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Abstract Malware has been a major problem in desktop computing for decades.
With the recent trend towards mobile computing, malware is moving rapidly to
smartphone platforms. “Total mobile malware has grown 151% over the past year”,
according to McAfee®’s quarterly treat report in September 2016. By design,
AndroidTM is “open” to download apps from different sources. Its security depends
on restricting apps by combining digital signatures, sandboxing, and permissions.
Unfortunately, these restrictions can be bypassed, without the user noticing, by
colluding apps for which combined permissions allow them to carry out attacks.
In this chapter we report on recent and ongoing research results from our ACID
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project which suggest a number of reliable means to detect collusion, tackling the
aforementioned problems. We present our conceptual work on the topic of collusion
and discuss a number of automated tools arising from it.

1 Introduction

One of the most fundamental principles in computer security is ensuring effective
isolation of software. Programs written by different independent software vendors
(ISVs) have to be properly separated to avoid any accidental data flows as well as
all deliberate data leaks. Strictly speaking, even subroutines of a program need to
be properly isolated and some computer systems attempt that too via, for example,
protection of stack frames and memory tagging. This isolation principle helps ensure
both reliability of software (by limiting the effect of design flaws, insecure design,
bugs, etc.) as well as protect from outright malicious code (malicious data-leaking
libraries, exploiting vulnerabilities via injecting shell-code, etc.)

The era of personal computing slightly diminished the requirement for isolation.
It was believed that PCs—being single-user devices—will be OK with all software
running at the same privilege. First personal computers had no hardware and
software support for software isolation. However, reliability and privacy demanded
a better solution so these primitive OSes were replaced by multiple descendants of
Windows NT®, Unix® and Linux®. Requirements for better isolation also drove
special hardware features—examples include Intel® SGX enclaves and ARM®
TrustZone®.

In the cloud environments (like Docker®, Amazon EC2, Microsoft Azure®,
etc.) which execute software from different sources and operate on data belonging
to different entities, guaranteed isolation becomes even more important because
any cross-container data leaks (deliberate or accidental) may be devastating.
Communications across cloud containers have to be covert because no explicit APIs
is provided. The problem of covert communication between programs running in
time-sharing computer systems was first discussed as early as in 1970s [36].

The situation is quite different in mass-market operating systems for mobile
devices such as smart phones—there is no need for covert channels at all. While cor-
responding operating systems (Symbian®, MeeGo®, iOS®, AndroidTM, Tizen®,
etc.) were designed with the isolation principle in mind, the requirement for
openness led to the ability of software in the device to communicate in many
different ways. AndroidTM OS is a perfect example of such a hybrid design—
apps run in sandboxes but they have documented means of sending and receiving
messages to/from each other; they can also create shared objects and files. These
inter-app communication mechanisms are handy but, unfortunately, also make it
possible to carry out harmful actions in a collaborative fashion.

Extreme commonality of AndroidTM as well as rapid growth of malicious and
privacy-leaking apps made it a perfect target for our team to look for colluding
behaviours. Authors of malicious software would be interested in flying under the
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radar for as long as possible. Unscrupulous advertisers could also benefit from
hiding privacy-invading functionality in multiple apps. These reasons led us to
believe that AndroidTM may be one of the first targets for collusion attacks. We also
realised that security practitioners who analyse threats for AndroidTM desperately
need tools which would help them uncover colluding apps. Such apps may be
outright malicious or they may be unwanted programs which often do aggressive
advertising coupled with disregard for users’ privacy (like those which would use
users’ contacts to expand their advertising further). Having a popular OS which
allowed (and to some extent even provides support to) colluding apps was a major
risk.

Before we started there were no tools or established methods to uncover these
attacks: discovering such behaviours is very tricky—two or more mobile apps,
when analysed independently, may not appear to be malicious. However, together
they could become harmful by exchanging information with one another. Multi-
app threats such as these were considered theoretical for some years, but as part of
this research we discovered colluding code embedded in many AndroidTM apps in
the wild [48]. Our goal was to find effective methods of detecting colluding apps
in AndroidTM [6–8, 11–13, 37]. This would potentially pave a way for spotting
collusions in many other environments that implement software sandboxing, from
other mobile operating systems to virtual machines in server farms.

1.1 Background

Malware has been a major problem in desktop computing for decades. With the
recent trend towards mobile computing, malware is moving rapidly to mobile
platforms. “Total mobile malware has grown 151% over the past year”, according
to McAfee®’s quarterly threat report from September 2016. Criminals are clearly
motivated by the opportunity—the number of smartphones in use is predicted to
grow from 2.6 billion in 2016 to 6.1 billion in 2020, predominantly AndroidTM,
with more than 10 billion apps downloaded to date. Smartphones pose a particular
security risk because they hold personal details (accounts, locations, contacts, pho-
tos) and have potential capabilities for eavesdropping (with cameras/microphone,
wireless connections).

By design, AndroidTM is “open” to download apps from different sources.
Its security depends on restricting apps by combining digital signatures, sandboxing,
and permissions. Unfortunately, these restrictions can be bypassed, without the user
noticing, by colluding apps for which combined permissions allow them to carry
out attacks.

A basic example of collusion consists of one app permitted to access personal
data, which passes the data to a second app allowed to transmit data over the
network. While collusion is not a widespread threat today, it opens an avenue to
circumvent AndroidTM permission restrictions that could be easily exploited by
criminals to become a serious threat in the near future.



58 I.M. Asăvoae et al.

Almost all current research efforts are focusing on detection of single malicious
apps. The threat of colluding apps is challenging to detect because of the myriad
and possibly stealthy ways in which apps might communicate with each other.
Existing Anti-Virus (AV) products are not designed to detect collusion. A review
of the literature shows that detecting application collusion introduces a new set of
challenges including: the detection of communication channels between apps, the
exponential number of app combinations, and the difficulty of actually proving that
two or more apps are really colluding.

1.2 Contribution

In this chapter we report on recent and ongoing research results from our ACID
project1 which suggest a number of reliable means to detect collusion, tackling the
aforementioned problems. To this end we present our conceptual work on the topic
of collusion and discuss a number of automated tools arising from it.

We start with an overview on the AndroidTM Operating System, which introduces
the various security mechanism built in.

Then we give a definition for app collusion, and distinguish collusion from the
closely related phenomena of collaboration and confused deputy attacks.

Based on this we address the exponential complexity of the problem by
introducing a filtering phase. We develop two methods based on a lightweight
analysis to detect if a set of apps has any collusion potential. These methods extract
features through static analysis and use first order logic and machine learning to
assess whether an analysed app set has collusion potential. By developing two
methods to detect collusion potential we address the problem of collusion with two
distinct approaches.

The first order logic approach allows us to define collusion potential through
experts, which may identify attack vectors that are not yet being seen in the real
world. Whereas the machine learning approach uses AndroidTM permissions to
systematically assign the degree of collusion potential a set of apps may pose. A mix
of techniques as such provides for an insightful understanding of possibly colluding
behaviours and also adds confidence into filtering.

Once we have reduced the search space, we use a more computational intensive
approach, namely software model checking, to validate the actual existence of
collusion between the analysed apps. To this end, model checking provides dynamic
information on possible app executions that lead to collusion; counter examples
(witness traces) are generated in such cases.

1http://acidproject.org.uk.

http://acidproject.org.uk
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In order to evaluate our approaches, we have developed a set of specifically
crafted apps and gathered a data set of more than 50,000 real-world apps. Some of
our approaches have been validated by using the crafted app set and tested against
the real-world apps.

The above effort has been demonstrated through a number of publications
through the different teams involved focusing on different aspects. The chapter
allows us to provide a consolidated perspective on the problem. By systematically
taking related work into account, we aim to provide a comprehensive presentation
of state of the art in collusion analysis.

This chapter reports previously published work [6–8, 11, 13, 37], however, we
expand on these publications by providing more detail and also by putting the
singular approaches into context.

2 The AndroidTM Operating System

The AndroidTM operating system consists of three software layers above a Linux®
kernel as shown in Fig. 1. The Linux® kernel is slightly modified for an embedded
environment. It runs device-specific hardware drivers, and manages power and the
file system. AndroidTM is agnostic of the processor (ARM, x86, and MIPS) but
does take advantage of some hardware-specific security capabilities, e.g., the ARM
v6 eXecute-Never feature for designating a non-executable memory area.

Above the kernel, libraries of native machine code provide common services
to apps. Examples include Surface Manager for graphics; WebKit® for browser
rendering; and SQLite for basic datastore. In the same layer, each app runs in its
own instance of AndroidTM runtime (ART) except for some apps that are native,
e.g., core AndroidTM services. A replacement for the Dalvik virtual machine (VM)
since AndroidTM 4.4, the ART is designed to run Dalvik executable (DEX) byte-
code on resource-constrained mobile devices. It introduces ahead-of-time (AOT)
compilation converting bytecode to native code at installation time (in contrast to
the Dalvik VM which interpreted code at runtime).

Fig. 1 AndroidTM operating
system layers

Libraries
AndroidTM runtime

Dalvik VM

Application framework

Applications

Linux® kernel
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The application framework above the libraries offers packages and classes to
provide common services to apps, for example: the Activity Manager for starting
activities; the Package Manager for installing apps and maintaining information
about them; and the Notification Manager to give notifications about certain events
to interested apps.

The highest application layer consists of user-installed or pre-installed apps. Java
source code is compiled into JAR (Java archive) files composed of multiple Java
class files, associated metadata and resources, and optional manifest. JAR files can
be translated into DEX bytecode and zipped into AndroidTM package (APK) files
for distribution and installation. APK files contain .dex files, resources, assets, lib
folder of processor-specific code, the META-INF folder containing the manifest
MANIFEST.MF and other files, and an additional AndroidManifest.xml file. The
AndroidManifest.xml file contains the necessary configuration information to install
the app, notably defining permissions to request from the user.

2.1 App Components

AndroidTM apps are built composed of one or more components which must be
declared in the manifest.

• Activities represent screens of the user interface and allow the user to interact
with the app. Activities run only in the foreground. Apps are generally composed
of a set of activities, such as a “main” activity launched when a user starts an app.

• Services operate in the background to carry out long-running tasks for other apps,
such as listening to incoming connections or downloading a file.

• Broadcast receivers respond to messages that are sent through Intent objects, by
the same or other apps.

• Content providers manage data shared across apps. Apps with content providers
enable other apps to read and write their local data.

Any component can be public or private. If a component is public, components
of other apps can interact with it, e.g., start the Activity, start the Service. If a
component is private, only components from the app that runs with the same user
ID (UID) can interact with that component.

2.2 Communications

AndroidTM allows any app to start another app’s component in order to avoid
duplicate coding for the same function. However, this can not be done directly
because apps are separate processes. To activate a component in another app, an app
must deliver a message to the system that specifies the intent to start that component.
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Intents are message objects that contain information about the operation to be
performed and relevant data. Intents are delivered by various methods to application
components, depending on the type of component. Intents about certain events
are broadcasted, e.g., an incoming phone call. Intents can be explicit for specific
recipients or implicit, i.e., broadcast through the system to any components listen-
ing. Components can provide Intent filters to specify which Intents a component is
willing to handle.

Besides Intents, processes can communicate by standard Unix® communication
methods (files, sockets), AndroidTM offers three inter-process communication (IPC)
mechanisms:

• Binder: a remote procedure call mechanism implemented as a custom
Linux® driver;

• Services: interfaces directly accessible using Binder;
• Content Provider: provide access to data on the device.

2.3 App Distribution and Installation

AndroidTM apps can be downloaded from the official Google PlayTM market or
many third party app stores. To catch malicious apps from being distributed,
Google@ uses a variety of services including Bouncer, Verify Apps, and Safety
Net. Since 2012, the Bouncer service automatically scans the Google PlayTM

market for potentially malicious apps (known malware) and apps with suspicious
behaviours. It does not examine apps installed on devices or apps in third party app
stores. Currently, however, none of these services look for apps exhibiting collusion
behaviours.

The Verify Apps service scans apps upon installation on an AndroidTM device
and scans the device in the background periodically or when triggered by potentially
harmful behaviours, e.g., root access. It warns users of potentially harmful apps
(PHAs) which may be submitted online for analysis.

The Safety Net service looks for network-based security threats, e.g., SMS abuse,
by analyzing hundreds of millions of network connections daily. Google@ has the
option to remotely remove malicious apps.

2.4 AndroidTM Security Approach

AndroidTM security aims to protect user data and system resources (including the
network), which are regarded as the valuable assets. Apps are assumed to be
untrusted by default and therefore considered potential threats to the system and
other apps. The primary method of protection is isolation of apps from other apps,
users from other users, and apps from certain resources. IPC is possible but mediated
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by Binder®. However, the user is ultimately in control of security by choosing
which permissions to grant to apps. For more detailed information about AndroidTM

security, the reader is referred to the extensive literature [21, 22, 27, 32, 59].
AndroidTM security is built on key security features provided by the Linux®

kernel, namely: a user-based permissions system; process isolation; and secure IPC.
In Linux®, each Linux® user is assigned a user (UID) and group ID (GID). Access
to each resource is controlled by three sets of permissions: owner (UID), group
(GID), and world. The kernel isolates processes such that users can not read another
user’s files or exhaust another’s memory or CPU resources. AndroidTM builds on
these mechanisms. An AndroidTM app runs under a unique UID, and all resources
for that app are assigned full permissions for that UID and no permissions otherwise.
Apps can not access data or memory of other apps by default. A user with root UID
can bypass any permissions on any file, but only the kernel and a small subset of
core apps run with root permission.

By default, apps are treated as untrusted and can not interact with each other
and have limited access to the operating system. All code above the Linux®
kernel (including libraries, application framework, and app runtime) is run within a
sandbox to prevent harm to other apps or the system.

Apps must be digitally signed by their creators although their certificate can be
self signed. A digital signature does not imply that an app is safe, only that the
app has not been changed since creation and the app creator can be identified and
held accountable for the behaviour of their app. A permissions system controls how
apps can access personal information, sensitive input devices, and device metadata.
By default, apps collecting personal information restricts data access to themselves.
Access to sensitive user data is available only through protected APIs. Other types
of protected APIs include: cost sensitive APIs that might generate a cost to the user;
APIs to access sensitive data input devices such as camera and microphone; and
APIs to access device metadata. App permissions are extracted from the manifest at
install time by the PackageManager.

The default set of AndroidTM permissions is grouped into four categories as
shown in Table 1.

The permissions system has known deficiencies. First, apps tend to request for
excessive permissions. Second, users tend to grant permissions to apps without
fully understanding the permissions or their implications in terms of risk. Third, the
permissions system is concerned only with limiting the actions of individual apps.
It is possible for two or more apps to collude for a malicious action by combining
their permissions, even though each of the colluding apps is properly restricted by
permissions.

3 App Collusion

ISO 27005 defines a threat as “A potential cause of an incident, that may result in
harm of systems and organisations.” For mobile devices, the range of such threats
includes [62]:
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Table 1 The default set of AndroidTM permissions

Category Description Examples

Normal Can not cause real harm ACCESS_NETWORK_STATE
INTERNET
SET_WALLPAPER

Dangerous Possibly causing harm READ_CONTACTS
ACCESS_FINE_LOCATION
READ_PHONE_STATE

Signature Automatically granted if the
app is signed by the same
digital certificate as the app
that created the permission

ACCESS_VR_MANAGER
WRITE_BLOCKED_NUMBERS
BIND_TRUST_AGENT

SignatureOrSystem Similar to Signature except
automatically granted to the
AndroidTM system image in
addition to the requesting app

GET_APP_OPS_STATS
MANAGE_DEVICE_ADMINS
ACCESS_CACHE_FILESYSTEM

• Information theft happens when information is sent outside the device bound-
aries.

• Money theft happens, e.g., when an app makes money through sensitive API calls
(e.g. SMS).

• Service or resource misuse occurs, for example, when a device is remotely
controlled or some device function is affected.

As we have seen before, the AndroidTM OS runs apps in sandboxes, trying to
keep them separate from each other, especially that no information can be exchanged
between them. However, at the same time AndroidTM has communication channels
between apps. These can be documented ones (overt channels), or undocumented
ones (covert channels). An example of an overt channel would be a shared file or
intent; an example of a covert channel would be volume manipulation (the volume
is readable by all apps) in order to pass a message in a special code.

Broadly speaking, app collusion is when, in performing a threat, several apps are
working together, i.e., they exchange information which they could not obtain on
their own.

This informal definition is close to app collaboration, where several apps share
information (which they could not obtain on their own), in order to achieve a
documented objective.

A typical example of collusion is shown in Fig. 2, where two apps perform the
threat of information theft: the Contact_app reads the contacts database to pass
the data to the Weather_app, which sends the data outside the device boundaries.
The information between apps is exchanged through shared preferences.

In contrast, a typical example of collaboration would be the cooperation between
a picture app and an email app. Here, the user can choose a picture to be sent via
email. This requires the picture to be communicated over an overt channel from the
picture app to the email app. Here, the communication is performed via a shared
image file, to which both apps have access.
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Contact_app Weather_app

READ
CONTACTS

INTERNET

Shared
Prefs.

Fig. 2 An example of colluding apps

These examples show that the distinction between collusion and collaboration
actually lies in the notion of intention. In the case of the weather app, the intent
is malicious and undocumented, in the case of sending the email, the intent is
documented, visible to the user and useful.

To sharpen the argument, it might be the case that the picture app actually makes
the pictures readable by all apps, so that harm can be caused by some malicious app
sending pictures without authorisation. This would provide a situation, where a bug
or a vulnerability of one app is abused by another app, leading to a border case for
collusion. In this case one would speak about “confused deputy” attack: the picture
app has a vulnerability, which is maliciously abused by the other app, however, the
picture app was—in the way we describe it here—not designed with the intention
to collude. An early reference on such attacks is the work by Hardy [34].

This discussion demonstrates that notions such as “malicious”, intent, and
visibility (including app documentation—external and built-into the app) play a role
when one wants to distinguish between collusion, cooperation, and confused deputy.
This is typical in cyber security, see e.g. Harley’s book chapter “Antimalware
evaluation and Testing”, especially the section headed “Is It or Isn’t It?”, [35,
pp. 470–474]. It is often a challenge, especially for borderline cases, to distinguish
between benign and malicious application behaviours. One approach is to use a pre-
labeled “malicious” data set of APKs where all the aforementioned factors have
been already accounted for. Many security companies routinely classify AndroidTM

apps into clean and malicious categories to provide anti-malware detection in their
products and we had access to such set from Intel Security (McAfee®). All apps
classified as malicious fall into three mentioned threat categories. Now, collusion
can be regarded as a camouflage mechanism applied to conceal these basic threat’s
behaviours. After splitting malicious actions into multiple individual apps they
would easily appear harmless when checked individually. Indeed, even permissions
of each such app would indicate it cannot pose a threat in isolation. But in
combination, however, they may realise a threat. Taking into account all the details
contributing to “maliciousness”—deceitful distribution, lack of documentation,
hidden functionality, etc.—is practically impossible to formalise.

Here, in our book chapter, we aim to apply purely technical methods to discover
collusion. Thus, we will leave out of our definition all aspects relating to psychology,
sociology, or documentation. In the light of the above discussion our technical
definition of collusion thus applies to all three identified cases, namely collusion,
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cooperation, and confused deputy. If someone aims to distinguish between these,
then further manual analysis would be required, involving the distribution methods,
documentation, and all other surrounding facts and details.

When analysing the APKs of various apps for collusion, we look at the actions
that are being executed by these APKs. Actions are operations provided by the
AndroidTM API (such as record audio, access file, write file, send data, etc.). We
denote the set of all actions by Act. Note that this set also includes actions describing
communication. Using an overt channel in AndroidTM requires an API call.

An action can be can be characterised by a number of static attributes
such as permissions, e.g., when an app needs to record audio, the permission
RECORD_AUDIO needs to be set in the manifest while the permission
WRITE_EXTERNAL_STORAGE needs to be set for writing a file.

Technically, we consider a threat to be a sequence of actions. We consider a threat
to be realised by collusion if it is distributed over several apps, i.e.,

Definition 1 there is a non-singleton set S of apps such that:

• each app in S contributes the execution of at least one action to the threat,
• each app in S communicates with at least one other app.

This definition will be narrowed down further when discussing concrete techniques
for discovering collusion.

To illustrate our definition we present an abstract example.2

Example 1 (Stealing Contact Data) The two apps graphically represented in Fig. 2
perform information theft: the Contact_app reads the contacts database to pass
the data to the Weather_app, which sends the data outside the device boundaries.
The information is sent through shared preferences.

Using the collusion definition we can describe the actions performed by both
apps as:

• ActContact_app D faread_contacts; sendshared_prefs; g and
• ActWeather_app D fasendfile; recvsharedprefs; g
with the permissions pms .aread_contacts/ D fPermission_contactsgandpms.asend_file/

D fPermission_internetg. The information threat T is given by

T D haread_contacts; sendshared_prefs; recvshared_prefs; asend_filei:

This data leakage example is in line with the collusion definitions given in most
existing work [5, 17, 40, 42, 46, 52] which regards collusion as the combination
of inter-app communication with information leakage. However, our definition of a
threat is broader, as it includes also financial and resource/service abuse.

2Concrete examples are available on request.
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3.1 App Collusion in the Wild

We present our analysis of a set of apps in the wild that use collusion to maximise
the effects of their malicious payloads [11]. To the best of our knowledge, this is
the first time that a large set of colluding apps have been identified in the wild. This
does not necessarily mean that there are no more colluding apps in the wild, as one
of the main problems (that we are addressing in our work) is the lack of tools to
identify colluding apps. We identified these sets of apps while looking for collusion
potential on a set of more than 40,000 apps downloaded from App markets. While
performing this analysis we found a group of apps that was communicating using
both intents and shared preference files. A manual review of the flagged apps
revealed that they were sharing information through shared preferences files to
synchronise the execution of a potentially harmful payload. Both the colluding and
malicious payload were included inside a library, the MoPlus SDK, embedded in
all apps. This library has been known to be malicious since November 2015 [58].
However, the collusion behaviour of the SDK was hitherto unknown. In the rest of
this section, we briefly describe this colluding behaviour.

The detected colluding behaviour looked different from the behaviour predicted
by most app collusion research [47, 57] so far. In a nutshell, all apps including the
MoPlus SDK that are running on a device will talk to each other to check which
of the apps has the most privileges. This app will then be chosen to execute the
local HTTP server able to receive commands from the C&C server, maximising the
effects of the malicious payload.

The MoPlus SDK includes the MoPlusService and the MoPlusReceiver compo-
nents. In all analysed apps, the service is exported. In AndroidTM, this is considered
to be a dangerous practice, as also other apps will be able to call and access
this service. However, in this case it is a feature used by the SDK to enable
communication between its apps.

The colluding behaviour is executed when the MoPlusService is created
(onCreate method). This behaviour is triggered by the MoPlus SDK of each app and
can be divided in two phases: establishing app priority and executing the malicious
payload. To establish the app priority—see Fig. 3—the MoPlus SDK executes
a number of checks, including the verifying if the app embedding the SDK has
granted the INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE,
WRITE_CONTACTS, WRITE_EXTERNAL_STORAGE or GET_TASKS
permissions.

After the priority has been obtained and stored, each service inspects the contents
of the shared preference files to get its priority, returning the package name of
the one with highest priority. Then, each service cancels previous intents being
registered (to avoid launching the service more than once) and sends an intent
targeting only the process with the higher previously saved priority—see Fig. 4.
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com.baidu.searchbox

MoPlus
SDK

Priority = 100L

com.baidu.searchbox.push_sync

Save priority value1

com.baidu.BaiduMap

MoPlus
SDK

Priority = 10L

com.baidu.BaiduMap.push_sync

Save priority value1

com.myapp

MoPlus
SDK

Priority = 0L

com.myapp.push_sync

Save priority value1

App Sandbox App Sandbox App Sandbox

Fig. 3 Phase 1 of the colluding behaviour execution. Each app saves a priority value that depends
on the amount of access it has to the system resources. Priority values are shown for the sake of
explanation

com.baidu.searchbox

MoPlus
SDK

Priority = 100L

com.baidu.searchbox.push_sync

com.baidu.BaiduMap

MoPlus
SDK

Priority = 10L

com.baidu.BaiduMap.push_sync

com.myapp

MoPlus
SDK

Priority = 0L

com.myapp.push_sync

Read priority values1

App Sandbox App Sandbox App Sandbox

Launch 
Intent

2

Fig. 4 Phase 2 of the colluding behaviour execution. Each app checks the WORLD_READABLE
SharedPreference files and sends an intent to the app with highest priority

3.1.1 Discussion

It is important to notice that although all applications already include a malicious
payload that could be executed on their own, if two apps with the Moplus SDK
were to be installed in the same device, they would not be able to execute their
individual malicious payloads. Although this assumption may seem unrealistic at
first, implementing these kinds of behaviours inside SDKs makes this much more
likely to happen. If we consider this assumption, then, the colluding behaviour
allows two things: first, it enables the execution of the malicious payload avoiding
concurrency problems between all instances of the SDK running. Second, it allows
the SDK instance with highest access to resources to be the one executing,
maximising the result of the attack. This introduces an important remark in how
colluding applications have to be analysed. This is, having the static features that
allow them to execute a threat doesn’t mean they will be able to achieve that threat in
all scenarios, like the one presented in our case. This means, that when considering
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app collusion we must look not only to the specific features or capabilities of the
app, but also how those capabilities work when the app is being executed with
other apps. If we are considering collusion it does not make much sense to consider
the capabilities of an app in isolation with respect to other apps, we have to consider
the app executing in an environment where there are other apps installed.

3.1.2 Relation with Collusion Definition

This set of apps found in the wild relates to our collusion definition in the following
way. Consider a set of apps S D fapp1; app2; � � � ; appng that implements the
MoPlus SDK. As they embed the MoPlus SDK, the attacks that can be achieved
by them includes writing into the contacts database, launching intents and installing
applications without user interaction among others. This set of threats was identified
by TrendMicro researchers [58].

Consider now the installation of an application without the user interaction
as a threat Tinstall. As all apps embed the MoPlus SDK, all apps include the
code to potentially execute such threat, but only apps that request the necessary
permissions are able to execute it. If appi is the only app installed in the device,
and has the necessary permissions, executing Tinstall will require the following
actions fOpen serveri; Receive commandi; Install appig, the underscore being the
app executing the action.

However, if another MoPlus SDK app, appj, is installed in the same device
but doesn’t have the permissions required to achieve Tinstall the threat won’t be
realised because of concurrency problems, both apps share the port where they
receive the commands. To avoid these, the MoPlus SDK includes the previously
described leader selection mechanisms that uses the SharedPreferences . In this
setting, we can describe the set of actions required by both apps to execute the
threat as ActMoplus D fCheck permissionsi; Check permissionsj; Save priority ii;
Save priority jj; Read priority ij; Read priority ji; Launch service ij; Open serveri;

Receive commandi; Install appig. Considering Read priority xy and Save priority xy

as actions that make use of the SharedPreferences as a communication channel, we
can consider that the presented set of actions follows under our collusion definition
as (1) there is a sequence of actions that execute a threat executed collectively by
appi and appj and (2) both apps communicate with each other.

4 Filtering

A frontal attack on detecting collusions to analyse pairs, triplets and even larger sets
is not practical given the search space. An effective collusion-discovery tool must
include an effective set of methods to isolate potential sets which require further
examination.
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4.1 Rule Based Collusion Detection

Here, in a first step we extract information about app communications and access to
protected-resources. Using rules in first order logic codified in Prolog, the method
identifies sets of apps that might be colluding.

The goal of this is to serve as a fast, computationally cheap filter that detects
potentially colluding apps. For such a first filter it is enough to be based on
permissions. In practical work on real world apps this filter turns out to be effective
to detect colluding apps in the wild.

Our filter (1) uses Androguard [20] to extract facts about the communication
channels and permissions of all single apps in a given app set S, (2) which is then
abstracted into an over-approximation of actions and communication channels that
could be used by a single app. (3) Finally the collusion rules are fired if the proper
combinations of actions and communications are found in S.

4.1.1 Actions

We utilise an action set Actprolog composed out of four different high level actions:
accessing sensitive information, using an API that can directly cost money, control-
ling device services (e.g. camera, etc.), and sending information to other devices and
the Internet. To find out which of these actions an app could carry out, we extract
its set of permissions pmsprolog with Androguard. For each found permission, our
tool creates a new Prolog fact in the form uses.app; permission/. Then permissions
extracted are mapped to one of the four high level actions. This is done with a set
of previously defined Prolog rules. The mapping of all AndroidTM permissions to
the four high-level actions can be found in the project’s Github repository.3 As an
example, an app that declares the INTERNET permission will be capable of sending
information outside the device:

uses.App; PInternet/ ! information_outside.App/

4.1.2 Communications

The communication channels established by an app are characterised by its API calls
and the permissions declared in its manifest file. We cover communication actions
(comprolog) that can be created as follows:

• Intents are messages used to request tasks from other application components
(activities, services or broadcast receivers). Activities, services and broadcast
receivers declare the intents they can handle by declaring a set of intent filters.

3https://github.com/acidrepo/collusion_potential_detector.

https://github.com/acidrepo/collusion_potential_detector
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• External Storage is a storage space shared between all the apps installed without
restrictions. Apps accessing the external storage need to declare the

READ_EXTERNAL_STORAGE

permission. To enable writing, apps must declare

WRITE_EXTERNAL_STORAGE.

• Shared Preferences are an OS feature to store key-value pairs of data. Although
it is not intended for inter-app communication, apps can use key-value pairs to
exchange information if proper permissions are defined (before AndroidTM 4.4).

We map apps to sending and receiving actions by inspecting their code and
manifest files. When using intents and shared preferences we are able to specify the
communication channel using the intent actions and preference files and packages
respectively. If an application sends a broadcast intent with the action SEND_FILE
we consider the following:

send_broadcast.App; Intentsend_file/

! send.App; Intentsend_file/

We consider that two apps communicate if one of them is able to send and the other
to receive through the same channel. This allows to detect communication paths
composed by an arbitrary number of apps:

send.Appa; channel/ ^ receive.Appb; channel/ !
communicate.Appa; Appb; channel/

4.1.3 Collusion Potential

To identify collusion potential in app sets, we put together the different communi-
cation channels found in an app and their high-level actions as identified by their
permissions. Then, using domain knowledge we created a threat set that describes
some of the possible threats that could be achieving with a collusion attack. Our
threat set �prolog considers information theft, money theft and service misuse. As our
definition states, each of the threats is characterised by a sequence of actions. In
fact, each of our collusion rules gathers the two elements required by the collusion
definition explained in Sect. 3: (1) each app of the group must execute at least one
action of the threat and (2) each app in S communicates at least with another app
in S. The following rule provides the example of an information threat executed
through two colluding apps:
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App1 Uses(App,INTERNET)
Uses(App,READ_CONTACTS)
Send(App,I_SEND)
Receive(App,SP_FILE)

Prolog Facts

App1->INTERNET
App2 -> READ_CONTACTS
…

PermissionsModified
Androguard

App1 ->SEND Intent
App2 ->FILE SharedPrefs.

Communication 
Channels

Uses(X,Internet) -> Information_outside(X)
Uses(X,READ_CONTACTS) -> Sensitive(X)
…

Send(X,Channel) and Receive(Y,Channel) ->
Communication(X,Y)
…

Sensitive(X) and Information_outside(Y) and 
Communication(X,Y) -> Collusion(X,Y)
…

…

App2

App1

…

Permission to action mapping

Communication rules

Collusion Potential Definition

Prolog
Program

Expert 
Knowledge

Fig. 5 General overview of the process followed in the rule based collusion detection approach

sensitive_information.Appa/

^ information_outside.Appb/

^ communicate.Appa; Appb; channel/
! collusion.Appa; Appb/

Note that more apps could be involved in this same threat as simply forwarders of
the information extracted by the first app until it arrives to the exfiltration app. This
case is also covered by Definition 1, as the forwarding apps need to execute their
communication operations to succeed on their attack (fulfilling both of our definition
conditions).

Finally, the Prolog rules defining collusion potential, the facts extracted from
apps, and rules mapping permissions to high level actions and communications
between apps are then put on a single file. This file is then fed into Prolog so
collusion queries can be made. The overall process is depicted in Fig. 5.

4.2 Machine Learning Collusion Detection

Security solutions using machine learning employ algorithms designed to distin-
guish between malicious and benign apps. To this end, they analyse various features
such as the APIs invoked, system calls, data-flows and resources used assuming
a single malicious app attack model. In this section, we extend the same notion
to assess the collusion threat which serves as an effective filtering mechanism
for finding collusion candidates of interest. We employ probabilistic generative
modelling for this task with the popular Naive Bayesian model.
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4.2.1 Naive Bayes Classifier

Let X D Œx1; : : : ; xk� be a k-dimensional space with binary inputs, where k is the total
number of permissions in AndroidTM OS and xj 2 f0; 1g are independent Bernoulli
random variables. A variable xj takes the value 1 if permission j is found in the
set S of apps under consideration, 0 otherwise. Let Y D {m-malicious, b-benign}
be a one dimensional output space. The generative naive Bayes model specifies
a joint probability, p.x; y/ D p.x j y/:p.y/, of the inputs x and the label y: the
probability p.x; y/ of observing x and y at the same time is the same as the probability
p.x j y/ of x happening when we know that y happens multiplied with the probability
p.y/ that y happens. This explicitly models the actual distribution of each class
(i.e. malicious and benign in our case) assuming that some parameters stochastic
process generates the observations, and hence estimates the model parameters that
best explains the training data. Once the model parameters are estimated (say O� ),
then we can compute p.ti j O�/ which gives the probability of the ith test case is
generated by the derived model. This can be applied in a classification problem as
explained below.

Let p(x,y) be a joint distribution over X�Y from which a training set R D fxk
i ; y1

i j
i D 1; 2; 3; : : : ; ng of n independent and identically distributed examples are drawn.
The generative naive Bayes classifier uses R to estimate p.xjy/ and p.y/ in the joint
distribution. If c.:/ stands for counting the number of occurrences of an event in the
training set,

Op.x D 0 j y D m/ D c.x D 0; y D m/ C ˛

c.y D m/ C 2˛
(1)

where the pseudo count ˛ > 0 is the smoothing parameter. If ˛ D 0, i.e. taking the
empirical estimates of the probabilities without smoothing, then

Op.x D 0 j y D m/ D c.x D 0; y D m/

c.y D m/
(2)

Equation (2) estimates the likelihoods using the training set R. Uninformative priors,
i.e. Op.y D m/, can also be estimated in the same way. Instead, we estimate prior
distribution in an informative way in this work as it would help us in modelling the
knowledge not available in data (e.g. permission’s critical level). Informative prior
estimation is described in Sect. 4.2.3.

In order to classify the ith test case, the model predicts p.ti j O�/ D m if and
only if:

Op.x D ti; y D m/

Op.x D ti; y D b/
> 1 (3)
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4.2.2 Threat Likelihood

As per our collusion definition in Sect. 3, estimating the collusion threat likelihood
Lc.S/ of a non-singleton set S of apps involves two likelihood components L� .S/ and
Lcom(S): L� .S/ expresses how likely the app set S can fulfil the sequence of actions
required to execute a threat; Lcom.S/ is the ability to communicate between apps
in S. Using the multiplication rule of well-known basic principles of counting:

Lc.S/ D L� .S/ � Lcom.S/ (4)

As mentioned above, we employ the so-called Naive Bayesian informative [50]
model to demonstrate the evaluation of Eq. (4). First, we define the model, then train
and validate the model, and finally test it using a testing data set.

4.2.3 Estimating L£

Let X D Œx1; : : : ; xk� be a k-dimensional random variable as defined in Sect. 4.2.1.
Then the probability mass function P.X/ gives the probability of obtaining S with
permissions as described in X. Our probabilistic model P.X/ is then given by Eq. (5):

P.X/ D
kY

jD1

�
xj

j .1 � �j/
1�xj (5)

where �j 2 Œ0; 1� is a Bernoulli parameter. In order to compute L� for a given set S,

we define a sample statistic as Qs D lnf.P.X//�1g
jSj , divide lnf.P.X//�1g by the number

of distinct permissions in set S, and scale down it to the range [0,1] by dividing
the max(Qs) which estimated using empirical data. Hence, for a given set S, L� D

Qs
max.Qs/

. The desired goal behind the above mathematical formulation is to make
requesting more critical permissions to increase the likelihood of “being malicious”
than requesting less critical ones regardless of frequencies. Readers who require a
detailed explanation of the mathematical notion behind the above formulation are
invited to refer to [50].

To complete our modelling, we need to estimate values O�j that replace �j in
the computation of L� : To this end—to avoid over fitting P.X/—we estimate �j

using informative beta prior distributions [41] and define the maximum posterior
estimation

O�j D
P

xj C ˛j

N C ˛j C ˇj
(6)

where N is the number of apps in the training data set and ˛j; ˇj are the penalty
effects. In this work we set ˛j D 1: The values for ˇj depend on the critical level of
permissions as given in [50, 55]. ˇj can take either the value 2N (if permission j is
most critical), N (if permission j is critical) or 1 (if permission j is non-critical).
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4.2.4 Estimating Lcom

In order to materialise a collusion, there should be an inter app communication
closely related to the target threat. To establish this association we need to consider
a number of factors including the contextual parameters. At this stage of the
research we do not focus on estimating the strength of connection (association)
between the threat and the communication. Instead we investigate what percentage
of communication channels can be detected through static code analysis, and simply
assume4 these channels can be used for malicious purpose by apps in set S. Hence
we consider Lcom to be a binary function such that Lcom 2 f1; 0g which takes the
value 1 if there is inter app communication within S using either intents or external
storage (we do not investigate other channels in this work).

4.2.5 Proposed Probabilistic Filter

Our probabilistic filter consists of two sub filters: an inner and an outer one. The
inner filter applies on the top of the outer filter. The outer filter is based on the L�

value which we can compute using permissions only. Permissions are very easy and
cheap to extract from APKs—no decompilation, reverse engineering, complex code
or data flow analysis is required. Hence the outer filter is computationally efficient.
The majority of non-colluding app pairs in an average app set can be treated using
this filter only (see Fig. 6). This avoids the expensive static/dynamics analysis on
these pairs. The inner filter is based on Lcom value which we currently compute
using static code analysis. A third party research prototype tool Didfail [15] was
employed in finding intent based inter app communications. A set of permission
based rules was defined to find communication using external storage. Algorithm 1
presents the proposed filter to find out colluding candidates of interest.

Fig. 6 Validation: L� score
obtained by each pair in the
validation data set

0 50 100 150 200

0.
2

0.
6

1.
0

App pair index

Colluding pairs Non-colluding pairs

4This assumption might produce false positives, however, never false negatives. It is left as a future
work to improve this.
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Algorithm 1: Probabilistic filter. The outer filter is based on L� and the inner
filter is based on Lcom

�: Set of individual apps;
˝: Set of pairs of colluding candidates of interest;
input : � D{app1, app2, app3, . . . , appn}
output: ˝ D{pair1, pair2, pair3, . . . , pairm}
if j�j � 2 then

Let � D set of all possible app pairs in �;
foreach pairj in � do

Compute L� as described in section 4.2.3;
/* outer filter */
if L� � threshold then

Compute Lcom as described in section 4.2.4 ;
/* inner filter */
if Lcom DD1 then

Return (pairj);
end

end
end

end

4.2.6 Experimental Setup and Validation

Algorithm 1 was automated using R5 and Bash scripts. As mentioned above, it also
includes calls to a third party research prototype [15] to find intent based commu-
nications in computing Lcom. The model parameters in Eq. (5) were estimated using
training datasets produced from a 29k size app sample provided by Intel security.

Our validation data set consists of 240 app pairs in which half (120) of them
are known colluding pairs while the other half are non-colluding pairs. In order to
prevent over fitting, app pairs in the validation and testing sets were not included in
the training set. As shown in Fig. 6, the proposed method assigns higher L� scores6

for colluding pairs than clean pairs. Table 2 presents the confusion matrix obtained
for the proposed method by fitting a linear discriminant line (LDL), i.e. the blue
dotted line in Fig. 6 (Sensitivity D 0.95, specificity D 0.94, precision D 0.94 and the
F-score D 0.95).

However as shown in Fig. 6, colluding and non-colluding are not easily separable
two classes by a LDL. There are some overlaps between class elements. As a result
it produces false classifications in Table 2. It is possible to reduce false alarms by
changing the threshold. For example either setting the best possible discriminant line
or its upper bound (or even higher, see Fig. 6) as the threshold will produce zero false

5http://www.r-project.org/.
6We plot L� values in Fig. 6 as outer filter in Algorithm 1 depends on it, and to show that majority
of non-colluding app pairs can be treated using L� only. However, it should be noted that Lc D L�

for colluding pairs as Lcom D 1.

http://www.r-project.org/
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Table 2 Confusion matrix for the naive Bayesian method

n D 240 Actual colluding Actual non-colluding

Predicted colluding 114 7

Predicted non-colluding 6 113

positives or vice versa in Table 2. But as a result it will increase false negative rate
that will affect on the F-score—the performance measure of the classifier. Hence it
would be a trade-off between a class accuracy and overall performance. However
since the base rate of colluding apps in the wild is close to zero as far as anyone
knows, the false positive rate of this method would have to be vanishingly small to
be useful in practice. Instead of LDL, using a non-linear discriminator would also be
another possibility to reduce false alarms. This is left as a future work to investigate.

The average processing time per app pair was 80s which consists of � 1s for
the outer filter and rest of the time for the inner filter. Average time was calculated
on a mobile workstation with an Intel Core i7-4810MQ 2.8 GHz CPU and 32 GB
of RAM.

4.3 Evaluation of Filtering

We validate both our filtering methods against a known ground truth by applying
them to a set of artificially created apps. Furthermore, we report on managing
complexity by scaling up our rule based detection method to deal with 50,000+
real world applications.

4.3.1 Testing the Prolog Filter

The validation of the Prolog filter has been carried out with fourteen artificially
crafted apps that cover information theft, money theft and service misuse. Created
apps use Intents, Shared Preferences and External storage as communication
channels. They are organised in four colluding sets:

• The Document Extractor set consists of one app (id 1) that looks for sensitive
documents on the external storage; the other app (id 2) sends the information
received (via SharedPreferences) to a remote server.

• The Botnet set consists of four apps. One app (id 3) acts as a relay that receives
orders from the command and control center. The other colluding apps execute
commands (delivered via BroadcastIntents ) depending on their permissions:
sending SMS messages (id 4), stealing the user’s contacts (id 5) and starting
and stopping tasks (id 6).
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Table 3 Collusion matrix of the Prolog program

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 | | |
2

3 $| � �
4

5 | | |
6 | |
7 | | | | |
8 |
9

10 |
11

12 | |
13

14

| D Information theft. $ D Money theft. � D Service misuse. |, $, � D False positives

• The Contact Extractor set consists of three apps. The first (id 7) reads contacts
from the address book, the second (id 8) forwards them via the external storage
to the third one (id 9), which sends them to the Internet. The first and second app
communicate via BroadcastIntents .

• The Location Stealing set consists of one app (id 12) that reads the user location
and shares it with the second app (id 13), which sends the information to the
Internet.

The three non-colluding apps are a document viewer (id 10), an information sharing
app (id 11) and a location viewer (id 14). The first app is able to display different file
types in the device screen and use other apps (via broadcast intents) to share their
uniform resource identifier (URI). The second app receives text fragments from
other apps and sends them to a remote server. The third app receives a location from
another app (with the same intent used by apps 12 and 13) and shows it to the user
on the screen.

Table 3 shows the results obtained with our rule based approached. The entry
“dark red club” in row 1 and column 2 means: the program detects that app id 1
sends information to app id 2, and these two apps collude on an “information theft”.
As we take communication direction into consideration, the resulting matrix is non-
symmetric, e.g., there is no entry in row 2 and column 1. The entry “light red club” in
row 1 and column 10 means: the program flags collusion of type “information theft”
though the set {id 1, id 10} is clean.This provides further information about the
collusion attack. For instance, one can see the information leak in information
theft attacks. Additionally, the way we defined the communication rules makes it
possible to identify transitive collusion attacks (i.e. app 7 colluding with app 9
through app 8). The approach identifies all colluding app sets. It also flags eight
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false positives due to over-approximation. Note, that there are no false negatives
due to the nature of our test set: it utilises only those communication methods that
our Prolog approach is able to identify.

Our false positives happen mainly because two reasons. First, we do not consider
in our initial classification some of the communication channels that are already
widely use by apps in AndroidTM. For example, the Intent with action VIEW or
SEND are very common in AndroidTM applications. It is unlikely that apps would
use them for collusion as other apps could have registered to receive the same
information. Second, in this approach, we identify apps that are communicating
by sharing access to sensitive resources, but we do not look at how that access is
shared. It must be noted, that the main aim of this approach is to reduce the amount
of app combinations that are being passed through the data-flow analysis.

4.3.2 Testing the Probabilistic Filter

We tested the Probabilistic filter with a different sample consisting of 91 app pairs.
Figure 7 presents the outcome for this set. Each cell in the table denotes a L� value
for the corresponding app pair. Note that though there are 196 possible pairs (i.e.
14 � 14 cells in the table), for readability, we leave the lower half empty since the
table is symmetric. Pairs on the diagonal are also not interesting to our discussion.
To minimise false negatives, we use the lower bound (D0.50) gained from the
validation dataset for the discriminant line as threshold for L� . We report possible
collusion if L� � 0:5 and Lcom D 1, otherwise we report non-collusion. Dark

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0.61 0.97 1 0.8 1 0.81 0.77 0.77 0.77 0.44 0.44 0.95
2 0.48 0.62 0.55 0.49 0.55 0.58 0.51 0.51 0.58 0.31 0.31 0.49
3 0.69 0.64 0.56 0.64 0.48 0.61 0.61 0.72 0.41 0.41 0.58
4 1 0.84 1 0.85 0.71 0.71 0.82 0.56 0.56 0.95
5 0.84 1 0.86 0.67 0.67 0.82 0.47 0.47 1
6 0.84 0.68 0.58 0.58 0.65 0.43 0.43 0.78
7 0.86 0.67 0.67 0.82 0.47 0.47 1
8 0.51 0.51 0.58 0.31 0.31 0.77
9 0.77 0.77 0.44 0.44 0.61
10 0.77 0.44 0.44 0.61
11 0.47 0.47 0.73
12 0.47 0.41
13 0.41
14

0.51

Fig. 7 Testing the proposed filter. For readability—we leave the upper half empty since the table
is symmetric. Pairs on the diagonal are also not interesting to our discussion. Dark red shows true
positives, light red shows false positives, dark green shows true negatives, and light green shows
false negatives
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red shows true positives, light red shows false positives, dark green shows true
negatives, and light green shows false negatives.

With regards to false alarms, app pair (1,2) was not detected by our analysis
due to the third party tool does not detect communication using SharedPreferences.
Since we do only pairwise analysis, app pair (7,9) was not reported. That pair
depends on transitive communication. Pair (12,13) was not reported since L� is
less than the chosen threshold. As mentioned in Sect. 4.2.6, it would be possible
to reduce false alarms by changing the LDL threshold, but subject to degrading the
overall performance measure of the classifier.

Precise estimation of Lcom would be useful to reduce false alarms in our analysis.
But it should be noted that existence of a communication is just a necessary
condition to happen a collusion, however not a sufficient condition to detect it. In
this context it is worth to mention that a recent study [23] shows that 84.4% of non-
colluding apps in the market place can communicate with other apps either using
explicit (11.3%) or implicit (73.1%) intent calls. Therefore the threat element (i.e.
L� ) is far more informative in collusion estimation than the communication element
(Lcom) in our model.

Both validation and testing samples are blind samples and we have not properly
investigated them for the biasedness or realisticity.

5 Model-Checking for Collusion

Filtering is an effective method to isolate app sets. Using software model checking,
we provide a sound method for proving app sets to be clean that also returns example
traces for potential collusion based on the K framework [54]—c.f. Fig. 8. We start
with a set of apps in the form of an Application Package File (APK). The DEX code
in each APK file is disassembled into the Smali format with open source tools. The
Smali code of the apps is parsed by the K tool. Compilation in the K tool translates
the K representation of the AndroidTM apps into a rewrite theory in Maude [18].
Finally, the Maude model checker searches the transition system compiled by the
K tool to provide an answer if the input set of AndroidTM apps colludes or not. In
the case when collusion is detected, the tool provides a readable counter example
trace. In this section we focus on information theft only.

Fig. 8 Work-flow for the AndroidTM formal semantics in the K framework
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5.1 Software Model Checking

Software model checking is a methodology widely used for the verification of
properties about programs w.r.t. their executions. A profane view on model checking
would be to see it as instance of the travelling salesman problem: every state of the
system shall be visited and checked. This means that, upfront, model checking is
nothing but a specialised search in a certain type of graph or, as it is known in the
field, a transition system.

Initially, the application of model checking focused on simple transition systems,
especially coming from hardware. Simplicity was necessary to contain a notorious
efficiency problem known as the “state space explosion”. Namely, the methodology
would fail to produce timely efficient results due to the exponential nature of the
complexity of the model checking procedures w.r.t. the number of system states.

Modern model checking tools attempt to meet the challenge posed by (higher
level) programs, i.e., software, that are known to quickly produce a large (potentially
unbounded) number of states, e.g., due to dynamic data structures, parallelism, etc.
Hence, software model checking uses, in addition to basic model checking, other
techniques (e.g. theorem proving or abstract interpretation) in order to coherently
simplify the transition system given to the model checker.

A standard example is given by imperative programming languages. Here, a
program p is viewed as a sequence of program locations pci; i � 0; that identify
instructions. The effect of an instruction I at pci is a relation ri which associates
the states before with the states after the execution of I. Software model checking
computes the transitive closure R of the relations ri to obtain the set of reachable
states of the program p.

Note, however, that for infinite state programs the computation of R may not
terminate or may require an unreasonable amount of time or memory to terminate.
Hence software model checking transforms the state space of the program into a
“simpler” one by, essentially, eliminating unnecessary details in the relation ri thus
obtaining an abstract program a defined by the relations a.ri/. The model checking
of a, usually named “abstract” model checking, trades off precision for efficiency.
A rigorous choice of the abstract set of states (i.e. abstract domain) and the abstract
relations a.ri/ (i.e. abstract semantics) ensures that the abstract model checking is
sound (i.e. proving the property in the abstract system implies the property is proved
in the original, concrete, system).

5.1.1 Challenges

In the following we will explain how we define a transition system using K and
what abstractions we define in order to allow for an effective check for collusion.

Formalising Dalvik Byte-code in K poses a number of challenges: there are about
220 instructions to be formalised, the code is object oriented, it is register based (in
contrast to stack based, as Java Byte-code), it utilises callbacks and intent based
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communication, see [3]. We provide two different semantics for DEX code, namely
a concrete and an abstract one. While the concrete semantics has the benefit to be
intuitive and thus easy to be validated, it is the abstract semantics that we employ
for app model checking. We see the step from the descriptive level provided by [3]
to the concrete, formal semantics as a ‘controllable’ one, where human intuition
is able to bridge the gap. In future work, we intend to justify the step from the
concrete semantics to the abstract one by a formal proof. Our implementation of
both AndroidTM semantics in K is freely available.7 The code of the colluding apps
discussed in this section is accessible via an encrypted web-page. The password is
available on request.8

5.2 The K Framework

The K framework [54] proposes a methodology for the design and analysis of
programming languages; the framework comes with a rewriting-based specification
language and tool support for parsing, interpreting, model-checking and deductive
formal verification. The ideal work-flow in the K framework starts with a formal and
executable language syntax and semantics, given as a K specification, which then is
tested on program examples in order to gain confidence in the language definition.
Here, the K framework offers model checking via compilation into Maude programs
(i.e., using the existing reachability tool and LTL Maude model checker).

A K specification consists of configurations, computations, and rules, using a
specialised notation to write semantic entities, i.e., K-cells. For example, the K-
cell representing the set of program variables as a mapping from identifiers Id to
values Val is given by hId 7! Valivars. Configurations in K are labelled and nested
K-cells, used to represent the structure of the program state. Rules in K are of
two types: computational and structural. Computational rules represent transitions
in a program execution and are specified as configuration updates. Structural rules
provide internal changes of the program state such that the configuration can enable
the application of computational rules.

5.3 A Concrete Semantics for Dalvik Code

The concrete semantics specifies system configurations and transition rules for all
Smali instructions and a number of AndroidTM API calls in K. Here, we strictly
follow their explanation [2].

7http://www.cs.swan.ac.uk/~csmarkus/ProcessesAndData/androidsmali-semantics-k.
8http://www.cs.swansea.ac.uk/~csmarkus/ProcessesAndData/sites/default/files/uploads/resources/
code.zip.

http://www.cs.swan.ac.uk/~csmarkus/ProcessesAndData/androidsmali-semantics-k
http://www.cs.swansea.ac.uk/~csmarkus/ProcessesAndData/sites/default/files/uploads/resources/code.zip
http://www.cs.swansea.ac.uk/~csmarkus/ProcessesAndData/sites/default/files/uploads/resources/code.zip
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5.3.1 System Configurations

Configurations are defined in K style as cells which might contains sub-cells.
Top of a configuration is a “sandboxes” cell, containing a “broadcasts” sub-cell
abstracting the AndroidTM intent broadcast service and possibly multiple “sandbox”
cells capturing states of installed apps (Fig. 9).

In K, the asterisk symbol next to the name “sandbox” specifies that the number of
“sandbox” cells within a “sandboxes” cell is 0 or more. Each sandbox cell simulates
the environment in which an application is isolated. It contains the classes of the
application, the currently executed thread, and the memory storing the objects that
have been instantiated so far. For the current thread, we store the instructions left to
be run in a “k” cell, while the content of the current registers are kept in a “regs”
cell . Classes and Method cells can be defined similarly. In turn, each “method” cell
consists of the name of the method, the return type of the method and the statements
of the method within a “methodbody” cell. Finally, “object” cells are used to store
the objects that have been instantiated so far. They are stored within the “memory”
cell of a “sandbox”. As depicted in Fig. 10, an object cell contains a reference (an
integer), its type, values of its corresponding fields, a Boolean value to indicate
whether the object is sensitive and the set of applications that have created this
object. The last two cells have been added for the sake of program analysis.

5.3.2 Smali Instructions

As a concrete example of how to formalise an instruction, let us consider the
iget R1; R2; CN ! FN W FT instruction. iget retrieves the field value of an
object. Here, CN is the name of a class, FN and FT are the name of the field to be
read and its type, register R2 holds the reference to the object to be read from, and—
after execution of the instruction—register R1 shall hold the value of the field FN.
The K rule for its semantics is illustrated in Fig. 11. This K rule is enabled when
(1) the k cell of a thread starts with an iget instruction, (2) R2 is resolved to a
reference I2 of some object where (3) FN maps to a value of TV1. When the rule is
applied, TV1 is copied into R1.

The semantics for Smali instructions in K is organised in a number of separate
modules as shown in Fig. 12, where arrows specify import. The “semantic-core”
contains the semantics rules for basic instructions and directives such as “nop”
(no operation), “.registers n” and “.locals n” where n is an integer. Additionally,
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iget R1 :Register ,R2 :Register ,CN :Type → FN :FieldName : FT :Type
•K

k

R1 �→ S1 :StoreRegister R2 �→ S2 :StoreRegister S1 �→ —

TV1

S2 �→ typedvalue (I2 ,T2 :Type,—,—)
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object

objects

memory

Fig. 11 K rule for the semantics of iget instruction

it also defines several auxiliary functions which are used later in other modules
for semantic rules. For example, the function “isKImplementedAPI” is defined to
determine whether an API method has been implemented within the K framework;
if not, the interpreter will look for it within the classes of the invoking application.

The “loading” module is responsible for constructing the initial configuration.
When running a Smali file in the K framework, it will parse the file according
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Fig. 12 Semantic module structure

to the defined syntax and place the entire resulting abstract syntax tree (AST) in
a cell. The rules defined in the loading module are used to take this AST and
distribute its elements to the right cells of the initial configuration. In particular, each
application is placed in a sandbox cell, its classes are placed in the classes cell, etc.
The “invoke/return” module defines the semantic rules for invoking methods and
return instructions. The “control” module specifies the semantics of instructions
such as “if-then” and “goto”, which may change the program counter in a non-
trivially way. The “read/write” module implements the semantics of instructions
for manipulating objects in the memory such as instantiating new objects or array,
initialising elements of an array, retrieving value of an object field and changing the
value of an object field. Finally, the “arithmetics” module specifies the semantics of
arithmetic instructions such as addition, subtraction, multiply, division and bit-wise
operations.

In some situations, our semantics has to deal with unknown values such as
the device’s location returned by AndroidTM OS. In K, unknown values can be
represented by the built-in constant �K. To this end, we provide for each of the
“control”, “read/write”, “arithmetics” modules a counter-part that is responsible for
unknown values. For example, when the value to be compared with 0 in an ifz
Smali instruction is unknown, we assume that the result is either true or false,
thereby leading to a non-deterministic execution of the Smali program. Similarly,
arithmetical operations propagate unknown values.

5.3.3 Semantics for the AndroidTM APIs

Regarding the semantics of the AndroidTM APIs which encompasses a rich set of
predefined classes and methods, API classes and methods usually come together
with AndroidTM OS on an AndroidTM device and hence are not included in the DEX
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code of an app. Obviously, one may obtain the Smali code of those API classes and
methods. However, this will significantly increase the size of the Smali code to be
analysed in K and consequently the state space of the obtained models. To this end,
we directly implement the semantics of some of these classes and methods in K

rules, based on their description [2]. While the first approach appears to be more
faithful, it would significantly increase the size of the Smali code to be analysed
in K and consequently the state space of the obtained models. This is avoided by
the second approach where one can choose the abstraction level required for the
analysis in question.

In Fig. 13, we show the structure for K modules which implements the semantics
of some API methods.

In particular, we have implemented a number of APIs, including modules
Location, Intent, Broadcast, and Apache-Http. Other API classes and methods can
be implemented similarly. For those modules that are not (yet) implemented in K,
we provide a mechanism that a call to any of them returns an unknown result, i.e.,
the “�K” value.

A typical example is the Location module which is responsible for imple-
menting the semantics of API methods relating to the Location Manager such
as registering a callback function when the device’s location changes, i.e., the
requestLocationUpdates method from LocationManager class. When
a registered callback method is called, it is provided with an input parameter
referring to a Location object. The creator of this object is designated to the
application in the current sandbox by the object’s created cell. Furthermore, it is
marked as sensitive in its sensitive cell (see Fig. 10).
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The module Intent is responsible for implementing the semantics of API
methods for creating and manipulating intents such as the constructor of Intent
class, adding extra string data into an intent, i.e., putExtra from Intent
class and retrieving extra string data from an intent, i.e., getStringExtra
method also from Intent class. The module Broadcast is responsible for
implementing the semantics of API methods relating to broadcasting intents, for
example: broadcasting an intent, i.e., sendBroadcast method from Context
class; and registering an callback function when receiving an broadcasted intent,
i.e., registerReceiver method from Context class. In particular, when
executing sendBroadcast with an intent, this intent will be placed in the
broadcasts cell (see Fig. 9) in the configuration. Then, callback methods
previously registered by a call to registerReceiverwill be called according to
the newly placed intent in broadcasts cell. Finally, the module Apache-Http
implements the semantics of methods relating to sending http request, i.e. execute
method from HttpUriRequest class.

5.3.4 Detecting Collusion on the Concrete Semantics Level

Finally, we detect information theft via collusion by annotating any “object”
cell with two additional values: “sensitive” and “created”. Sensitive is a Boolean
value indicating if the object is sensitive (e.g., device locations, contacts, private
data, etc.). Created is a set of app ids that initialise the object. Information theft
collusion is conducted when one app collects sensitive data from an AndroidTM

device and forwards to another app who will export it outside the device boundaries.
In detail, this process includes, within a device: (1) a sensitive object O1 is initialised
by an app A1, i.e., Sensitive of O1 is true and Created of O1 contains id A1; (2) O1

(or its content) is forwarded to another app A2 via communication (possibly through
a series of actions of creating new objects or editing existing objects using O1 where
their Sensitive is updated to that of O1 and their Created is updated to include A1);
(3) A2 calls an API to export O1 (or any of these objects whose Sensitive is true
and Created contains id A1 6D A2). Information theft collusion is detected in our
framework when A2 calls the API to export an object with Sensitive equal true and
Created containing any id A1 6D A2:

This characterisation of collusion as an information flow property implies the
conditions of Definition 1:

• A1 contributes in retrieving the sensitive data while A2 is exporting.
• A1 and A2 communicate with each other to transfer the sensitive data from A1

to A2.
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5.4 An Abstract Semantics for Dalvik

The abstract semantics lightens the configuration and the transitions in order to
gain efficiency for model checking while maintaining enough information to verify
collusion. The abstract configuration has a cell structure similar to the concrete
configuration except for the memory cell: instead of creating objects, in abstract
semantics we record the information flow by propagating the object types and
the constants (either strings or numerical). Structurally, the K specification for the
abstract semantics is organised in the same way as the concrete one, c.f. Fig. 12. In
the followings we describe the differences that render the abstraction.

In the “read/write” module the abstract semantics neglects the memory-related
details as described next: The abstract semantics for the instructions that create
new object instances (e.g., “new-instance Register, Type”) sets the register to
the type of the newly created object. The arithmetic instructions only define data
dependency between the source registers and the destination register. The move
instruction, that copies one register into another, sets the contents of the source
register into the destination. Finally, the load/store instructions, that copy from or
into the memory, are similarly abstracted into data-dependence. We exemplify this
latest class of instructions with the abstract semantics of the iget instruction
in Fig. 14.

The abstract semantics is field insensitive, e.g., the iget instruction only
maintains the information collected in the object register, R2. In order to add field
sensitivity to the abstraction, we only need to en-queue in R1 the field F such that
after the substitution we have R1 7! F Õ L2.

The module “invoke/return” contains the most significant differences of the
abstract semantics w.r.t. the concrete semantics. The invoke instructions differentiate
the API calls from the app’s methods. The methods defined in the app are executed
upon invocation (using a call stack) while the API calls are further discriminated
into app-communication (i.e., “send” or “receive”), APIs which trigger callbacks,
APIs which access sensitive data, APIs which publish data, and ordinary APIs.
We currently consider only Intent based inter-app communication. All invoke
instructions add information to the data-flow as follows: the object for which the
method is invoked depends on the parameters of the invoked method. Similarly,
the move-result instruction defines data-dependence between the parameters of the
latest invoked method and the register where the result is written. The data-flow
abstraction allows us to see an API call just as an instruction producing additional
data dependency. Hence, we do not need to treat separately these APIs as in the

RULE R1 :Register ,R2 :Register ,F :FieldId
•K

k

R1 �→ —

L2

R2 �→ L2 :K

regs

Fig. 14 K rule for the abstract semantics of iget instruction
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concrete semantics (by either executing their code or giving them special semantics).
This gives a lightweight feature to the abstract semantics meanwhile enlarging the
class of apps that can be verified. Obviously, the price paid is the over approximation
of the app behaviours which induces false positive colluding results.

The rules producing transitions in the transition system are defined in the
“control” module. The rules for branching instructions, i.e., if-then instructions,
are always considered non-deterministic in the abstract semantics. The rules for
goto instruction check if the goto destination was already traversed in the current
execution and, if this is the case, the jump to the destination is replaced by a fall
through. As such, the loops are traversed at most once since the data-flow collection
only requires one loop traversal.

5.4.1 Detecting Collusion on the Abstract Semantics Level

Detecting collusion on the abstract semantics level works as follows: When an API
accessing sensitive data is invoked in an app A1, the data-flow is augmented with
special a label “secret.A1/”. If, via the data-flow abstraction, the “secret” arrives
into the parameters of a publish invocation of a different app A2 (A1 ¤ A2) then we
discover a collusion pattern for information theft. Note that the “secret” could be
passed from A1 to A2 directly or via other apps A0s.

The property detected in the abstract semantics is a safe over-approximation of
Definition 1. Namely, (1) the set of colluding apps S includes two different apps
A1 and A2, hence S is not a singleton set; (2) the apps A1 and A2 execute the
beginning and the end of the threat (i.e. the extraction and the publication of the
secret, respectively) while the apps A0s act as messengers; (3) all the discovered
apps contribute in communicating the secret.

Note, we say that the abstract collusion result is an over-approximation due to the
fact that only “non-colluding” results could be a guarantee for the non-existence of a
set S with the characteristics given by Definition 1. If a colluding set S is reported in
the abstract model checking then this is either a true collusion, as argued in (1–3), or
a false witness to collusion. A false witness (also named “spurious counterexample”
in abstract model checking) may appear due to the overprotective nature of the data-
flow abstraction. This abstraction assumes that any data “touching” the secret may
take it and pass it (e.g. when the secret is given as parameter to an API call f then any
other parameter and the result of f are assumed to know the secret). Consequently,
any collusion set S reported by the abstract model checking has to be verified (e.g.
by exercising the concrete semantics over S).
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5.5 Experimental Results

We demonstrate how collusion is detected using our concrete and our
abstract semantics on two AndroidTM applications, called LocSender and
LocReceiver. Together, these two apps jointly carry out an “information theft”.

They consist of about 100 lines of Java code/3000 lines of Smali code each.
Originally written to explore if collusion was actually possible (there is no APK
of the Soundcomber example), here they serve as a test for our model checking
approach.

LocSender obtains the location of the AndroidTM device and communicates
it using a broadcast intent. LocReceiver constantly waits for such a broadcast.
On receiving such message, it extracts the location information and finally sends
it to the Internet as an HTTP request. We have two variants of LocReceiver:
one contains a while loop pre-processing the HTTP request while the other does
not. Additionally, we create two further versions of each LocReceiver variant
where collusion is broken by (1) not sending the HTTP request at the end, (2)
altering the name of the intent that it waits for—named LocReceiver1 and
LocReceiver2, respectively. Furthermore, we (3) create a LocSender1 which
sends a non-sensitive piece of information rather than the location. In total, we will
have eight experiments where the two firsts have a collusion while the six lasts do
not.9 Figure 15 summarises the experimental results.

5.5.1 Evaluation

Our experiments indicate that our approach works correctly: if there is collusion it is
either detected or has a timeout, if there is no collusion then none is detected. In case
of detection, we obtain a trace providing evidence of a run leading to information
theft. The experiments further demonstrate the need for an abstract semantics,

Fig. 15 Experimental result

9All experiments are carried out on a Macbook Pro with an Intel i7 2.2 GHz quad-core processor
and 16 GB of memory.
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beyond the obvious argument of speed: e.g. in case of a loop where the number
of iterations depends on an environmental parameter that can’t be determined, the
concrete semantics yields a time out, while the abstract semantics still is able to
produce a result. Model checking with the abstract semantics is about twice as fast as
with the concrete semantics. At least for such small examples, our approach appears
to be feasible.

6 Related Work

In this section we review the different previous works that have addressed the
identification and prevention of AndroidTM malicious software. We first review
previous approaches to detect and identify AndroidTM malware (single apps) in
general. Then, we address previous work on detection and identification of colluding
apps. Finally, we review works that focus on collusion prevention.

6.1 Detecting Malicious Applications

In general, techniques for detecting AndroidTM malware are categorised into two
groups: static and dynamic. In static analysis, certain features of an app are extracted
and analysed using different approaches such as machine learning techniques. For
example, Kirin [26] proposes a set of policies which allows matching permis-
sions requested by an app as an indication for potentially malicious behaviour.
DREBIN [4] trained Support Vector Machines for classifying malware using
number of features: used hardware components, requested permissions, critical
and suspicious API calls and network addresses. Similar static techniques can be
found in [16, 19, 38, 44, 63]. Conversely, dynamic analysis detects malware at run-
time. It deploys suitable monitors on AndroidTM systems and constantly looks for
malicious behaviours imposed by software within the system. For example, [33]
keeps track of the network traffic (DNS and HTTP requests in particular) in an
AndroidTM system as input and then utilises Naive Bayes Classifier in order to
detect malicious behaviours. Similarly, [39] collects information about the usage
of network (data sent and received), memory and CPU and then uses multivariate
time-series techniques to decide if an app admitted malicious behaviours. A different
approach is to translate AndroidTM apps into formal specifications and then to
employ the existing model checking techniques. These explore all possible runs of
the apps in order to search for a matching malicious activity represented by formulas
of some temporal logic, see, e.g., [10, 60].

In contrast to malware detection, detecting colluding apps involves not only
identifying whether a security threat can be carried out by these apps but also
revealing whether communication between them occurs during the attack. In
other words, existing malware detection techniques are not directly applicable for
detecting collusion.
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6.2 Detecting Malicious Inter-app Communication

Current research mostly focuses on detecting inter-app communication and infor-
mation leakage. DidFail [15] is a analysis tool for AndroidTM apps that detects
possible information flows between multiple apps. Each APK is fed into the APK
transformer, a tool that annotates intent-related function calls with information that
uniquely identifies individual cases where intents are used in the app, and then the
transformed APK is passed to two other tools: FlowDroid [5, 28] and Epicc [49].
The FlowDroid tool performs static taint tracking in AndroidTM apps. That analysis
is field, flow and context sensitive with some object sensitivity. Epicc performs
static analysis to map out inter-component communication within an AndroidTM

app. Epicc [49] provides flow and context sensitive analysis for app communication,
but it does not tackle each and every possible communication channels between
apps’ components. The most similar work to DidFail is IccTA [42] which statically
analyses app sets to detect flows of sensitive data. IccTA uses a single-phase
approach that runs the full analysis monolithically, as opposed to DidFail’s compo-
sition two-phase analysis. DidFail authors acknowledge the fact that IccTA is more
precise than the current version of DidFail because of its greater context sensitivity.
This supports our claim in Sect. 4.2—“context would be the key” for improving
the precision. FUSE [52], a static information flow analysis tool for multi-apps,
provides similar functions as DidFail and IccTA in addition to visualising inter-
component communication (ICC) maps. DroidSafe [31] is a static information
flow analysis tool to report potential leaks of sensitive information in AndroidTM

applications.
ComDroid [17] detects app communication vulnerabilities. Automatic detection

of inter-app permission leakage is provided [56]. Authors address three kinds of
such attacks: confused deputy, permission collusion and intent spoofing and use taint
analysis to detect them. An empirical evaluation of the robustness of ICC through
fuzz testing can be found in [45]. A study of network covert channels on AndroidTM

is [29, 30]. Authors show that covert channels can be successfully implemented in
AndroidTM for data leakage. A security framework for AndroidTM to protect against
confused deputy and collusion attacks is proposed [14]. The master thesis [53]
provides an analysis of covert channels on mobile devices. COVERT [9] is a tool for
compositional analysing inter-app vulnerabilities. TaintDroid [25], an information-
flow tracking system, provides a real time analysis by leveraging AndroidTM’s
virtualized execution environment. DroidForce [51], build upon on FlowDroid,
attempts to addresses app collusion problem with a dynamic enforcement mech-
anism backed by a flexible policy language. However static analysis encourages
in collusion detection due the scalability and completeness issues [24]. Desired
properties for a practical solution include, but are not limited to: characterising the
context associated with communication channels with fine granularity, minimising
false alarms and ability to scalable for a large number of apps.
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6.3 Other Approaches

Application collusion can also be mitigated by implementing compartmentalisation
techniques, like Samsung Knox® [1]. These techniques isolate app groups by
forbidding any communication between apps in different groups. In [61] the
authors analyse several compartmentalisation strategies to minimise the risk of app
collusion. Their results show that it is enough to have two or three app compartments
to greatly reduce the risk posed by a set of 20–50 apps. In order to reduce the risk
further, the amount of app compartments must be increased exponentially.

Finally, Bartel et al. [43] propose the tool APKCombiner which joins two apps
into a single APK file. In this way, a security analyst can use inter-component,
instead of inter-app, communication analysers to analyse the inter app communi-
cation mechanisms that exist between apps. From an evaluation set of 3000 apps
they were able of joining 88% of them. The average time required to join two apps
with APKCombiner is 3 min. This makes it hard to use for practical app analysis.

7 Conclusion and Future Work

We summarise the state of the art w.r.t. collusion prevention and point the reader to
the current open research questions in the field.

A frontal approach to detecting collusions to analyse pairs, triplets and larger sets
is not practical given the search space. Thus, we consider the step of pre-filtering
apps essential for a collusion detection system if it were to be used in practice.
Even if we could find all collusions in all existing apps, new ones appear every day
and they could create new collusions with previously analysed apps. Continuously
re-analysing the growing space of all AndroidTM apps is unfeasible so an effective
collusion-discovery tool must include an effective set of methods to isolate potential
sets which require further examination.

The best long-term solution would be to enforce more isolation in the AndroidTM

OS itself. For example, apps may be required to explicitly declare all communi-
cations (this includes not only inter-app channels but also declaring all Internet
domains, ports and services which they intend to use) via their manifests and then
the OS will be able to block all other undeclared communications. However, this
will not work for already existing apps (as well as many apps which could be created
before such OS hardening were implemented) so in the meantime the best practical
approach is to employ, enhance and expand the array of filtering mechanisms we
developed to discover potentially colluding sets of apps.

A filter based on AndroidTM app permissions is the simplest one. Permissions are
very easy and cheap to extract from APKs—no de-compilation, reverse engineering,
complex code or data flow analysis is required. Alternatively (or additionally), to the
two filters described in our chapter, imprecise heuristic methods to find “interesting”
app sets may include: statistical code analysis of apps (e.g. to locate APIs potentially
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responsible to communication, accessing sensitive information, etc.); and taking
into account apps’ publication time and distribution channel (app market, direct
installation, etc.).

Attackers are more likely to release colluding apps in a relatively short time frame
and they are likely to engineer the distribution in such a way that a sufficient number
of users would install the whole set (likely from the same app market). To discover
such scenarios one can employ: analysis of security telemetry focused on users’
devices to examine installation/removal of apps, list of processes simultaneously
executing, device-specific APK download/installation logs from app markets (like
Google Play™) and meta-data about APKs in app markets (upload time by
developers, developer ID, source IP, etc.). Such data would allow constructing a
full view of existing app sets on user devices. Only naturally occurring sets (either
installed on same device or actually executing simultaneously) may be analysed for
collusion which should drastically reduce the number of sets that require deeper
analysis.

Naturally, finding “interesting” app sets is not enough: in the end, some analysis
is required to figure out if a given set of apps colludes. Manual analysis is costly,
merging apps into a single one often fails, however software model checking of
suitable abstractions of an app set might be a way forward. We demonstrated that
both semantic approaches are—in principle—able to successfully model check for
app collusion realising the threat of information theft. Here, naturally the abstract
semantics outperforms the concrete one. Though it is still early days, we dare to
express the following expectation: we believe that our approach will scale thanks to
its powerful built-in abstraction mechanisms.

The aspiration set out in this chapter is to build a fully automated and effective
collusion detection system, and tool performance will be central to address scale.
It is not clear yet where the bottleneck will be when we apply our approach to real-
life apps in a fully operational deployment. Further work will focus on identifying
these bottlenecks to optimise the slowest elements of our tool-chain. Detecting
covert channels would be a challenge as modelling such will not be trivial; this
is the natural next step.

In the long run, collusions are a part of a general problem of effective isolation of
software. This problem exists in all environments which implement sandboxing of
software—from other mobile operating systems (like iOS® and Tizen®) to virtual
machines in server farms (like Amazon EC2, Microsoft Azure and similar). We can
see how covert communications between sandboxes may be used to breach security
and create data leaks. The tendency to have more and better isolation is, of course,
a positive one but we should fully expect the attackers to employ collusion methods
more often to circumvent security. We endeavour to see if our methods developed
for AndroidTM would be applicable to a wider range of operating environments.
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