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Abstract. In this paper, we propose a modified supervised adaptive resonance
theory neural network, namely Fuzzy ARTMAP (FAM), to undertake
multi-label data classification tasks. FAM is integrated with the binary relevance
(BR) technique to form BR-FAM. The effectiveness of BR-FAM is evaluated
using two benchmark multi-label data classification problems. Its results are
compared with those other methods in the literature. The performance of
BR-FAM is encouraging, which indicate the potential of FAM-based models for
handling multi-label data classification tasks.
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1 Introduction

Multi-label data classification is different from the traditional single-label classification
problems. In the later, each data sample is assigned to a class from a set of predefined
class labels, while in the former, each data sample could be labeled with more than one
class [1]. The usefulness of multi-label data classification has been demonstrated in
several research areas. As an example, in semantic scene classification [2], a home
picture can be annotated with at least one conceptual class such as sofa, chair and tv
monitor simultaneously. Similarly, in semantic video categorization, a violent video [3]
can be annotated as rope and bind simultaneously. Other applications include social
video [4] and music [5] classification into emotions, as well as protein function pre-
diction [6].

Recently, multi-label data classification has attracted close attention by the
machine-learning community. Conventional machine learning models can be used for
classifying data samples with a single label. To perform multi-label data classification,
these machine-learning models need to be modified, e.g. customized k-nearest neigh-
bour (kNN) [7] and support vector machine (SVM) [8, 9] models.
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In this paper, a supervised artificial neural network based on the adaptive resonance
theory (ART) is proposed to classify data samples into multiple classes. Specifically, a
fuzzy adaptive resonance theory with mapping (Fuzzy ARTMAP or simply FAM [10])
is integrated with a binary relevance [11, 12] technique to form BR-FAM. The orga-
nization of this paper is as follows. In Sect. 2, the state-of-art of multi-label data
classification methods is described. In Sect. 3, the methods for designing BR-FAM are
explained. In Sect. 4, BR-FAM is evaluated using two benchmark multi-label data sets,
with the results compared and analyzed. A summary of this research work is presented
in Sect. 5.

2 Literature Review

In general, methods for learning multi-label data samples can be divided into two
groups, namely problem transformation and algorithm adaptation [12]. The methods
of problem transformation are applied to convert multi-label data samples into at least a
set of one single-label data samples, either with or without considering label ranking
subject to relevancy of a query of interest. On the other hand, the methods of algorithm
adaptation are extension from single-label classifiers, and they classify multi-label data
samples directly.

Four popular methods of problem transformation are binary relevance (BR) [11, 12],
label power-set (LP) [12], ranking by pairwise comparison (RPC) [13], and calibrated
label ranking (CLR) [14]. BR is a data transformation technique to decompose a
multi-label data set into several single-label binary data sets. The idea of BR is described
in detail in Sect. 3.1. BR and its variant [15] have been integrated with some base
classifiers, which include decision tree [15, 16], NaiveBayes [15], k-nearest neighbor [15]
and support vector machine [15]. LP converts each unique set of labels of a data sample
into a new single label. When a new data instance is provided, the classifier assigns it to a
class label that actually indicates a set of labels. The number of transformed labels in LP
depends on the total number of class labels in a data set and also the combination of these
class labels assigned to the data samples. RPC converts a multi-label data set into binary
data sets. Each data set is based on a pair of labels, and consists of data samples of either
class label but not both. Each binary data set, RPC is assigned to a classifier for training.
Given a new instance, all classifiers in RPC make predictions. The final output is deter-
mined by ranking the votes of each class label. CLR is an extended version of RPC. It
introduces an artificial label for multi-label ranking. The artificial label is a breaking point
between relevant and irrelevant labels.

On the other hand, the learning algorithms of several single-label classification
methods have been modified to perform multi-label classification. They are, for
instance, multi-label variants of k-nearest neighbor [7], decision tree [18], support
vector machine [19] and neural network [20, 21] models.
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3 Methods

BR-FAM is an extended version of the original FAM model. It is proposed to deal with
multi-label data classification tasks. The details of BR-FAM are as follows.

3.1 Binary Relevance (BR)

BR [11, 12] is one of the popular problem transformation techniques [12] dealing with
a multi-label data set. The core idea of BR is to divide a multi-label data set into two
groups: either relevant or irrelevant to a class label of interest. BR is algorithm inde-
pendent. It transforms a multi-label data set into at least one single label data set for a
classifier to perform supervised learning.

Assume L ¼ kj : j ¼ 1; � � � ; c� �
is a set of labels in a multi-label data set; D ¼

xi; Yið Þ; i ¼ 1; � � � ;mf g is a set of original multi-label data samples, where xi denotes a
feature vector, Yi�L represents the corresponding multi labels of the i-th sample. BR
processes the original data set D into c data sets with two classes Dkj , j ¼ 1; � � � ; c
where all data samples from D having kj are labeled positively, otherwise labeled
negatively.

3.2 Fuzzy ARTMAP (FAM)

FAM [10] consists of two fuzzy ART modules that are connected through a map field,
Fab. One of these two fuzzy ART modules is the input module that processes the input
vectors, whereas another is the output module that processes the output labels. Each
fuzzy ART model contains nodes interconnected in three layers: (i) a normalization
layer, F0, that normalizes an M-dimensional input vector a or an N-dimensional output
label b through a complement-coding process [10] to a 2 M- dimensional input vector
A or 2 N-dimensional output vector B (i.e., A = (a, 1 – a) or B = (b, 1 – b)); (ii) an
input layer that receives A (or B); (iii) a recognition layer that contains a group of
prototype nodes whereby each prototype node represents a cluster of information eli-
cited from training samples. The map field is an associative memory that links the
prototype nodes from the F2 layer of the input and output fuzzy modules during
training. FAM undergoes an incremental learning process wherein new prototype
nodes can be added to F2 to store new information.

Both the input and output modules perform the same information processing
operation. After the input vector a is complement-coded to A, it is forwarded to Fa

2 ,
where a choice function [10] is utilized to compute the activation of each prototype
node with respect to A, as follows:

Tj ¼
A ^ wa

j

��� ���
aþ wa

j

��� ��� ð1Þ
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where a is the choice parameter, which is set to a small positive value close to 0 [10];
wa
j denotes the connection weight of the j-th prototype node; ^ represents the fuzzy

AND operator that performs element-wise minimum of two vectors. The prototype
node with the highest activation, namely node J, is identified as the winning node.
A vigilance test is applied to compute the similarity between wa

J and A against a
vigilance parameter [10] qa 2 [0, 1].

A ^ wa
J

�� ��
Aj j � qa ð2Þ

If the vigilance test is not passed, a new cycle of search for the next winning
prototype node is undergone. This search process for a new winning prototype node is
only terminated once the winning node succeeds to pass in the vigilance test. Never-
theless, when none of the existing prototype nodes can satisfy the vigilance test, a new
prototype node is introduced in Fa

2 to encode A.
After each fuzzy ART module has identified a winning node, a map-field vigilance

test [10] is executed to evaluate prediction accuracy, as follows:

yb ^ wab
J

�� ��
ybj j � qab ð3Þ

where yb denotes the output vector; wab
J represents the connection weight of the win-

ning node from Fa
2 to Fab; and qab 2 [0, 1] represents the map-field vigilance

parameter.
If the map-field vigilance test fails, it indicates an incorrect prediction of the output

class. Consequently, a match-tracking process [10] is triggered, where qa is raised
slightly higher from its baseline setting of �qa as follows:

qa ¼
A ^ wa

J

�� ��
Aj j þ d ð4Þ

where d is set as a positive value close to 0. The adjustment of qa causes the vigilance
test in the input fuzzy module to fail. As such, a new search cycle in the input fuzzy
module is initiated again with the updated qa setting. The effort for searching a winning
node is continuously made until a correct prediction of the output class is made.

When the map-field vigilance test is satisfied, a learning process ensues where wa
J is

updated [10] as follows:

waðnewÞ
J ¼ ba A ^ waðoldÞ

J

� �
þ 1� bað ÞwaðoldÞ

J ð5Þ

where ba 2 [0, 1] denotes the learning parameter of the input fuzzy module. The output
fuzzy module undergoes the same operation for pattern matching and learning as in the
input fuzzy module from Eqs. (1)–(5) by replacing a with b.
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3.3 Fuzzy ARTMAP with Binary Relevance (BR-FAM)

BR-FAM is a modified version of FAM for tackling multi-label data classification
tasks. In BR-FAM, an L-label data set D (L ¼ kj : j ¼ 1; � � � ; c� �

) is converted to
c datasets. Each Dkj contains data samples with binary classes subject to a class kj of
interest. In this case, a total of c FAM models are created. Each FAM is trained
with Dkj . The outputs are the union prediction of kj made by all FAMs.

Two performance metrics are used to measure classification performance of
BR-FAM. They are from the harmonic mean of precision and recall, namely the
F measure [22]:

F1 ¼ 2 � tp
2 � tpþ fpþ fn

ð6Þ

where tp denotes the number of true positive correctly classified; fp denotes the number
of false positive; fn denotes the number of false negative. These two performance
metrics are micro-averaged and macro-averaged versions of F1, i.e., micro F1 (Bmicro)
and macro F1 (Bmacro) [23, 24]. For clarity, consider a binary classification task of Dk,

B tpk; fpk; tnk; fnkð Þ for k ¼ 1; � � � ; c ð7Þ

where fpk; fpk; tnk; fnk are respectively the number of true positive, false positive, true
negative and false negative after classifying samples from Dk, then

Bmicro ¼ B
Xc
k¼1

tpk;
Xc
k¼1

fpk;
Xc
k¼1

tnk;
Xc
k¼1

fnk

 !
ð8Þ

Bmacro ¼ 1
c

Xc
k¼1

B tpk; fpk; tnk; fnkð Þ ð9Þ

4 Evaluation

4.1 Benchmark Data

Two multi-label data sets that are available from Mulan [25] are used in the experiment
to evaluate the classification performance of BR-FAM. The scene data set comprises
numerical records of 2407 images that are labeled up to 6 concepts, for example, beach,
field, and mountain. The yeast data set contains numerical records of 2417 micro-array
expressions and phylogenetic profiles that are labeled with at least one of 14 functional
categories such as metabolism, energy. Table 1 lists the statistics of both data sets in
terms of number of instances, input features, and labels.
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4.2 Experimental Setup

We refer to the experimental setup as in [23] to execute BR-FAM for ten times with
different sequences of training data samples. Upon completion of a training session
with all training samples, the classification performance of BR-FAM is evaluated with
all test data samples. Each FAM is trained using �qa ¼ 0:5 and ba ¼ bb ¼ 1 within ten
epochs. The numbers of training and test samples from the two data sets are listed in
Table 1, which follows the original quantity of data samples in the training and test sets
in [25]. The classification results of BR-FAM are averaged.

4.3 Results and Analysis

The classification performance of BR-FAM is compared with C4.5 integrated with:
(i) different problem transformation methods [23], which include BR, LP, Calibrated
Label Ranking (CLR) [14] and two efficient versions of LP (i.e., Random k-Labelsets
of a disjoint version, namely RAkELd, and Random k-Labelsets of an overlapping
version, namely RAkELo); (ii) two modified methods for multi-label data classification,
which include a multi-label version of the backpropagation algorithm for perceptrons
(BPMLL) [20] and a multi-label version of k-nearest neighbor algorithm (MLkNN) [7].
Notably, except for BR-FAM, all the aforementioned classification methods used in
this benchmark study had been trained with 66% of the samples from the entire data set
and the rest as the test samples [23]. For clarity, BR-FAM has been trained using fewer
number of data samples, i.e., approximately 50% of scene and 62% of yeast data sets.
The rationale is to compare rigorously the classification performance between
BR-FAM and those of existing multi-label classification methods.

Tables 2 and 3 present the classification results in terms of micro F1 (based on
Bmicro) and macro F1 (based on Bmacro) among BR-FAM, the four versions of
multi-label C4.5 (with BR, LP, RAkELd, and RAkELo), CLR, MLkNN, and BPMLL.
From these results, BR-FAM achieves the highest rates of micro F1 and macro F1
when classifying the scene data set. The classification performances of BR-FAM are
moderate in yeast where its micro F1 is ranked at the sixth position and its macro F1 is
the second highest among the eight classifiers. Based on these results, BR-FAM
appears to be a moderate model for multi-label data classification. However, a further
analysis of the results of BR-FAM and a group of five multi-label classifiers developed
using different problem transformation methods (i.e., CLR and the four C4.5 versions
with BR, LP, RAkELd and RAkELo) in the yeast classification task is made. BR-FAM
could achieve micro F1 (i.e., 55.15%) that is within the performance range of these five
classifiers (53.04%–61.89%). On the other hand, BR-FAM is inferior to MLkNN and
BPMLL. These two multi-label classifiers have been developed by an algorithm

Table 1. Information of two multi-label data sets

Dataset Number of instances (#Training:
#Test)

Number of input
features

Number
of labels

Scene 2407 (1211:1196) 294 6
Yeast 2417 (1500:917) 103 14
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adaptation approach achieving micro F1 within between 63% and 64%. In other words,
the performance of BR-FAM in yeast is competitive with those classifiers developed
using the same approach, i.e., the problem transformation methods.

5 Summary

In this paper, the FAM model is integrate with a binary relevant technique to handle
multi-label data classification problems. The effectiveness of BR-FAM is evaluated
using two benchmark data sets. The empirical results show that BR-FAM is compa-
rable with other multi-label classifiers, especially those developed with problem
transformation approach.

As part of future work, additional experiment will be carried out to evaluate the
classification capability of BR-FAM using additional multi-label data sets available in
different application areas. We will also develop a multi-label FAM model using the
algorithm adaptation approach.

Table 3. The results of macro F1 (standard deviation is typed in round brackets)

Classifier Classification task
Scene Yeast

BR 63.41 (0.91) 38.29 (0.59)
LP 61.04 (1.16) 37.26 (1.09)
MLkNN 72.63 (1.37) 36.34 (0.79)
RAkELd 60.90 (0.88) 38.84 (0.50)
RAkELo 70.26 (1.64) 40.66 (0.77)
CLR 64.23 (0.89) 38.52 (0.96)
BPMLL 51.29 (5.26) 42.85 (1.02)
BR-FAM 78.58 (4.35) 41.46 (0.76)

Table 2. The results of micro F1 (standard deviation is typed in round brackets)

Classifier Classification task (%)
Scene Yeast

BR 62.36 (1.01) 57.67 (1.89)
LP 60.05 (1.14) 53.04 (1.03)
MLkNN 72.29 (1.08) 63.93 (1.06)
RAkELd 59.87 (0.82) 54.26 (0.58)
RAkELo 69.58 (1.53) 61.89 (0.74)
CLR 62.82 (0.92) 61.69 (1.29)
BPMLL 48.18 (5.19) 63.11 (1.47)
BR-FAM 77.43 (3.24) 55.15 (0.69)
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