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Abstract The continuing fight against intentionally malicious software has, to date,
favoured the proliferators of malware. Signature detection methods are growingly
impotent against rapidly evolving obfuscation techniques. Research has recently
focussed on the low-level opcode analysis of disassembled executable programs,
both statically and dynamically. While able to detect malware, static analysis often
still cannot unravel obfuscated code; dynamic approaches allow investigators to
reveal the run-time code. Old and inadequately sampled datasets have limited the
extrapolation potential of much of the body of research. This work presents a
dynamic opcode analysis approach to malware detection, applying machine learning
techniques to the largest dataset of its kind, both in terms of breadth (610–100k
features) and depth (48k samples). N-gram analysis of opcode sequences from
n D 1::3 was applied as a means of enhancing the feature set. Feature selection was
then investigated to tackle the feature explosion which resulted in more than 100,000
features in some cases. As the earliest detection of malware is the most favourable,
run-length, i.e. the number of recorded opcodes in a trace, was examined to find the
optimal capture size. This research found that dynamic opcode analysis can detect
malware from benignware with a 99.01% accuracy rate, using a sequence of only
32k opcodes and 50 features. This demonstrates that a dynamic opcode analysis
approach can compare with static analysis in terms of speed. Furthermore, it has a
very real potential application to the unending fight against malware, which is, by
definition, continuously on the back foot.
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1 Introduction

Since the 1986 release of Brain, regarded as the first PC virus, both the incessant
proliferation of malware (malicious software) and the failure of standard anti-virus
(AV) software, have posed significant challenges for all technology users. In the
second quarter of 2016, McAfee Labs reported that the level of previously unseen
instances of malware had exceeded 40 million for the preceding three months. The
total number of unique malware samples reached 600 million, a growth of almost
one-third on the previous year [4].

Malware was previously seen as the product of miscreant teenagers, whereas
it is now largely understood to be a highly effective tool for criminal gangs and
alleged national malfeasance. As a tool, malware facilitates a worldwide criminal
industry and enables theft and extortion on a global scale. One data breach in
a US-based company has been estimated to cost an average $5.85 million, or
$102 for each record compromised [1]. GDP estimates which attribute the cost
of cybercrime to modern developed countries are as much as 1.6% in Germany,
with other technology-heavy nations showing alarming levels (USA—0.64% and
China—0.63%) [4].

This chapter is presented in the following way: the remainder of the current
section describes malware, techniques for detecting malicious code and subsequent
counter-attacks. Section 2 presents related research in the field and the gap in the
current body of literature. Section 3 depicts the methodology used in establishing
the dataset and Section 4 presents the results of machine learning analyses of the
data. The final section discusses the conclusions which can be reached about the
results presented, and describes potential future work.

1.1 Taxonomy of Malware

Malware can be categorised according to a variety of features, but typically accord-
ing to its family type. Bontchev, Skulason and Solomon in [8] established naming
conventions for malware, which gave some consideration to the taxonomy of such
files. With the rapid advancement of malware, this original naming convention
required updating to cope with the new standards in developing malware [15]. The
standard name of a unique piece of malware is generally comprised of four parts, as
seen in Fig. 1, although the format presented (delimiters etc) varies widely according
to the organisation.

The pertinent parts of the name are Type and Family, as these provide the broad
delineations between categories. In the original naming standard [8], noted that it
was virtually impossible to adequately formally define a malware family, but that
structurally similar malware variants could be grouped as a family e.g. MyDoom,
Sasser etc. Malware is categorised according to Type, when the behaviour of the
malware and resultant effect on the victim system is considered.
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Type.Plat f orm.Family-Name.Minor-Variant : Modi f ier

e.g.Tro jan.Win32.Crilock.B :

= A Windows-based Trojan, and the second variant found from the Crilock family

Fig. 1 Naming convention for malware

Such types include:

• Backdoor: installed onto the victim machine, allowing the attacker remote access;
• Botnet: as per a back door, but the victim machine is one of a cluster of breached

machines linked to a command-and-control server;
• Downloader: preliminary code which serves to download further malicious code;
• Information-stealing malware: code which scrapes information from the victim

machine and forwards it to an intended source e.g. banking info;
• Launcher: used to launch other malicious programs through non-legitimate

methods in order to maintain stealth;
• Rootkit: allows access to unauthorised areas of a machine and designed to conceal

the existence of other malcode;
• Scareware: often imitates an anti-virus (AV) alert, designed to scare an unin-

formed user into purchasing other software;
• Spam-sending malware: causes the victim machine to send spam unknowingly;
• Virus: code that can copy itself and infect additional computers, but requires a

host file;
• Worm: malware which self-propagates via network protocols;
• Trojan: malware which is normally dressed up as innocent software and does not

spread by itself, but allows access to the victim machine;
• Ransomware: malware which encrypts the victim machine’s files, extorting

money from the victim user for their release;
• Dropper: designed to bypass AV scanners and contains other malware which

is unleashed from within the original code, after the installation of the original
Dropper.

As malware very often overlaps categories, or implements several mechanisms,
a clear taxonomy system can be a difficult task [25]. Deferring then to family as the
discrete nominal attribute can provide an adequate definition of the malware being
referenced. For example, the well-publicised and highly-advanced Stuxnet cyber-
weapon, which was used to attack and disrupt the Iranian nuclear program, spans
multiple categories of malware. The initial attack vector was through an infected
USB drive, which contains the worm module and a .lnk file to the worm itself.
Stuxnet exploits several vulnerabilities, one of which allows automatic execution of
.lnk files on USB drives. The worm module contains the routines for the payload and
a third module, a rootkit, hides the malicious activities and codes from the end-user
[42]. As this is a multifaceted attack, it could be difficult to adequately describe the
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Fig. 2 Malware detection methods

type of the malware using a traditional approach. However, referring to the family
variable enables a descriptive reference to the whole malware.

1.2 Malware Detection Techniques

The evolution of malware detection techniques is analogous to an arms race against
malware writers. When AV vendors deploy new methods to detect malware, the
malware writers create new methods to usher their code past detection algorithms.
Figure 2 provides a taxonomy of the standard malware detection techniques in use
at present.

The main categories of analysis are outlined below:

1.2.1 Signature-Based

Signature-based detection relies on comparing the payload of a program against
a repository of pre-learned regular expressions extracted from malware [14]. The
extraction, storage and dissemination of these strings requires a large effort and
a substantial amount of human time [13]. This detection is generally performed
statically and so suffers from the major disadvantages of being ineffective against
unknown regular expressions and being unable to search obfuscated code for such
strings. This renders this technique increasingly impotent against an onslaught of
exponentially growing malware.

1.2.2 Anomaly-Based

Anomaly-based detection systems classify what are considered typical behaviours
for a file or system and any deviations from these are considered anomalies [41].
A training phase creates a model of typical behaviour or structure of the file or
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system. The monitoring phase then detects deviation from the baselines established
in training [16]. For example, a poisoned PDF may differ greatly from the typical
or expected structure of a clean PDF. Likewise, a one-hour TV show file may be
expected to be around 350 MB in size. If the file was a mere 120 KB, it would be
classed as suspicious. One of the major benefits of anomaly detection is the potential
to detect zero-day threats. As the system is trained on typical traits, it does not need
to know all of the atypical traits in advance of detection. Anomaly-based systems
are, however, limited by propensity towards false-positive ratings and the scale of
the features required to adequately model the system under inspection [16].

1.2.3 Specification-Based

Specification-based detection is a descendant of anomaly detection with a view to
addressing the issue of high false-positive rates of the latter. This detection method
seeks to create a rule set which approximates the requirements of the system, rather
than the implementation of the system [41]. The adequate modelling of a large
system is a difficult task and, as such, specification-based detection may have a
similar disadvantage as to an anomaly-based system, in that the model does not
adequately capture the behaviours of a complex system.

Each of these analysis types can be performed in one of three manners:

1.2.4 Static Analysis

Analysis is considered static when the subject is not executed and can be conducted
on the source code or the compiled binary representation [13]. The analysis seeks
to determine the function of the program, by using the code and data structures
within [40]. MD5 hash representations of the executable can be checked against
databases of hashes from previously detected malware. Call graphs can demonstrate
the architecture of the software and the possible flows between functions. String
analysis seeks out URL s, IP addresses, command line options, Windows Portable
Executable files (PE) and passwords [29]. The main advantage of using static
analysis techniques is that there is no threat from the malware sample, as it is never
executed, thus can be safely analysed in detail. All code paths can potentially be
examined, when the whole of the code is visible, whereas with dynamic analysis
only the code being executed is examined. Examining all code paths is not always
an advantage, as the information revealed may be redundant dead code, inserted
to mask the true intentions of the file. Static analysis techniques are increasingly
rendered redundant against growingly complex malware, which can obfuscate itself
from analysis until the point of execution. As the code is never executed in static
analysis, the obfuscation method does not always reveal the true code.
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1.2.5 Dynamic Analysis

Dynamic analysis involves the execution of the file under investigation. Techniques
mine information at the point of memory entry, during runtime and post-execution,
therefore bypassing many of the obfuscation methods which stymie static analysis
techniques. The dynamic environment can be: (a) native: where no separation
between the host and the analysis environment is provided, as analysis takes place
in the native host OS. With malware analysis, this obviously creates issues with
the effects of the malware on the host. Software is available to provide a snapshot of
the clean native environment, which can then be reloaded following each instance of
malware execution, such as DeepFreeze. This can be quite a timely process however,
as the entire system must be restored to the point of origin [23]; (b) emulated: where
the host controls the guest environment through software emulating hardware. As
this software is driven by the underlying host architecture, emulation can create
performance issues; (c) virtualised: a virtual machine provides an isolated guest
environment controlled by the host. In a perfect environment, the true nature of the
subject is revealed and examinable. However, in retaliation, malware writers have
created a battery of evasion techniques in order to detect an emulated, simulated or
virtualized environment, including anti-debugging, anti-instrumentation and anti-
Virtual Machine tactics. One major disadvantage of dynamic approaches is the
runtime overhead in having to execute the program for a specified length of time.
Static tools such as IDAPro can disassemble an executable in a few seconds, whereas
dynamic analysis can take a few hundred times longer.

1.2.6 Hybrid Analysis

Hybrid techniques employ components of both static and dynamic analysis in
their detection algorithms. In [34], Roundy and Miller used parsing to analyse
suspect code statically pre-execution, building an analysis of the code structure,
while dynamic execution was used for obfuscated code. The authors established an
algorithm to intertwine dynamic and static techniques in order to instrument even
obfuscated code.

1.3 Detection Evasion Techniques

Code obfuscation is the act of making code obscure or difficult to comprehend.
Legitimate software houses have traditionally used obfuscation to try to prevent
reverse engineering attempts on their products. This is the foundation of approaches
such as Digital Rights Management, where emails, music etc are encrypted to
prevent undesired use. Malware writers adopted these techniques to try to avoid
detection of their code by AV scanners, in a similar fashion. In [11] the four most
commonly used obfuscation techniques are listed as;
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1. Junk-insertion: inserts additional code into a block, without altering its end
behaviour. This can be dead code, such as NOP padding, irrelevant code, such as
trivial mathematical functions and complex code with no purpose;

2. Code transposition: reorders the instructions in the code so that the resultant
binary differs from the executable or from the predicted order of execution;

3. Register reassignment: substitutes the use of one register for another in a specific
range;

4. Instruction substitution: takes advantage of the concept that there are many
ways to do the same task in computer science. Using an alternative instruction
to achieve the same end result provides an effective method for altering code
appearance.

Packing software, or packers, are used for obfuscation, compression and encryp-
tion of a PE file, primarily to evade static detection methods. When loaded into
RAM, the original executable is restored from its packed state in ROM, ready to
unleash the payload on the victim machine [5].

Polymorphic (many shapes) malware is comprised of both the payload and an
encryption/decryption engine. The polymorphic engine mutates the static code/-
payload, which is decrypted at runtime back to the original code. This can cause
problems for AV scanners, as the payload never appears the same in any descendant
of the original code. However, the encryption/decryption engine potentially remains
constant, and as such may be detected by signature- or pattern-matching scanners
[26]. A mutation engine may be employed to obfuscate the decryption routine. This
engine randomly generates a new decryption routine on each iteration, meaning the
payload is encrypted and the decryptor is altered to appear different to the previously
utilized decryptors [41].

Metamorphic (changes shapes) malware takes obfuscation a step further
than polymorphism. With metamorphic malware, the entire code is rewritten on
each iteration, meaning no two samples are exactly alike. As with polymorphic
malware, the code is semantically the same, despite being different in construction
or bytecode, with as few as six bytes of similarity between iterations [21].
Metamorphic malware can also use inert code excerpts from benignware to not only
cause a totally different representation, but to make the file more like benignware,
and thus evade detection [20].

1.4 Summary

The ongoing fight against malware seeks to find strategies to detect, prevent and
mitigate malicious code before it can harm targeted systems. Specification-based
and Anomaly-based detection methods model whole systems or networks for a
baseline, and report changes (anomalous network traffic, registry changes etc),
but are prone to high levels of false detections. Signature-detection is the most
commonly used method among commercial AV applications [43]. With the ever-
apparent evolution of malware, such approaches have been shown to be increasingly



106 D. Carlin et al.

ineffective in the detection of malicious code [31]. This is particularly apparent
in Zero Day exploits, where the time-lag between the malware’s release and the
generation of a signature leaves a significant window for the malcode to cause
substantial damage. As these methods rely on a pre-learned signature, and as the
ability of modern malware to obfuscate such signatures grows, signature-based AV
approaches are by definition on a continuous back foot. Therefore, a new approach
is required to be able to more accurately and efficiently detect malware which is
unseen to the detection algorithm.

2 Related Research

Obfuscation has frustrated attempts at effective and efficient malware detection,
both from a commercial application viewpoint and in a research context. Previous
research has sought to find a successful malware detection algorithm by applying
machine learning and data mining approaches to the problem. Schultz et al. [38]
were the first researchers to present machine learning as a tool to investigate
malicious binaries. Three classifiers (RIPPER, Naïve Bayes and Multi-Naïve Bayes)
were implemented and compared to a signature-based algorithm, i.e. an AV scanner,
using program header, strings and byte sequences as features. All of the machine
learning approaches out-performed the AV scanner, with two of the classifiers
doubling the accuracy of the commercial approach. Kolter and Maloof [20]
successfully used a binary present/not present attribute for n-gram analysis of the
hexadecimal representations of malware PE files. Among other classifiers assessed,
Boosted Decision Trees gave an area under the receiver operating characteristic
(AU-ROC) curve of 99.6%. In [27], features were used based on a host system to
detect previously unseen worms. Data were collected on 323 features per second,
focussing on the configuration, background activity and user activities of the host.
Five worms were compared against a baseline behavioural set up, and with as few
as 20 features, the average detection accuracy was >90%, with >99% for specific
individual worms.

2.1 Opcode Analysis

Recent investigations into malware detection approaches have examined the
behaviour of malware at run time, i.e. what the code is doing rather than how it is
doing it, and how these behvaviours differ from benign code. Opcodes (operational
codes) are human-readable machine language instructions, issued directly to the
CPU. Analysis at such a low-level provides the opportunity to detect malware,
circumventing obfuscation at run time [31].

In [36], Santos et al. analysed n-gram combinations of opcodes in statically-
generated datasets. An accuracy and an f -measure (the weighted average of
precision over recall) of over 85% were observed using a ROC-SVM classifier,
although n was limited to 2.
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A graph-analysis approach was taken by [35] and applied to PE files and
metamorphic malware, in an extension of [6]. Their model was able to detect meta-
morphic malware from benign applications, and metamorphic malware families
from each other.

The authors in [31] analysed opcodes from a dynamically-yielded dataset using
supervised machine learning. Run-traces of benign and malicious executables
were taken by executing the applications using a virtual machine. This controlled
environment allowed isolation of the guest OS, decoupling the effects of the
malware from the host machine. A debugging program (Ollydbg), in conjunction
with a masking tool (StrongOD), was used to capture the run-time trace of each
program under investigation. This provided a raw trace file with each opcode and
its operand, and further details such as a memory register address. A bespoke parser
was used to extract the opcodes from this trace file and count their occurrences.
The density of each opcode was calculated based on the frequency of the opcode
within that sample. Different run-lengths were addressed by normalizing the opcode
frequency using the total count within the sample. A pre-filter was used to select the
features likely to provide the maximum information to the SVM, while minimizing
the overall size problem created by use of n-gram analysis to investigate all
combinations of opcodes. Principal components analysis (PCA) was used to rank
each opcode by its importance to the SVM classification task. PCA compresses the
data size while maintaining the variance in the data, allowing a subset of principal
components to be generated. The researchers found that 99.5% of the variance in
the data could be attributed to the top 8 opcodes, thus reducing the data from the
original 150 opcodes, which was further validated by use of an SVM. However, the
dataset used was only comprised of 300 benign and 350 malware PEs. Although
previous research had fewer samples (e.g. [7]), low sample quantity and coverage
have been recurring issues throughout the literature.

In [38], Schultz et al. used 3265 malware and 1001 benignware executables in the
first study in this branch of malware literature. Santos et al. [37] considered 2000
files, evenly divided between classes. Both [28] and [39] used the same dataset,
comprised of 7688 malicious files and 22,735 benign, listed by the researchers as
the largest dataset in the literature at that time. However, there are notable limitations
in the data collection methodology from these studies. The researchers stated that
the disassembler used could only analyse 74% of their samples. Malware showed a
greater attrition rate (26%) than benignware (10%), as the main reason for failure
was the compression or packing of a file (i.e. obfuscation).

The dataset used by [36] contained 2000 files, due to unspecified technical
limitations. The malware was randomly sampled from the 17,000-strong corpus of
the VxHeaven website [2], though the static analysis used did not include packed
files. The implication is that more sophisticated obfuscated malware was not used
in the investigation, a considerable limitation of the study. Furthermore, >50% of
the sample set was composed of three malware families: hack-tool, back door and
email worm, which may have induced artificial within-class imbalances.

6721 malware samples were used in [17], harvested from VxHeaven and
categorized into three types (back door, worm, and trojan), comprised of 26 malware
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families and >100 variations per family. No controls were used in the sampling
across categories, with 497 worm, 3048 backdoor, and 3176 trojan variants, nor was
there a methodological statement as to how these categories were sampled.

2.2 Rationale for the Current Research

Previous research in the field has typically used samples taken from the VxHeaven
website, which are old and outdated, having last been updated in 2010. There are
clear and notable limitations in the methodologies employed, with the majority
having datasets which were not adequately sized, structured or sampled. Datasets
which were generated statically failed to adequately address any serious form of
obfuscation, with some just initially excluding any packed sample. While dynamic
analysis does have disadvantages, it does offer a snapshot of the malware behaviour
at runtime, regardless of obfuscation, and has been recommended by researchers
who had previously focussed on static analysis [36]:

Indeed, broadly used static detection methods can deal with packed malware only by using
the signatures of the packers. As such, dynamic analysis seems like a more promising
solution to this problem ([18]) [36, p.226]

3 Methodology

3.1 Source Data

Research in this field has typically used online repositories such as VxHeaven [2]
or VirusShare [33]. The corpus of the former is dated, with the last updates being in
2010. VirusShare, however, contains many more samples, is continuously updated,
and offers useful metadata. The site receives malware from researchers, security
teams and the public, and makes it available for research purposes on an invite-
only basis. The three most-recent folders of malware, at the time of writing, were
downloaded, representing approximately 195,000 instances of malware, of varying
formats. The Malicia dataset harvested from drive-by-downloads in the wild in [30]
was also obtained and incorporated into the total malware corpus. Benign software
was harvested from Windows machines, representing standard executables which
would be encountered in a benchmark environment.
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3.2 Database Creation

As the files in the malware corpus were listed by MD5 hash, with no file format
information, a bespoke system was built to generate a database of attribute metadata
for the samples. Consideration was given to using standard *nix commands such as
file to yield the file formats. However, this did not provide all information necessary,
and so a custom solution was engineered. Figure 3 illustrates the system employed.

A full-feature API key was granted by VirusTotal for this pre-processing stage.
This allows a hash to be checked against the VirusTotal back-end database, which
includes file definitions and the results of 54 AV scanners on that file. The generated
report was parsed for the required features (Type, Format, First Seen, 54 AV scans
etc) and written to a local database for storage. A final step in the attribution system
allows the querying of the local database for specific file types and for files to be
grouped accordingly. For the present research, we were interested in Windows PE
files and our initial dataset yielded approximately 90,000 samples. Other file types
(Android, PDF, JS etc) were categorized and stored for future research.

On creation of the local attribute dataset, there was a noticeable variation in
whether each AV scanner determined that the specific file was malicious or not
and also the designated malware type and family. This presented a challenge to
our methodological stance. If a file is detected by very few of the 54 AV scanners,
it could be viewed as a potential false positive (i.e. detected as malicious, though
truly benign), or indeed that it is an instance of malware which can successfully
evade being detected by most of the AV scanners. False positive detections can
occur when a scanner mistakenly detects a file as malicious. This is exacerbated by
the use of fuzzy hashing, where hash representations of a file are seen as similar
to a malicious file, and the fact that scanning engines and signature databases are
often shared by more than one vendor. The false positive issue can have serious
consequences, such as rendering an OS unusable. It has become problematic enough
that VirusTotal has attempted to build a whitelist of applications from their trusted
sources, so that false positives can be detected and mitigated [24]. As such, we
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Fig. 3 Processing malware samples to store their descriptive attributes
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used a majority-rule algorithm and focussed on instances which were assessed as
malware by 50% or more of the AV scanners. This can be justified by the fact that we
wished to establish a fundamental malware dataset, with established malware being
given priority over questionable samples. Indeed, the fact that there is disagreement
between AV scanners over samples highlights one of the key issues in the field.

Figure 4 depicts the distribution of samples which had a specified number of
AV scanners deem the sample as malicious. For example, 964 samples were judged
to be malicious by 4 AV scanners from the VirusTotal report (right vertical axis),
whereas 12,704 were detected by 48 scanners. Cumulatively, this represented 3%
(left vertical axis) of the malware being detected by 4 or fewer scanners, and 89% by
48 or fewer. In Fig. 4, the central bisecting line represents the threshold after which
malware was chosen for the experimental dataset, i.e. 26 or more of the AV scanners
recognised the sample as malicious. This threshold demonstrates that 18% of the
dataset was not included in the experimental dataset, by choosing to operate with a
majority-rules decision. In other words, 82% of the malicious samples were retained
while having the certainty of a rigorous inclusion mechanism. As the purpose of
these experiments was to build a solid model of the dynamic behaviour of malware,
the importance of widely agreed-upon samples for training purposes was a priority.
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3.3 Automated Run-trace Collection

A process for extracting opcode run-traces from executed malware was established
in [31, 32]. This generates the required traces, but is manually set up and operated,
and so is unfeasible for generating a large dataset. As such, automated scalable
processes were given consideration.

The work in [23] shows practical automated functions for use with VirtualBox
virtual machines, though the methods used are now deprecated. A virtualization
test-bed which resides outside of the host OS was developed by [12]. The authors
claimed the tool was undetectable when tested by 25,118 malware samples, though
no breakdown of the dataset is provided. However, the software was last updated
in October 2015, is only compatible with Windows XP and requires a deprecated
version of the Xen hypervisor, and so was not implemented.

The ubiquitous Cuckoo sandbox environment was considered also. While a
valuable tool in malware and forensic analysis, we sought a system which provided
the exact output for the method established in [31, 32]. Furthermore, we wish
to develop an opcode-focussed malware analysis environment, and so chose to
engineer a bespoke automated execution and tracing system.

VirtualBox was implemented as the virtualization platform. While other vir-
tualization software exists, such as VirtualPC, Xen and VMWare, the API for
VirtualBox is feature-rich and particularly suited to the present research. VirtualBox
comprises multiple layers on top of the core hypervisor, which operates at the kernel
level and permits autonomy for each VM from the host and other VMs. The API
allows a full-feature implementation of the VirtualBox stack, both through the GUI
and programmatically, and as such is well-documented and extensively tested [3].

A baseline image was created of Windows 10 64-bit, 2 GB RAM, VT-x accelera-
tion, 2 cores of an Intel i5 5300 CPU, and the VBoxGuestAdditions v4.3.30 add-on
installed. Windows 10 was selected as the latest guest OS due to the modernity
and market share. VBoxGuestAdditions allows extra features to be enabled inside
the VM, including folder-sharing and application execution from the host, both of
which are key features of the implementation. Full internet access was granted to
the guest and traffic was partially captured for separate research, and monitored as
a further check for the liveness of the malware. Security features were minimised
within the guest OS to maximise the effects of the executed malware.

OllyDbg v2 was preinstalled in the VM snapshot to trace the runtime behaviour
of each executed file. This is an open-source assembler-level debugger, which can
directly load both PE and DLL files and then debug them. The presence of a
debugger can be detected by both malicious and benign files, and such instances may
deploy masking techniques. As per [31], we used StrongOD v0.4.8.892 to cloak the
presence of the debugger.

The guest OS was crafted to resemble a standard OS, with document and
web histories, Java, Flash, .Net, non-empty recycling bin etc. While anti-anti-
virtualization strategies were investigated, and implemented where appropriate, not
all could be achieved while maintaining essential functionality, such as remote
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execution. However, while operating at the opcode level, we get the opportunity to
monitor anti-virtualization behaviour and can turn this into a feature for detection.
Furthermore, this research seeks to investigate the execution of malware as a
user would experience it, which would include cloud-based virtualized machine
instances. Figure 5 illustrates the workflow of the automated implementation used
for the present research. On starting, a user-specified shared folder is parsed for all
files which are listed for execution. The VM is spun-up using the baseline snapshot,
mitigating any potential hang-overs from previously executed malware. OllyDbg
is loaded with the masking plug-in and the next file from the execution list as a
parameter. The debugger loads the PE into memory and pauses prior to execution.
The debugger is set to live overwrite an existing empty file with the run-trace of
opcode instructions which have been sent to the CPU, set at a trace-into level so
that every step is captured. This is in contrast to static analysis, which only yields
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Fig. 6 Sample lines from a runtime trace file

potentially executed code and code-paths. Figure 6 shows an example run-trace file
which has been yielded. After the set run-length, which was set to 9 min, elapsed,
the VM is torn down and the process restarts with the next file to be executed until
the list is exhausted. A 9 min execution time was selected, with 1 min for start up
and teardown, as we are focussed on detecting malware as accurately as possible,
but within as short a runtime as possible. While a longer runtime may potentially
yield richer trace files and more effectively trace malware with obfuscating sleep
functions, our research concentrates on the initial execution stage for detection
processes.

The bottleneck in dynamic execution is run-time, so any increase in capture rate
will be determined by parallelism while run-time is held constant. Two key benefits
of the implementation presented are the scalability and automated execution. The
initial execution phase was distributed across 14 physical machines, allowing the
dataset to be processed in parallel. This allowed the creation of such a large dataset,
in the context of the literature, within a practical period of time. Indeed, this was
only capped at the number of physical machines available. It is entirely feasible to
have a cloud- or server- based implementation of this tracing system, with a virtually
unlimited number of nodes.

3.4 Opcode Statistics Collection

Prior to analysis, the corpus of trace files require parsing to extract the opcodes
in sequence. A bespoke parser was employed to scan through each run-trace file
and keep a running count of the occurrence of each of the 610 opcodes listed in
the Intel x86/x64 architecture [22]. This list is more comprehensive than that of
[31, 32], as previous research has indicated that more rarely occurring opcodes
can provide better discrimination between malware and benignware than more
frequently occurring opcodes [7, 17].

As the run-traces vary in length (i.e. number of lines), a consistent run-length
is needed for the present research in order to investigate the effects of run-length
on malware detection. A file slicer was used on the run-trace dataset to truncate all
files to the maximum required in order to control run-length. As partly per [31, 32],
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Fig. 8 Sample n-gram combinations

run-lengths were capped at 1, 2, 4, 8, 16, 32 and 64 thousand opcodes in sequence,
along with the non-truncated set enumerated in Fig. 7.

The count for each trace file is appended to the overall dataset and stored as a
CSV file for analysis.

As the behaviour of the malware at runtime is represented textually, it can be
seen as a natural-language problem, with a defined dictionary. N-grams are used in
text processing for machine learning, which can equally be applied to the problem at
hand. Previous research has shown that n-gram analysis can be used to discriminate
malicious and benign applications, though datasets have been severely limited. As
such, this paper focuses on n-gram analysis to investigate classification of malware
on a substantial dataset.

A second separate phase of the opcode counting process then parses the run-
traces for bi-grams and trigrams from the reduced list (n D 2::3). The system
removes all opcodes which did not occur, as with the increase in n, the possible
combinations rise exponentially. As the opcodes which did not occur at n D 1

cannot be in combinations of n D 2 etc, this can mitigate the feature explosion
without losing any data. This is depicted in Fig. 8.
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Table 1 Composition of
dataset

Malware category Samples

Adware 592

Backdoor 1031

BrowserModifier 721

Malicia 8242

Null 5491

PWS 1964

Ransom 76

Rogue 498

SoftwareBundler 630

Trojan 6018

TrojanDownloader 3825

TrojanDropper 1619

TrojanSpy 405

VirTool 2206

Virus 6341

Worm 7251

Benign 1065

47,975

From initial download through to execution, the number of samples was depleted
by approximately 20%. A further 10 % of files failed to provide a run-trace for a
variety of reasons, such as missing dlls or lock-outs (Table 1).

The quantity of samples and features in any large dataset can provide method-
ological challenges for analyses, which was pertinent in the present study. For
example, with the n D 3 64k run-length dataset, there were 47,975 instances,
with 100,318 features, or 4.82 billion data points. When contained within a CSV
format, the file size approaches 9.4 GB. All analyses were conducted on a server-
class machine with a 12-core Intel Xeon CPU and 96 GB of RAM. Despite this
computational power, datasets of such magnitude are problematic, and so a sparse-
representation file format was chosen (i.e. zeros were explicitly removed from the
dataset, implied by their omission). This reduced the dataset file sizes by as much
as 90%, indicating a large quantity of zero entries, and so feature reduction was
investigated, as discussed further below.

3.5 Application of Machine Learning

All malware types were merged into a single malware category and compared to the
benign class. Due to the size imbalance, a hybrid over/under/sub- sampling approach
was taken to balance the classes. The minority (benign) class was synthetically
oversampled with the Synthetic Minority Oversampling Technique (SMOTE) [10].
This approach uses a reverse-KNN algorithm to generate new instances with values
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Fig. 9 Sampling approach

based on the values of 5 nearest neighbours, generating a 400% increase in benign
sample size in our dataset. The majority class was then sub-sampled randomly into
ninefolds, with a matching algorithm ensuring datasets were of equal size. Figure 9
illustrates this approach. This ensures that the training model was built with data
which were balanced between the two classes, to try to mitigate negative impacts on
model performance which imbalanced data can have.

The Random Forest (RF) [9] classification algorithm was used, as implemented
in WEKA 3.9, to classify the data in all experiments. RF is an ensemble learner,
combining the decisions of multiple small learners (decision trees). RF differs
from traditional tree-based learning algorithms, as a random number of features
are employed at each node in the tree to choose the parameter, which increases
noise immunity and reduces over-fitting. RF functions well with datasets containing
large numbers of instances and features, particularly with wide datasets (i.e. more
features than instances). It parallelizes well [9], and is also highly recommended
with imbalanced data [19]. In pilot experiments, RF provided high accuracy, despite
class imbalances and short run-lengths, even with the large number of features
being used. Tenfolds cross-validation was employed on the classification of each
subset, and the average of the results over the nine subsets was taken to produce the
overall results. Parameter selection for number of trees and number of features was
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conducted initially by a coarse grid search, followed by a fine grid search. For both
parameters higher is better, especially over large datasets, though classification will
plateau and a greater computational overhead penalty will be enacted.

4 Results

Standard machine learning outputs were yielded in the evaluation of the classifier
for each dataset:

1. Accuracy, i.e. the percentage of correctly assigned classes (0% indicating a poor
classifier, 100% showing perfect accuracy)

ACC D TP C TN

TotalPopulation

2. F1 score is the harmonic mean of precision and sensitivity (1 is the ideal).

F1 D 2TP

2TP C FP C FN

3. Area Under Receiver Operating Characteristic curve, i.e. when the True Positive
% rate is plotted against the False Positive % rate, the area underneath this curve
(1 is the ideal).

4. Area Under Precision Recall curve (1 is the ideal) where

Precision D TP

TP C FP

Recall D TP

TP C FN

4.1 Effects of Run-Length and n-gram Size on Detection Rates

The evaluations of each classification, prior to any feature reduction, are depicted in
Fig. 10.

The overall accuracy across all 21 analyses had a mean of 95.87%, with a range
of 93.01%–99.05%. The accuracy level declined in 3 of the 7 categories, between
n D 2 and n D 3, though increased in 3 and remained stable in one. This indicates
that there is marginal gain (0.06% on average) in increasing n from 2 to 3. The
n D 1 cohort did, however, show an overall higher level of accuracy in all but one
run-length (16k) and a greater mean by 1.29% vs n D 2 and 1.23% vs n D 3. F-
scores ranged from 0.93 to 0.991, with the 3 n-gram means again showing greater
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Fig. 10 Accuracies for each run-length across FS approaches, for n D 1

performance by n D 1, with marginal difference between n D 2 and n D 3. The
AU-ROC showed high values, >0.979, with n D 1 from 0.99 to 0.999.

All measures increased as run-length increased, up to 32k. At 64k, all measures
were either static or showed a marginal decline in performance, though most
notably in accuracy (from 99.05% to 98.82%). Across all measures, the overall best
performing strand was n D 1 at 32k run-length with an accuracy of 99.05%, f-score
of 0.991 and AU-ROC of 0.999.

4.2 Feature Selection and Extraction

With the large quantity of features, attempts were made to reduce the number of
attributes, while maintaining the detection capability of the model. Furthermore,
it would not be computationally possible to employ feature extraction algorithms
within a feasible time period, with such a large feature set. As such, a feature
selection strategy was employed in the first instance.
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Table 2 Quantity of features remaining per run-length for each FS category

No FS GR �0.01 Top 20 Top 50
n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3

1k 610 1023 66,443 111 912 10,103 20 20 20 50 50 50

2k 610 6075 70,777 111 2448 12,270 20 20 20 50 50 50

4k 610 6358 75,907 115 2597 14,220 20 20 20 50 50 50

8k 610 6677 80,876 116 2734 15,804 20 20 20 50 50 50

16k 610 6956 85,693 135 2909 17,493 20 20 20 50 50 50

32k 610 7215 91,403 119 2947 19,533 20 20 20 50 50 50

64k 610 8135 100,316 139 3532 22,796 20 20 20 50 50 50

The Gain Ratio algorithm was employed to reduce the number of features in
the datasets. Gain Ratio attempts to address the biases which can be introduced
by Information Gain, when considering attributes with a large range of distinct
values, by considering the number of branches that would result due to a split.
In the ratio, the numerator represents the information yielded about the label and
the denominator represents the information learned about the feature. The ranker
search method was used to traverse the feature set. With respect to the current
problem, ranker is advantageous as it is linear and does not take more steps than
the number of features. With the breadth of the present datasets, this provides a
saving of computational overhead.

Table 2 shows the quantity of features in each cohort and run-length at each step.
The number of features rises in n D 2 and n D 3, and in each increase in run-length,
as the potential number of observed opcodes rises.

Four levels of feature selection using Gain Ratio were investigated: no feature
selection, Gain Ratio merit score >=0.01 (i.e. non-zero), top 20 features, and top 50
features. A further category was originally investigated (merit score >=10) however,
this resulted in a model equivalent to random choice (i.e. all measures scored
50%). The same RF classifier was then presented with the reduced datasets for
classification.

Removing features with a merit score of <0.01 had a negligible impact on the
accuracy rating (0.013–0.018%) compared to the full feature set, but removed up to
84% of features.

Selecting the top n features was subsequently investigated, as the removal of
non-zero features is unique to each dataset but top n would provide uniformity. The
n D 1 dataset proved more resilient across top 20 and top 50 features than the n D 2

and n D 3 cohorts. This may be due to the difference in quantity of features from
no reduction to top n, e.g. n D 3 64k was reduced from 100,316 to 20 features in
this approach. Figure 11 shows accuracy for n D 1.

With any malware detection model using machine learning, consideration should
be given to the false positive rates (FP) (i.e. detected incorrectly as a specific class).
This is particularly relevant with imbalanced data. Table 3 lists the false positive
ratings for both the benign and malicious classes, per run-length and n-gram size.
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Fig. 11 Accuracies for each run-length across FS approaches, for n D 1

Table 3 False positive rates for each run-length for n D 1::3 using all features

n D 1 n D 2 n D 3

Benign Malicious Mean Benign Malicious Mean Benign Malicious Mean

1k 0.042 0.081 0.061 0.029 0.111 0.070 0.031 0.107 0.069

2k 0.040 0.048 0.044 0.036 0.079 0.057 0.040 0.075 0.058

4k 0.046 0.032 0.039 0.046 0.068 0.057 0.044 0.071 0.057

8k 0.022 0.028 0.025 0.023 0.059 0.041 0.024 0.059 0.041

16k 0.215 0.027 0.121 0.011 0.044 0.027 0.020 0.052 0.036

32k 0.008 0.011 0.009 0.008 0.047 0.027 0.010 0.045 0.027

64k 0.013 0.011 0.012 0.022 0.060 0.041 0.011 0.044 0.028

Mean 0.055 0.034 0.044 0.025 0.067 0.046 0.026 0.065 0.045

The ‘Benign’ columns quantify the rate of the model labeling the sample incorrectly
as benign, and vice versa for the ‘Malicious’ columns. Overall FP rates are low,
though a range of values is evident, consistent with the other machine learning
measures. Again, the n D 1 data performs slightly better than the other n-gram
sizes (meanD0.044 vs means of 0.046 and 0.045 respectively). The 32k dataset
shows the lowest false positive rates (benign 0.008 and malicious 0.011, giving a
mean of <1%). This indicates the strength of the model for accurate detection, while
controlling for false positives. Furthermore, the sampling approach taken to balance
the training data multiple times appears to have reduced the risk of increased false
positives with unbalanced datasets (Fig. 12).

The further metrics for the model are presented in Table 4. As run-length
increases, model performance increases for the No FS and merit>0 cohorts, with
the exception of the anomalous 16k set. The n D 2 and n D 3 datasets decline in
performance as run-length increases when a set number of features are used (Top 20
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Fig. 12 Mean accuracies for each run-length across FS approaches for all n-gram lengths

and Top 50). In particular the AU-ROC scores show a decline as run-length increases
for n D 2 using 20 features. An intuitive explanation would be due to the ratio of
original to selected feature numbers. However, of the three n-gram sizes, n D 2

had the lowest average percentage loss of features after the GR>0 feature selection
(n D 1: 80.19%, n D 2: 51.81%, n D 3: 80.67%). It had approximately 10 times
fewer features than n D 3 in the original cohort, and so the reduction to a fixed 20 or
50 should have had more of an impact if feature ratio was the important factor. As
AU-ROC measures discrimination, it would appear that the information for correctly
discriminating between benign and malicious code is distributed differently when
bi-grams are inspected.

5 Conclusions

With accuracy of 99.05% across such a large dataset, and using tenfold cross-
validation, there is a clear indication that dynamic opcode analysis can be used
to detect malicious software in a practical application. While the time taken by
dynamic analysis can be a disadvantage, the work presented here shows that a trace
with as few as 1000 opcodes can correctly discriminate malware from benign with
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Table 4 Model metrics per run-length, n-gram length and FS method

No feature selection

Accuracy (% correct) F-score ROC PRC
n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3

1k 93.88 93.01 93.09 0.939 0.93 0.931 0.99 0.983 0.979 0.99 0.983 0.979

2k 95.62 94.26 94.24 0.956 0.943 0.942 0.994 0.986 0.984 0.994 0.986 0.983

4k 96.07 94.32 94.26 0.961 0.943 0.943 0.994 0.987 0.984 0.993 0.986 0.984

8k 97.48 95.91 95.87 0.975 0.959 0.964 0.996 0.99 0.988 0.995 0.99 0.986

16k 96.09 95.94 96.37 0.961 0.959 0.964 0.991 0.991 0.988 0.99 0.991 0.986

32k 99.05 97.26 97.30 0.991 0.973 0.973 0.999 0.994 0.991 0.998 0.993 0.99

64k 98.82 97.25 97.25 0.988 0.973 0.972 0.998 0.993 0.99 0.998 0.993 0.989

Mean 96.72 95.42 95.48 0.97 0.95 0.96 0.99 0.99 0.99 0.99 0.99 0.99

After Feature Selection using GainRatio with all features showing merit >0

Accuracy (% correct) F-score ROC PRC
n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3

1k 93.84 92.97 93.09 0.938 0.93 0.931 0.99 0.983 0.979 0.99 0.982 0.979

2k 95.64 94.26 94.24 0.956 0.943 0.942 0.994 0.986 0.984 0.994 0.986 0.983

4k 96.04 94.27 94.24 0.96 0.943 0.942 0.994 0.987 0.984 0.993 0.986 0.983

8k 97.44 95.88 95.81 0.974 0.959 0.958 0.996 0.99 0.987 0.995 0.99 0.986

16k 96.13 95.95 96.32 0.961 0.96 0.963 0.991 0.991 0.988 0.991 0.991 0.987

32k 99.01 97.29 97.30 0.99 0.973 0.973 0.999 0.993 0.991 0.999 0.993 0.99

64k 98.78 97.23 97.26 0.988 0.972 0.973 0.998 0.993 0.99 0.998 0.993 0.99

Mean 96.70 95.41 95.47 0.97 0.95 0.95 0.99 0.99 0.99 0.99 0.99 0.99

After Feature Selection using GainRatio with top 20 features

Accuracy (% correct) F-score ROC PRC
n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3

1k 93.10 82.59 83.95 0.931 0.821 0.837 0.987 0.841 0.859 0.986 0.827 0.845

2k 94.54 83.27 82.28 0.945 0.829 0.818 0.989 0.843 0.828 0.988 0.832 0.815

4k 91.61 83.72 83.21 0.916 0.833 0.828 0.971 0.844 0.845 0.97 0.833 0.833

8k 92.50 81.54 81.90 0.925 0.809 0.813 0.972 0.814 0.82 0.971 0.797 0.807

16k 90.11 81.60 82.28 0.901 0.811 0.817 0.953 0.816 0.824 0.949 0.798 0.812

32k 95.97 62.92 82.73 0.96 0.57 0.822 0.987 0.627 0.827 0.986 0.629 0.812

64k 97.35 62.84 82.33 0.974 0.569 0.818 0.99 0.624 0.823 0.989 0.627 0.807

Mean 93.60 76.93 82.67 0.94 0.75 0.82 0.98 0.77 0.83 0.98 0.76 0.82

After Feature Selection using GainRatio with top 50 features

Accuracy (% correct) F-score ROC PRC
n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3 n D 1 n D 2 n D 3

1k 93.74 85.23 84.57 0.937 0.85 0.844 0.99 0.889 0.872 0.989 0.885 0.862

2k 95.57 86.03 82.80 0.956 0.858 0.824 0.994 0.884 0.837 0.993 0.878 0.825

4k 96.05 84.93 83.96 0.96 0.847 0.836 0.993 0.882 0.86 0.992 0.879 0.849

8k 97.39 84.65 82.47 0.974 0.844 0.82 0.995 0.869 0.827 0.995 0.862 0.815

16k 95.64 84.10 82.73 0.956 0.838 0.822 0.987 0.869 0.829 0.987 0.861 0.817

32k 99.01 85.98 82.79 0.99 0.857 0.823 0.999 0.89 0.828 0.998 0.881 0.813

64k 98.75 79.87 82.65 0.988 0.791 0.822 0.998 0.805 0.826 0.998 0.796 0.809

Mean 96.59 84.40 83.14 0.97 0.84 0.83 0.99 0.87 0.84 0.99 0.86 0.83
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93.8% success. Increasing the run-trace to the first 32,000 opcodes increases the
accuracy to over 99%. In terms of execution time, this run-length would not be
dissimilar to static tools such as IDA Pro. Further reducing the feature set to the top
50 attributes and using a unigram representation upholds the classification accuracy
>99%, while reducing the parsing, processing, and classification overheads. In terms
of n-gram analysis, there is minimal gain when increasing between n D 2 and
n D 3. Furthermore, n>1 offers no increase in detection accuracy when runtime is
controlled for. Considering the computational overhead and feature explosion with
increasing levels of n, focus should be maintained on a unigram investigation.

The results presented concur with [32], who found 32k run-length to provide
the highest accuracy. However, the accuracy of the model peaked at 86.31%,
with 13 features being included. Furthermore, the present study employs a dataset
approximately 80 times the size of [32]. In the context of previous similar research,
the accuracy of the present model is superior while the dataset is significantly larger
and more representative of malware.
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