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Abstract. As models of cardiac electrophysiology (EP) are maturing,
an increasing effort is being put in their translation to the bed side,
in particular for abnormal cardiac rhythm diagnosis and therapy plan-
ning. However, the parameters that govern these models need to be esti-
mated from noisy and sparse clinical data in an efficient and precise
way, which is still an unsolved challenge. Invasive cardiac mapping pro-
vides the richest EP information available today. This paper proposes
a new method to estimate a local map of electrical conductivities of
the bi-ventricular heart by applying the back-propagation error concept,
widely used in neural networks. The method works when either endo-
cardial or epicardial activation time maps are available, and can cope
with heterogeneous cardiac tissue. The method was evaluated on syn-
thetic data, showing significantly increased performance in goodness of
fit compared to a global parameter estimation approach. The resulting
predictive power of the personalized model for cardiac resynchroniza-
tion therapy was then assessed on 16 swine models of left bundle branch
block with rich imaging and EP data before and after CRT. With the
proposed personalization, the average error in activation time post CRT
was 10 ± 4.5 ms, lower than the observed pre/post-CRT difference of
26.3 ± 16.8 ms.

1 Introduction

Computational models of cardiac electrophysiology (EP) are reaching a level of
maturity that enables the development of new tools to support clinical manage-
ment of cardiac rhythm diseases. Application to atrial or ventricular arrhyth-
mias [1], bundle branch blocks [12], ablation therapy [2] and cardiac resynchro-
nization therapy (CRT) [10] have been explored. Yet, one crucial challenge that
still needs to be addressed is the efficient, robust and precise estimation of the
parameters that govern the equations associated to EP models, so as to indi-
vidualize them and capture the specific patho-physiology of the patient under
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consideration [3]. Due to the sparsity and noisy nature of clinical data (imag-
ing, ECG or, in the best case, electro-anatomical mappings (EAM)), not all
the parameters can be observed and assumptions are required. Also, due to
the computational burden, only a few parameters are estimated and uniformity
assumptions, or even default values determined from animal experiments, are
often used [5,6,11].

This paper focuses on the estimation of local, point-wise conduction velocities
within the bi-ventricular myocardium from activation maps. Several approaches
have been proposed in the past, including coarse-to-fine optimization [8] or with
uncertainty quantification [15]. A comprehensive review can be found in [3]. Yet,
the local estimation of the conduction velocity remains a challenge due to the
high number of unknown variables and computational demand.

Inspired by neural network theories [4], we propose a novel, back-propagation
technique to estimate the electrical conductivity along the edges of a volumet-
ric mesh representing the bi-ventricular myocardium (Sect. 2). The approach
assumes a front propagation without re-entry and the availability of at least one
of endo- and epi-cardial maps of local activation times (LAT). Given measured
LAT and a graph-based model of cardiac EP, the errors between simulated and
measured LATs are iteratively propagated back with respect to the front-wave to
adjust the conduction velocities of every edge of the mesh. The approach copes
with different tissue types and anisotropy. The method was verified on synthetic
data (Sect. 3). The algorithm performance in predicting the electrical response of
CRT was then evaluated on 16 comprehensive swine datasets, showing promising
generalization performance. Section 4 concludes the paper.

2 Methods

2.1 Forward Model of Cardiac Electrophysiology

Anatomical Model. The anatomical model is estimated following the frame-
work described in [6]. In brief, machine learning algorithms are employed to
efficiently segment the left (LV) and right (RV) ventricle endocardia and LV
epicardium from cine MRI. The surfaces are then fused together and a volu-
metric tetrahedral mesh created. By leveraging the point-correspondences of the
segmented meshes, myocardium fibers and mesh tags (LV/RV septum, LV/RV
endocardium) are defined automatically (Fig. 1).

EP Model. The resulting volumetric mesh defines the computational domain
for solving the EP equations to get point-wise LATs. This work relies on a graph-
based EP model, termed GraphEP, in which the LAT at each point of the mesh
is calculated given LV, RV septal and device activation points using a shortest-
path algorithm adapted to the EP use case [6,14,15]. A generalized edge weight
is calculated such that the conduction velocity along each edge takes into account
the different tissues it traverses and the local anisotropy. Let pi and pj be two
connected mesh points. The generalized edge weight wij , measured in seconds,
corresponds to the time needed for the action-potential to travel from pi to pj :
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Fig. 1. Left: MR image volume from which the cardiac structures are segmented.
Middle: segmentation of the heart structures as a transparent mesh. Right: anatomical
model used for the computation, with color lines representing myocardium fibers.

wij = lij/cij , where lij =
√

(eT
ijDeij), eij = pi − pj , D is the anisotropy tensor

defined as D = (1 − r)fijfT
ij + rI, fij is the fiber direction along the edge and

r the anisotropy ratio (r = 0.3). cij is the apparent conduction velocity in m/s
along the edge approximated linearly from the conduction velocity ci and cj

and the different tissue types the edge traverses. In other words, the EP model
is essentially a Dijkstra shortest path propagation of activation time along the
mesh edges, in which the cost is controlled by the parameters described here.

EP Activation Model. Intrinsic cardiac stimulation is modeled by an instan-
taneous activation of the LV and RV septum, to mimic the effects of the His
bundle. In terms of the Dijkstra graph model, this means setting the point-wise
activation time to zero on these mesh regions. Fast activation from the Purkinje
network is modeled assigning different conduction velocity to a smooth, thin
layer of nodes distributed all over the endocardial surfaces of the LV and RV
(cLV and cRV). The thickness of this fast conducting layer is set to 3 mm to
model swine Purkinje system, which goes deeper within the myocardium than
in humans. With these conditions and material properties set, the shortest-path
propagation is calculated to obtain the full EP activation across the heart.

2.2 Local Estimation of Conduction Velocities

Electro-anatomical mapping data (EAM) is integrated with the MRI surface using
a quasi-conformal mapping technique (QCM). QCM takes advantage of the exis-
tence of a homeomorphism between the LV endocardial surface and a 2D disk. By
mapping both MRI and EAM surfaces to the same disk we can easily establish a
piecewise linear homeomorphism between the two surfaces, as in [13].

The personalization algorithm is initialized by estimating three conduction
velocities (cLV, cRV and cMyo) that minimize the sum of squared distances (SSD)
between measured and simulated LATs at the points where measurement is avail-
able. These three values are the velocity in the Purkinje layer of the left ventricle,
in the Purkinje layer of the right ventricle, and in the myocardium, respectively.
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This initialization step is hereafter referred to as the global personalization step,
as these conduction velocities are merely estimated as a single value for each
particular tissue region. Formally, the SSD objective is defined as:

D =
N∑

i=0

(mi − ci)2 (1)

where mi is the measured activation time at point i, and ci is the calculated
activation time at point i. The distance is calculated over all the N points where
measured activation time data is available. Note that the conduction velocities
could be calculated volumetrically, e.g. just on the edges. We chose a point-wise
implementation primarily for ease of integration in the rest of our data process-
ing workflow, particularly for visualization purposes. Point-wise conductivities
also allow modeling an apparent conductivity when the edge crosses different
tissue types. A standard, trust-region technique is employed [7]. Next, the gen-
eralized edge weights are estimated wij . Let L be the loss between measured and
computed LATs, L =

∑N
i=0(tm,i − tc,i)2, where N is the total number of points

where measurement is available, tm,i and tc,i are the measured and computed
activation times at point i, respectively. If the EP wave propagates without
re-entries, one can see the mesh nodes arranged in layers approximatively par-
allel to the EP iso-chrones, similar to a neural network layer. The input layer
is thus the set of activation points, and the output layer can be defined as the
set of nodes where LAT measurement is available, to enable back-propagation
parameter estimation. Thus after the initial global personalization, we seek to
personalize the point-wise conductivities based on back-propagation along the
edges until the error at the data points reaches a convergence tolerance. The
edges which are not reached by the backpropagation algorithm keep their con-
ductivity values assigned during the global personalization. A variant of gradient
descent with step α is used to adjust the generalized edge weights wij so as to
minimize L: w′

ij = wij − α ∂L
∂wij

. Assuming that the LAT at point j is known,
the partial derivative can be written as:

∂L
∂wij

=
∂L

∂tc,j

∂tc,j
∂wij

(2)

As a property of the backpropagation framework implemented on the mesh
graph, the edge weight wij only effects the overall loss function L based on
its affect on the output at point j. Note that this statement follows from the
perspective of the personalization step, in which the errors are propagated back-
wards rather than forward. Thus, Eq. 2 writes:

∂L
∂wij

= −2(tm,j − tc,j)
∂tc,j
∂wij

Exploiting the fact that the solution is a shortest path solution, the second term
becomes:

∂tc,j
∂wij

=

{
1 if arg mink∈neighbors(j)(tc,k + wkj) = i

0 otherwise
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If the LAT at point j is unknown, Eq. 2 is unrolled to the previous layers through
the chain rule:

∂L
∂tc,j

=
∑

k∈neighbors(j)

∂L
∂tc,k

∂tc,k
∂tc,j

with
∂tc,k
∂tc,j

=

{
1 if arg mini∈neighbors(k)(tc,i + wki) = j

0 otherwise

and so on until the activation points are reached.
Once the edge weights are estimated, the point-wise conduction velocities ci

are derived. When both edge extremities belong to the same tissue type, ci and
cj are trivially obtained. In the case they belong to different tissue types, the
problem becomes ill-posed. To address this challenge, we assume the ratio of con-
duction velocities between different tissue types stays constant throughout the
heart. The ratios are obtained directly from the initial personalization (cLV/cRV,
cLV/cMyo and other combinations, including scar and border zone when avail-
able). As an example, let point i belongs to LV endocardium and point j belongs
to myocardium, L the distance between i and j, l the distance between i and
the boundary between tissue types, c the estimated apparent conductivity along
this edge and ρ the ratio cj/ci. In this case, we have:

ci =
ρl + (L − l)

ρL
c, cj = ρci (3)

Because each edge is processed independently, one vertex may have several esti-
mated conduction velocities. In this case, the average value is taken and clamped
within a physiological range for stability.

3 Experiments and Results

Data Acquisition Protocol. 16 pigs (average weight = 34 (30/35) kg) were
studied, a sub-set of a larger database [9]. A left bundle branch block (LBBB)
was induced in all animals using radio-frequency ablation. A cardiac resynchro-
nization therapy (CRT) device was then positioned in the animal model. The RV
lead was placed at the apex while the LV lead was positioned through a lateral
or antero-lateral position of the LV epicardial surface. All pigs received an MRI a
week before the experiment. LV endocardial and epicardial EAMs were acquired
on the day of the experiment after LBBB (hereafter referred to as baseline), and
with CRT pacing. An example of the data from these pig experiments is shown
in Fig. 3. In all our experiments, both endocardial and epicardial EAMs were
used. With respect to the gradient method, in all cases we used a stopping crite-
ria of 0.01 ms in the activation time fitting. The maximum number of iterations
allowed was 30 for the dense GraphEP personalization. All cases were observed
to converge within this number of iterations.
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Verification on Synthetic Data. The proposed GraphEP personalization
method was first evaluated on synthetic data with known conductivity. The
forward model was used to calculate “ground-truth” point-wise LAT on the
endocardial and epicardial surface. Nine different distribution patterns of con-
ductivity and LAT were generated (Fig. 2). First, conduction velocities were set
within the endocardium layer prescribing the Purkinje network by (1) linearly
varying conductivity values along the X, Y and Z axis of the anatomy within
the interval [1.5, 4.0] m/s (3 models), (2) random velocities per American Heart
Association (AHA) regions, within the same range (3 models), and (3) 10 random
regions defined using region growing around random seeds (3 models). The endo-
cardial conduction velocity was then propagated throughout the myocardium by
assuming a constant Purkinje/myocardial cells ratio of 3. This procedure was
repeated on two heart meshes generated from two different pigs, resulting in a
total of 18 synthetic datasets. Finally, a virtual CRT was performed by placing
an RV and LV electrode at standard location to test the predictive power of the
personalized model.

Fig. 2. Conductivity distribution of the synthetic datasets with (a) linearly varying
distribution along the Y axis, (b) distribution according to AHA regions, and (c) region-
growing regions based on random seeds.

The computed activation times normalized with respect to the simulated
QRS duration is reported for both global and local personalization in Table 1.
The proposed estimation method effectively estimated the ground truth con-
ductivities, yielding an LAT error of less than 1 ms in average, compared with
4 ms for a global personalization. In all experiments, over-fitting was not severe
since the CRT prediction was also significantly more accurate with locally esti-
mated conductivities (1.3 ± 0.4 vs. 6.2 ± 2.6 normalized AT error respectively).
Interestingly, the performance of the proposed method was relatively insensitive
to the distribution of conduction velocities, as highlighted by the min and max
normalized LAT errors calculated as in Eq. 1. (Table 1).
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Table 1. LAT errors between computed and ground truth on synthetic datasets, nor-
malized with respect to QRS duration. For both baseline and CRT, the proposed local
personalization yielded significant improvements in terms of accuracy (paired t-test,
p < 0.5, values reported as mean ± SD (min, max)).

Global Local

Baseline 4.4 ± 1.4(2.4, 7.2) 0.6 ± 0.2(0.2, 1.2)

CRT 6.2 ± 2.6(1.9, 11) 1.3 ± 0.4(0.8, 2)

Evaluation on Animal Data for Cardiac Resynchronization Therapy.
The result of the personalization after the global initialization and after the
local refinement are compared. Both endo- and epi-cardial measured EAMs were
used. The baseline and CRT simulation errors compared to the measurements
for all pigs are presented in Table 2, with example visualizations of measured
and simulated activation maps shown in Fig. 3. The results confirmed the trend
observed in synthetic data. Table 2 shows that the proposed local estimation
method consistently resulted in lower mean LAT error across the whole heart
and also when considering each ventricle individually, in the case of both baseline
rhythm and after CRT. It is also interesting to note the lower standard deviation
of LAT errors for the proposed method, which points toward the improved ability
to accurately personalize local variations in conductivity across the heart. In both
the global and local personalization methods, the residual error was consistently
higher for CRT than the baseline. This reflects the complexity of accurately
modeling all of the parameters involved in CRT, such as lead placement, which
could only be approximated from the EAMs as the center of the early activation
areas. It is especially important to note that the QRS length at baseline LBBB
was measured to be on average 46.6 ± 18.3 ms, and after CRT was found to
be 70.3 ± 14.0 ms (in some animals, the electrodes were not placed optimally).
As a result, the simulated LAT errors were below the activation difference in
pre/post-CRT.

Computation time. In this experiment, a personalization took less than one
minute without code optimization on a tetrahedral mesh of approximately 14,000
vertices using a standard laptop (Intel Core i7-4800MQ 2.70 GHz, 8 GB of RAM),
owing to the fast graph-based algorithms.

Table 2. Absolute LAT errors (in ms) for baseline and CRT simulations in the swine
dataset. Values reported as mean ± SD, per ventricle and over the entire bi-ventricular
myocardium. Goodness of fit and predictive power significantly improved after local
personalization.

Global Local

WholeHeart LV RV WholeHeart LV RV

Baseline 12.2 ± 5.2 8.8 ± 4.0 11.8 ± 5.3 3.7 ± 1.7 4.8 ± 2.0 2.0 ± 0.9

CRT 14.8 ± 6.6 24.4 ± 11.7 25.8 ± 12.0 10.0 ± 4.5 15.4 ± 6.7 17.8 ± 8.1
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Fig. 3. Example data from two pigs showing the measured EAMs during baseline
LBBB rhythm and CRT activation, with the corresponding simulated EAMs using
the proposed local personalization of conductivity. The approach yielded qualitatively
similar maps at baseline and during CRT, suggesting a good fit to the data.

4 Discussion and Conclusion

This paper presented a novel method to estimate the electrical conduction veloc-
ity at every point of the myocardium. The proposed method has a number of
advantages. It allows personalization of heart activation patterns to the resolu-
tion of the computational domain mesh, while being extremely computationally
efficient. The method is also adaptable to varying levels of sparsity in the mea-
sured LAT input values. However, one disadvantage of using a variant of back-
propagation is the potential over-fitting of the model. Yet, the obtained CRT
predictions suggest predictions are still much more precise with the proposed
method than with global estimation. Further investigation is needed to evaluate
the sensitivity of the method to noise and missing data. Possible future direc-
tions are to incorporate prior knowledge of the heart conduction pathways to
regularize the personalization, add measurement uncertainty to the estimation
process, and further validate the approach.

Disclaimer: This feature is based on research, and is not commercially available.
Due to regulatory reasons its future availability cannot be guaranteed.
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