Predicting Software Reliability with a Novel
Neural Network Approach

Shirin Noekhah®™®, Naomie Binti Salim, and Nor Hawaniah Zakaria

Faculty of Computing, Universiti Teknologi of Malaysia, UTM,
81300 Johor, Malaysia
nshirin2@live. utm. my, shirinnoekhah@gmail. com,
{naomie, hawaniah}@utm. my

Abstract. With the application of software systems in variety critical field the
complexity level of software has increased, so software reliability has become
more and more difficult to guarantee. To overcome human power and time
limitation, researchers have focused on a soft computing approach. Neverthe-
less, the new techniques - especially NN - have some problems, like no solid
mathematical foundation for analysis, trap in local minima and a convergence
problem. This paper proposed a model to predict software reliability by
hybridizing the Multi-Layer Perceptron neural network (MLP) and Imperialist
Competitive algorithm (ICA). This model has solved most of the previous
problems, such as the convergence problem, requiring a large amount of data,
and it can be applied in complex systems. Numerical results show that both the
training and testing stages of proposed approach have greater accuracy in pre-
dicting the number of software failures compared to the existing approaches.

Keywords: Neural network - Software reliability - MLP - ICA algorithm

1 Introduction

Nowadays, computers have become an inseparable part of human life. They are used in
wide areas such as the military, business and industrial sectors. One of the most
important parts of each computer is the software part, so, having the proper software
which can perform the desired task with a high standard is required. Software reliability
is one of the significant factors of software quality, which is applied to quantify the
profile of the system operations. Software reliability is the probability of failure-free
software operation measured during a precise period of time within an exact envi-
ronment (American National Standards Institute, ANSI 1991) [1].

Software reliability is a non-linear concept, so researchers have proved that an
artificial neural network (ANN) can be more effective than traditional methods. ANN
has the capability of non-linear mapping which causes applied in the field of time series
prediction.

Neural network-based models have proven that they can be applied universally for
any non-linear function with high accuracy. The first neural network model for soft-
ware reliability prediction was proposed by Karunanithi et al. [2], Adnan et al. [3] and
Park et al. [4] have also presented other software reliability prediction models using

© Springer International Publishing AG 2018

F. Saeed et al. (eds.), Recent Trends in Information

and Communication Technology, Lecture Notes on Data Engineering

and Communications Technologies 5, DOI 10.1007/978-3-319-59427-9_93

908 S. Noekhah et al.

neural networks, and proved that their results are better than analytical models. Most
researchers use single-input single-output neural network architecture to create relia-
bility models. Karunanithi et al., in [2], considered cumulative execution time as input
and the number of failures as desired output. In contrast, in [5], they applied the failure
number as input and the time of failure as output.

Cai et al., in [6], used the recent 50 inter-failure times as the multiple-
delayed-inputs to predict the next failure time. They proved that the architecture of
the neural network, especially the number of input layer neurons and hidden layer
neurons, has an influence on the performance of the network. Cai et al. selected 20, 30,
40, and 50 input neurons, while Adnan et al. [3] applied 1, 2, 3, and 4 input neurons.

Tian et al. [7] proposed an online adaptive software reliability model by applying
an evolutionary connectionist method based on multiple-delayed input single-output.
They used current failure time data and a genetic algorithm to optimise the number of
neurons in input and hidden layers. Moreover, they used a modified Levenberg-
Marquardt (LM) algorithm with Bayesian regularisation to increase the predicting
ability of software reliability. In another work, Tian et al., in [8], proposed an evolu-
tionary neural network model for failure time prediction based on multiple-
delayed-inputs single-output architecture. Unlike traditional models they model the
inter-relationship among software failure data instead of the relationship between the
time and number of failure data. In this case, both the input and the output of the neural
network are failure time data. They used a genetic algorithm to optimize the neural
network architecture. After the optimized neural network configuration was deter-
mined, a modified Levenberg-Marquardt (LM) algorithm with Bayesian regulation was
applied as the desired neural network schema.

In [9], Jun presented an ensemble method of neural network to create
non-parametric models to predict software reliability. He collected multiple predictors
and proved that, in comparison with a single predictor, the combination of them brings
about a better performance. Jin proposed a Support Vector Regression (SVR) model
based on the hybridization of genetic algorithm (GA) and simulated an annealing
algorithm (SA) to predict software reliability. A comparison between this model and
other models was made. The results illustrated that this model reduces the predicting
errors and provides higher relationship and performance prediction than other models
[10]. The optimization of SVR’s parameters is very difficult, so, many optimization
algorithms have been exploited to discover the best combination of parameters, but still
most of them do not perform very well. In another work, Jin improved estimation of
distribution algorithms (EDA) to retain the variety of the population, and then proposed
IEDA-SVR model which is a combination of EDA algorithm and SVR model to
optimize SVR’s parameters and having the better prediction performance [11].
Selecting the wrong model or weight assignment leads to ineffective software reliability
prediction. Park and Baik proposed a software reliability prediction model to combine
multiple software reliability models dynamically by exploiting decision trees learning
of multi-criteria to reduce error pruning decision tree and increase the average pre-
diction accuracy [12].

Wu et al., in [13] demonstrated a novel model based on a General Regression
neural network (GRNN) to predict software reliability. In this model, they considered
the affect test coverage in software reliability. It led to improvements in the accuracy of

Predicting Software Reliability with a Novel Neural Network Approach 909

the model. They trained GRNN with extended data to increase the predicting ability
when dealing with a small size of data. Liu et al. applied a neural network for software
reliability and found that it gave a better result than any other analytical models [14].
Chang et al. [15] proposed a new model based on counter propagation and back
propagation neural networks to determine reliability parameters with a small size of
data. Their results proved that the accuracy was improved in comparison with previous
models. In [16], Vapnik demonstrated a new approach by hybridizing neural network
and fuzzy logic. The results showed that a neural fuzzy system enhanced predicting
accuracy more than GRNN. In another attempt, Recurrent Neural Network (RNN) in
combination with Back-propagation Through Time (RNNBPTT) learning has been
exploited by Bhuyan et al. to predict software reliability. The results proved that RNN
performs an accurate and consistent behavior in reliability prediction [17]. Bal et al.
made an investigation on an ensemble technique by the combination of different
artificial neural networks to predict software reliability and compare with other tradi-
tional models. They evaluate their ensemble model on three benchmark datasets by
using artificial neural network approach along with a mathematical linear model [18].

Different types of learning algorithms can be applied to train neural network. Back
Propagation algorithm (BP), Genetic algorithm (GA) and Evolutionary algorithms are
the most popular algorithms. These algorithms have some weaknesses which motivate
us to exploit more powerful evolutionary algorithm (ICA) which can overcome most of
these problems. BP hardly achieves full sampling of final model, traps in the local
minima and has slow convergence rate. On the other hand, PSO has other problems
such as no solid mathematical foundation for analysis, limitation in real time appli-
cation and problem for initialize parameters and find best solution.

In comparison with these algorithms ICA covers most of the weaknesses of pre-
vious mentioned algorithms. This algorithm not only uses sufficient parameters and
mathematical equations, but also, never traps in the local minima and gives the best and
optimal solution. In this case we apply ICA for training MLP because of all advantages
of ICA which helps MLP to predict reliability more accurate.

2 Software Reliability Concepts

Software is embedded in many devices, so the statistics of software failure grow
rapidly. It consists of user interface problems to directly programming errors. In
software reliability, the expected outcome compared with the output of software in a
specific environment and condition with desirable data processing. In other words, it
refers to the correctness of software. There is an intimate relationship between software
failures and reliability; more faults cause the reliability to decrease.

There are many factors which affect software reliability. The more popular ones are
rate of software failure, the number of failures, mean of failures and software failure
intensity function. Software failures usually occur during execution time. As illustrated
in Fig. 1, ¢; is the execution time of ith software failure. In this figure, #; is the time
interval between ith and (i — I)th failure (At; = t; — t;)).

910 S. Noekhah et al.

Al A2 Ati

7 7 ;.

N

Fig. 1. Software failure process

3 ICA-MLP Software Reliability Prediction Model

In the software engineering field, different types of models have been exploited to
estimate different tasks. By applying a model, developers can allocate resources more
reasonably and develop software projects in a shorter time. Having a model can help us
to reduce the cost and risk of designing and developing software. Figure 2 presents the
study framework.

Analysis current
system

Form the patterns for
_ training the network
e T ——— mTa—————
- Identify the architecture of

x MLP network
Gathering DACS and Pham & Pham

dataset as failure data set '
S Design Phase

Anaisiace P e
A Devide dataset into training

Select MLP neural network for and testing samples

Choose Imperialist Competitive Identify ICA parameters
Algorithm for training NN

Collect the result of Train and Test MLP through ICA
statistical models algorithm for small data set (Pham
~ Slei)
Collect the results of SRS TSRS

softcomputing techniques Train and Test MLP through ICA
R algorithm for large data set (DACS)

Analyze the effectivness of -
proposed method
R D R L i
Implementation Phase

Testing andiVerification e S
Determine the performance metrics
i P (MSE,NRMSE and Correct

Compare the result of proposed classification)

method with other techniques e O RV TR R,

Produce the related diagram
which compare the results with
Define the reason of improving desired outputs
reliability prediction

Fig. 2. Research framework

In this paper, a hybridised model for software reliability prediction has been pro-
posed. This model is a data driven model which uses time series analysis to predict the
number of failures which will occur in the software system. This model is called
ICA-MLP as it is a hybridisation of the Imperialist Competitive Algorithm (ICA) and

Predicting Software Reliability with a Novel Neural Network Approach 911

the Multi-Layer Perceptron (MLP). In this model, ICA algorithm has been used for
training MLP to improve the ability of the neural network to predict the number of
failures in future. To achieve this goal, two types of different datasets (DACS and Pham
& Pham) have been exploited to train and test the neural network. Each neural network
needs some mathematical function to update the weights of the connections between
two layers, so, tangent hyperbolic function has been used to upgrade them.

As Pham & Pham dataset is not large enough, 80 countries along with 100 decades
have been allocated. On the other hand, as DACS dataset is large, the algorithm is
initialized with 200 countries and 250 decades to test proposed model. These numbers
have been selected according to literatures and trial and error tests. The details of the
algorithm have been explained comprehensively in [19].

3.1 ICA-MLP Software Reliability Prediction Model

Most researchers apply two specific datasets, which are DACS and Pham & Pham
datasets. In this study, same datasets have been exploited. The main reason for applying
these datasets is the difference in their size, so the flexibility and reliability of proposed
model in terms of failure prediction can be tested more accurately.

Pham and Pham presented a software reliability dataset based on the times of inner
failure of software. In this dataset, i is the failure number and is the inner failure time.
On the other hand, DACS (Data and Analysis Centre for Software) is based on the
failure interval time to help the developers to control testing, predicting and modelling
software reliability. This dataset contains the failure data of 16 different projects. In this
study, military dataset (No. 40) has been selected to propose the software reliability
model. It includes 180,000 instructions, 101 software failure numbers and was col-
lected during the system testing phase. The dataset values have been changed to the
proper values in order to improve the accuracy and convergence speed of proposed
model. To perform this task, first, the model normalizes the data in a range [—1, 1]
before sending it into the input layer. Then the data from output layer is denormalized
into the original value before normalising.

3.2 ICA-MLP Experimental Results

The results of ICA-MLP model performed on two mentioned datasets have been
illustrated in Table 1.

Table 1. ICA-MLP results (PHAM & PHAM and DACS datasets)

Parameter Pham & Pham | DACS
MSEtrain (BestCost) 0.0133 0.0020
MSEtest 0.0078 0.0516
Correct Classification Train (%) | 0.9824 0.9987
Correct Classification Test (%) |0.9914 0.9988

912 S. Noekhah et al.

The results prove that there is an inverse relation between dataset size and the
system accuracy. Increasing dataset size and training samples help to increase the
software accuracy by minimizing the error value (MSE). Increasing the number of
training data samples can make the training process of the neural network to be more
efficient. So, the network’s tolerance will be gradually increased and can classify
(memorize) the testing pattern.

The Pham & Pham result shows the fact that, by having a small sized data set, the
correction classification of the neural network will be decreased and consequently the
amount of MSE will increase. The neural network ability for training patterns classi-
fication can be calculated by correction classification metrics. In contrast, during the
testing phase these values determine to what extent the network can memorize the
training patterns and, according to this value, it classifies the input test patterns.
Figures 3, 4, 5 and 6 present the neural network output for training and testing input
patterns of DACS and Pham & Pham datasets.

a) Real and Network output for Train Data b) Network output vs. Real Output for Train Data

120 T T 120
—&— Real Output
—8— Network Output
g 100
80

Output
Network Output
o
3

40

ks 0 2 40 60 80 100 120
Real Output

Fig. 3. (a) Outputs comparison for training data samples (DACS), (b) Benchmark evaluation
(DACS)

Randomization technique usually has been used for training of neural network to
initialize the connections’ weights within a network. Consequently, there are varieties
of weights convergence for each training phase. Despite of the fact that the prediction
results are different, they are so close to each other. The training procedure is run for
few times, the results are taken and, finally, the outputs’ average is computed. The
investigations have proved that soft computing techniques, such as neural network,
give more accurate prediction than analytical methods which are no longer effective.

During analysing the results of the neural network, this fact should be notice that
output results will be different during each training procedure. As the training methods
initialise weights randomly, even though the training method, network architecture and
dataset are same, but the results will be different. Still with this weak point their
performance and accurateness are more significant than other techniques. In this sec-
tion, the proposed model will be compared with other neural network techniques based
on their learning algorithm and neural network architecture.

Output

a) Real and Network output for Test Data

Predicting Software Reliability with a Novel Neural Network Approach

@ —&— Real Output
—8— Network Output

6 8 10 12 14 1B 18 2

Index

b) Network output vs. Real Output for Test Data

913

Network Output

0 20 30 40
Real Output

50 6 70 8 9

Fig. 4. (a) Outputs comparison for testing data samples (DACS), (b) Benchmark evaluation

(DACS).

Output

a) Real and Network output for Train Data

—=&— Real Output
—8— Network Output
)
Q @
) 4\ g
I\ N i
v A | -
u| 1 f
\ ¢
\ i | e
|
V] 4
-
g
V] J 11
0 "
AR SR

Index

b) Network output vs. Real Output for Train Data

0 T T T T T

2%

20 00,
E]
g
3 9
%15
5
2 40
3
= (]

10 o]

(0]
[eX¢)
5
00,
0 L L L L L
0 5 10 15 20 25 30
Real Output

Fig. 5. a) Outputs comparison for training data samples (Pham & Pham), (b) Benchmark
evaluation (Pham & Pham)

3.2.1 Experimental Results of Comparison
Many different neural network architectures have been proposed by researchers to
improve the prediction of software reliability, but four of them include MLP
(Multi-Layer Perceptron, RBF (Radial Basis Function), Elman Recurrent and Fuzzy
Neural Network have become more popular compared with others. So, the proposed
technique is compared with these approaches. Table 2 presents the experimental results

of MSE for the software reliability prediction by implementing these techniques on
exploited dataset.

914 S. Noekhah et al.

a) Real and Network Output for Test Data b) Network output vs. Real Output for Test Data
2% T T T T T
o\ —&— Real Output 2
20 _‘ —8— Network Output
°
\ 20
18 o}
16 _
215
5 5
o
% 14 p
o S
3
12 s
10 g
5
8
6 . e . L . 0
1 15 2 25 3 35 4 0 5 10 15 20 25

Index Real Outout

Fig. 6. (a) Outputs comparison for testing data samples (Pham & Pham), (b) Benchmark
evaluation (Pham & Pham)

Table 2. MSE comparison of ICA-MLP and other neural network architectures.

Method | Training data | Testing data
ICA-MLP | 0.0020 0.0516
RBFN 1.6465 0.1591
Elman 0.1625 0.1394
ANFIS 1.3364 0.9079

From this table, it can be observed that ICA-MLP model outperforms other tech-
niques for both training and testing data samples due to efficient mechanism of algo-
rithm in terms of weights’ adjustment and convergence speed improvement. Elman
network results the second best answer since it considers the dynamic behaviour of
both system and software reliability datasets. As RBFN gives almost the same priority
to all input training samples, the convergence rate will be reduced. On the other hand,
the run time of this algorithm is longer which increase the cost and risk of the model.
The worst result belongs to ANFIS for both training and testing data samples due to its
complex architecture since it combines two heavy models named Neural network and
Fuzzy Logic. This structure can be applied and be efficient in other domains but not for
software reliability. According to these results, [CA-MLP gives the best result com-
pared with other techniques. From another point of view, ICA-MLP model is compared
with other techniques which exploit different hybridized techniques for training neural
network. NRMSE experimental results have been presented in Table 3 which illustrates
the differences among these techniques.

Predicting Software Reliability with a Novel Neural Network Approach 915

Table 3. NRMSE comparison of ICA-MLP and other neural network techniques.

Method | NRMSE

BPNN 0.145541
TANN 0.150355
PSN 0.157922
MARS 0.15267

GRNN 0.166883
MLR 0.147881
TreeNet |0.161121
DENFIS |0.147641
ICA-MLP | 0.08574

4 Conclusion

In this study, the hybridisation of MLP neural network with ICA algorithm is pro-
cessed. This model is used to predict the future number of software failures to increase
the reliability of the system. Moreover, the effectiveness and performance of the hybrid
neural network model on software reliability were analysed. ICA algorithm is suitable
for both a small and a large amount of datasets, while most of the other models are
suitable for one type of dataset. Based on the findings of the study, it can be seen that
the MLP-ICA model has less complexity among other methods, especially in terms of
computation formulas, since it applied the evolutionary pattern by applying the sys-
tematic finding optimal solution. The results of the study also indicated that this model
has the lowest MSE and NRMSE in comparison with other models.

This study has only focused on using neural network techniques for software
reliability prediction. It is recommended that further studies use techniques to cover this
range of uncertainty. The best approach which can consider and simulate the uncer-
tainty phenomena is fuzzy logic. As there are some limitations to fuzzy logic, such as
not having the proper level of complexity of computation formula, a combination of
fuzzy logic and the neural network approach are suggested.

Acknowledgments. This work is supported by Ministry of Higher Education (MOHE) and
Research Management Centre (RMC) at the Universiti Teknologi Malaysia (UTM) under
Research University Grant Category (R.J130000.7828.4F719).

References

1. http://webstore.ansi.org/RecordDetail.aspx?sku=R-013-1992

2. Karunanithi, N., Whitley, D., Malaiya, Y.K.: Prediction of software reliability using
connectionist models. IEEE Trans. Software Eng. 18(7), 563-574 (1992)

3. Adnan, W.A., Yaacob, M.H.: An integrated neural-fuzzy system of software reliability
prediction. In: First International Conference on Software Testing, Reliability and Quality
Assurance, Conference Proceedings, pp. 154-158. IEEE (1994)

http://webstore.ansi.org/RecordDetail.aspx%3fsku%3dR-013-1992

916

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

S. Noekhah et al.

. Park, J.Y., Lee, S.U., Park, J.H.: Neural network modeling for software reliability prediction

from failure time data. J. Electr. Eng. Inf. Sci. 4(4), 533-538 (1999)

. Karunanithi, N., Whitley, D., Malaiya, Y.K.: Using neural networks in reliability prediction.

IEEE Softw. 9(4), 53-59 (1992)

. Cai, K.Y, Cai, L., Wang, W.D., Yu, Z.Y., Zhang, D.: On the neural network approach in

software reliability modeling. J. Syst. Softw. 58(1), 47-62 (2001)

. Tian, L., Noore, A.: On-line prediction of software reliability using an evolutionary

connectionist model. J. Syst. Softw. 77(2), 173-180 (2005)

. Tian, L., Noore, A.: Evolutionary neural network modeling for software cumulative failure

time prediction. Reliab. Eng. Syst. Saf. 87(1), 45-51 (2005)

. Jun, Z.: Prediction of software reliability using connectionist models. Expert Syst. Appl. 36,

2116-2122 (2009)

Jin, C.: Software reliability prediction based on support vector regression using a hybrid
genetic algorithm and simulated annealing algorithm. IET Softw. 5(4), 398—405 (2011)
Jin, C., Jin, S.W.: Software reliability prediction model based on support vector regression
with improved estimation of distribution algorithms. Appl. Soft Comput. 15, 113-120
(2014)

Park, J., Baik, J.: Improving software reliability prediction through multi-criteria based
dynamic model selection and combination. J. Syst. Softw. 101, 236-244 (2015)

Wu, Y., Yang, R.: Study of software reliability prediction based on GR neural network. In:
9th International Conference on Reliability, Maintainability and Safety (ICRMS), pp. 688—
693. IEEE, June 2011

Liu, M.C., Kuo, W., Sastri, T.: An exploratory study of a neural network approach for
reliability data analysis. Qual. Reliab. Eng. Int. 11(2), 107-112 (1995)

Chang, P.T., Lin, K.P., Pai, P.F.: Hybrid learning fuzzy neural models in forecasting engine
system reliability. In: Proceeding of the Fifth Asia Pacific Industrial Engineering and
Management Systems Conference, pp. 2361-2366 (2004)

Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
Bhuyan, M.K., Mohapatra, D.P., Sethi, S.: Prediction strategy for software reliability based
on recurrent neural network. In: Behera, H.S., Mohapatra, D.P. (eds.) Computational
Intelligence in Data Mining—Volume 2, pp. 295-303. Springer, New Delhi (2016)

Bal, P.R., Jena, N., Mohapatra, D.P.: Software reliability prediction based on ensemble
models. In: Singh, R., Choudhury, S. (eds.) Proceeding of International Conference on
Intelligent Communication, Control and Devices, pp. 895-902. Springer, Singapore (2017)
Noekhah, S., Hozhabri, A.A., Rizi, H.S.: Software reliability prediction model based on ICA
algorithm and MLP neural network. In: 7th International Conference on e-Commerce in
Developing Countries: With Focus on e-Security (ECDC), pp. 1-15. IEEE, April 2013

	Predicting Software Reliability with a Novel Neural Network Approach
	Abstract
	1 Introduction
	2 Software Reliability Concepts
	3 ICA-MLP Software Reliability Prediction Model
	3.1 ICA-MLP Software Reliability Prediction Model
	3.2 ICA-MLP Experimental Results
	3.2.1 Experimental Results of Comparison

	4 Conclusion
	Acknowledgments
	References

