
Chapter 10
Using a Programming Exercise Support
System as a Smart Educational
Technology

Toshiyasu Kato, Yasushi Kambayashi and Yasushi Kodama

Abstract During the completion of programming exercises at higher educational
institutions, students typically must complete the assigned exercise problems
individually. While there are certain students who can easily solve the problems
independently, many students require too much time to do so. For this reason, most
institutions use teaching assistants, or TAs, to help teach programming classes. In
this chapter, we propose support functions to assess the learning conditions of a
programming practicum. The aim of these functions is to reduce the burden on
instructors by supporting the assessment of learning conditions in order to improve
the quality of instruction. In the current study, we have designed support functions
to assess learning conditions for a support system. We also conducted experiments
in actual classes to assess the results. We propose three functions for a program-
ming exercise support system. The first function is to support teachers with the
analysis of students with common problems. The second function is to support
teachers with the analysis of students who are having difficulties. The third function
is to provide TAs with the features of students’ programming behaviors. We have
developed smart educational environments through these three functions of our
programming exercise support system. The system has successfully supported
instructors and TAs in their provision of smart pedagogy for students.

Keywords Programming exercises � Learning conditions � Instructor assistance �
Face-to-face class � Smart education � Learning analytics

T. Kato (&) � Y. Kambayashi
Nippon Institute of Technology, Saitama, Japan
e-mail: katoto@nit.ac.jp

Y. Kambayashi
e-mail: yasushi@nit.ac.jp

Y. Kodama
Hosei University, Tokyo, Japan
e-mail: yass@hosei.ac.jp

© Springer International Publishing AG 2018
V.L. Uskov et al. (eds.), Smart Universities, Smart Innovation,
Systems and Technologies 70, DOI 10.1007/978-3-319-59454-5_10

295

10.1 Introduction

Higher education institutions use various learning management systems for
laboratory-style lessons [1, 2]. In addition, researchers have conducted studies to
analyze the learning histories stored in such learning management systems [3, 4].
When doing programming exercises, students independently complete the assigned
problems. While there are certain students who can easily solve the problems
independently, there are many students who require much time to solve the same
problems [5]. In order for an instructor to effectively support students’ problem
solving, the instructor is expected to not only answer the questions from the stu-
dents, but also understand which particular students really need help [6]. The
instructor needs to understand which students need assistance, what kind of
assistance is needed, and in what situations it will be most effective [7].

As for the current state of programming exercises for entry-level classes, the
number of instructors and the number of TAs are limited [8]. The instructor can
recognize the learning situations of students from observing their computer screens;
however, accurately assessing the work progress of the class as a whole as well as
each student’s individual learning needs are two completely different tasks.
Assessing student’s individual learning needs is difficult to achieve. Instructors can
encourage students to raise their hands to indicate their need for help or check
student submissions of the assigned problems. This method is inefficient, though,
because it takes a lot of time when the number of students in the class is large.

This chapter presents the learning situation awareness functions of the
Web-based learning management system for the implemented programming exer-
cises. This function enables instructors to assess the learning situation of each
student. This cannot be understood by simply viewing a student’s computer screen.
The proposed functions present the information necessary for the instructors to
guide each student individually. The instructors and TAs can assess the learning
needs of each student and give appropriate guidance according to the information
that the function provides.

In order to implement the given function, we performed a requirements analysis
of the programming exercise designated for learning situation awareness. Next, we
executed the design and implementation of the function on the basis of previous
investigations. The assessment of student learning situations is generally performed
in a face-to-face manner. Therefore, the present study extracted the functions from
the requirements analysis that assesses the student learning situations during a
regular, face-to-face class. In addition, the authors clarified that the problem of the
present study is the techniques used in previous studies. The present study requires
the use of a learning management system that can collect student learning history
data in real time.

296 T. Kato et al.

10.2 Literature Review

Kurasawa [9] developed a support system for assessing learning conditions that
provides instructors with information regarding students with common problems. It
collects the compiler history and, from the analysis of trends in past compiler errors,
it estimates and aggregates the locations and causes of errors. By supplying the
instructor with error messages, the number of errors, their causes, and error syntax,
the instructor can receive information on students’ common problems. This, though,
requires analyzing and preparing error cause candidates beforehand and, as the
instructor must analyze error causes, it adds to the workload of the instructor.
Moreover, it is limited to whole-class instruction and does not provide information
regarding individual students. Individual learning is fundamental in programming
practicums and information necessary to individual instruction, such as student logs
and repeated mistakes, is indispensable. In the present study’s proposed method,
error analysis takes place automatically. There is no need for the professor to do any
work. Furthermore, it assesses and displays assessments of common student
problems as well as individual solution histories to allow for both class and indi-
vidual instruction.

Higher education institutions could harness the predictive power of CMS data to
develop reporting tools that identify at-risk students and allow for more timely
pedagogical interventions, as well as which student online activities accurately
predict academic achievement [1].

Colthorpe [10] investigated the relation between the presence of self-reflection
based on material access and the report date of Learning Management System
(LMS) submission. Students that reported reviewing lectures as a learning strategy
were more likely to access the online lecture recordings, but higher access was
actually associated with poorer academic performance. Cluster analysis of all
available data showed high academic performance was positively associated with
early submission of intra-semester assessment tasks but negatively associated with
both the use of, and the reported of use of, lecture recordings by students.
Therefore, using an online test enables more realistic feedback.

Research on the assessment of programming behaviors includes debugging
training, programming tutorials, and error analysis. Ryan [11] studied how to
improve student debugging skills. He constructed a model from debugging and
development logs. He also found that students could improve their debugging skills
using the model. The present study also analyzes debugging logs and other pro-
gramming records.

Alex [12] proposed employing tutors to support students in developing programs
step by step. The tutors examined students’ processing and monitored whether they
were on the right track. Students received advice when their programs were
incorrect. For example, the tutor provided hints to students on how to refactor their
programs. The present study builds upon this work by using TAs to provide stu-
dents with problem-solving techniques to solve their own problems.

10 Using a Programming Exercise Support System … 297

Serral presented a synthesis and update of a long-term project that addressed this
challenge in the context of conceptual modeling by developing SAiLE@CoMo, a
smart and adaptive learning environment [13]. By crafting innovative process
analytics techniques and expert knowledge on feedback automation,
SAiLE@CoMo automatically provides personalized and immediate feedback to
learners. This research will deal with the problem of feedback deficits reported by
students and will significantly alleviate teacher effort. This leaves the instructor
more time for in-depth discussions with students.

Truong’s paper described a “fill in the gap” programming analysis framework
that tests students’ solutions and gives feedback on their answers, and detects logic
errors and provides hints as to how to fix them [14]. The framework makes use of
client-server communication architecture. This is where the execution of students’
programs takes place on their own machines while the evaluation is carried out on
the server. With this framework, teachers can immediately confirm changes to
program sources.

In light of the abovementioned research, we are able to assess student work
progress from the start of the exercise to the submission of their work. The purpose
of this is to find students with ongoing errors at an early stage. In addition, we will
be able to grasp the compilation errors occurring throughout the entire class without
requiring faculty error analysis. The reason for this is that the teacher must analyze
all of the errors if a single student generates multiple errors at once. Furthermore,
we are able to notice the students who are behind in their work in relation to the
whole class. This can help find and instruct students who are not progressing even if
no error has occurred.

Smart education is rapidly gaining popularity among the world’s best univer-
sities because modern, sophisticated smart technologies, smart systems, and smart
devices create unique and unprecedented opportunities for academic and training
organizations to improve their educational standards [15].

The smartness level here is the discovery of students experiencing difficulties
with a focus on assessing individual learning situations in detail.

10.3 Research Design and Research Objectives

A teacher can more accurately assess student progress on learning tasks and provide
feedback when using smart educational technology. This creates a smart learning
environment [16] for students.

10.3.1 The Problems of Programming Exercise Support

In programming exercises, each student must individually tackle the assigned
problems. The progress of each student is very different and depends on their skill

298 T. Kato et al.

levels [5]. An inefficient programming mode is generally the main reason a par-
ticular student cannot progress. This student occasionally comes to a standstill and
does not know what to do next. Such students can often become unmotivated [7]. In
programming exercises, it is important to identify these students during the early
stages of the exercise.

In the programming exercise, the instructor and TAs go around to students’
consoles. Even in this situation, it is not easy for the instructor and TAs to deter-
mine which students need extra assistance [17]. The instructor and TAs check
students’ progress through submitted programs and the students’ screens; however,
the number of TAs is limited. They are always too busy to check simple errors. We
have to rely on the instructor’s teaching experience and intuition to solve the
problems of individual students [7]. The instructor and TAs answer students’
questions as needed. The instructor teaches the class based on the information they
have collected from individual student cases. The instructor must advise students
when it comes to challenge topics and how to understand the learning method [17].

The objective of the learning management system for programming exercises is
to reduce the workloads of the instructor and TAs [18, 19]. The function of the
system is composed of the functions of the instructor and students. Figure 10.1
shows the basic functions of the programming exercise support system.

• Functions of the instructor:

– Exercise making: the question contents and the date of setting questions are
input and registered.

– Exercise demonstration: the specified exercise at the date of setting questions
is presented.

• Functions of the students

– Exercise receipt: the exercise is selected and the development of the answer
begins.

– Program edit: the answer program to the exercise is edited.

Fig. 10.1 Functions of the programming exercise support system

10 Using a Programming Exercise Support System … 299

– Temporary preservation: the answer program is temporarily preserved.
– Compilation: the answer program is compiled and it presents the results.
– Execution: the answer program is executed and presents the results.
– Answer submission: the answer program is submitted and the exercise is

complete.

10.3.2 Request Analysis for Smart Classroom Realization

In order to utilize a smart classroom for programming exercises, the following three
principles of instruction should be followed [20, 21]:

(1) Assess each individual student’s progress toward the learning target. The
objective is to consider subsequent lesson plans for each student based on his or
her current problems.

(2) Assess each individual student’s understanding of the learning content. The
objective is for the instructor to recognize the exact area where the student is
having difficulty so that he or she can arrange the guidance contents.

(3) Assess each individual student’s difficulties. The objective is for the instructor
to recognize where each student is having problems so that appropriate
instruction can be provided.

As for the proposal of the present study, we set three functions listed below on
the basis of the principles of pedagogy.

Work progress sum function. The work progress sum function presents the
achievement situation of the learning target as work progresses in the exercise. The
learning target of the programming exercise is to solve the exercise. The achieve-
ment situation refers to the advancement towards execution and compilation of the
exercise. The work of the programming exercises is as follows:

1. The answer begins
2. Input and compilation of the program
3. Confirmation of compile errors
4. Execution
5. Confirmation of execution results
6. Submission of exercise

The reason for this function is to understand the work progress of students on
exercises in class. Moreover, the function should be suitable for the intention of the
exercise. This function checks the answers and detects mistakes in the execution
results.

Error classification sum function. The error classification sum function
assesses student understanding of the learning contents as an error status of the
class. The reason for this is that the error of understanding of the shortage and the

300 T. Kato et al.

programming is the same. The goal of this function is to identify any common
errors occurring in the class.

Work delay detecting function. The work delay detecting function shows
delays in the completion of students’ work. The purpose of this function is to
inform instructors of which students are slow or late in completing the exercise.

10.4 The Function of Assessing the Learning Situation
of the Class

This function is a work progress sum function and an error classification sum
function. We first designed the function, then defined the algorithm, and then
completed the mounting.

Work Progress Sum Function
Function design
The objective of the work progress sum function is to present the number of

students that have completed the exercise at any time. The previous work is
specified for one work [12]. Therefore, the technique was not applicable to the
entire exercise. The present study was designed to assess student progress at each
step of the exercise. The proposal function presents the sum result at each work
completion time. The instructor modifies the instructions based on the display
contents. Therefore, the contents include work completion time, matriculation
number, name, and seat number. This information is input at the login of the
learning management system.

Work completion with correct answers is defined by the presence of the correct
answer according to the correct answer judgment. The correct answer judges the
student’s execution result, the instructor’s execution result, and the keyword. This
is done according to the timing of the students’ execution of the program. The
function then presents the presence of the correct answer or the incorrect answer
and the keyword. The work progress sum function calculates the number of
incorrect answers and the number of correct answers. The instructor only prepares
the example answer program and the keyword. As shown in the following example
of correct answer judgment, the correct answer is “for” in the answer program and
55 of the execution result. “The total from 1 to 10 is output by the use of the ‘for’
sentence.” This correct answer judgment can be applied to the exercises that obtain
the output result and ask for the grammar.

Algorithm

1. The function initiates the processing by the instructor’s access.
2. Each work completion time of the class set is input.
3. The number at each work completion time is totaled.
4. The total number of each work is output.

10 Using a Programming Exercise Support System … 301

User Interface
Learning situation screen (displayed in Fig. 10.2): This shows data for each

student’s work at the beginning, compilation, execution, correct answer, and answer
submission stages of the exercise. When the number of presented items is clicked, it
shifts to the learning situation screen according to the classification.

Learning situation screen according to classification (displayed in Fig. 10.3):
This shows students’ matriculation numbers, names, seat numbers, and work
completion times that come under each item of the learning situation screen.

Error Classification Sum Function.
Function design
The objective of the error-classification sum function is to present the result of

the error classification from the student’s program and the error message of the
compilation. The previous work will prepare the error factor and the error pattern
[9, 11]. Therefore, the present study was designed to identify student compilation
errors without requiring these analyses. The proposal function presents the sum
result of the error classification. The error classification presumes the place of a
common compile error. The number at the head of the error corresponds to the line
number of the example answer program (hereafter, correspondence line number).
Because the first error leads to other error factors, the error of the head is targeted.
The object language of the error classification uses the same Java language as the
lesson of the assessment experiment. The analysis object of the error classification
is a compile error of the student who does not arrive at execution. This is because it
acquires the error that occurs when performing the function. The reason to assume
the analysis object to be a compile error is that there is a necessity for the guidance
of the instructor in the programming exercise [7].

Fig. 10.2 Work progress displayed on the learning situation screen

302 T. Kato et al.

The error classification method uses the difference of the text by diff [22] in
UNIX. The line can correspond. “Diff-b answer program example answer program”
of the command in the diff is space and a tab by one and counted optional-b. This
method can be classified as an error to which the error of a different line is common
in two or more programs. Moreover, the correspondence line number is “Line of
error line c example answer program of the answer program” in the result of diff.
Therefore, the proposal function can identify the error in the line number and types
of classes regardless of the way the answer program is written. This error classi-
fication can be done according to the line number and the error type in the error
message. Therefore, this can also be applied to C language, C ++ language, etc.

Algorithm

1. When the instructor accesses the function, it initiates the processing.
2. Input of answer program, error message, and example answer program.
3. The first error line number and the error kind are extracted from the error

message.
4. The correspondence line number of the example answer program corresponding

to the error line is extracted.
5. If the correspondence line number does not exist, the correspondence line

number is assumed to be unclear.
6. The correspondence line number and the error type of pair are output.

An example of executing the error classification follows. Figures 10.4, 10.5,
and 10.6 show examples of the answer program, the error message, and the
example answer program, respectively.

1. The instructor accesses the error classification sum function.
2. Input of answer program, error message, and example answer program.
3. The “11” of the error line number and error kind of “‘;’ expected” are extracted

from the error message.
4. Correspondence line number “7” is extracted from the answer program and the

example answer program.

Fig. 10.3 Learning situation screen according to classification

10 Using a Programming Exercise Support System … 303

5. Because the correspondence line number exists, nothing is done.
6. Correspondence line number and error kind of “7 ‘;’ expected” are output.

The line numbers of Figs. 10.4 and 10.6 provide additional explanation. This
technique does not target an irrelevant character string in the error line. Therefore,
this can display the tendency for compile errors.

User Interface
The learning situation screen (shown in Fig. 10.7): The correspondence line

number and the kind of error pair are displayed in the order of the sum number.
When the number of presented items is clicked, it shifts to the learning situation
screen according to the classification. Refer to Fig. 10.3.

Fig. 10.4 Answer program

Fig. 10.5 Error message

Fig. 10.6 Example answer
program

304 T. Kato et al.

10.5 Function to Assess Slow or Late Students

The method of achieving the function designs the function of the work delay
detecting function. Afterward, the algorithm is defined and mounted.

Work Delay Detecting Function
Function design
The objective of the work delay detecting function is to detect the students who

are behind. The pattern of the work delay is prepared during previous work [8].
Therefore, the present study detects the student who submitted their work late
without requiring the pattern of the work delay. The proposal function detects
students who have not finished working when the time expires. The function per-
formed statistically labels these as outliers for the distribution of the class at the
work completion time. The reason at a time now is that there is no work time data
for the students who have not worked yet. Therefore, the student for whom work is
late is shown at the time of the outlier. The detection by the outlier function also
used the threshold method. This method is problematic, though, as the delay of
continuous work is detected without fail according to the work time. The instructor
should instruct only the students who are working slowly [23].

Analysis methods of the outlier use the Smirnov-Grubbs test to consider the
delay of work to be an outlier by the elapsed time of work [24]. The
Smirnov-Grubbs test is a technique for giving official approval of the maximum or
minimum value. Figure 10.8 shows an actual class distribution of the answer
beginning, compilation, execution, and submission during the laboratory class. The
present study assumed a normal distribution of added time at the completion time of
work, as shown in Fig. 10.8. The outlier at a time now can define delayed students
who have not yet begun working. This detection can present students who are
behind in their work progress because it changes the amount of detection due to an
increase in the problem presenter.

Fig. 10.7 Error classification sum on learning situation screen

10 Using a Programming Exercise Support System … 305

Algorithm

1. When the instructor accesses the function, it initiates the processing.
2. Input of work time set and significance level and time now.
3. The time now is added to the work time set and the outlier is analyzed.
4. The coming off standard value is calculated from the number of the Smirnov

dismissal authorization table and work time set.
5. The test statistic of each work time is calculated.
6. The maximum value of the test statistic is extracted.
7. The maximum value of the test statistic comes off and, if it is larger than the

standard value, the work time is assumed to be an outlier.
8. This algorithm is ended if the outlier is not time now.
9. Information on students that the work time does not exist in the work time set is

output.

An example of executing the work delay detection is as follows. The submission
time set is shown in Table 10.1 as an example of input data.

1. The instructor accesses the work delay detecting function.
2. It is assumed “17:38:25” of time now and the work time set. The submission

time set and the significance level “5%” are input.
3. The time now is added to the work time set.

Fig. 10.8 Distribution of
work time

Table 10.1 Submission time
set

Students Submission time

A 17:09:00

B 17:12:00

C 17:12:40

D 17:15:10

E 17:16:13

F 17:21:40

G 17:25:10

H –

I –

J –

306 T. Kato et al.

4. The coming off standard value is from a Smirnov dismissal authorization table
to “2.032” when the number of work time sets is 8.

5. The test statistic of each work time is requested. Table 10.2 shows the test
statistic of the work time set.

6. The maximum value of the test statistic is “2.064” at the time now.
7. The maximum value of the test statistic comes off and the time now is assumed

to be an outlier because it is larger than the standard value.
8. The outlier is next at time now.
9. The matriculation number and the name of student “H, I, J,” who does not have

the work time, are output.

Tables 10.1 and 10.2 arrange the time in ascending order for explanation.
Students who have not submitted their work receive a “-”. Moreover, expression
(10.1) shows the test statistic using the Smirnov-Grubbs test. t of the coming off the
standard value of Smirnov-Grubbs test is the number n of specimens, significance
level a, and a/n � 100 of t distribution of the degree of freedom n-2.

s ¼ n� 1ð Þt
ffi

n n� 2ð Þþ nt2ð Þp ð10:1Þ

User interface
Learning situation screen (shown in Fig. 10.9): This shows the students who

are late completing their work, their working names, and how many there are.
When the number of people is clicked, it shifts to the learning situation screen
according to the classification. Refer to Fig. 10.3.

10.6 Evaluation of the Smart Classroom by Instructors

10.6.1 Objective

The objective of the experiment was to evaluate the utility and effectiveness, in an
actual lesson, of the achieved learning situation assessment function (hereafter, the

Table 10.2 Test statistic of
work time set

Students Test statistics

A 1.029

B 0.714

C 0.643

D 0.381

E 0.270

F 0.303

G 0.671

Time now 2.064

10 Using a Programming Exercise Support System … 307

achievement function). The method of evaluating the utility measures was to use the
achievement function in an actual lesson. The method of evaluating the effective-
ness measures the presence of guidance by the achievement function. Moreover, we
questioned the lesson instructor.

10.6.2 Method

Outline of the lesson. The course used was “Basic Programming and Exercises”
based on the console application in Java. Table 10.3 shows the outline of the
experiment subjects. This subject has two classes, each of one instructor, and TA of
two people and four people. The classes have 38 people and 73 people respectively.

Experiment system. Figure 10.10 shows the composition of the experiment
system. This experiment system is a client-server method of the Web-base that can,

Fig. 10.9 Display of students whose work is late on the learning situation screen

Table 10.3 Outline of subjects in the experiment

Learning contents Number of
exercises

Performance target

Arithmetic operator
and expression

3 Do the learning of something as the expression

Condition branching 4 Do the learning of the method of switching processing
on the condition

Boolean 4 Do the learning of expressible of the combination of
two or more conditions by the use of Boolean

Repetition 4 When the loop construct is used, do the learning of can
the description of the repetition instruction of the same
processing

308 T. Kato et al.

in real time, collect students’ learning history data in the programming exercises.
The student screen of the client requests preservation, compilation, execution,
temporary submission, etc. from the server for the input answer program.
Figure 10.11 shows the student screen. The instructor screen shows the exercise
and the example answer program. These are transmitted to the server and the result
is received. The server does the compilation and execution of the received program
and returns the result to the client afterward. The programming languages used in
the experiment were PHP, HTML, Ajax, JavaScript, and MySQL.

Experimental conditions. Two experiments were conducted. In the first, the
achievement function was used twice. In the second, the achievement function was
not used twice. This looks at the user’s experience through the achievement
function and presence of the effect. The environment of the experiment is composed

Fig. 10.10 Composition of the experiment system

Fig. 10.11 Student screen

10 Using a Programming Exercise Support System … 309

of the learning management system that can be accessed from all PCs on the
network.

The significance level in the work delay detecting function was fixed at 25%.
This setting was an average value used to detect outliers. Not using the work delay
detecting function to evaluate the examination.

Measurement method. Measurement items for usefulness shall be the guidance
frequency that is the cause of guidance on the presentation screen of realized
functions in order to measure whether or not the realization function is used for
instructors. Moreover, the items that measured effectiveness were the guidance
frequency for each realized function based on the guidance content provided. The
method of measuring these included a voice recording of the instructor, taking a
picture of the lesson scenery, and taking a picture of the operation record on the
instructor screen. Figure 10.12 shows the measurement environment. The learning
situation screen, instructors and TAs walking around, and students raising their
hands all lead to the assessment that a student requires assistance. The result of
guidance was a pair of the entire guidance or an individual counseling and specific
guidance content. We recorded the guidance that the instructor directed the TA to
provide, but we did not record the guidance given by the TA to the student.
Guidance from the TA is described in Chap. 7 of the following description.
Moreover, we did not record the contents of student questions following the
instructions. Finally, we interviewed the instructors at the end of the experiment.

10.6.3 Results

There were 30 instances of guidance based on the screen of the achievement
function. Table 10.4 shows the guidance contents shown on the screen of the

Fig. 10.12 Measurement environment of two classes

310 T. Kato et al.

achievement function. Guidance was given five times regarding the work progress
of the class based on the work progress sum function (a1 in Table 10.4). Guidance
was given 4 times to correct common errors of the class using the error classifi-
cation sum function (a2 in Table 10.4). Guidance was given 2 times to slow stu-
dents using the work delay detecting function (a3 in Table 10.4).

The numerical value in () in Table 10.4 is the frequency of common guidance
contents. Moreover, guidance was given 64 times by the instructors and TAs
walking around and from the students raising their hands. The achievement func-
tion was not used in these cases. The use case was 33 times. Table 10.5 shows the
guidance frequency by the instructors and TAs walking around and students raising
their hands.

The results of the interview with the instructor are seen below. The first question
was “Please tell us a good point and a bad point about the proposal function.” Their
answers to this question were as follows:

Answer of Instructor A:
Good points:

• Everything from the beginning of the exercises to submission is automated as a
system. Therefore, the instructional workload is decreased during the exercise
and the confirmation of the problem submission.

• The error status when compiling can be understood. Therefore, I can understand
the students’ standstill situations in detail. This can be used as prior information
before guidance is provided.

Table 10.4 Outline of the experiment

Result Classification Class Individual

The main
guidance
contents

The demand of the support is
pressed from the entire work
progress to late studentsa 1 (5)
Use the Booleana 2 (2)
Confirm the method of
connecting character stringsa 2
(2)

Student with a long
interval time of the
compilation is urgeda 3
(2)

Guidance
frequency

10 20

Total 30

where: a 1, 2, and 3 show guidance given unconventionally
() the frequency of common guidance contents is shown

Table 10.5 Guidance
frequency by instructor
rounds and students raising
hands

Achievement function None Used

Case Rounds 42 23

Raising hands 22 10

Total 64 33

10 Using a Programming Exercise Support System … 311

Bad points:

• Nothing in particular.

Answers of Instructor B:
Good points:

• It is possible to provide comments about compile errors to many students at
once.

• The learning situation can be assessed remotely from the rostrum. Therefore, I
can issue instructions to the TA based on the contents.

• Moreover, I can understand the causes for which student work is late based on
the information of the function.

Request:

• Please let me know (send me the alert message) about those students who need
guidance.

The second question was as follows: “Please tell us about the effect of the
display contents of the learning situation assessment function on guidance.” The
instructors’ answers were as follows:

Answers of instructor A:

• Information on student work progress can provide understanding of the learning
situation and needs of the class.

• Information on error classification sum can be provided for the entire class or
individual students for guidance.

Answer of instructor B:

• Information on students for whom work is late can identify students who are
slower than others and need guidance.

10.6.4 Consideration of the Results

Guidance based on the proposal function was given 30 out of 63 times.
Additionally, the instructor interviews provided useful feedback regarding the
contents of the achievement function. The achievement function presents useful
information regarding the areas in which students require guidance. This is effective
for the assessment of student learning situations during programming exercises.

The guidance given when only the achievement function was used is detailed in
a1, a2, and a3 in Table 10.4. Additionally, the interview results provided answers
that confirmed that the contents led to guidance. Moreover, the ratio of guidance
from the instructor was high in the lessons that used the achievement function.
Table 10.6 shows the ratio of guidance from the instructor. The numerical value of

312 T. Kato et al.

() in Table 10.6 is the frequency of guidance for each cause of guidance. The ratio
of active guidance increased because the instructor was able to understand the
learning situation from the screen display of the achievement function. The ratio of
guidance given at the students’ request decreased because the instructor was able to
identify the question from the display screen before the question came from the
students. The ratio of this guidance is intentionally high at a significance level of
1% by the chi-square test. The instructor was able to assess and instruct a difficult
learning situation. Moreover, the instructor can give guidance before help is asked
for by the student. Therefore, the achievement function is effective for guidance
during programming exercises.

According to the results of the interview, the instructor should return to the
rostrum during the achievement function. Instructors can not check their own
computer while teaching at student’s desk. Instructors can direct and instruct more
students without returning to the rostrum if they use the accomplishment function.
A method to overcome this problem is the use of the tablet terminal. Figure 10.13
shows instruction using a tablet terminal in the lesson in the following year of the
assessment experiment.

Students can request instructor guidance remotely through the use of tablets.
Therefore, tablet use is more effective than the instructor making rounds when time
efficiency must be taken into consideration.

Table 10.6 Ratio of active guidance by the instructor

Achievement function None Used

Case Observing screen
and making rounds

The instructor’s active guidance 65.6% (42) 84.1% (53)

Raising hand The student requests guidance 34.4% (22) 15.9% (10)

Total 64 33

where the guidance frequency to the cause of guidance is shown in ()

Fig. 10.13 Assessment of
learning situation using a
tablet terminal

10 Using a Programming Exercise Support System … 313

When the achievement function is developed with other languages and courses,
it raises the issue of what should be how much time can be given to each learning
task. Moreover, the error classification sum function can correspond in the case of
the console application. There is a problem, though, in the method of acquiring the
error for the GUI application.

10.7 Function to Understand Programming Behavior
for TAs

10.7.1 Analysis for TA

Data mining, as a smart educational technology, can support the TA and help in the
realization of a smart learning environment.

During programming exercises, the main role of TAs is to assist students in
correcting their errors. The programming behavior of a particular student, which
includes his or her programming style, is different from other students’ behaviors.
For this reason, it is hard for TAs to provide appropriate guidance other than error
handling for each student [25]. The lecturers understand students’ learning contexts
due to their prior teaching experiences. TAs have greater difficulty understanding
students’ learning contexts because they do not have enough teaching experience to
do so. Therefore, the present study proposes a function to help TAs understand
student programming behavior and common student difficulties. The factors of
problem solving in programming include how much a particular student follows the
programming codes, understands the grammar of the programming language, and
uses the compiler. This section reports on the results of our data mining, which
focused on the programming mode. The programming mode is the basic attitude
that represents how much a particular student follows the programming codes that
they are encouraged to follow at our institute. Furthermore, by focusing on the
programming mode, we can collect students’ behavioral data in real-time. This is
done through the programming exercise support system that we have developed
[19].

The present study classifies the features of the students’ programming behaviors
in order to infer the characteristics of each student. Through the classification, we
have examined the relationship between the results of the questionnaire toward the
programming mode and the programming behaviors. The behaviors include the
number of compilations, the number of trial executions, the number of errors, the
number of repetitions of the same errors, the average interval of the compilations,
and the average intervals of the executions. The programming codes are shown in
Table 10.7. We found that each student had a particular programming trait. We also
found that we can measure that trait by observing how much a particular student
follows the programming codes.

314 T. Kato et al.

10.7.2 Classification of Programming Behaviors

In this section, we classify the features of programming behaviors. In order to do so,
we have performed a cluster analysis of the records of the programming behaviors.
Clustering is a process of grouping objects into classes of similar objects [26]. It is
an unsupervised classification or partitioning of patterns (observations, data items,
or feature vectors) into groups or subsets/clusters based on their locality and con-
nectivity within an n-dimensional space. In the present study, we have performed a
cluster analysis over the submitted programs that solve the assignments. The total
number of the subjects was 80 and we employed seven feature variables.
Figures 10.14 and 10.15 show the results of the cluster analysis.

We employed Ward’s method of hierarchical clustering in the cluster analysis
[27]. We also employed k-means for the non-hierarchical clustering. Ward’s
method is a criterion applied in hierarchical cluster analysis [28]. K-means is an
algorithm that clusters objects based on attributes in k partitions [29]. The result of
the k-means analysis depends on the initial values. Therefore, we have chosen
initial values as the best values produced by Pseudo-F, where the number of clusters
is 4, in our preliminary experiments. Pseudo-F is an evaluation criterion in cluster

Table 10.7 The programming codes

Code
#

Programming code details

1 When the grammar is ambiguous, examine it in the texts or manuals

2 Add one line of sentence and compile

3 When compile errors appear, deal with the first error

4 Construct programs from the skeleton

5 When the execution result is not correct, trace the execution process

6 Insert spaces after keywords so that they are highlighted

7 Write output sentences first so the behaviors of the program can be observed

8 Make and try several solutions to solve the errors

9 Insert spaces after commas, so that they are easily seen

10 When inserting an opening parenthesis, insert the corresponding closing parenthesis
immediately

11 Write meaningful comments so that the semantics of the program can be understood

12 Choose meaningful variable names

13 When the usage of the instruction is ambiguous, refer to the samples

14 Insert space lines so that blocks in the program are clearly seen

15 Indent the codes so that the structure of the program can be clearly seen

16 Insert spaces before and after operators so that they are highlighted

17 When modifying the program, leave the old source codes as comments

18 When the program behaves strangely, print out intermediate variables

19 Write many more programs until you can write them comfortably

20 Use the patterns of program codes

10 Using a Programming Exercise Support System … 315

analysis [30]. A good Pseudo-F value means the resultant clusters have little
overlapping. In addition, the density of each cluster is high.

The present study examined the relationship between the students’ programming
behaviors and their programming modes. Tables 10.8 and 10.9 show the results.
The numerical values in Tables 10.8 and 10.9 are mean values of the number of

1 2 3 4

Individual Students

Fig. 10.14 Cluster analysis using Ward’s method

3

4
2

1

Fig. 10.15 Cluster analysis using k-means

316 T. Kato et al.

T
ab

le
10

.8
B
re
ak
do

w
n
of

do
tte
d
lin

e
up

pe
r
flo

or
la
ye
r
in

Fi
g.

10
.1

C
lu
st
er

So
lv
in
gt
im

e
C
om

pi
la
tio

n
in
te
rv
al

E
xe
cu
tio

n
in
te
rv
al

C
om

pi
la
tio

n
fr
eq
ue
nc
y

E
xe
cu
tio

n
fr
eq
ue
nc
y

N
um

be
r

of
er
ro
rs

N
um

be
r
of

sa
m
e
er
ro
rs
a

C
od

es
of

pr
og

ra
m
m
in
g

N
um

be
r
of

st
ud

en
ts

1
52

8
20

9
26

7
7

5
1

1
10

25

2
81

2
37

9
60

6
6

3
3

3
6

28

3
14

05
59

0
11

60
7

3
4

3
5

17

4
15

06
22

8
33

7
18

13
5

4
4

10

10 Using a Programming Exercise Support System … 317

T
ab

le
10

.9
C
lu
st
er

br
ea
kd

ow
n
of

Fi
g.

10
.2

C
lu
st
er

So
lv
in
g

tim
e

C
om

pi
la
tio

n
in
te
rv
al

E
xe
cu
tio

n
in
te
rv
al

C
om

pi
la
tio

n
fr
eq
ue
nc
y

E
xe
cu
tio

n
fr
eq
ue
nc
y

N
um

be
r

of
er
ro
rs

N
um

be
r
of

sa
m
e
er
ro
rs
a

C
od

es
of

pr
og

ra
m
m
in
g

N
um

be
r
of

st
ud

en
ts

1
51

4
23

9
28

9
6

5
1

1
9

27

2
88

4
36

4
58

9
7

4
3

3
8

30

3
13

98
59

9
12

16
7

3
4

3
7

15

4
16

94
22

5
37

8
20

14
6

5
5

8

w
he
re

a
th
e
sa
m
e
pe
rs
on

m
ak
in
g
th
e
sa
m
e
er
ro
r
m
ul
tip

le
tim

es

318 T. Kato et al.

individuals in each cluster. The numerical values of the programming modes are the
answers of four-stage evaluation (+1 done and −1 not done). Moreover, we have
performed the correlation analysis with the duration time for problem-solving and
programming mode. We have observed positive correlations (0.24) in 18 of the
programming codes.

The dotted line of Fig. 10.14 indicates the middle of the dendrogram, that is,
2500. We can observe that Tables 10.8 and 10.9 are similar. We can conclude that
there were four clusters, as follows:

• Cluster 1: Duration time of problem-solving is short. The score of the pro-
gramming mode is high. The intervals of the compilation and the intervals of
execution are short. The compilation frequency is few. The students understand
the contents of the errors and what they are doing in the program.

• Cluster 2: Duration time of problem-solving is shorter than cluster 3. The score
of the programming mode is low. A lot of errors exist and many are similar
errors. The intervals of the compilation and the intervals of execution are shorter
than those of the cluster 3. The students are doing the programming without
understanding the contents of the errors.

• Cluster 3: Duration time of problem-solving is long. The score of the pro-
gramming mode is low. The students are repeating the same error. The students
are compiling without understanding the contents of the errors.

• Cluster 4: Duration time of problem-solving is long. The score of the pro-
gramming mode is low. In Table 10.8, there are many compilation frequencies
and execution frequencies. The students compile frequently and are committing
many errors. In Table 10.9, the compilation frequency and the execution fre-
quency are low. Surprisingly, these students are submitting the correct solutions
to the problems. They have likely copied the correct answers from cluster 1
students.

10.8 Evaluation of the Smart Classroom by TAs

We set up a hypothesis based on the considerations of the previous section. The
hypothesis is that the programming behavior appears in the programming mode.

Experiments. In this section, we verify the hypothesis about the programming
mode and programming behavior. This was to what degree the understanding level
in the programming codes corresponds to the programming behavior. Moreover, the
present study verifies the differences in the results of the questionnaires about the
subjective understanding level of the students before and after the experiment.
The TA instructs the students based on the results of the questionnaires completed
before the experiment. The TA guides the basic attitudes within the low numerical
value for understanding level based on the questionnaires.

The verification method is to evaluate the duration time of the problem solving
of both the experimental group and the control group. The group consists of forty

10 Using a Programming Exercise Support System … 319

students who all submitted their solutions late. These students were split into two
groups at random to create the control group and the experimental group. The
procedures of the experiment were as follows:

1. Perform understanding level inquiry of the programming mode the first time.
Acquire the duration time for problem solving before the experiments.

2. First experiment: guidance from TA.
3. Second experiment: guidance from TA.
4. Third experiment: guidance from TA.
5. Fourth experiment: no guidance from TA. Perform understanding level inquiry,

the second time, of the programming mode. Acquire the duration time for
problem solving after the experiments.

Figure 10.16 shows the change in the problem solving time. We can observe the
improvement of the duration time of the problem solving in the experimental group;
however, there was no significant difference between the two groups.

Table 10.10 shows the result of the understanding level inquiry. The under-
standing frequency value of the experimental group rose by 5% compared with the
control group. The result of the questionnaire, according to the cluster, is shown in
Table 10.11. In Table 10.11, the gray background shows where the improvements
in student understanding levels are remarkable.

Discussion. The problem solving time may have been shortened due to the
understanding level of the programming codes corresponding to the programming
behavior. Data mining of students’ behaviors enabled the TAs to provide effective
guidance. Moreover, the results of the data mining provided the TAs with the
features of the students’ programming behaviors.

Experimental

Control

0

2

4

6

10
-1
5

15
-2
0

20
-2
5

25
-3
0

30
-3
5

35
-4
0

40
-4
5

45
-5
0

50
-5
5

10
-1
9

20
-2
9

30
-3
9

40
-4
9

50
-5
9

60
-6
9

70
-7
9

80
-8
9

90
-1
00

BeforeTeaching AfterTeaching

N
um

be
ro

f
pe

op
le

Exercises clear time

10
-1
9

20
-2
9

30
-3
9

40
-4
9

50
-5
9

60
-6
9

70
-7
9

80
-8
9

90
-1
00

0

2

4

6

10
-1
5

15
-2
0

20
-2
5

25
-3
0

30
-3
5

35
-4
0

40
-4
5

45
-5
0

50
-5
5

N
um

be
ro

f
pe

op
le

Exercises clear time

BeforeTeaching AfterTeaching

Fig. 10.16 Changes in problem-solving time

320 T. Kato et al.

We possibly did not observe significant difference between the two groups
because of the close connections between friends. For example, students may have
shared the advice of the TA with their friends.

The guidance effects on programming mode are shown in Table 10.12. The data
mining of students’ behaviors enables TAs to give advice beyond just simple error
correction.

Table 10.10 Results of the questionnaire of understanding level by student subjectivity

Group Understanding frequency value

Before After Effective None

Experimental 6.66 9.7446% UP 13 students 4 students

Control 5.84 8.241% UP 13 students 6 students

Table 10.11 Results of the questionnaire in each cluster

Cluster Matter 1 2 3 4 5 6 7 8 9 10 11

1 Before 0.1 0.8 0.7 0.0 0.3 0.1 0.6 0.4 −0.2 0.1 0.7

After −0.2 1.0 0.9 0.1 0.4 0.1 0.5 0.6 0.0 0.1 0.9

2 Before −0.1 0.3 0.7 0.2 0.3 0.3 0.8 0.4 −0.4 0.6 0.7

After 0.2 0.7 0.7 0.2 0.3 0.7 0.9 0.9 0.1 0.6 0.9

3 Before 0.1 0.2 0.8 −0.2 0.5 0.0 0.7 0.5 0.0 0.3 0.7

After −0.2 0.6 0.9 0.1 0.3 0.6 0.8 0.8 0.1 0.5 0.7

4 Before −0.3 0.3 0.7 −0.1 −0.2 0.5 0.6 0.4 −0.3 0.6 0.9

After 0.1 0.6 0.6 −0.3 0.1 0.6 0.8 0.3 −0.1 0.6 0.7

Cluster Matter 12 13 14 15 16 17 18 19 20 Students

1 Before 0.8 0.8 0.8 0.7 0.8 −0.3 0.5 −0.4 1.0 5

After 0.5 0.9 1.0 0.3 0.8 −0.1 0.5 0.4 0.8

2 Before 0.1 1.0 0.9 0.3 0.6 −0.2 0.3 −0.3 0.8 13

After 0.2 0.7 0.8 0.3 0.7 0.0 0.5 −0.2 0.9

3 Before 0.3 0.3 0.8 −0.2 0.3 −0.4 0.1 −0.4 0.7 11

After 0.3 0.6 0.8 0.2 0.6 0.0 0.4 −0.4 0.9

4 Before 0.0 0.8 0.7 0.4 0.9 −0.5 −0.2 −0.6 1.0 7

After 0.3 0.5 0.9 0.5 0.5 0.2 −0.2 −0.3 1.0

Table 10.12 Effects of programming mode

Cluster Effective Ineffective

1 Examine the grammar
Write the comment
Make a lot of programs

None

2 Adjust the appearance
Write the comment

Make a lot of programs

3 Adjust the appearance Compile for each line

4 Compile for each line
Deal with the first error
Copy the sentences that work

Examine the grammar
Write the output sentence first

10 Using a Programming Exercise Support System … 321

10.9 Scaling-up to Smart University

We have experimented on subjects in programming exercises. We would like to
apply it fully to other subjects.

We are currently trying the proposed method in language classes [31]. We are
studying how the students can reflect even in the face-to-face class. Typically, we
have implemented Web exercises using Google Forms for continual self-reflection.
We have performed the text mining to “Devised it” of the Web exercises. We have
observed the transformation from the mentally passive word “Do” to the active
words “Examine it.” We found that Google Forms motivates students’
self-regulatory learning. Based on these findings, we also present a prospect for a
lesson that draws out the subjectivity of the students.

Furthermore, we are studying which tasks effectively motivate students.
Currently, it is not very smart, but further study of deep learning in programming
classes will make it possible to extract issues that increase motivation. The
smartness level can be improved by developing these areas.

There is manual work in realizing smartness and it would be a restriction when
considering large-scale deployment. By using more sophisticated machine learning,
we can realize a smart learning environment. Moreover, we have analyzed the
relation between programming behavior and programming mode. The results were
related to the behavioral features and the programming mode. The authors have
reached the hypothesis that the duration time of problem solving could be reduced
as a result of the effective guidance of the TAs concerning programming mode.
Then, the authors performed the assessment experiments of guidance by TAs. As a
result, the duration time of the problem solving of students who were taught has
been shortened. Therefore, the proposed technique enables TAs to provide effective
support for students because they can better obtain a deep understanding of the
learning situation of each student. Therefore, we can conclude that the proposed
function enables TAs to effectively support students when learning and
programming.

10.10 Conclusions

This chapter described the achievement of the learning situation assessment func-
tion in the programming exercises for entry-level programming classes. This
function provides an assessment of the learning situation of individual students as
well as the class as a whole. The function for students indicates who is behind in
their work and who needs help. The function for the class displays the sum of the
work progress from the beginning of the exercise until submission. Moreover, the
function provides the error classification summary by identifying compile error
lines based on the example answer program. We found that the function applied to
the Java programming exercises actually produced accurate output. Moreover, the

322 T. Kato et al.

function identifies students that are behind in their work via outlier analysis of class
work progress. Because the instructor appropriately sets the standard value of the
outlier, this function can identify students who are behind in order to provide them
with assistance before it is too late. In the assessment experiment in an actual
lesson, we observed appropriate guidance being presented using information from
the proposed function. We, thus, can conclude that the proposed function is
effective for assessing student learning situations in programming exercises for
beginners.

In summary, we have achieved a smart educational environment through the use
of this function. The environment supports instructors and TAs so that they can
provide smart pedagogy to students.

Acknowledgements This work was supported by Japan Society for Promotion of Science (JSPS),
with the basic research program (C) (No. 15K01094 and 26240008), Grant-in-Aid for Scientific
Research.

References

1. Macfadyen, L.P., Dawson, S.: Mining LMS data to develop an “early warning system” for
educators: a proof of concept. Comput. Educ. 54(2), 588–599 (2010)

2. Open University of Japan: H21-22 Survey on the Promotion of ICT Use Education. Center of
ICT and Distance Education (2011)

3. Klosgen, W., Zytkow, J.: Handbook of data mining and knowledge discovery. Oxford
University Press, New York (2002)

4. Romero, C., Ventura, S., Garcia, E.: Data mining in course management systems: moodle
case study and tutorial. Comput. Educ. 51, 368–384 (2007)

5. Horiguchi, S., Igaki, H., Inoue, A., et al.: Progress management metrics for programming
education of HTML-based learning material. J. Inf. Process. Soc. Jpn. 53(1), 61–71 (2012).
(In Japanese)

6. McCartney, R., Eckerdal, A., Mostrom, J.E., Sanders, K., Zander, C.: Successful students’
strategies for getting unstuck. SIGCSE Bull. 39(3), 156–160 (2007)

7. Sagisaka, T., Watanabe, S.: Investigations of beginners in programming course based on
learning strategies and gradual level test, and development of support-rules. J. Japan. Soc. Inf.
Syst. Educ. 26(1), 5–15 (2009). (In Japanese)

8. Igaki, H., Saito, S., Inoue, A., et al.: Programming process visualization for supporting
students in programming exercise. J. Inf. Process. Soc. Jpn. 54, 1 (2013). (In Japanese)

9. Kurasawa, K., Suzuki, K., Iijima, M., Yokoyama, S., Miyadera, K.: Development of learning
situation understanding support system for class instruction in programming exercises. Inst.
Electron. Inf. Commun. Eng. Technol. Rep. ET Educ. Eng. 104(703), 19–24 (2005). (In
Japanese)

10. Colthorpe, K., Zimbardi, K., Ainscough, L., Anderson, S.: Know thy student! Combining
learning analytics and critical reflections to develop a targeted intervention for promoting
self-regulated learning. J. Learn. Analytics 2(1), 134–155 (2015)

11. Ryan, C., Michael, C.L.: Debugging: from novice to expert. ACM SIGCSE Bull. 36(1), 17–
21 (2004)

12. Alex, G., Johan, J., Bastiaan, H.: An interactive functional programming tutor. In:
Proceedings of the 17th ITiCSE 2012, pp. 250–255. ACM (2012)

10 Using a Programming Exercise Support System … 323

13. Serral, E., De Weerdt, J., Sedrakyan, G., Snoeck, M.: Automating immediate and personalized
feedback taking conceptual modelling education to a next level, In: 2016 IEEE Tenth
International Conference on Research Challenges in Information Science (RCIS), pp. 1–6.
IEEE (2016)

14. Truong, N., Roe, P., Bancroft, P.: Automated feedback for fill in the gap programming
exercises, In Proceedings of the 7th Australasian conference on Computing education, vol. 42,
pp. 117–126. Australian Computer Society, Inc. (2005)

15. Uskov, V.L., Bakken, J.P., Pandey, A., Singh, U., Yalamanchili, M., Penumatsa, A.: Smart
university taxonomy: features, components, systems. In: 2016 Smart Education and
e-Learning, pp. 3–14. Springer, Cham (2016)

16. Hwang, G.J.: Definition, framework and research issues of smart learning environments–a
context-aware ubiquitous learning perspective. Smart Learn. Environ. a Springer Open
Journal, 1:4, Springer (2014)

17. Friend, M., Bursuck, W.: Including students with special needs: a practical guide for
classroom instructors, Chap. 5, pp. 164–165. Prentice Hall, Saddle River (2006)

18. Watanabe, H., Arai, N., Takei, S.: Case-based evaluation support system of novice programs
written in assembly language. J. Inf. Process. Soc. Jpn. 42(1), 99–109 (2001). (In Japanese)

19. Kato, T., Ishikawa, T.: Design and evaluation of support functions of course management
systems for assessing learning conditions in programming practicums. Int. Conf. Adv. Learn.
Technol. 2012, 205–207 (2012)

20. Tanaka, K.: Yokuwakaru Jyugyouron. Minervashobo (2007) (In Japanese)
21. Japan Society for Educational Technology: Kyouiku Kougaku Jiten. Jikkyo Shuppan (2000)

(In Japanese)
22. Diffutls. http://www.gnu.org/software/diffutils/diffutils.html. Accessed 14 Sept 2016
23. Ueno, M.: Online outlier detection for e-learning time data. J. Inst. Electron. Inf. Commun.

Eng. J90-D 1, 40–51 (2007). (In Japanese)
24. Bull, C.R., Bull, R.M., Rastin, B.C.: On the Sensitivity of the chi-square test and its

con-sequences. Meas. Sci. Technol. 3, 789–795 (1992)
25. Yasuda, K., Inoue, A., Ichimura, S.: Programming education system that can share

problem-solving processes between students and teaching assistants. J. Inf. Process. Soc.
Japan 53(1), 81–89 (2012). (In Japanese)

26. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3),
264–323 (1999)

27. Kamishima, T.: A survey of recent clustering methods for data mining (Part 1): try clustering!
J. Japan. Soc. Artif. Intell. 18(1), 59–65 (2003). (In Japanese)

28. Michael, R.A.: Cluster Analysis for Applications. Academic Press, New York (1973)
29. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
California, USA, vol. 1, pp. 281–297 (1967)

30. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1–27
(1974)

31. Kato, T., Kambayashi, Y., Kodama, Y.: Practice for self-regulatory learning using google
forms: report and perspectives. Inf. Eng. Express Int. Inst. Appl. Inf. 2016 2(4), 11–20 (2016)

324 T. Kato et al.

http://www.gnu.org/software/diffutils/diffutils.html

	10 Using a Programming Exercise Support System as a Smart Educational Technology
	Abstract
	10.1 Introduction
	10.2 Literature Review
	10.3 Research Design and Research Objectives
	10.3.1 The Problems of Programming Exercise Support
	10.3.2 Request Analysis for Smart Classroom Realization

	10.4 The Function of Assessing the Learning Situation of the Class
	10.5 Function to Assess Slow or Late Students
	10.6 Evaluation of the Smart Classroom by Instructors
	10.6.1 Objective
	10.6.2 Method
	10.6.3 Results
	10.6.4 Consideration of the Results

	10.7 Function to Understand Programming Behavior for TAs
	10.7.1 Analysis for TA
	10.7.2 Classification of Programming Behaviors

	10.8 Evaluation of the Smart Classroom by TAs
	10.9 Scaling-up to Smart University
	10.10 Conclusions
	Acknowledgements
	References

