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Abstract. In this work, a job-flow scheduling approach for Grid virtual orga-
nizations is proposed and studied. Users’ and resource providers’ preferences,
virtual organization’s internal policies, resources geographical distribution along
with local private utilization impose specific requirements for efficient
scheduling according to different, usually contradictive, criteria. With increasing
resources utilization level the available resources set and corresponding decision
space are reduced. This further complicates the task of efficient scheduling. In
order to improve overall scheduling efficiency we propose a heuristic antici-
pation scheduling approach. It generates a near optimal but infeasible scheduling
solution and includes special replication procedure for efficient and feasible
resources allocation.
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1 Introduction and Related Works

In distributed environments with non-dedicated resources such as utility Grids the
computational nodes are usually partly utilized by local high-priority jobs coming from
resource owners. Thus, the resources available for use are represented with a set time
intervals (slots) during which the individual computational nodes are capable to exe-
cute parts of independent users’ parallel jobs. These slots generally have different start
and finish times and a performance difference. The presence of a set of slots impedes
the problem of resources allocation necessary to execute the job flow from computa-
tional environment users. Resource fragmentation also results in a decrease of the total
computing environment utilization level [1, 2].

Application level scheduling [3] is based on the available resources utilization and,
as a rule, does not imply any global resource sharing or allocation policy. Job flow
scheduling [4, 5] in user’s virtual organizations (VO) suppose uniform rules of resource
sharing and consumption, in particular based on economic models. This approach
allows improving the job-flow level scheduling and resource distribution efficiency.
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VO policy may offer optimized scheduling to satisfy both users’ and VO common
preferences. The VO scheduling problems may be formulated as follows: to optimize
users’ criteria or utility function for selected jobs [6, 7], to keep resource overall load
balance [8, 9], to have job run in strict order or maintain job priorities [10], to optimize
overall scheduling performance by some custom criteria [11, 12], etc.

VO formation and performance largely depends on mutually beneficial collabo-
ration between all the related stakeholders. However, users’ preferences and owners’
and administrators’ preferences may conflict with each other. Users are likely to be
interested in the fastest possible running time for their jobs with least possible costs
whereas VO preferences are usually directed to available resources load balancing or
node owners’ profit boosting. Thus, VO policies in general should respect all members
and the most important aspect of rules suggested by VO is their fairness. A number of
works understand fairness as it is defined in the theory of cooperative games, such as
fair job flow distribution [9], fair quotas [13, 14], fair user jobs prioritization [10], and
non-monetary distribution [15]. The cyclic scheduling scheme (CSS) [16] implements
a fair scheduling optimization mechanism which ensures stakeholders interests to
some predefined extent. The downside of a majority centralized metascheduling
approaches is that they lose their efficiency and optimization features in distributed
environments with a limited resources supply. For example in [2], a traditional
backfilling algorithm provided better scheduling outcome when compared to different
optimization approaches in resource domain with a minimal performance configura-
tion. The general root cause is that in fact the same scarce set of resources (being
efficient or not) have to be used for a job flow execution or otherwise some jobs might
hang in the queue. Under such conditions, user jobs priority and ordering greatly
influence the scheduling results. At the same time, application-level brokers are still
able to ensure user preferences and optimize the job’s performance under free-market
mechanisms.

Main contribution of this paper is a heuristic CSS-based job-flow scheduling
approach which retains efficiency even in distributed computing environments with
limited resources. Special scheduling solution replication procedure is proposed and
studied to ensure a feasible scheduling result. The rest of the paper is organized as
follows. Section 2 presents a general CSS fair scheduling concept. The proposed
heuristic-based scheduling technique is presented in Sect. 3. Section 4 contains sim-
ulation experiment setup and results for the proposed scheduling approach. Finally,
Sect. 5 summarizes the paper.

2 Cyclic Alternative-Based Fair Scheduling

Scheduling of a job flow using CSS is performed in time cycles known as scheduling
intervals, by job batches [16]. The actual scheduling procedure consists of two main
steps. The first step involves a search for alternative scenarios of each job execution, or
simply alternatives [17]. During the second step the dynamic programming methods
[16] are used to choose an optimal alternatives’ combination. One alternative is

Anticipation Scheduling in Grid Virtual Organizations 429



selected for each job with respect to the given VO and user criteria. An example for a
user scheduling criterion may be an overall job running time, an overall running cost,
etc. This criterion describes user’s preferences for that specific job execution and
expresses a type of an additional optimization to perform when searching for alter-
natives. Alongside with time (T) and cost (C) properties each job execution alternative
has a user utility (U) value: user evaluation against the scheduling criterion. A common
VO optimization problem may be stated as either minimization or maximization of one
of the properties, having other fixed or limited, or involve Pareto-optimal strategy
search involving both kinds of properties [4, 16, 18]. For a fair CSS scheduling
model the second step VO optimization problem could be in form of: C ! max, lim
U (maximize total job flow execution cost, while respecting user’s preferences to some
extent); U ! min, lim T (meet user’s best interests, while ensuring some acceptable
job flow execution time) and so on [16].

We consider the following relative approach to represent a user utility U. A job
alternative with the minimum (best) user-defined criterion value Zmin corresponds to
the left interval boundary (U = 0%) of all possible job scheduling outcomes. An
alternative with the worst possible criterion value Zmax corresponds to the right interval
boundary (U = 100%). In the general case, for each alternative with value Z, U is set
depending on its position in [Zmin; Zmax] interval using the following formula:
U ¼ Z�Zmin

Zmax�Zmin
� 100%. Thus, each alternative gets its utility in relation to the “best” and

the “worst” optimization criterion values user could expect according to the job’s
priority. And the more some alternative corresponds to user’s preferences the smaller
is the value of U. For a fair scheduling model the second step VO optimization
problem could be in form of: C ! max, lim U (maximize total job flow execution
cost, while respecting user’s preferences to some extent); U ! min, lim T (meet
user’s best interests, while ensuring some acceptable job flow execution time) and so
on [16].

The launch of any job requires a co-allocation of a specified number of slots, as
well as in the classic backfilling variation. A single slot is a time span that can be
assigned to run a part of a parallel job. The target is to scan a list of Ns available slots
and to select a window of m parallel slots with a length of the required resource
reservation time. The user job requirements are arranged into a resource request
containing a resource reservation time, characteristics of computational nodes (clock
speed, RAM volume, disk space, operating system etc.), limitation on the selected
window maximum cost. ALP, AMP and AEP window search algorithms were
discussed in [17]. The job batch scheduling performs consecutive allocation of a
multiple nonintersecting in terms of slots alternatives for each job. Otherwise irre-
solvable collisions for resources may occur if different jobs will share the same
time-slots. Sequential alternatives search and resources reservation procedures help to
prevent such scenario. However in an extreme case when resources are limited or
overutilized only at most one alternative execution could be reserved for each job. In
this case alternatives-based scheduling result will be no different from First Fit
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resources allocation procedure [2]. First Fit resource selection algorithms [19] assign
any job to the first set of slots matching the resource request conditions without any
optimization.

3 Anticipation Scheduling

In order to address this problem the following heuristic job batch scheduling scheme is
proposed which consists of three main steps. First, a set of all possible execution
alternatives is found for each job not considering time slots intersections and without
any resources reservation. The resulting intersecting alternatives found for each job
reflect a full range of different job execution possibilities user may expect on the current
scheduling interval. Second, CSS scheduling procedure [16] is performed to select
alternatives combination (one alternative for each job of the batch) optimal according to
VO policy. The resulting alternatives combination most likely corresponds to an
infeasible scheduling solution as possible time slots intersection will cause collisions
on resources allocation stage. The main idea of this step is that obtained infeasible
solution will provide some heuristic insights on how each job should be handled during
the scheduling. For example, is time-biased or cost-biased execution is preferred, how
it should correspond to user criterion and VO administration policy and so on. Third, a
feasible resources allocation is performed by replicating alternatives selected in step 2.
The base for this replication step is an Algorithm searching for Extreme Performance
(AEP) described in details in [17]. In the current step AEP helps to find and reserve
feasible execution alternatives most similar to those selected in the near-optimal
infeasible solution. After these three steps are performed the resulting solution is both
feasible and efficient as it reflects scheduling pattern obtained from a near-optimal
reference solution from step 2.

We used AEP modification to allocate a diverse set of execution alternatives
for each job. Originally AEP scans through a whole list of available time slots and
retrieves one alternative execution satisfying user resource request and optimal
according to user custom criterion. During this scan, we saved all intermediate AEP
search results to a dedicated list of possible alternatives. For the replication purpose
a new Execution Similarity criterion was introduced which helps AEP to find a
window with minimum distance to a reference alternative. Generally, we define a
distance between two different alternatives (windows) as a relative difference or error
between their significant criteria values. For example if reference alternative has Cref

total cost, and some candidate alternative cost is Ccan, then the relative cost error EC is

calculated as EC ¼ jCref�Ccanj
Cref

. If one need to consider several criteria the distance D
between two alternatives may be calculated as a linear sum of criteria errors:
Dl ¼ EC þET þ ::þEU , or as a geometric distance in a parameters space:
Dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
C þE2

T þ ::E2
U

p

.
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AEP modification with Execution Similarity criterion is represented below.

Input Data: slotList - a list of available slots; job - a job for which the search is 
performed; refAlternative – reference alternative used to find similar job execution 
window. 
Result: closestWindow – execution window similar to refAlternative

slotList = orderSystemSlotsByStartTime();
minDistance = MAX_VALUE;

for each slot in slotList do
if not(properHardwareAndSoftware(job, slot.node)) then

continue;
end
windowSlotList.add(slot);
windowStartTime = slot.startTime;
for each wSlot in windowSlotList do

minLength = wSlot.node.getWorkingTimeEstimate();
if (wSlot.endTime - windowStartTime) < minLength then

windowSlotList.remove(wSlot);
end

end
if windowSlotList.size() ≥ job.nodesNeed then
distance = calculateDistance(windowSlotList, refAlternative);
if distance < minDistance then

minDistance = distance;
closestWindow = windowSlotList;
end

end
end

In this algorithm an expanded window windowSlotList of size M moves through a
whole list of all available slots slotList sorted by their start time in ascending order. At
each step any combination of m slots inside windowSlotList (in the case, when m
M) can form a window that meets all the requirements to run the job. The main
difference from the original AEP is that instead of searching for a window with a
maximum single criterion value, we retrieve window with a minimum distance Dg or
Dl to a reference execution alternative. Generally, this distance can reflect job execu-
tion preferences in terms of multiple criteria such as job execution cost, runtime, start
time, finish time, etc.

For a feasible job batch resources allocation AEP consequentially allocates for each
job a single execution window with a minimum distance to a reference corresponding
alternative from an infeasible solution. Time slots allocated for i-th job are reserved and
excluded from the slot list when AEP search algorithm is performed for the following
jobs i + 1, i + 2,.. N. Thus this procedure prevents any conflicts for resources and pro-
vides scheduling solution which in some sense reflects near-optimal reference solution.
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4 Simulation Study

An experiment was prepared as follows using a custom distributed environment sim-
ulator [2, 16, 17]. VO and computing environment properties:

• The resource pool includes 80 heterogeneous computational nodes.
• A specific cost of a node is an exponential function of its performance value (base

cost) with an added variable margin distributed normally as ±0.6 of a base cost.
• The scheduling interval length is 800 time quanta. The initial resource load with

owner jobs is distributed hyper-geometrically resulting in 5% to 10% time quanta
excluded in total.

Job batch properties:

• Jobs number in a batch is 125.
• Nodes quantity needed for a job is a whole number distributed evenly on [2; 6].
• Node reservation time is a whole number distributed evenly on [100; 500].
• Job budget varies in the way that some of jobs can pay as much as 160% of base

cost whereas some may require a discount.
• Every request contains a specification of a custom user criterion which is one of the

following: job execution runtime or overall execution cost.

4.1 Replication Scheduling Accuracy

The first experiment is dedicated to a replication scheduling accuracy study. For this
matter we conducted and collected data from more than 1000 independent job batch
scheduling simulations. First, a general CSS was performed in each experiment for the
following job-flow execution cost maximization problem C ! max, lim Ua = 10%. Ua

stands for the average user utility for one job, i.e. lim Ua = 10% means that at average
resulting deviation from the best possible outcome for each user did not exceed 10%.
Next, linear and geometric replication algorithms were executed to replicate CSS
solution using linear Dl and geometric Dg distance criteria. In the current experiment
we used job execution cost error Ec and processor time usage error Et to calculate
distances Dl and Dg.

In order to evaluate the resulting difference in scheduling outcomes, we additionally
performed CSS algorithm for C ! max, lim Ua = 0% (ensuring users’ individual
preferences only) and C ! max, lim Ua = 100% (ensuring VO preference, i.e. max-
imizing overall cost without taking into account users’ criteria) problems. These
additional problems reflect extreme boundaries for scheduling results, which can be
used to evaluate a relative replication error. Table 1 contains scheduling results for all
these three problems and two replication algorithms.

The results indicate that both linear and geometric replication algorithms provided
average scheduling parameters very close to the reference solution (indicated as bold
in Table 1). And especially close against job execution cost and processor time usage,
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i.e. characteristics which were used for a replication distance calculation. For example,
borderline problems C ! max, lim Ua = 0% and C ! max, lim Ua = 0% provided
average job execution cost (main job-flow optimization criterion) values 1283 and 1475
correspondingly. Reference intermediate solution provided 1349. And both replication
algorithms ensured average job execution cost 1353 with only 2% deviation from
reference solution against [1283; 1475] interval of possible scheduling outcomes.
Although replication algorithms showed their efficiency with respect to integral job
flow processing parameters (such as average job execution cost, runtime, finish time),
individual user’s preferences were considered to a lesser extent. It can be observed in
the Table 1 that both replication algorithms provided average user utility Ua almost
twice as much as the reference problem.

To address this discrepancy in more details Fig. 1 shows average linear and geo-
metric replication distances for each job of the batch. Figure 1 shows that there values
are practically independent from an ordinal job number and do not exceed 0.05. For
comparison average distances between the most and the least expensive alternative
executions for the first batch job amounted: Dl ¼ 1:15 and Dg ¼ 0:88. These values
exceed average replication distances in 20 times and therefore are not shown in the
Fig. 1. Thus, we can conclude that replication error for each batch job on average does
not exceed 5% against interval of possible scheduling outcomes.

Table 1. CSS replication average scheduling results

Job execution
characteristic

C -> max, lim
Ua = 0%

C-> max, lim
Ua = 10%

Linear
replication

Geometric
replication

C -> max, lim
Ua = 100%

Cost 1283 1349 1353 1353 1475
Processor time 191.6 191.2 190.6 190.5 202.3
Finish time 367.1 353.8 356.2 356.4 358.5
Ua, % 0 9.9 17.6 17.8 65

Fig. 1. Average replication error for user jobs
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4.2 Anticipation Scheduling Simulation

The second experiment series consider anticipation scheduling efficiency. During each
experiment a VO domain and a job batch were generated and the following scheduling
schemes were simulated and studied. First, a general CSS solved the optimization
problems T ! min, lim U with different limits Ua 2 {0%, 1%, 4%, 10%, 16%, 32%,
100%}. Second, a near-optimal but infeasible reference solution REF was obtained for
the same problems. Third, a replication procedure CSSrep was performed based on CSS
solution to demonstrate a replication process accuracy. For the heuristic anticipation
scheduling ANT the same replication procedure was performed based on REF solution.
We used a geometric distance as a replication criterion. Finally two independent job
batch scheduling procedures were performed to find scheduling solutions most suitable
for VO users (USERopt) and VO administrators (VOopt). USERopt was obtained by
using only user criteria to allocate resources for jobs without taking into account VO
preferences. VOopt was obtained by using one VO optimization criterion (T ! min) for
each job scheduling without taking into account user preferences.

1000 single scheduling experiments were simulated. Average number of alterna-
tives found for a job in CSS was 2.6. This result shows that while for relatively small
jobs usually a few alternative executions have been found, large jobs usually had at
most one possible execution option (remember that according to the simulation settings
the difference between jobs execution time could be up to 15 times). At the same time
REF algorithm at average considered more than 100 alternative executions for each
job. CSS failed to find any alternative executions for at least for one job of the batch in
209 experiments; ANT - in 155 experiments. These results show that simulation set-
tings at the same time provided quite a diverse job batch and a limited set of resources
not allowing executing all the jobs during every experiment.

Figure 2 shows average job execution time (VO criterion) in a T ! min, lim
U optimization problem. Different limits Ua 2 {0%, 1%, 4%, 10%, 16%, 32%, 100%}
specify to what extent user preferences were taken into account. Two horizontal lines
USERopt and VOopt represent practical T values when only user or VO administration
criteria are optimized correspondingly.

Fig. 2. Average job execution time in T ! min, lim U problem
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First thing that catches the eye in Fig. 2 is that REF for U > 10% provides job
execution time value better (smaller) than those of VOopt. However such behavior is
expected as REF generates an infeasible solution and may use time-slots from more
suitable (according to VO preferences) resources several times for different jobs.
Otherwise ANT provided better VO criterion value than CSS for all U > 0%. The
relative advantage reaches 20% when U > 20% is considered. ANT algorithm graph
gradually changes from USERopt value at U = 0% to almost VOopt value at U = 100%
just with changing average user utility limit. Thereby ANT represents a general
scheduling approach allowing balancing between VO stakeholder’s criteria according
to specified scenario, including VO or user criteria optimization.

A similar pattern can be observed in Fig. 3 where C ! max, lim U scheduling
problem is presented. However, in this case ANT advantage over CSS amounts to 10%
against VO criterion.

5 Conclusions and Future Work

In this paper, we study the problem of a fair job batch scheduling with a relatively
limited resources supply. The main problem arise is a scarce set of job execution
alternatives which eliminates scheduling optimization efficiency. We study a heuristic
scheduling scheme which generates a near-optimal but infeasible reference solution and
then replicates it to allocate a feasible accessible solution. Special replication procedure
is proposed which provides 2–5% error from the reference scheduling solution. The
obtained results show that the new heuristic approach provides flexible and efficient
solutions for different fair scheduling scenarios.

Future work will be focused on replication algorithm study and its possible
application to fulfill complex user preferences expressed in a resource request.

Fig. 3. Average job execution cost in C ! max, lim U problem
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