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Abstract. This paper presents an efficient technique for real-time recog-
nition of human activities by using accelerometer and photoplethysmog-
raphy (PPG) data. It is based on singular value decomposition (SVD)
and truncated Karhunen-Loève transform (KLT) for feature extraction
and reduction, and Bayesian classification for class recognition. Due to
the nature of signals, and being the algorithm independent from the ori-
entation of the inertial sensor, this technique is particularly suitable for
implementation in smartwatches in order to both recognize the exercise
being performed and improve the motion artifact (MA) removal from
PPG signal for accurate heart rate (HR) estimation. In order to demon-
strate the validity of this methodology, it has been successfully applied
to a database of accelerometer and PPG data derived from four dynamic
activities.
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1 Introduction

Human activity recognition using wearable sensors, i.e. sensors that are posi-
tioned directly or indirectly on the human body, is one of the most interesting
topics in the healthcare, ambient assisted living, sport and fitness research areas.

These sensors, which can be embedded into clothes, shoes, belts, sunglasses,
smartwatches and smartphones, or positioned directly on the body generate sig-
nals (accelerometric, photoplethysmography (PPG) [2,5,23], electrocardiography
(ECG) [3,14], surface electromyography (sEMG) [9], ...) that can be used to collect
information such as body position and movement, heart rate (HR), muscle fatigue
of the user performing activities [2,4,11]. In particular, exercise routines and repe-
titions can be counted in order to track a workout routine as well as determine the
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energy expenditure of individual movements. Indeed, mobile fitness coaching has
involved topics ranging from quality of performing such sports actions to detection
of the specific sports activity [7].

On the one hand, among wearable sensors, accelerometers are probably the
most frequently used for activity monitoring. In particular, they are effective in
monitoring actions that involve repetitive body motions, such as walking, running,
cycling, climbing stairs [8,13,18,20,21]. Because smartphones and smartwatches
have become very popular, their accelerometer sensors can be used for providing
accurate and reliable information on peoples activities and behaviors, thus ensur-
ing a safe and sound living environment [1,15,17]. There are several techniques
based on signal processing and neural networks for representing nonlinear trans-
formations derived from stochastic systems such as the human body [22].

On the other hand, PPG is a well-known noninvasive method for monitoring
the HR that shines light into the body and measures the amount of light that
is reflected back to measure the blood flow. Unlike the ECG and the sEMG
monitoring that need sticky metal electrodes across the body skin in order to
monitor electrical activity from heart and muscles [6,10], PPG monitoring can
be performed at peripheral sites on the body and needs a simpler body contact.
As a result, PPG sensors are more and more used in wearable devices (smart-
watches), as the preferred modality for HR monitoring in everyday activities by
non-specialist users. However accurate estimation of PPG signal recorded from
subject wrist, when the subject is performing various physical exercises, is often
a challenging problem as the raw PPG signal is severely corrupted by motion
artifacts (MAs). These are principally due to the relative movement between the
PPG light source/detector and the wrist skin of the subject during motion. In
order to reduce the MAs, a number of signal processing techniques based on data
derived from the smartphone built-in triaxial accelerometer have been proven to
be very useful [5,23].

This paper proposes an efficient technique for real-time recognition of human
activities, by using data gathered from accelerometer and PPG sensors. The
proposed technique is based on singular value decomposition (SVD) and trun-
cated Karhunen-Loève transform (KLT) for feature extraction and reduction,
and Bayesian classification for class recognition. The algorithm is independent
of the orientation of the accelerometer sensor making it particularly suitable for
implementation in wearable devices such as smartphones where the orientation
of the sensors can be unknown or their placement could be not always correct.
The algorithm could be used to both recognize the exercise being performed and
improve the tracking of the PPG signal for accurate HR estimation. In order to
demonstrate the validity of this technique, it has been successfully applied to a
database of accelerometer and PPG data derived from four dynamic activities.

The paper is organized as follows. Section 2 provides a brief overview of the
human activity recognition algorithm. Section 3 presents the experimental results
carried out on a public domain data set in order to show the effectiveness of the
proposed technique. Finally, the conclusions of this work are drawn in Sect. 4.
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2 Recognition Algorithm

In this section both the model generation and the recognition algorithm will be
presented. They exploit a Bayesian classifier based on a Gaussian mixture model
(GMM) [16] of the probability density functions of the dimensionality-reduced
feature vectors. The feature vectors themselves are built from the normalized
singular value spectrums of both the accelerometer and the PPG Hankel data
matrices. A schematic diagram of the activity detection algorithm is shown in
Fig. 1.

Feature Extraction

Windowing + Hankel

x y z
Accelerometer Data PPG Data

SVD

Singular Value Spectrum
Normalization

Bayesian Classifier

Fig. 1. Flow chart of the proposed framework for human activity classification (x, y,
z are the 3-axial accelerometer signals).

In order to recognize the activity being performed at a given time instant t,
the incoming signals are first windowed into relatively short windows (8 s in our
sample application) wherein the activity can reasonably be considered invariant.
From these slices of signals, a compact set of features ξt is extracted as detailed
next.

Let x, y, z be the accelerometer signals and p the PPG signal, sliced into
windows N + L − 1 samples long, indicated as pt = [p(t) . . . p(t + N − 1)]T .
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Then let Pt = [p(1)t . . . p
(L)
t ], with p

(i)
t = pt+i−1, be the Hankel matrix derived

from the PPG signal. Analogously, let Xt = [x(1)
t . . . x

(L)
t ], Yt = [y(1)

t . . . y
(L)
t ],

and Zt = [z(1)t . . . z
(L)
t ] be the Hankel data matrices for the three accelerometer

signals, where x
(i)
t , y

(i)
t , z

(i)
t , i = 1, . . . , L, represent the observations achieved

from a three-axes accelerometer, each shifted in time by i samples, just as p
(i)
t .

As in [8], the accelerometer signals are grouped together to avoid depen-
dence on sensor orientation, but the PPG data is left on its own as it is not
commensurable with acceleration. So, the matrices

HA
t = [Xt Yt Zt] ∈ R

N×3L HP
t = [Pt] ∈ R

N×L (1)

can be represented by their singular value decomposition (SVD) as

HA
t = SA

t ΛA
t RAT

t =
N∑

i=1

λA
i sAi rAT

i , (2)

where, if N < 3L, SA
t =

[
sA1 . . . sAN

]
, RA

t =
[
rA1 . . . rAN

]
, with sAi , rAi being the

corresponding left and right singular vectors, and λA
i are the singular values in

decreasing order λA
1 ≥ λA

2 ≥ . . . ≥ λA
N . Similarly, from the PPG signal p, we

compute the SVD of its Hankel matrix as

HP
t = SP

t ΛP
t RPT

t =
N∑

i=1

λP
i sPi rPT

i , (3)

where λP
i are the singular values in decreasing order λP

1 ≥ λP
2 ≥ . . . ≥ λP

N .
The chosen feature vector is defined as

ξt =
[

ΛA
t /||ΛA

t ||
w ΛP

t /||ΛP
t ||

]
∈ R

2N (4)

where || · || represents the norm of a vector and w is a weighting factor to be
determined. Since the dimension 2N is usually too high to directly model a GMM
on it, it is reduced by means of a truncated Karhunen-Loève transformation to
a vector ktM of lower dimension by a linear application Ψ such that ktM = Ψ ξt

where ξt ∈ R
2N , ktM ∈ R

M , Ψ ∈ R
M×2N , and M � 2N .

Let us refer to a frame ktM [n], n = 0, . . . , M − 1, containing compacted
features extracted from both the accelerometer and PPG signals. For Bayesian
classification, a group of Γ activities is represented by the probability density
functions (pdfs) pγ(ktM ) = p(ktM | θγ), γ = 1, 2, · · · , Γ , where θγ are the
parameters to be estimated during training.

The objective of classification is to find the activity γ̂ which has the maximum
a posteriori probability for a given frame ktM , i.e.

γ̂(ktM ) = argmax
1≤γ≤Γ

{
p(ktM | θγ)p(θγ)

p(ktM )

}
= argmax

1≤γ≤Γ
{p(ktM | θγ)}, (5)

assuming equally likely activities (i.e. p(θγ) = 1/Γ ) and noting that p(ktM ) is
the same for all activity models.
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The statistical model we adopted for p(ktM | θγ) of the γ-th exercise is the
GMM [19] given by the equation

p(ktM | θγ) =
F∑

i=1

αi N (ktM | μi,Ci) (6)

where αi, i = 1, . . . , F are the mixing weights, and N (ktM | μi,Ci) represents
the density of a Gaussian distribution with mean μi and covariance matrix Ci,
and θγ is the set of parameters defined as θγ = {α1, μ1,C1, . . . , αF , μF ,CF }.

To obtain an estimate of the mixture parameters we used a variant of the
expectation maximization (EM) algorithm [16], which integrates both model
estimation and component selection, i.e. the ability of choosing the best number
of mixture components F according to a predefined minimization criterion, in a
single framework.

3 Experimental Results

PPG recordings were collected from 8 subjects, for approximately 5 min each,
as they undertook a range of different physical activities on a treadmill and
on an exercise bike. The activities performed by each person are detailed in
Table 1. All of the signals (including a simultaneous ECG for gold standard
heart rate) belong to the Physionet database in https://physionet.org/works/
WristPPGduringexercise/ [12]. We follow the original Authors’ naming of the
subjects, i.e., s1, . . . , s6, s8, s9, and we splitted the available signals between
a training set and a testing set, so as to include exactly two signals for each
activity type in the training, as detailed in the same table.

Table 1. Distribution of the activities performed by the various subjects. The database
was also split in a training set (*), comprising subjects s1, s2, s4, and s8 (8 signals
in total), and a testing set (+), comprising subjects s3, s5, s6, and s9 (10 signals
in total, all of the remaining).

Activities s1 s2 s3 s4 s5 s6 s8 s9

High resistance bike (H) ∗ ∗ +

Low resistance bike (L) ∗ ∗ + + +

Run (R) + ∗ + + ∗
Walk (W) ∗ + + ∗ +

The available data was sampled at 256 Hz, and it was sliced in overlapping
windows of 2048 samples (8 s long), each window being shifted by 512 samples
(2 s). These windows were used to build four N ×L Hankel matrices, one for each
acceleration direction and one for the PPG signal, with N = 400 and L = 1649.
The acceleration-derived matrices are then fed together to the SVD, to remove

https://physionet.org/works/WristPPGduringexercise/
https://physionet.org/works/WristPPGduringexercise/
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sensor orientation effects, and the PPG-derived matrix is fed to an independent
SVD block. The resulting normalized singular values are concatenated, with a
weight w applied to the PPG-derived values, and are used as the feature vectors
for the classifier, after KLT-based dimensionality reduction to M = 10 principal
components.

As an example, the average of these feature vectors, within each activity, is
shown in Fig. 2. It is apparent that different types of motion (bike, run, walk)
produce differing distribution of the singular values, making recognition of the
class of activity quite easy. Unfortunately, there is almost no way to differentiate
the resistance level on the bike.
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Fig. 2. Per-class average of a portion (extracted from the accelerometer data) of the
feature vectors.

This is confirmed by a recognition experiment, whose results are reported
in Table 2. Here the test was performed disregarding the PPG signal (i.e., by
setting w = 0), and the first two classes are often confused. The PPG signal can
help differentiate between these two cases, that differs only in the effort and not
in the type of motion.

Unfortunately, as can be seen in Table 3, which reports the results of an
experiment made disregarding the accelerometer signal, PPG alone is not a good
candidate to recognize the physical activity. To see if it can help in discriminating
the effort it must be combined with the accelerometer signal.

In order to appropriately combine the information coming from the
accelerometer and from the PPG for identification purposes, a 4-fold cross-
validation was performed on the training set, leaving out one of the subjects
at a time and averaging the overall recognition accuracy on the three remaining
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Table 2. Confusion matrix obtained using only the accelerometer data as the feature
vector. The resulting overall accuracy is 65.7%.

Input Recognized

H L R W

H 127 9 0 1

L 220 170 16 9

R 8 30 408 1

W 95 63 32 220

Table 3. Confusion matrix obtained using only the PPG data as the feature vector.
The resulting overall accuracy is 44.7%.

Input Recognized

H L R W

H 20 117 0 0

L 5 140 172 98

R 0 0 157 290

W 0 0 97 313

Table 4. Confusion matrix obtained using both the PPG and the accelerometer data
as the feature vector, with the PPG features being optimally scaled with w = 0.155.
The resulting overall accuracy is 78.0%.

Input Recognized

H L R W

H 120 17 0 0

L 65 232 49 69

R 0 0 435 12

W 0 9 89 312

Table 5. Summary of the performance obtained using both the PPG and the
accelerometer data as the feature vector, with the PPG features being optimally scaled
with w = 0.155.

Activities Sensitivity [%] Precision [%] F1-score [%]

H 87.59 64.86 74.53

L 55.90 89.92 68.95

R 97.32 75.92 85.29

W 76.10 79.39 77.71



60 G. Biagetti et al.

-0.4 -0.2 0 0.2 0.4 0.6

Projection onto eigenvector #1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
ro

je
ct

io
n 

on
to

 e
ig

en
ve

ct
or

 #
2

Class 1
Class 2
Class 3
Class 4

-0.4 -0.2 0 0.2 0.4 0.6

Projection onto eigenvector #1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

P
ro

je
ct

io
n 

on
to

 e
ig

en
ve

ct
or

 #
3

Class 1
Class 2
Class 3
Class 4

-0.4 -0.2 0 0.2 0.4 0.6

Projection onto eigenvector #1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

P
ro

je
ct

io
n 

on
to

 e
ig

en
ve

ct
or

 #
4

Class 1
Class 2
Class 3
Class 4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Projection onto eigenvector #2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

P
ro

je
ct

io
n 

on
to

 e
ig

en
ve

ct
or

 #
3

Class 1
Class 2
Class 3
Class 4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Projection onto eigenvector #2

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

P
ro

je
ct

io
n 

on
to

 e
ig

en
ve

ct
or

 #
4

Class 1
Class 2
Class 3
Class 4

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Projection onto eigenvector #3

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

P
ro

je
ct

io
n 

on
to

 e
ig

en
ve

ct
or

 #
4

Class 1
Class 2
Class 3
Class 4

Fig. 3. Projections of the training set over the first four eigenvectors.

subjects, while varying the weight w used to combine the two signals. The opti-
mum value was found to be w = 0.155. The results of this experiment are shown
in Table 4, and it clearly improved the overall accuracy from 65.7% to 78.0%.
For a better view of the performance, a few indices are also reported in Table 5.

Finally, Fig. 3 shows projections of the feature vectors over the first few eigen-
vectors. As can be seen, on the strongest projections the first two classes (bike)
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have a significant overlap, but they can be separated by higher-order projection
thanks to the introduction of the PPG signal.

4 Conclusion

In this paper we extended the results presented in [8] to also take into account
PPG data, besides acceleration data, to help in human activity identification. In
fact, there are sometimes different activities that can usefully be differentiated
but that involves essentially the same movements, differing only in the amount
of effort exerted, like pedaling on a bike at different resistance levels. These
activities are difficult to identify with acceleration alone, as the results here
presented show. By adding information from a PPG sensor, recognition accuracy
can be considerably improved provided the two types of signals are appropriately
combined. To this end, a cross-validation approach was employed, resulting in
an improvement from an initial 65.7% to 78.0% overall accuracy on experiments
conducted on a publicly-available data set.

References

1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Energy efficient
smartphone-based activity recognition using fixed-point arithmetic. J. Univ. Com-
put. Sci. 19(9), 1295–1314 (2013)
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