ A and α �= β.
Then let B = {α ∈ F

n
2 | wt(α) = n − 3, α /∈ A}. | B |= (

n
n−3

)− | A |=
(

n
n−3

)−n. Note that xn−1xn−2 · · · x5x3x2=xnxn−1 · · · x6x4x3=· · · =xn−2xn−3 · · ·
x4x2x1=0, if x ∈ B. This means F (α) �= F (β) if α, β ∈ B and α �= β.

The number(denoted by T2) of α ∈ F
n
2 (wt(α) = n − 3) in this case is T2 =

(
n

n−3

)

.
(3) When wt(x) = n − 2. Suppose x1 = · · · = xn−2 = 1 and xn−1 = xn = 0.

Then F (x) = (0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−2

, 0). It is easy to verify that wt(F (x)) = n−2 for any

wt(x) = n − 2, and F (α) �= F (β) for wt(α) = wt(β) = n − 2 and α �= β.
The number(T3) of of α ∈ F

n
2 (wt(α) = n − 2) in this case is T3 =

(
n

n−2

)

.
(4) When wt(x) = n − 1. Suppose x1 = · · · = xn−1 = 1 and xn = 0. Then

F (x) = (1, 1, · · · , 1
︸ ︷︷ ︸

n−1

, 0). It is easy to verify that F (x) = x for any wt(x) = n − 1.

The number(T4) of α ∈ F
n
2 (wt(α) = n − 1) in this case is T4 = n.

(5) When wt(x) = n. Then F (1, 1, · · · , 1
︸ ︷︷ ︸

) = (1, 1, · · · , 1
︸ ︷︷ ︸

). The number(T5)

In this case is T5 = n.
Combining the above five cases, we know that the number(denoted by T ) of

value with F (x) is T = T1 +T2 +T3 +T4 +T5 =
∑n−4

i=0

(
n
i

)

+
∑n−3

i=0

(
n
i

)

+
(

n
n−2

)

+
n + 1 = 2n.

Thus, F (x) is a rotation boolean permutation on F
n
2 . ��

Remark 2. In Construction 2.

(1) We call f(x1, x2, ..., xn−1, xn) = xn ⊕ xn−1xn−2 · · · x5x3x2x1 ⊕ xnxn−1 · · ·
x5x3x2 a 2-nd basic function, denoted by f1

bf .
(2) It is easy to find that this boolean permutation F (x) = (f0, f1, · · · , fn−1)

has some fixedly points, that is, F (x) = x, for example (0, 0, · · · , 0). In order
to eliminate these fixedly points, we can change F (x) = (f0, f1, · · · , fn−1)
by G(x) = (f0 ⊕ 1, f1, · · · , fn−1), or by G(x) = (f0, f1 ⊕ 1, · · · , fn−1), etc.
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Example 2. The truth table of xn ⊕ xn−1xn−2 · · · x5x3x2x1 ⊕ xnxn−1 · · ·
x5x3x2(n ≥ 5) has the following property:

(1) For n, the truth table is (0x00, · · · , 0x00
︸ ︷︷ ︸

2n−4−2

,0x02, 0x02, 0xff, · · · , 0xff
︸ ︷︷ ︸

2n−4−2

,

0xfd, 0xfd);
When n = 5, the truth table is (0x02, 0x02, 0xfd, 0xfd);
When n = 6, the truth table is (0x00, 0x00, 0x02, 0x02, 0xff, 0xff, 0xfd,

0xfd).
(2) This Boolean function satisfies f(a) ⊕ f(a ⊕ 1) = 1 for any a ∈ F

n
2 .

Theorem 3. Let f(x1, x2, ..., xn−1, xn) = xn ⊕xn−1xn−2 · · · x5x3x2x1⊕xnxn−1

· · · x5x3x2 be a Boolean function with n-variable. Then f satisfies the following
properties:

1. balanced;
2. deg(f) = n − 2;
3. AI(f) = 2;
4. Nf = 4;
5. The Walsh spectrum is four values: {0,±8, 2n − 8}.
Proof. It is easy to proof. ��

4.3 The Third Construction

Construction 3. Let

f(x1, x2, ..., xn−1, xn) = xn ⊕ xn−1xn−2 · · · x7x6x3x2 ⊕ xn−1xn−2 · · · x7x6x3x2x1

be a Boolean function with n(n ≥ 6)-variable. Then F (x) = (f0, f1, f2, · · · ,
fn−1) is a rotation boolean permutation.

Proof. According to the ANF of f(x), then f0 =
xn ⊕xn−1xn−2 · · · x7x6x3x2(x1⊕1), f1 = x1⊕xnxn−1 · · · x8x7x4x3(x2⊕1), f2 =
x2⊕x1xn · · · x9x8x5x4(x3⊕1), · · · fn−1 = xn−1⊕xn−2xn−3 · · · x6x5x2x1(xn⊕1).
There are six cases:

(1) When wt(x) < n − 4. Then xn−1xn−2 · · · x7x6x3x2 = xnxn−1 · · · x8x7

x4x3= x1xn · · · x9x8x5x4= · · · xn−2xn−3 · · · x6x5x2x1 = 0, that is, if α, β ∈ F
n
2

satisfying 0 ≤ wt(α), wt(β) < n − 3 and α �= β, then F (α) �= F (β).
The number(denoted by T1) of α ∈ F

n
2 (wt(α) < n − 4) in this case is T1 =

∑n−5
i=0

(
n
i

)

.
(2) When wt(x) = n−4. Then only one of xn−1xn−2 · · · x7x6x3x2, xnxn−1 · · ·

x8x7x4x3, x1xn · · · x9x8x5x4, · · · , xn−2xn−3 · · · x6x5x2x1 is equal to 1. For sim-
plicity, let xn−1xn−2 · · · x7x6x3x2 = 1, we have xn−1 = xn−2 = · · · = x7 = x6 =
x3 = x2 = 1 and x1 = x4 = x5 = xn = 0. Thus, if α = (0, 1, 1, 0, 0, 1, 1, · · · , 1

︸ ︷︷ ︸

n−6

, 0),

then F (α) = (1, 0, 1, 1, 0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−6

).
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By the same method of Construction 2, denoted by the set A = {(0, 1, 1, 0, 0,
1, 1, · · · , 1
︸ ︷︷ ︸

n−6

, 0), (0, 0, 1, 1, 0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−6

), (1, 0, 0, 1, 1, 0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−6

), · · · ,

(1, 1, 0, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−6

, 0, 0)}. It is easy verifies that F (α) �= F (β) if α, β ∈ A

and α �= β.
Then let B = {α ∈ F

n
2 | wt(α) = n−4, α /∈ A}. | B |= (

n
n−4

)− | A |= (
n

n−4

)−
n. Note that xn−1xn−2 · · · x7x6x3x2= xnxn−1 · · · x8x7x4x3= x1xn · · · x9x8x5x4=
· · · xn−2xn−3 · · · x6x5x2x1 = 0, if x ∈ B. This means F (α) �= F (β) if α, β ∈ B
and α �= β.

The number(denoted by T2) of α ∈ F
n
2 (wt(α) = n − 4) in this case is T2 =

(
n

n−4

)

.
(3) When wt(x) = n − 3. Suppose x1 = · · · = xn−3 = 1 and xn−2 = xn−1 =

xn = 0. Then F (x) = (0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−3

, 0, 0). It is easy to verify that wt(F (x)) =

n − 3 for any wt(x) = n − 3, and F (α) �= F (β) for wt(α) = wt(β) = n − 3 and
α �= β.

The number(T3) of of α ∈ F
n
2 (wt(α) = n − 3) in this case is T2 =

(
n

n−3

)

.
(4) When wt(x) = n − 2. Suppose x1 = · · · = xn−2 = 1 and xn−1 = xn = 0.

Then wt(F (x)) = wt((0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−1

)) = n − 1. Meanwhile, suppose x2 = x4 =

· · · = xn = 1 and x1 = x3 = 0. Then wt(F (x)) = wt((1, 0, 1, 0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−4

)) =

n − 2. It is easy to verify that there are two cases:
(1) When wt(x) = n − 2 and there are two consecutive locations in x are

equal to 0, that is, xi = xi+1 = 0(1 ≤ i ≤ n). Then wt(F (x)) = n − 1, and
F (α) �= F (β) if α, β(α �= β) are in this case. The number of x in this case is n.

(2) When wt(x) = n − 2 and there are two discontinuousness locations in x
are equal to 0, that is, xi = xj = 0(1 ≤ i < j ≤ n). Then wt(F (x)) = n − 2,
and F (α) �= F (β) if α, β(α �= β) are in this case. The number of x in this case
is

(
n
2

) − n.
The number(T4) of α ∈ F

n
2 (wt(α) = n−2) in two cases is T4 = n+

(
n
2

)−n =
(
n
2

)

.
(5) When wt(x) = n − 1. Suppose x1 = · · · = xn−1 = 1 and xn = 0. Then

F (x) = (0, 1, 1, · · · , 1
︸ ︷︷ ︸

n−2

, 0). It is easy to verify that wt(F (x)) = n − 2 for any

wt(x) = n − 1, and F (α) �= F (β) for wt(α) = wt(β) = n − 2 and α �= β. The
number(T5) in this case is T5 = n.

(6) When wt(x) = n. Then F (1, 1, · · · , 1
︸ ︷︷ ︸

n

) = (1, 1, · · · , 1
︸ ︷︷ ︸

n

).

Combining the above five cases, we know that the number(denoted by T ) of
value with F (x) is T = T1 +T2 +T3 +T4 +T5 +1 =

∑n−5
i=0

(
n
i

)

+
(

n
n−4

)

+
(

n
n−3

)

+
(
n
2

)

+ n + 1 = 2n.
Thus, F (x) is a rotation boolean permutation on F

n
2 . ��
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Remark 3. In Construction 3.
(1) We call f(x1, x2, ..., xn−1, xn)=xn ⊕ xn−1xn−2 · · · x7x6x3x2 ⊕ xn−1xn−2

· · · x7x6x3x2x1 a 3-th basic function, denoted by f2
bf .

(2) It is easy to find that this boolean permutation F (x) = (f0, f1, · · · , fn−1)
has some fixedly points, that is, F (x) = x, for example (0, 0, · · · , 0). In order
to eliminate these fixedly points, we can change F (x) = (f0, f1, · · · , fn−1) by
G(x) = (f0 ⊕ 1, f1, · · · , fn−1), or by G(x) = (f0, f1 ⊕ 1, · · · , fn−1), etc.

Example 3. The truth table of f(x1, x2, ..., xn−1, xn) = xn ⊕ xn−1xn−2 · · ·
x7x6x3x2 ⊕ xn−1xn−2 · · · x7x6x3x2x1(n ≥ 6) has the following preposition:

(1) For n, the truth table is (0x00, · · · , 0x00
︸ ︷︷ ︸

2n−4−4

, 0x02, · · · , 0x02
︸ ︷︷ ︸

4

, 0xff, · · · , 0xff
︸ ︷︷ ︸

2n−4−4

,

0xfd, · · · , 0xfd
︸ ︷︷ ︸

4

);

When n = 6, the truth table is (0x02, 0x02, 0x02, 0x02, 0xfd, 0xfd, 0xfd,
0xfd); When n = 7, the truth table is (0x00, 0x00, 0x00, 0x00, 0x02, 0x02,
0x02, 0x02, 0xff , 0xff, 0xff, 0xff, 0xfd, 0xfd, 0xfd, 0xfd).

(2) This Boolean function satisfies f(a) ⊕ f(a ⊕ 1) = 1 for any a ∈ F
n
2 .

Theorem 4. Let f(x1, x2, ..., xn−1, xn) = xn ⊕ xn−1xn−2 · · · x7x6x3x2 ⊕ xn−1

· · · x7x6x3x2x1 be a Boolean function with n-variable. Then f satisfies the fol-
lowing properties:

1. balanced;
2. deg(f) = n − 3;
3. AI(f) = 2;
4. Nf = 8;
5. The Walsh spectrum is four values: {0,±16, 2n − 16}.
Proof. It is easy to proof. ��
In hardware implementation, we find some good properties:

(1) The three classes of rotation boolean permutations are fully determined
by the basic Boolean function, respectively. This means, we need only store one
Boolean function in a permutation with n-input, but not n Boolean functions.

(2) The truth of the three classes of rotation boolean permutations are 4-value
{0x00, 0x02, 0xff , 0xfd}, it consumes very little storage space.

(3) The ANF of the three classes of rotation boolean permutations has 3
monomial forms, it consumes a small number of gates.

From here we see that the three classes of rotation boolean permutations can
be used in encryption algorithm with Wireless sensor network and Internet of
Things.
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5 Conclusions

In this paper, we gave some light weight of the rotation boolean permutation
are perfectly characterized by the matrix of linear expressions. Three methods of
rotation nonlinear boolean permutations are constructed. The sub-functions of
the three permutations have three monomials, high degree, 2-algebra immunity.
All three classes of rotation nonlinear boolean permutations are fully determi-
nation by the first component Boolean function, respectively.
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