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Abstract. We developed numerical methods to optimally adjust the
parameters in cardiac electrophysiology models, using optimal control
and non-differentiable optimization methods. We define three optimal
control problems to capture the main features of the cardiac action
potential (AP). The first two control problems adjust parameters in
single-cell models to recover the duration of the various phases of the
AP or the trans-membrane potential at a given cell recorded over time.
A third control problem is defined to adjust the conductance in the
monodomain model to recover the conduction speed of an AP wave. The
methodology is used to adjust parameters in the monodomain model with
Mitchell-Schaeffer ion kinetics to recover the phase durations and con-
duction velocity in three cardiac tissues. Error on the phase durations lies
within 1–3%, except for the depolarization time. The Aliev-Panfilov and
Mitchell-Schaeffer model are adjusted to experimental recording of the
trans-membrane potential obtained through optical fluorescence imag-
ing. The Mitchell-Schaeffer model achieves a better fit to the data.

Keywords: Ionic models · Optimal control · Non-differentiable opti-
mization · Parameter identification

1 Introduction

Several ionic models are available to describe the evolution of the electrical poten-
tial across cardiac cell membranes. These models usually read as a systems of cou-
pled highly nonlinear differential equations with many adjustable parameters. The
adjustment of parameters becomes increasingly important to be able to person-
alise these models using medical data (see for instance [9,10]) or to compare mod-
els with each other in the best possible way. It is not easy to study the combined
effect of varying the parameters and the literature is usually not too explicit on
the way the parameters are adjusted in ionic models. Moreover, methods are not
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available to check in a systematic way if two models could provide a similar solu-
tion (e.g. same recording of the potential at a cell over time), for instance when
parameters are well adjusted in one model to fit the other model.

Parameter adjustment is possible with simpler ionic models using asymptotic
formula connecting the parameters with the phase durations [7,10,11]. The con-
ductance can be adjusted to the conduction velocity (CV) using Eikonal equa-
tions as in [10]. Very few attempts have been made to address the adjustment
of the ionic model parameters or the conductance using fully nonlinear models.
We are aware of the very recent paper [5] where a genetic algorithm was used
to build a cell-specific cardiac electrophysiology model and [6] where simulated
annealing is used to compare two ionic models.

This paper proposes numerical methods to optimally adjust the parameters
in ionic models, in particular when these models involve terms (ionic currents
or gating source terms) that are not continuous or stiff in the state variables.
Our method is based on the numerical solution of an optimal control problem
with a least-square objective function. Three types of least-square functions will
be used. The first one attempts to fit the main features of the cardiac action
potential (AP), namely the action potential duration (APD), the depolarization
time (DT), recovery time (RT), etc. The second function attempts to fit the
trans-membrane potential predicted by the model to experimental recording
on a single cell. The third least-square function fits the CV predicted by the
monodomain model to an experimental value.

We will illustrate the efficiency of the method for the Mitchell-Schaeffer model
[7], which is a simple two variables ionic model with a limited set of parameters
and one discontinuity in the r.h.s. of the ODE for the gating variable. Our
methodology is not limited to this model. Numerical results are presented, in
particular model fitting to experimental AP measurements obtained through an
optical fluorescence imaging technique.

2 Mathematical Models

2.1 Mitchell-Schaeffer Model

As one particular example where the proposed parameter identification technique
can be applied, we consider the Mitchell-Schaeffer (MS) two-variable model [7].
This model describes the dynamics of the trans-membrane potential u in the
myocardium and a gating variable v representing in a lumped way the opening
and closing of ionic channels controlling the passage of ions across the cell mem-
branes. Here we will consider two situations, either the 0D model for a single
cell (no space dependence of the variables u and v) or the monodomain model
where spatial propagation is assumed in the myocardium.

Single-Cell Model: The dependent variables u = u(t) and v = v(t), t > 0, are
solutions of:

du

dt
= f(u, v) + Istim(t), with f(u, v) =

1
τin

vu2(1 − u) − 1
τout

u, (1)
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dv

dt
= g(u, v), with g(u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − v

τopen
, if u < ugate,

−v

τclose
, if u ≥ ugate.

(2)

The trans-membrane current f(u, v) is the sum of the gated inward current
vu2(1 − u)/τin with time scale τin that tends to depolarize the cardiac cell and
the ungated current −u/τout that tends to repolarize the cardiac cell with time
scale τout. Finally, Istim represent an external current produced by a stimulation
electrode. The dynamics of the gating variable v depends on the threshold poten-
tial ugate for the initiation of an action potential, and on two time constants,
τopen and τclose, respectively controlling the opening and closing of the gate.
We set τ = [τin, τout, τopen, τclose] to simplify notations. The functions f and g
depend on the parameter τ . Eqs. (1)–(2) requires initial conditions u(0) = u0

and v(0) = v0, where u0, v0 ∈ [0, 1] are given.

Monodomain Model: The dependent variables u = u(x, t) and v = v(x, t),
x ∈ Ω, t > 0, are solutions of:

∂u

∂t
− ∇ · (σ∇u) = f(u, v) + Istim(t), (3)

∂v

∂t
= g(u, v). (4)

The functions f and g are defined as for the single-cell MS model, except that
the unknowns u and v depends also on the space variable x. The cardiac tissue
constitutes the domain Ω where the equations are solved. The parameter σ is
the conductance of the cardiac tissue, usually taken as a 2-tensor to represent
the anisotropic conduction properties of the myocardium. In our test cases, we
consider the 1D monodomain model where propagation is assumed to be in one
spatial direction only (e.g. planar waves). In this case, σ is a scalar constant
(e.g. conductance along the fibers). Eqs (3)–(4) come with initial and boundary
conditions, here taken as homogeneous Neumann boundary conditions.

2.2 Optimal Control Problems

We introduce three different control problems. The first problem adjusts the
parameter τ for the single-cell MS model so that the durations of the four phases
are close to known values, while the second one fits the trans-membrane potential
u from the model to a recorded experimental potential ũ = ũ(t). The third
problem adjusts the conductance σ of the monodomain model to match the
speed of propagation of the AP.
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Least Square Fit on the Phase Durations: Consider the phase durations
ΔT ∗

i , i = 1, 2, 3, 4, (i.e. DT, APD, RT and recovery phase duration) obtained
experimentally. To identify the parameters τ in the model (1)–(2), we introduce
an optimization problem whose goal is to reduce the gap between the phase
durations ΔTi predicted by the model and the target durations ΔT ∗

i .
This optimization problem reads as: Find τ∗ minimizing the following least

square function

J(τ) =
1
2

4∑

i=1

ωi(ΔTi − ΔT ∗
i )2, (5)

where ωi ≥ 0, i = 1, 2, 3, 4, are weight constants for varying the relative impor-
tance of each variable to adjust, u and v are solution of (1)–(2), the times
Ti = Ti(τ), T1 < T2 < . . . < T5, are such that

⎧
⎪⎨

⎪⎩

u(Ti) = γi, i = 1, 3, 4, γi thresholds given,

u(T2) = max
t

(u(t)),

v(T5) = γ5, γ5 given.

(6)

We set ΔTi = Ti+1 − Ti.
The thresholds γi are characteristic values of the potential u (or v for γ5)

indicating the beginning or the end of the phases. The values of the thresholds
γ1 = 0.13, γ3 = 0.5, γ4 = 0.05 and γ5 = 0.9 are used for all our test cases. For
instance, γ1 = 0.13 since ugate = 0.13 is the threshold potential to initiate a
depolarization. The maximum of the potential is reached at time t2, hence ΔT1

is the duration of the depolarization phase (DT). The threshold γ3 flags the end
of the plateau, hence ΔT2 is the duration of the plateau (more or less the APD).
The threshold γ4 is close to the equilibrium or rest value of the potential u, hence
ΔT3 is the repolarization time. The threshold γ5 is used to flag the return of
the recovery variable to equilibrium when the cell is excitable again. The time t5
thus corresponds to the end of the refractory period. We call ΔT5 the recovery
period, which is nothing but the refractory period minus the APD.

A natural choice for making each square dimensionless in the function J is
given by

ωi =
(

1
ΔT ∗

i

)2

, i = 1, 2, 3, 4. (7)

Least Square Fit of the Potential: We change the least square function to
adjust the potential u = u(t) predicted by the single-cell MS model to a given
potential ũ = ũ(t), t ∈ [0, T ] (measured or obtained with an other ionic model).
This optimization problem reads as: Find τ∗ minimizing

J(τ) =
1
2

∫ T

0

| u(s, τ) − ũ(s) |2 ds, (8)

where u and v are solution of (1)–(2) with parameters τ . It is no longer needed
to set thresholds γi, recover phase durations and wave speed. The connection
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between the parameter τ and the objective function J is more direct, but still
subject to the lack of regularity induced by the discontinuity in the function
g. We successfully solved this optimization problem to fit various ionic models
among each other (up to 3 variables and 8 parameters – not shown here). It is
possible to add other least square terms to fit other variables.

Least Square Fit on the Wave Speed: Consider the wave speed c∗ obtained
experimentally. To identify the conductance σ in the model (3)–(4), we introduce
an optimization problem whose goal is to reduce the gap between the speed of
the wave c predicted by the model and the target wave speed c∗. It is known
from an asymptotic argument presented in [11] that the parameters in the 1D
MS model are in one-to-one relation with the durations ΔT ∗

i and wave speed c∗.
It thus makes sense to try to identify the conductance σ by matching the wave
speed.

This optimization problem reads as: Find σ∗ minimizing the following least
square function

J(σ) =
1
2
(c − c∗)2, (9)

where u and v are solutions of (3)–(4), and the wave speed c = c(σ) is considered
a function of σ only since the parameters τ are assumed known from minimizing
either (5) or (8). We calculate the wave speed from the solution of the model
using

c =
x2 − x1

t2 − t1
,

where t1 < t2 are the passage times of the wave at the points x1 < x2 given in the
domain where the AP wave is propagated. At each point xi, the passage of the
wave can be flagged by finding the smallest time ti > 0 such that u(xi, ti) = γ1,
with γ1 the threshold for the initiation of the AP given above.

2.3 Numerical Methods

The Eqs (1)–(2) are solved using the function ode in Scilab, which implements
the Adams predictor-corrector method. The Eqs (3)–(4) are solved by discretiz-
ing with finite difference formulae in space and the second order semi-implicit
backward differentiation formulae (SBDF2) in time [4]. Eq. (6) are solved using
linear interpolation within time steps to ensure the accuracy of the times Ti.

The function g is discontinuous in u, which eventually leads to a lack of reg-
ularity of the solution (u, v) of (1)–(2) (similarly for (3)–(4)) and consequently
of the function J = J(τ). The derivatives of J with respect to τ may not be well
defined. Attempts with numerical differentiation of J and plots of the square
terms in J showed that numerical derivatives do not converge when the steps in
τ are refined. Direct computations of the sensitivities δu and δv with respect to
τ by solving numerically the sensitivity ODEs for a regularized version of the
MS model were not more successful. To avoid the computations of the sensitiv-
ities and the gradient of J with respect to τ (or σ), we use non-differentiable
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optimization methods [2]. A two-step strategy was required to identify the para-
meters τ∗ and σ∗. First, we solve the optimization problem (1)–(2)+(5)–(6) for
τ∗ using the Nelder-Mead method. Setting the parameters τ∗ from this first step,
we then solved the optimization problem (1)–(2)+(9) for σ∗ using the Golden
Section method. We used the function fminsearch in Scilab that implements
the Nelder-Mead method. We implemented our own script for the Golden Section
method in Scilab.

Changing from one to an other least square function presented above is pos-
sible at no cost since the Nelder-Mead method requires only values of J at given
iterates τk, and no derivatives of this function.

The optimization method used introduces a sensitivity to the initial guess
of the parameters (or the initial interval for the Golden section method). If
convergence is reached (e.g. measured in distance between consecutive iterates)
but the value of the least-square function J is not small for the final iterate, the
minimum is likely to be local only and new initial guesses must be attempted
in the hope of getting a better fit. Asymptotic formula from [11] could be used
to obtain initial guesses for the parameters τ in the MS model. We used our
experience with the fitted models as well as trial and error to find good initial
guesses.

3 Numerical Results

3.1 Validation

To validate our approach, we tried to recover with the help of the Nelder-Mead
method the value of the parameters τ∗ = [0.3, 6, 130, 150] that correspond to
J(τ∗) = 0 for ΔT ∗ = [6.71, 251.48504, 34.311947, 270.42669], the phase durations
obtained by solving the 0D MS with this τ∗. We studied the behavior of the
method varying the tolerance Tol and the initial parameter values τ0, where the
convergence criteria is given by

||τk+1 − τk|| < Tol,

for two successive iterates τk and τk+1. Table 1 shows the impact of varying Tol.
NIter et NEval are the number of iterations of the Nelder-Mead method and the
number of function evaluations, respectively. The global minimizer is reached
with an accuracy of 10−2, while the global minimum of J is accurate at 10−10.
Starting from τ0 = [0.37, 7, 140, 160], the best value of τ∗ achieved is τfinal =
[0.3413, 5.707, 132.41, 169.48] with J(τfinal) = 0.7975322 (table not shown here).
Hence initial values τ0 must be chosen carefully to ensure convergence to the
global minimum. The value of J(τfinal) is a good measure of the fit (the closer
to zero, the better!).

A similar validation test case was carried for recovering σ∗ with the Golden
Section method, with similar conclusions on the sensitivity to the interval chosen
to initialize the method.
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Table 1. Sensitivity of Nelder-Mead method to Tol. τ0 = [0.27, 5.8, 127, 140]

Tol NIter NEval τfinal J(τfinal)

10−4 203 352 [0.3002057, 5.9988204, 130.01025, 150.08348 ] 1.239D – 09

10−6 225 409 [0.3002056, 5.9988201, 130.01024, 150.08346] 5.382D – 10

10−8 242 458 [ 0.3002056, 5.9988201, 130.01024, 150.08346] 4.100D – 10

3.2 Application to Three Cardiac Tissues

We proceed now with an application of the methodology introduced above.
Table 2 presents commonly accepted values of the phase durations and wave
speed (see for instance [3]). Note that the recovery period corresponds in our
approach to phase between the time when the potential u goes back to rest (end
of the repolarization) and the time where the gating variable v goes back to rest
(end of the refractory period). Table 3 shows the parameters τfinal obtained by
solving the control problem for the 0D model with the Nelder-Mead method,
the value of the minimum J(τfinal) and the phase durations ΔTi predicted by
the MS model for these parameter values. Table 4 shows the conductance σfinal

obtained by solving the control problem for the 1D model with the Golden
Section method. Since we have a range of experimental conduction speeds, we
obtained a range of possible conductances. This table also presents the con-
duction velocities and phase durations predicted by the 1D MS model using
the parameters fitted with the two-step identification method. For the Purkinje
fibers, we provide only values for c = 2 m/s. Larger speeds require a very large
domain with a very fine numerical resolution for the fit to be reliable because of
the fast moving and highly spread AP wave.

The fit is exceptionally good in both parameter identification steps, between
the experimental phase durations and the ones predicted by both the 0D and
1D MS models. The same remark is valid for the conduction speed. A joint

Table 2. Experimental durations (ms) and wave speed (m/s) for three tissues

Tissues ΔT ∗
1 ΔT ∗

2 ΔT ∗
3 ΔT ∗

4 ĉ∗ (m/s)

Left ventricle (LV) 8 250 30 260 0.3 – 0.5

Purkinje fibers (PF) 8 380 65 320 2 – 4

Right atria (RA) 4 – 5 100 20 250 0.3 – 0.5

Table 3. Results from the parameter identification in the 0D MS model

Tissue ΔT1 ΔT2 ΔT3 ΔT4 τfinal J(τfinal)

LV 6.41 249.96 30.28 260.00 [0.276, 4.92, 126.4, 161.5] 0.1812972

PF 8.14 379.98 64.97 320.00 [0.397, 13.3, 152.2, 168.7] 0.0101284

RA 3.9 100.00 19.99 250.00 [0.180, 4.23, 116.7, 53.4] 0.0756264
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Table 4. Results from the parameter identification in the 1D MS model

Tissues σfinal c ΔT1 ΔT2 ΔT3 ΔT4

LV 0.303 − 5.08 0.30 − 0.50 8−7.6 247.96−247.54 30.70−30.71 259.13−259.37

PF 26.729 2.00 9.9 377.95 66.22 318.86

RA 0.0980 − 0.418 0.30 − 0.50 5.4−5.0 98.45−98.70 20.59−20.52 249.43−249.43

identification of τ and σ could probably improve the fit, but the difficulty of
getting initial values that lead to convergence of the Nelder-Mead method is
avoided with the two-step method with a limited impact on the quality of the fit.

3.3 Adjusting Models to Experimental Data

Data Acquisition. For experimental validation and mathematical model para-
meterization, action potentials waves were recorded using voltage-based optical
fluorescence imaging, as described in [8]. Briefly, fluorescence dye (di4-ANEPPS)
and mechanical uncoupler (to block contraction) were injected into coronary
circulation of a healthy explanted swine heart connected to a Langendorff per-
fusion system. The optical dye was excited with green light (530 ± 20 nm) via
150 W halogen source lamps. The emitted signals from the heart were filtered
(> 610 nm) and captured by a high-speed dual CCD system (MICAM02, Brain-
Vision Inc. Japan) with 3.91 ms temporal resolution (256 frames/second). The
field of view was 184×124 pixels (12×10 cm), yielding an approximately 0.7mm
spatial resolution. The temporal change in fluorescence signal intensity recorded
at each pixel, gives directly the action potential waves. For fitting the models, we
use the AP recorded at one pixel selected from an area in the left ventricle (LV)
where tissue was homogeneously illuminated, and also both fluorescence signal
and tissue perfusion were homogeneous. Notably, we did not average the optical
fluorescence signal over a selected ROI in purpose, since this would result in a
smoother AP wave form, particularly a smoother up-stroke (which can result in
incorrect model parameters).

Model Fitting. The AP recorded by optical fluorescence were fitted with two
different models, the MS model presented above and the Aliev-Panfilov (A-P)
model [1]. The A-P model has 2 variables (a potential u and a gating variable
v) and 5 adjustable parameters. The goal is to compare the quality of fit of the
two models.

A single AP was isolated from a sequence of recorded AP. This AP was
renormalized between 0 and 1 to obtain the potential ũ = ũ(t), t ∈ [0, 1400] (in
ms) required in the least square function (8). The Nelder-Mead method was used
to solve the 0D parameter fitting problem (step 1 only). A single AP is triggered
with different stimulation currents for the two models: a current lasting 50ms
and starting at t = 100 ms is used for for the MS model, and a current lasting
20ms and starting at t = 105 ms for the A-P model. These stimulation currents



330 D.V. Pongui Ngoma et al.

J = 8.85

J = 0.277

Fig. 1. A-P and MS models fitted to AP recorded by optical fluorescence

were adjusted manually to ensure the best fit of the models. Figure 1 shows the
solution (u and v) and the experimental potential. The MS model achieves a
much better fit than the A-P model. This is seen by comparing the graphs and
the value of the least square function that is 32 times smaller for the MS model.

No efforts were made to control the evolution of the variable v for both
models, since this variable is not included in the least square function J . The
result is that the duration of the recovery (and refractory) period is different
for the two models. The A-P model gives a cell that is excitable again after
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1000 ms (roughly), while the MS model predicts that more 1400 ms are required
for this to occur. This situation could be improved by adding a term to control
the variable v in the least square function, assuming that experimental data on
the refractory period are available.

4 Conclusions and Perspectives

We provided a new framework for fitting electrophysiology model parameters
based on control theory. Three least-square functions are proposed, allowing
the adjustment of parameters in simple single-cell ionic models to fit either the
durations of the various phases of the AP or the shape of the trans-membrane
potential to experimental recording. The methodology can be extended to adjust
the conductance in the monodomain model in order to fit an experimentally
recorded CV. Differentiability of the ionic model is not required as no derivatives
are computed. The method is thus potentially applicable to the many ionic
models that lack differentiability (e.g. through jump functions included in those
models). In its current form, the methodology is capable of fitting models with a
modest number of parameters. So far, it has been tested and worked for models
with up to 8 parameters (not shown here), but it may eventually work for models
with a larger number of parameters as long as good initial guesses are available.

The accuracy of the fit is easily below 1% on the fitted AP phase durations in
the single-cell MS model, except for the depolarization phase which is very short
and thus subject to larger relative error (2−20% – still below 1.5 ms in absolute
error). The two-step approach allows a perfect fit of the CV while introducing a
minimal extra error on the phase durations. The least-square function (8) gave a
good fit of the trans-membrane potential predicted by the model to the potential
recorded over time on a single cell. However, the fit for this latter is as good as
a given ionic model can represent the data. For instance, the A-P model did
not turn out to be as flexible as the MS model in representing the potential
recorded by optical fluorescence imaging. The approach can definitely be used
to sort out models in terms of their capability to reproduce a given AP, be it
experimental or from an other ionic model, while using the optimal value in the
parameter space.

Future applications of the methodology include fitting the CV in more com-
plex situations and for adjusting the restitution properties of ionic models. The
fact that no derivatives are required in the optimization method is particularly
appealing for the latter. We will have to be careful in adjusting the conduc-
tance with spatially distributed data (e.g. with our optical imaging), as there
is a limitation in the number of parameters that can be adjusted with the cur-
rent approach. For instance, fitting the conductance at the 256 × 256 pixels
of our optical fluorescence image is out of reach of the proposed method. We
acknowledge that the model parameters might be different in the right ventricle,
RV (e.g. shorter APD). Thus, in the future we will investigate these parame-
ters using optical signals recorded from RV. Furthermore, we will perform data
fitting on 26 AHA segments (17 in the LV and 9 in the RV) as in [9].
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