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Abstract. The chapter introduces a comparative analysis of the complexity of
the Tate pairing operation on a supersingular elliptic curve and the complexity
of the final exponentiation in the tripartite key agreement cryptographic proto-
col. The analysis takes into account a possibility of using different bases of finite
fields in combination. Operations of multiplication and multiple squaring in the
field GFð2nÞ and its 4-degree extension, of Tate pairing on supersingular elliptic
curve and of final exponentiation are considered separately and in combination.
We conclude that the best complexity bound for the pairing and the final
exponentiation in the cryptographically significant field GFð2191Þ is provided by
the combination of the polynomial basis of this field and 1-type optimal basis of
the field expansion.
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with square root extraction � Algorithm without square root extraction � Final
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1 Introduction

The idea of combining bases to accelerate computations in finite fields was first
introduced in [1] on the basis of the estimates of complexity of transformations of bases
in the fields possessing the 2- or 3-type optimal normal basis (o.n.b.) [2]. In [3–5], a
number of modifications of the multiplication in these bases have been proposed. In
particular, in [5] multiplication algorithm in the so-called optimal polynomial basis of
type 2 (in the terminology of [1] - almost polynomial basis (a.p.b)) using the multi-
plication operations in the ring GF(2)[X] is described and estimated. The product is
converted into a.p.b. using a permutated o.n.b., i.e. by means of operations without
reduction modulo an irreducible polynomial.
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Recall that 1-type o.n.b. in the field GFð2nÞ occurs if p = n+1 is a prime number,
and 2 is a primitive root mod p, 2-type o.n.b. or 3-type o.n.b. arise when p = 2n + 1 is
a prime number, and the field characteristic 2 is a primitive root modulo p. If p�3
(mod 4), and 2 is a quadratic residue, we have 3-type o.n.b, otherwise 2-type o.n.b.

As used in this paper, the field GFð2191Þ, has 3-type o.n.b. and its 4-th degree
extension has 1-type o.n.b.. Availability o.n.b. allowing to speed up the operation of
raising to a power equal to the power of the field characteristics, or the scalar multi-
plication of the elliptic curve point by the power of the field characteristics, as well as
the operation of the square root extracting.

Polynomial basis p.b. of these fields has generators, which are the roots of the
irreducible trinomials that simplifies the implementation of the operations of multi-
plication in these bases. Thus, there is reason to explore the possibility of sharing o.n.b.
and p.b. in the implementation of the various stages of cryptographic protocols.

In this paper, we concretize the idea of using combinations of bases in relation to
the implementation of the tripartite key agreement protocol [6] in arithmetic super-
singular elliptic curve over a cryptographically significant field GFð2191Þ: tacking into
account security parameter k = 4 for supersingular elliptic curve over this field, security
of discrete logarithm problem in group of elliptic curve points is equivalent to security
of this problem in multiplicative group of order 2764 � 1 [7]. Recall that this protocol is
one round. System parameter is a point P of supersingular elliptic curve over the
ground field GFð2nÞ.

Each of the three participants A, B and C selects a private key a, b and c, computes
and publishes the public key KA = aP, KB = bP and KC = cP. Then each of them
receives the public keys of other participants, calculates an element e(bP,cP), e(aP, cP)
or e(bP, aP) of the field GFð2n�4Þ performing the Tate pairing operation e with two
points of an elliptic curve and then the operation of the final exponentiation (raising to a
power equal to the quotient of the order of the group GFð2n�4Þ� on the order of the
elliptic curve). The final step is to calculate the shared secret key by exponentiation of
the result to the power a, b and c respectively. The chapter provides upper bounds on
the number of elementary operations in the pairing and the final exponentiation phases
of the said cryptographic protocol. The rest part of chapter contains Sect. 2 were
operation of multiplication and multi squaring in distinct bases of the field GFð2191Þ are
considered, Sect. 3 that is devoted to these operations in 4-degree extension of this field
comparing their complexity for distinct combinations of bases of basic field and its
extension. In Sect. 4 we compare complexity of pairing and final exponentiation
operations separately and totally for distinct combinations of bases. In conclusion the
comparison results are summarized.

2 Bases and Operations in GF(2n)

Consider a sequence bi ¼ ai þ a�i 2 GFð2nÞ; n ¼ 191; i 2 Z. The set 1; b1; . . .;f
bi1; . . .; b

n�1
1 g is called a polynomial base (p.b) of GFð2nÞ, the set

b1; . . .; b
i
1; . . .; b

n
1

� � ð b1; . . .; b
i
1; . . .; b

2n
1

� �Þ forms an almost p.b (a.p.b) of GFð2nÞ
(doubled a.p.b). The set n1; . . .; ni; . . .; nnf g ¼ b2

0

1 ; . . .; b
2i�1

1 ; . . .; b2
n�1

1

n o
is an optimal
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normal base (o.n.b) of GFð2nÞ. The set b1; . . .; bi; . . .; bnf g ðor b1; . . .;f bi; . . .; b2ngÞ,
bi ¼ np ið Þ,i ¼ 1; . . .n, where p is a permutation

pðiÞ ¼ 2i mod p if 2i mod p� n;
ðp� 2iÞ mod p if 2i mod p[ n;

�

p ¼ 2nþ 1, is called a permuted o.n.b. (p.o.n.b) (or doubled p.o.n.b).
Let T ðT�1Þ denote the operation of the conversion from a.p.b to p.o.n.b (from p.o.n.b

to a.p.b). If 2k\n\2kþ 1, then the conversion complexity (number of xor-operations)
satisfies the recurrent inequality LTðnÞ� LT n� 2k

� �þ LT 2k
� �þ n� 2k with the initial

value LT 2ð Þ ¼ 0. This recurrence can be solved as LT 2k
� �� 2k�1 k � 2ð Þþ 1 [5]. Note,

that the weaker bound LT 2k
� �� 2k�1 kð Þþ 1 was derived in [1] due to the overestimated

initial value LTð2Þ ¼ 2. From this inequality one can obtain estimations LT 191ð Þ ¼ 513,
LT 382ð Þ ¼ 1227. Trivially, the complexity of the operation D of the conversion from d.
p.o.n.b to p.o.n.b. is n-1.

Following [5], we multiply elements of GFð2nÞ represented in a.p.b as elements of
the ring GF(2)[X] getting the product in d.a.p.b. Denote this operation �R. Also fol-
lowing [5] we denote Bottom(a) and Top(a) the lower half of product and product after
replacing of its lower half with zeros). We implement two multiplication operations in
a.p.b:

y�apbP z with result in a.p.b,
y�apbN z with result in p.o.n.b,:
y�apbP z ¼ BottomðcÞþ T�1 ðDðTðTopðcÞÞÞÞ,
y�apbN z ¼ TðBottomðcÞÞþDðTðTopðcÞÞÞ,
where c ¼ y�R z, «+» is n-bit xor.
It follows that complexity of each of these operations (number of logical opera-

tions) Lð�apbPÞ ¼ Lð�apbNÞ ¼ M nð Þþ LT 2nð Þþ 2n where M(n) is complexity of
operation �R (transformation D in this case is performed without “xor” - operations).

Implementing c ¼ TðyÞ �R TðzÞ instead of c ¼ y�R z we obtain also two multi-
plication operations in p.o.n.b:

y�ponbP z with result in a.p.b,
y�ponbN z with result in p.o.n.b.
Complexity of each of these operations Lð�ponbPÞ ¼ Lð�ponbNÞ ¼ MðnÞþ 2 �

LT ðnÞþ LTð2nÞþ n.
Denote �pbN multiplication in p.b. in the field GFð2nÞ with minimal polynomial

Ponb(X) that root generates o.n.b. It can be performed converting operands to a.p.b.,
executing �apbP and converting the product back to p.b. Mentioned converting’s are of
complexity n. Hence complexity of multiplication �pbN is Lð�apbPÞþ 3n.

P.b. is organized using the root of trinomial Ppb(X) instead Ponb(X). Let R(x) be the
modulo trinomial reduction of complexity 2n. Then multiplication in p.b. of GFð2nÞ is
denoted and described as y�R z ¼ Rðx�R yÞ. Its complexity is limited to
M(n) + 2n. Squaring in p.b. is performed by an algorithm that directly take into account
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the reducing of the vector-result. Below we denote this operation zð1Þpb ¼ Z2. Its com-
plexity is limited to n, but symbolically synthesis for n = 191 gave the squaring pro-
gram with only 99 xor’s.

Denote zðjÞponb ¼ z2
j
a raising to power 2 j operation implemented to element z in p.o.

n.b. with result in a.p.b.:
for i ¼ 1; nð Þ:
b i½ � ¼ a½p½p�1ðiÞ � j��
c ¼ TðbÞ.
Its complexity equals 0, because logical operations absent.

Operation zðjÞapb ¼ T�1ðTðzÞ2 jÞ is implemented to element z in a.p.b. with result in
a.p.b. Its complexity is 2LT (n).

Operation zðjÞapbN ¼ TðzÞ2 j

is implemented to element z in a.p.b. with result in p.o.n.b.
Its complexity is LT.

Operation zðjÞpbN ¼ TðzÞ2 j

is implemented to element z in p.b. (for minimal poly-
nomial PonbðXÞ) with result in p.b. Its complexity is 2LTðnÞþ nÞ.

Denote zðjÞpb a raising to power 2 j operation to element z in p. b. (for minimal
polynomial PpbðXÞ) with result in p.b.:

c = z
for i ¼ 1; jð Þ:

c ¼ cð1Þpb

Its complexity is bounded by nj (for n = 191 one can take estimate 99j).
In Table 1 there are represented the numbers of logical operations “xor” and “and”

(denoted ⊕ and &) and the total numbers of these operations in rows {⊕, &} for
multiplication and squaring in distinct bases of GFð2191Þ. Here and below we assume
implementation the fastest of the stated algorithms for multiplication in the ring
GFð2Þ½X� [8]. Here and below in tables there are represented data derived from esti-
mates of the complexity of operations and confirmed by computer experiment. Column
“D over the ring” contains numbers of operations without operations XR of multipli-
cation in the ring.

3 Multiplication and Squaring in GF(2191�4)

The field GFðð2191Þ4Þ contains a 1-type o.n.b. over the subfield GFð2191Þ. Operations
of addition, multiplication, and squaring in these bases can be implemented using
operations in GFð2191Þ in p.b, a.p.b, or p.o.n.b of this basic field. It follows that there
are 6 combinations of bases of basic field and its extension, and each of them can be
chosen to implement operations of Tate pairing, final exponentiation, and operation of
secret working key computing. Together with operations considered in the second
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section, algorithms of these operations use operations of multiplication in 4-degree
extension of the field GFð2nÞ and operation of raising to power 2 j.

Let a jð Þ
apb 4nP denote the operation of raising an element a to the power 2 j using

operation zðjÞapb of basic field and p.b. of its extension.
Let �apb 4nP be a multiplication using a.p.b. of basic field with multiplication �apb

and p.b. of its extension.
Analogous notation aapb_4nN

(j) , aponb_4nP
(j) , aponb_4nN

(j) , �apb_4nN, �ponb_4nP, �ponb_4nN,
�pb_4nP, �pb_4nN are used for operations in other combinations of field extension and
basic field.

Denote +4n an addition in field extension in any of its basis and any basis of basic
field, its complexity equals 4n.

In can be shown that operations �apb_4nN, �ponb_4nN, �pb_4nN can be implemented
performing 9 multiplications an 22 additions in the field GFð2nÞ.

So complexity of �apb_4nN equals 4 Lð�apbNÞþ 22n. Complexity of operations
�apb_4nP, �ponb_4nP, �pb_4nP exceed these values of 6n accordingly numbers of n-bit
additions for converting between o.n.b. and p.b. of field extension.

Complexity of multiple squaring is estimated analogously.
Numbers of logical operation for multiplication in distinct bases of the field

GFð2191Þ and its extension are presented in Table 2.

Table 1. Comparison of Operations in GFð2191Þ
Bases of
GFð2191Þ

Minimal
polynomial

Logical
operations

Squaring j-Times
squaring

Multiplication D over
the
ring

a.p.b. Ponb(X) ⊕ 1026 1026 15798 1418
& 0 0 5724 0
{⊕,&} 1026 1026 21522 1418

p.o.n.b. Ponb(X) ⊕ 0 0 16311 1931
& 0 0 5724 0
{⊕,&} 0 0 22035 1931

p.b Ponb(X) ⊕ 1408 1408 16371 1991
& 0 0 5724 0
{⊕,&} 1408 1408 22095 1991

p.b Ppb(X) ⊕ 99 99j 14758 378
& 0 0 5724 0
{⊕,&} 99 99j 20482 378
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Table 2. Comparison of Operations in GFð2191�4Þ
Base of
GFð2nÞ

Minimal
polynomial

Logical and n-
bit operations

Numbers of logical operations if there are used the bases of
GFð2n�4Þ over GFð2nÞ, n ¼ 191:

o.n.b. p.b

� squaring 661-times
squaring

� squaring 661-times
squaring

a.p.b Ponb(X) ⊕ 146384 4104 1026 147530 5250 5250

& 51516 0 0 51516 0 0
{⊕,&} 197900 4104 1026 199046 5250 5250

p.o.n.b Ponb(X) ⊕ 151001 0 0 152147 1146 1146

& 51516 0 0 51516 0 0
{⊕,&} 202517 0 0 203663 1146 1146

p.b Ppb(X) ⊕ 137024 396 65439 138170 1542 261756
& 51516 0 0 51516 0 0
{⊕,&} 188540 396 65439 189686 1542 261756

4 Tate Pairing and Final Exponentiation Operations

Let us consider four variants of Tate pairing computing with root extraction on
supersingular elliptic curve Y2 ¼ X3 þX þ b [9].

(a) A.p.b. of the field GF(2191), o.n.b of its extension.

Algorithm Pairing apb onbða; b; x; y; tapb onb; bÞ for pairing of points P ¼ ða; bÞ,
Q ¼ x; yð Þ using pairing parameter tapb onb (an element of the extension field with all
coefficients being 0 s and 1 s of the field GFð2191Þ), b ¼ 1apb (identity element rep-
resented in a.p.b of GFð2nÞ).

C = [1apb, 1apb, 1apb, 1apb]
t = tapb_onb
s ¼ tð1ÞapbP 4nN

for i = (1,n):
a = aapbP

(1)

b = aapbP
(1)

z = a+x
v = a�apbPx
w = z + v+b+y+1apb
u = [z�apbPt[0]), z�apbPt[1]), z�apbPt[2]), z�apbPt[3]),),
v = z+1apb
r = [v�apbPtapbs [0], v�apbPs[1], v�apbPs[2], v�apbPs[3]]
v = [w,w,w,w] + 4nu + 4nr
C = C�apbP_4nNv
x = xapb

(n−1)

y = yapb
(n−1)

Complexity of this algorithm estimated accordingly numbers if multiplication,
addition and squaring operations in them:
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LPairing apb onbðnÞ ¼ 191ð2Lðzð1ÞapbÞþ 2L(zð190Þapb Þþ Lð�apbPÞþ Lð�apb 4nNÞþ 15Lðþ ÞÞ:

Remark that here and below multiplication with multiples t or s containing trivial
elements are not taken into account in assessing complexity of pairing, L(+) is com-
plexity of addition in GFð2191Þ.
(b) P.o.n.b. of the field GF(2191), o.n.b of its extension.

Algorithm Pairing ponb onbða; b; x; y; tponb onb; bÞ for pairing of points
P ¼ ða; bÞ, Q ¼ x; yð Þ using pairing parameter tponb onb when b ¼ 1ponb (that is, the
identity element represented in p.o.n.b. of GFð2nÞ) differs from just considered only in
the type used in operations in the notation of which “apb” is replaced by “ponb”, 1apb is
replaced by 1ponb.

Hence complexity of this pairing operation is represented by formula

LPairing ponb onbðnÞ ¼ 191ð2Lðzð1ÞponbÞþ 2Lzð190Þponb þ Lð�ponbPÞþ Lð�ponb 4nNÞþ 15Lðþ ÞÞ:

(c) A.p.b. of the field GFð2191Þ, and p.b. of its extension.

Algorithm Pairing apb pbða; b; x; y; tapb pb; bÞ for pairing of points P ¼ ða; bÞ,
Q ¼ x; yð Þ using pairing parameter tapb pb when b ¼ 1apb.

C = [1apb, 0apb, 0apb, 0apb]
t = tapbpb
s = tapbpbapbP_4nPb

(1)

for i = (1,n):
a = aapbP

(1)

b = bapbP
(1)

z = a+x
v = a�apbPx
w = z + v +b + y + 1apb
u = [z�apbPt[0], z�apbPt[1], z�apbPt[2], z�apbPt[3]]
v = z+1apb
r = [v�apbPs[0],v�apbPs[1],v�apbPs[2], v�apbPs[3]]
v = [w, 0apb, 0apb, 0apb] + 4nu + 4nr
C = C�apbP_4nPbv
x = xapbP

(n−1)

y = yapbP
(n−1)

Its complexity is the following:

LPairing apb pbðnÞ ¼ 191ð2Lðzð1ÞapbÞþ 2Lðzð190Þapb Þ
þ Lð�apbPÞþLð�apb 4nPÞþ 11L(þÞÞ:
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(d) P.o.n.b. of the field GFð2191Þ, p.b. of its extension.
Algorithm Pairing ponb pbða; b; x; y; tponb pb; bÞ for pairing of points P ¼ ða; bÞ,

Q ¼ x; yð Þ using pairing parameter tponb pb when b ¼ 1ponb pb can be obtained from
the considered algorithm Pairing apb pbða; b; x; y; tapb pb; bÞ via substitution of
indices of operations, pairing parameter, and the field identity element. Its complexity
is estimated by formula

LPairing ponb pbðnÞ ¼ 191ð2Lðzð1ÞponbÞþ 2Lðzð190Þaonb Þ
þ Lð�ponbPÞþ Lð�ponb 4nPÞþ 11Lðþ ÞÞ:

Now consider two variants of Tate pairing computing without root extraction on
supersingular elliptic curve Y2 ¼ X3 þX þ b [9].

(a) P.b. of the field GFð2191Þ, o.n.b. of its extension.
Algorithm Pairing pb onbða; b; x; y; tpb onb; bÞ for pairing of points P ¼ ða; bÞ,

Q ¼ x; yð Þ using pairing parameter tpb onb when b ¼ 1pb.

C = [1pb, 1pb, 1pb, 1pb]
t = tpbonb
s = tpb_4nN

(1)

u = x pb
(1)

v = u
y = y pb

(1)

for i = (1,n):
a = apb

(4)

b = bpb
(4)

w = a�bp(v + 1pb) + u+y + b+((n-1)/2)pb
v = a+v
r = v+1pb
a = [w + v�pbt [0] + r�pbs[1], w + v�pbtpb[2] + r�pbs[3],
w + v�pbs [0] + r�pbs[1], w + v�pbs[2] + r�pbs[3]]
C = Cpb_4nN

(1) � pb_4nNa
u = u + v+1pb
v = v + 1pb

Its complexity is estimated as follows:

LPairing pb onbðnÞ ¼ 191ð2Lðzð1Þpb Þþ 2Lðzð4Þpb Þþ 2Lðzð190Þaonb Þ
þ Lð�pbÞþ 2Lð�pb 4nNÞþL að1Þab 4nN

� �
þ 16L(þÞÞ:

(b) P.b. of the field GFð2191Þ, p.b. of its extension.
Algorithm Pairing pb pbða; b; x; y; tpb pb; bÞ for pairing of points P ¼ ða; bÞ,

Q ¼ x; yð Þ using pairing parameter tpb when b ¼ 1pb differs from just considered in
four rows:
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C = [1pb, 0pb, 0pb, 0pb]
t = tpb_pb
s = tpb_4nP

(1)

C = Cpb_4nP
(1) � pb_4nP

Its complexity is represented by formula

LPairing pb onbðnÞ ¼ 191ð2Lðzð1Þpb Þþ 2Lðzð4Þpb Þþ 2Lðzð190Þaonb Þ
þ Lð�pbÞþ 2Lð�pb 4nPÞþ L að1Þab 4nP

� �
þ 16Lðþ ÞÞ:

Table 3 presents data on the number of logical operations executed considered
pairing algorithms on supersingular elliptic curve Y2 ¼ X3 þX þ 1 over GF(2191) (1
corresponds to 29910607 “xor”, or 10875600 “and” or 43094757 of both these
operations). In the tables below we also provide better bounds (given in parentheses)
obtained via conversion to a basis with faster implementation of the corresponding
operation.

For the considered supersingular elliptic curve over the field GFð2191Þ, the final
exponent is

Table 3. Comparison of complexity of pairing algorithms

Base of
GFð2nÞ

Minimal
polynomial

Logical and n-bit
operations

Relative numbers of logical
operations if there are used the
bases of GFð2n�4Þ over GFð2nÞ,
n = 191
o.n.b. p.b

Algorithms with root extraction
a.p.b Ponb(X) ⊕ 	1.0753 	1.0826

(	1.0753)
& 	1.0053 	1.0053
{⊕,&} 	1.0551 	1.0605

(	1.0551)
p.o.n.b Ponb(X) ⊕ 	1.0826

(	1.0753)
	1.0928
(	1.0754)

& 	1.0053 	1.0053
{⊕,&} 	1.0590

(	1.0551)
	1.0680
(	1.0551)

Algorithms without root
extraction

p.b Ppb(X) ⊕ 1 	1.0122(1)
& 1 	1
{⊕,&} 1 	1.0089(1)
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d ¼ 3091630018413806675756281512823633589197041669549687929671602408959
840129378579594402937527601299349322226669494907787798498735918079301
8784436808613949303377539749281529855:

Taking into account that in binary expansion of this number the units take the
places 0–95, 97–190, 192–381, 478, and 573 one can represent this exponent as

d ¼ ððð295 þ 1Þ2286 þ 2190 � 1
� �Þ295 þ 294 � 1

� �Þ297 þ 296 � 1
� �

¼ a02286 þ a1
� �

295 þ a2
� �

297 þ a3:

As a corollary, final exponentiation algorithm corresponds to the formula

xd ¼ ðððy0Þ2
286

y1Þ2
95

y2Þ2
97

y3, where y0 ¼ xa0 ¼ x95x and the remaining elements
y1 ¼ xa1 ; y2 ¼ xa2 ; y3 ¼ xa3 , can be computed by the additive chain
1,2,4,8,10,14,20,40,80,94,96,160,180,190 of lengths 13.

This allows obtaining the following program of final exponentiation using a.p.b. of
basic field and p.o.n.b. of its extension.

x = a; v = xapbP_4N
(1) ; z1 = v�apbN_4Nx; z = v�apbN_4Nz1;

v = z1ponbP_4N
(2) ; v = zponbP_4N

(4) ; z = y�apbN_4Nz; v2 = xapbP_4N
(2) ;

v = z�apbP_4nNv; z2 = v�apbP_4nNz1; v = xapbP_4N
(4) ; z = v�apbP_4nNz2;

v10 = x apbP_4N
(10) ; z3 = z2�apbP_4nNz2; z4 = z2� apbN_4nNz2; v3 = x apbP_4N

(20) ;
z = v3�apbP_4nNz3; z5 = v�apbN_4nNz4; x apbP_4N

(40) ; z = v�apbP_4nNz5;
z6 = z5� apbP_4nNz; v = x apbP_4N

(14) ; z = v� apbP_4nNz; y2 = v1� apbP_4nNz;
z = v2�apbP_4nNy2; y3 = z1� apbP_4nNz; v = x apbP_4N

(80) ; z = z6�v;
z = v6� apbP_4nNz; z = v3� apbP_4nNz; z = v3� apbP_4nNz; z = v3� apbP_4nNz4;
z = v10� apbP_4nNz; y1 = z2� apbP_4nNz; z = xponbP_4N

(95) ; y0 = z� apbP_4nNx;
z = y0 ponbP_4N

(286) ; z = z�apbN_4nNy1; z = zponbP_4N
(95) ; z = z�apbP_4nNy2;

z = z apbP_4N
(97) ; z = z�apbP_4nNy3; c = z.

Programs for other combination of fields bases differ only by operation notation.
These programs contain 17 multiplication and 14 multi squaring’s in the field
GFð2191�4Þ. It is easy to write formula of complexity of these operations and compute
their values that are given in Table 4 (1 corresponds to 3421756 logical operations
“xor” and “and”). In each case 374 additions, 153 multiplications and 2644 squaring’s
in GFð2191Þ are executed.

Table 4. Final exponentiation, n = 191

Base of GFð2nÞ Minimal
polynomial

Logical and n-bit
operations

Bases of the field GFð2n�4Þ over
GFð2nÞ, n ¼ 191:

o.n.b. p.b.

a.p.b. Ponb {⊕,&} 1 	1.0103(	1.0004)
p.o.n.b. Ponb {⊕,&} 	1.0061(	1.003) 	1.0165 (	1.0005)
p.b. Ppb {⊕,&} 	1.0134 	1.0192(	1.0135)

Comparative Analysis of Calculations in Cryptographic Protocols 175



In three partite key agreement protocol, final exponentiation is performed after
pairing operation. In Table 5 there are represented total numbers of logical operations
for implementations of this composition in distinct combinations of bases (1 corre-
sponds to 44310956 logical operations “xor” and “and”).

5 Conclusion

In this chapter, implementation of algebraic operations in finite fields possessing 2-type
or 3- type optimal normal basis and in its 4-degree extension has been comparatively
considered taking into account possibility of using distinct combination of bases.
Comparative data were also obtained on the complexity of the implementation of
pairing and final exponentiation operations in a three-partite key agreement protocol.
Based on these data, we can conclude that although for final exponentiation the best is
combination of almost polynomial basic of the base field and optimal normal basis of
its extension, pairing and final exponentiation are performed faster in polynomial basis
of GFð2191Þ and optimal normal basis of its extension. At the same time, it can be noted
that the differences in the complexity of implementation with the use of different
combinations of bases are not so significant. The advantage of a polynomial basis of
the base field is a consequence of the peculiarities of the pairing algorithm without root
extraction.
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