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Abstract. Physiological sensor analytics aims at monitoring health as the
availability of sensor-enabled portable, wearable, and implantable devices
become ubiquitous in the growing Internet of Things (IoT). Physiological
multi-sensor studies have been conducted previously to detect stress. In this
study, we focus on electrocardiography (ECG) monitoring that can now be
performed with minimally invasive wearable patches and sensors, to develop an
efficient and robust mechanism for accurate stress identification, for example in
automobile drivers. A unique aspect of our research is personalized individual
stress analysis including three stress levels: low, medium and high. Using
machine learning algorithms from the ECG signals alone, our system achieves
up to 100% accuracy and area under ROC curve of 1 depending on the
experimental setting in detecting three classes of stress using feature selection
from a combination of fiducial points and multiscale entropy as a fine-grained
indicator of stress level.
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1 Introduction

According to the National Highway Traffic Safety Administration (NHTSA) and the
Virginia Tech Transportation Institute (VTTI), lack of attention while driving is found
to be the leading cause of automobile accidents in the US in 80% of all crashes and
65% of all near-crashes. These data clearly show that improved attention and close
monitoring of drivers’ conditions could help increase their safety. Driving in stressful
environments such as city or highway prompts for drivers’ heightened attention and is
also correlated with higher risk of accidents because prolonged stress decreases one’s
ability to be attentive.

With the availability of portable wearable and implantable devices in the growing
Internet of Things (IoT), physiological sensor data analytics will lead to improved health
care monitoring [1] and preventive care [2]. Although physiological multi-sensor studies
have been conducted with some success to detect stress based on such measures as heart
rate variability, skin conductance, respiration rate, electromyogram (EMG), body
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temperature, blood pressure, and electro-encephalogram (EEG). Electrocardiography
(ECG) has often been discarded by these studies due to the constraints of the mea-
surements requiring 16 leads and the possible imperfections of the resulting signals,
which can fail to detect some heart beats. However, ECG signals are highly valued for
the precision of their R-peak detection, leading to excellent heart rate rhythm mea-
surement after preprocessing the signal for missed beats [3]. In addition, ECG moni-
toring can now be performed with minimally invasive wearable patches and other
sensors, which makes stress detection based on them an interesting field of study [4].

In this study, we apply machine learning methods and algorithms to detect stress
from ECG signals in subjects under different levels of environmental stress caused by
driving conditions. We find that stress levels can be successfully detected from ECG
signals alone; with random tree classifier allowing for identification of the three classes
of stress, low, medium and high, with up to 100% accuracy depending on the exper-
imental setting, which is a significant improvement on a prior study on the same data
set [5]. In particular, classification accuracy was improved by 10% in cross-validation
with Multilayer Perceptron.

2 Background

The ECG is one of the simplest and oldest cardiac monitors available and yet it can
provide a wealth of useful information. ECG represents the electrical activity of the
heart muscle as it changes with time [6]. Like other muscles, the cardiac muscle
contracts in response to electrical depolarization of the muscle cells. It is the sum of
this electrical activity, when amplified and recorded for just a few seconds that is
known as an ECG.

Important waveforms of an ECG are marked as P, Q, R, S and T (see Fig. 1) and
represent the changes in electrical potential as the heart contracts and relaxes. Points P,
Q, R, S and T are called fiducial points. Depolarization of the ventricles results in
usually the largest part of the ECG signal (because of the greater muscle mass in the
ventricles) and this is known as the QRS complex [7].

• The Q wave is the first initial downward or ‘negative’ deflection.
• The R wave is the next upward deflection (provided it crosses the isoelectric line

and becomes ‘positive’)
• The S wave is the next deflection downwards, provided it crosses the isoelectric line

to become briefly negative before returning to the isoelectric baseline.

Fig. 1. An ECG signal depicting the RR interval
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3 Materials and Methods

3.1 Data

The ECG signals of stress used in this study were obtained from MIT-BIH PhysioNet
Multi-parameter Database [8]. These data sets are part of the experiment conducted by
Healey and Picard [3] and has data from 17 participating drivers and eight types of raw
data – time stamp, ECG, electromyogram (EMG), foot galvanic skin response (GSR),
hand GSR, intermittent heart rate (IHR), marker, and respiration – all acquired from
different wearable sensors. During the experiment conducted by Healy and Picard, the
drivers drove in Greater Boston area from MIT’s East Garage to River Street Bridge
and back through three cities and two highways. The initial rest and final rest states, as
well as stress during driving were measured.

The data sets were segmented into three stress levels – low stress (initial rest and
final rest), moderate stress (highway), and high stress (cities) – assuming that the stress
acquired by subjects is solely based on traffic conditions and for no other reason. The
signal classification was carried out by considering the variation in the ECG signals of
the three states, low, medium and high, in an individual.

The time durations for each segment – rest, highway, and city - given by Akbas
were used to distinguish between the rest, highway and city time periods [9]. The
segmentation mark of different driving periods was not clear in seven of the data sets as
was also found by Akbas [9]. Consequently, only 10 drivers’ data sets were used for
this study. Using the methods available from Physionet [8], an annotation was per-
formed on each data set separately and annotated files were obtained for each driving
period of the ten drivers.

3.2 Feature Extraction

Feature extraction was performed to extract 14 different fiducial points (P, Q, R, S)
interval features, averaged over the time intervals (see Table 1, left column) from the
annotated ECG signals annotations using NetBeans Java platform (see Fig. 2) to
produce the required file for classification in Waikato Environment for Knowledge
Analysis (Weka) [10]. We have considered all possible signal attributes and their
relations (Table 1) in feature extraction to carry out a thorough analysis. We demon-
strated in a previous paper [5] that near-perfect classification could be achieved with
these 14 features alone – and even a subset of these – for two stress levels. However,
results for three stress levels were not convincing, which prompted us to add multiscale
entropy to this original set of features.

Therefore, we added variance for these intervals (12 new features), which did not
improve the results much. We then performed multiscale entropy analysis [11] of the
annotation files. Intuitively, the entropy of a signal measures the amount of disorder
and complexity present in this signal. Pathological states have been found to be
associated with decreased complexity in signals, and lower multiscale entropy.
Examples of pathologies include aging and chronic heart failure. Multiscale entropy
consists in extracting from a time series entropy measures associated with several
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scales in the signal, according to windows of varying level of granularity, starting from
the whole signal and progressively dividing it by a scale factor. The algorithm proceeds
in two steps. First for each scale i, a time series is generated by averaging the samples
in windows of length i. Then the entropy is calculated for each coarse-grained time
series by the conditional probability quantifying the likelihood that if two sets of
simultaneous data points of a given length have distance <r, then two sets of simul-
taneous data points of the given length plus 1 also have distance <r [11].

With a scale factor of 20, we obtain 20 entropy measures (see Table 2). We can
also calculate the average entropy and its variance, as well as the slopes at the
beginning of its curve and at its end (see Table 2).

In addition, differences in fiducial point characteristics and multiscale entropy
measurements between rest and stress states were recorded (Fig. 2 and Table 2) since
the differences from the baseline may be important (as we found in a previous study [5].

Table 1. Extracted features from the ECG signals

Fiducial features Entropy features

Average/Var QRS
interval

Average/Var QRS
difference

A1 to A20
entropy

A1 to A20 entropy
diff.

Average/Var RR
interval

Average/Var RR
difference

Average entropy
diff.

Average/Var QQ
interval

Average/Var QQ
difference

Entropy
variance

Entropy variance
diff.

Average/Var SS
interval

Average/Var SS
difference

Entropy slope 1 Entropy slope 1
diff.

Average/Var QR
interval

Average/Var QR
difference

Entropy slope 2 Entropy slope 2
diff.

Average/Var RS
interval

Average/Var RS
difference

Average beats Average difference
beats

Fig. 2. Feature extraction algorithm flowchart
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3.3 Classification

Predicting the level of stress from these ECG signals is a typical classification task in
data mining. Three classes are available for classification purposes. Class ‘0’ represents
low stress (rest state), class ‘1’ moderate stress (highway driving) and class ‘2’ rep-
resents high stress (city driving).

Weka offers many classifiers out of which 12 algorithms from varied types were
selected for classification to perform their comparative study [10] (see Table 2).

3.4 Assessment

The following six different test and experimental settings were applied on the ECG data
sets: Training Set, Leave One Out Cross Validation (LOOC), 2-Folds Cross Validation,
10-Folds Cross Validation, 75% Split, and 90% Split.

The data set analyzed was small since it contained only 68 instances, obtained from
the 70 potential instances for 10 drivers and 7 driving intervals for each [9]. Two of
these driving intervals could not be analyzed to produce an annotation file with Phy-
sionet’s annotators. From these 68 annotated signals, we have removed the data of
drive05 highway1 as it is an obvious outlier with an average number of beats per
minute of 29 – a highly unlikely figure. Other studies also reported this outlier and
removed it. Therefore, the experiments presented below were conducted using the
remaining data set of 67 instances with 74 different extracted attributes.

The experiments were conducted on 3 classes of stress – ‘0’ for low stress, ‘1’ for
moderate stress, and ‘2’ for high stress. The features extracted consisted in 14 fiducial
measures and 48 entropy measures. Each time, classification was performed on all the
features because the classification methods used were capable of selecting best features.

Table 2. Accuracy percentage of three classes with 74 attributes

Accuracy (%) Classification methods
Training
set

Leave 1
out

2
Folds

10
Folds

75%
Split

90%
Split

Naïve Bayes 71.64 53.73 50.75 53.73 58.82 85.71
BayesNet 73.13 67.16 62.69 61.19 70.59 85.71
Logistic 100 38.81 53.73 47.76 52.94 57.14
Multi.
Perceptron

98.51 50.74 62.69 56.72 58.82 85.71

SMO 85.07 59.70 53.73 58.21 58.82 57.14
IB1 100 41.79 47.76 38.81 52.94 85.71
IBK 100 41.79 47.76 38.81 52.94 85.71
KStar 100 53.73 50.75 53.73 58.82 100
ZeroR 44.78 44.78 44.78 44.78 29.41 41.86
J48 94.03 68.66 59.70 62.69 64.71 71.43
Random Forest 100 61.19 65.67 62.69 58.82 71.43
Random Tree 100 46.27 59.70 56.72 58.82 71.43
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74 features were considered (see Table 2):

• 6 average interval durations (QRS, RR, QQ, SS, QR, RS).
• 1 average number of beats per minute.
• 6 average interval durations differences between initial rest and current state (QRS,

RR, QQ, SS, QR, RS).
• 1 average number of beats per minute difference between rest and current state.
• 6 variance of interval durations (QRS, RR, QQ, SS, QR, RS).
• 6 variance of interval durations differences between initial rest and current state

(QRS, RR, QQ, SS, QR, RS).
• 24 entropy measures (A1 to A20, average, variance, slope between A1 and A2,

slope between A19 and A20).
• 24 differences in entropy measures between initial rest and current state (A1 to A20,

average, variance, slope between A1 and A2, slope between A19 and A20).

4 Results

Accuracy, sensitivity (true positive rate), specificity (true negative rate), and area under
ROC curve (AUC) were selected as performance measures. Accuracy was rounded off
to two decimal places and the sensitivity, specificity, and AUC were rounded off to
three decimal digits. Bold values in the tables represent the best results per column.

4.1 Results on 3 Classes and 74 Features

The results presented here are the classification accuracy percentage (Table 2),
sensitivity/specificity, and AUC (Table 3) on the data set with three classes, all 74
attributes, and 67 instances.

4.2 Results on 3 Classes and 10 Selected Features

The results presented here are the classification accuracy percentage (Table 4),
sensitivity/specificity, and AUC (Table 5) on the data set with three classes and 10
selected attributes chosen by automated feature selection in Weka (SVMAttributeEval
with Ranker method).

4.3 Results Interpretation

The results on 3 classes and 74 features show that the highest accuracy was obtained
for J48 (decision tree) on LOOC (68.66%) and Random Forest and J48 on 10-fold
cross validation (62.69%). However, with a 90% split, which is acceptable for such a
small data set, accuracy reaches 100% for KStar (Table 3). If considering the AUC,
Random Forest reaches .832 in 10-fold cross validation and 1 with a 90% split
(Table 3).
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The results on 3 classes and 10 automatically selected features (see Table 4) show
that the highest accuracy was obtained for J48 on LOOC (73.13%) and Multilayer
Perceptron (MLP) on 10-fold cross validation (80.60%). However, with a 90% split,
which is acceptable for such a small data set, accuracy reaches 100% for MLP and
Logistic (Table 4). Considering the AUC, MLP ranks higher in most categories,
including 10-fold cross-validation with .875 and 90% split with 1, also reached by
Logistic (Table 5).

Overall, results have significantly improved using feature selection, with or without
cross validation. However Random Forest, which performed best on 74 features, due to
its ability to discriminate between features, was overtaken by MLP after feature
selection.

In our previous studies, the results on 3 classes and 1 feature showed that the
highest accuracy was obtained for MLP (neural network) on LOOC (68.66%) and
10-fold cross validation (70.15%), with J48 almost as accurate [5]. By adding variance
and multiscale entropy, accuracy has improved by 10% with MLP in cross validation
and by 14% in 90% split, which are significant improvements.

Table 3. Sensitivity/Specificity and AUC of three classes with 74 attributes

Sens/Spec
AUC

Classification Methods
Training
set

Leave 1
out

2 Folds 10 Folds 75%
Split

90%
Split

Naïve
Bayes

.716/

.877/.891
.537/
.782/.646

.507/

.775/.611
.537/
.788/.658

.588/786/

.649
.857/
.976/1

BayesNet .731/
.802/.844

.672/

.766/.72
.627/
.768/.741

.612/.75/

.745
.706/
.801/.795

.857/

.893/.839
Logistic 1/1/1 .388/

.683/.587
.537/
.791/.7

.478/

.735/.616
.529/
.768/.662

.571/

.679/.667
Multi.
Perceptron

.985/

.988/.991
.507/
.747/.718

.627/

.812/.741
.567/
.757/.724

.588/

.786/.718
.857/
.893/.976

SMO .851/
.918/.898

.597/

.782/.749
.537/
.766/.684

.582/

.784/.723
.588/
.786/.716

.571/

.845/.833
IB1 1/1/1 .418/

.673/.546
.476/
.722/.6

.388/

.656/.522
.529/
.761/.645

.857/

.893/.875
IBK 1/1/1 .418/

.673/.546
.476/
.722/.596

.388/

.656/.539
.529/
.761/.645

.857/

.893/.875
KStar 1/1/1 .537/

.748/.717
.507/
.755/.706

.537/

.748/.726
.588/
.786/.736

1/1/1

ZeroR .448/
.552/0.5

.448/

.552/0.5
.448/
.552/0.5

.448/

.552/.461
.294/
.706/.5

.429/

.571/.5
J48 .94/.971/

.98
.687/
.836/.674

.597/.8/

.679
.627/
.794/.687

.647/

.789/.669
.714/
.869/.72

Random
Forest

1/1/1 .612/
.755/.818

.657/

.803/.799
.657/
.761/.832

.588/

.758/.751
.714/
.869/.929

Random
Tree

1/1/1 .463/
.723/.593

.597/

.808/.703
.567/
.788/.678

.588/

.833/.71
.714/
.869/.792
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The best overall results were obtained for the features automatically selected by
SVMAttributeEval (see Table 6), which combine the difference between rest and stress
for each instance as well as some features independent from the rest state. Selected
features include difference of heart rate from rest state, difference of variance in RR
interval from rest state, difference of variance in QQ interval from rest state, variance in
SS interval, heart rate, difference of variance in SS interval from rest state, difference of
variance in entropy A10 and in entropy A7 from rest state, variance in entropy A4, and
variance in entropy A13. We see that the addition of multiscale entropy has signifi-
cantly improved the classification performance with four contributing features.

5 Discussion

The particular data set used for the present study was produced by Healey and Picard as
part of Healey’s PhD work [3]. These authors find a predictive accuracy of 97.4% with
LOOC for high stress and 94.7% for moderate stress based on data extracted from
EMG, respiration, instantaneous heart rate (extracted from ECG), and GSR as well as
additional features. The focus of this research was in generalized identification of stress
states using signal fusion of multiple sensors, but it is not tailored for an individual for
whom the stress is classified into three states. The unique aspect of our research is
personalized individual stress analysis using ECG data alone. In addition, the data they
used is not exactly the same so that results are not completely comparable. Yet our
results to detect high stress are comparable to Healey and Picard [3].

Akbas calculated the differences between the 3 stress levels of averaged feature
values extracted from instantaneous heart rate, EMG, hand GSR, foot GSR, instanta-
neous respiration rate, and average number of contractions per minute [9]. This author

Table 4. Accuracy percentage of three classes with 10 selected attributes

Accuracy (%) Classification Methods
Training
set

Leave 1
out

2
Folds

10
Folds

75%
Split

90%
Split

Naïve Bayes 73.13 56.72 58.21 58.21 58.82 85.71
BayesNet 68.66 67.16 61.20 65.67 70.59 85.71
Logistic 86.57 71.64 56.72 65.67 41.18 100
Multi.
Perceptron

94.03 71.64 73.13 80.60 76.47 100

SMO 77.61 67.16 62.69 70.15 58.82 85.71
IB1 100 64.18 64.18 65.67 64.71 71.43
IBK 100 64.18 64.18 65.67 64.71 71.43
KStar 100 53.73 50.75 55.22 58.82 85.71
ZeroR 44.78 44.78 44.78 44.78 29.41 42.86
J48 86.57 73.13 65.67 67.16 76.47 85.71
Random Forest 100 70.15 64.18 68.66 64.71 85.71
Random Tree 100 67.16 61.19 61.19 58.82 85.71
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Table 5. Sensitivity/Specificity and AUC of three classes with 10 selected attributes

Sens/Spec/AUC Classification methods
Training
set

Leave 1
out

2 Folds 10 Folds 75%
Split

90%
Split

Naïve Bayes .731/
.878/.88

.567/

.783/.77
.582/
.773/
.753

.582/
,788/
.779

.588/

.752/

.835

.857/

.893/.976

BayesNet .687/
.765/
.767

.672/

.773/

.581

.612/

.756/

.712

.657/

.768/

.713

.706/

.794/

.803

.857/

.893/.839

Logistic .866/
.929/
.929

.716/

.834/

.830

.567/

.816/

.709

.657/

.818/

.834

.412/

.746/

.702

1/1/1

Multi.
Perceptron

.94/.958/

.956
.716/
.827/
.847

.731/

.883/

.815

.806/

.899/

.875

.765/

.908/

.932

1/1/1

SMO .776/
.883/
.853

.672/

.831/

.771

.627/.8/

.744
.701/
.848/
.795

.588/

.758/

.718

.857/

.893/.887

IB1 1/1/1 .642/
.779/
.711

.642/

.81/.726
.657/
.791/
.724

.647/

.832/

.739

.714/

.786/.75

IBK 1/1/1 .642/
.779/
.711

.642/

.81/.71
.657/
.791/
.765

.647/

.832/

.739

.714/

.786/.75

KStar 1/1/1 .537/
.753/
.689

.507/

.758/

.634

.552/

.752/

.693

.588/

.786/

.712

.857/

.893/1

ZeroR .448/
.552/.5

.448/

.552/0
.448/
.552/
.492

.448/

.552/

.461

.294/

.706/.5
.429/
.571/.5

J48 .866/
.922/
.919

.731/

.851/

.711

.657/

.823/

.723

.672/

.822/

.731

.765/

.819/

.768

.857/

.893/.851

Random Forest 1/1/1 .701/
.815/
.827

.642/

.798/

.814

.687/

.815/

.842

.647/

.782/

.812

.857/893/

.893

Random Tree 1/1/1 .672/
.816/
.744

.612/

.812/

.712

.612/

.768/.69
.588/
.764/
.676

.857/

.893/.875

Table 6. SVMAttributeEval 10 selected features

1. avgDiffBeats 2. varDiffRR 3. varDiffQQ 4. varSS 5. avgBeats
6. varDiffSS 7. varDiffEntA10 8. varDiffEntA7 9. varEntA4 10. varEntA13
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found these averages to be significantly different between the three levels of stress.
However, no classification was performed.

Deng et al. extracted features from this data set based on principal component
analysis (PCA) and determined that 5 features were best representative of this data set –
foot GSR duration, hand GSR duration, hand GSR area, foot GSR area, and foot GSR
frequency [12]. These results are not really comparable to ours since we are using only
ECG. However, these authors are also classifying the signals using machine learning
algorithms and report best average rate of 75.38% on all features with NaiveBayes and
78.46% accuracy on the 5 selected features with SVM, using LOOCV. These results
are not exactly comparable to ours because the authors removed two additional sam-
ples, which can alter results on such a small data set. However, we concur that feature
selection improves classification accuracy over not selecting features.

Deng et al. pursued their research by combining feature selection with signal
selection, reducing the number of signals used to 2 [13] in their preceding study. They
selected 5 features based on C4.5 and 2 sensors. With 10-fold CV (averaged 6 times),
they obtained accuracy of 74.5% with SVM on all features and 85.46% with C4.5 on 5
features. However, they used only 65 data samples. The same authors published
another paper applying combinatorial fusion to the same task [14] with comparable
results. Since the data set used is not the same, their results are not comparable to ours.

Singh and Queyam also combined all sensors for the classification task using neural
networks. They reported good results of over 80% on 6 out of 10 drives [15]. They
reported on selecting features as being more correlated with driving conditions, and
they found that mean heart rate and mean hand GSR were the most correlated [16].
However, they did not use entropy measurements so that their results are not clearly
comparable to ours because they used multiple sensors.

Avki et al. reported also on correlations between features and stress level [17]. They
found that the variance in the signals measurements is the most correlated to stress
level, which confirms our results of the importance of entropy for classifying the
signals. We also selected a number of variance features.

Some studies have focused on analyzing ECG signals alone to detect stress. Medina
perform clustering and dimensionality reduction on raw signals to determine whether
the learned clusters corresponded to stress levels [18]. This author reports good results,
which our study corroborates. Her results are not directly comparable to ours since she
is not performing supervised learning but only unsupervised learning. Moreover, her
data set is different from ours. Another study, by Sun et al. focused on detecting mental
stress based on ECG signals [19]. Also using a different data set, therefore not directly
comparable to our work, the authors report best classification accuracy results of 92.4%
using decision trees. This study therefore confirms the capability of tree models to best
discriminate between the features during the classification task. Differences with our
study include using a different data set, training and test sets at 50% split, and using
galvanic skin response in addition to ECG, which they report as increasing the clas-
sification accuracy rate. Other studies on using sensors for stress detection are sum-
marized in a review paper [20].
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6 Conclusion

Using machine learning algorithms from the ECG signals alone, we could achieve up to
100% accuracy and 1 AUC, with Multilayer Perceptron, depending on the experi-
mental setting, in detecting three classes of stress: low, medium and high. Thus the
accuracy of detecting multiple stress levels based on individual variations in ECG
extracted features is higher than that of previously published results detecting stress
based on fiducial points alone. These results were obtained by adding multiscale
entropy measurements in addition to the fiducial measurements performed in previous
studies on the same data set. Future work will include adding the T-wave related
features in our analysis since ECG studies have shown that QT is an important bio-
marker of cardiac abnormality [21] and adding other signals. Clearly the results pre-
sented here are limited by the small size of the data set (67 samples) so that studies on
larger data sets need to be conducted. We also plan to work with a physician for future
directions of this work and to explore additional classification and clustering algo-
rithms, for example hierarchical methods.

Nevertheless, the results of the present study lead to the exciting possibility of
monitoring and diagnosing individual stress levels and alert the users accordingly so
that accidents committed due to high or prolonged stress can be prevented. The per-
sonalized signal classification analysis presented here can be extended to other situa-
tions in which people face stress thereby addressing fatigue in workers in a factory,
failure in functioning of the elderly people, players in a field, soldiers in a war field, etc.
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