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Abstract An intrusion detection system has become a vital mechanism to detect
a wide variety of malicious activities in the cyber domain. However, this system
still faces an important limitation when it comes to detecting zero-day attacks,
concerning the reduction of relatively high false alarm rates. It is thus necessary to
no longer consider the tasks of monitoring and analysing network data in isolation,
but instead optimise their integration with decision-making methods for identifying
anomalous events. This chapter presents a scalable framework for building an
effective and lightweight anomaly detection system. This framework includes three
modules of capturing and logging, pre-processing and a new statistical decision
engine, called the Dirichlet mixture model based anomaly detection technique. The
first module sniffs and collects network data while the second module analyses and
filters these data to improve the performance of the decision engine. Finally, the
decision engine is designed based on the Dirichlet mixture model with a lower-
upper interquartile range as decision engine. The performance of this framework
is evaluated on two well-known datasets, the NSL-KDD and UNSW-NB15. The
empirical results showed that the statistical analysis of network data helps in
choosing the best model which correctly fits the network data. Additionally, the
Dirichlet mixture model based anomaly detection technique provides a higher
detection rate and lower false alarm rate than other three compelling techniques.
These techniques were built based on correlation and distance measures that
cannot detect modern attacks which mimic normal activities, whereas the proposed
technique was established using the Dirichlet mixture model and precise boundaries
of interquartile range for finding small differences between legitimate and attack
vectors, efficiently identifying these attacks.
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1 Introduction

In the cyber security field, an Intrusion Detection System (IDS) is essential for
achieving a solid line of defence against cyber intrusions. The digital world has
become the principal complement to the physical world because of the widespread
usage of computer networks and prevalence of programs and services which easily
accomplish users’ tasks in a short time at a low cost. A system is considered secure if
the three principles of computer security, Confidentiality, Integrity and Availability
(CIA), are successfully satisfied [38, 43]. Hackers always endeavour to violate these
principles, with each attack type having its own sophisticated manner and posing
serious threats to computer networking.

An Anomaly-based Detection System (ADS), a specific methodology of IDS
discussed in Sect. 2, still faces two problems for implementation in large-scale
industrial applications [2, 7, 39], such as cloud computing [30] and SCADA
systems [16]. Firstly, and most importantly, the construction of a profile from
various legitimate patterns is extremely difficult because of the frequent changes
of the normal data [2, 34, 47]. Secondly, the process of building a scalable, adaptive
and lightweight detection method is an arduous task with the high speeds and large
sizes of current networks [39, 47].

ADS methodologies have been developed using approaches involving data
mining and machine learning, artificial intelligence, knowledge-based and statistical
models [7, 34, 39]. Nevertheless, usually, these proposed techniques have produced
high False Positive Rates (FPRs) because of the difficulty of designing a solution
which solves the above problems. Recent research studies [27, 34, 41, 44, 47]
have focused on statistical models due to the ease of concurrently employing
and determining the potential properties of both normal and abnormal patterns of
behaviour. Discovering these properties and characterising a certain threshold for
any detection method to correctly detect attacks requires accurate analysis.

Both network and host systems have multiple devices, software, sensors, plat-
forms and other sources connected together to deliver services to users and organ-
isations anytime and anywhere. In addition, these systems monitor the demands
from such organisations by using Big Data analytical techniques and tools to
carefully provide decision support for distinguishing between normal and anoma-
lous instances. For these reasons, the capture and processing of these data are
dramatically increasing in terms of ‘volume’ , ‘velocity’ and ‘variety’ , which are
referred to as the phenomena of ‘Big Data’ [53]. The Big Data paradigm poses a
continuous challenge in the use of network or host data sources for the design of an
effective and scalable ADS.

Monitoring and analysing network traffic have attained growing importance for
several reasons. Firstly, they increase visibility to the user, system and application
traffic by gathering and analysing network flow records which also helps to track
the bandwidth consumption of users and systems to ensure robust service delivery.
Secondly, they identify performance bottlenecks and minimising non-business
bandwidth consumption. Thirdly, there are advantages related to IDS technology,
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which are the tracking of network traffic using protocol analysis for recognising
potential attack profiles, such as UDP spikes. Finally, they monitor network traffic,
peer-to-peer protocols and URLs for a specific device or network to determine
suspicious activities and unauthorised access [5].

In the literature, if data does not fit a normal distribution, it will be better
to fit and detect outliers/anomalies using mixture models, especially Gaussian
Mixture Model (GMM), Beta Mixture Model (BMM) or Dirichlet Mixture Model
(DMM) [15, 17, 34, 50]. According to [17, 18, 21], the DMM can fit and define
the boundaries of data better than other mixture models because it consists of a set
of probability distributions. Moreover, the DMM is more suitable for modelling
streaming data, for example, data originating from videos, images, or network
traffic. The mathematical characteristics of the DMM also permit the representation
of samples in a transformed space in which features are independent and identically
distributed (i.i.d.). In the case of high dimensionality, the DMM for clustering data
provides higher accuracy than other mixture models [9]. Therefore, we use this
model to properly fit network data using the lower-upper Interquartile Range (IQR)
[40] as a threshold to detect any observation outside them as an anomaly.

In this chapter, we propose a scalable framework for building an effective and
lightweight ADS that can efficiently identify suspicious patterns over network
systems. The framework consists of a capturing and logging module to sniff and
record data, a pre-processing module to analyse and filter these data and the
proposed ADS statistical decision engine, based on the DMM, for recognising
abnormal behaviours in network systems.The DMM model is a statistical technique
developed based on the method of anomaly detection which computes the density
of Dirichlet distributions for the normal profile (i.e., the training phase) and testing
phase (using the parameters estimated from the training phase). The decision-
making method for identifying known and new anomalies is designed by specifying
a threshold of the lower-upper IQR for the normal profile and considering any
deviation from it as an attack.

The performance of this framework is evaluated on two well-known datasets,
the NSL-KDD1, which is an improved version of the KDD99 and the most popular
dataset used for evaluating IDSs [48], and our UNSW-NB152 which involves a wide
variety of contemporary normal, security and malware events [34]. The Dirichlet
mixture model based anomaly detection technique is compared with three recent
techniques, namely the Triangle Area Nearest Neighbours (TANN) [49], Euclidean
Distance Map (EDM) [46] and Multivariate Correlation Analysis (MCA) [47].
These techniques were developed based on computing distances and correlations
between legitimate and malicious vectors, which cannot often find a clear difference
between these vectors, especially with modern attack styles that mimic normal ones.

1The NSLKDD dataset, https://web.archive.org/web/20150205070216/http://nsl.cs.unb.ca/NSL-
KDD/, November 2016.
2The UNSW-NB15 dataset, https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/
cybersecurity/ADFA-NB15-Datasets/, November 2016.

https://web.archive.org/web/20150205070216/http://nsl.cs.unb.ca/NSL-KDD/
https://web.archive.org/web/20150205070216/http://nsl.cs.unb.ca/NSL-KDD/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
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However, our technique was established using the methods of the Dirichlet mixture
model and the accurate boundaries of interquartile range that properly find the small
differences between these vectors, considerably improving the detection accuracy.

The key contributions of this chapter are as follows.

1. We propose a new scalable framework for anomaly detection system on large-
scale networks. In this framework, we also develop a novel decision engine
based on the Dirichlet Mixture Model and lower-upper Interquartile Range to
efficiently detect malicious events.

2. We describe how statistical analysis can define the normality of network data
to choose the proper model that correctly fits the data and make an intelligent
decision-making method which discriminates between normal and abnormal
observations.

3. A performance evaluation of this framework is conducted on two benchmark
datasets: the NSL-KDD which is the most common dataset and UNSW-NB15
which is the latest dataset used for assessing IDSs, as well as comparing this
technique with three existing techniques to assess its reliability for detecting
intrusions.

The rest of this chapter is organised as follows. The background on Intrusion and
Anomaly Detection Systems are presented in Sect. 2. Section 3 describes related
work on decision engine approaches. The DMM-based technique is explained in
Sect. 4 and the proposed scalable framework discussed in Sect. 5. The experimental
results and discussions are provided in Sect. 6. Finally, concluding remarks are
presented in Sect. 7.

2 Background on Intrusion and Anomaly Detection Systems

An Intrusion Detection System (IDS) is defined as a technique for monitoring host
or network activities to detect possible threats by measuring their violations of
Confidentiality, Integrity and Availability (CIA) principles [6, 42, 43]. There are two
types of IDSs depending on the data source: a host-based IDS monitors the events of
a host by collecting information about activities which occur in a computer system
[51] while a network-based IDS monitors network traffic to identify remote attacks
that take place across that network [11, 38].

IDS methodologies are classified into three major categories: Misuse-based
(MDS); Stateful Protocol Analysis (SPA); and ADS [29, 38]. A MDS monitors host
or network data audits to compare observed behaviours with those on an identified
blacklist. Although it offers relatively high Detection Rates (DRs) and low FPRs,
it cannot identify any zero-day attack. Also, it requires a huge effort to regularly
update the blacklist which is a set of rules for each malicious category generated by
security expertise [47]. A SPA inspects protocol states, especially a pair of request-
response protocols, for example, HTTP ones. Although it is quite similar to an
ADS, it depends on vendor-developed profiles for each protocol. Finally, an ADS
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establishes a normal profile from host or network data and discovers any variation
from it as an attack. It can detect existing and new attacks, as it does not require any
effort to generate rules, an ADS has become a better solution than MDS and SPA
[13, 34, 38, 43]. However, it still has some challenges, as explained in Sect. 2.2, that
we will try to mitigate.

An IDS’s deployment architecture is classified as either distributed or centralised.
A distributed IDS is a compound system involving several intrusion detection sub-
systems installed at different locations and connected in order to transfer relevant
information. In contrast, a centralised IDS is a non-compound system deployed
at only one location, with its architecture dependent on an organisation’s size and
sensitivity of its data which should be considered in terms of its deployment [28].

2.1 ADS Components

A typical ADS contains four components, a data source, a data pre-processing
module, a decision engine technique and a defense response module [13, 34], as
depicted in Fig. 1 and described in detail below.

• Data source module—This component is an essential part of any ADS that
provides the potential host or network audit data to enable the DE to classify
observations as either normal or attack [33]. Several data sources have been
collected in offline datasets, such as the KDD CUP 99, NSL-KDD and UNSW-
NB15, which consist of a wide variety of normal and malicious records for
evaluating the performance of DE approaches. With the high speeds and large
sizes of current communication systems, each data source has big data terms, i.e.,
a large volume, velocity and variety. Therefore, it is vital to design an effective
and scalable ADS which can handle such data and make the correct decision
upon the detection of malicious observations.

Fig. 1 Components of ADS
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• Data pre-processing module—Data pre-processing is an important stage in any
framework involving learning from data, as it handles and filters the input audit
data by removing duplicated, irrelevant and/or noisy features to create a set of
patterns that are then passed to the DE with the aim of improving the performance
of that DE for detecting anomalous activity. It includes the following set of
functions.

– Feature creation—Feature creation constructs a set of features/attributes
from host or network data using different tools, for instance, BRO-IDS,
Netflow and Netmate. It is impossible to operate an IDS on raw data without
mining a subset of features, such as the attributes in the NSL-KDD and
UNSW-NB15 datasets.

– Feature reduction—The function of feature reduction is to exclude unneces-
sary and duplicated attributes, and can be divided into feature selection and
feature extraction methods. The first finds a subset of the original features and
the second transforms the data from a high- to lower-dimensional space, such
as using Principal Component Analysis (PCA) [12].

– Feature conversion—The function of feature conversion is to convert feature
types, which can be numeric or symbolic, into numeric values for ease of
use in decision engine approaches as data analytics and statistical decision
engine cannot use symbolic features to define data patterns.

– Feature normalisation—Feature normalisation is a measure for scaling data
features into a particular range, for example, [0,1], and is important for
eliminating bias from raw data without modifying the statistical properties
of the attributes.

• DE module—Intuitively, the decision engine is responsible for a critical stage,
which is the design of an effective and efficient system for discovering intrusive
activities in large-scale data in real time. Selecting the appropriate functions for
a DE approach, and its training and testing phases, contributes to measuring the
effectiveness of an IDS as, if it is not performed properly, the overall protection
level will be easily compromised.

• Security response module—This module aims at indicating and explaining a
decision taken by the system or administrators to prevent attack activities. More
specifically, if a malicious event is detected, an alert will be raised to the security
administrator for preventing this event.

2.2 ADS Challenges

Although a MDS cannot recognise zero-day attacks or even variants of existing
attacks, it is still a common defence solution used in commercial products. On the
contrary, an ADS can detect serious threats but has often been faced with potential
challenges for its effective design. These challenges could be explored using an
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anomaly-based method, which is the construction of a purely normal profile with
any variation from it declared an anomaly [24, 30, 37, 53], as follows.

• Establishing a profile which includes all possible normal patterns is very complex
to achieve, as the boundary between normal and suspicious activities is always
inaccurate. There are False Positive Rate (FPR) and False Negative Rate (FNR)
errors which occur when a normal behaviour falls in an attack region (i.e. it is
classified as an attack) and a malicious behaviour in a normal region, respectively.

• When designing the architecture of an adaptive and scalable ADS, it requires a
careful analysis to discriminate attacks from the normal profile as sophisticated
malicious activities, such as stealth and spy attacks [20], can adapt to be almost
the same as normal patterns. Consequently, methods for detecting them have to
analyse and inspect the potential characteristics of the network traffic.

• Real-time detection is also very challenging for reasons which increase its pro-
cessing time and false alarm rate if not properly addressed. Firstly, the features
created for network traffic may contain a set of noisy or irrelevant features.
Secondly, the lightweight detection methods need to be carefully adopted, with
respect to the above problems.

• Obtaining a decent-quality dataset is usually a major concern for evaluating,
learning and validating ADS models. It should have a wide range of modern
normal and malicious observations as well as being correctly labelled. This
requires a huge effort of analysing the data in order to ensure establishing an
authentic truth table, which has the security events and malware for the correct
labelling process.

• The deployment of an ADS architecture is often difficult in large-scale environ-
ments, in particular, cloud computing and SCADA systems, have multiple nodes
which could be either centralised or distributed. Also, the high speeds and a large
amount of data transferring between these nodes often affect the performance of
an ADS.

2.3 ADS Deployment in Enterprise Systems

With the new era of the Internet of Things (IoT), which is the networked inter-
connections of everyday objects often associated with their ubiquitous use, many
applications and systems need to be protected against intrusive activities. As cloud
computing environments and Supervisory Control and Data Acquisition (SCADA)
systems are currently fully dependent on the Internet, they require an adaptable
and scalable ADS for identifying the malicious events they frequently face. Cloud
computing is a “network of networks” based on Internet services in which virtual
shared servers provide the software, platform, infrastructure and other resources
[3]. It consists of the three service models Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS) [30]. To detect attacks, an
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IDS can be installed on a virtual server as a host-based IDS or deployed across the
network as a network-based IDS or, by configuring both, provide a better defence.

SCADA systems monitor and control industrial and critical infrastructure func-
tions, for example, water, electricity, railway, gas and traffic [16]. Like the cloud
computing environment, with the rapid increase in the Internet and interconnected
networks, these systems face complicated attacks, such as DoS and DDoS, which
highlight the need for stronger SCADA security. However, designing the archi-
tecture and deployment of an adaptive and scalable ADS for these environments
has become a big challenge because the high speeds and large sizes of existing
networks generate a massive number of packets each time, and those packets should
be inspected simultaneously in order to identify malicious activities.

3 Related Work on Decision Engine Approaches

Many researchers have investigated decision engine approaches, which can be cate-
gorised into five types: classification-based approaches [7, 10, 13]; clustering-based
approaches [2, 7, 13, 17]; knowledge-based approaches [7, 10, 13]; combination-
based approaches [7, 11, 13, 52]; and statistical-based approaches [7, 13, 34, 47], as
illustrated in Table 1. Firstly, classification is a way of categorising data observations
in particular classes in a training set with a testing set containing other instances for
validating these classes; for instance, Horng et al. [23] proposed a Network-based
ADS which included a hierarchical clustering and support vector machine to reduce
the training time and improve detection accuracy. Ambusaidi et al. [4] developed a
least-square support vector machine for the design of a lightweight Network-based
ADS by selecting the significant features of network data and detecting anomalies.
Recently, Dubey et al. [14] developed a Network-based ADS based on the collection
techniques of an artificial neural network, k-means and Naïve-Bayes to improve the
detection of malicious activities. However, overall, classification-based IDSs rely
heavily on the assumption that each classifier has to be adjusted separately and
always consume more resources than statistical techniques.

Secondly, clustering involves unsupervised machine-learning algorithms which
allocate a set of data points to groups based on the similar characteristics of the
points, for example, distance or probability measures. Nadiammai et al. [35] anal-
ysed and evaluated k-means, hierarchical and fuzzy c-means clustering techniques
for building a Network-based ADS and reported that the complexity and detection
accuracy of the fuzzy c-means algorithm were better than those of the others.
Jadhav et al. [25] proposed a Network-based ADS based on clustering network
packets and developed a new data pre-processing function using the fuzzy logic
technique for classifying the severity of attacks in network traffic data. Zainaddin
et al. [52] proposed a hybrid of fuzzy clustering and an artificial neural network
to construct a Network-based ADS which efficiently detected malicious events.
Clustering-based ADS techniques have several advantages. Firstly, they group data
points in an unsupervised manner which means that they do not need to provide
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Table 1 Comparison of decision engine approaches

Decision engine
approaches Related works Advantages Disadvantages
Classification Horng et al. [23],

Ambusaidi et al. [4],
Dubey et al. [14]

• Provide higher detec-
tion rate and lower
false positive rate if
the network data is
correctly labelled

• Depend on the assump-
tion that each classifier
has to be built sepa-
rately

• Consume more com-
putational resources

Clustering Nadiammai et al.
[35], Jadhav et al.
[25], Zainaddin et
al. [52]

• Group data with no
need to the class label

• Decrease processing
times

• Rely on the efficiency
of building a normal
profile

• Require a higher time
while updating this
profile

Knowledge Naldurg et al. [36],
Hung et al. [24]

• Discriminate existing
attacks

• Provide higher detec-
tion rate

• Take too much time
during the processing

• Use static rules for
defining malicious pat-
terns

Combination Perdisci et al. [37],
Aburomman et al.
[1], Shifflet [45]

• Achieve higher accu-
racy and detection

• Demand only a set
of controlling param-
eters to be adjusted

• Need a huge effort to
integrate some tech-
niques

• Take a long processing
time than other tech-
niques

Statistics Fan et al. [17],
Greggio [18],
Zhiyuan et al. [47]

• Accomplish
higher accuracy and
detection if a base-
line of identifying
attacks correctly ada-
pted

• Do not consume
resources like other
techniques

• Require accurate anal-
ysis to select the cor-
rect baseline

• Need new functions to
define attack types

class labels for observations. Secondly, they are effective for grouping large datasets
into similar groups to detect network anomalies. However, in contrast, clustering is
highly dependent on the efficacy of constructing a normal profile and the difficulty
of automatically updating it.

Thirdly, knowledge-based methods establish a set of patterns from input data
to classify data points with respect to class labels, with common knowledge-based
ADSs rule-based, expert systems and ontologies. Naldurg et al. [36] suggested a
framework for intrusion detection using temporal logic specifications with intrusion
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patterns formulated in a logic structure called EAGLE. It supported data values
and parameters in recursive equations and enabled the identification of intrusions
with temporal patterns. Hung et al. [24] presented an ontology-based approach for
establishing a Network-based ADS according to the end-users’ domain in which,
as ontologies were applied as a conceptual modelling technique, a Network-based
ADS could be simply built. Knowledge-based algorithms have some advantages.
They are sufficiently robust and flexible to detect existing attacks in a small-scale
system and achieve a high DR if a significant knowledge base about normal and
abnormal instances can be correctly extracted. Conversely, they have FPRs due to
the unavailability of biased normal and intrusion audit data and cannot identify rare
or zero-day anomalies, and dynamically updating their rules is difficult.

Fourthly, combination-based techniques use many methods to effectively classify
data instances, with most used for ADSs ensemble- and fusion-based techniques; for
instance, Perdisci et al. [37] established a high-speed payload Network-based ADS
based on an ensemble of one-class support vector machine for improving detection
accuracy. Aburomman et al. [1] suggested an ensemble method which used PSO-
generated weights to build a hybrid of more accurate classifiers for a Network-based
ADS created based on local unimodal sampling and weighted majority algorithm
approaches to improve the accuracy of detecting attacks. Shifflet [45] discussed a
platform which enabled a hybrid of classification techniques to be executed together
to build a fusion mechanism for the state of a network that was capable of efficiently
detecting anomalous activities. Combination-based methods are advantageous as
they achieve higher accuracy and detection rate than single ones while requiring
a set of controlling parameters that can be easily adjusted. However, adopting a
sub-set of consistent and unbiased classification techniques is difficult because it
depends on using a hybridisation measure to combine them. Also, it is evident that
their computational costs for large amounts of network traffic data are high due to
the number of classifiers used.

Finally, in statistical-based approaches, an anomaly is a rare event which occurs
among natural data ones and is measured by statistical methods which could be
of the first order, such as means and standard deviations, second order, such as
correlation measures, or third order, such as hypothesis testing and mixture models;
for example, Fan et al. [17] developed an unsupervised statistical technique for
identifying network intrusions in which legitimate and anomalous patterns were
learned through finite generalised Dirichlet mixture models based on a Bayesian
inference, with the parameters of the models and saliency of features simultaneously
estimated. Greggio [18] designed a Network-based ADS based on the unsupervised
fitting of network data using a Gaussian Mixture Model which selected the
number of mixture components and fit the parameter for each component in a real
environment. They extended their study to provide an efficient method for the varied
learning of finite Dirichlet mixture models to design a Network-based ADS. This
approach was based on the establishment and optimisation of a lower boundary for
the likelihood of the model by adopting factored conditional distributions through
its variables.
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Overall, although ADS statistical-based approaches can analyse and determine
the potential characteristics of normal and abnormal observations, identifying them
and defining a certain baseline which distinguishes between normal and abnormal
instances need accurate analysis. Therefore, we propose the methodology of the
Dirichlet mixture model with the precise boundaries of interquartile range function
as a decision engine. This is one of the statistical approaches that can define
the inherent patterns of both legitimate and malicious features and observations,
finding a clear variation between these observations. However, the other approaches
often depend on many internal processes with a kernel function(s) that have to be
adjusted for each problem. The main motivation for selecting this methodology is
that statistical analytics of network data have shown that these data do not belong
to a Gaussian distribution [17, 34]. Therefore, it is better to apply non-Gaussian
distributions, such as Dirichlet mixture model to correctly fit network data using the
lower-upper interquartile range function to detect any observation outside this range
as an outlier/anomaly.

4 DMM-Based ADS Technique

This section describes the mathematical aspects of estimating and modelling data
using the DMM, and discusses the proposed methodology for using this model to
build an effective ADS.

4.1 Finite Dirichlet Mixture Model

Because a finite mixture model can be considered a convex combination of two
or more Probability Density Functions (PDFs), the joint properties of which can
approximate any arbitrary distribution, it is a powerful and flexible probabilistic
modelling tool for handling multivariate data, such as network data [54]. A finite
mixture of Dirichlet distributions with K components is shown in Fig. 2 and is given
by [8, 18]

p.Xj�; ˛/ D
KX

iD1

�iDir.Xj˛i/ (1)

where � D .�1; : : : ; �K) refers to the mixing coefficients, which are positive, with
their summation 1,

PK
iD1 �i,˛ D .˛1; : : : ; ˛K/, and Dir.Xj˛i/ indicates the Dirichlet

distribution of component i with its own positive parameters (˛ D .˛i1; : : : ; ˛iS)) as
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Fig. 2 Finite mixture model

Dir.Xj˛i/ D � .
PS

sD1 ˛is/QS
sD1 � .˛is/

SY

sD1

X˛is�1
s (2)

where X D .X1; : : : ; XS/, S is the dimensionality of X and
PS

sD1 xs D 1, 0 � Xs � 1

for s D 1; : : : ; S. It is worth noting that a Dirichlet distribution is used as a parent
distribution to directly model the data rather than as a prior to the multinomial.

Considering a set of N independent identically distributed (i:i:d) vectors .X D
fX1; : : : ; XNg/ assumed to be produced from the mixture distribution in Eq. (1), the
likelihood function of the DMM is

p.Xj�; ˛/ D
NY

lD1

f
KX

iD1

˘iDir.Xlj˛i/g (3)

The finite mixture model in Eq. (1) is considered as a latent variable model.
Therefore, for each vector .Xi), we introduce a K-dimensional binary random vector
.Zi D fZ; : : : ; ZiKg/, where Zis 2 f0; 1g,

PK
iD1 and Zis D 1 if Xi belongs to

component i, otherwise 0. For the latent variables .Z D fZ1; : : : ; ZNg/, which are
actually hidden ones that do not appear explicitly in the model, the conditional
distribution of Z given the mixing coefficients .�/ is defined as

p.Zj�/ D
NY

lD1

KY

iD1

�
Zli
i (4)

Then, the likelihood function with the latent variables, which is actually the
conditional distribution of a dataset L given the class labels, Z can be written as

p.Xj�; ˛/ D
NY

lD1

KY

iD1

Dir.Xlj˛i/ (5)
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Given a dataset L has a set of features D, an important problem is the learning
process of the mixture parameters, that is, both estimating the parameters and select-
ing the number of components .K/. In order to estimate these parameters and select
the number of components correctly, we apply the Maximum Likelihood (ML)
proposed in [30]. We suggest a new DMM for designing an ADS, namely DMM-
ADS, in which includes training and testing phases for learning and validating
network data. In the training phase, the DMM parameters and IQR are estimated to
construct a normal profile, with abnormal instances identified in the testing phase,
as detailed in the following two sections.

4.2 Training Phase of Normal Instances

The construction of a purely normal training set is extremely vital to ensure
correct detection. Given a set of normal instances .rnormal

1Wn / in which each record
comprises a set of features D, where rnormal

1Wn D fx1; x2; : : : ; xDgnormal, the normal
profile includes only statistical measures from rnormal

1Wn . They include the estimated
parameters .�; ˛; Z/ of the DMM to compute the PDF of the Dirichlet distribution
.Dir.Xj�; ˛; Z// for each observation in the training set.

Algorithm 1 involves the proposed steps for establishing a normal profile (pro),
with the parameters .�; ˛; Z/ of the DMM computed for all the normal observations
.rnormal

1Wn / using the equations published in [30], and then the PDFs of the attributes
.X1WD/ calculated using Eqs. (1)–(5). Next, the IQR is computed by subtracting
the first quartile from the third quartile of the PDFs [40] to establish a thresh-
old for recognising abnormal instances in the testing phase. It is acknowledged
that quantiles are dividing a range of data into contiguous intervals with equal
probabilities [40].

Algorithm 1: Normal profile construction of normal instances

Input: normal instances (rnormal
1Wn )

Output: normal profile (pro)
1: for each record i in .rnormal

1Wn / do
2: estimate the parameters (�i; ˛i; Zi) of the DMM as in [29]
3: calculate the PDFs using equations (1) to (5) based on the estimated parameters of

Step 2
4: end for
5: compute lower D quantile.PDFs; 1/

6: compute upper D quantile.PDFs; 3/

7: compute IQR D upper � lower
8: pro (.�; ˛i; Zi),.lower; upper; IQR/)
9: return pro
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Algorithm 2: Testing phase and decision-making method

Input: observed instance (rtesting), pro
Output: normal or attack

1: calculate the PDFtesting using equations using the parameters .� i; ˛i; Zi/

2: if .PDFtesting < .lower–w � .IQR// jj (PDFtesting > .upperC w � .IQR// then
3: return attack
4: else
5: return normal
6: end if

4.3 Testing Phase and Decision-Making Method

In the testing phase, the Dirichlet PDF .PDFtesting/ of each observed record
.rtesting/ is computed using the same parameters estimated for the normal profile
(.�; ˛i; Zi),.lower; upper; IQR/). Algorithm 2 includes the steps in the testing phase
and decision-making method for identifying the Dirichlet PDFs of the attack
records, with step 1 constructing the PDF of each observed record using the stored
normal parameters .� i; ˛i; Zi/.

Steps 2 to 6 define the decision-making process. The IQR of the normal instances
is computed to find the outliers/anomalies of any observed instance .rtesting/ in the
testing phase which are considered to be any observations falling below .lower�w�
.IQR// or above .upper Cw� .IQR//, where w indicates the interval values between
1.5 and 3 [40]. The detection decision is based on considering any PDFtesting falling
out of this range as an attack record, otherwise normal.

5 Scalable ADS Framework

This section discusses a proposed scalable framework for developing an effective
ADS which identifies malicious activities in large-scale environments. It consists of
three modules, capturing and logging, data pre-processing and a DMM-based ADS
technique, as shown in Fig. 3.

In the first phase, a set of attributes is created from network traffic to capture
network connections for a particular time window. It is observed that the best way of
analysing network data is to sniff the traffic from the router located at each network
node and aggregate only relevant network packets [46, 47]. Secondly, the pre-
processing step filters network data by converting symbolic features into numeric
ones, as shown in Fig. 4.

The reason for this conversion process is because statistical methods, such as the
DMM-based ADS technique, can handle only numeric data. Furthermore, selecting
the most significant features to improve the performance and reduce the processing
time of the decision engine in order to deploy it in real time. Finally, we propose the
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dataset

DMM-based ADS technique as the decision engine, which efficiently discriminates
between legitimate and suspicious instances, as discussed in the previous section.

5.1 Capturing and Logging Module

This module sniffs network data and stores them to be processed for the decision
engine, like the steps for creating our UNSW-NB15 dataset [33, 34]. An IXIA
PerfectStorm tool,3 which has the capability to determine a wide range of network

3The IXIA Tools, https://www.ixiacom.com/products/perfectstorm, November 2016.

https://www.ixiacom.com/products/perfectstorm
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Fig. 5 Functions of IXIA PerfectStorm tool

segments and elicits traffic for several web applications, such as Facebook, Skype,
YouTube and Google, was used to mimic recent realistic normal and abnormal
network traffic, as shown in Fig. 5. It could also simulate the majority of security
events and malicious scripts which is difficult to achieve using other tools. The con-
figuration of the UNSW-NB15 testbed was used to simulate a large-scale network
and a Tcpdump tool to sniff packets from the network’s interface while Bro, Argus
tools and other scripts were used to extract a set of features from network flows.

In [33, 34], the UNSW-NB15 was created, which comprises a wide variety of
features. These features can be classified into packet-based and flow-based. The
packet based features help in examining the packet payload and headers while the
flow based features mine information from the packet headers, such as a packet
direction, an inter-arrival time of packets, the number of source/destination IPs for a
particular time window, and an inter-packet length. AS depicted in Fig. 6, the pcap
files4 of this dataset were processed by the BRO-IDS and Argus tools to mine the
basic features. Then, we developed a new aggregator module to correlate its flows.
These flows were aggregated for each 100 connections, where packets with the same
source/destination IP addresses and ports, timestamp, and protocol were collected
in a flow record [31, 32]. This module enables to establish monitoring applications
for analysing network characteristics such as capacity, bandwidth, rare and normal
events.

4Pcap refers to packet capture, which contains an Application Programming Interface (API) for
saving network data. The UNIX operating systems execute the pcap format using the libpcap
library while the Windows operating systems utilise a port of libpcap, called WinPcap.
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Fig. 6 Extracting and aggregating features of UNSW-NB15 dataset

Fig. 7 Architecture of MySQL cluster CGE

These features were recorded using the MySQL Cluster CGE technology5 that
has a highly scalable and real-time database, enables a distributed architecture to
read and write intensive workloads and is accessed via SQL or NoSQL APIs, as
depicted in Fig. 7. It can also support memory-optimised and disk-based tables,
automatic data partitioning with load balancing, and can add nodes to a running
cluster for handling online big data. Although this technology has a similar
architecture to Hadoop tools6, which are the most popular for processing big offline
data, an ADS has to detect malicious behaviours in real time. These features are
then passed to the pre-processing module to be analysed and filtered.

5The MySQL Cluster CGE technology, https://www.mysql.com/products/cluster/, November
2016.
6The Hadoop technologies, http://hadoop.apache.org/, November 2016.

https://www.mysql.com/products/cluster/
http://hadoop.apache.org/
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5.2 Pre-Processing Module

The pre-processing module determines and filters network data in four steps.
Firstly, its feature conversion replaces symbolic features with numeric ones because
our DMM-based ADS technique deals with only numeric attributes. Secondly, its
feature reduction uses the PCA technique to adopt a small number of uncorrelated
features. As the PCA technique is one of the best-known linear feature reduction
techniques due to its the advantages. It requires less memory storage, having lower
data transfer and processing times, as well as better detection accuracy than others
[22, 26]. So, we chose it for this study.

Thirdly, feature normalisation arranges the value of each feature in a specific
interval to eliminate any bias from raw data and easily visualise and process it. We
applied the z-score function, which scales each feature (x) with a 0 mean (�) and 1
standard deviation (ı), as shown in Fig. 8, to normalise the data using the formula

z D .x � �/

ı
(6)

Another essential statistical measure is the normality test which is a way
of assessing whether particular data follow a normal distribution. We used the
Kolmogorov-Smirnov (K-S) test, which is one of the most popular, in our previous
work [34]. In it, if the data do not follow a normal distribution, mixture models,
such as the GMM, BMM and DMM, are used to efficiently define outliers. In
this chapter, we use Q-Q plots to show that the network data do not follow a
Gaussian distribution. A Q-Q plot is a graphical tool designed to draw two sets of

Fig. 8 Gaussian distribution with z-score parameters



Big Data Analytics for IDS 145

quantiles against each other. If these sets are from the same distribution, the points
form an almost straight line, with the others treated as outliers [19]. Therefore, it
helps to track network flows and define which DE model is the best for identifying
suspicious activities as outlier points, as shown in the results in Sect. 6.4. Overall,
a statistical analysis is important for network data to make a decision regarding
detecting and preventing malicious events.

6 Experimental Results and Discussions

This section discusses the datasets used for evaluating the proposed technique, and
then the evaluation metrics applied for assessing the performance of the proposed
technique compared with some peer techniques. Finally, the features selected from
the NSL-KDD and UNSW-NB15 datasets, with the statistical results of these
features are explained.

6.1 Datasets Used for Evaluation

Despite the NSL-KDD and KDD CUP 99 datasets being outdated and having several
problems, in particular duplications of records and unbalancing of normal and attack
records [33, 47, 48], they are widely used to evaluate NIDSs, due to a lack of
accurate dataset availability. As most state-of-the-art detection techniques have been
applied to these datasets, which are ultimately from the same network traffic, in
order to provide a fair and reasonable evaluation of the performance of our proposed
DMM-based ADS technique and comparison with those of related state-of-the-art
detection approaches, we adopted the NSL-KDD dataset and contemporary UNSW-
NB15 dataset which was recently released.

The NSL-KDD dataset is an improved version of the KDD CUP 99 dataset
suggested by Tavallaee et al. in [48]. It addresses some of the problems in the
KDD CUP 99 dataset, such as removing redundant records in the training and
testing sets to eliminate any classifier being biased towards the most repeated
records. Like in this dataset, in the NSL-KDD dataset, each record has 41 features
and the class label. It consists of five different classes, one normal and four
attack types (i.e., DoS, Probe, U2R and R2L), and includes two sets, training
(‘KDDTrainC� FULL’ and ‘KDDTrainC� 20%’) and testing (‘KDDTestC� 20%’
and ‘KDDTest21 � newattacks’).

The UNSW-NB15 dataset has a hybrid of authentic contemporary normal and
attack records. The volume of its network packets is approximately 100 GB with
2,540,044 observations logged in four CSV files. Each observation has 47 features
and the class label which demonstrate its variety in terms of high dimensionality.
Its velocity is, on average, 5–10 MB/s between sources and destinations which
means higher data rate transmissions across the Ethernets which exactly mimic
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real network environments. The UNSW-NB15 dataset includes ten different classes,
one normal and nine security and malware types (i.e., Analysis, Backdoors, DoS,
Exploits, Generic, Fuzzers for anomalous behaviours, Reconnaissance, Shellcode
and Worms) [33, 34].

6.2 Performance Evaluation

Several experiments were conducted on the two datasets to measure the performance
and effectiveness of the proposed DMM-based ADS technique using external
evaluation metrics, including the accuracy, DR and FPR which depend on the four
terms true positive (TP), true negative (TN), false negative (FN) and false positive
(FP). TP is the number of actual attack records classified as attacks, TN is the
number of actual normal records classified as normal, FN is the number of actual
attack records classified as normal and FP is the number of actual normal records
classified as attacks. These metrics are defined as follows.

• The accuracy is the percentage of all normal and attack records correctly
classified, that is,

accuracy D .TP C TN/

.TP C TN C FP C FN/
(7)

• The Detection Rate (DR) is the percentage of correctly detected attack records,
that is,

DR D TP

.TP C FN/
(8)

• The False Positive Rate (FPR) is the percentage of incorrectly detected attack
records, that is,

FPR D FP

.FP C TN/
(9)

6.3 Pre-Processing Phase and Description

The DMM-based ADS technique was evaluated using the eight features from the
NSL-KDD and UNSW-NB15 datasets adopted using the PCA listed in Table 2.

The proposed DMM-ADS technique was developed using the ‘R language’ on
Linux Ubuntu 14.04 with 16 GB RAM and an i7 CPU processor. To conduct the
experiments on each dataset, we selected random samples from the ‘full’ NSL-KDD
dataset and the CSV files of the UNSW-NB15 dataset with various sample sizes
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Table 2 Attributes selected from two datasets

Selected attributes Description

NSL-KDD dataset

srv_count Number of connections to the same service as the current
connection in the past 2 s

dst_host_srv_count Number of connections to the same service in the past 100
connections

count Number of connections to the same host as the current
connection in the past 2 s

dst_host_same_srv rate Number of connections to different service as the current
connection in the past 2 s

dst_host_count Number of connections to the same host in the past 100
connections

hot Hot indicators, e.g., access to system directories, creation, and
execution of programs

srv_diff_host_rate Percentage of same service connections to different hosts

rerror_rate Percentage of same host connections that have “REJ” errors

UNSW-NB15 dataset

ct_dst_sport_ltm Number of connections containing the same destination
address and source port in 100 connections

tcprtt Round-trip time of TCP connection setup computed by the
sum of ‘synack’ and ‘ackdat’

dwin Value of destination TCP window advertisement

ct_src_dport_ltm Number of connections containing the same source address
and destination port in 100 connections

ct_dst_src_ltm Number of connections containing the same source and
destination address in 100 connections

ct_dst_ltm Number of connections containing the same destination
address in 100 connections

smean Mean of flow packet sizes transmitted from source

service Service types, e.g., HTTP, FTP, SMTP, SSH, DNS and IRC

between 80,000 and 200,000. In each sample, normal instances were approximately
60–70% of the total size, with some used to create the normal profile and the rest
for the testing set.

6.4 Statistical Analysis and Decision Support

Statistical analysis supports the decisions of defining the type of modelling, which
efficiently fits data to recognise outliers as attacks. As previously mentioned, the
Q-Q plot is a graphical tool to check if a set of data come from a normal theoretical
distribution. features are considered from a normal distribution if the values of those
features fall on the same theoretical distribution line. Figure 9 represents that the
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Fig. 9 Q-Q plot of the features selected from both datasets
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selected features do not fall on the theoretical distribution lines (i.e., red ones), and
there are much greater variations than the lines of feature values. We, therefore,
decided to choose the DMM, as one of the best non-normal distribution, for fitting
these features to build an ADS based on detecting the too far points of the feature
values as anomalies.

The PDFs of the DMM are estimated for normal and abnormal instances using
the NSL-KDD and UNSW-NB15 datasets to demonstrate to what extent these
instances vary, as presented in Fig. 10. In the NSL-KDD dataset, the PDFs of the
normal values range between 0 and 0.20, and their values are between �50 and 0. In
contrast, the PDFs of the abnormal values falls between 0 and 0.5, and their values
are between �30 and 0. As a result, it is noted that the PDFs of the normal instances
are different from the attack ones. Likewise, in the UNSW-NB15 dataset, the PDFs
of the normal instances are also dissimilar to the attack instances. These results
assert that the proposed decision-making method in Algorithm 2 can effectively
detect attacks due to the differences in their PDFs.

6.5 Performance of DMM-Based ADS Technique

The performance evaluation of the DMM-based ADS technique was conducted on
the features selected from the two datasets, with the overall DR, accuracy and FPR
values listed in Table 3. Figure 11 represents the Receiver Operating Characteristics
(ROC) curves which display the relationship between the DRs and FPRs using the
w values. It can be seen that the steady increase in the w value between 1.5 and 3
increased the overall DR and accuracy while decreasing the overall FPR.

In the NSL-KDD dataset, when the w value surged steadily from 1.5 to 3, the
overall DR and accuracy increased from 93.1% to 97.8% and 93.2% to 97.8%,
respectively, while the overall FPR reduced from 3.1% to 2.5%. Likewise, in the
UNSW-NB15 dataset, the overall DR and accuracy increased from 84.1% to 93.9%
and 89.1% and 94.3%, respectively, but the overall FPR reduced from 9.2% to 5.8%
when the w value increased from 1.5 to 3.

Tables 4 and 5 show comparisons of the DRs of the record types for the w values
on the NSL-KDD and UNSW-N15 datasets, respectively, which refers that, when
the w value increased, the DR gradually improved. It is clear in Table 4 that the
DMM-based ADS technique could detect the majority of record types of the NSL-
KDD dataset with a normal DR varying between 96.7% and 99.8%, and the lowest
FN rate when the w value changed from 1.5 to 3. Similarly, the DRs of the attack
types increased gradually from an average of 93.2% to an average of 97.1%.

Table 5 indicates that the DMM-based ADS technique detected record types of
the UNSW-NB15 dataset with normal DRs varying from 83.4% to 94.2% when the
w value increased from 1.5 to 3. Similarly, the DRs of the attack types increased
gradually from an average of 77.5% to an average of 93.2%.

The Shellcode, Fuzzers, Reconnaissance, and Backdoor attacks do not achieve
the best DRs with the highest w, whereas the DRs of the other attacks, DoS, Generic,
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Table 3 Performance evaluation of features selected from both datasets

Datasets

NSL-KDD UNSW-NB15

w value
Detection
rate Accuracy

False
positive rate

Detection
rate Accuracy

False
positive rate

1.5 93.1 93.2 3.1 84.1 89.0 9.2

2 93.2 93.8 4.2 87.1 88.1 6.6

2.5 97.3 97.8 2.8 89.2 90.7 7.0

3 97.8 97. 8 2.5 93.9 94.3 5.8
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Fig. 11 ROC curves of two datasets with different w values

Exploits, and Worms, are lower, due to the slight similarities between these attack
instances and normal ones. It can be noted that, as the variances of the selected
features for these instances are close, the PDFs fell into each other in terms of
decision-making.
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Table 4 Comparison of
detection rate (%) on
NSL-KDD dataset

Instance type
w values

1.5 2 2.5 3

Normal 96.7 97.2 97.3 99.8

DoS 97.0 98.0 98.8 99.7

Probe 92.6 93.7 95.3 97.8

R2L 95.1 93.1 95.1 95.8

U2R 92.6 90.8 93.2 94.0

Table 5 Comparison of
detection rate (%) on
UNSW-NB15 dataset

Instance type
w values

1.5 2 2.5 3

Normal 83.4 83.0 89.7 94.2

DoS 89.1 89.1 88.2 88.1

Backdoor 63.5 72.2 74.2 71.3

Exploits 42.3 78.2 82.1 81.0

Analysis 73.8 76.3 78.0 81.1

Generic 78.1 89.4 88.1 87.7

Fuzzers 43.1 49.1 50.8 52.8

Shellcode 42.2 51.1 52.2 52.2

Reconnaissance 56.1 54.1 57.1 57.2

Worms 37.4 45.2 44.3 48.3

Table 6 Comparison of performances of four techniques

Technique Detection rate (%) False positive rate (%)

TANN [49] 91.1 9.4

EDM [46] 94.2 7.2

MCA [47] 96.2 4.9

DMM-based ADS 97.2 2.4

6.6 Comparative Study

The performance evaluation results for the DMM-based ADS technique based
on the NSL-KDD dataset were compared with those from other three existing
techniques, namely the Triangle Area Nearest Neighbours (TANN) [49], Euclidean
Distance Map (EDM) [46] and Multivariate Correlation Analysis (MCA) [47],
with their overall DRs and FPRs listed in Table 6. These techniques are used for
comparing with our technique because they are the recent ones which have similar
statistical measures to our DMM-based ADS. The DRs of The TANN, EDM and
MCA were 91.1%, 94.2% and 96.2%, respectively, and their FARs 9.4%, 7.2% and
4.9%, respectively. In contrast, the DMM-based ADS achieved better results of a
97.2% DR and 2.4% FPR.
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The key reason for the DMM-based ADS technique performing better than the
other techniques was that the DMM fits the boundaries of each feature perfectly,
because it has a set of distributions for computing the PDF of each instance. More-
over, the lower-upper IQR method could effectively specify the boundary between
normal and outlier instances. However, despite the DMM-based ADS technique
achieving the highest DR and lowest FPR on the NSL-KDD dataset, its performance
on the UNSW-NB15 dataset was relatively lower due to slight variations between
the normal and abnormal instances. This indicated the complicated patterns of
contemporary attacks that almost mimic normal patterns.

6.7 Advantages and Disadvantages of DMM-Based ADS

The DMM-based ADS has several advantages. To start with, it is easily deployed on
large-scale systems to detect malicious activity in real-time because its training and
testing phases depend only on the DMM parameters of the normal profile. Since
the decision-making method is used the lower-upper IQR rule as a threshold, it
can identify the class label of each record with no dependency on other records.
Moreover, the ease of updating the normal profile parameters, with respect to choose
the best threshold. In contrast, if there are higher similarities between features, it
will produce higher FPR, so we applied the PCA to reduce the number of features
with selecting the highest variation of features for improving the performance of
the proposed technique. Also, the DMM-based ADS cannot define attack types,
such DoS and backdoors, as it was designed for handling binary classification (i.e.,
normal or attacks). For addressing this limitation, we will design a new statistical
function to identify the PDF values of each attack type.

7 Conclusion

This chapter discussed a proposed scalable framework consisting of three main
modules, namely, capturing and logging, pre-processing and a statistical decision
engine. The purpose of the first module was to sniff and collect network data from
a distributed database to easily handle large-scale environments while the second
analysed and filtered network data to improve the performance of the decision
engine. Finally, the third, the Dirichlet mixture model-based anomaly detection, was
designed based on an anomaly detection methodology for recognising abnormal
data using a lower-upper interquartile range as a decision-making method. The
empirical results showed that a statistical analysis, such as Q-Q plots, helped
to make a decision regarding choosing the best model for identifying attacks as
outliers. The performance evaluation of the Dirichlet mixture model-based anomaly
detection demonstrated that it was more accurate than some other significant
methods. In future, we will investigate other statistical methods, such as a particle
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filter, with the aim of integrating them with the Q-Q plots to design a visual
application for analysing and monitoring network data, and making decisions
regarding specific intrusions. We will also extend this study to apply the architecture
of the proposed framework in cloud computing and SCADA systems.
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