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Abstract The future of electric power is associated with the use of information
technologies. The smart grid of the future will utilize communications and big data
to regulate power flow, shape demand with a plethora of pieces of information
and ensure reliability at all times. However, the extensive use of information
technologies in the power system may also form a Trojan horse for cyberattacks.
Smart power systems where information is utilized to predict load demand at the
nodal level are of interest in this work. Control of power grid nodes may consist
of an important tool in cyberattackers’ hands to bring chaos in the electric power
system. An intelligent system is proposed for analyzing loads at the nodal level in
order to detect whether a cyberattack has occurred in the node. The proposed system
integrates computational intelligence with kernel modeled Gaussian processes and
fuzzy logic. The overall goal of the intelligent system is to provide a degree of
possibility as to whether the load demand is legitimate or it has been manipulated
in a way that is a threat to the safety of the node and that of the grid in general. The
proposed system is tested with real-world data.

1 Introduction

The application of digital control system technologies and sensor networks for
monitoring purposes in critical power facilities is a topic of high interest [1]. The
use of digital technologies offers significant advantages that include reduction in
the purchase and maintenance costs of facility components and equipment, and a
significant reduction in the volume of hardware deployed throughout the facility [2].
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Fig. 1 The notion of smart power systems that are comprised of two layers

The basic mission of power systems is the nonstop delivery of generated elec-
tricity to connected consumers. Delivery systems have been equipped with several
monitoring, prognostics and diagnostics tools, as well as several redundant systems
and mechanisms [3]. It should be noted that redundancy refers to availability of
more than required systems and mechanisms that perform the same operation.
Redundancy allows retaining of the normal operation of the power system in case
a system or mechanism fails, given that the rest will compensate for it. Thus,
power systems exhibit high resiliency and fault tolerance behavior in fulfilling their
mission of 24/7 power delivery. The advent of computers and internet connectivity
added one more factor that should be taken intro serious consideration: cyber
security [4]. The advantages offered by the ever increasing use of computer and
communication technologies (ICT) in power system operation, come at a cost of
new vulnerabilities in system security. What was formerly a physically isolated
system is now open to unauthorized access and manipulation control through
potential vulnerabilities posed by ICT use [5]. For instance, the supervisory control
and data acquisition (SCADA) systems consist of the backbone of the overall power
system monitoring and subsequent decision-making processes. Hence, despite their
nowadays practical benefits, SCADA systems present serious targets for cyber-
attackers.

The advent of smart power technologies is expected to couple data technologies
with conventional power systems in ways that optimizes energy consumption and
minimizes loses [6]. The notion of smart power systems is visualized in Fig. 1,
where it can be observed that the smart power system is a form of a cyber-
physical system [7, 8]. The information (i.e., cyber) layer is comprised of two
modules. The first module includes the intelligent systems and signal processing
tools and the second module the databases. Those two modules are complementary;
the intelligent tools utilized stored information to make management decisions
pertained to power system operation [9]. The second layer is the physical layer that
contains the physical components of the power system.

Given that smart power systems are heavily dependent on data and information
processing tools as it is depicted in Fig. 1, cybersecurity is a major issue that
cannot be overlooked. Every asset of smart power systems may be compromised
and subsequently be transformed into a vehicle for conducting a cyber-attack [10].
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In contrast to physical attacks, the nature of cyber-attacks imposes significant
difficulties in detecting, isolating and mitigating the consequences of cyber-attacks.
Additionally, estimation of a cyber-attack impact is a difficult task given that full
detection of all parts that have been affected by the attack, if possible, may take
a significant amount of time [11]. Full recovery is also a time-consuming process.
The cyber-attack in Ukrainian power grid on December 2015 presents an example in
which computer control is not fully restored yet [12, 13]. In addition, cyberattacks
may be used as a proxy for a subsequent physical attack in critical energy facilities.
For instance, manipulation of digital access may allow a person to get access to
areas of nuclear material disposal that may be used for nefarious purposes [14].

Detection of cyber-attacks and their consequences in operation of smart power
systems may be characterized as a multi-stage task. This is true since these
systems contain the physical layer (power infrastructure) as well as the cyber
layer (information technologies) [15–17]. Furthermore, the correlations among the
two layers as well as the associations between components of the same layer
makes detection of the source of an attack a very challenging task. For example,
a cyber-attack’s objective may be to cause a disturbance in a substation and thus it
attempts to take control over the smart relays that reside in that substation [18, 19].
Hacking the operator’s computer may perform this type of attack, that is, stealing
its login credentials, and then through the operators’ computer and substation
communication, the hacker assumes control of the protective relays [20].

The technological success and prevalence of smart power technologies may
facilitate the development of intelligent scientific methods and tools for achiev-
ing effective grid cybersecurity from various perspectives. To that end, research
efforts will contribute in detecting cyberattacks utilizing power consumption and
forecasting information [21]. Intelligent monitoring tools may be connected to a
node of the power grid infrastructure and independently of the wide area monitoring
system (WAMS) obtain and process node data [22]. Hence, nodal analysis of power
information may reveal discrepancies between expected and actual consumption at
that node.

In this work, we study the suitability of load demand information, and we
present “learning from loads” as a method for detecting disturbances in power
systems nodes. In particular, we introduce an intelligent system as a means for
detecting load disturbances at the nodal level. We theorize that an intelligent system
will leverage the non-linear dynamics of the load demand of a very short term
horizon, and that will be adequate to distinguish malicious disturbances from normal
ones. Load demand at the nodal level results from the aggregation of individual
consumer demands. Individual demand exhibits high variance while the aggregation
of multiple demands provides a signal that is smoother. In simple terms we can
say that the greater the number of individual consumers or nodes, the higher the
smoothing of the demand signal. Thus, aggregation poses difficulties in identifying
load disturbances because aggregation may mask the disturbances on a single
individual node. In our work, we implement an intelligent system that utilizes the
synergism of Gaussian process regression (GPR) and fuzzy logic. The GPR is used
for prediction while the fuzzy logic tool makes inferences regarding decisions as to
whether the demand is legitimate or it has been manipulated by an attacker.
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The remainder of this chapter contains five sections. Section 2 briefly introduces
GPR and fuzzy logic inference, while Sect. 3 introduces smart power system and
in particular Energy internet. Section 4 describes the proposed intelligent system.
Section 5 presents the results obtained by applying the intelligent system to a set of
load demand data. At the end, Sect. 6 concludes and summarizes the salient points
of our approach.

2 Background

This section is dedicated in briefly presenting the theoretical foundation underlying
our approach. In particular, the Gaussian Process Regression in the context of kernel
machines will be introduced followed by a short discussion on fuzzy logic inference.
The theory presented in this section will foster the ground for understanding the
proposed intelligent system.

2.1 Gaussian Process Regression

Machine learning has been identified as one of the pillars in developing efficient
data analytics methods and decision support systems. One of the preeminent areas
of machine learning is the class of non-parametric methods called kernel machines.

A kernel machine is any analytical model that is a function of a kernel [23].
A kernel (a.k.a., kernel function) is any valid analytical function that takes the
following form:

k .x1; x2/ D '.x1/T � ' .x2/ (1)

where, ®(x) is called the basis function, and x1, x2 are input values. The inputs to
a kernel may be either both scalar or vector values of equal length. Their range of
values depends on the problem under study, while the kernel output represents the
similarity between the input values. In general, selection of the basis function falls
within responsibilities of the modeler and depends on the specifics of the application
at hand [24]. For instance, the simplest basis function is ®(x) D x and therefore the
respective kernel takes the form given below:

k .x1; x2/ D x1
T � x2 (2)

which is simply known as the linear kernel. It should be noted that formulation of
models using kernels whose form can be determined by the modeler is called the
kernel trick and finds wide use in data analytics and pattern recognition applications
[23].

The class of kernel machines contains the Gaussian processes (GP). Gaussian
processes may be modeled as a function of a kernel. In particular, the kernel
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enters into the Gaussian process formulation through its covariance function. A
kernel-modeled Gaussian process can be used either in classification or regression
problems. In the latter case, it is identified as Gaussian process regression [23].

Likewise Gaussian distribution, a Gaussian process is identified via its two
parameters, namely, the mean function and the covariance function denoted by m(x)
and C(xT,x) respectively. Thus, we get [23]:

GP � N
�
m.x/; C

�
xT ; x

��
: (3)

Derivation of the GPR framework has as a starting point Eq. (3) where we set

m.x/ D 0; (4)

and

C
�
xT ; x

�
D k

�
xT ; x

�
: (5)

Selection of m(x)D0 is a convenient choice, while the covariance function is
replaced by a kernel function [23]. In that way, GPR is transformed into a kernel
machine that may be used in regression problems.

The above GPR formulation necessitates the availability of datasets, i.e., known
targets t for known inputs x (in other words training datasets). The size of the
training population is denoted as N. Thus, we assume that we have N known data
points, which are consolidated in a matrix xN , and we denote a new unknown one
as xNC1. The respective target associated with xNC1 is denoted as tNC1. It should be
noted that GPR considers the joint distribution between the N training data points
and the unknown xNC1 to be s a Gaussian distribution. Based on that assumption,
it has been shown in [25, 26] that GPR provides a prediction interval over the
target tNC1 that is denoted in the form of a predictive distribution. That predictive
distribution is Gaussian with a mean and covariance function given by:

m .xNC1/ D kTC�1
N tN (6)

�2 .xNC1/ D k � kTC�1
N k (7)

with CN being the covariance matrix among the N training data, k being a vector of
covariances between the input xNC1 and the N training data, and k the scalar value
taken as k(xNC1, xNC1) [23].

Thus, kernel selection should be done carefully and with respect to the respective
GPR output. Overall, kernel-based GPR offers flexibility in prediction-making; the
modeler is able to select a kernel among existing ones or compose a new kernel.
Hence, the kernel form can be tailored to the specifics of the prediction problem,
allowing the modeler to have flexibility in the way he builds his prediction model.
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Fig. 2 Example of fuzzy sets pertained to temperatures [0, 100] ıC

2.2 Fuzzy Logic Inference

Fuzzy logic is a branch of artificial intelligence that finds application in data
analytics under vagueness. The strength of fuzzy logic is the representation of
vaguely expressed knowledge via the use of linguistic descriptions. Each linguistic
description is modeled by a fuzzy set [27], which may be seen as an extension of
the classical set theory.

In classical set theory, an object clearly belongs to a set or not. In other words,
crisp sets follow a digital logic, where an object either belongs to a set and take a
value 1 for that set, or does not and takes a value of 0. A fuzzy set defined over a
universe of discourse U is a set whose objects in U belong to the set up to a degree;
the degree values are taken in the interval [0 1]. For instance, an object may belong
to a set A with a degree of membership equal to 0.3 while at the same time it belongs
to the set B with a degree of membership equal to 0.8. It should be noted that crisp
sets may be seed as fuzzy sets whose objects take degrees of membership either 1
or 0.

Evaluation of the degrees of membership is performed via the use of the
membership function. A membership function assigns to each object of the universe
of discourse a number in the interval [0 1] that denotes the degree to which this
object belongs to the set. Figure 2 shows an example where the temperatures [0,
100] ıC are spanned by three fuzzy sets.

The use of fuzzy sets facilitates implementation of fuzzy inference mechanisms
called fuzzy inference. The fuzzy inference mechanism is expressed via the use
of IF..THEN rules, where the IF part contains the conditions, and the THEN part
contains the consequences. For instance, two simple rules may have the following
form:

IF x is A; THEN y is B

IF x is C; THEN y is D
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where A, B, C and D are fuzzy sets. By using the sets in Fig. 2, an example of a
fuzzy controller for a heating system might have the following rules:

IF temperature is LOW; THEN heater intensity is HIGH

IF temperature is MEDIUM; THEN heater intensity is MEDIUM

IF temperature is HIGH; THEN heater intensity is LOW

where, temperature, and heater intensity are called fuzzy variables.
Overall, a fuzzy inference system is comprised of several rules of the above form.

In fuzzy inference systems one or more rules may be fired and therefore a fuzzy
output is taken [28]. In that case, a defuzzifying step is utilized to obtain a single
output value [27, 28]. One of the widest used methods of defuzzification is the center
of area (COA) method whose analytical formula is given below [27]:

y� D

PN
nD1 xn�A .xn/
PN

nD1 �A .xn/
(8)

where y* is the defuzzified output value, and �A(xn) is the degrees of membership
of the input xn to fuzzy set A. The COA may be seen as the weighted average value
of the obtained fuzzy output; in practice it computes the area below the fuzzy output
and finds its mean value.

Fuzzy inference has found various applications and fuzzy systems for developing
decision support systems are under development. The interested reader is advised to
check Ref. [27] for details on fuzzy inference, where several illustrative examples
are described in detail.

3 Smart Power Systems: The Energy Internet Case

This section includes a short introduction of the concept of price-directed smart
power systems and in particular the principle idea of an Energy Internet as proposed
by the Consortium for the Intelligent Management of Electric Grid (CIMEG) [28].
The goal of this section is to provide the general framework of smart power systems
and show the general environment in which the proposed intelligent system is of
practical use.

The Energy Internet exploits advancements of information networks to leverage
energy utilization. Crucial in implementing an Energy Internet are energy anticipa-
tion at consumer and at nodal level, smart meter negotiations, and determination of
real-time price signaling [30]. The general block diagram of a smart power system
developed by CIMEG is presented in Fig. 3. CIMEG models the power grid as a
demand-driven system. It adopts a bottom up approach to determine the global state
of grid health. To that end, CIMEG introduced the notion of a Local Area Grid
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Fig. 3 General framework of Smart Power Systems implemented as an Energy Internet [30]

(LAG) that is characterized as the clustering of several different consumers. A LAG
is responsible for keeping its own stability by taking the necessary actions when
appropriate [6].

We observe in Fig. 3 that the individual consumers provide an anticipation of
their demand for a specific ahead of time horizon. At the same time, suppliers also
anticipate their generated electrical energy for the same time horizon. Both parties,
i.e., consumers and suppliers forward their anticipated signals to the retailers.
Subsequently, the retailer collects the anticipations and by utilizing price elasticity
models determines a price for each of the consumer. Then, the consumer has the
opportunity to negotiate the price with the retailer by altering its initial anticipated
demand [31]. Through negotiations, retailer and consumer come to an agreement.
Once all consumers make an agreement with the retailer, then the generator
schedules the generated energy to meet final demand.

Iteration of the above process may take place at every system operational cycle.
Details on smart power and Energy Internet may be found in references [6, 32, 33].

4 “Learning From Loads” Intelligent System

Having introduced the framework of smart power (energy internet) this section
presents the “learning from loads” system to detecting nodal load disturbances
for enhancing cybersecurity in this framework. In the following subsection, the
proposed methodology as well as the attack scenarios pertained to load disturbances
are presented.

4.1 Intelligent System Architecture

In this section, the intelligent system that makes decisions pertained to nodal load
with respect to cybersecurity is presented. It should be noted that the proposed
intelligent system exploits current as well as future information via the use of
anticipation functions. Anticipation will allow the system to evaluate its future states
compared to what it has seen so up to this point. To that end, a learning from
load demand approach is adopted, and subsequently anticipates the future demand.
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Fig. 4 Block diagram of the proposed learning from loads intelligent system

Anticipation is utilized to evaluate the actual demand and make inferences whether
data have been manipulated or not.

The block diagram of the proposed system is depicted in Fig. 4. We observe
that there are two paths. The first path analyzes recorded data and anticipates future
load, while the second path utilizes the current load. In addition, to the above paths,
we may observe in Fig. 3 that there is a subsidiary path that contains external
information pertained to that specific node. For instance, the price of electricity at
current time.

Load anticipation is performed using kernel modeled Gaussian process regres-
sion, which was introduced in the previous section. The GPR is equipped with a
Gaussian kernel whose analytical form is given below:

k .x1; x2/ D exp

 

�
kx1 � x2k2

2�2

!

(9)

where �2 is a kernel parameter whose value is being determined in the training phase
of the algorithm. The GPR model is trained on previous recorded load demands.
Once the training is finished the GPR is utilized for making prediction of the future
demand. Therefore, we observe that this is the first point at which our system learns
from loads (i.e., past loads).

Further, we observe in Fig. 3 that the information, anticipated, previous and
current loads are fed to a fuzzy inference system [34]. In addition, the external
information is also directly fed to the fuzzy inference system. Overall, it should
be noted that the available information is forwarded to the fuzzy inference.

The fuzzy inference system is comprised of two parts as Fig. 3 depicts. The
first part contains the fuzzy rules utilized for making inference. The fuzzy rules are
predetermined by the system modeler and they take the form of IF.. THEN rules as
shown in Sect. 2 as well. The left-hand side of the rules, i.e., conditions, may be
refer to anticipated load or current load. In particular, the rules for anticipated load
have the following general form:

IF Future Load will be AF.t/; THEN Confidence of Compromise is B.t/
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Fig. 5 Fuzzy sets for fuzzy variable Future Load

where the fuzzy variable is Future Load and AF denotes the fuzzy values (see Fig. 5)
while the rules for current load have the form:

IF Current Load is A.t/; THEN Confidence of Compromise is B.t/:

with Current Load being the fuzzy variable in that case (see Fig. 6).
In addition, we defined a new fuzzy variable which is equal to the absolute

difference between the Anticipated Load and the Actual Load of the same time
interval, i.e.:

Difference D j Anticipated Load– Actual Load j

where the variable Difference is actually the fuzzified value obtained by subtraction
of anticipated and actual load. This fuzzy variable will allow to measure how much
was the inconsistency between the anticipated and the actual load over the same time
interval. It should be noted that the actual load is different from the current load. The
current load exhibits the current load demand while the actual load variable refers
to the actual demand for the time interval that the anticipation was made. This is a
fundamental inference variable given that the offset between anticipation and actual
may “reveal” the presence of a threat or not.

Lastly, we model the current prices of electricity as external information. The
presented intelligent system aspires to be deployed in smart power environment
(energy internet) and therefore price will play an important role in justifying load
disturbances. The price will show the willingness of the consumer to change its
consumption. For instance, an attacker will increase the load demand no matter how
high the prices are; that can be used as an indicator to identify potential attackers.
The rules pertained to price have the following form:
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Fig. 6 Fuzzy sets for fuzzy variable Current Load

Fig. 7 Fuzzy sets for fuzzy variable Difference

IF Price is A.t/; THEN Confidence of Compromise is C.t/:

Additionally, it should be noted that as an external information we consider:
(1) the average current load that we observe for that node, and (2) the average
anticipated load that the GPR provides. These values may be found by keeping
record of previous values.

Figures 5, 6, 7, and 8 provide the fuzzy sets of the fuzzy variables Future Load,
Current Load, Difference, and Price respectively, while Fig. 9 depicts the fuzzy sets
of the Confidence of Compromise variable (the confidence scale is in interval [0 1]).
The fuzzy inference overall was comprised of 20 fuzzy rules and was implemented
in Matlab software.
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Fig. 8 Fuzzy sets for fuzzy variable Price

Fig. 9 Fuzzy sets for fuzzy variable Current Load

The second part of the fuzzy inference systems includes the defuzzification part.
The defuzzification uses the center of area method [27] whose form is given in
Eq. (8). The defuzzification provides a crisp output that is also the final output of
the system. The output value is the confidence of compromise pertained to load
disturbances for that node. The value of the confidence may support the power
system operators and security engineers to make decisions whether there is cyber-
attack pertained to load demand.

4.2 Type of Threats for Nodes of Smart Power Systems

The experience of cyberattack in the Ukrainian power system in December 2015,
proved that the tactical preparation of the cyber-attackers maybe well defined and
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planned over a long time. Furthermore, the attackers may show patience, perform
long term reconnaissance and follow a carefully planned series of actions. Given
that smart power systems are heavily dependent on the utilization of information,
the cyberattacks may also involve a significant deal of grid congestion by increasing
nodal load demand.

The scenario that we examine in this work is the following:

– A cyberattacker wants to cause a blackout in a part of the grid. One way to
achieve this is by destabilizing one of the grid nodes. Destabilzation can be done
by increasing the demand beyond the capacity limits of the node. Therefore, the
node will become nonoperational and the power delivery will fail at that point.
In addition, if that node is at the backbone of the grid then it may propagate the
problem to the rest of the grid.

– A simple way to cause this type of attack is to compromise the intelligent meters
of several consumers that are connected to that node. As we noted, in the vision
of Energy Internet the consumer negotiates with the retailer. Negotiations may
be undertaken by the attacker with the consumer having no knowledge about it.
Overall, by taking into control several of the consumers the attacker may cause a
blackout in the node.

In the next section, the above scenario will be employed in a real case scenario.
Nodal demand from real-world datasets will be used as our test scenario. The
intelligent system will be utilized to analyze the load (current and anticipated) and
output a confidence value whether there is manipulated increase in load demand.

5 Results

In this section, we test the proposed intelligent system on a set of real world data.
The datasets contain the hourly values of loads and energy prices within the smart
grid system, for one day before the targeted day. For visualization purposes the
actual demand signal is given in Fig. 10.

The goal is detect whether the security status of a node in the grid was
compromised. We assume that load demands are recorded every hour. Therefore,
the GPR model is utilize for anticipating the load for the next hour. The predicted
signal is depicted in Fig. 11. It should be noted that the training of the GPR was
performed by utilizing the demand data of one and two days before the targeted day.

In our work, we tested our intelligent system on the following scenarios:

(1) No compromise has occurred.
(2) From 12.00 pm to 15.00 pm, the node is compromised and 10% increase in

demand is presented
(3) From 12.00 pm to 15.00 pm, the node is compromised and 50% increase in

demand is presented



236 M. Alamaniotis and L.H. Tsoukalas

Fig. 10 Actual Demand signal for the tested day

Fig. 11 Anticipated by GPR signal for the tested day

(4) From 12.00 pm to 15.00 pm, the node is compromised and 75% increase in
demand is presented

(5) From 12.00 pm to 15.00 pm, the node is compromised and 90% increase in
demand is presented.

The presented intelligent system is applied in the above scenarios and a degree
of confidence per hour is taken. The respective degrees of confidence are given
in Table 1. We observe in Table 1, that in the majority of the cases the intelligent
system provides low confidence with regard to confidence of compromise. The value
is not zero, mainly because of the uncertainty in load prediction and the volatility of
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Table 1 Results obtained for the five tested scenarios

Confidence of compromise
Time Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

12.00 am 0.20 0.20 0.20 0.20 0.20
1.00 am 0.20 0.20 0.20 0.20 0.20
2.00 am 0.20 0.20 0.20 0.20 0.20
3.00 am 0.20 0.20 0.20 0.20 0.20
4.00 am 0.20 0.20 0.20 0.20 0.20
5.00 am 0.20 0.20 0.20 0.20 0.20
6.00 am 0.20 0.20 0.20 0.20 0.20
7.00 am 0.20 0.20 0.20 0.20 0.20
8.00 am 0.20 0.20 0.20 0.20 0.20
9.00 am 0.20 0.20 0.20 0.20 0.20
10.00 am 0.20 0.20 0.20 0.20 0.20
11.00 am 0.20 0.20 0.20 0.20 0.20
12.00 pm 0.20 0.31 0.74 0.80 0.88
1.00 pm 0.20 0.35 0.74 0.82 0.90
2.00 pm 0.20 0.31 0.72 0.80 0.88
3.00 pm 0.20 0.31 0.72 0.80 0.88
4.00 pm 0.20 0.20 0.20 0.20 0.20
5.00 pm 0.20 0.20 0.20 0.20 0.20
6.00 pm 0.20 0.20 0.20 0.20 0.20
7.00 pm 0.20 0.20 0.20 0.20 0.20
8.00 pm 0.20 0.20 0.20 0.20 0.20
9.00 pm 0.20 0.20 0.20 0.20 0.20
10.00 pm 0.20 0.20 0.20 0.20 0.20
11.00 pm 0.20 0.20 0.20 0.20 0.20

prices, as well as in the defuzzificaton method. The center of area method does not
get the extreme values (0 and 1). However, a low confidence is an adequate sign to
make the operator believe that there is no cyberattack. Though there is no specific
decision threshold, any confidence value above 0.7 denotes a certain occurrence of
node compromise.

Regarding the scenarios that we have intentionally increased the demand follow-
ing the goal of the attack (to make the node blackout), we observe the result in the
shaded area at the center of Table 1. We observe in scenario 2 that the confidence
slightly increases. This increase is very small and therefore the operator may ignore
it. However, the amount of load that was compromised is only 10% and thus we
assume that this is not enough to cause serious problem to that node. Overall, this
compromise may not be detected; however, the goal of the system is to support
stakeholders in decision-making tasks, rather than making the actual decisions.
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With regard to scenarios 3,4 and 5 the confidence increases above 0.7 and
therefore we can consider that a cyberattack has been detected with high confidence.
Such high confidence is a serious indicator that something is wrong, and the demand
increased beyond the regular one. Therefore, it safe to conclude that the intelligent
system presented detects the threat in those cases with high confidence and hence,
it supports the correct decision by the operator.

6 Conclusions

Smart power systems are systems that integrate power with information, and as a
result may become targets for cyberattackers. The importance of the power grid
for innumerable everyday activities and modern life makes the defense of the
grid mandatory. In addition, recent recorded attacks showed that cyberattacks may
be carefully planned and not just opportunistic cases for attackers to show off.
Therefore, every aspect of smart power systems should be secured.

Intelligent systems offer new opportunities for implementing new decision
support and data analysis methods that mimic the way of human system operators.
In this work, we examined the case in which the attacker plans to congest a power
grid node by increasing the demand and causing a blackout. An intelligent system
that learns from load signals by utilizing GPR and fuzzy inference was developed
and applied on a set of five different scenarios. The results were encouraging: the
higher the “compromised demand” the higher the degree of confidence that the
system is being compromised provided by our system. Therefore, our system shows
a high potential for its deployment into smart power systems, and in particular for
an Energy Internet scenario is high.

Future work will contain two main directions. In the first direction, we will
explore the use of other kernel function beyond the Gaussian kernel for prediction
making in the GPR model. In particular, we will apply a variety of kernels on load
data from coming from different nodes, and record their performance. Analysis of
records will be used to develop a system for indicating the best kernel for each
node. In the second direction, we will extensively test our intelligent systems in a
higher variety of data including data of nodes from different geographical areas, and
different assembly of customers.
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