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Preface

The international conferences on Integral Methods in Science and Engineering
(IMSE), started in 1985, are attended by researchers in all types of theoretical
and applied fields, whose output is characterized by the use of a wide variety of
integration techniques. Such methods are very important to practitioners as they
boast, among other advantages, a high degree of efficiency, elegance, and generality.

The first 13 IMSE conferences took place in venues all over the world:

1985, 1990: University of Texas at Arlington, USA
1993: Tohoku University, Sendai, Japan
1996: University of Oulu, Finland
1998: Michigan Technological University, Houghton, MI, USA
2000: Banff, AB, Canada (organized by the University of Alberta, Edmonton)
2002: University of Saint-Étienne, France
2004: University of Central Florida, Orlando, FL, USA
2006: Niagara Falls, ON, Canada (organized by the University of Waterloo)
2008: University of Cantabria, Santander, Spain
2010: University of Brighton, UK
2012: Bento Gonçalves, Brazil (organized by the Federal University of Rio Grande

do Sul)
2014: Karlsruhe Institute of Technology, Germany

The 2016 event, the fourteenth in the series, was hosted by the University of
Padova, Italy, July 25–29, and gathered participants from 26 countries on five
continents, enhancing the recognition of the IMSE conferences as an established
international forum where scientists and engineers have the opportunity to interact
in a direct exchange of promising novel ideas and cutting-edge methodologies.

The Organizing Committee of the conference was comprised of

Massimo Lanza de Cristoforis (University of Padova), chairman,
Matteo Dalla Riva (The University of Tulsa),
Mirela Kohr (Babes-Bolyai University of Cluj-Napoca),
Pier Domenico Lamberti (University of Padova),

v
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Flavia Lanzara (La Sapienza University of Rome), and
Paolo Musolino (Aberystwyth University),

assisted by Davide Buoso, Gaspare Da Fies, Francesco Ferraresso, Paolo Luzzini,
Riccardo Molinarolo, Luigi Provenzano, and Roman Pukhtaievych.

IMSE 2016 maintained the tradition of high standards set at the previous
meetings in the series, which was made possible by the partial financial support
received from the following:

The International Union of Pure and Applied Physics (IUPAP)
GruppoNazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni

(GNAMPA), INDAM
The International Society for Analysis, Its Applications and Computation (ISAAC)
The Department of Mathematics, University of Padova

The participants and the Organizing Committee wish to thank all these agencies
for their contribution to the unqualified success of the conference.

IMSE 2016 included four minisymposia:

Asymptotic Analysis: Homogenization and Thin Structures; organizer: M.E. Pérez
(University of Cantabria)

Mathematical Modeling of Bridges; organizers: E. Berchio (Polytechnic University
of Torino) and A. Ferrero (University of Eastern Piedmont)

Wave Phenomena; organizer: W. Dörfler (Karlsruhe Institute of Technology)
Wiener-Hopf Techniques and Their Applications; organizers: G. Mishuris (Aberys-

twyth University), S. Rogosin (University of Belarus), and M. Dubatovskaya
(University of Belarus)

The next IMSE conference will be held at the University of Brighton, UK, in July
2018. Further details will be posted in due course on the conference web site blogs.
brighton.ac.uk/imse2018.

The peer-reviewed chapters of these two volumes, arranged alphabetically by
first author’s name, are based on 58 papers from among those presented in Padova.
The editors would like to thank the reviewers for their valuable help and the
staff at Birkhäuser-New York for their courteous and professional handling of the
publication process.

Tulsa, OK, USA Christian Constanda
March 2017

blogs.brighton.ac.uk/imse2018
blogs.brighton.ac.uk/imse2018


Preface vii

The International Steering Committee of IMSE:

Christian Constanda (The University of Tulsa), chairman
Bardo E.J. Bodmann (Federal University of Rio Grande do Sul)
Haroldo F. de Campos Velho (INPE, Saõ José dos Campos)
Paul J. Harris (University of Brighton)
Andreas Kirsch (Karlsruhe Institute of Technology)
Mirela Kohr (Babes-Bolyai University of Cluj-Napoca)
Massimo Lanza de Cristoforis (University of Padova)
Sergey Mikhailov (Brunel University of West London)
Dorina Mitrea (University of Missouri-Columbia)
Marius Mitrea (University of Missouri-Columbia)
David Natroshvili (Georgian Technical University)
Maria Eugenia Pérez (University of Cantabria)
Ovadia Shoham (The University of Tulsa)
Iain W. Stewart (University of Dundee)

A novel feature at IMSE 2016 was an exhibition of digital art that consisted of
seven portraits of participants and a special conference poster, executed by artist
Walid Ben Medjedel using eight different techniques. The exhibition generated
considerable interest among the participants, as it illustrated the subtle connection
between digital art and mathematics. The portraits, in alphabetical order by subject,
and the poster have been reduced to scale and reproduced on the next two pages.
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Chapter 1
On a Continuous Energy Monte Carlo Simulator
for Neutron Transport: Optimisation with
Fission, Intermediate and Thermal Distributions

L.F.F. Chaves Barcellos, B.E.J. Bodmann, S.Q. Bogado Leite,
and M.T. Vilhena

1.1 Introduction

Neutron transport is relevant in a variety of applications as, for instance, in medicine,
industrial applications, radiation protection and nuclear energy production among
others. In this context, the present work reports on the development of a simulator
for neutron transport considering continuous energy dependence of cross sections
[CaEtAl11, CaEtAl13]. As a progress in comparison to other implementations, the
cross sections are parametrisations in the range between 0 MeV and 20 MeV ,
including resolved and unresolved resonances, and with a maximum deviation
smaller than � 1% from measured data. Other implementations may be found in
the literature such as Serpent [Le15], MCNP [Mo03], Tripoli [BoEtAl03], OpenMC
[RoFo13], Keno [PeCo75], GEANT [AgEtAl03], MCBend [CoEtAl13], where
cross sections are determined from interpolation of cross section from databases.

In the present contribution we report on an optimisation of a Monte Carlo
simulator based on the interaction and tracking philosophy also found in GEANT.
In the former neutrons are classified according to three overlapping energy distribu-
tions (fission, intermediate and thermal). Neutrons from fission and during slowing
down suffer predominantly down-scattering, whereas in the thermal region neutrons
may gain kinetic energy from collisions with nuclei and molecules due to their
thermal motion. To circumvent simulating thermal up- and down-scattering that do
not significantly change properties of the thermal neutron population, we introduce
a statistical treatment reducing the problem by considering reaction rates only.
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The fission and the thermal distributions preserve shape, but their respective
integrals may vary with time, whereas the intermediate distribution has unknown
shape and integral. It is noteworthy that all distributions are continuous over the
whole energy range and thus one faces the challenge to determine for a neutron
with given kinetic energy to which distribution it belongs.

1.2 Neutron Transport by a Monte Carlo Method

The underlying philosophy of the present simulator follows the paradigm of the
GEANT platform, which besides efficient geometry resource makes use of tracking
and interaction algorithms. The present simulator considers the same degrees of
freedom as the Boltzmann transport equation, namely position, time, propagation
direction and kinetic energy. Different than deterministic models found in the
literature such as diffusion theory, the PN and SN approximation for the transport
equation [Sj13] and the references therein, the method employed here to attain
physical information of the transport phenomenon is by sampling of a sufficiently
high number of neutron histories from a physical Monte Carlo procedure that allows
to determine quantities such as the spectral neutron population, the angular or scalar
flux depending on the specific tags that are being used either in the simulation or in
a posterior data evaluation. With the present contribution we simulate a simplified
reactor neutron problem and focus on the question of identifying the distribution
a neutron with a specific energy belongs to. The problem of identification arises
due to the fact that two adjacent distributions overlap significantly in certain energy
regions.

1.3 Program Description

The C++ Monte Carlo simulator in development features sectionally analytical
functions for the energy dependent microscopic cross sections in the range from
0 MeV to 20 MeV . In the present case 200 executions were performed, each starting
with 5000 neutrons, and ending up with 106 neutron histories. For tallying reasons
linked to computer hardware constraints each execution was limited to 5000 Monte
Carlo steps, and these were segmented in 50 intervals of 100 steps each, i.e. after
100 steps the simulation reached a checkpoint, where it was halted and the respective
dataset was saved. The subsequent run then used these data as the initial condition
for the following 100 steps.

At the beginning of each Monte Carlo step, neutrons created by fission are given
two random angles (between Œ0; 2�� and Œ��=2; �=2�, respectively) that define their
direction and further a random energy that obeys the fission distribution and the
positions are given by coordinates of the fission reaction.

�.E/ D 0:453 e�1:036 MeV�1 E sinh
p
2:29 MeV�1 E (1.1)
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Note, the tracking and the interaction scheme was optimised in the sense
that each Monte Carlo step has an interaction, which increases computational
efficiency, but at the cost of loosing a unique relation between Monte Carlo step
and corresponding time interval. Thus, a Monte Carlo step may be related only to
an average of a time interval distribution that may be reconstructed from the tallies.
After the displacement of the neutron its position is checked in order to evaluate
whether it remains still in the reactor core volume or whether it escaped, where in
the latter case the history of the neutron ends and a new neutron is selected. Finally,
the type of neutron interaction is selected, which is based on both region and neutron
energy.

In the case of radiative capture the procedure is the same as for escape, the
neutron’s history ends and a new neutron is chosen. In case that fission occurs,
the history of the fission inducing neutron ends and a multiplicity of new neutrons
is generated. In case of scattering the energy and the direction angles are updated
for the next step. The main structure of the program is shown on the flowchart in
Figure 1.1.

As a simplified case study, we consider the geometry of the reactor by a cube with
edges of dimensions 400 cm�400 cm�400 cm. The inner part contains three regions,
where region 1 measures 250 cm � 250 cm � 400 cm and contains a homogeneous
mixture of water and uranium dioxide enriched to 0:73% and the latter occupies 25%
of the respective volume. Around the central box there is a hollow box, i.e. region
2, with extensions 350 cm � 350 cm � 400 cm and is composed of water. There is a
second hollow box, allocated in region 3 with a homogeneous mixture of water and
uranium dioxide, but with completely depleted uranium dioxide which occupies
45% of the respective volume. For convenience we adopted periodic boundary
conditions in the vertical direction (aligned with the z�axis). The program executes
the tracking and interaction of neutrons in the whole volume.

The position in which a reaction will occur at the end of a Monte Carlo step
depends on the kinetic energy of the neutron, its position at the beginning of the
step, the direction of movement and the total macroscopic cross sections of the
chemical composition of the reactor core material along the trajectory. The final
position of the track will then be determined by a stochastic selection for the length
of the travelled path. To this end a multiple S of the mean free path is generated by
a random number, following a standard procedure S D � ln.1 � a/ and a 2 Œ0; 1�.
Consequently the length of the path is L D S˙�1t where ˙t is the microscopic
total cross section characteristic for the path. In case a neutron crosses a boundary
between sub-domains the path length is calculated by a weighted sum of cross
section contributions characteristic for the respective regions L D P

i Pi S˙�1t ,
where Pi is the fraction of S that corresponds to the trajectory segment within the i-th
sub-domain. After updating the position, a verification checks whether the neutron
remains inside the boundaries of the reactor core volume, and thus whether the
neutron tally continues inside or terminates outside the domain.

After the position of the interaction is defined, the target involved in the reaction
is chosen. In Region 2 the target is a water molecule or one of its constituents
(H and O), whereas in regions 1 or 3 a random number is generated and compared
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Start of Monte
Carlo step.

Is the neutron
born from fission?

Define energy
and direction.

Define final posi-
tion and step time.

Neutron is inside
the reactor?

Define type
of interaction.

Define number
of new neutrons.

Define new en-
ergy and direction. End of history.

Is this the fi-
nal step?

Save data for
next iteration.

End of Monte
Carlo step.

yes

no

yes

no

Scattering

Fission

Radiative
Capture

yes

no

Fig. 1.1 Program flowchart with its principal instances

to the volume proportions of water and uranium dioxide, more specifically to
its constituents. The subsequent step is then to select the type of interaction by
generating a random number which is compared to the stoichiometric ratio of the
cross section of all possible targets. As an example, the probability of a reaction in
uranium dioxide (UO2) is given by pi D �i

2 �t;OCe �t;U�235C.1�e/ �t;U�238
, in which e is

the enrichment, �t;O is the total cross section of oxygen-16, �t;U�235 the total cross
section of uranium-235, �t;U�238 the total cross section of uranium-238 and �i is the
cross section of a specific neutron reaction in one of the nuclei.

1.4 Nuclear Reactions

If the chosen reaction is fission two stochastic operations are in order. The first one
is to decide the number of neutrons born from fission, and the second is to define
their energies. In order to define the number of neutrons from fission a random
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number � is generated between 0 and 0:972. The upper limit was chosen such as to
guarantee that the average number of neutrons created in fission coincides with the
expected value of � D 2:48 for fission induced by thermal neutrons and nuclear fuel
U-235. It is noteworthy that the huge bulk of fission reactions releases either two
or three neutrons, so that to a good approximation only these two cases are taken
into account. These neutrons have energies roughly in the range between 100 MeV
up to 101 MeV as given by Equation (1.1). The position of the fission reaction is
also recorded for it is the initial position of the next Monte Carlo step of the newly
generated neutrons. At the present state of developments no contributions due to
delayed neutrons are considered, this pertinent issue will be included in the next
version of the simulator.

In case of scattering, a new energy and a new direction in agreement with energy
and momentum conservation must be given to the neutron. A simplification of the
program is that it considers the scattering as isotropic in the centre of mass system.
Strictly speaking, scattering is isotropic for low kinetic energies and small nuclei,
however, as the collision energies become higher and/or target nuclei become larger,
anisotropy increases. So far the described processes treat down-scattering only, i.e.
energy loss of neutrons in their interactions with their respective targets [GlSe94].

E0

E
D A2 C 2A cos.�/C 1

.A C 1/2

Here E is the energy of the neutron in the Laboratory system before the collision,
E0 is the energy of the neutron in the Laboratory system after the collision and
� is the angle of scattering measured in the Centre-of-Mass system and that is in
the plane that contains both vectors of incident direction and scattered direction
of the neutron. However, the closer neutrons approach thermal energies also
up-scattering is important, due to the thermal motion of the target nuclei which
is no longer negligible. As soon as neutrons may be classified as thermal they
are in equilibrium with the environment which allows to simplify the tracking and
interaction procedure. Equilibrium implies conservation of the respective energy
distribution, so that the only relevant stochastic quantity that shall be determined is
the reaction rate.

The procedure to determine whether a neutron belongs to the thermal distribution
is as follows. A random number between 0 and 1 is generated and compared to
the Maxwell-Boltzmann cumulative distribution with an equilibrium temperature of
568 K. Should the random number be larger than the cumulative distribution, then
the neutron is considered to be in thermal equilibrium with the moderator. Neutrons
that are part of the thermal population are assigned a new energy, sampled from the
Maxwell-Boltzmann probability distribution.

The procedure to find the new neutron direction after scattering is determined
in a complete three-dimensional fashion, although cylinder symmetry would allow
a reduction into a plane. Let the unit vector E̋ i be the direction of the incoming
neutron with ˛ 2 Œ0; 2�� and ˇ 2 Œ��=2; �=2� angles with respect to the laboratory
reference frame (see Equation (1.2)). For convenience one may construct one
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Fig. 1.2 Sketch of the
neutron scattering scheme

�Ωf

�Ωi
�Ω∗

f

Φ

�ΩP

�ΩQ

�ΩP +�ΩQ
�ΩP −�ΩQ

ψ

possible final direction E̋�
f (see Figure 1.2). All remaining possible final vectors in

agreement with cylinder symmetry may be generated with two auxiliary orthogonal
vectors E̋P and E̋Q that by construction are symmetrical on either side of the
scattering plane defined by E̋ i and E̋�

f (see Equation (1.3)). The vector E̋P C E̋Q

lies then in the scattering plane, whereas E̋P � E̋Q is perpendicular to the latter.
The plane by E̋P and E̋Q defines the rotation plane that contains the circle with
all possible outcomes for the final direction E̋ f of the neutron after scattering (see
Figure 1.2).

E̋ i D
0

@
cos.˛/ cos.ˇ/
sin.˛/ cos.ˇ/

sin.ˇ/

1

A ; E̋�
f D

0

@
cos.˛/ cos.ˇ C  /

sin.˛/ cos.ˇ C  /

sin.ˇ C  /

1

A (1.2)

sin. /p
2
. E̋P � E̋Q/ D E̋ i � E̋�

f

sin. /p
2
. E̋P C E̋Q/ D E̋�

f � cos. / E̋ i

(1.3)

E̋ f D cos. / E̋ i C sin. / .cos.˚/ E̋P C sin.˚/ E̋Q/

Here ˚ 2 Œ0; 2�� is a random angle. A necessary feature of scattering not
implemented yet is due to the fact that approximately below 1 eV instead of a single
free nuclide one has to consider whether the atom is a constituent of a molecule
or solid state, so that in the previous case molecular degrees of freedom such as
rotation and vibration shall be considered, whereas in a solid state phonon degrees
of freedom shall be taken into account.
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1.5 Coupled Distributions

Several features that characterise the simulator are new and different to the other
aforementioned neutron transport codes. Since none of them makes use of properties
such as shape preservation of distributions or the fact that in the thermal regime
consequences of thermal equilibrium may be explored, as a consistency test of the
present implementation we compare a linearised model for the coupled distributions
with direct findings from the simulation. To this end the following system of
differential equations is considered and solved.

@

@t

0

@
D1

D2

D3

1

A D
0

@
��f ;c;e;1 �t.2;1/ 0

0 ��f ;c;e;2 � �t.2;1/ �t.3;2/

��f ;1 ��f ;2 ��f ;3 � �f ;c;e;3 � �t.3;2/

1

A

0

@
D1

D2

D3

1

A

�f ;c;e;i D �f ;i C �c;i C �e;i for i 2 1; 2; 3

Here D is the total number of particles in each distribution, � is the mean rate of
each interaction per Monte Carlo step, � is the mean number of neutrons emitted by
fission, the subscripts 1, 2 and 3 represent, respectively, the thermal, intermediate
and fission distribution, and the subscripts f , c, e and t.i; j/ represent, respectively,
the fission reaction, radiative capture reaction, neutron leakage and the transition of
a neutron from distribution i to distribution j. The aforementioned interaction rates
are computed after the simulation is completed.

1.6 Results

Results were obtained for a starting population of 106 neutrons. The behaviour of
the total population along all 5000 Monte Carlo steps is shown in Figure 1.3.

By inspection of Figure 1.3 one identifies a sub-critical regime, this will also be
supported by the computation of the neutron multiplication factor. It is also possible
to note an increase of the number of neutrons during the first steps of the simulation.
This behaviour, apparently in contrast to the sub-critical tendency, is attributed to the
fact that the simulation is started with a fission distribution only. Criticality can be
evaluated by dividing the number of fissions caused by neutrons of one generation
by the number of fissions caused by neutrons of the previous generation, in such
a way that each time neutrons are created by fission they belong to a generation
that follows the generation of the neutron that induced the fission reaction. Along
the 5000 Monte Carlo step 252 neutron generations were identified. The resulting
neutron multiplication factor is presented in Figure 1.4.

Figure 1.4 shows that after generation 200 the neutron multiplication factor
deviates from the behaviour presented in previous steps. This can be explained
by the fact that neutrons of different generations are present in the same Monte
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Fig. 1.4 Multiplication factor from the neutron life cycle

Carlo step and, as the simulation is stopped at step 5000, the number of neutrons
in a generation that causes fission diminishes for the subsequent generations, and
thus the decay of the multiplication factor is an artefact of the way the simulation
terminates. The first generations are also less representative, for they are influenced
by the specific conditions that define initialisation. For the generations 20 to 200 the
geometric mean of the neutron multiplication factor was calculated with numerical
value keff D 0:998417.

In Figure 1.5 the ratios of the populations of each of the three distributions by the
total population for each step are shown.
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Fig. 1.5 Ratios of each distribution population to the total population from the simulation

In Figure 1.5 it is perceivable that, even though the total population varies, the
proportions of the distributions are relatively constant for steps larger than � 500.
The preservation of these ratios is due to the fact that the neutron spectrum remains
stationary along the Monte Carlo steps. The rates of the different interactions were
computed and this information was used in the differential equation system. Due to
the fact that the computed rates are mean values per step and that initialisation of
the program induces a bias in the results, the initial condition for the system was
taken from the respective population of each distribution at step 500. The solution
is presented in Figure 1.6 as ratios to the total population, comparing the ratios from
the linearised coupled distribution equation system to findings from the Monte Carlo
simulation, which shows fairly good agreement and thus shows consistency of the
implementation.

1.7 Conclusions and Future Work

The simulator in development is able to solve neutron transport problems in
the complete phase space of the Boltzmann equation without simplifications or
discretisations. It can successfully track and tag particles and their respective
properties, allowing thus for the construction of physically relevant probability
distribution functions, such as neutron density, angular and scalar fluxes. We showed
results for the proportions of the fission, intermediate and thermal distributions,
where a results from Monte Carlo simulated ratios were compared to the analytical
result of the linearised model and showed fairly good agreement thus confirming
consistency of the implementation. As a next step in the development of the
simulator we will use resources of power computing to accelerate the simulation
execution runs and prepare the playground for more complex future extensions.
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Chapter 2
The Use of Similarity Indices in the Analysis
of Temporal Distribution of Mammals

M. Belmaker

2.1 Introduction

Ecological and paleontological studies look at changes in species composition
between spatially and temporally distinct regions. In such cases, data are organized
in a numerical n�p matrix or data frame, where n corresponds to different sampling
times or sites (in this study assemblages) and p denotes each of the different
variables that describe the locality studied. These may include the biological
community (measured in species incidence or relative abundance), or other variables
that connote the physical or chemical environment [Le98]. Thus, ecological datasets
are multidimensional and represent a geometric hyperspace.

We identify change or stasis in such a system by means of ˇ diversity, which
is the variation in species composition between assemblages. It can be used to test
for turnover (antonym inertia) and is measured as change in community structure
from one assemblage to another along a gradient. If inertia is present in the system,
then variability in species incidence or abundance between assemblages may result
from sampling bias or other stochastic processes. However, if there is a positive
correlation between community structure and a directional change along a vector,
this may be related to monotonous changes in the abiotic or biotic environment.

In paleontological assemblages, on the scale of 106 � 107 years, studies have
described various patterns of recurring fossil assemblages [Mi93]. The best doc-
umented and known pattern is “coordinated stasis,” which describes an empirical
pattern of community level stasis coupled with an abrupt change in community
structure of fossil assemblages. This inertia is present in spite of independent
evidence for climate change. In contrast, in younger assemblages that date to the
Quaternary (2.6 mya to present), community structure shifts predictably in response
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to environmental change. The discrepancy in the faunal response between the
pre-Quaternary (Phanerozoic) coordinated stasis and the Quaternary pattern [Ho96]
was termed the “Pleistocene Paradox” [St01].

Little research has been done on the intermediate time scale (104�106). Here, we
present a case study to illustrate the use of (dis)similarity indices and the Mantel’s
test in the temporal scale, to investigate changes in ˇ diversity among seven mammal
communities at the 4X105 year scale.

2.2 The Case Study

The model system used in this study is the paleoanthropological site of ‘Ubeidiya,
central Jordan Valley, Israel. The site has been dated to approximately 1.6–1.2
million years ago (ma), and the site exhibits early human remains [Be02], as well as
rich lithic and faunal assemblages [Ba93] (Figure 2.1).

A unique method of excavation was used at the site due to the extensive post-
depositional tectonic faulting of the sediments. Four trenches, numbered I–IV, were
excavated. Within each trench, the archaeological strata were numbered in Arabic
numerals from oldest to youngest. For example, stratum III 12 is the 12th geological
layer of trench III. The site exhibits over 113 uncovered archaeological strata
[Ba93]. However, fossil remains of large enough samples have been found in seven
strata only (Figure 2.2).

We studied the large (> 10 kg live weight) mammal communities of the seven
strata of ‘Ubeidiya from all seasons of excavations (1959–2001). Specimens iden-
tified to other taxa (small mammals, birds, reptiles, turtle, fish, and invertebrates)
were not included in this study.

Bones were identified to the lowest taxonomic level possible. We report species
and genus level analysis, eliminating bones identified only to family [Be06].

We calculated two dependent variable data matrices. The first was an incident-
based matrix with 1 for presence and 0 for absence. The second was a relative
(percent) abundance. We transformed abundances at each of the sites by adding
one and taking logarithms.

In ‘Ubeidiya, local hydrological conditions suggest a monotonic change
(although not linear) in local environment from humid to dryer conditions from
strata 7 through 1 [Ma06]. Therefore, an environmental grade was given to each
stratum from 1 (driest) through 5 (wettest), as detailed in Table 2.1. For clarity, in
lieu of using the original strata names, we labeled the fossil communities from 1
(youngest) through 7 (oldest) (see Table 2.1).
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Fig. 2.1 Location of ‘Ubeidiya in the Southern Levant
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Fig. 2.2 Stratigraphic sequence of ‘Ubeidiya

Table 2.1 Environmental
gradient in relation to
stratigraphic sequence

Strata Ranked Stratum Environment

III 11–13 7 5

III 20 6 4

III 21–23 5 4

II 23–25 4 3

II 26–27 3 3

II 36 2 1

II 37 1 1

2.3 The Statistical Model

Two criteria are important when we choose the (dis)similarity coefficient [Le98]:

1. The index used should be appropriate for the data. A presence–absence matrix
can be transformed to a similarity with a binary coefficient, while for abundance
data we need to use quantitative coefficients.

2. Double zeros: If a species is absent from two sites (double zero), we do not
know if this is because it is truly absent or because of sampling bias. Thus,
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it is preferable to exclude double zeros using an asymmetrical coefficient. The
converse is a symmetrical coefficient, in which zeros are treated like any other
value. In this study all coefficients used are asymmetrical.

It is beyond the scope of this study to discuss the numerous similarity indices
that have been developed. The reader is referred to the work of Legendre [Le98] for
an overview of these methods.

Here, we had three dissimilarity matrices: Two dependent variable matrices
were calculated from multidimensional community structure, one using presence–
absence data and the other using log-transformed relative abundance data. In
addition, we had an explanatory (independent variable) vector: the environment.

The presence–absence community matrix was transformed into an asymmetrical
binary similarity matrix by means of the Sneath and Sokal index [So63]:

SX1;X2 D a

a C 2b C 2c
; (2.1)

where a is the number of species common to both assemblages, b is the number
of species present in assemblage one but absent from assemblage two, and c is the
number of species present in assemblage two but absent from assemblage one.

The relative (log-transformed) abundance community structure was converted to
a similarity matrix by means of the asymmetrical quantitative Gower coefficient
[Go71]. This coefficient, used on normalized abundances, is defined by

SX1;X2 D

pX

jD1
W12jS12j

pX

jD1
W12j

; (2.2)

where S12j D 1 � Œjy1j � y2jj=Rj�.
The value Wj is called Kronecker’s data, and its values are Wj D 0 when yj

is missing for either one of the objects or both, and Wj D 1 when information is
present for both objects.

Both community structure similarity matrices were converted to distance matri-
ces by means of the formula d D p

1 � s, so each similarity index s was converted
to a distance value d [Le98].

The environment vector (see Table 2.1) was converted to a dissimilarity matrix
using the Euclidean distance [Le98]

DX1;X2 D
v
u
u
t

pX

jD1
.Y1j � Y22j: (2.3)
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Testing if there is a correlation between the similarity of sites structured in space
or time, we come across a problem of autocorrelation. Specifically, if there are n
objects that are temporally distinct and the matrix is symmetrical (so the time period
spanning from object a to object b is the same as the time/distance from b to a),
such a matrix contains n.n � 1/=2 distances that are not independent, as changing
the time of one object would change n�1 of these distances. Thus, we cannot assess
the relationship between two matrices using the parametric correlation coefficient.

Mantel’s test is a solution to this type of problem [Ma71] as it takes autocorrela-
tion into account. It is a regression in which the variables are (dis)similarity matrices
instead of raw data, and so it allows us to test hypotheses regarding the correlation
between distances among objects in matrices X and Y.

The basic form of the Mantel’s statistic is calculated [Le98] as

zM D
n�1X

i�1

nX

jDiC1
xijyij; (2.4)

where i and j are row and column indices. This is based on the non-normalized Pear-
son product moment correlation coefficient [Di83]. However, the test is conditional
on the dis(similarity) index used.

To standardize the Mantel’s statistic, it was suggested [Le98] that we should take

rM D 1

d � 1
n�1X

iD1

nX

jDiD1
.
xij � Nx

Sx
/.

yij � Ny
Sy

/; (2.5)

where d D
h

n.n�1/
2

i
is the number of distances in the upper triangle part of each

matrix.
Mantel’s r statistic is similar to the coefficient of linear correlation, known as

Pearson’s r statistic. To test rank-transformed data, a ranked Mantel’s statistic,
ranked M, may be computed by converting within-matrix rank distances into
ranks before computing rM. The correlations are comparable to the nonparametric
Spearman correlations rs.

In this study, the environment vector is ordinal, therefore, we used the ranked M
(rM) in lieu of rs.

We employed one tailed hypothesis calculated for positive test statistics. To
assess the significance of a departure from zero correlation, the rows and columns
of one of the matrices are subjected to random permutations 10,000 times, with
the statistic recalculated after each permutation. The significance of the observed
statistic is the proportion of the permutations that lead to a higher correlation
coefficient.

We can formulate two hypotheses: H0 W rs D 0 and H1 W rs > 0.
We define A to be the presence–absence matrix, B the relative abundance matrix,

and C the environment matrix. We predict that both presence–absence and relative



2 Similarity Indices 17

abundance will change as a function of environmental change so that rs.AC/ > 0

and rs.AB/ > 0.
We are aware that multiple comparisons may increase the type I error of the

statistics of significance for each comparison. In [Fe02] it is suggested that the
use of adjusted p-values should be reconsidered since it increases the chance of
making type II errors and requires an increase in sample size. The latter point
is of particular importance in paleontological studies. Following the suggestions
described in [Fe02], we present unadjusted p-values and combine the study’s
statistical significance with the magnitude of the effect, the quality of the study,
and findings from other studies instead of adjusted p-values.

2.4 Results

Correlating relative abundance with the local environment change observed in
‘Ubeidiya resulted in a significant correlation between the two variables; specifi-
cally, rs D 0:543 and p D 0:005. This would suggest that the faunal community
changed over time due to the environmental change observed by the geomorpholog-
ical analysis.

However, contrary to expectations, there is no correlation between presence–
absence community structure and environment (rs D 0:295, p D 0:121). This
suggests a pattern of inertia in community presence–absence across the 4x105 years
represented by the sequence in ‘Ubeidiya (Figure 2.3).

2.5 Discussion and Conclusion

The question of identification of stasis or change in community structure has
implication for understanding the tempo and mode of ecological and evolutionary
processes. The site of ‘Ubeidiya is dated within this time period of the “Pleistocene
paradox.” It is younger than most sites that exhibit coordinated stasis (greater than
circa. 100Ma), yet older than the glacial Pleistocene sites (that is, less than 0:8Ma).

Applying (dis)similarity indices and the Mantel’s test, we concluded that relative
abundance community structure correlated with environment. A detailed observa-
tion of species distribution throughout the sequence shows that fallow deer Dama
sp., row deer Capreolus sp., the large extinct deer Praemegaceros obscurus, and
the North Africa ass Equus tabeti shift their abundance among the strata. Over
time, there is a shift from a high to low proportion of woodland taxa (fallow and
roe deer) with a concomitant increase in open grassland taxa (the Praemegaceros
and ass). Thus, changes in the large mammalian fauna in ‘Ubeidiya reflect a local
environmental shift towards greater aridity [Be06].

In contrast to the pattern of relative abundance, the presence–absence community
structure did not correlate with environmental change, which implies inertia over the
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Fig. 2.3 Cluster diagram showing the correlation between similarity in large mammal relative
abundance and similarity between environmental gradient

entire sequence. This persistence in species incidence across the ‘Ubeidiya sequence
is interpreted in accordance with the “recurrent assemblages” model suggested
in [Mi93] for paleontological assemblage and supported for modern ecological
communities [Ra90].

The response of taxa to climatic shift is dependent on the amplitude and
frequency of climatic change [Ra90]. During low and medium amplitudes of envi-
ronmental shift, taxa may be able to tolerate the change. Thus, despite independent
evidence for a climatic shift, no change is observed in the fossil record. In higher
amplitudes of environmental shift, taxa will shift their range. This is often observed
in the fossil record as a change in abundance. In very high amplitudes of climatic
shift, taxa will become extinct. This may be observed in the fossil record as faunal
turnover. Relative frequency of species may fluctuate, whereas species presence–
absence may remain constant over time [Ra90].

Consequently, the different pattern of turnover and stasis for species presence–
absence and relative abundance, which are apparent in ‘Ubeidiya, may be attributed
to persistence that occurred during periods of low amplitude environmental change.
While species changed in their relative abundance, the amplitude of climate change
was not enough to evoke change in species presence–absence pattern. A similar
pattern was found in the middle Pleistocene site of Atapuerca, Spain [Ro11], which
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may be attributed to medium amplitudes of climatic change, large enough to result
in faunal turnover but sufficiently low to maintain a similar ecological structure of
the community.

The use of similarity indices and the Mantel’s test allows us to illustrate the utility
of similarity matrices in the study of paleontological community structure in time.
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Chapter 3
The Method of Superposition for Near-Field
Acoustic Holography in a Semi-anechoic
Chamber

D.J. Chappell and N.M. Abusag

3.1 Introduction

Near-field acoustic holography (NAH) is the process of reconstructing the vibra-
tional behaviour of a structure from measurements of the acoustic field generated
by these vibrations. Traditionally NAH was applied to planar regions where Fourier
methods can be used to reconstruct the structural vibrations, even at frequencies
beyond the sampling resolution limit [Wi99]. The Method of Superposition (MoS)
and the inverse boundary element method (IBEM) are relatively popular alternative
methods for reconstructing the vibrational properties of structures with more general
geometries [VaWi06, ChHa09]. Recent work has shown that the MoS can also be
effectively combined with sparse `1 regularisation to generate solutions using only
a small number of terms in the superposition [AbCh16]. In this work we discuss
a reformulation of the MoS for NAH experiments in a semi-anechoic chamber;
experiments in fully anechoic chambers can often prove impractical. In particular,
we propose a modified Green’s function approach for a semi-infinite domain with
a hard reflecting boundary using the Method of Images, and present the results of
some supporting numerical experiments.

3.2 Method of Superposition

Consider a three-dimensional half-space of the form H D fx 2 �3 W x3 > 0g, and let
˝ � H be a finite domain with boundary surface 	 � NH. In order to help visualise
the set-up, one can think of H as the space represented by a semi-anechoic chamber
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with a rigid floor and fully absorbing walls and ceiling that behave approximately
as an infinite half-space. The object ˝ represents an acoustically radiating object
placed in H, such as a loudspeaker. We decompose 	 into two parts, 	H � H and
	0 D 	 \ fx 2 �3 W x3 D 0g so that 	 D 	0 [ 	H and 	0 \ 	H D ;. In a
practical setting, 	0 corresponds to the part of the acoustically radiating object that
is in contact with the floor of the semi-anechoic chamber, and is thus assumed to be
non-empty. Let˝C D Hn N̋ denote the unbounded domain exterior to the object˝,
which is assumed to be filled with a homogeneous compressible acoustic medium
with density 
 and speed of sound c. For a time-harmonic disturbance of frequency
!, the sound pressure p satisfies the homogeneous Helmholtz equation in ˝C

�p C k2p D 0; (3.1)

where k D !=c is the wavenumber. Since this work considers an unbounded domain
within the half-space H, then p must also satisfy the Sommerfeld radiation condition

lim
R!1R

�
@p

@R
� ikp

�

D 0 (3.2)

for x 2 H, with R D kxk2.
The superposition method approximates p at some point x 2 N̋C using a basis

expansion of the form

p.x/ �
nX

jD1
�jGH.x; yj/; (3.3)

where GH is the half-space Green’s function for Helmholtz equation in three
dimensions given by

GH.x; y/ D eikjx�yj

4�jx � yj C eikjx�y0j

4�jx � y0j : (3.4)

Here y0 D .y1; y2;�y3/ corresponds to the reflection of the point y D .y1; y2; y3/ 2
˝ in the plane @H D fx 2 �3 W x3 D 0g. The points yi 2 ˝, i D 1; : : : ; n
are the source locations and �i are the source strengths, which are determined by
application of the method. Note that the half-space Green’s function GH corresponds
to the Neumann Green’s function with

@GH

@y3
.x; y/ D 0

whenever y 2 @H. Hence, the Green’s function GH satisfies the rigid floor boundary
condition as a function of the second variable.
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3.3 Near-Field Acoustic Holography in a Half-Space

In the NAH problem we are given values of the acoustic pressure p at a discrete set
of points in the acoustic near field within ˝C. We will assume that the data points
xi, i D 1; : : : ;m lie on a surface 	 � � ˝C. Note that the pressure data is usually
obtained from measurements using a microphone array. However, in this work we
only generate the pressure data numerically as described in Section 3.5. The NAH
problem in the half-space H is to use the given pressure data to recover the Neumann
boundary data on 	H . Solving this problem via the method of superposition is then
a matter of finding the set of source strengths �j, j D 1; : : : ; n, that reproduce the
acoustic pressure data to some desired accuracy in the least squares sense. That is,
�j are chosen so that the `2 norm of the residual vector r, with entries given by

ri D p.xi/ �
nX

jD1
�jGH.xi; yj/ (3.5)

for i D 1; ::;m, is smaller than a desired error tolerance. Once the source strengths
have been obtained, then the Neumann boundary data can be recovered from

@p

@n
.x/ �

nX

jD1
�j
@GH

@n
.x; yj/; (3.6)

where n is the outward unit normal to 	 .
Regularisation is always required in general, even for n D m, since NAH is an

ill-posed inverse problem (see, for example, [ChHa09]). For experimental problems,
the pressure measurements will contain errors and the ill-posedness of the problem
means that these errors are amplified in the (unregularised) solutions. In the next
section, we describe a regularisation scheme designed to promote sparsity in the
solution as suggested in [ChEtA12] for two-dimensional planar problems, and in
[AbCh16] for three-dimensional problems.

3.4 Regularisation and Sparse Reconstruction

Here we give a brief presentation of the strategy employed in [AbCh16], for
more details, see [AbCh16] and [ChEtA12]. The sparse regularisation approach
is designed to minimise j� j0, the number of non-zero entries of � , for a fixed
acceptable discrepancy level indicated by krk2. As noted in [ChEtA12], the
possibility of a sparse reconstruction is highly dependent on the basis functions
used to represent the solution. In the superposition method, these basis functions
are the fundamental solution of the Helmholtz equation at a set of distinct interior
charge points.
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Directly minimising j� j0 is often intractable because of non-convexity (see
[ChEtA12]). We therefore instead seek to minimise the `1 norm

k�k1 D
X

j

j�jj: (3.7)

The use of the `1 norm allows one to apply powerful convex optimisation algorithms
and still promotes sparsity by making many of the components of � negligibly
small, meaning that they can be well approximated by zero without degrading the
reconstructed solution. The following procedure will be applied to find a sparse
representation O� of the source strengths �

O� D arg min
�

k�k1 subject to krk22 � �: (3.8)

This procedure, which will be implemented using the convex optimisation toolbox
CVX [GrBo15], requires a data fidelity constraint � to be specified. Choosing the
parameter � involves a trade off between allowing sparser solutions with larger
values of � and achieving more accurately reconstructed solutions with smaller
values of �. A good choice of � will depend on how noisy the pressure data is and
hence will be problem dependent.

3.5 Numerical Results

Numerical results will be computed for acoustic radiation from a cuboid of similar
dimensions to a typical loudspeaker cabinet (0:28mtimes0:28m � 0:42m). The base
of the cuboid 	0 lies in the plane z D 0. Although the method of superposition is a
mesh free method, we will use a triangulation of 	H to generate the points at which
the pressure data is computed, as well as the internal charge points and the points at
which we reconstruct the solution on 	H . In particular, for a given triangulation of
	H we reconstruct the Neumann boundary data at the centroid of each triangle and
project (from each centroid) a distance ı along the normal vector to 	 into ˝C to
obtain the points where the exterior pressure data is recorded. The internal charge
points are positioned inside ˝, on a scaled down version of 	H with scaling factor
˛ 2 .0; 1/. For example, a value of ˛ D 0:5 corresponds to a surface of internal
charge points whose dimensions are exactly half those of 	H .

We will reconstruct the boundary data generated by a point source at x0 2 ˝.
The pressure data is then constructed using the half-space Green’s function, and is
hence of the form

.p0/j D a

 
eikjxj�x0j

jxj � x0j C eikjxj�x0

0j

jxj � x00j

!

; j D 1; : : : ;m: (3.9)
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Here, a 2 � is the strength of the source, which in these examples is arbitrarily
taken to be a D 3� i. The boundary data generated at y 2 	H may also be obtained
for the case of a point source at x0 by replacing xj in (3.9) by y 2 	H , differentiating
in the direction of ny and evaluating at the centroids of the triangulation y D yj for
j D 1; : : : ;m to give

.v/j
a

Dnyj � .x0 � yj/

jyj � x0j3 .1 � ikjyj � x0j/eikjyj�x0j

C nyj � .x00 � yj/

jyj � x00j3
.1 � ikjyj � x00j/eikjyj�x0

0j:

Using this calculation it is possible to verify the accuracy of the regularised
approximate solutions with different wavenumbers and point source positions x0 2
˝. We will also investigate the behaviour of the method at irregular frequencies
of the volume enclosed by the interior charge points, and the dependence on
the dimensions / location of the interior charge point surface controlled by the
parameter ˛.

Uniformly distributed and additive white noise will be applied to p0 in order
to more closely replicate experimental observations. The use of Gaussian noise
was also considered and, in general, led to slightly more accurate reconstructions
than uniformly distributed noise. However, the quality of the reconstructions also
fluctuated more widely when using different Gaussian noise vectors (of the same
norm) than for uniformly distributed noise, and so we present the results for
uniformly distributed noise since we believe they give a more indicative and
repeatable measure of the performance of our reconstruction methods. We denote
the added noise vector as w and specify the ratio

w D kwk2
kp0k2 ; (3.10)

referring to w as the level of added noise in the sequel.
For our sparse reconstruction method, we use the following criteria to determine

whether the jth charge point is dominant [AbCh16]:

log

� j�jj
mini j�ij

�

> ˇ log

�
maxi j�ij
mini j�ij

�

:

We will use the notation N�.ˇ/ for the number of dominant charge points satisfying
this condition, taking ˇ D 0:5 by default and so we denote N� D N�.0:5/. The `2
percentage error in the reconstructed solution Ov will be calculated using

kOv � vk2
kvk2 � 100%: (3.11)
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For these experiments the number of charge points, the number of measurement
points and the number of points at which we reconstruct the solution are all equal
to 504. This is achieved by triangulating the internal source surface in an identical
way to 	H and taking the charge points at the triangle centroids. The data fidelity
parameter � appearing in Equation (3.8) is chosen as

� D .maxf�min;wg/2kp0k22; (3.12)

where w is the level of noise added to the pressure data as before. Larger choices of
� permit sparser solution representations. However, it only makes sense to choose
a larger � for noisy data, otherwise it leads to less accurate reconstructions. The
parameter �min 	 0 is included as a tolerance level that is used for the low or zero
noise case. A relatively large choice of �min will lead to sparser reconstructions at
the expense of accuracy, and the converse is true for small �min. The results in this
work have been obtained with �min D 1E-6.

First consider the case k D 1 and x0 D .0; 0; 0:1/, where the frequency is
relatively low, is not close to an irregular frequency and x0 is relatively close to
the origin and will lie inside the surface on which the interior charge points are
located. Under such conditions the superposition method is expected to work well.
The pressure data are specified at a distance ı D 0:035m from 	H and the internal
source surface is scaled down to have dimensions ˛ D 1=3 the size of 	 . We note
that these choices should lead to good results based on the fact that ı should be
chosen small enough to capture evanescent contributions to the pressure field, but
still large enough to be a practical distance for taking experimental measurements.
For the choice of the parameter ˛, we observed in [AbCh16] that too small a value
will lead to severe ill conditioning as the charge points become very close together,
but choosing too large a value of ˛ will also give poor results, and a choice in the
range ˛ 2 .0:1; 0:6/ generally gives the best results.

Figure 3.1 shows the sparse reconstruction of the Neumann data with noise level
w D 5%. The exact solution is also shown for reference and appears almost identical
to the sparse reconstruction. The right sub-plot shows the charge point strengths �j,
j D 1; : : : ; 504 given by the sparse reconstruction algorithm. Note that many of the
�j, j D 1; : : : ; 504 are suppressed and are close to O.10�6/, but 13 dominant terms
can be picked out which are close to O.10�1/. The sparse reconstruction shown in
the left sub-plot was created using only these 13 values.

We now investigate the behaviour of the method for some potentially problematic
choices of the wavenumber k when w D 15% noise is added to the sampled
pressure data. First we look at the case when the frequency is increased, including
when the Nyquist frequency is exceeded. Since our measurements are taken at
triangle centroids then the resulting measurement grid is irregular and so the Nyquist
frequency is not well-defined. We therefore choose the Nyquist frequency associated
with the regular grid given by the triangle vertices, as a value approximately
representative of the Nyquist frequency. For the discretisation considered in the
previous section with 504 triangles, the grid spacing is�x D 0:04667, meaning that
the wavenumber corresponding to the Nyquist frequency is knyq D �=�x D 67:32.



3 Method of Superposition for NAH 27

Sparse Reconstruction Exact Solution

0 200 400 600
j

10-10

10-8

10-6

10-4

10-2

100

|σ
j|

Charge Point Strengths

Fig. 3.1 Neumann boundary data on a cuboid generated by a point source at x0 D .0; 0; 0:1/ with
wavenumber k D 1 and w D 5% added noise. The plots compare the exact solution against the
`1 reconstruction approach using only the N� D 13 dominant charge points of largest magnitude
shown in the right sub-plot

We also investigate the performance of the method close to other typical threshold
frequencies for numerical solution approaches, such as the six grid points per
wavelength rule of thumb for finite and boundary element methods, which gives a
maximum wavenumber of k D 22:44 for the grid described above. The performance
of the method at irregular frequencies will also be investigated. For the method of
superposition these irregular frequencies are the resonances of the region enclosed
by the interior source surface. We set ˛ D 1=3; numerical studies indicate that
in this case, one such frequency approximately corresponds to the wavenumber
k D 48:907. The maximum wavenumber studied corresponds to the wavelength
being close to (but still greater than) the exterior measurement distance ı D 0:035m.

The left plot of Figure 3.2 shows that both irregular and high frequencies lead
to a degradation in the accuracy of the reconstruction, and lead to a loss of sparsity
in the reconstructions. We note that accurate and reasonably sparse reconstructions
can be generated up to the Nyquist frequency k D 67:32 (except for at characteristic
frequencies), since we can reconstruct the solution with a smaller error than the level
of added noise (15%) and using only around 10% or less of the total number (504)
of charge points. We note that if the surface of interior charge points includes the
monopole generating the acoustic field then one would obtain exact representations
for arbitrarily high frequencies.

In addition to the general trend of increased errors for higher frequencies, one
also observes a local peak in the error at the characteristic wavenumber k D 48:907.
This suggests that sparse reconstructions are not feasible at higher frequencies or
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Fig. 3.2 The accuracy and sparsity of the reconstructed solutions with w D 15% added noise and
with x0 D .0; 0; 0:1/ as before. The solid lines with star markers indicate `2 percentage (relative)
errors. The dashed lines with circle markers indicate the percentage of the 504 charge points used
in the reconstruction. Left: The plots show the effect of changing the wavenumber k with a fixed
interior charge point surface corresponding to ˛ D 1=3. Right: The plots show the effect of using
a range of different sized interior charge point surfaces controlled by the parameter ˛ for a fixed
wavenumber k D 1

at irregular frequencies. However, the reconstruction error is lower than the noise
level for all frequencies tested up to twice the Nyquist frequency. The results of this
section therefore suggest that the method of superposition with `1 regularisation can
provide excellent reconstructions for frequencies up to around twice the Nyquist
frequency, and that sparse reconstructions are feasible up to the Nyquist frequency.
Irregular frequencies degrade both accuracy and sparsity. However, if a more
accurate and sparsely reconstructed solution was required at k D 48:907, then we
could change the scaling of the internal source surface (i.e. change ˛), which would
move the location of the irregular frequency as demonstrated in [AbCh16].

We now consider how the accuracy and sparsity of our reconstructed solutions
depends on the relative size/position of the internal charge point surface controlled
by the parameter ˛. The source point generating the external pressure data is taken at
x0 D .0; 0; 0:1/ as before, and the wavenumber is fixed to be k D 1. The right plot
of Figure 3.2 shows both the percentage errors for the sparse reconstructions and
the percentage of the 504 charge points used in the reconstruction for different sized
interior charge point surfaces. These quantities have been computed for values of
˛ between 0:12 and 0:84. In all cases the added noise level is 15%. We notice that
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the error is minimised when the size of the interior source surface is such that it
intersects the positive z�axis close to z D 0:1, where the source point generating
the external pressure data is located. This corresponds to the choice ˛ D 0:24, since
	H intersects the positive z-axis at z D 0:42 and z D 0:24 � 0:42 is very close
to z D 0:1. Likewise, the number of charge points N� needed to obtain a sparse
reconstruction is also minimal close to ˛ D 0:24.

In general, the solutions are reasonably accurate (i.e. the reconstruction error is
comparable to or less than the data error) for source surfaces with ˛ between 0:12
and 0:48. Choosing ˛ D 0:84 gave the worst results. Interestingly, the results of
this section suggest that it does not seem to be critical whether or not the surface
of interior charge points encloses any singularities in the modelled wave field.
Furthermore, the results also point to important potential applications of the sparse
superposition method developed in this work for source identification problems in
general.

3.6 Conclusions

The method of superposition has been combined with a sparse `1 reconstruction
algorithm and applied to the problem of near-field acoustic holography in a half-
space. The developed sparse superposition method is able to reconstruct the normal
velocity of a vibrating object using only a very small number of charge points in
many cases, and is suitable for experimental verification in a semi-anechoic chamber
with a hard reflecting floor.
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Chapter 4
Application of Stochastic Dynamic
Programming in Demand Dispatch-Based
Optimal Operation of a Microgrid

F. Daburi Farimani and H. Rajabi Mashhadi

4.1 Introduction

Uncertainty is an inseparable feature of power systems due to the general
uncertainty of the system, uncertain behavior of power consumers, uncertainty
of renewable energy resources, and uncertain prices of power market. In power
system studies, several uncertainty modeling approaches have been utilized. These
methods are categorized into probabilistic methods, possibilistic methods, combined
probabilistic and possibilistic methods, and information gap theory. Probabilistic
methods are divided into numerical approaches and analytical approaches.
Sequential Monte Carlo simulation, non-sequential Monte Carlo simulation, and
pseudo-sequential Monte Carlo simulation are numerical probabilistic approaches.
Analytical approaches apply mathematical expressions like PDFs to analyze the
system and its inputs. Analytical approaches are categorized into two groups.
First, linearization-based methods like convolution method, Cumulant method,
Gram-Charlier A series, Edgeworth expansion, Cornish-Fisher expansion, Taylor
series, and first-order second-method. Due to shortcomings of linearization in the
aforementioned methods, the second group methods of analytical approaches are
applied. These methods are based on PDF approximation. The point estimation
method, Unscented Transformation method, and scenario-based decision making
methods are examples of such methods [AiEtAl16]. Categorization of possibilistic
methods and combined probabilistic and possibilistic methods are not mentioned
due to the focus on probabilistic analytic methods.

Power system operation is one of the most essential programs in power system
studies. Power system structural changes and smart grids in recent decades made
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many fundamental changes in distribution system and especially in demand side. In
conventional power systems, conventional generation units which are dispatchable,
follow nondispatchable conventional loads, through supply dispatch program, based
on load following, actually, a real time control of output of power plants to
follow system load by several control loops. Today the power system grids in the
world are moving toward smart grids. Integration of smart homes, smart meters,
smart microgrids, and penetration of renewable generation systems and plugged in
electric vehicles in the new and future power systems will be remarkable. Power
system structural changes like deregulation of market, highly penetrated DGs, and
renewable resources make some challenges in the power system operation. Smart
grids provide the required infrastructure of a new optimal operation paradigm in
demand side. According to these changes and challenges, it seems to be better
to change the operation paradigm from the conventional economic dispatch (ED)
to demand dispatch. DD is Remote Control of Dispatchable loads by the grid
operator. By dispatchable loads we mean EVs, air conditioners, washing machines,
dishwashers, dryers, water heaters which are suitable to be remotely dispatched
from the microgrid dispatching center. These DLs participate in DD by giving their
commitment period. A standby (waiting) period, which they dedicate their plugged-
in appliance to the operator to draw power from the grid. This is actually Load
Commitment by giving waiting period.

DD was firstly introduced in [BrEtAl10] by the help of smart grid and devel-
opment of communication and control technologies in demand side. In the new
power systems, loads might be equipped with communication and control tech-
nologies and remotely receive the dispatch/control command from the operator. In
[BrEtAl10], DD is compared with demand response. Moreover, a precise definition
of dispatchable loads is presented. The electric vehicles are aggregated by the
aggregator to provide ancillary services like frequency regulation as an example
of DD. In [BoEtAl13] unit commitment is reformulated considering DD and a
powerful probabilistic wind power forecasting method to handle the uncertainty of
wind power. It is illustrated that DD improves reserve requirement and diminishes
load and wind power curtailment. Reference [BeEtAl11] suggested a generic for-
mulation for economic dispatch of three buildings along with DR purposes from the
perspective of end user without considering topology and constraints of distribution
system. In [DaRa13], DD is employed on an autonomous hybrid PV-wind-battery-
diesel system. It is generally concluded that DD improves the required battery
capacity and diesel generation capacity since the dispatchable loads contribute in
load generation balance. Smart charging of electric vehicles by applying DD is
performed in [WuEtAl12]. A priority list algorithm for implementation of DD
is suggested in [DaRa13] which provides a high correlation between small wind
turbines power and dispatchable loads and thus, reduces the total operation cost. A
comprehensive report on DD is prepared by DOE/NETL [NETL11] including the
definition of DD, a comparison between DD and supply dispatch, the benefits and
barriers of implementing DD. In [DaRa15], the DD problem is accurately modeled
in details and implemented on a smart microgrid. But it has not taken into account
the probabilistic behavior of the components.
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DD problem could be actually modeled by optimal control of a discrete-time
dynamic system with an additive cost function over a finite horizon called inventory
control problem. Our problem is to optimally operate a microgrid by using DD
applying analytic probabilistic method. The operator of the microgrid should make
optimal decisions in stages, dealing with stochastic situations. The objective is to
minimize the total cost of the microgrid operation. The decisions should be made
in a way that consider the future costs besides the present cost. So we should not
view the decisions individually. The stated idea is captured in dynamic programming
whereby at every stage a decision is made that minimizes the sum of the current
stage cost and the best expected cost of the future stages [Di87]. Since the problem
is faced with uncertainties in generation and consumption, stochastic dynamic
programming (SDP) is used to solve the problem.

In this research for the first time we seek to present DD problem through clear
formulations based on SDP of dispatchable loads and apply it on some case studies
step by step. A broadly applicable model of stochastic optimal control of a dynamic
system over a finite number of stages is applied to model DD problem. If the
operation horizon, here a day, is divided by N time periods, the operator tries to
find the chain of optimal control law so as to minimize the expected total cost.
DD problem is very close to the popular example of SDP called inventory control
problem [Di87]. This paper firstly presents a brief description to the problem in
Section 4.2. After that in Section 4.3 the SDP is introduced briefly. Inventory control
problem is presented in Section 4.4. In Section 4.5, problem formulation by SDP
(inventory control model) is presented. The solution approach is performed step by
step in Section 4.6. The summary and conclusion are presented in the last part of
the chapter.

4.2 Problem Description

Consider a stand-alone microgrid consisting of the following components:

1- Wind turbine
2- Diesel generator
3- Storage system (battery)
4- Dispatchable/controllable loads (CL) equipped by smart meters, and undispatch-

able loads (UL).

Figure 4.1 illustrates the microgrid components. The capabilities of the micro-
grid operator are: (1) receiving the consumer data about energy consumption
scheduling from the smart meters, and (2) sending turn on control signal to the
consumers through smart meters. The microgrid operator goal is to minimize the
operation cost over the operation horizon, here a day. The operation cost over
N stages in the period is formulated in (4.1) by ignoring the power loss. Energy
balance constraint is presented in (4.2). Diesel generation limitations are mentioned
in (4.3). Dispatchable loads constraints are presented in (4.4). Storage system
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Fig. 4.1 The microgrid components

constraints which are storage evolution constraint, storage limitation, and charge
constraint are mentioned in (4.5)–(4.7). Xk is energy storage at the end of period k.
The microgrid operator decides what components to be dispatched according
to the state of the renewable generations, charge state of the storage, and the
grid constraints to minimize the expected total cost of the microgrid operation.
By dispatchable components (DICOM) in the microgrid we mean dispatchable
loads, storage, and diesel generator. The day is divided into 4 time intervals. The
consumers submit their day-ahead consumption schedule to the operator.

MinDs

N�1X

kD0
C.Dsk/C Terminalcost (4.1)

Dsk C Wk � Stk � CLk � ULk D 0 (4.2)

Dsmin � Dsk � Dsmax (4.3)

NX

kD1
CLk D CLmax (4.4)

XkC1 D Xk C StkC1 (4.5)

0 � Xk � Stmax (4.6)

�Xk � StkC1 � .Stmax � Xk/ (4.7)
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4.3 Stochastic Dynamic Programming

DP is a very useful tool in situations where decisions are made in stages and have
to be viewed in the whole trajectory instead of individually. The goal is to minimize
the total cost of the stages. To model a problem with DP, two main features are
needed: (1) a discrete-time system and (2) an additive cost function. The dynamic
system form is presented in (4.8). The total cost over the period is presented in (4.9).
First term represents terminal cost and second term is sum of costs in stages. Since
wk is a random variable, the cost will be a random variable, and minimization of a
random variable is not meaningful. So, the expected cost should be minimized as
presented in (4.10) [Di87]. In deterministic DP problems, uk chain is obtained at the
beginning of the period for all stages. But for SDP problems, the uk of every stage
is obtained when we reach to that stage. A popular example of DP is the inventory
control problem which is of interest to this research.

XkC1 D fk.xk; uk;wk/ 8k D 0; 1; : : : ;N � 1 (4.8)

Cost D gN.xN/C
N�1X

kD0
gk.xk; uk;wk/ (4.9)

minuk E.Cost/ D Ewk.gN.xN/C
N�1X

kD0
gk.xk; uk;wk// (4.10)

4.4 Inventory Control Model

The inventory control problem is the problem of how to meet a stochastic demand
by ordering an optimal quantity of a certain item at the beginning of each of stages.
According to Figure 4.2, if k represents the stage number, xk denotes the available
stock at the beginning of the period which presents the state of the system. uk is
the decision variable which is selected at time k with knowledge of the state xk. wk

is a random parameter representing the stochastic demand, also called disturbance
or noise. N is the horizon of the problem, number of time stages which control is
applied [Di87]. The system stock evolution equation is presented in (4.11).

4.5 Problem Formulation by SDP (Inventory Control Model)

In our problem, the stock which is going to be controlled (Xk) is the energy stored in
the storage system. Equation (4.12) presents the storage balance equation. xk in the
inventory control problem is here denoted by Xk. To extract uk and wk, we rearrange
the terms of Equation (4.12) into (4.13). Therefore, by comparing (4.13) with (4.11),
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Fig. 4.2 Inventory control diagram

uk and wk will be defined. Equations (4.14) to (4.16) present the inventory control
parameters in our problem. We can decompose the Equation (4.13) into two different
equations representing two different inventory systems in order to decompose the
operation paradigm into load following and generation following concepts. This is
not the goal of this paper and will be discussed in our future works.

xkC1 D xk C uk � wk (4.11)

XkC1 D Xk C .Dsk C Wk/ � .CLk C ULk/ (4.12)

XkC1 D Xk C .Dsk C CLk/ � .ULk � Wk/ (4.13)

xk D Xk (4.14)

uk D Dsk C CLk (4.15)

wk D ULk � Wk (4.16)

To define the total cost of the problem in the form of inventory control system,
first we define the cost of every stage k as shown in (4.17). The cost from stage k
to the final stage is mentioned by (4.18). The optimal cost as shown in (4.19) is the
minimum value of the cost by selecting the best control parameters of Dsk and CLk.
The terminal cost here is the cost of charging the storage on half capacity as shown
in (4.20). So, our problem is to minimize the total cost on two controls u1 and u2
as shown in (4.21). Therefore, the problem has two control variables with different
natures, first u1 D CLk and second u2 D Dsk. Considering some simplifications,
it is shown that by using the following lemma, the first control variable can be
eliminated by levelizing the load profile. Firstly we present the proof of the lemma
to demonstrate the load levelization and after that we levelize the load and reduce
the controls of the problem into one control.

g.xk; uk;wk/ D C.Dsk;CLk/ (4.17)
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Jk.xk/ D g.xk; uk;wk/C J�kC1.xkC1/ (4.18)

J�k .xk/ D MinDsk ;CLk E.Jk.xk// (4.19)

gN.xN/ D .xN � 1=2capSt/
2 (4.20)

J�k .xk/ D Minu1;u2 E.Jk.xk// (4.21)

4.6 Lemma

The goal is to minimize the total cost over N stages as in (4.22). By considering the
constraints (4.23) to (4.26) of the optimization problem, Lagrangian function of the
problem is produced as in (4.27).

To solve the problem, the differentiation of the Lagrangian function with respect
to Dsk which is actually the incremental cost is equaled to zero as stated in (4.28).
So, the incremental cost equals with � as stated in (4.29). Therefore Dsk is a
constant. On the other hand, Dsk is the difference between load and expected wind
power as shown in (4.30). So the load should be levelized.

MinDsk ;Lk Cost D
NX

kD1
g.Xk;Dsk;Lk;Wk/ (4.22)

Lk D CLk C ULk (4.23)

ULk � Lk (4.24)

0 � Dsk � Ds (4.25)

NX

kD1
Lk D L0 (4.26)

L:F: D
NX

kD1
g.Xk;Dsk;Lk;Wk/C �.

NX

kD1
Lk/ (4.27)

@L:F:

@Dsk
D @g

@Dsk
� � D 0 (4.28)

IC.Dsk/ D � (4.29)

Dsk D Lk � E.Wk/ (4.30)
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Fig. 4.3 The microgrid components data

4.7 Solution Approach: Step by Step

In this part, we will present the system data and solve the problem of microgrid
operation by addition of the microgrid components step by step. The system data is
aggregated in Figure 4.3. As shown in Figure 4.3, diesel generator has a quadratic
cost function. The capacity of the storage system is assumed to be 2 units. For every
stage, a discrete PDF for wind power with three samples is considered.

Case 1
If the microgrid consists of only diesel generation and uncontrollable loads as shown
in Figure 4.4, there is no degree of freedom for the operator. In this case, the total
load is uncontrollable. It means that diesel generation must exactly follow the UL
variations. According to the diesel cost function presented in Figure 4.3, the total
cost of the microgrid operation approximately equals with 75 units. In this case
the generation is controllable and the load is uncontrollable and the only applicable
operation paradigm is load following.

Case 2
If in the microgrid system of case 1, a part of the total load is considered con-
trollable, the problem will have two control parameters. We use the aforementioned
lemma to reduce the controls and simply solve the problem. The result of the lemma
was to levelize the load. We have used a quadratic programming to levelize the
load. As shown in Figure 4.5, the total cost has been decreased due to the degree
of freedom provided by controllable loads. It should be noted that the controllable
loads are assumed to be costless and the operator is not going to pay for consumers
motivation in DD commitment.
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Fig. 4.4 The microgrid components in case 1

Fig. 4.5 The microgrid components in case 2 by adding controllable loads

Case 3
If the storage system is added to the microgrid system of case 2, as shown in
Figure 4.6, we face with a DP problem as explained in the previous section. By
solving the DP problem with N D 4, the optimal control chain of diesel generation
will be determined as illustrated in Figure 4.7. In Figure 4.7, there are five rows of
circles. Each row belongs to a certain value of the initial charge state of the storage
system. The initial charge takes the values 0, 0.5, 1, 1.5, and 2. For example, if
the initial charge is 1 unit, the control chain which represents the diesel generation
command is (2.1, 2.3, 2.3, 2.3) which is the blue trajectory in Figure 4.7.
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Fig. 4.6 The microgrid
components in case 3 by
adding storage system

Fig. 4.7 The optimal control chain

Figure 4.8 presents the levelized load, the diesel generation, and storage charge
state when the initial storage charge equals with 1 unit. The total operation cost
which is shown in Figure 4.8 has been decreased by the use of storage system.

Case 4
If we add wind power generation to the microgrid system of case 3 as shown in
Figure 4.9, we face with an SDP problem due to the stochastic behavior of wind
power. The PDF of wind power for the stages is used to solve the SDP problem.
By solving the SDP problem with N D 4, the optimal control of the first stage will
be determined as illustrated in Figure 4.10. But since the problem is stochastic, the
optimal control of the next stages will be determined when we reach that stage by
solving an SDP problem with updated information.
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Fig. 4.8 The microgrid components in case 3 by adding storage system

Fig. 4.9 The microgrid
components in case 4 by
adding wind generation

4.8 Summary and Conclusion

In this research we solved the microgrid operation by stochastic dynamic program-
ming. Microgrid operation was implemented by adding the microgrid components
step by step. Simulation results showed that the total cost of the microgrid operation
reduces by adding controllable loads, storage, and wind power generation one by
one. So demand dispatch and wind power integration enable grid operator to reduce
the operating cost of the system.
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Fig. 4.10 The optimal control of the first stage
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Chapter 5
Spectral Boundary Element Algorithms
for Multi-Length Interfacial Dynamics

P. Dimitrakopoulos

5.1 Introduction

Interfacial dynamics in Stokes flow via the solution of boundary integral equations
has developed considerably in the last decades. The main benefits of this approach
are the reduction of the problem dimensionality by one and the great parallel
scalability. Using this methodology, the dynamics of droplets and bubbles, elastic
capsules, and erythrocytes have been investigated in basic unbounded flows and
in confined microfluidic channels and vascular micro-vessels. One particularly
challenging area of work is related to the study of the problem of multi-length
interfacial dynamics in Stokes flow, such as the droplets coalescence, droplets and
cells in close proximity to microchannel walls as well as tips and necks during
large interfacial deformations. For the accurate solution of these challenging three-
dimensional problems, we have developed a series of efficient and highly accurate
interfacial algorithms based on our Spectral Boundary Element implementation for
Stokes flow. As applications for multi-length interfacial systems, we present here
our investigation of large deformation of soft particles, involving pointed tips and
tails in microchannels.

5.2 Mathematical Formulation

We consider a three-dimensional soft particle such as a droplet, an artificial capsule
(i.e., a fluid volume enclosed by a thin elastic membrane), or an erythrocyte, flowing
inside a microfluidic channel as illustrated in Figure 5.1. To facilitate our discussion
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Fig. 5.1 Illustration of a
capsule flowing inside a
microfluidic channel

3�z 2�zx

z

y

we will call as capsule all these three types of deformable multi-phase particles. The
capsule’s interior and exterior are Newtonian fluids, with viscosities �
 and 
, and
the same density. The capsule size a is specified by its volume V D 4 a3=3 and
is comparable to the micro-geometry’s half-height `z. The average velocity in the
channel is U and the time scale is �f D `z=U.

Assuming low-Reynolds-number flows, the governing equations in the surround-
ing fluid (fluid 2) are the Stokes equations and continuity,

r � � 
 �rp C 
r2u D 0 and r � u D 0

where � is the stress tensor and u the fluid velocity. Inside the capsule (fluid 1),
the same equations apply with the viscosity replaced by �
. It is of interest to note
that in small length-scale systems, such as microfluidic channels, low-Reynolds-
number flows are easily achievable. (For example, in a microfluidic channel with
size `z D 100
m, the Reynolds number remains Re D O.10�3/ even for velocities
up to U D 10mm=s when we consider the density and viscosity of water.)

For the problem illustrated in Figure 5.1, the system surface SB consists of the
capsule interface Sc, the micro-device’s solid surface Ss, and the fluid surface Sf of
the inlets and outlets of the micro-device. At the capsule’s interface, the velocity is
continuous and we define the surface stress vector (or hydrostatic traction)�f from
the stress tensor � and the surface unit normal n, i.e.,

u1 D u2 D u and �f 
 n � .� 2 � � 1/

Here the subscripts designate quantities evaluated in fluids 1 and 2, respectively,
while n is the unit normal which we choose to point into fluid 2. The boundary
conditions on the rest surfaces are

u D 0 on the solid boundary Ss

u D u1 on the fluid boundary Sf

Based on standard boundary integral formulation, the velocity at a point x0 on
the system surface SB may be expressed as a surface integral of the force vector
f D n � � and the velocity u over all points x on the boundary SB,

˝ u.x0/ D �
Z

Sc

ŒS ��f � 
.1 � �/ T � u � n� .x/ dS
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�
Z

Ss[Sf

.S � f � 
 T � u � n/ .x/ dS (5.1)

where the coefficient ˝ takes values 4 
.1 C �/ and 4 
 for points x0 on the
surfaces Sc and Ss [ Sf , respectively. The tensors S and T are the fundamental
solutions for the velocity and stress for the three-dimensional Stokes equations
defined by

Sij D ıij

r
C Oxi Oxj

r3
Tijk D �6 Oxi Oxj Oxk

r5
(5.2)

where Ox D x � x0 and r D jOxj [WaEtAl06c, Di07a].
Owing to the no-slip condition at the interface, the time evolution of the capsule

surface may be determined via the kinematic condition at the interface

@x
@t

D u

To produce a closed system of equations, the surface stress �f on the capsule
interface is determined from the interfacial properties of the specific soft particle.
Thus for droplets, �f is associated with the surface tension �

�f D f 2 � f 1 D �.r � n/n

while for artificial or biological membranes the surface stress �f is related to the
membrane tensions which are affected by the shear and area-dilatation moduli, Gs

and Ga, of the membrane [BaEtAl02, WaEtAl06c, DoEtAl09]. In particular, the
surface stress is determined by the in-plane stresses which in contravariant form
gives

�f D �rs � � D �.�˛ˇj˛ tˇ C b˛ˇ �
˛ˇ n/

where the Greek indices range over 1 and 2, while Einstein notation is employed for
(every two) repeated indices. In this equation, the �˛ˇj˛ notation denotes covariant
differentiation, tˇ D @x=@�ˇ are the tangent vectors on the capsule surface described
with arbitrary curvilinear coordinates �ˇ , and b˛ˇ is the surface curvature tensor
[Po03, DoEtAl09]. The in-plane stress tensor � is described by constitutive laws
that depend on the material composition of the membrane. For example, the strain-
hardening Skalak et al. law [SkEtAl73] relates �’s eigenvalues (or principal elastic
tensions �P

ˇ ; ˇ D 1; 2) with the principal stretch ratios �ˇ by

�P
1 D Gs�1

�2
f�21 � 1C C�22Œ.�1�2/

2 � 1�g
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while to calculate �P
2 reverse the �ˇ subscripts. Note that the reference shape of

the elastic tensions is the quiescent capsule shape while the membrane hardness C
represents the dimensionless area-dilatation modulus, Ga=Gs D 1C 2C [SkEtAl73,
Po03].

The interfacial problem depends on several physical dimensionless parameters,
including the capillary number Ca D 
U=� for droplets or Ca D 
U=Gs for
membranes, the viscosity ratio � and the ratio of the membrane moduli Ga=Gs (or
C), as well as on geometric parameters such as the ratio of the capsule size to the
channel size a=`z.

5.3 Interfacial Spectral Boundary Element Algorithms

To solve the interfacial problem via the boundary integral formulation we have
developed a series of highly accurate interfacial algorithms based on our Spectral
Boundary Element method. In particular, first we developed an interfacial spectral
boundary element method for droplets and bubbles in unbounded and confined
microchannel flows [WaEtAl06c] which was later expanded to membrane interfaces
[DoEtAl08, DoEtAl09]. Both algorithms utilize explicit time integration to advance
the interface in time, and thus they require small time steps for stability, �t <
O.Ca�x/. For stiff interfacial problems, there is a need to make the employed
time step �t independent of grid density or small physical length scales �x
and the capillary number Ca. To achieve this goal, we developed an efficient
fully implicit Interfacial Spectral Boundary Element algorithm for droplets and
bubbles [Di07a] by combining different implicit schemes with our Jacobian-free
Newton iteration. To facilitate the computational study of erythrocytes whose
complicated biological membrane represents a stiff description owing to the highly
inextensible lipid bilayer [SkEtAl73, SkEtAl89], we also developed a non-stiff
cytoskeleton-based continuum erythrocyte modeling [DoEtAl10]. Our computa-
tional results for the deformation and tank-treading motion of erythrocytes in shear
flows are in exceptional agreement with experimental findings from ektacytometry
and rheoscopy systems and reveal the correct shear modulus of the erythrocyte
membrane [DoEtAl10, DoEtAl11, Di02, HeEtAl99].

For any soft particle of interest (i.e., droplet, artificial capsule, or erythrocyte),
the numerical solution of the interfacial problem is achieved through our spectral
boundary element method [WaEtAl06c, Di07a, DoEtAl09]. Briefly, each boundary
is divided into a moderate number NE of curvilinear quadrilateral elements (as seen
in Figure 5.2) which are parameterized by two variables � and � on the square
interval Œ�1; 1�2 [WaEtAl06c, Di07a]. The geometry and physical variables are
discretized using Lagrangian interpolation in terms of these parametric variables.
The NB basis points (�i; �i) for the interpolation are chosen as the zeros of orthog-
onal polynomials of Gauss-type. This is equivalent to an orthogonal polynomial
expansion and yields the spectral convergence associated with such expansions.
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( (a)

(c) (d )

b)

Fig. 5.2 Spectral boundary element discretization of (a) a spherical droplet or capsule, (b) an
erythrocyte, and (c, d) microfluidic geometries

The boundary integral equation (5.1) admits two different types of points.
The collocation points x0 where the equation is required to hold and the basis
points x where the physical variables u and f are specified or determined. Our
spectral boundary element method employs collocation points x0 of Legendre–
Gauss quadrature, i.e., in the interior of the elements. As a result the boundary
integral equation holds even for singular elements, i.e., the elements which contain
the corners of the channel geometry. (Similar approach has been utilized in our
earlier papers for droplets attached to solid surfaces, and vascular endothelial
cells or leukocytes adhering to the surface of blood vessels, e.g., [WaEtAl06a,
WaEtAl06b, Di07b].) In addition, we use basis points x of Legendre–Gauss–Lobatto
quadrature and thus the physical variables are determined in the interior and on
the edges of the spectral elements. For the time integration, we employ a Runge-
Kutta scheme with a typical time step �t=�f � 10�3 for our explicit methods
and a much higher �t for our droplet fully implicit algorithm. Further details
on our spectral boundary element algorithms are given in our earlier publications
[WaEtAl06c, Di07a, DoEtAl09, KuEtAl11].

The main benefits of our interfacial spectral algorithms are the exponential
convergence in determining the transient and steady-state interfacial shape and
the ability to handle complicated solid geometries owing to the boundary element
nature. As seen in Figure 5.3, by employing N D NE N2

B D 2000 spectral points
on the capsule interface, we determine the interfacial curvature with an error of
10�8 and the interfacial deformation with a much smaller error. Even for N D 1000

spectral points, the interfacial accuracy is still several significant digits.
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Fig. 5.3 Exponential convergence owing to the spectral accuracy in determining (a) the interfacial
curvature of different spheroids (based on the exact solution) and (b) the transient deformation of
droplets or capsules (based on the numerical solution of the denser grid employed)

Table 5.1 Efficiency versus the number of processors (or cores) for the calculation (“Integration”)
and the solution (“Solution”) of the system matrix, on Linux Clusters. Owing to the fast solution
(with respect to the CPU time needed for Integration), the overall parallelization for one step (i.e.,
combined Integration and Solution) is practically identical to that for Integration

Linux Cluster

Ncores Integration Solution

1 100.0% 100.0 %

5 99.2% 95.8 %

10 98.1% 92.8 %

15 96.9% 88.4 %

20 94.9% 85.4 %

Our spectral boundary element algorithms have the ability to exploit possible
symmetry planes in the interfacial problems we study. Exploiting m symmetry levels
(where usually m D 1; 2; 3 for a given problem) reduces the memory requirements
by a factor of 4m, the computational time for determining the system matrices by a
factor of 2m, and the solution time via direct system solvers by a factor of 8m. Thus,
the overall computational cost of our algorithm is dictated by the determination
of the system matrices, and thus our algorithm achieves an overall 95% parallel
efficiency on 20 cores as shown in Table 5.1.

5.4 Multi-Length Interfacial Dynamics Problems

In this section, we present several multi-length interfacial problems we have
investigated in our recent publications. Figure 5.4 shows the supercritical evolution
of a droplet in a planar extensional flow where the interfacial shape elongates
significantly and a neck is created in the droplet middle. To account for this large
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Fig. 5.4 Supercritical evolution of a droplet with � D 0:209 in a planar extensional flow for
Ca D 0:163 [Di07a]

deformation, we start with a droplet discretization employing 6 spectral elements
and adaptively increase the number of the spectral elements in the droplet middle
as seen in Figure 5.4(b). For this case, we utilize our fully implicit algorithm with
a large time step of �t=�f D 0:1 while our results are in excellent agreement with
theoretical and experimental findings [Di07a].

A sequence of steady-state shapes of a Skalak capsule in a planar extensional
flow is shown in Figure 5.5. Beyond the large interfacial deformation, the edge
curvature increases significantly while above a critical capillary number, cusped
edges appear with negative curvature owing to a transition of the edge tensions from
positive to negative (or compressive) [DoEtAl08]. Thus, our high-order spectrally
accurate computational methodology predicts stable equilibrium shapes whose
edges become rounded, spindled, and finally cusped with increasing flow rate, in
agreement with experimental findings [Ba91]. This multi-length interfacial problem
shows that the local edge length scale � 1

curvature � 1, i.e., 2 to 3 orders smaller
than the capsule size.

Typical interfacial shapes of strain-hardening Skalak capsules in square and
rectangular microchannels are shown in Figure 5.6. Our membrane spectral bound-
ary element algorithm determines accurately the interfacial shape (to at least 3
significant digits) utilizing rather coarse grids. The multi-length interfacial problem
results from the narrow lubrication gaps between the capsule membrane and the
solid walls and the creation of dimples with negative curvature at the capsule’s
rear. For large capsule sizes, we also developed a scaling analysis for the steady-
state capsule properties utilizing a Landau-Levich-Derjaguin-Bretherton lubrication
analysis extended to membranes [KuEtAl11]. In a rectangular channel, the capsule
extends mainly along the less-confined lateral direction of the channel cross
section (i.e., the channel width), obtaining a pebble-like shape owning to tension
development on the capsule membrane required for interfacial stability [KuEtAl13].

A typical capsule deformation in a microfluidic constriction is shown in Fig-
ure 5.7. Our work highlights the effects of two different mechanisms for non-tank-
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Fig. 5.5 (a) Steady-state capsule shapes with increasing flow rates for a Skalak capsule with C D
1, � D 1 and Ca D 1; 1:5; 2; 2:5; 3, starting from a quiescent spherical shape. (b) Bifurcation in
the edge curvature with creation of spindled and cusped edges [DoEtAl08]

(a () b)

Fig. 5.6 (a) Steady-state capsule shape in a square microfluidic channel for Ca D 0:1, � D 1,
C D 1, and a=`z D 1:3 [KuEtAl11]. (b) Channel and side view of the steady-state capsule shape in
a rectangular microchannel with an aspect ratio of 2, for Ca D 0:2, � D 1, C D 1, and a=`z D 1:1

[KuEtAl13]

Fig. 5.7 The shape of a Skalak capsule with C D 1, a=`z D 1, � D 1, and Ca D 0:1 moving
inside a microfluidic constriction [PaEtAl13]

treading transient capsule dynamics, i.e., the effects of normal stresses and shear
stresses on the capsule membrane [PaEtAl13]. The capsule deformation results from
the combined effects of the surrounding and inner fluids’ normal stresses on the
soft particle’s interface, and thus when the capsule viscosity increases, its transient
deformation decreases, as for droplets. However, the capsule deformation is not able
to create a strong enough inner circulation (owing to restrictions imposed by the
material membrane), and thus the viscosity ratio does not affect much the capsule
velocity and the additional pressure difference.

As a final example of multi-length interfacial dynamics we present the tran-
sient evolution of a low-viscosity droplet (i.e., a bubble) inside a microfluidic
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Fig. 5.8 (a) Interfacial tail curvature along the channel view Cd
xz and the top view Cd

xy as a function
of the bubble centroid xc. The bubble shape, along (b) the channel view and (c) the top view, at
two positions after passing the cross-junction. Parameters: Ca D 0:3, � D 0:01, a=`z D 0:7, and
relative lateral flow rate Qv D 0:75 [BoEtAl15]

cross-junction made by two perpendicular square channels (see Figure 5.2d). To
investigate this problem we utilized our fully implicit interfacial spectral boundary
algorithm with a relatively large time step �t=�f D 0:01 independent of the space
grid �x and the interfacial deformation even during the creation of the long pointed
tails [BoEtAl15].

As seen in Figure 5.8, along the channel view, bubbles develop very pointed
tails for interfacial stability. At sufficiently large lateral flow rates, the multi-length
nature of the interfacial problem is clearly revealed at the creating of sharp tail
curvatures where the local length scale is O.50/ smaller than the bubble length. For
such pointed tails, our implicit algorithm divides the spectral element at the droplet’s
tail into five smaller elements as the pointed tail is formed, to produce sufficient
spatial discretization needed for the accurate determination of the interfacial shape.
Element division is the adaptive mesh reconstruction technique of our spectral
element algorithms so that they are able to produce a reasonable spectral element
discretization, needed especially for local interfacial deformations such as tails and
necks, as described in our earlier papers [WaEtAl06c, Di07a].
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Chapter 6
Kinect Depth Recovery Based on Local Filters
and Plane Primitives

M.A. Esfahani and H. Pourreza

6.1 Introduction

These days RGB-D cameras, especially Kinect (introduced by Microsoft in 2010),
is providing depth map besides the color image of the capturing point of view by
triangulating specific infrared patterns [FrEtAl13]. This new feature is beneficial
for wide number of problems in the area of Computer Vision, especially for mobile
robots to understand the scene and improve their knowledge about its geometry.
To create an accurate road map from the input RGB-D data collected by the mobile
robots, a significant constrain is to have an accurate depth map which helps to have
a better understanding of the desired scene. Having an accurate depth map as input
is also an important point in wide number of other problems [ZhEtAl17, ChEtAl16].

Captured depth map using Kinect sensor suffers from both holes and invalid
measurements called noise. Holes are the pixels that depth sensor was unable to
compute any depth value for them; because of the lighting conditions or being a
glass or mirror in front of the IR camera. Invalid measurements which are mostly
called as noise in the literature are also involved in the captured depth map due to
the lightning condition, the way that the IR pattern is reflecting to the camera, the
properties of the object surface that IR pattern is facing with, and finally lacking
in calibration and measurement of disparities. It is also important to notify that the
value of noise increases according to the distance exponentially (Figure 6.1).

Overall, the problem of depth recovery breaks down into two parts of depth hole
filling and fixing invalid measurements or briefly called denoising. To visualize the
problem and get familiar with this issue, Figure 6.2 exemplifies holes in a depth
map which captured by a Kinect sensor. In the presented depth map, brown points
are holes and no value is measured for them. There exist also invalid measurements
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Fig. 6.1 RGB image
captured with Kinect sensor

Fig. 6.2 Depth image
captured with Kinect sensor

in the illustrated depth map. Figure 6.1 is the correspondence RGB image for the
captured depth map and it is obvious that its resolution is more than the output of the
depth sensor. The RGB camera of the Kinect sensor has the resolution of 640x480
while its depth resolution is 320x240.

Mentioned properties of the Kinect sensor and also its characteristic make
it critical to remove both the invalid measurements and also filling the holes
without estimated depth value. To that, recent works [YaEtAl07, DoEtAl10] applied
Bilateral Filters (BF) [ToMa98] on the depth map to reduce the noise of inaccurate
measurement. Sudden changes on the border of objects help BF to determine a
subjective area and be able to estimate a reliable depth value for that. While it
focuses on the border of objects, it is not recommended for denoising depth maps
that contain high number of holes, since holes also describe a type of border to it.

To overcome with this issue, using the correspondence color image is rec-
ommended. Most of the recent works [ChEtAl12, RiEtAl12, CaSa12] used Joint
Bilateral Filter (JBF) [KoEtAl07] to add properties of color image into their
computations as a guidance. Despite fixing the problem of existence holes and its
high performance, it works worst in the areas where the foreground and background
have same color attributes. Chen et al. [ChEtAl15, ChEtAl13] formulated the
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problem as an energy minimization function that merges behavior of BF, JBF, and
also Joint Trilateral Filter (JTF) [LiEtAl10]. While their method performs well, they
have not included the rich information of the scene structure in their minimization
function which is the focus of this chapter and helps to have a better understanding
about the effect of pixels on each other. Each of the mentioned filters describes and
analyzes in the next steps in detail.

To focus on such filters and see how they work envisage that image I and its
correspondence depth map Z exists. Hence, the recovered depth value for each pixel
in the depth map describes as

Z0 D
X

j2˝i

˛ijZ.j/:

where˝i is set of points with valid depth which are neighbor of pixel i and ˛ij is the
normalized weight that shows the effect of pixel j on pixel i and defines as

˛ij D ˇij
P

j2˝i
ˇij

where the weight ˇij is

ˇij D

8
ˆ̂
<

ˆ̂
:

GS.i; j/GZ.i; j/; for BF

GS.i; j/GI.i; j/; for JBF

GS.i; j/GI.i; j/GZ.i; j/; for JTF

and defines according to the type of the filter that system is using. In this equation,
GS, GI , and GZ are probability density functions and mostly define as Gaussian
probability density function in spatial, color, and depth domain, respectively. Each
of these shows the pairwise effect of each pair of pixels in each of the spaces. Since
all of the introduced filters are local, their value for the center pixel, called ˇij,
is equal to 1. According to relation of distance and noise subject to the Kinects’
characteristic, this value is too large for the center pixel and effects worst. Adaptive
methods also introduced to handle this issue, but they have not achieved grateful
results [ChEtAl15, ChEtAl13].

Using each of the BF, JBF, and JTF filters benefits us to understand the scene
in a specific manner. To use the pros of all of the introduced filters and reduce
effect of their cons and limitations, a minimization framework that merges all these
introduces. In this framework, effective features of different filters come together
and combine with the structure of planes that model the scene. Using structure of the
scene helps to have an initial guess for the holes and also reduces the measurement
noise, since points in the 3D coordinate are standing near each other in a meaningful
way and planes describe that well. Rest of the chapter is going to discuss about the
way planes of the scene extracts and models the scene, the energy minimization
function based on the structure of the scene, and comparing its results with the
result of basic filters.
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6.2 Proposed Method

In order to benefit from the structure of the scene in depth recovery and formulate
that, this part goes towards modeling the structure of the scene using primitives.
Efficient Ransac [ScEtAl07] is a method that helps in this process. In this chapter,
an efficient modified version of that uses: Parallel RANSAC [CoEtAl15], which
extracts planes of the desired scene using normal vector map of the input point
cloud. Since it uses normal vectors to extract independent planes, it is possible to run
this method parallel and benefit from the high speed of Graphical Processing Unit
(GPU), and get a higher probability of best plane extraction by increasing number
of iterations.

RANdom SAmple Consensus, briefly called RANSAC, classifies input data into
two classes of inliers and outliers iteratively. In each iteration, it selects subset of
data points and fits a model, e.g., line or plane, on them. The final result of the
iterative RANSAC is the model that fits high number of inliers. Since RANSAC
works iteratively on a subset of data points, its probability of fitting an accurate
model improves by increasing its number of iterations. For instance, to fit a plane
model, three points in the space are required. Hence, if the probability of extracting
primary plane and selecting sampling point on that plane be 
 and u, respectively,
the minimum number of iterations that require to fit the model calculates using
Equation (6.1). For this reason, having more number of iterations the probability of
fitting exact model improves.

N D log.1 � 
/
log.1 � u3/

: (6.1)

Alehdaghi et al. [FiBo81] introduced Parallel RANSAC based on GPU to extract
planes, and showed that its computation is linear in order. To make RANSAC
parallel, it is essential to determine independent parts that fitted model would not
have any overlap with the other parts or segments. To make independent parts and
extract plane model from them, it is conceivable to extract normal vectors, segment
the image based on them, break down the global problem into small parts, and run
RANSAC locally on each of the segmented boundaries. Segmenting according to
the normal vector extracts the parts with high potential of having the same plane,
since points of a plane are going to have same normal vector.

After estimating correspondent plane to each point of the desired scene, it is
suitable to model the scene and determine an initial guess for all the points. Using
this initial guess, the structure of the scene used as a part of the depth hole filling
process. In the next step, the difference of the normal vector of each point with its
neighbors included as a part of the minimization function to reduce the existence
measurement noise besides the guidance of local filters. Next steps go toward
formulating it using Kinects’ characteristics.

There are some characteristics that neighbor pixels have in any input depth
map. For instance, there exists less depth difference in the smooth areas or large
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error exists in the border of objects. Combining all these characteristics together
a minimization energy function which consists of a fidelity and data term could be
signified. This minimization consists of two terms to combine the two characteristics
mentioned above. Hence, the minimization energy function defines as

min
Z0.i/

Er.Z
0..i//C �Ed.Z

0.i//

where Er and Ed are the regularization term and data term, respectively, and
Z0 presents the recovered depth map. � is a trade-off factor between data and
regularization term. This minimization function was firstly introduced by Chen et al.
[ChEtAl15, ChEtAl13]. In the next steps we are going to define the properties of the
both regularization and fidelity terms and include the effect of the scene structure in
computations.

Data term includes the fact that accuracy of measured depth decreases as the
distance between the object and Kinect sensor increases, and also the fact that
states the depth on the smooth areas of objects is reliable and is unreliable on their
boundary. According to these, the data term defines as

Ed.Z
0.i// D 1

2

X

i2˝d

wi.Z
0.i/ � Z.i//2

where ˝d is the subset of points with a valid measured depth values. This equation
goes toward minimizing the weighted squared difference between the recovered
depth value and the original one according to their information quality. In this part,
the weight w plays grate rule and defines as

wi D Z2max � Z2avgi

Z2max � Z2min

to have more focus on the reliable depth values which are nearer to the Kinect sensor.
In this equation, Zmax and Zmin are the max and min distance that Kinect sensor can
measure and Zavgi is average depth of boundary around pixel i with reliable and valid
depth values. Beside the mentioned characteristics of Kinect sensor, it is important
to include the point that difference between a point and its neighbor in a smooth
region is too small. Hence, the regularization term defines as

Er.U.i// D 1

2

X

i2˝s

X

j2˝i

wij.U.i/ � U.j//2

where ˝s is the subset of points with valid neighborhood and ˝i is each of the
neighbors of pixel i in that subset. wij plays an important rule to classify similar and
dissimilar pixels subject to their region; it checks that by locating boundaries with
sudden changes using different types of information.
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While neighboring pixels have to be similar with low difference, they have to
be dissimilar in the sudden changes of depth and colors where an edge exists.
The coefficient wij controls this behavior by considering color and depth images.
It defines as the normalized coefficient

wij D ˇij
P

j2˝i
ˇij

where

ˇij D
(

GS.i; j/GI.i; j/ i … ˝d; j 2 ˝i

GS.i; j/GI.i; j/GZ.i; j/GN.i; j/ i 2 ˝d; j 2 ˝i

and ˝d states pixels with valid depth value and ˝i defines subset of pixels who
are neighbor to pixel i. As mentioned, GS , GI , and GZ are the probability density
function in the spatial, color, and depth domain. Beside these parameters which
focus on the depth and color images independently, GN applies the theorem that
difference between normal vectors of the points that are on a same plane has to be
minimum. The mentioned probability density functions define as

GS D exp.
�jji � jjj2

�2S
/

GI D exp.
�jjI.i/ � I.j/jj2

�2I
/

GZ D exp.
�jjZ.i/ � Z.j/jj2

�2Z
/

GN D exp.
�jjNZ.i/ � NZ.j/jj2

�2N
/

with variances �S, �I , �Z , and �N . I is intensity, Z is the depth, and NZ is the normal
vector of each pixel. The variance controls the effective area of similarity in each of
the spaces. In sum, Bij describes the pairwise relation between pixels i and j. This
weight includes the difference of normal vectors when there exists valid depth value
for pixel i and helps to include structure of the scene in our computations.

6.3 Experimental Results

The presented method is implemented and tested under the linux OS using OpenCV
and Point Cloud Library (PCL). To evaluate the results of the proposed method,
Middlebury datasets [Mi] that simulates Kinects’ characteristic is used. In the
problem of denoising Kinect depth map, a ground truth of the depth map is required
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Table 6.1 Comparing Mean
Absolute error of the
proposed method with Chen
et al. [ChEtAl15] on the
Middlebury datasets

Dataset Chen et al. (JTF) [ChEtAl15] Proposed Method

Art 0.0073 0.0050

Book 0.0110 0.0087

Doll 0.0064 0.0043

Laundry 0.0229 0.0225

Moebius 0.045 0.044

Reinder 0.0061 0.0037

Fig. 6.3 A simulated depth
input from the Middlebury
dataset (Black points are the
holes and no value exists for
them)

Fig. 6.4 Recovered depth
map for Figure 6.3

to figure out accuracy of the hole filling and denoising. Table 6.1 illustrates the Mean
Absolute Error (MAE) of the depth recovery on Middlebury datasets.

According to the reported results, including structure of the scene in com-
putations using plane primitives helps to reduce the MAE and have a better
understanding of the scene. This reduction is due to the characteristic of selecting a
better supporting regions for pixels in depth map and giving a more realistic pairwise
weights using the normal vector of supporting plane of pixels. To have a better
comparison, Figure 6.3 is an input depth map with a number of holes on it and
Figure 6.4 shows the result of applying the proposed method on that input depth
map.

To have a better comparison, Figure 6.5 shows a part of the result of applying
Chen et al. [ChEtAl15] method on Figure 6.3, and Figure 6.6 shows result of the
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Fig. 6.5 Focusing on a part
of the recovered depth map of
Figure 6.3 using Chen et al.
[ChEtAl15] method

Fig. 6.6 Focusing on a part
of the recovered depth map of
Figure 6.3 using the proposed
method

proposed method applied on that part. It illustrates that using structure of the scene
besides the information that extracts from local filters helps to extract edges of depth
map accurately. Comparing Figure 6.7 and Figure 6.8 also shows that the proposed
method is able to detect holes in the ring and fix that parts. Since the points in the
hole of the ring are not in the sample plane of the ring, they will not have effected
by the points that are on the ring using the proposed method.

Figure 6.9 shows another depth input and results of applying Chen et al. and
proposed method are illustrated in Figure 6.10 and Figure 6.11, respectively.
Comparing the outputs, it is again clear that our method performs well on edges
and keeps them by looking at the scene structure, while Chen et al. [ChEtAl15]
method blurs the edges.



6 Kinect Depth Recovery 61

Fig. 6.7 Focusing on a part
of the recovered depth map of
Figure 6.3 using Chen et al.
[ChEtAl15] method

Fig. 6.8 Focusing on a part
of the recovered depth map of
Figure 6.3 using the proposed
method

Fig. 6.9 A simulated depth
input from the Middlebury
dataset (black points are the
holes and no value exists for
them)

6.4 Conclusion

In this chapter, a novel approach for Kinect depth recovery based on both scene
structure and the guidance of local filters based on color image and depth map is
presented. Modeling scene structure using planes helps to get an initial guess for
points with damaged or unknown depth value. Analyzing results shows that our
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Fig. 6.10 Focusing on a part
of the recovered depth map of
Figure 6.7 using Chen et al.
[ChEtAl15] method

Fig. 6.11 Focusing on a part
of the recovered depth map of
Figure 6.7 using the proposed
method

method is able to keep edges and also detects supporting regions of similar pixels
perfectly. As the future work, we are going to model the scene using some other
primitives like sphere and also benefit from deep Convolutional Neural Networks
(CNN) to understand the model of both RGB image and the depth map.
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Chapter 7
On the Neutron Point Kinetic Equation
with Reactivity Decomposition Based on Two
Time Scales

C.E. Espinosa, B.E.J. Bodmann, and M.T. Vilhena

7.1 Introduction

Neutron point kinetic models are used to simulate transient behaviour of nuclear
reactors, relevant for reactor control [OkEtAl13]. Typically, transients are consid-
ered for short-time intervals only, up to 101 s [Ry03]. The present discussion is an
extension to these type of models, where reactivity is decomposed in a short- and a
long-term contribution. The first one represents operational reactor control, whereas
the second one is due to the change of the chemical composition of the nuclear fuel
as a consequence of burnup [Se07]. As a first step into a new direction we consider
only the effects of the principal neutron poisons on neutron kinetics, i.e., Xe-135 and
Sm-149. Note that the initial condition for Xe-135 and Sm-149 implicates whether
only new reactor fuel or a fuel composition with reused elements is considered. The
proposed model consists in a system of coupled nonlinear equations for the neutron
density, the delayed neutron precursors and the neutron poison decay chains. The
principal question we address in this work is, what is the influence of the short-time
scale characteristics on the long-term behaviour? The equation system is solved
using a decomposition method [Ad88], which expands the nonlinear terms in an
infinite series, obtaining a recursive system, where the recursion initialization is
a homogeneous linear equation and the subsequent recursion steps consider the
nonlinear contributions as source terms that are constructed from the solutions of
the previous recursion steps.

C.E. Espinosa (�) • B.E.J. Bodmann • M.T. Vilhena
Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
e-mail: eduardo.espinosa@ufrgs.br; bardo.bodmann@ufrgs.br; mtmbvilhena@gmail.com

© Springer International Publishing AG 2017
C. Constanda et al. (eds.), Integral Methods in Science and Engineering, Volume 2,
DOI 10.1007/978-3-319-59387-6_7

65

mailto:eduardo.espinosa@ufrgs.br
mailto:bardo.bodmann@ufrgs.br
mailto:mtmbvilhena@gmail.com


66 C.E. Espinosa et al.

7.2 Neutron Poisons

The principal neutron absorbers that are produced from decays of fission products
are Xenon-135 and Samarium-149 [Re08]. Xenon-135 has a cross section for
neutron absorption of 2:6 � 106 barns and is produced predominantly (95%) in
the Tellurium-135 decay chain from Iodine-135 decay. One way consider a simple
model with bulk Iodine yield �I only, so that the simplified decay chain is then
given by

dCI.t/

dt
D �I˙f Nvn.t/ � �ICI.t/ ;

dCXe.t/

dt
D �Xe˙f n.t/C �ICI.t/ � �XeCXe.t/ � �XeCXe.t/ Nvn.t/ ;

where CI and CXe are the Iodine-135 and Xenon-135 concentrations, respectively,
�I and �Xe are the production yields by fission, ˙f is the macroscopic fission cross
section, n is the neutron density, �I and �Xe are the decay constants of Iodine-135
and Xenon-135 and �Xe is the microscopic absorption cross section of Xenon-135.

Samarium-149 has an absorption cross section of 4:1 � 104 barns and is
produced in the decay chain of Neodymium-149 which decays and generates
Promethium-149, and finally Samarium-149. In a simplified fashion, one may model
Samarium-149 production assuming a bulk yield of Promethium by fission so that
the Samarium production is given by the equations

dCPm.t/

dt
D �Pm˙f Nvn.t/ � �PmCPm.t/ ;

dCSm.t/

dt
D �PmCPm.t/ � �SmCSm.t/ Nvn.t/ ;

where CPm and CSm are the concentration of Promethium-149 and Samarium-149,
respectively, �Pm is the production by fission of Promethium-149, �Pm is the decay
constant of Promethium-149 and �Sm is the microscopic absorption cross section of
Samarium-149.

7.3 Point Kinetics with Poisons

The extended point kinetics model contains besides the usual coupled neutron
density and delayed neutron precursor equations also the afore-presented equations
that represent neutron poison effects on the neutron population.

d

dt
n.t/ D 
s.t/ � Ň

�
n.t/C �C.t/ � �Xe Nvn.t/CXe.t/ � �Sm Nvn.t/CSm.t/
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d

dt
C.t/ D

Ň
�

n.t/ � �C.t/

d

dt
CI.t/ D �I˙f Nvn.t/ � �ICI.t/ (7.1)

d

dt
CXe.t/ D �Xe˙f Nvn.t/C �ICI.t/ � �XeCXe.t/ � �XeCXe.t/ Nvn.t/

d

dt
CPm.t/ D �Pm˙f Nvn.t/ � �PmCPm.t/

d

dt
CSm.t/ D �PmCPm.t/ � �SmCSm.t/ Nvn.t/

7.4 Solution by Decomposition

The extended point kinetics model system (7.1) may be casted in matrix form where
for convenience we separated linear from nonlinear contributions

d

dt
Y D A Y C N Y ;

with

Y D .n.t/;C.t/;CI.t/;CXe.t/;CPm.t/;CSm.t//
T ;

A D

0

B
B
B
B
B
B
B
@

.
s� Ň/
�

� 0 0 0 0
Ň
�

�� 0 0 0 0

�I˙f Nv 0 ��I 0 0 0

�Xe˙f Nv 0 �I ��Xe 0 0

�Pm˙f Nv 0 0 0 ��Pm 0

0 0 0 0 �Pm 0

1

C
C
C
C
C
C
C
A

and

N D

0

B
B
B
B
B
B
B
@

0 0 0 ��Xe Nvn.t/ 0 ��Sm Nvn.t/
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ��Xe Nvn.t/ 0 0

0 0 0 0 0 0

0 0 0 0 0 ��Sm Nvn.t/

1

C
C
C
C
C
C
C
A

:

Note that nonlinearity is driven by the neutron density only.
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In order to solve the equation system, for convenience we expand the solution
into an infinite series Y D P1

iD0 Yi. These new degrees of freedom allow one to
cast the original problem into a recursive scheme, where the recursion initialization
is defined by the linear part of the equation system with known solution that obeys
the initial conditions of the original problem.

d

dt
Y0 D A Y0

Y0.0/ D YI

Here YI is the vector of non-homogeneous initial conditions. This system has a
solution given by

Y0.t/ D exp .At/YI :

All subsequent recursion steps are then set-up by a linear differential equation
system, where the nonlinearity is present as a source term, which is composed from
the solutions of the preceding recursion steps

Yk.t/ D
Z t

0

exp .A.t � �//Fk.Y0.�/;Y1.�/; : : : ;Yk�1.�// d� ;

with

Fk.Y0;Y1; : : : ;Yk�1/ D �
0

@Nk�1
k�1X

jD0
Yj C

0

@
k�2X

jD0
Nj

1

AYk�1

1

A :

Once the series by Yk is convergent one may truncate the expansion at a finite k such
that the solution is within a prescribed precision.

7.5 Numerical Results

In the following we present results for the proposed model and its solution using as
initial conditions new fuel elements. Thus, the initial conditions are

n.0/ D 1 Œcm�3� ;

C.0/ D 100 Œcm�3� ;

CI.0/ D 0 Œcm�3� ;

CXe.0/ D 0 Œcm�3� ;

CPm.0/ D 0 Œcm�3� ;

CSm.0/ D 0 Œcm�3� :
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Fig. 7.1 Time dependence of the neutron density n.t/ with short-term reactivity 
s D �0:0001t

We present two cases, one with linear and negative reactivity and a second case
with oscillating reactivity, i.e.,


s.t/ D 
0t ;


s.t/ D 
0 sin.at/ ;

where 
0 and a are constants. We show the solutions for n.t/, C.t/, CXe.t/ and CSm.t/
for a time interval of 103 hours, where in Figures 7.1, 7.2, 7.3, and 7.4 the case for

s D �0:0001t is shown, and Figures 7.5, 7.6, 7.7, and 7.8 show the results for
oscillatory reactivity 
s D 0:0001 sin

�
2�
12

t
�
.

For the linear case the neutron density follows the expected shape. Due to an
increasing negative reactivity, the neutron density also decreases, as a consequence
the fission rate decreases and so does the delayed neutron precursor concentration.
In fact, the time evolution of the neutron density and precursor concentration is
similar. Because of the time scales that characterize the decay chains that lead to
Xenon-135 and Samarium-149 the time evolution of Xenon-135 has an increase
and because of its half-life of t.Xe/

1=2 D 9:2h, after a maximum follows a decay curve.
Differently for Samarium-149, which is a stable nuclide, the concentration curve
increases until an asymptotic limit. Because of a vanishing neutron density there is
no mechanism to reduce the CSm other than neutron absorption.

In the case with oscillatory reactivity, the neutron density as well as the precursor
concentration follows the imposed time signature. Since the precursor concentration
is produced in decay chains of the fission products, there is a phase difference
between the neutron density and the precursor concentration variation. Due to long
time scales the Xenon concentration increases until attaining an asymptotic value
whereas the Samarium concentration increases without saturation, at least in the
considered time interval. The obtained results for both cases are consistent with the
physics of the considered problem.
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Fig. 7.2 Time dependence of the precursor concentration C.t/ with short-term reactivity 
s D
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Fig. 7.3 Time dependence of the Xenon concentration CXe.t/ with short-term reactivity 
s D
�0:0001t

7.6 Algorithm Stability

In order to analyse the stability of the truncated solutions of the equation system
we use as criterion the `1 norm for each quantity (see Table 7.1). To this end, we
determine the difference of successive approximations Yi � Yi�1 for each recursion
i D 1 to i D 9. Table 7.2 of successive approximations shows the `1 norms for each
term of the concentration n.t/, C.t/, CI.t/, CXe.t/, CPm.t/ and CSm.t/. By inspection
one observes that with increasing i the contributions are monotonically decreasing.
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Moreover, the norm of the differences of subsequent terms is also decreasing, which
makes it plausible, that the solution is convergent. This is also supported by an
analysis of the underlying physics of the considered phenomenon.

It is noteworthy that the present method does not impose restrictions on time
intervals since the decomposition method determines the solution for each time
independently of previous times and thus should work for short-time intervals the
same way as for large time intervals independent of any typical time scales of
the problem such as half lives or time constants related to short-term reactivity
scenarios.
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7.7 Conclusions

In the present contribution we proposed a new model for nuclear reactor point
kinetics, where besides the usual short-term reactivity changes (� 101 s), that stand
for reactor operation effects, also long-term effects by neutron poisons (� 104 s)
due to burnup were taken into account. It is noteworthy, that the traditional point
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Table 7.1 `
1

norms of n.t/, C.t/, CI.t/, CXe.t/, CPm.t/ and CSm.t/

i knik1 kCik1 kCi
Ik1 kCi

Xek1 kCi
Pmk1 kCi

Smk1
1 0.06572480134 29.968904285 0.0587495689 0.08306582432 0.0714369800 0.2906340211

2 0.02767084870 9.4378906360 0.0182631570 0.02535374161 0.0204477069 0.0570586733

3 0.01031835731 2.8555089831 0.0054609233 0.00745664358 0.0057110088 0.0123106734

4 0.00357952975 0.8396462338 0.0015880676 0.00213511764 0.0015654359 0.0027716243

5 0.00118282910 0.2417877365 0.0004524942 0.00059947512 0.0004231887 0.0006388421

6 0.00037731518 0.0685258514 0.0001269417 0.00016581478 0.0001132054 0.0001494252

7 0.00011716885 0.0191787117 3.517827e-05 4.5327577e-05 3.003590e-05 3.530001e-05

8 3.5619862e-05 0.0053133036 9.652444e-06 1.2273585e-05 7.917164e-06 8.399154e-06

9 1.0643279e-05 0.0014596553 2.626865e-06 3.2974061e-06 2.075763e-06 2.009266e-06

kinetics model is linear, whereas the inclusion of neutron poisons depend on the
neutron population and thus turn the model a nonlinear one. The coupled equation
system was solved in analytical representation using a decomposition method in
the spirit of reference [Ad88], [Ad94]. After 9 recursion steps a solution was
obtained that provided accurate results for the neutron density, the precursor and the
neutron poison concentrations. The obtained solution allows to calculate transient
behaviour of nuclear reactor point kinetics for new reactor fuel as well as fuel
compositions with reused fuel elements. We illustrated the model with its solution
by two case studies, a negative linearly decreasing reactivity and an oscillatory case,
and showed that the found results are in an agreement with physical expectation. In
the oscillatory case an unexpected behaviour occurs at small times with a Samarium
concentration that exceeds the Xenon concentration, which is considered counter
intuitive when evaluated by the involved half lives. Moreover, this finding clearly
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shows that there is an influence of small time scales on large time scales and vice
versa. In a future work spatial degrees of freedom shall be considered, where the
present work may serve as a reference for a hierarchical construction of the model.
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Chapter 8
Iterated Kantorovich vs Kulkarni Method
for Fredholm Integral Equations

R. Fernandes and F.D. d’Almeida

8.1 Introduction

When solving a Fredholm integral equation of the second kind

T' � z' D f ; (8.1)

where T W X ! X is a linear compact integral operator defined by

.Tx/.s/ WD
Z b

a
g.js � tj/x.t/dt; s 2 Œa; b�; (8.2)

X being a Banach space and 0 ¤ z 2 re.T/, the resolvent set of T, among the
projection methods available, Iterated Kantorovich and Kulkarni’s discretization are
comparable in terms of convergence rate.

For any f 2 X, Equation (8.1) has a unique solution ' 2 X, ' D R.z/f , where
R.z/ WD .T � zI/�1.

Projection methods solve the approximate problem

.Tn � zI/'n D f .or �nf /; (8.3)

where Tn W X ! X is a bounded linear operator and we take here approximations
such that .Tn/n2N is ��convergent to T , and so z is in the resolvent set of .Tn/, for n
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large enough, and there is uniqueness of the solution of the approximate equation

'n D Rn.z/f (or �nf ); where Rn.z/ WD .Tn � zI/�1

(see, for instance, [AhEtAl01]).
To define Tn we use a projection operator �n onto a finite dimensional subspace

Xn such that �n
p! I.

In the following, we recall the definition of classical methods in terms of this
projection, defined with the help of a general basis in Xn.

Let en D .ei/
n
iD1 contain n linearly independent functions on X, .e�i /

n
iD1 an adjoint

basis on X� defined by

hej; e
�
i i D ıi;jI for i; j D 1; : : : ; n;

and Xn WD Spanfei W i 2 f1; : : : ; ngg.

The projection �n is then defined by �nx WD
nP

jD1
hx; e�j iej, for x 2 L1.Œa; b�/.

Classical projection methods:
Classical Galerkin approximation: Tn D TG

n WD �nT�n

TG
n x D

nX

jD1

nX

kD1
< x; e�k >< Tek; e

�
j > ejI

Kantorovich approximation: Tn D TK
n WD �nT

TK
n x D

nX

jD1
< Tx; e�j > ejI

Sloan approximation: Tn D TS
n D T�n

TS
n x D

nX

jD1
< x; e�j > Tej:

The solution of Equation (8.3) for the methods defined above will be denoted by
superscript G;K; S, respectively, for Galerkin, Kantorovich, and Sloan.

The idea of the Kulkarni (Rekha Kulkarni) method is to include in the operator
TRK

n the information available in both the operators TK
n and TS

n . So its approximation
will be defined by (see [Ku03a], [Ku03b], [Ku04])

Tn D TRK
n WD �nT C T�n � �nT�n D TK

n C TS
n � TG

n

and its solution denoted by 'RK
n .
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The Iterated Kantorovich [Sl84] is an improvement of the Kantorovich approxi-

mate solution using Equation (8.1) thus yielding 'IK
n D 1

z
.T'K

n � f /.

In this work we compare Kulkarni and Iterated Kantorovich methods, focusing
on the implementation details and the computational cost of building the matrices
needed in the linear systems involved, when applied to a Fredholm integral equation
of the second kind with weakly singular kernel (see Section 8.2).

8.2 Details of Implementation in the Case of Weakly
Singular Kernels

We will address the case of integral operators where the weakly singular kernel of
(8.2) is defined by g W �0;C1Œ ! � such that

g.0C/ D C1;

g 2 L1.Œ0;C1Œ/:

As an example of such kernel we often take a simplified model of radiative
transfer in stellar atmospheres, [Ru04] where g is a multiple of the first exponential
integral function E1 [Ab60],

g.�/ WD $

2
E1.�/ D $

2

Z 1

0

exp.��=
/



d
; � > 0;

a D 0; b D ��; � 2 Œ0; ���; �� 2�0;C1Œ:

Let the basis en D .ej/
n
jD1 for Xn be made of the piecewise constant canonical

functions when X is the space of Lebesgue integrable functions,

ej.s/ WD
�
1 for s 2 Œ�j�1; �j�;

0 otherwise

based on the grid Gn WD .�j/
n
jD0 such that �0 WD a, �n WD b, and hj WD �j � �j�1 > 0:

Its dual basis en� is made of local mean functionals e�j defined by

hx; e�j i WD 1

hj

Z �j

�j�1

x.t/dt;

and hen; en�i WD In, the identity matrix of order n.
The classical methods recalled in the Introduction need the solution of a linear

system with coefficient matrix An.i; j/ WD hTej; e�i i, i; j D 1; : : : ; n, and its vector
solution is afterwards used to obtain the solution in the space L1, by a different
formula for each method.
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For the Kulkarni method the Equation (8.3), .TRK
n � zI/'RK

n D f , can be
decomposed into its projection onto Xn and onto .I � �n/X:

8
<

:

.�nT � z�n/'
RK
n D �nf ;

.I � �n/.T�n � zI/'RK
n D .I � �n/f :

We can decompose correspondingly 'RK
n D 'RK

n;1 C 'RK
n;2 and f D f1 C f2, and

obtain

8
ˆ̂
<̂

ˆ̂
:̂

�

�nT C 1

z
�nTT � 1

z
�nT�nT

�

'RK
n;1 � z'RK

n;1 D f1 C 1
z�nTf2;

'RK
n D 'RK

n;1 C 1

z

�
T'RK

n;1 � �nT'RK
n;1 � f2

�
:

The first equation can be written as

nP

kD1

nP

jD1
h'RK

n ; e�j ihTej; e�k iek C 1
z

nP

kD1

nP

jD1
h'RK

n ; e�j ihTTej; e�k iek�

� 1
z

nP

tD1

nP

kD1

nP

jD1
h'RK

n ; e�j ihTej; e�k ihTek; e�t iet � z
nP

jD1
h'RK

n ; e�j iej D
nP

jD1
hf ; e�j iej C 1

z

nP

jD1
hTf2; e�j iej:

Applying e�i , for i D 1; : : : ; n, we get

.An C 1

z
Bn � 1

z
AnAn � zIn/x

RK
n D fn C 1

z
bn;2; (8.4)

where

xRK
n .i/ WD h'RK

n ; e�i i; Bn.i; j/ WD hTTej; e
�
i i; fn.i/ WD hf1; e�i i; bn;2.i/ WD hTf2; e

�
i i;

for i; j D 1; : : : ; n.
We will denote by Cn the coefficient matrix of System (8.4).
After solving System (8.4) the solution 'RK

n is given by

'RK
n D

nX

jD1
xRK

n .j/ej C 1

z

0

@
nX

jD1
xRK

n .j/Tej �
nX

jD1
.AnxRK

n /.j/ej � f2

1

A :
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So, to obtain the Kulkarni approximation the solution of a linear system is

required and afterwards the application of T to
nP

jD1
xRK

n .j/ej, which can be repre-

sented through a pre-multiplication by a matrix representing T on a subspace of
much greater dimension.

As for the Iterated Kantorovich the approximation is obtained by using the
Equation (8.1) to set a fixed point iteration and perform one step of this, starting
with the approximation of Kantorovich, thus yielding

'IK
n WD 1

z
.T'K

n � f / D 1

z
.T.

nX

jD1
xK

n .j/ej � 1

z
f2/ � f /: (8.5)

The solution of a linear system with An as coefficient matrix is needed to obtain

xK
n and afterwards the application of T to

nP

jD1
xK

n .j/ej is required in Equation (8.5).

This can be done through a pre-multiplication by a matrix representing T on a
subspace of much greater dimension.

The coefficients of the matrix An are given by

An.i; j/ D hTej; e
�
i i

D 1

hi

Z �i

�i�1

Z �j

�j�1

g.jt � � j/ d� dt;

D $

2hi

Z �i

�i�1

Z �j

�j�1

E1.jt � � j/ d� dt;

while the coefficients of Bn are given by

Bn.i; j/ D hTTej; e
�
i i

D 1

hi

Z �i

�i�1

Z ��

0

g.jt � � j/.Tej/.�/ d� dt

D 1

hi

Z �i

�i�1

Z ��

0

Z �j

�j�1

g.jt � � j/g.j� � sj/ ds d� dt

D $2

4hi

Z ��

0

Z �i

�i�1

Z �j

�j�1

E1.jt � � j/E1.j� � sj/ ds dt d�;

for i; j D 1; : : : ; n.
Error bounds for the relative error of the solution set in terms of k.I � �n/Tk

and
k.I � �n/f k

k'k can be seen in [AhEtAl01], and relations of these bounds with

the effective basis used in different cases are given in [AhEtAl10, AhEtAl09], and
[AlEtAl13], for the classical methods.
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In [AlFe16] we proved error bounds for the methods here addressed:
for n large enough and z ¤ 0 in the resolvent set of T ,

k'IK
n � 'k
k'k � 2Ck.I � �n/Tk k.I � �n/T

�k;

k'RK
n � 'k
k'k � 2Ck.I � �n/Tk2 C �

jzj k.I � �n/T.I � �n/k;

where C WD k.T � zI/�1k=jzj depends on the norm of the resolvent operator, and
� WD kT � zIk k.T � zI/�1k is the condition number of T � zI relative to inversion.

These bounds show that Iterated Kantorovich and Kulkarni’s discretization are
comparable in terms of convergence rate.

8.3 Numerical Results

When comparing Iterated Kantorovich and Kulkarni methods we see that they rely
on the solution of a linear system of the same dimension n. This can be large to
achieve the desired error, but in this illustration we will only deal with small values
of n due to the time required by the computation of matrix Bn.

We will use n D 100, and in this case we will take �? D 50, or n D 500 with
�? D 100. The other values of the constants used are z D 1 and $ D 0:75, and the
right-hand side function is defined by

f .�/ WD
� �1 if 0 � � � ��=2;

0 if ��=2 < � � ��:

The complexity of the formula of Bn in the case of weakly singular kernels led
us to use the software Mathematica (see [Math]) to compute it approximately, in
this case Mathematica is not able to compute this triple integral symbolically due to
singularities.

In order to compare the CPU times we built An with Mathematica too, although
in previous works we had computed the integrals (double in this case) analytically
and the functions En in MatLab (see [MatLab]).

Table 8.1 shows the CPU time for the computation of matrices An, Bn, and Cn, as
defined in Section 8.2. Remark that the computing time of Cn includes the time of
Bn. We show both to stress that most of the time of Cn comes from building Bn.

Table 8.1 CPU time in
seconds for the computation
of matrices An, Bn, and Cn

n An Bn Cn

100 127 2165 2292

500 3019 31857 34876
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Table 8.2 CPU times in
seconds for the three methods

n Kantorovich Iterated Kantorovich Kulkarni

100 0.047 0.091 0.068

500 0.094 0.114 0.182

Table 8.3 CPU time in
seconds for the computation
of matrices An, Bn, and Cn

n An Bn Cn

500 3286 13236 16522

Table 8.4 CPU times in
seconds for the three methods

n Kantorovich Iterated Kantorovich Kulkarni

500 0:121 0:134 0:190

Table 8.2 reports the CPU times for the Kantorovich, Iterated Kantorovich, and
Kulkarni excluding the time to build the coefficient matrix of the linear system An

or Cn.
The details of implementation described in Section 8.2 can easily be adapted

to other kernels. As another example of a weakly singular kernel we will take, for
instance,

g.�/ D � ln.�=2/; � 2�0; 2�:

We will consider z D 4,

f .�/ WD
� �1 if 0 � � � 1;

0 if 1 < � � 2;

and n D 500.
Table 8.3 shows the CPU time, in seconds, required to compute the matrices An,

Bn, and Cn of this example. They were computed approximately, by the software
Mathematica, with formulæ similar to the ones given in Section 8.2 with this kernel

replacing
$

2
E1.

Table 8.4 shows the CPU time, in seconds, required by the iterations of the
Kantorovich, Iterated Kantorovich, and Kulkarni methods, excluding the time
required to build the matrices An, Bn, and Cn, for the � ln example.

8.4 Conclusion

The Kulkarni and Iterated Kantorovich are comparable in terms of accuracy and
computational cost inside each iteration, but for weakly singular kernels and non-
self-adjoint operators, the complexity of the formulæ to build the coefficient matrix
Cn of the linear system involved in each iteration of Kulkarni method makes it much
more expensive in computation time.
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We showed that the computation of the matrix Cn, for typical examples of weakly
singular kernel, is feasible with Mathematica in the approximate mode, for moderate
values of n and therefore not very small values of the grid size, but at a considerable
cost in time. MatLab cannot compute the triple integrals of matrix Bn directly.
For Iterated Kantorovich method only matrix An is needed and this can be done
both in Mathematica and Matlab (after long analytical simplifications of the double
integrals in the formulæ, as in [AlEtAl13]), which takes much less time. As future
work we intend to do similar analytic computations for the triple integrals involved
in Bn.
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Chapter 9
Infiltration Simulation in Porous Media:
A Universal Functional Solution
for Unsaturated Media

I.C. Furtado, B.E.J. Bodmann, and M.T. Vilhena

9.1 Introduction

In a previous work on infiltration processes in porous media [FuEtAl15] a
methodology to construct a parametrised solution for the Richards equation was
discussed. The found parametrised solution was given in form of a relatively
compact formula, which was validated by one soil type and its associated parameter
set. Since the challenge of the problem are the nonlinearity of the Richards equation
and the singular initial condition, it was not evident whether the found formula is
valid for a representative selection of different soils, i.e. is “universal”, which is the
principal focus of the present contribution.

To this end we employ the parametrised solution, which was derived in reference
[FuEtAl15], and optimise the parameter set by the method of least squares
followed by the nonlinear Newton-Raphson method for application to twelve
different soils and their associated hydraulic conductivity and capacity, respectively.
The best-known model that relates soil parameters to hydraulic conductivity K,
matrix potential  and soil moisture � is based on the Van Genuchten model
(1980) which can be found in ref. [Ge80]. In this work the authors used these
exponential relations for soil-water parametrisation to obtain a solution of an
approximate problem for the one-dimensional vertical infiltration case. To the best
of our knowledge, no general solution exists in the literature that considers a general
soil-water parametrisation as, for instance, the Van Genuchten relations.
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9.2 Modelling Infiltration by the Richards Equation

The governing equation describing infiltration in porous media is a result of a
combination of the Darcy-Buckingham and the continuity equation,

Eq D �K.�/ Er˚ and
@�

@t
D � ErEq ; (9.1)

where Eq in .m=s/ is the specific flow, K.�/ in .m=s/ is the hydraulic conductivity
depending on soil moisture � and ˚ signifies the hydraulic potential in units of
.m/. Equation (9.1) exhibits, depending on the nonlinear model for the hydraulic
conductivity a considerable complexity, when approximate solutions in form of
analytical expressions are searched for. Moreover, this equation is established
for steady-state condition or dynamical equilibrium. Most infiltration scenarios in
nature are transients, and to describe such processes time dependence is introduced
by the continuity equation.

For convenience one may split ˚ D  C z into the matrix potential that contains
the essential effects attributed to porosity, and the gravitational potential represented
by the soil depth. Combining the Darcy-Buckingham and continuity equation yields
the Richards equation.

C. /
@ 

@t
� ErŒK. /r � � dK. /

d 
Er D 0  2 	 � Œ0;T� (9.2)

Here C. / D d�
d is called hydraulic capacity (m�1), 	 � � is the physical

domain and t represents time. Equation (9.2) is subject to the boundary condition
Q D J, where Q is a boundary operator and J a known function on the boundary.
This equation governs the movement of water in unsaturated soil and can be applied
in the whole domain even for distinct saturated and unsaturated areas.

Equation (9.1) needs a closure, so that the system can be solved with one
unique solution for  . A parametric description of �. / and K. / or K.�/ is
used to estimate the otherwise open hydraulic soil-water properties. Mualen [Mu76]
derived a functional model for the hydraulic conductivity using the experimental soil
retention curve. The usefulness of this model may be associated with the fact that
measurements of the hydraulic conductivity are an unsolved challenge. Thus, this
model was used as a starting point for further parametrisations as the ones by Van
Genuchten and Brooks-Corey [Ge80, BrCo64]. The model by Brooks-Corey is a
power law model that introduces a finite value of air entrance, that is associated with
the largest pore present, so that beyond this limit the soil is considered saturated. The
classic Van Genuchten model describes a function without the value of air entrance.
In [VoEtAl01] a modified model of Van Genuchten was presented that incorporates
the value of air entrance, resulting in better predictions in comparison to the original
model. Note that the modified Van Genuchten model is considered one of the most
adequate models to predict hydraulic parametrisations.
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In the model of Mualen, the authors assume that pores are connected by distances
proportional to the pore radius. In each pore the Poiseuille law is assumed to
be valid. Moreover, the tortuosity factor together with moisture content may be
represented by a power law containing effective saturation. Thus, the relative
permeability is given by

K.Se/ D S�e

2

4

R Se

0
1

 .S/dS
R 1
0

1
 .S/dS

3

5

2

; (9.3)

where Se.�/ D .���r/=.�s ��r/with �s and �r the saturated and residual soil-water
content. One obstacle of this model resides in the determination of the integral

Z Se

0

1

 .S/
dS D �

Z 1

 .Se/

1

 .S/

dS

d 
d : (9.4)

Equation (9.3) was derived based on the Poiseuille law and results in a relative
conductivity that is dominated by the larger pores. Due to the introduction of air,
the model shall exhibit an increase in dS=d such as to regularise 1= for  ! 0.
Note that the classical model of Van Genuchten solves also analytically the Mualen
model. In the literature the Van Genuchten model is frequently also cited as the
Genuchten-Mualen model. The effective saturation may be described in terms of
the hydraulic potential as

Se D Œ1C .˛ /n��m ; (9.5)

where n;m and ˛ are parameters to be determined by fit to data. Upon inserting the
inversion of equation (9.5) into the integral (9.4) a solution is found where m D
1 � 1=n is used.

Z Se

0

1

 .S/
dS D 1 � .1 � S1=m

e /m

K.Se/ D S�e Œ1 � .1 � S1=m
e /m�2

Note that this model does not include explicitly air entrance

dS

d 
D �˛mn.˛ /n�1Œ1C .˛ /n��.mC1/ ;

so that only for n > 2; dS=d decreases sufficiently fast as  tends to zero. In other
words explicit effects of air entrance are essential for n < 2.

A model modified of Van Genuchten that includes air entrance was derived
in [VoEtAl01, ScGe06]. The authors introduced a minimum capillarity  s and a
heuristic parameter �m > �s without indicating an explicit physical significance.
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The resulting model that describes moisture retention is given by

�. / D �r C �m��r
.1Cj˛ jn/m  <  s

�s  	  s
(9.6)

where �m D �r C .�s � �r/.1 C j˛ sjn/m. Upon combining Equation (9.6) and
Equation (9.7), one obtains a model for the modified hydraulic conductivity.

K.Se/ D KsS�e
h
1�F.Se/

1�F.1/

i2
 <  s

Ks  	  s

(9.7)

where F.Se/ D Œ1� .Se/
1=m�m and Ks is a conductivity .m=s/ scale for the saturated

case. Vogel (2001) [VoEtAl01] suggested for s to set values between �1 and �2cm,
and Schaap and co-worker (2006) [ScGe06] obtained a value by optimisation of
�4cm, where from the author concluded that  s shall be used as an additional fit
parameter. For a more complete discussion of this subject see reference [IpEtAl06].

9.3 The Parametrised Solution

From comparison to experimental findings one expects the matrix potential to
assume negative values in the range of Œ�10m; 0m�. The solution  0.z; t/ of
the stationary problem to (9.2) was found to have a predominant contribution
[FuEtAl15] and further recursions to improve the solution turned the analytical
expression more complicated but providing only spurious corrections, so that they
may safely be neglected.

 0.z; t/ D a1 tanh.a3z C a4/C a2

The constants may be found using the Richards equation and minimising the remain-
der as shown further down for the time dependent problem. Phenomenological
arguments allow to extend the stationary solution including a time dependence as
follows. With increasing infiltration the surface region approaches local saturation
so that the scenario characterised by the initial condition is shifted towards
increasing depth. Saturation is already present in the asymptotic behaviour of
the hyperbolic tangent function and because of the initial condition ( .z; 0/ D
�10;�L � z < 0) the argument of the tanh function shall be singular for t D 0.
The simplest way to introduce a shift is adding a term a4=t to z in the argument of
the hyperbolic tangent function. Last, we apply some “adjustment” to our solution
by observing that there exists an asymmetry between the convex and concave parts
of the profile, i.e. the edge towards the saturated region is sharper than the one at the
edge where the matrix potential assumes a numerical value of approximately �10 m.
This may be achieved without introducing additional parameters by multiplying the
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hyperbolic tangent’s argument by an asymmetry factor 1 C exp
�
a3z C a4 C a5

t

�
,

that makes use of the previous argument of the hyperbolic tangent function. Thus
we arrive at a solution in parametrised form, that we evaluate using the original
Richards equation.

 .z; t/ D �a1 tanh
��
1C ea3zCa4C a5

t

	 �
a3z C a4 C a5

t

		
C a2 (9.8)

Now, the matrix potential  is given as a parametrised function  D  .z; tI faig/
with parameter ai (i D 1; 2; 3; 4; 5), where the unknown parameter set has to be
determined.

To adjust the parameter set we insert the parametrised solution ( P) given in
expression (9.8) into the governing equation (9.2), which for convenience we write
in a form where all terms are on the left-hand side and consequently the right-hand
side shall be zero. Let ˝R be the space-time differential operator that represents the
Richards equation with all terms to the left, then for the true solution ˝RŒ T � D 0

holds. Since our solution is an approximate solution the right-hand side differs from
zero by a residual term

jj˝RŒ P�jj D R.z; t/: (9.9)

Thus, the solution presented in expression (9.8) is optimised minimising R.z; t/
using the method of nonlinear least squares optimisation and refined by the Newton-
Raphson method. Some of the constants can be determined á priori to optimisation.
We can fix the constants a1 and a2 directly using the boundary conditions where

a1 D . P.0; t/ �  P.L; t//=2 and a2 D  P.0; t/ � a1

The remaining parameter is determined using the aforementioned minimisation
of R.

jj˝RŒ P�jj ! min :

Since the asymptotic behaviour of the solution was fixed using the boundary
conditions we use a discrete set of points in the range that contains maximum
curvature and the inflection point to optimise fa3; : : : ; a5g. The optimisation may
then be simplified using an expansion of the hyperbolic tangent function around
the inflection point (at z0), i.e. where the argument of the function is zero a3z0 C
a4 C a4

t D 0, which allows to solve the minimisation problem in a straightforward
fashion.
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9.4 Comparison to Benchmark Simulations (HYDRUS)
and Self-Consistency Test

The parameter sets that were used to validate the “universality” of the approximate
solution formula refer to the twelve types of soils shown in Table 9.1 for situations
that consider infiltration of water in a column of initially dry and homogeneous
soils. We considered as depth range in soil Œ0;L D 1m� and the initial and boundary
conditions  .z; 0/ D �10m, �L � z � 0;  .0; t/ D �0:75m and  .�L; t/ D
�10m for t > 0. Figures 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, and 9.12
show the computed stationary matrix potential and the self-consistency test along
the vertical coordinate for the parametrised solution. Figures 9.1, 9.2, 9.3, 9.4, 9.5,
9.6, 9.7, 9.8, 9.9, 9.10, 9.11, and 9.12 (left) show the matrix potential with soil depth
for the considered soil type. As expected sand soils show the more intense drainage
in comparison to the other soils considered. One may also observe that the matrix
potential for clay soil has a rather extended region where the transition between
unsaturated to saturated soil occurs. This may be attributed to irregular pore shapes
of the soil grains and thus voids, where moisture may be retained. Also shown in
the figures are comparisons with benchmark results using the HYDRUS software,
a program package for simulating water, heat, and solute movement in two- and
three-dimensional variably saturated media.

In order to analyse the quality of the found solution the reminder defined in
equation (9.9) is shown in Figures 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10,
9.11, and 9.12 (right). The curves that show self-consistency of the solution with
depth indicate by its numerical values that the residue lies between 10�2 � 10�3
and in the sand soil case even as small as 10�6 so that one may conclude the
determined parametrised solution already reproduces with fair fidelity the exact
solution. Moreover, by virtue of the model being an idealisation with its inherent
model error no further refinements are of need.

Table 9.1 Soil hydraulic parameter (average values)

Soil �r.m3=m3/ �s.m3=m3/ ˛.1=cm/ n Ks.cm=s/

(1) Sand 0.045 0.430 0.145 2.68 8:25� 10�2

(2) Loam sand 0.057 0.410 0.124 2.28 4:05324 � 10�3

(3) Sand loam 0.065 0.410 0.075 1.89 1:22801 � 10�3

(4) Loam 0.078 0.430 0.036 1.56 2:88� 10�4

(5) Silt 0.034 0.460 0.016 1.37 6:94444 � 10�5

(6) Silt loam 0.067 0.450 0.020 1.41 1:25� 10�4

(7) Sandy clay loam 0.100 0.390 0.059 1.48 3:63889 � 10�4

(8) Clay loam 0.095 0.410 0.019 1.31 7:22� 10�5

(9) Silt clay loam 0.089 0.430 0.010 1.23 1:94444 � 10�5

(10) Sandy clay 0.100 0.380 0.027 1.23 3:33333 � 10�5

(11) Silty clay 0.070 0.360 0.005 1.09 5:55556 � 10�6

(12) Clay 0.068 0.380 0.008 1.09 5:55� 10�5

Variation O.101/ O.0/ O.101/ O.100/ O.103/
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Fig. 9.1 Matrix potential profile and self-consistency with depth for a sand soil (1)
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Fig. 9.2 Matrix potential profile and self-consistency with depth for a loam sand soil (2)
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Fig. 9.3 Matrix potential profile and self-consistency with depth for a sand loam soil (3)

9.5 Conclusions

In this contribution, we analysed a problem of transient flow of water in unsaturated
media, modelled by the Richards equation. We used the optimised functional
solution method for the Richards equation from reference [FuEtAl15] and evaluated
its accuracy using the nonlinear Richards equation and defined a self-consistency
criterion. A test was performed, comparing the results for the potential matrix by
our optimised formula against the profile of benchmark simulations [RaSi06] for
twelve types of soil textures. It is remarkable that although the Richards equation is
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Fig. 9.4 Matrix potential profile and self-consistency with depth for a loam soil (4)
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Fig. 9.5 Matrix potential profile and self-consistency with depth for a silt soil (5)
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Fig. 9.6 Matrix potential profile and self-consistency with depth for a silt loam soil (6)

highly nonlinear and the initial condition singular, even though the compact solution
formula provides fairly good results in all considered soil cases. Thus one may
say that for physically relevant soil parameters and for practical purposes one may
claim “universality” of our solution formula for the Richards equation. This is even
more surprising since some of the soil parameter vary considerably from one soil
type to another. Thus, the residual moisture �r varies over one order in magnitude,
the matrix potential weight ˛ in the effective saturation varies over one order in
magnitude, the exponential coefficient n varies by a factor of three and last but not
least the saturation hydraulic conductivity varies over three orders in magnitude and
there seems to be no need to refine the solution formula by an additional recursion
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Fig. 9.7 Matrix potential profile and self-consistency with depth for a sandy clay loam soil (7)
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Fig. 9.8 Matrix potential profile and self-consistency with depth for a clay loam soil (8)
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Fig. 9.9 Matrix potential profile and self-consistency with depth for a silt clay loam soil (9)

term (for details see [FuEtAl15]). Within the model error arising from idealisations
that lead to the Richards equation, one may safely say our compact formula is
capable of efficiently simulating one-dimensional flow of water in unsaturated and
saturated porous media.

These conclusions are supported by the observations, that the parametrised
solution, which was presented in equation (9.8), when optimised by the method
of least squares and Newton-Raphson method, gave fairly good results for the
matrix potential profile in all twelve cases as indicated by the self-consistency
test which accused only small differences between the true and the parametrised
solution. Moreover, even for other soil compositions and their associated parameter
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Fig. 9.10 Matrix potential profile and self-consistency with depth for a sand clay soil (10)
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Fig. 9.11 Matrix potential profile and self-consistency with depth for a silt clay soil (11)
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Fig. 9.12 Matrix potential profile and self-consistency with depth for a clay soil (12)

sets not shown in this contribution, the hyperbolic function formula was proven a
fairly good approximation. As long as there are no new insights in the problem
of infiltration problems in porous media that could alter the structure of the
hydraulic conductivity and capacity functions the provided solution formula may
be considered a simple and within existing uncertainties sufficiently accurate
description of the phenomenon.
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Chapter 10
Mathematical Models of Cell Clustering Due
to Chemotaxis

P.J. Harris

10.1 Introduction

Chemotaxis is the process by which a cell, or cluster of cells, moves in response to
an external chemical agent which is diffusing through the fluid medium in which
the cells are immersed. The chemical agent may be emitted by the cells themselves
to signal their presence to other nearby cells or clusters, or it may just be present in
the surrounding medium. Receptors in the cell’s outer membrane can react with the
chemical and in this way the cell can detect a gradient in the chemical concentration.
The cell then moves in the direction in which the concentration is increasing.

In the literature, there are two complementary methods for modeling cell
migration and clustering and these can be broadly described as population based
or individual based. In population-based methods it is the population densities of
cell types within an environment that are considered, rather than the motion of
individual cells. These models use diffusion-reaction type equations to simulate
how the population density of each type of cell evolves with time (see [Ke71,
La74, Ga98, Ch12] for example). Such models are often called Keller-Segel type
models in the literature. The alternative is to use an individual-based model where
the individual cells (or clusters of cells) are each modeled separately. Such models
can range in complexity from assuming each cell can be represented by a simple
geometric shape, (see [Ey08, Ki14, Th12] for example) to a mathematical model
of how a single cell moves in response to it detecting a chemical signal at its outer
membrane (see [El12] for example).

The paper will present a simple model for modeling the motion of cells
(or clusters of cells) due to a chemical signal emitted by other nearby cells. A simple
linear diffusion equation will be used to model the concentrations of the chemicals
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and the basic laws of motion will be used to determine how the cells move. In the
initial simple model the effect of the fluid will be limited to a simple damping term
in the differential equation governing how the cell moves. A more sophisticated
model which employs the boundary integral method to model the flow of the fluid
surrounding the cells will also be introduced.

10.2 Simple Model

Consider a number of biological cells that are distributed in a surrounding fluid,
usually a liquid such as water. Assume that the vertical thickness of the culture is
very small (typically of the same size as the dimensions of the cells) so that the
cells can only move in two space dimensions and that the i th cell has coordinates
.xi.t/; yi.t//. Further, assume that the cells have a simple geometry and can be
represented as circles of radius R. If the distance between the centres of two cells is
less than 2R the cells are assumed to be attached to each other and form a cluster,
and once in a cluster the relative position of each cell in the cluster does not change.

Every cell in the culture is capable of emitting a chemical signal which will
attract other nearby cells. These other cells are attracted by sensing the gradient of
the chemical concentration and moving in the direction in which the concentration
is increasing. The changes in the concentrations of the chemical can be modeled
using the linear diffusion equation

@ci

@t
D 
r2ci (10.1)

where ci denotes the concentration of the chemical emitted by the i th cell and 
 is
the diffusion parameter for the chemical. If the i th cell emits the chemical at time ti
and is located at .Qxi; Qyi/ at the moment the chemical is released, then it is simple to
show that the solution to (10.1) can be expressed in the form

ci.x; y; t/ D
8
<

:

Ai


.t � ti C t�/
exp

�

� .x � Qxi/
2 C .y � Qyi/

2

4
.t � ti C t�/

�

t 	 ti

0 t < ti

(10.2)

where Ai is amount of the chemical released by the cell and t� is a small value
to avoid computational problems which might arise if t � ti is zero. Note that the
position of .Qx; Qy/ is fixed as the point at which the cell emits the chemical does not
change although the cell itself may subsequently move. The total concentration of
the chemical in the fluid is simply the sum of the concentrations due to each cell:

c.x; y; t/ D
NX

iD1
ci.x; y; t/

where N is the total number of cells in the culture.
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Cells respond to the chemical signals by experiencing a force which is propor-
tional to the gradient of the concentration of the chemical. That is, the force acting
on the j th cell is

rc.xj; yj; t/ D
NX

iD1
rci.xj; yj; t/

If the cell is part of a cluster, then the total force acting on the cluster is simply the
sum of the forces acting on each cell within the cluster. If nc denotes the number of
cells in the current cluster (and nc D 1 for a isolated cell), then the acceleration of
each cell in the cluster is given by

ncm
d2xj

dt2
D

ncX

iD1
rc.xi; t/ � �dxj

dt
(10.3)

where m is the mass of an individual cell and � is a damping constant used to model
the drag due to the fluid. By considering each cluster of cells in turn (10.3) yields
a system of second order ordinary differential equations for the locations of the
cells and clusters which can be solved using an adaptive fourth order Runge-Kutta
scheme.

As the cells move in response to the chemical signal, they will collide with each
other. In the model presented here, two cells are taken to have collided when the
distance between their centres is less than twice their radii. That is they have collided
when

jxi � xjj � 2R:

where xi denotes the position vector of the centre of the i th cell. When the two cells
collide it is assumed that they stick together to form a cluster and if they are already
part of other clusters then these are combined to form a new single cluster. The
velocity of the new cluster is calculated from the velocity of the old cells and/or
clusters using a simple conservation of momentum equation, where the momentum
of the new cluster is equal to the sum of the momentums of the old clusters that are
being combined.

10.3 Boundary Integral Model

A more sophisticated model, which is currently under development, makes use
of the boundary integral method to model the motion of the fluid surrounding
the cells. Assuming that the fluid is incompressible and inviscid and that the
flow is irrotational, then the fluid velocity can be expressed as the gradient of a
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scalar potential which, in turn, satisfies Laplace’s equation. Since the geometry and
velocity v of each cell is know the boundary condition

@�

@n
D v � n

where � denotes the scalar velocity potential and n is the unit normal to the cell’s
surface directed into the fluid. The standard direct boundary integral equation for
the velocity potential is

� �.p/
2

C
Z

	

@G.p;q/
@nq

�.q/ dSq D
Z

	

G.p;q/
@�.q/
@nq

dSq (10.4)

where 	 denotes the union of the boundaries of all the cells in the fluid and G.p;q/
is the free-space Greens function for the Laplace’s equation

G.p;q/ D 1

2�
ln.jp � qj/:

For convenience, write (10.4) in operator notation in the form

A� D B
@�.q/
@nq

where

A� D ��.p/
2

C
Z

	

@G.p;q/
@nq

�.q/ dSq

B
@�.q/
@nq

D
Z

	

G.p;q/
@�.q/
@nq

dSq

Let L be the operator which computes the components of the force acting on the cell
due to the pressure on the boundary of the cell. That is,

Fi D Lp D
Z

	i

pn dS (10.5)

where Fi denotes the force acting on the ith cell and 	i denotes the cells boundary.
The Bernoulli equation for this problem can be expressed in the form

p D �
D�

Dt
C 


2
jr�j2 C rc � n (10.6)

where D�
Dt is the total derivative of the potential (due to the motion of the cell

boundary) and the rc �n term is the pressure on the cell boundary due to the gradient
of the chemical signal. Here 
 denotes the density of the fluid, and the absolute
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concentration of the chemical is assumed to be small enough to have a negligible
effect on the fluid density. Substituting (10.6) into (10.5) yields

Fi D L

�

�
D�

Dt
C 


2
jr�j2 C rc � n

�

(10.7)

If a denotes the rigid body acceleration of the cell, and J denotes the operator which
gives the normal derivative of the acceleration on the cell boundary in terms of the
cell’s rigid body acceleration, then the boundary integral method can be used to
rewrite (10.7) as

ma D L
�
�
A�1BJa C 


2
jr�j2 C rc � n

	
(10.8)

which can be rearranged to make the acceleration the subject of the equation.
Equation (10.8) can be integrated through time using a suitable method, such
as a Runge-Kutta method, to model the motion of the cells in the culture. The
concentrations of the chemical signal are still given by (10.2) in this model which
does not take the motion of the fluid into account. A model for the full convection
and diffusion of the chemical signal is currently being developed. When (10.8) is
discretized the various operators can be replaced by their matrix equivalents.

When the cells collide in this model, rather than forming clusters of individual
cells a cluster is simply represented by what is effectively a new larger cell. This is
to avoid the situation where two cells are touching at a single point and points on
the boundaries of different cells become very close together. This leads to the well-
known problems with the boundary integral method that occur when the boundaries
of two different domains are too close to each other. If two cells have radii Ri and
Rj, respectively, then they will have collided if

jxi � xjj � Ri C Rj

Assuming that all cells have the same mass density, the new cell created when two
cells are combined will have the following radius, location and velocity:

Rnew D
q

R2i C R2j Conservation of mass

xnew D R2i xi C R2j xj

R2i C R2j
Same Centre of mass

vnew D R2i vi C R2j vj

R2i C R2j
Conservation of momentum.

10.4 Numerical Results

This section illustrates the mathematical models developed above for some typical
examples. Figure 10.1 shows the results of using the simple model introduced in
Section 10.2 to show how cells can cluster together in a culture. Here there are
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Fig. 10.1 The locations of the cells at different times using the simple model
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Fig. 10.2 The locations of the cells at different times using the boundary integral model
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initially 123 cells in fifty clusters of 1, 2 3 or 4 cells. The location, number of cells
and orientation for each of the original clusters were randomly chosen. The results
show that as time progresses the cells and clusters combine to create larger clusters.
The results for using the boundary integral model are shown in Figure 10.2. In this
case there are only 10 cells due to the increased computational cost associated with
the boundary integral method representation of the fluid flow. In addition, the cells
are being attracted to a single static chemical gradient located at the centre. As with
the simple model described above, the cells are collecting together to form larger
clusters of cells.

10.5 Conclusions

The results presented in this paper show that it is possible to develop mathematical
models of how biological cells cluster together due to chemotaxis. The simple model
utilizes basic equations of motion to determine how the cells move in response to
the chemical signals. The early results of using this model show that it is capable
of replicating the motion of cells that has been observed in experimental work, and
further research to fully demonstrate the accuracy of the model is currently being
undertaken.

The more sophisticated boundary integral model can also account for the motion
of the fluid surrounding the cells which is neglected by the simple model. However,
the model presented here is still under development and in particular this model will
need to take the convection of the chemical signals due to the motion of the fluid
into account.
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Chapter 11
An Acceleration Approach for Fracture
Problems in the Extended Boundary Element
Method (XBEM) Framework

G. Hattori, S.H. Kettle, L. Campos, J. Trevelyan, and E.L. Albuquerque

11.1 Introduction

The boundary element method (BEM) is a numerical method especially accurate
and stable for fracture problems, acoustic, re-entry corners and stress intensity
problems. A strong mathematical formulation allows the BEM to model an arbitrary
domain through the discretization of the boundaries only. This is particularly advan-
tageous when modelling infinite and half-space domains. BEM models produce
reduced meshes and linear system of equations to be solved, compared to domain
discretization methods such as the finite element method (FEM). However, the
linear system of equations of a BEM model results in fully populated unsymmetric
matrices, while FEM linear system yields in large matrices but they are sparse
and symmetric. This difference makes BEM unattractive when dealing with large
problems, for instance, 3D fracture problems with multiple cracks.

Some authors have investigated different techniques to overcome this limitation
of BEM models. Rokhlin [Rok85] has developed the so-called fast multipole method
(FMM), which can reduce the complexity of solving the linear system of equations
from O.n3/ to O.n/. A good review of the method applied to BEM can be found
in [Liu09]. Some authors have explored the use of FMM in BEM for fracture
problems. In [NYK99], the FMM is combined to a boundary integral formulation
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of the Laplace equation for 3D crack problems. Yoshida et al. [YNK01] have used
a symmetric Galerkin formulation with FMM, analysing problems with 512 penny
shaped cracks.

Although FMM is very efficient, it depends on a multipole expansion that has
to be considered by the fundamental solution of a BEM code. For this reason, it is
not straightforward to implement if a BEM code is available. However, the adaptive
cross approximation (ACA) depends only on geometrical features of the problem,
but generates an approximation of the solution instead. The idea of the method
is to use the smoothness of the operator to approximate the so-called admissible
blocks, thus accelerating the evaluation of the matrix-vector product that lies within
each iteration of an iterative solver. Several authors have used ACA for multiple
crack problems [GG10], time-domain BEM elasticity [MS10], anisotropic mate-
rials [BMA09, BA10] and time-domain BEM for anisotropic materials [MBA12].
However, there are still no works on how ACA behaves when coupled with enriched
formulations, such as the extended boundary element method (XBEM).

An enriched formulation of the BEM has been proposed by [ST11] for the
first time, where partition of unity has been applied in a similar way as in the
extended finite element method (XFEM). The asymptotic behaviour at the crack
tip is described more accurately, at the expense of increasing the conditioning of the
linear system of equations. Later, Alatawi and Trevelyan [AT15] used an implicit
enrichment scheme, where the additional degrees of freedom correspond to the
stress intensity factors (SIF). In this case, the number of elements enriched does
not affect the number of degrees of freedom, an issue with XFEM formulations
and the formulation employed by [ST11]. Additionally, there is no need for post-
processing (such as the J-integral) to obtain the SIF, since they are calculated as part
of the displacement solution.

In this work we investigate the use of ACA in an XBEM formulation for
anisotropic 2D materials, using the formulation obtained by the authors in [HAT16]
for anisotropic materials. We detail how ACA can be implemented in a BEM
framework, and we present some examples that demonstrate how this technique
can be useful to overcome the limitation of solving large linear systems with
unsymmetric and fully populated matrices found in BEM.

11.2 Extended Boundary Element Method

A dual BEM formulation is modified with the enrichment in the same way as
in [HAT16]. Two boundary integral equations (BIE) are necessary to avoid the
mathematical degeneration which arises from the coincidence of the crack faces.
The displacement boundary integral equation (DBIE) and the traction boundary
integral equation (TBIE) are given by [HAT16]
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cij.�/uj.�/C
Z

	

p�ij.x; �/uj.x/d	 .x/C
Z

	c

p�ij.x; �/ QKljFlj.���/d	 .x/ D
Z

	

u�ij.x; �/pj.x/d	 .x/

(11.1)

cij.�/pj.�/C Nr

Z

	

s�rij.x; �/uj.x/d	 .x/C Nr

Z

	c

s�rij.x; �/ QKljFlj.���/d	 .x/ D

Nr

Z

	

d�rij.x; �/pj.x/d	 .x/

(11.2)

where 	c D 	C [ 	� stands for the crack surfaces 	C and 	�, Nr is the normal
at the observation point x, cij is the free term coming from the integration of the
singular kernels, Flj is the enrichment function and QKlj is the additional degree
of freedom which stands for the SIF. Let us recall that strongly singular and
hypersingular terms arise from the integration of the p�ij , d�rij and s�rij kernels and they
have to regularized before numerical integration is possible. More details about the
regularization procedure and the XBEM formulation can be found in [AT15].

The enrichment function used in Equations (11.1) and (11.2) are the same as
defined in [HRDS+12] for anisotropic materials using the extended finite element
method (XFEM) and are given by

Flj.r; �/ D
r
2r

�

�
A11B�111 ˇ1 C A12B�121 ˇ2 A11B�112 ˇ1 C A12B�122 ˇ2
A21B�111 ˇ1 C A22B�121 ˇ2 A21B�112 ˇ1 C A22B�122 ˇ2

�

where ˇi D p
cos � C 
i sin � , r is the distance between the crack tip and an

arbitrary position, � is the orientation measured from a coordinate system centred
at the crack tip; A, B, � come from the Stroh formalism and depend only on the
material properties.

11.3 Adaptive Cross Approximation

The adaptive cross approximation is a technique which combines the concept of
hierarchical matrices with low-rank approximation. Hierarchical matrices were first
introduced by Hackbusch [Hac99], where the matrix is sub-divided into blocks
through a geometrical criteria. A hierarchical tree is constructed using the following
algorithm:

1. Find the centre of the current cluster/block;
2. Obtain the covariance matrix of the cluster;
3. Take the eigenvector associated with the largest eigenvalue of the covariance

matrix;
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4. The cluster is divided into 2 new blocks using the eigenvector;
5. Repeat step 1 for each cluster until a minimum block size is achieved.

These blocks are further classified into admissible and non-admissible. If
admissible, the cluster is sufficiently smooth to be approximated, which indicates
that a low-rank approximation can be used. This procedure will be detailed later in
this section. If the block is not admissible, no approximation can be done, and the
elements of the matrix have to be obtained using Equations (11.1) and (11.2).

The minimum block size is a parameter that ultimately defines the number of
blocks in the hierarchical tree. If the minimum block size is too large and the
operator on the matrix is not reasonably smooth, fewer blocks will be classified as
admissible. If the minimum block size is too small, many admissible small blocks
will be formed, and the approximation will not be accurate.

In BEM, the smoothness of the matrix will depend whether the field and source
nodes are well separated geometrically. The admissibility parameter is defined as

min .diam.Clx/; diam.Cly// � �dist.Clx;Cly/

where 0 < � < 1 is the admissibility parameter; Clx and Cly are two arbitrary
clusters; diam represents the size of the cluster and dist stands for the distance
between the clusters. These parameters are given by

diam.Clx/ D 2 max
k

jX � xkj

diam.Cly/ D 2 max
k

jY � ykj

dist.Clx;Cly/ D jX � Yj � 0:5 �diam.Clx/C diam.Cly/
�

where X;Y are the average of the cluster and xk; yk is an element of cluster x; y,
respectively.

Finally, the admissible blocks are approximated using the same criteria as in
[BR03]. The main idea is that admissible blocks are approximated by low-rank
approximants formed as a series of outer products of row and column vectors. While
the FMM deals with the analytical decomposition of the integral kernels, ACA will
provide an almost optimal approximation of the original matrix. The approximation
of matrix A 2 Ct�S is given by

A � Sk D UVt; where U 2 Ct�k and V 2 Cs�k

where k is a low-rank compared to t and s. It is important to remark that the
low-rank representation can only be found when the generating kernel function
in the computational domain of A is asymptotically smooth. It has been shown
in [Beb08] that elliptic operators with constant coefficients have this property. A
detailed explanation about ACA applied to BEM can be found in [RS07].

The low-rank approximation is obtained by splitting the matrix A 2 Ct�s into
A D Sk C Rk, where Sk is the rank k approximation and Rk is the residuum which
has to be minimized, through the following algorithm:
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1. Define k D 0 where S0 D 0 and R0 D A and the first scalar pivot to be found is
�1 D .R0/

�1
ij , and i; j are the row and column indices of the actual approximation

step;
2. For each step � , obtain

v�C1 D ��C1.R�/i

u�C1 D .R�/j

R�C1 D R� � u�C1vt
�C1

S�C1 D S� C u�C1vt
�C1

where the operators ./i and ./j indicate the i-th row and the j-th column vectors,
respectively;

3. The next pivot ��C1 is chosen to be the largest entry in modulus of the row .R�/i
or the column .R�/j;

4. The approximation stops when the following criterion holds:

ku�C1kFkv�C1kF < "kS�C1kF

where k:kF stands for the Frobenius norm.
In this paper the form of ACA used is fully pivoted ACA. While partially

pivoted ACA allows for reductions in storage and generation of the system matrix,
the subject of this paper is addressing reductions in computations in the solution.
The number of operations required for generation and storage is each proportional to
O.n2/, n is the order of the matrix. The direct solution of the linear system requires a
number of operations proportional to O.n3/. Iterative solvers such as the generalized
minimal residual method (GMRES) [SS86] reduce the complexity but involve an
expensive matrix-vector product within each iteration.

Performing hierarchical clustering on a dual formulated BEM matrix requires
separation of the boundary nodes and the crack nodes at all times [BAD08].
Discontinuous elements are used on the crack, with one surface corresponding
to the DBIE and the other corresponding to the TBIE. For this reason, when
constructing the hierarchical tree, the crack surfaces must be separated from the
external boundaries, and both crack surfaces must be separated from each other in
collocation, but can be considered as a whole when being integrated over by for
a remote collocation point. Thus it is important to place nodes on opposing crack
surfaces in different clusters row-wise, but unimportant column-wise in the matrix.
This creates asymmetry in the structure of the hierarchical tree.

Constraints other than the admissibility criterion must be put in place to assure
that these conditions are met, although the geometry of crack nodes are usually
clearly distinguishable from those of the boundary, this is not always the case.
Furthermore, coincident nodes on opposite crack surfaces will be clustered together
unless the algorithm is instructed otherwise.
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11.4 Results

Figure 11.1 depicts a BEM mesh for a two-dimensional anisotropic plate containing
12 internal cracks under uniform unitary load applied at the top and bottom of the
plate. The problem is discretized with 2000 nodes for the external boundaries and
300 nodes per crack. Continuous elements are employed on the external boundaries
and discontinuous elements are used on the crack faces. There are 9248 degrees
of freedom (DOF) in total, of which 48 DOFs correspond to the stress intensity
factors (SIFs) of each crack (mode I and II). The material properties are given by:
C11 D 117:97 GPa, C12 D 14:19 GPa, C16 D 35:43 GPa, C22 D 15:64 GPa,
C26 D 7:49 GPa, C66 D 21:38 GPa.

Figure 11.2 represents the matrix structure resulting from the hierarchical
clustering of the problem.

Table 11.1 illustrates the savings of solving the linear system of equations using
ACA. The solution error is defined as

error D kxACA � xkF

kxkF

where xACA is the displacement solution when the linear system of equations was
approximated with ACA, x is the displacement solution obtained by solving the full
system using a direct solver and k:kF stands for the Frobenius norm. The parameter
"C is the threshold error of the ACA approximation using the Frobenius norm.

The label ‘Operations’ stands for the number of computations required to
perform a matrix-vector product using the approximated system matrix. This is the
total sum of O.k.N C M// for every low-rank block combined with O.NM/ for
every full rank block, where k represents the rank and N and M represent the rows
and columns, respectively. ‘Saving’ represents the gain in number of computations
required to perform the full rank matrix-vector product.

Fig. 11.1 Anisotropic plate
containing multiple cracks
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Fig. 11.2 ACA generated matrix partitioning

Table 11.1 Operational savings data

Solution error

"C Total (%) SIFs (%) Operations Saving(%)

1� 10�4 0:310 0:130 6:562� 106 92.3

1� 10�5 0:022 0:018 7:499 � 106 91.2

1� 10�6 1:27� 10�5 1:26� 10�5 8:449� 106 90.1

The results show that reductions in "C, as expected, improve the accuracy of the
eventual solution. However, the number of operations to assemble the approximated
matrix will increase, which reduces slightly the saving obtained using ACA.

ACA is successfully applied to all parts of the matrix, with exception of the last
48 rows and columns. For the latter, the columns are partitioned into 50� 48 blocks
and then approximated using ACA. For the former, these are extra rows necessary to
balance the system of equations as shown in [AT15], and contain the so-called tying
equations. These rows are sparsely populated, therefore are not considered for ACA.
Applying these configurations produces an accurate solution with computational
savings in excess of 90% per iteration and low errors for both displacement field
and SIFs.
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Table 11.2 Operational savings data for different levels of error

"C "SIF

Solution error
Operations Saving(%)

1� 10�3

Total (%) SIFs (%)

1� 10�4 2.995 1.407 5:515� 106 93.55

1� 10�4

1� 10�8 2.995 1.404 5:627� 106 92.42

1� 10�4 0.306 0.127 6:507� 106 92.39

1� 10�5

1� 10�8 0.306 0.125 6:618� 106 92.26

1� 10�4 0.023 0.017 7:471� 106 91.26

1� 10�8 0.022 0.018 7:583� 106 91.13

In Table 11.1 the error for the Frobenius norm is the same for boundary
displacements and the SIFs in the solution vector. However, it is known that the
terms of the linear system of equations associated with the enriched terms can be
of very different order of magnitude from the other terms. Moreover, it might be
speculated that the accuracy of these terms is strongly influential over the accuracy
of the computed SIFs. In this case, we investigate the effect of a lower error tolerance
for the sub-blocks containing terms related to the SIF, allowing a higher error when
approximating the other blocks. Table 11.2 analyses this issue considering two
errors for the Frobenius norm, "C and "SIF. One can verify that the error in SIFs
is strongly governed by "C, and less so by "SIF for the SIFs reduce slightly even for
high accuracy, nevertheless the number of operations increases.

11.5 Conclusions

In this work we applied ACA with the XBEM for solving an anisotropic fracture
problem. ACA has been used to accelerate the solution times of the problem, using
only 10% of the time required to solve the system using regular Gauss elimination.
Future work includes the use of partial pivoting, in order to save memory, and
extending the formulation for 3D problems.
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Chapter 12
Flux Characterization in Heterogeneous
Transport Problems by the Boundary Integral
Method

R.D. Hazlett

12.1 Introduction

Consider solutions to the following partial differential equation in Cartesian coor-
dinates subject to potentially different initial and boundary conditions. Here, P is
pressure, kx, ky, and kz are the directional transport coefficients, � is porosity, 
 is
viscosity, Ct is compressibility, and q is flow rate.

kx
@2P

@x2
C ky

@2P

@y2
C kz

@2P

@z2
D �
Ct

@P

@t
� q
 � ı.X � xo/ı.y � yo/ı.z � zo/ (12.1)

In seeking a Green’s function solution for Neumann boundary conditions, No, we
note that for a domain of volume V for the Poisson equation with a point source at
Ero, the following must be satisfied:

5 � . k



5 No/ D Cf � qo.ıo.Er; Ero/ � 1

V
/

where Cf is a constant and

.
k�


/ � @No

@�
D 0

on the boundary S. Note there is a mathematical singularity with the source term
in a defined location (xo, yo, zo) that could be integrated in space to yield a line
source. The singularities in Equation (12.1) are in space, not time, making the proper
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handling of the spatial singularities the most important aspect of getting a proper
transient response for arbitrary observation point. The solution can be considered as
the product of three one-dimensional solutions [Ne36].

PD.x; y; zI x1; y1; z1; ˛; ˇ; �;LI t/ D t

�
Ct
C 1

L
�
Z L

0

1X

l;m;n¤0

Clmn

�2
� 1 � e

��2D2lmnt
�
Ct

D2
lmn

�

cos.
� lx

a
/cos.

�my

b
/cos.

�nz

h
/cos.

� lxo

a
/cos.

�myo

b
/cos.

�nzo

h
/ds (12.2)

where

D2
lmn 
 kxl2

a2
C kym2

b2
C kzn2

h2

Equation (12.2) is computationally challenging in this raw form but can be
transformed using a number of identities [Br08, GR80] into a computationally
efficient form containing only analytic constructs and rapidly converging, highly
accurate, infinite series summation approximations [MHB01]. Babu and Odeh pro-
duced a semi-analytical solution for the special case of a horizontal well for transient
[OB90] and semi-steady-state production [BO89]. Hazlett and Babu [HB14] gave
a highly accurate and computationally efficient solution to Equation (12.1) with
analytic integration in time and space for an arbitrarily oriented line source term
with Neumann external boundary conditions. The solution is for the dimensionless
pressure difference between any observation point and the volume averaged pressure
per unit of fluid withdrawn, termed drawdown to indicate how hard the well must
work to produce a barrel of fluid.

Other researchers purport that numerical spatial integration of the point source
was adequate to model a well of any trajectory [Du00, EBF96, EDB91, WDA03].
These efforts used an integrand that contained a singularity and was numerically
time-consuming to evaluate. The numerical method is equivalent to representing
a line source by a dense number of point sources. Far field behavior may be
adequately captured in this approach, but if we want to perform evaluations at
a distance of one well radius from the source, there are issues related to nearby,
unmitigated singularities. Attempts to numerically soften the singularity were less
than satisfactory [Ma96].

12.2 Boundary Integral Method for Coupled Analytic
Solutions

If the medium properties become a function of space, Equation (12.1) applies
only locally. A heterogeneous transport property domain could be represented by
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Fig. 12.1 Heterogeneous problems solved using coupled analytic solutions and a boundary
integral method: (a) a patch-wise distribution of transport coefficients, (b) pressure distribution
for a centrally located well, (c) pressure drawdown values for a dense set of well locations, and (d)
pressure distribution for an optimally located well

a system of interacting semi-analytical solutions [HB05]. Via Green’s Theorem,
a closed system solution can be augmented with a boundary integral to allow
material transport across the interface as represented in Equation (12.3) for the
time independent portion of the solution to Equation (12.1). Such boundary element
and boundary integral methods are well established [Co00, HB05, KH93, LLK98,
MH88].

P.Er; Ero/ D P � q

qo
� No.Er; Ero/ � 1

qo
�
Z

S
No.Er; Ero/g.�/d� (12.3)

Here, g(� ) is the outward normal boundary flux, P is the average pressure, and qo is
a reference flow rate.

Without knowledge of the structure of the integrand, numerical methods yield an
equation matrix with normal flux at predefined boundary elements and the average
pressure in each domain as unknowns. Figure 12.1 illustrates results possible
as solutions to coupled analytic solutions with patch-wise continuous transport
properties as shown in Figure 12.1a. Figure 12.1b gives the pressure distribution
for a centrally placed well with the location of the average value highlighted in
white. Figure 12.1c shows the value of well drawdown for every possible location
of the well, indicating a global minimum as the brightest color. Figure 12.1d shows
the spatial distribution of pressure if we placed the well in this optimum location.

12.3 Numerical Boundary Integral Evaluation

Figure 12.2 shows error evaluation in a simple, 4-cell homogeneous problem
containing a point source that was solved as a multi-region problem using Gaussian
quadrature [St71] with variable node density. Equation (12.4) indicates the integra-
tion approximation as a weighted sum of a set of location specific integrand function
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Fig. 12.2 Error in drawdown computation for a homogeneous transport problem on a square with
a point source centered in quadrant two as a function boundary nodes density. While the error in
pressure computation in the neighborhood of the singularity is tolerable with few nodes, the inset
figures of the pressure field show considerable error elsewhere

evaluations. While error magnitude in drawdown computation for the well is small,
the inset figures with pressure computed on a dense grid of observation points show
that the solution with a small number of Gauss nodes is globally unsatisfactory.
Figure 12.3a and 12.3b indicates the character of the Neumann function solution,
its normal derivative, and the lumped boundary integrand for a point and line
source, respectively, as a function of the relative distance between the source and
an interface. Integral splitting the boundary integral at the cusp location into two
separate integrals is warranted.

Z x2

x1

f .x/dx D
nX

kD1
wk� f .xk/ (12.4)

A problem similar to that using numerical integration to approximate line sources
was encountered when introducing points sources of unknown flux magnitude as
boundary elements. This is illustrated in Figure 12.4 where the pressure is evaluated
on the boundary between two regions. The anomalous pressure behavior near a
boundary node due to the introduction of a point source is quite obvious.

Two-dimensional Gaussian quadrature application yielded non-diagonal domi-
nance in matrices, indicating an improper weighting scheme. Analytical integration
eliminated this issue. For full boundary integration of either top or bottom interfaces
(zo D 0 or h) and an observation point away from the boundary, we get
Equation (12.5). If the observation point is also moved to the same boundary
(z D zo), as often the case in the construction of pressure matching conditions at
the boundary nodes, then the integral collapses to h2=.3kz).
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Fig. 12.3 The nature of the boundary integrand as a function of location of the fictitious boundary
in a homogeneous problem and a depiction of the Neumann function and its normal derivative:
(left) point source and (right) line source. Both suggest subdividing the integral

Fig. 12.4 Anomalous
behavior of the pressure at a
boundary where the flux is
represented by point sources
of determined magnitude at
sparse fixed boundary node
locations. The location of the
marker coincides with the
numerical value of pressure
signified on the colorscale
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A number of other full analytic integrals were listed by Hazlett and Babu [HB09]
for special case triangles. Unfortunately, flux patterns were not seen to conform to
uniform flux except for case where the interface is remote from a source term. This
has strong implications for strictly numerical routines that introduce only one value
of flux per interface. With a single value, it can only represent the average and must
be interpreted as representative of the entire interface.
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12.4 Piecewise Continuous Solutions

In an attempt to further exploit the benefits of analytic boundary integration, the
integral was decomposed into piecewise uniform flux patches over which the
average flux is locally representative. Partial boundary integration with local average
normal flux (see Appendix) eliminated numerical integration artifacts, alleviated
dependency upon node spacing and weights, and effectively removed spatial
singularities association with BIM application. Still, concerns over computational
speed and large matrices cast doubt on practical application to large systems [Do11].
However, each cell in a strictly numerical solution to Equation (12.1) contains no
information below the cell size; whereas in the method described, each cell has a
complete analytic solution and access to as much detail as required. Still, the patch
density required to access an analytic solution everywhere without knowledge of the
integrand structure severely limits the application.

12.5 Parametric Methods

Hazlett and Babu [HB13] proposed a parametrized functional form for the flux
consisting of a linear combination of separate uniform flux and uniform pressure
boundary problems. This hybrid boundary condition is illustrated in Figure 12.5 and
is seen to be exact for equal-cell-size problems [Zh15]. The uniform flux solution
was already given as Equation (12.5). The Dirichlet boundary condition solution
produces a zero value of pressure on the boundary. Thus, boundary integration for
this contribution can be avoided entirely in favor of evaluation of the source term
influence on the pressure on the boundary, since the sum of this and the boundary
integral must be everywhere zero on the boundary. Thus, the parametric form for
boundary flux posed by Hazlett and Babu [HB13] consists of readily evaluated parts.

12.6 Prolongation

Parametric representation of boundary flux in transport problems was investigated
more thoroughly [Zh15, ZH16]. For cells of different size, shown also to corre-
spond to heterogeneous transport property systems, these authors showed through
prolongation that the unknown flux is indeed composed of uniform flux and uniform
pressure contributions, but an additional term is required that corresponds to circula-
tion, as illustrated in Figure 12.6. If we look at the origin of the circulation term, we
find that we can relate the unknown flux to that of yet another prolonged problem
by expanding the solution domain to create another equal-cell-size problem. This
process can be repeated indefinitely (Figure 12.7).
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-1 -1/2 -1/2

Uniform (zero) fluxOriginal problem

= +

Uniform (zero)
pressure

-1/2 +1/2

Fig. 12.5 Exact replacement of an equal-cell-size problem of unknown solution with a sum of
easily evaluated steady-state uniform (zero) flux and uniform pressure boundary problems

-1 -1/2

-1/2 +1/2

-1/2

Uniform (non-zero) flux

= + −

Original problem

Uniform (zero) pressure Net-Zero boundary flux

Fig. 12.6 Prolongation as a route to a more easily solved problem as envisioned by [Zh15]

12.7 Conclusions

In contrast to traditional BIM numerical methods, coupled analytic solutions for
heterogeneous domains can alternatively be posed and solved numerically as
boundary integral problems with analytically integrated patch-wise uniform flux.
An ad-hoc parametric representation of the boundary flux as a combination of
uniform flux and uniform pressure easily evaluated constituents can greatly reduce
problem bandwidth. Extending the parametric method, heterogeneous problems
(those with either unequal cell size or permeability contrast) can be linked to a
homogeneous, equal-cell-size problem via prolongation. The correction term to
be supplied for the original problem is linked to a set of cascading prolongation
problems to elucidate the boundary flux at ever-increasing distance from the original
interface of interest. The solution is then linked to a set of uniform flux and uniform
pressure problems whose boundary integrals are easily evaluated analytically. The
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-1 -1/2 -1/2

−1/2
Revised problem

Uniform (non-zero) flux Uniform (zero) pressure Net-Zero boundary flux

= + −

+1/2

Fig. 12.7 Origin of the rotational contribution and the redirection of interest to a more remote
interface. The process is repeated indefinitely with successive prolongations at ever-increasing
distance from the original interface of interest

repeated prolongation may be truncated after just a few prolongation cycles, since
the pressure at the original problem interface is not sensitive to flux distribution at
significant distance.

Acknowledgements I gratefully acknowledge the immense contributions of my longtime collab-
orator in this field of investigation, Dr. D. Krishna Babu.

Appendix: Partial Integration of the Neumann Function on a
Boundary

In patch-wise uniform flux boundary elements, assuming a2

kx
D max. a2

kx
; b2

ky
; h2

kz
/, we

examine partial integration of the point source Neumann function on the boundary
as t ! 1. Focusing on the triple infinite series term requiring computational
advantage, we obtain the following:
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The first term on the RHS can be reduced to a single series with exponential
damping, whereas the hyperbolic functions are replaced with exponentials and
reformulated in terms of a rapidly convergent double infinite series with exponential
damping.
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This last term can be efficiently coded with termination of infinite summations to
desired accuracy.
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Chapter 13
GPU Based Mixed Precision PWR Depletion
Calculation

A. Heimlich, A.C.A. Alvim, F.C. Silva, and A.S. Martinez

13.1 Introduction

A pressurized light water nuclear reactor (PWR) refueling typically replaces about
a third of the pent fuel every twelve to eighteen months, depending on fuel burnup.
The nuclide concentrations within each nuclear fuel element evaluated by burnup
calculations indicate whether a fuel element must be replaced or reallocated. The
combinatorial optimization problem of refueling, and as such, the number of
evaluated candidate solutions are a function of time and of computational resources.

Computational tools to model the reactor core are used to evaluate its reactivity,
spatial neutronic behavior, power distribution, isotopic inventory, and fuel burnup.
The fuel burnup can be represented by a system of first-order, ordinary, coupled
differential equations (ODE), accounting for all fissionable actinides and fission
fragment yields for the radioactive reaction chains under analysis.

A previous study [He16] has shown that the computational power of Graphic
Processor Unit (GPU) can substantially improve the speed performance of nuclear
fuel burnup calculations.

The main objective of the present study is to evaluate mixed precision with
adaptive time step solver based on Adams-Moulton-Bashford to calculate fuel
burnup in PWR reactors in massive multicore GPU using parallel programming
techniques.
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13.2 Theory

The balance which relates the production and consumption of each nuclide for
each radioactive chain reaction into the core implies a huge system of first-order
differential equations.

The nuclide concentrations in the fuel are dependent of decay constant, neutron
flux and microscopic fission, radioactive capture, and scattering cross sections
for each nuclide chain. This system is described by Bateman’s equation [Ba10].
This work evaluates 17 actinides and 20 fission yields in 2 neutron energy groups.

Equation (13.1) represents the abundance variation for nuclide k.

dNx
k

dt
.t/ D

Actinide-seriesX

iD1;i¤k

Nx
i .t/

GX

gD1

�
�

g;x
�;i .t/ � �g;x

f ;i .t/C �
g;x
.n;2n/;i.t/C

	
�g

x .t/

�
Decay FractionsX

yD1
�i;yNx

i .t/C
Production FractionsX

z¤i

�zN
x
z .t/ (13.1)

The abundance variation of nuclide l induced by fission of actinides is described
by Equation (13.2).

dNx
l

dt
.t/ D

Fission YieldsX

iD1;i¤l

0

@Nx
i .t/

GX

gD1

�
	

g
i;l�

g;x
f ;i .t/ � �g;x

�;i .t/
	
�g

x .t/

1

A

� �lN
x
l .t/ (13.2)

Variables x, t, and g represent the spatial position, time, and energy group,
respectively. Nx

k .t/ represents actinide k concentration. Microscopic cross sections
are represented by �g;x

f ;i .t/, �
g;x
�;i .t/, and �g;x

.n;2n/;i.t/. Decay constants are �i;y with
branch y. The neutron flux is �g

x .t/ and finally 	 g
i;l represents nuclide l yield from

fission reaction of actinide i.
Burnup calculi are based on the assumption that neutron distribution flux and

microscopic cross sections are static throughout the reactor core in each time step.
Thus, in the beginning of each step, the solution of neutron diffusion equation to
compute the neutron flux distribution based on the solution of the previous time
step is needed. Neutron flux distribution is calculated using a multigroup NEM
solver [Fi77] and the reaction rates and thermohydraulics are computed, including
Xenon and Boron effect feedback to reconstruct the new microscopic cross sections
constants used in the next burnup step. Furthermore, a predictor-corrector scheme
is applied to improve the solution using present and previous concentrations.

Bateman’s balance equations can be written in differential equations system
formulation by Equations (13.1) and (13.2) and can be represented in matrix form
by Equation (13.3).

d EN.t/
dt

D A � EN.t/; EN.0/ D EN0; (13.3)
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where vector EN.0/ represents the initial concentration and A is the depletion matrix.

EN.t/ D eA�t � EN.0/ (13.4)

Thus, nuclide concentrations can be evaluated using the recursive procedure in
Equation (13.5) where variable �t D tn � tn�1 is the burnup step.

EN.tn/ D eA�t � EN.tn�1/ (13.5)

GPU hardware architecture achieves high performances based on high occupancy
of many thousand processors. This study uses a very large vector and a matrix
depletion operator to increase the calculi efficiency. Linear algebra operator direct
sum ˚ is used to create a big, sparse matrix with more than one hundred thousand
lines. This approach creates a large system of equations that can be represented in
matrix form.

Equation (13.3) shows the ODE system written in matrix form. Operator A is
rebuilt in each step of the burnup according to neutron flux, isotopic concentra-
tions, and microscopic neutron cross sections of actinides and fission fragments.
The operator A is built in GPU to maximize performance. This matrix, initially
in COO format, consists of 2998 nodes evaluating 37 nuclides each. Furthermore,
this matricial operator is converted to ELLPACK format to improve the efficiency
of sparse matrix multiplication. Figure 13.1 shows the matrix associated with the
depletion operator for one node and eight nodes.

Considering that the simulation of 2998 fuel nodes with 37 nuclides implies in a
large sparse matrix operator, with over one hundred thousand lines and at least five
million non-zero elements, a very large number of operations are implied.
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Fig. 13.1 One node and Eight nodes matrices
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13.3 Exponential Matrix

The function exp.A�t/ represents an exponential of transition matrix and can be
solved by matrix exponential methods like Taylor or Padé expansion series. This is
a well-known problem in differential equation theory and its solution can be given
by matrix exponential methods in at least nineteen ways [Mo03]. Equation (13.6)
shows the expansion of eA�t in Taylor series.

eA�t D
�

I C .A�t/C .A�t/2

2Š
C .A�t/3

3Š
C � � � C .A�t/n

nŠ

�

(13.6)

Multiplying the concentration vector EN0 in both sides of Equation (13.6),
Equation (13.7) is obtained.

eA�t � EN0 D
�

I C .A�t/C .A�t/2

2Š
C .A�t/3

3Š
C � � � C .A�t/n

nŠ

�

� EN0 (13.7)

The calculations are improved if we use the matrix-vector decomposition
f Ev1; Ev2; : : : ; Evng shown in Equation (13.8), where B D A�t.
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(13.8)

However, Taylor series expansion calculi requires extended precision provided
by multi-precision arithmetic and small time step size to achieve good results. The
maximum step size is restricted by fast reactions in chains under analysis and can
be estimated using the norm of matrix A�t calculated in Equation (13.9).

jA�tj D min

8
<

:

max

j

X

i

jai;jj; max

i

X

j

jai;jj
9
=

;
(13.9)

The norm of matrix A�t is a limiting factor for the maximum time step used to
calculate the exponential matrix eA�t. The nuclide that has shortest half-life in the
burnup chain used in this study is Xe135, whose half-life is approximately 9.08 h.
Thus, the balance of maximum and minimum time steps used by the numerical
solutions, the precision of 64 bits floating-point representation, the desired accuracy,
and speed must be considered to choose these bounds.
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13.4 Runge-Kutta Methods

Runge-Kutta methods are used to find an approximation of a solution to an initial
value problem of the form:

y0.x/ D f .x; y.x//; y.x0/ D y0 (13.10)

and to obtain an approximation of y.x/ using a truncated Taylor series. In this study
the implementation of fourth-order Runge-Kutta method (RK4) is used to achieve
four points needed by the Adams-Moulton-Bashford (AMB) algorithm and this
procedure can be shown in Figure 13.2. This implementation of RK4 can use single
or double precision arithmetic to produce the vector of the predictor stage of AMB.

13.4.1 Runge-Kutta-Fehlberg

The implementation of the Runge-Kutta-Fehlberg (RKF) [Sh77] method in parallel
GPUs [He16] applied to calculate nuclear fuel burnup in PWR reactors shows
accuracy and great speed performance. It uses an adaptive time-step correction
based on local error measure. The Euclidean distance is calculated by the fifth-order
and fourth-order approximations difference. Equation (13.11) shows the vectors Eki

calculi and six Sparse Matrix Vector Multiplication (SpMv) operations.
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4
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8
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2:  for i  ³ n  do
3:        k1 = h · f(t, y)
4:        k2 = h · f(t, y)
5:        k4 = h · f(t, y)
6:        k4 = h · f(t, y)
7:        yn+1 =  yn  +  h ·     · (k1 + 2k2 + k3 + k4)

1
68:        t = t + h

Read concentration
Order 4 Runge-Kutta

Fig. 13.2 RK4 Algorithm
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Fig. 13.3 RKF algorithm

Ek5 D h � f.tn C h; Eyn C 439

216
Ek1 � 8Ek2 C 3680
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Ek3 � 845

4104
Ek4/

Ek6 D h � f.tn C 1

2
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4104
Ek4 � 11

40
Ek5/ (13.11)

The previous study result [He16] obtained by RKF and Jacobi Colocation method
is used as benchmark of speed performance and accuracy, respectively (Figure 13.3).

The fourth-order approximation is given by

EynC1 D Eyn C 25

216
Ek1 C 1408

2565
Ek3 C 2197

4104
Ek4 � 1

5
Ek5:

The fifth-order approximation is given by

EynC1 D Eyn C 16

135
Ek1 C 6656

12825
Ek3 C 28561

56430
Ek4 � 9

50
Ek5 C 2

55
Ek6:

Absolute local error is given by

distance D jEwj D j 1
360

Ek1 C �128
4275

Ek3 C �2197
75240

Ek4 C 2

55
Ek5/j:
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The optimized step h is calculated in Equation (13.4.1).

h D

8
ˆ̂
<̂

ˆ̂
:̂

h � �
�

tolerance

d

� 1
5

if d > tolerance

h �
�

tolerance

d

� 1
4

if d � tolerance

The algorithm increases or reduces the time step h depending on how much the
local error distance is lower than tolerance. In this case was used � D 0:84:

13.5 Adams-Moulton-Bashford Method

The Adams-Moulton-Bashford [Ja91] method (AMB) is a linear multi-step,
predictor-corrector algorithm, which uses information from the previous step to
calculate the next value and approximates the solution of initial value problem
y0 D f.y; t/. The function f.y; t/ W! y must be evaluated into points y0; y1; � � � ; y1�k

to obtain an approximation of order k shown by Equation (13.12).

Ey � EyiC1 D Eyi C
tiC1Z

ti

f.t; y.t// dt (13.12)

Equation (13.13) shown the formulation of fourth-order AMB which requires
four points to do the interpolation procedure. These points are obtained using
a fourth-order Runge-Kutta method shown in Figure 13.2 using matrix valued
function. This work proposes an implementation of adaptive time step using local
error evaluation similar one used by RKF to evaluate fuel burnup of nuclear reactor.
The mixed precision approach is performed using single precision evaluations of f
to improve speed performance in predictor stage, i.e., the RK4 stage, and double
precision evaluations in corrector stage.

yold D f.y3/

ynC1 D yn C h �
�
55

24
f.yold/ � 59

24
f.y2/C 37

24
f.y1/ � 9

24
f.y0/

�

ynC1 D yn C h �
�
9

24
f.ynC1/C 19

24
f.yold/ � 5

24
f.y2/C 9

24
f.y1/

�

(13.13)

Figure 13.4 shows the algorithm of fourth-order adaptive AMB. New and old
solutions used by corrector stage, EynC1 and Eyold, are calculated using fourth and
third-order approximation, respectively.
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Fig. 13.4 AMB algorithm

The new solution is evaluated implicitly by third-order approximation

Ey D Eyold C 9h

24
f.t; Ey/C 19h

24
� EsŒ3� � 5h

24
� EsŒ2�C h

24
� EsŒ1�

and absolute local error is given by Equation (13.5)

d D jEy �
�
55h

24
� EsŒ3� � 59h

24
� EsŒ2�C 37h

24
� EsŒ1� � 9h

24
� EsŒ0�

�

j:

AMB mixed method requires a copy of predictor vectors to single float precision
and execution of RK4 method, subsequently, another copy of these vectors to
double float must be done. The local error correspond to difference between two
approximated solutions of different orders, given by Equation (13.5) results whether
imply in acceptance or refuse and rebuild the procedure using smaller step h.
However, minimum and maximum time step (hmin, hmax) are chosen by experimental
results depending of �t and the fastest nuclide decay constant.
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13.6 Results

The reactor core evaluated in this work is similar to the Areva ANP lightweight
pressurized water reactor. The simulation divides the core in 4369 nodes, of which
2988 are fuel nodes, disposed in 18 horizontal layers and consists of one burnup
cycle with fresh fuel and 32 burnup steps with a 498 days duration. A representative
fuel node is chosen to measure the error between each GPU implemented method
and result based on third-order Jacobi collocation method.

This study uses a GeForce GTX580 to build tests and the accumulated time to
calculus of 458 days of burnup using RKF is 1.69 seconds and AMB is 1.8 seconds
in double precision and 1.9 seconds in mixed mode.

Root Mean Squared Error (RMSE) method was used to measure the Euclidean
distance between the sequences of nuclides inventory calculated by the methods
under analysis and the benchmark and this formula is shown in Equation (13.14),
where the X set contains the benchmark and Y the sequence under analysis.

RMSE D 100 �

s
1

N

NP

iD1
.xi � yi/2

.Maxfyig � Minfyig/ ; xi 2 Xk and yi 2 Ym
k : (13.14)

Figure 13.5 shows the RMSE error of Adams-Moulton-Bashford relative to
benchmark n D 32 burnup steps covering one-cycle burnup in the fuel cycle of
ANGRA II PWR reactor.
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13.7 Conclusions and Further Developments

This work presents the implementation of mixed precision, adaptive step Adams-
Moulton-Bashford method to evaluate fuel burnup and isotopic inventory using
GPU parallel programming. The computational performance is compared against
a burnup and spent fuel inventory solver based on Runge-Kutta-Fehlberg and
accuracy of both with the benchmark produced by Jacobi colocation method.
The comparative performance shows close results within and accuracy according
to needs to solve one-cycle burnup in the fuel cycle of ANGRA II PWR reactor.

The mixed precision approach seemed full of promise because GPU hardware is
three times more powerful in single precision than double, but we are now seeing
that approach presents many problems. For example, a full copy and conversion
from double to float precision of burnup operator A�t. Furthermore, four copies
and conversion to double precision of predictor condition (sŒi� i D 0 � � � 3) are a
bottle-neck to use mixed precision and low quality single floating-point arithmetic
produces a bad choice of predictor and therefore the corrector stage needs more time
to converge. Further work consists in implementation of quad precision or arbitrary-
precision floating-point arithmetic in GPU using a variable order AMB.
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Chapter 14
2D Gauss-Hermite Quadrature Method for
Jump-Diffusion PIDE Option Pricing Models

L. Jódar, M. Fakharany, and R. Company

14.1 Introduction

An option is a contract whose holder has the right to sell or buy an asset traded in the
market in a future time called the maturity at a prefixed price called the strike. The
classic Black–Scholes model for valuing option contracts does not depict stock price
changes, market risks, heavy tails and asymmetries observed in market data [Du93].
Typical alternatives to the Black–Scholes model are based on non-lognormal
assumptions for the stochastic differential equation which represents the changes
of the underlying asset and/or the volatility, see, for instance, [He93, BaEtAl98].
These models use to price the option contract as the solution of a second-order
parabolic partial differential equation (PDE). Alternatives to capture the reality of
the market are the jump-diffusion models which incorporate jumps in the variation
of the underlying asset. This fact introduces a non-local integral term in the equation
of the option price related to the assumed type of the underlying asset jumps and
intensities. Thus the option price is given by the solution of a partial integro-
differential equation (PIDE) [CoEtAl04], having as many independent variables
as underlying assets apart from the time. An excellent overview for the existing
numerical methods of one asset jump-diffusion models may be found in [ClEtAl08].
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In this paper we consider finite difference methods for the two-asset Merton
jump-diffusion model for put options on the minimum of two assets described by
the risk-neutral dynamics of two-asset jump-diffusion model

dSi.t/

Si.t/
D .r � qi � ��i/dt C �idWi C .eJi � 1/dZ.t/; i D 1; 2;

where, for i D 1; 2, Si denote the underlying assets, Ji are the jump sizes, the
expectation E.eJi � 1/ is denoted by �i, qi are the dividend yields, �i denote
the volatilities, Wi are correlated standard Brownian motions with 
 2 .�1; 1/
and r is the risk free interest. Z and � are the Poisson process and its jump
intensity, respectively [RaEtAl13]. Using Itô calculus and the transformation xi D
ln.Si=E/; i D 1; 2, � D T � t, where E is the strike price and T represents the
maturity, the option price U.x1; x2; �/ is given by the solution of the PIDE
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@x21
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@x22
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�
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@x1

C �
r � q2 ���2 � �22
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� @U

@x2
� .r C�/U C�

Z

�2
U.x1 C�1; x2 C�2/g.�1; �2/d�1d�2;

(14.1)
where

g.�1; �2/ D
exp
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��
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1
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O�1 O�2 C

�
�2�
2
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	2
��

2� O�1 O�2
q
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2J

;

(14.2)
is the probability density function of a bivariate normal distribution, 
i, O�i are
the means and standard deviations of the jump sizes Ji, i D 1; 2, respectively.
Here 
J 2 .�1; 1/ is the correlation parameter between the jump sizes [ClEtAl08,
RaEtAl13]. Apart from the PIDE (14.1), the solution must satisfy the initial
condition [ClEtAl08, Du06] corresponding to the payoff of the American put over
the minimum of two-asset

f .x1; x2/ D E max.1 � min.ex1 ; ex2 /; 0/: (14.3)

Suitable boundary conditions are included suggested by the 1D put option problem
and the payoff as follows:

lim
x1!�1

U.x1; x2; �/ D Ee�r� ; lim
x2!�1

U.x1; x2; �/ D Ee�r� ;

U.x1; x2; �/ � f .x1; x2/; as x1 ! 1 or x2 ! 1:
(14.4)

A recent numerical antecedent for two-asset jump-diffusion models using
Galerkin finite element approach may be found in [RaEtAl13]. Finite difference
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methods for this model are treated in [ClEtAl08], where the numerical treatment of
the integral term is based on the use of the trapezoidal rule on a truncated domain
and further Fast Fourier Transform.

In this paper we use a finite difference approach to solve the PIDE
problem (14.1)–(14.4). However, as it has been pointed out in [ZvEtAl03], the
presence of the mixed derivative term in the differential part of (14.1) may generate
numerical instabilities and inaccuracy, apart from a high number of nodes in
the scheme stencil what grows the computational cost. This paper is organized
as follows. In Section 14.2, the elimination of the mixed derivative term of the
PIDE (14.1) is developed by using the canonical transformation of a second-order
PDE [Ga98]. Discretization of the transformed problem is treated in Section 14.3.
Standard finite difference approximation of the differential part is considered, while
the integral part is approximated by using Gauss-Hermite quadrature and further
bivariate interpolation. Both discretizations of the differential and integral part
are matched in an appropriate way as the zeroes of the Hermite polynomials not
need to be nodes of the numerical scheme. Positivity, stability and consistency
of the numerical scheme are also treated. For the sake of brevity and taking into
account the limited extension of the chapter, we omit the proofs of some results.
A numerical example is included in Section 14.4. Summarizing, our contribution
is based on the elimination of the cross-derivative term to avoid known drawbacks
reducing the computational cost and on the use of Gauss-Hermite quadrature and a
bivariate interpolation for the approximation of the integral part allowing accurate
solutions with a few number of terms. The material presented in this paper is work
in progress, an extended version of which, inclusive of all the necessary proofs and
tests of the results, will be published elsewhere in due course.

14.2 Mixed Derivative Elimination

In this section a transformation of the problem (14.1)–(14.4) is proposed in order
to remove the cross-derivative term in (14.1). Let us consider the change of
independent variables,

y1 D �2 Q

�1

x1; y2 D x2 � �2


�1
x1; Q
 D

p
1 � 
2; (14.5)

together with the transformation of the unknown variable

V.y1; y2; �/ D exp..r C �/�/

E
U.x1; x2; �/: (14.6)

From (14.5) and (14.6), Equation (14.1) becomes
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2

�
@2V
@y21

C @2V
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C a2
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�1
�2 Q
 .�1 � y1/; �2 � y2 C Qm.�1 � y1//d�1d�2;

(14.7)
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where the coefficients ai and the new variables for the integral part �i are given by

a1 D Q
�2
�1
.r � q1 � �k1 � �21

2
/;

a2 D .1 � 
�2
�1
/r � .q2 � 
�2

�1
q1/ � ��2 C 
�2

�1
��1 � �22

2
C 
�1�2

2
;

�1 D y1 C �2 Q

�1
�1; �2 D y2 � �2


�1
�1 C �2; Qm D 


Q
 :

Transformed boundary conditions (14.4) become

lim
y1!�1

V.y1; y2; �/ D e�� ; lim
y2!�1

V.y1; y2; �/ D e�� ;

V.y1; y2; �/ � f .y1; y2/; as y1 ! 1 or y2 ! 1:

14.3 Numerical Scheme Construction and Properties

In order to discretize the transformed problem (14.7), let us choose firstly the
bounded numerical domain following criteria of [KaEtAl00, EhEtAl08]. Thus, let us
take a rectangular domain in x1x2� plane with boundaries x1 2 Œa; b� and x2 2 Œc; d�
such that eb and ed are about ten times the strike E and ea and ec are close enough
to zero. Under the transformation (14.5), the rectangular domain is converted to a
rhomboid domain ˝ with vertices ABCD in y1y2�plane as shown in Figure 14.1.
Let N1 C 1 and N2 C 1 be the numbers of mesh points in x1 and x2 directions,
respectively, such that the spatial stepsizes are hx1 D .b � a/=N1 and hx2 D
.d � c/=N2. From (14.5) the original mesh points .N1 C 1/.N2 C 1/ are mapped
into the rhomboid domain with new stepsizes h1 D �2

�1
Q
hx1 , h2 D hx2 . Hence the

B

C

B(
σ2

σ1
ρ̃b, c − σ2

σ1
ρb)

D(
σ2

σ1
ρ̃a, d − σ2

σ1
ρa)

y2 = d − m̃y1

y2 = c − m̃y1

A

A(
σ2

σ1
ρ̃a, c − σ2

σ1
ρa),

C(
σ2

σ1
ρ̃b, d − σ2

σ1
ρb),

D

Fig. 14.1 Rhomboid numerical domain ABCD
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new rhomboid mesh points are .y1;i; yi
2;j/ where

y1;i D y1;0 C ih1; 0 � i � N1; y1;0 D �2

�1
Q
a;

and for each i value,

yi
2;j D Oyi;0 C jh2; Oyi;0 D c � �2

�1

.a C ihx1 /; 0 � j � N2:

The time variable is discretized by �n D nk, 0 � n � N� , k D 1=N� .
As we mentioned in the introduction we are going to use Gauss-Hermite

quadrature to discretize the integral part. So for the sake of convenience if we
denote by ˚ D f.�1;`; �2;m/, 1 � ` � L; 1 � m � Mg the set of all the
pairs of zeroes of Hermite polynomial of degrees L in the first argument and M
in the second, respectively, we select parameters a; b; c; d identifying the rhomboid
numerical domain ˝ so that ˚ � ˝ after L and M are prefixed.

Let us denote the approximation of V.y1;i; yi
2;j; �

n/ by Vn
i;j. Differential part of

PIDE (14.7) is discretized by using central finite difference approximations for
the first and second spatial derivatives and forward finite difference approximation
is implemented to approximate the time partial derivative of V . Dealing with the
discretization of the unbounded support bidimensional integral term of PIDE (14.7),
we recall the Gauss-Hermite quadrature in 2D for a function z.x; y/ given by

LX

lD1

MX

mD1
!l!mzlm �

Z 1

�1

Z 1

�1
e�.x2Cy2/z.x; y/dxdy; (14.8)

where !l, l D 1; 2; : : : ;L and !m, m D 1; 2; : : : ;M represent the corresponding
weights for the roots of Hermite polynomial of degrees L and M, respectively. zlm D
z.xl; ym/ represents the value of the integrand function at node .xl; ym/ for xl, 1 �
l � L and ym, 1 � m � M being the roots of Hermite polynomials of degrees L and
M [AbEtAl61].

By applying formula (14.8) to the improper double integral of (14.7), one gets

OIn
i;j D

LX

`D1

MX

mD1
!`!mC`m.i; j/Vn.�1;`; �2;m/; (14.9)

where

C`m.i; j/ D g.
�1

�2 Q
 .�1;` � y1;i/; �2;m � yi
2;j C Qm.�1;` � y1;i// expŒ�21;` C �22;m�;

and Vn.�1;`; �2;m/ denotes the approximate value of V at point .�1;`; �2;m; �n/. Note
that expression (14.9) involves evaluation at points that usually are different from
those of the grid .y1;i; yi

2;j/; 1 � i � N1; 1 � j � N2, and it is necessary to
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P2(y1,i�+1, y
i�+1
2,jm

)

P3(y1,i�+1, y
i�+1
2,jm+1)

•(φ1,�, φ2,m)

P4(y1,i�
, yi�

2,jm+1)

P1(y1,i�
, yi�

2,jm
)

Fig. 14.2 Neighbour coordinate points to (�1;`; �2;m)

match both discretizations of the differential and the integral part. For each value
Vn.�1;`; �2;m/ appearing in (14.9) we want to locate the pair .�1;`; �2;m/ in one of the
sub-rhomboids of the rhomboid grid. Let us denote such sub-rhomboid as R.i`; ji`m/
in such way that the point .�1;`; �2;m/ does not lie in the right-up sides of the sub-
rhomboid. Rhomboid vertices of R.i`; ji`m/ are given by .y1;i` ; y

i`
2;jm
/, .y1;i`C1; y

i`C1
2;jm

/,

.y1;i`C1; y
i`C1
2;jmC1/ and .y1;i` ; y

i`
2;jmC1/. Following the idea of the bivariate interpolation

four point formula [AbEtAl61, Ch. 25, p. 882], we modify such approximation for
the rhomboid in Figure 14.2 as follows:

Vn.�1;`; �2;m/ � Oıi`;2.ıjm;2V
n
i`;jm

C ıjm;1V
n
i`;jmC1/

COıi`;1.ıjm;3V
n
i`C1;jmC1 C ıjm;4V

n
i`C1;jm/; (14.10)

where

Oıi`;1 D �1;`�y1;i`
h1

I Oıi`;2 D y1;i`C1��1;`
h1

I ıjm;1 D �2;m�y
i`
2;jm

h2
I

ıjm;2 D y
i`
2;jmC1

��2;m
h2

I ıjm;3 D �2;m�y
i`C1

2;jm
h2

I ıjm;4 D y
i`C1

2;jmC1
��2;m

h2
:

(14.11)

Consequently, the approximation of the integral part is obtained by substitut-
ing (14.10) into (14.9) (In

i;j � OIn
i;j). Hence

In
i;j D

LX

`D1

MX

mD1
ˇ
.i;j/
i`;jm

Vn
i`;jm

C Ǒ.i;j/
i`;jmC1V

n
i`;jmC1 C Q̌.i;j/

i`C1;jm Vn
i`C1;jm C M̌.i;j/

i`C1;jmC1V
n
i`C1;jmC1;

where

ˇ
.i;j/
i`;jm

D !`!mC`m.i; j/ Oıi`;2ıjm;2;
Ǒ.i;j/
i`;jmC1 D !`!mC`m.i; j/ Oıi`;2ıjm;1;

Q̌.i;j/
i`C1;jm D !`!mC`m.i; j/ Oıi`;1ıjm;4;

M̌.i;j/
i`C1;jmC1 D !`!mC`m.i; j/ Oıi`;1ıjm;3:

(14.12)
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Note that given˚ we can always choose values of h1 and h2 such that coefficients
in (14.11) are nonnegative and thus the resulting 2D interpolation formula is also
nonnegative. With previous notation, the corresponding finite difference scheme
becomes

VnC1
i;j D ˛1V

n
i�1;j C ˛2V

n
i;j�1 C ˛3V

n
i;j C ˛4V

n
i;jC1 C ˛5V

n
iC1;j C k��1

�2 Q
 In
i;j; (14.13)

Vn
i;0 D e��

n
; Vn

0;j D e��
n
; Vn

N1;j D fN1;j; Vn
i;N2 D fi;N2 ; 1 � i � N1; 1 � j � N2;

(14.14)
where

˛1 D k
2h1
.
�22 Q
2

h1
� a1/I ˛2 D k

2h2
.
�22 Q
2

h2
� a2/I

˛3 D 1 � k�22 Q
2. 1
h21

C 1

h22
/I ˛4 D k

2h2
.
�22 Q
2

h2
C a2/I

˛5 D k
2h1
.
�22 Q
2

h1
C a1/:

(14.15)

Reliable numerical solutions need to be nonnegative because they represent the
price of the option. This goal is achieved by guaranteeing that coefficients (14.13)
given by (14.15) become nonnegative. It can be shown that under stepsizes
conditions

k <
h21h

2
2

�22 Q
2.h21 C h22/
; h1 <

�22 Q
2
ja1j ; h2 <

�22 Q
2
ja2j ; (14.16)

the coefficients of (14.13) are nonnegative. Hence, starting from nonnegative initial
and boundary conditions (14.14), the numerical solution fVn

i;jg is nonnegative.
As there are different concepts of stability in the literature, we state the concept

of stability used previously in [FaEtAl14]. Firstly, let Vn denote the vector solution
of the finite difference scheme (14.13)–(14.15) written in the following form:

Vn D ŒVn
0 Vn

1 : : :Vn
N1 �

T ; Vn
i D ŒVn

i;0 Vn
i;1 : : :V

n
i;N2 �:

Definition 1 Consider a numerical solution fVn
i;jg of the PIDE computed from

the scheme (14.13)–(14.15) with stepsizes h1 D �y1, h2 D �y2 in a rhomboid
computational domain and k D �� . On the one hand, it is said that fVn

i;jg is strongly
uniformly k:k1 stable, if the vector solution Vn satisfies

kVnk1 � � kV0k1; 0 � n � N� ;

where � > 0 does not depend on the stepsizes h1, h2 and k.
On the other hand, it is said to be conditionally stable when � is obtained under

a certain condition on the stepsizes.

Following the numerical analysis techniques developed in [FaEtAl14, FaEtAl16],
one can show that the scheme (14.13)–(14.15) is conditionally strongly uniformly
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k:k1 stable under conditions (14.16). Furthermore, the proposed scheme (14.13)
is consistent with PIDE (14.7) in the sense that the exact theoretical solution
approximates well the difference scheme with local truncation error tending to
zero as the discretization stepsizes h and k tend to zero [Sm85], and the Hermite
polynomials degrees L and M tend to infinity.

One might think that the effect of the interpolation could contaminate the
approximation error. However as the next Example 1 shows, this is not the case
because the effect of the interpolation error is irrelevant. Apart from the fact that the
final approximation error in space of the numerical solution is of the same order 2
as the one of the interpolation error.

14.4 Numerical Example

Next example illustrates the results of the proposal numerical scheme for European
put options on the minimum of two assets. The numerical example has been
executed using Matlab on a Microprocessor 2.8 GHz Intel Core i5. It has been
used the following definition of the root mean square relative error (RMSRE) of
a distribution of N observations U.xi/; i D 1; : : :N; whose expected values are
U.xi/, respectively,

RMSRE D

v
u
u
u
t

NX

iD1

0

@ 1

N

ˇ
ˇ
ˇ
ˇ
ˇ

U.xi/ � U.xi/

U.xi/

ˇ
ˇ
ˇ
ˇ
ˇ

2
1

A

Example 1 Here we compare the value of European put options obtained using
scheme (14.13)–(14.15) with the corresponding values in [ClEtAl08]. Consider an
European put option with parameters T D 1, E D 100, r D 0:05, q1 D q2 D 0,
�1 D 0:12, �2 D 0:15, 
 D 0:3, � D 0:6, 
1 D �0:1, 
2 D 0:1, O�1 D 0:17, O�2 D
0:13, 
J D �0:2 and the boundaries x1x2�plane are x1; x2 2 Œ�3; 3�. The RMSRE
for S1; S2 belonging to the set f90; 100; 110g is calculated for L D M D 3 and
5. The reference values are taken from [ClEtAl08] and the RMSRE is obtained for
three groups AS1 D f.S1; 90/; .S1; 100/; .S1; 110/g; S1 2 f90; 100; 110g. Table 14.1
reports the associated RMSRE and CPU time for several grids.
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Table 14.1 The RMSRE for European put option on the minimum of two assets for several
grids

A90 A100 A110

CPU CPU CPU

.N1;N2;N� / RMSRE (sec) RMSRE (sec) RMSRE (sec)

L D M D 3 (64,32,50) 4.188e-3 0.17 3.561e-3 0.17 4.755e-3 0.17

(128,64,100) 1.247e-3 2.63 1.197e-3 2.63 2.016e-3 2.63

(256,128,200) 8.836e-4 10.72 7.158e-4 10.72 7.241e-4 10.72

(256,256,300) 5.636e-4 41.28 3.913e-4 41.28 4.263e-4 41.28

L D M D 5 (64,32,50) 2.611e-3 0.31 3.558e-3 0.31 2.752e-3 0.31

(128,64,100) 7.854e-4 2.72 8.205e-4 2.72 7.326e-4 2.72

(256,128,200) 5.392e-4 11.12 4.916e-4 11.12 4.388e-4 11.12

(256,256,300) 2.496e-4 42.55 2.227e-4 42.55 2.519e-4 42.55
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Chapter 15
Online Traffic Prediction Using Time
Series: A Case study

M. Karimpour, A. Karimpour, K. Kompany, and Ali Karimpour

15.1 Introduction

Crashes and traffic congestion are among the most challenging issues in traffic
engineering. Road capacities and road accidents have great impacts on traffic
congestion. An accurate prediction of traffic flow is one of the significant steps in
Intelligent Transportation Systems (ITS) [LiWa13]. ITS have enabled the engineers
to get access to real time data [SmEtA02]. Real time data not only can be helpful
for the road users to decide their routes for traveling, but also can give the chance to
the engineer to manage the routes more effectively [Us12].

Different programs have long been employed to anticipate the point traffic, such
as fuzzy neural approach [OgEtA11]. Also, using linear multi-regression dynamic
approach helps anticipate data online [QuAl08]. Another approach to predict the
traffic is artificial neural network [KuEtA13]. Other methods that have been utilized
are Bayesian networks and neural network [SuEtA06].
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Time series are the data and information variables collected in the past and
used to predict the data in the future. These data are collected in regular time
intervals. One of the applications of time series is anticipating the stock exchange
of big cities [CaEtA97]. Some other applications of time series include predicting
water demand of metropolitan area using structural models, time series, and neural
networks [JaKu07]. Forecasting the Forex financial markets is another application
of time series [YaTa00].

Time series are also used to predict traffic intensity in various studies. In a recent
study conducted in [CoHu14], time series utilized to predict the trucks short-term
traffic by analyzing the recent traffic data of the trucks. Traffic prediction is one
of the important factors in intelligent transportation systems, utilizing time series
using previous data enable us to predict the forthcoming traffic and be to enhance
the traffic conditions [RaEtA14].

This paper is organized as follows. Section 15.2 explains a methodology to
examine the traffic in an arbitrary intersection. Section 15.3 provides an in-flow rate
prediction method of the traffic data of the target intersection, and then illustrated
the proposed scheme. The results are then presented in Section 15.4. Finally, Section
15.5 highlights the main results and draws concluding remakes.

15.2 Traffic Modeling by Mixed Logic Dynamic

Mixed logic dynamic (MLD) is a common framework that combines both continues
states with logical states as the following general form [BeMo99]:

x.t C 1/ D Atx.t/C B1tu.t/C B2tı.t/C B3tz.t/

y.t/ D Ctx.t/C D1tu.t/C D2tı.t/C D3tz.t/

E2tı.t/C E3tz.t/ � E4tx.t/C E1tu.t/C E5t

where x.t/, u.t/, and y.t/ are the states, inputs, and outputs, respectively, with
continues and logical elements as:

x D



xc

xl

�

; xc 2 Rnc ; xl 2 �0; 1 �n1
; n D nc C nl

u D



uc

ul

�

; uc 2 Rmc ; ul 2 �0; 1 �ml
;m D mc C ml

y D



yc

yl

�

; yc 2 Rpc ; yl 2 �0; 1 �pl
; p D pc C pl

other variables are logic (binary) variables.
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Fig. 15.1 A four connection
intersection [Pa15].

Traffic modeling could be a good candidate for the MLD structure. That is,
the queue length can be considered as the continuous state and the signaling
of intersection can be considered as the logic values. Figure 15.1 illustrates an
arbitrary intersection, the queue length for every approach of the intersection can
be derived as:

Li.k C 1/ D Li.k/C Ts
Mfi
.qin;i.k/ � vi.k/qout;i.k// vi.k/ 2 .0; 1/

where Li is the queue length of ith approach, Ts is sampling period, Mfi is the number
of lane in the ith approach, qin;i is the input flow rate of the ith approach, qout;i is the
output flow rate of the ith approach, and vi is a binary variable that shows the ith
approach signal is green .vi D 1/ or red .vi D 0/. The output flow rate of the ith
approach is:

qout;i.k/vi.k/ D min
�

Mfimivi.k/;
MfiLi.k/

Ts
vi.k/

	

where mi is the maximum output rate of the ith approach. Since out flow rate has a
nonlinear formula, it can be rewritten as [BeMo99]:

qout;i.k/vi.k/ D zif .k/ıi.k/C z3f .k/
�
ıi.k/ D 1 , zif .k/ � 0

�

where

zif D Mfimf vi.k/ � MfiLi.k/
Ts

vi.k/; z3f D MfiLi.k/
Ts

vi.k/

and ıi is a binary variable.



150 M. Karimpour et al.

In a four phase intersection at each time one light is green. The order of lights are:

v1 ! v2 ! v3 ! v4 ! v1

To consider the order in a four phase system, the following equations must be
satisfied:

v1.k � 1/.1 � v1.k// � v2.k/ � 0

v2.k � 1/.1 � v2.k// � v3.k/ � 0

v3.k � 1/.1 � v3.k// � v4.k/ � 0

v4.k � 1/.1 � v4.k// � v1.k/ � 0

Also, to avoid interfering movements the following set of equations must be
satisfied:

Jjv.k/ � 1

where Jj is jth row of matrix J and J is:

J D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1

0 1 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 1

0 0 1 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

By using the recent formula for output flow rate all equations can be mixed in
the MLD framework. By modeling an intersection in the MLD framework, and
solving the derived formulation by model predictive control [Pa15], Figure 15.2
have been achieved. Figure 15.2 demonstrates the number of cars in the approach
#3 (Figure 15.1) for an arbitrary sequence (the signal order is not fixed) and regular
sequence. Figure 15.3 shows the line signal of the approach #3 for an arbitrary
sequence and regular sequence.
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Fig. 15.2 Number of cars in approach #3 in Figure 15.1 for both arbitrary and regular sequence
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Fig. 15.3 Light signal in approach #3 in Figure 15.1 for both arbitrary and regular sequence

Mixed logic dynamic method is used to model the intersection sequences. For
modeling part, the flow rate of each approach is used as the input to our model.
Finally, the model is solved using model predictive control formula. Next section
will provide an approach to predict input flow rate (in-flow rate) of each approach
in an arbitrary intersection.
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15.3 In-Flow Rate Prediction

In order to predict the in-flow traffic in an intersection, a time series model is
incorporated. All the steps of building a time series for traffic prediction are
explained in the following sections.

A. Time Series Models
In the physical applications of time series, when studying on a variable, there

are some situations where the relevant input variable is not specified. In other
words, there are some important variables which may leave effect on outputs,
but one cannot manipulate them.

Statistician and economists use time series terminology to explain these
systems. Some examples of time series are the world oil price, daily price of
power markets, and traffic flow in an intersection in this study. For instance,
traffic flow in an intersection is affected by too many parameters, i.e., ambient
temperature, time of day, seasonal situation, etc. But none of these variables can
be manipulated.

In time series, there is no manipulated input but there are lots of inputs that
affect the output of a system. AR model is one kind of time series representation.
In AR model, output of system is derived in an autoregressive (AR) manner
based on the previous value of outputs:

y.t/C ˛1y.t � 1/C ˛2y.t � 2/C : : :C ˛ny.t � n/ D e.t/

y.t/ is the output in time t and e.t/ is white noise input with variance �. The
parameters of AR models are � D Œ˛1 ˛2 : : : ˛n�

T and can be derived by
least square method (LSM):

� D Œ˚T˚��1˚TY

˚ and Y are defined in [Lj99]. In some situation white noise assumption may
be restrictive so one can use ARMA model. In ARMA model output of system
is derived in an autoregressive manner and the input is in moving average (MA)
such that:

y.t/C ˛1y.t � 1/C : : :C ˛ny.t � n/ D e.t/C c1e.t � 1/C : : :C cme.t � m/

y.t/ is the value of output in time t and e.t/ is white noise input with variance �.
The parameters of ARMA models are

� D Œ˛1 ˛2 : : : ˛n c1 : : : Ą cm�
T

and can be derived by several different methods [Lj99].
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A more convenient way to define ARMA model is

A.q/y.t/ D C.q/e.t/

where A.q/ D 1C ˛1q�1 C : : :C ˛nq�n and C.q/ D 1C c1q�1 C : : :C cmq�m

and q is a backward shift operator.
B. Proposed Method

This paper uses ARMA model to predict traffic flow in the specific inter-
section. Here y.t/ is considered as the traffic flow in time t and e.t/ is the
combined effect of variables which may affect the traffic flow y.t/. The data
used in this paper are obtained from Mashhad Traffic Organization, for Moallem
Blvd. intersection. The traffic flow for each approach of the intersection, for
every 15 minute intervals are collected for several days using loop detectors.

15.4 Experimental Results

I. Experiment Number 1
The system is learned with data from the first day with 15 minute intervals.

Then, the prediction was made 15 minutes ahead for the following day.
Moreover, the ARMA model applied in this system that uses the data of the
several 15 minutes before the traffic flow. In other words, 12 samples of traffic
flow (3 hours) are applied to predict the traffic flow for the 15 minutes ahead.
Coefficients used to predict this model are as follows:

A.q/ D 1 � 0:8478q�1 � 0:3553q�2 C 0:2323q�4 C 0:03152q�5 C : : :

C.q/ D 1 � 0:3099q�1

As it is shown in Figure 15.4, prediction is made after the 12th sample and
all previous 12 samples are available data. In this condition, the model accuracy
is 88.74 % (Table 15.1). To examine the prediction system more thoroughly, the
anticipation is also made for one hour ahead. The result is shown in Figure 15.5.

As it is demonstrated in Figure 15.5, accuracy of the system is decreased a
little. Considering Figure 15.5, it can be concluded that because the prediction
interval has increased, the accuracy of the system has reduced to 81.96 %
(Table 15.1).

II. Experiment Number 2
The same system in this step is learned with data from the first day with every

30 minutes intervals. Then the anticipation was made 30 minutes ahead for the
following day. The result of the prediction for 30 minute ahead in the following
day and 60 minute ahead is illustrated in Table 15.2. From Table 15.2 it can be
inferred that the accuracy of the system decreased significantly.



154 M. Karimpour et al.

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

140

160

180

200

Time (Minutes)

Tr
af

fic
 F

lo
w

Predicted
Actual

Fig. 15.4 Results for the system predicted output for 15 min later
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Fig. 15.5 Results for the system predicted output for 1 hour later

By comparing the two experiments which are shown in Table 15.2, it can be
noted that the less the time intervals are, the more the accuracy will be achieved.
Thus, it is significant to record data in shorter intervals.
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Table 15.1 System accuracy
(least square error) for 15
minutes interval learning data

Accuracy of the system Forecasting ahead

88.74 % 30 min

81.96 % 60 min

Table 15.2 Different system accuracy (least square error) for two experiments

Experiment 1 Experiment 2

Accuracy of the system Forecasting ahead Accuracy of the system Forecasting ahead

88.74 % 30 min 73.76 % 30 min

81.96 % 60 min 66.01 % 60 min

15.5 Conclusion and Discussion

The burgeoning rise of car production and the following traffic increase have made
it inevitable to propose a model for the online traffic control. Implementing a model
for predicting traffic flow in an online method for a definite intersection would
help traffic engineers to plan for the upcoming traffic of that intersection. Since
the ITS systems depend on real time information, it is mandatory that to be able
to have access to online models. It is important for the traffic engineers to have
meticulous information about the traffic flow, before the planning and construction
phase. Moreover, the ability to predict the traffic flow in a built intersection for 15
minutes or one hour later has advantages such as:

1. If the flow is predicted to be more than the intersection capacity, the approaching
ways to the intersection can be limited.

2. With precise flow prediction, smaller queue length can be derived.
3. Sufficient time would be available to send police units or in case of other

emergencies.
4. The intersection traffic light can be changed easier manually if the intersection is

not actualized.

In this study, time series are used to create the model. Two different experiments
conducted on the same data. In the first experiment, the proposed model is instructed
by the data of the first day having 15 minutes intervals, and the model is tested for 15
and 60 minutes later time intervals in the following day. The average error obtained
from this test is less than 18 percent for all the predictions. In the second experiment,
the mode is instructed by the data of the first day having 30 minutes intervals, and
the model tested for the same period as the first one. But the average error gained
from the second experiment increased significantly. So using data by less interval
measurements is much better than data with large interval time.

Traffic intersections may also be linked as in a network. That is, the neighbor
intersections should follow a green wave to provide the most efficiency. In this
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paper, we only analyzed the impact of all the four approaches in an isolated arbitrary
intersection. Future research can be conducted on the impact of an intersection in a
network.
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Chapter 16
Mathematical Modeling of One-Dimensional
Oil Displacement by Combined
Solvent-Thermal Flooding

T. Marotto, A. Pires, and F. Forouzanfar

16.1 Introduction

Enhanced oil recovery (EOR) is defined as a set of techniques applied to improve
the recovery of hydrocarbons by the injection of materials that are not normally
present in the reservoir [La89]. Most EOR methods may be classified into thermal,
chemical, and miscible. The chemical methods improve the sweep efficiency
through the reduction of the water mobility and/or interfacial tension. Thermal
methods consist of injecting a fluid (heat source), which can be steam or hot water,
that causes the reduction of the oil viscosity in the reservoir, and the miscible
methods are based on the injection of a solvent to decrease the capillary and
interfacial forces.

There are large heavy oil and bitumen deposits in many areas in the world
[Zh04]. Under this scenario, it is important to develop new technologies to extract
the vast amount of oil from these reservoirs. Carbonated water flooding (CWF) is
an improved oil recovery technique that combines the advantages of waterflooding
with carbon dioxide sequestration [HiEtAl60, Na89, Pi07, SoEtAl09, DoEtAl11]. In
this work we present the analytical solution for the problem of 1D oil displacement
by a combined thermal-solvent EOR method.
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16.2 Physical and Mathematical Model

The system of governing equations that models the injection of a hot fluid containing
a solvent into an oil reservoir consists of oil, solvent, and water mass balance and
energy conservation. The main assumptions for this model are:

• One-dimensional two-phase flow in a homogeneous porous media;
• No diffusion, no chemical reactions;
• Incompressible system;
• Gravity and capillary effects are neglected;
• Enthalpies are functions of components concentrations and temperature;
• Constant heat capacity;
• Viscosity of phases are functions of the concentration of solvent in the phase and

temperature;
• Pure component density is the same in all phases;
• Only mass transfer of component solvent occurs between the phases;
• Residual saturations of phases are set to zero.

The mass conservation of components oil, solvent, and water can be written as:

@

@t
.�
ocooso/C @

@x
.
ocoouo/ D 0;

@

@t
Œ� .
wcswsw C 
ocsoso/�C @

@x
.
wcswuw C 
ocsouo/ D 0

and

@

@t
.�
wcwwsw/C @

@x
.
wcwwuw/ D 0;

where � is the porosity, 
j is the density of phase j, cij is the mass fraction of
component i in phase j, sj is the saturation of phase j, uj is the velocity of phase
j, t is time, and x is the spatial variable.

The energy conservation is given by:

@

@t
Œ� .
osoHo C 
wswHw/C .1 � �/ 
rHr�C @

@x
.
oHouo C 
wHwuw/ D 0;

where Hj is the enthalpy of phase j, 
r is the rock density, and Hr is the rock enthalpy.
We can define the dimensionless time .tD/ and spatial .xD/ variables by:

tD D
R t
0

uT .�/ d�

�L
and xD D x

L
:
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The velocity can be expressed in terms of the fractional flow function:

fj D uj

uT
;

where fj is the fractional flow of phase j and uT is the total velocity.
Considering that Amagat’s law [PrEtAl86] is valid, and that the pure component

density is the same in all phases, we can replace the mass fraction by the volume
fraction of component i in phase j in the conservation laws using the following
equation:

Ocij D cij
j

O
i
;

where Ocij is the volume fraction and O
i is the pure component density at system P
and T .

To relate the solvent concentrations in water and oil phases we consider
infinity dilution model for both phases. Therefore, using Henry’s law [PrEtAl86]
to calculate the fugacity of the solvent in the liquid phase, we get:

OcsoKs;o D OcswKs;w; (16.1)

where Ks;j is the Henry’s constant in liquid phase j. Henry’s constant was calculated
using Harvey’s model at water saturation pressure at system temperature [Ha96]
corrected to system pressure applying Poynting’s correction [PrEtAl86].

We also consider the following auxiliary relations:

ncX

iD1
Ocij D 1;

npX

jD1
sj D 1 and

npX

jD1
fj D 1: (16.2)

The unknowns of this problem are oil saturation, solvent concentration in the
oil phase, and temperature. We only need to solve one concentration .Ocso/, because
Ocsw can be obtained by Henry’s law (Equation 16.1). The other concentrations are
computed using the first auxiliary relation (Equation 16.2). The mass conservation
of component water does not need to be solved as the system is incompressible.

Thus, given all these assumptions we find a hyperbolic system composed of three
equations:

Œ1 � Ocso�
@so

@tD
� so

@Ocso

@tD
C



.1 � Ocso/
@fo
@so

�
@so

@xD
C




.1 � Ocso/
@fo
@Ocso

� fo

�
@Ocso

@xD
C



.1 � Ocso/
@fo
@T

�
@T

@xD
D 0




1 � Ks;o

Ks;w
Ocso

�
@so

@tD
C



Ks;o

Ks;w
.1 � so/

�
@Ocso

@tD
C

�

1 � Ks;o

Ks;w
Ocso

�
@fo
@so

�
@so

@xD
C


�

1 � Ks;o

Ks;w
Ocso

�
@fo
@Ocso

C Ks;o

Ks;w
.1 � fo/

�
@Ocso

@xD
C

�

1 � Ks;o

Ks;w
Ocso

�
@fo
@T

�
@T

@xD
D 0
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@T

@tD
C

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

fo C
Ocso

Ks;o

Ks;w
.Ms � Mw/C Mw

�

1C Ocso



Ks;o

Ks;w
.Mw � Ms/C Ms � 1

�

� Mw

�

so C
Ocso

Ks;o

Ks;w
.Ms � Mw/C Mw C .1 � �/

�
Mr

�

1C Ocso



Ks;o

Ks;w
.Mw � Ms/C Ms � 1

�

� Mw

�

9
>>>>>>>>>>>=

>>>>>>>>>>>;

@T

@xD
D 0;

(16.3)
where

Mi D MTi

MTo
D O
iCpi

O
oCpo
;

and Cpi is the heat capacity of component i.
Rewriting system (Equation 16.3) in conservative form:

utD C AuxD D 0;

we obtain an upper triangular matrix, so the characteristics velocities (eigenvalues)
of this system are the elements of the main diagonal. Thus, the corresponding
eigenpairs are given by:

�.1/ D @fo
@so

; r.1/ D

2

6
4

1

0

0

3

7
5 ;

�.2/ D
fo C Ks;o

Ks;w
.1 � fo � Ocso/

so C Ks;o

Ks;w
.1 � so � Ocso/

; r.2/ D

2

6
6
6
6
4

1

�.2/ � �.1/
@fo
@Ocso

C C

0

3

7
7
7
7
5
;

�.3/ D

fo C
Ocso

Ks;o

Ks;w
.Ms � Mw/C Mw

�

1C Ocso



Ks;o

Ks;w
.Mw � Ms/C Ms � 1

�

� Mw

�

so C
Ocso

Ks;o

Ks;w
.Ms � Mw/C Mw C .1 � �/

�
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�

1C Ocso
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�

� Mw

�
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7
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where

C D �
Ks;o

Ks;w
.fo � so/

so C Ks;o

Ks;w
.1 � so � Ocso/

:

From the eigenpairs, we obtain the multipliers to calculate the rarefaction waves.
So, from the first eigenpair, �.1/ and r.1/ we get:

˛.1/ D
�
@2fo
@s2o

��1
:

For the second pair, �.2/ and r.2/ we have:

˛.2/ D
J2
�
@fo
@Ocso
C C

	

�
@fo
@Ocso
C C

	 h�
1� Ks;o

Ks;w

	 �
J�.1/ � E

�iC ��.2/ � �.1/�
h�
1� Ks;o

Ks;w

	
J @fo
@Ocso
C Ks;o

Ks;w
.E � J/

i ;

where

J D so C Ks;o

Ks;w
.1 � so � Ocso/

and

E D fo C Ks;o

Ks;w
.1 � fo � Ocso/ :

And from the last eigenpair, �.3/ and r.3/:

˛.3/ D 0:

In this case, r�.3/ � r.3/ is equal to zero for all so, Ocso, and T , a linearly degenerate
wave [Le02].

In the first family oil saturation changes while concentration and temperature
remain constant. For the second family, oil saturation and concentration change,
and temperature is constant. The oil saturation and temperature change while
concentration stays constant along the third family.

We also have the shock equations given by Rankine-Hugoniot conditions:

D D
�
1 � OcCso

�
fCo � �

1 � Oc�so

�
f�o�

1 � OcCso

�
sCo � �

1 � Oc�so

�
s�o
;
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D D
OcCso
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Ks;w
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�
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Ks;w

�
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�

� Oc�so



Ks;o

Ks;w
C
�

1 � Ks;o

Ks;w

�

f�o
�

OcCso



Ks;o

Ks;w
C
�

1 � Ks;o

Ks;w

�

sCo
�

� Oc�so



Ks;o

Ks;w
C
�

1 � Ks;o

Ks;w

�

s�o
�

and

D D TC
˚�OcCsoF C H



fCo C OcCsoI C MTw

� � T�
˚�Oc�soF C H



f�o C Oc�soI C MTw

�

TC
˚�OcCsoF C H



sCo C OcCsoI C G

� � T�
˚�Oc�soF C H



s�o C Oc�soI C G

� ;

where

F D
�

Ks;o

Ks;w
.MTw � MTs/C MTs � MTo

�

;

G D MTw C .1 � �/
�

MTr;

H D MTo � MTw

and

I D Ks;o

Ks;w
.MTs � MTw/ :

16.3 Example of Solution

In this section we present a solution for this problem. Corey’s model [CoEtAl56]
was used to calculate the relative permeability of phases:

krj D k0rj

�
s�j
�nj
;

where krj is the relative permeability of phase j, k0rj is the endpoint relative
permeability of phase j, and s�j is the normalized saturation of phase j, defined as

s�j D sj � srj

1 �
npX

jD1
srj

;

where srj is the residual saturation of phase j and np is the number of phases. The
parameters used to calculate the relative permeability are given in Table 16.1, and
the curves are presented in Figure 16.1.
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Table 16.1 Relative
permeability parameters

Property Oil Water

srj 0 0

k0rj 1 1

nj 2 2

Fig. 16.1 Relative
permeability curves
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In this work, we will consider carbon dioxide as the solvent. Water viscosity
containing carbon dioxide was calculated using the Vogel-Fulcher-Tammann (VFT)
correlation [AnEtAl00]. Oil phase viscosity was determined as a function of Ocso and
T through the following polynomial function:


oŒcP�

D 9704 � 94:13T � 2342Ocso C 0:366T2 C 18:24OcsoT � 11780Oc2so � 7:122x10�4T3

� 0:05611OcsoT2 C 71:04Oc2soT C 5573Oc3so C 6:93x10�7T4 C 7:941x10�5 OcsoT3

� 0:1391Oc2soT2 � 27:07Oc3soT C 3719Oc4so � 2:696x10�10T5 � 4:293x10�8 OcsoT4

C 8:913x10�5 Oc2soT3 C 0:02827Oc3soT2 � 1:435Oc4soT � 4023Oc5so;

where T is the absolute temperature in K and Ocso is the volume fraction of the solvent
in the oil phase.

The parameters used to build the solution are given in Table 16.2.
The solution was built from injection conditions to initial conditions (increasing

self-similar variable), thus, to begin the solution path it is necessary to analyze the
eigenvalues behavior at the injection conditions.

The structure of the solution path (Figures 16.2 and 16.3) is given by: J � a �
b � c ! d � e ! I, where .�/ denotes a rarefaction wave and .!/ indicates
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Table 16.2 Physical properties

Property Symbol Value Unit

System pressure P 1:8000 MPa

Oil saturation pressure at injection conditions P.J/sat;o 1:31E � 06 MPa

Oil saturation pressure at initial conditions P.I/sat;o 2:48051E � 7 MPa

Oil saturation at injection conditions s.J/o 0:0000 m3

m3

Oil saturation at initial conditions s.I/o 1:0000 m3

m3

Solvent concentration at injection conditions Oc.J/so 0:1020 m3

m3

Solvent concentration at initial conditions Oc.I/so 0:0100 m3

m3

Temperature at injection conditions T.J/ 313:1500 K

Temperature at initial conditions T.I/ 296:1500 K

Oil heat capacity Cpo 1939:0015 J
kgK

Water heat capacity Cpw 4527:2273 J
kgK

Solvent heat capacity Cps 2865:0307 J
kgK

Rock heat capacity Cpr 720:0000 J
kgK

Oil density 
o 652:2238
kg
m3

Water density 
w 861:0170
kg
m3

Solvent density 
s 911:7881
kg
m3

Rock density 
r 2200:0000
kg
m3

Porosity � 0:3000 m3

m3
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Fig. 16.2 Solution path: (a) Plane .so; fo/ (b) Physical plane .xD; tD/

a shock wave. The solution begins at point .J/ with the first family rarefaction
wave, where oil saturation changes from injection saturation up to .a/. From .a/
there is an oil saturation and concentration rarefaction (second family) connecting
fractional flow at T.J/ and Oc.I/so to point .b/, where there is a constant state zone. Next,
there is another oil saturation rarefaction (first family) up to point .c/. From .c/
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Fig. 16.3 Phase space solution

there is an oil saturation and temperature shock (third family) connecting fractional
flow function at T.I/ and Oc.I/so to point .d/, the degenerate shock wave. This shock
is followed by a constant state region. From .d/ there is the last oil saturation
rarefaction up to .e/, which is connected to initial conditions .I/ through a Buckley-
Leverett type shock [Bu42]. The solution profiles are presented in Figure 16.4,
where TD is the dimensionless temperature, TD D T=T.J/. Figure 16.5 presents the
solution profile in region .J � b/, the first saturation rarefaction and the combined
saturation-concentration transition. In Figure 16.6 there is a zoom in the fractional
flow curves in two regions, the first one .a � b/ is the saturation-concentration
transition and the second one .c ! d/ is the degenerate shock.

16.4 Conclusions

This work presents an analytical solution for the problem of oil displacement by
a hot fluid containing solvent as a combined thermal-solvent EOR method. The
hyperbolic system is composed of three equations and it is solved using the method
of characteristics. The solution path is composed of rarefaction, shock waves, and
constant states, and this problem presents a degenerate wave. The solution presented
is divided into seven regions consisting of an oil saturation rarefaction (first family)
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Fig. 16.5 Zoom in the
solution profile in section
.J � b/
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followed by an oil saturation and solvent concentration rarefaction (second family).
This rarefaction is followed by a constant state zone, then a first family rarefaction
wave appears before a temperature shock (degenerate wave). It is followed by
another constant state region, then an oil saturation rarefaction, and finally the first
family shock (Buckley-Leverett type).
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Chapter 17
Collocation Methods for Solving
Two-Dimensional Neural Field Models
on Complex Triangulated Domains

R. Martin, D.J. Chappell, N. Chuzhanova, and J.J. Crofts

17.1 Introduction

The nervous system consists of approximately 1011 neurons and 1014 connections
all embedded within a highly constrained anatomical space. To better understand
such a complex multi-scale system, neural models are deployed that use a range
of mathematical and computational techniques to explain/predict function and
behaviour of the brain at a range of different scales [Am97, JiEtAl96]. One such
approach, the foundations of which were laid in the 1970s by Wilson and Cowan
[WiEtAl72] and Amari [Am97], is neural field theory, which employs a continuum
approach to model the activity of large populations of neurons in the cortex. These
techniques are of great interest, not only from a mathematical point of view, but also
from an experimental neuroscience point of view since they can replicate many of
the dynamic patterns of brain activity that are observed using modern neuroimaging
methodologies [Co10, BoEtAl11].

Neural field models are built from neural masses and typically take the form of a
nonlinear partial integro-differential equation:

@

@t
u.x; t/ D �u.x; t/C

Z

˝

w.x � x0/S.u.x0//dx0; (17.1)

where u.x; t/ describes the average activity of the neuronal population at position
x 2 ˝ at time t, and S denotes the firing rate function. In our work S takes the form
of a sigmoid
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S.u/ D 1

1C e�ˇu
;

that converts population activity to firing frequency at a rate governed by the
steepness parameter ˇ. Other possibilities include, for example, the Heaviside
function and piecewise linear functions [Br11]. In addition, w.x; x0/ denotes the
connectivity function which describes how neurons positioned at x0 interact with
neighbouring neurons at position x. Popular connectivity functions in the literature
include Gaussian, Laplace and Mexican-hat functions [Br11, SaEtAl15, RaEtAl14].

Equations of the type (17.1) have been shown to support a variety of solutions,
including travelling and spiral waves, as well as spatially and temporally periodic
patterns [Co10, Br11]. These pattern formations can be linked to different neuro-
logical phenomena such as bumps in models of working memory [LaEtAl02], and
spiral waves that are linked to the generation of visual hallucinations [BrEtAl01].
Moreover, oscillatory and travelling waves can be the signature of neurological
diseases, such as epilepsy [Br11, Er98]. Thus, understanding the types of waves, as
well as mechanisms of synchrony and cortical propagation, promises to assist in the
treatments of such diseases. They are also of increasing relevance in neuroimaging,
interpreting (and unifying) electroencephalography, functional magnetic resonance
imaging and magnetoencephalography data [Co10, BoEtAl11].

In the next section we provide details concerning the neural field model to be
studied here. This is followed by a brief description of the collocation technique in
§17.3. In §17.4 we show the results of applying the collocation technique to solve
the neural field model defined in §17.2, and investigate the dependence of these
results on the underlying mesh. We finish by giving a brief overview of the work
and outlining areas for future study.

17.2 A Two-Dimensional Neural Field Model

Here we consider a two-dimensional neural field model of the type studied in
[La14]:

@u.x; y; t/

@t
D A

Z L

0

Z L

0

w.x � x0; y � y0/S.u.x0; y0; t/ � h/dx0dy0

� u.x; y; t/ � a.x; y; t/;

�
@a.x; y; t/

@t
D Bu.x; y; t/ � a.x; y; t/:

(17.2)

The above includes an additional recovery variable a which acts to repolarise u via
negative feedback, while the parameters A;B; h and � are related to the sensitivities
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Fig. 17.1 (a) Sigmoidal firing rate function (b) A two-dimensional Mexican-hat coupling function

and time scale of the problem [La14]. As mentioned above, the integral kernel
w.x � x0; y � y0/ describes interactions between neighbouring neurons. We take the
following functional form for w in our work:

w.x; y/ D e�.x2Cy2/ � 0:17e�0:2.x2Cy2/;

which is a Mexican-hat type function; see Figure 17.1b. Note that Equation (17.2)
is typically solved over a square domain ˝ D Œ�L;L�2 with periodic boundary
conditions in both x and y.

In Ref. [La14], the neural field model in (17.2) is shown to admit a stable
bump solution travelling from right to left, using Fast Fourier transforms (FFTs)
to evaluate the integral form of the equation in a highly idealised setting. For
comparative purposes, Figure 17.2 displays a travelling bump solution for parameter
values matching those in [La14]. In the following, we investigate such solutions
when employing collocation techniques that, unlike FFTs, can be deployed on the
more general, typically asymmetric domains, that result from modern neuroimaging
studies.

17.3 The Collocation Method

Collocation is an example of a projection method that approximates the infinite
dimensional problem in (17.2) by a finite dimensional one, via a suitably defined
projection operator Pn. Below we provide brief details of the method as applied to
Equation (17.2), the interested reader, however, should consult the excellent text by
Atkinson [At97] for further details.
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Fig. 17.2 Bump solution of
Equation (17.2) computed
using FFTs and parameter
values matching those in
[La14]
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Consider the following triangulation Tn D f41; : : : ;4ng of the square Œ�L;L�2

and suppose that on each triangle 4k we employ a piecewise linear approximation
of the unknown functions u.x; y; t/ and a.x; y; t/. In this case the projection operator
takes the form

Pnu.x; y; t/ D un.x; y; t/

D
3X

jD1
u.vk;j; t/lj.x; y/; .x; y/ 2 4k; k D 1; 2; : : : ; n:

Here, vk;j denotes the .x; y/ coordinates of the jth interpolation point of the kth

triangle 4k, while lj denotes the linear Lagrange basis functions [At97]. Note that a
similar equation holds for a.x; y; t/.

The above allows us to formulate the following approximation to (17.2):

@un.x; y; t/

@t
D APn

�Z L

�L

Z L

�L
w.x � x0; y � y0/S.u � h/dx0dy0

�

� un.x; y; t/ � an.x; y; t/;

�
@an.x; y; t/

@t
D Bun.x; y; t/ � an.x; y; t/:

(17.3)

Assuming this expression holds exactly at the node values v1; v2; : : : ; vnv , where
nv refers collectively to a global numbering of the node points vk;j, we obtain a
collocation scheme for (17.2).
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Fig. 17.3 The unit simplex
and the three linear
interpolation nodes.
Here, 
1 D .0; 0/;


2 D .0; 1/; 
3 D .1; 0/

To make the above collocation scheme more tractable we perform the integration
in (17.3) by applying a quadrature rule over each triangle and summing the result.
More specifically, we employ the transformation Tk W � ! 4k; given by

.x; y/ D Tk.r; s/ D .1 � r � s/vk;1 C svk;2 C rvk;3;

which maps the unit simplex � (see Figure 17.3) on to each triangle 4k. This enables
us to integrate an arbitrary function, g say, over the triangle 4k as follows:

Z

4k

g.x; y/dxdy D 2Area.4k/

Z

�

g.Tk.r; s//drds:

Substituting this expression into (17.3) gives

dun.vi/

dt
D 2A

nX

kD1
Area.4k/

Z

�

w.vi � Tk.r; s//S

0

@
3X

jD1
u.vk;j/lj.r; s/ � h

1

A drds

� un.vi/ � an.vi/; (17.4)

�
dan.vi/

dt
D Bun.vi/ � an.vi/;

for i D 1; : : : ; nv , which is a system of 2nv ordinary differential equations (ODE)
that can be solved to determine approximate solutions to (17.2).

17.4 Results

Numerical computations were performed on the domain˝ D Œ�L;L�2 with periodic
boundary conditions in both x and y, and the parameters in (17.2) set equal to those
in [La14], i.e. A D 2;B D 0:4; h D 0:8; � D 3; ˇ D 5 and L D 7:5. The system of
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Fig. 17.4 Illustrative examples of the four different triangulations of the domain Œ�L;L�2 (with
L D 7:5) used in this work: (a) a regular mesh based upon Cartesian grid points; (b)–(c)
triangulations constructed using the DistMesh software package, optimised so as to maximise
the number of equilateral triangles in the mesh; and (d) an irregular mesh obtained by randomly
perturbing the interior points of the regular mesh in (a)

ODEs in (17.4) was solved using Euler’s method to step forward in time with step
size �t D 0:2 in all of our experiments. Note that similar results were attained for a
range of step sizes (results omitted for brevity).

We are interested not only in the ability of collocation techniques to reproduce the
FFT solution shown in Figure 17.2, but also in the ramifications that mesh regularity
has on both the accuracy of solutions and the efficiency with which we obtain
them. Thus we consider four different meshes in our experiments: three regular
and one random (see Figure 17.4 for an illustration of the meshes deployed in this
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study). The first mesh (Figure 17.4(a)) is the result of discretising the square domain
Œ�L;L�2 into N D 129 equally spaced points in both the x and y directions, in
identical manner to that used to produce the FFT solution shown in Figure 17.2,
followed by a subdivision of each square in the grid into two triangular elements.
The resulting triangulation consists of n D 8192 triangles and nv D 16; 641 node
values. The meshes displayed in Figures 17.4(b) and (c) were constructed using the
DistMesh package [PeEtAl04] employing horizontal and vertical segments, respec-
tively. The package was set to optimise the node positions so that the mesh consisted
mainly of equilateral triangles, and the number of triangles chosen to match as close
as possible the numbers for the regular mesh. In all of our experiments, the number
of triangles in the DistMesh grids (Figures 17.4(b) and (c)) was such that the number
of ODEs in (17.4) was in the range nv D 16; 641 ˙ 100. Finally, we considered a
randomised mesh (Figure 17.4(d)), which we constructed by perturbing at random
the interior points of the regular mesh given in Figure 17.4(a). Note that boundary
nodes were fixed constant for all four meshes in order to implement the periodicity
of the problem more easily.

The results for each of the four domains are shown in Figure 17.5. In all cases we
find spatially localised solutions in the form of a travelling pulse, or bump, similar to
that obtained using FFTs (see Figure 17.2). In the FFT solution the bump is centred
at y D 0, and whilst we found that we could accurately reproduce this solution
employing collocation techniques on a regular grid, we observed a drift in the y
axis when using an irregular grid, such as the ones shown in Figure 17.4(b)–(d).
In particular, domain (b) exhibits a slight drift around the 700th time step, whilst
the random mesh in (d) exhibits a slight drift almost immediately (approximately
at the 200th time step), as shown in Figure 17.6. Note that we have conducted
experiments with varying numbers of spatial grid points and have observed a
relationship between the number of grid points and the time step at which the bump
solution drifts from y D 0. In particular, the larger the number of grid points the
longer the bump will travel before drifting. Moreover, we have considered higher-
order polynomial approximations and early indications are that these techniques
result in more reliable solutions that more closely match that of the standard FFT
one. This gives us confidence in the method as it implies that with enough grid
points and computational power it can reproduce the same types of solution as that
obtained using FFTs, regardless of the underlying mesh.

17.5 Conclusions

In this work, we employed collocation techniques to solve a two-dimensional
neural field model on the periodic, square domain ˝ D Œ�L;L�2. Importantly,
we found that these techniques were capable of reproducing solutions found by
standard Fourier based methods, and also, that these results were not dependent
upon the underlying mesh (for large enough grid size). The significance of
the aforementioned results are twofold: firstly, unlike Fourier based methods,



176 R. Martin et al.

Fig. 17.5 Figures (a)–(d) show travelling bump solutions of Equation (17.2) computed using a
series of increasingly irregular meshes, as illustrated in Figure 17.4(a)–(d)

collocation techniques can be deployed on complex triangulated domains, more
akin to the types of geometries resulting from neuroimaging studies; and secondly,
such techniques have the ability to handle more general connectivity kernels
that better reflect physiology – including, for example, longer range connections
(or ‘short-cuts’) that can result due to the convoluted nature of the cortex [HeEtAl14,
OdEtAL13, LoEtAl15]. Future work shall deploy the methods discussed here, in
conjunction with efficient numerical schemes for computing geodesic distances, to
solve neural field models on two-dimensional curved geometries such as a sphere or
torus, with the overarching aim of extending these methods to more physiologically
realistic cortical domains.
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Fig. 17.6 Figures (a)–(d) show that for increasing mesh irregularity (see Figure 17.4(a)–(d)),
solutions of Equation (17.2) can exhibit a drift about the y axis due to numerical errors
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Chapter 18
Kulkarni Method for the Generalized
Airfoil Equation

A. Mennouni

18.1 Mathematical Background

We consider the following generalized airfoil equation:

1

�

I 1

�1
!.t/x.t/

t � s
dt C

Z 1

�1
!.t/k.s; t/x.t/dt D f .s/; �1 < s < 1; (18.1)

where the first integral is a Cauchy principal value, k.�; �/ is a Fredholm kernel and

!.t/ WD
r
1 � t

1C t
; �1 < t < 1:

We introduce the following inner products:

hf ; gi! WD
Z 1

�1
!.t/f .t/g.t/dt;

hf ; gi!�1 WD
Z 1

�1
!.t/�1f .t/g.t/dt;

and the following weighted spaces:

H! WD L2!..�1; 1/;�/ D
�

' W .�1; 1/ ! �;

Z 1

�1
!.t/ j'.t/j2 dt < 1

�

;
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H!�1 WD L2
!�1 ..�1; 1/;�/

D
�

' W .�1; 1/ ! �;

Z 1

�1
!.t/�1 j'.t/j2 dt < 1

�

:

Norms in H! and H!�1 are defined by

k'kw WD
�Z 1

�1
!.t/ j'.t/j2 dt

� 1
2

;

k'k!�1 WD
�Z 1

�1
!.t/�1 j'.t/j2 dt

� 1
2

;

respectively.
Let . j/j�1 denote the normalized sequence of Chebyshev polynomials:

 j.s/ WD 1p
�

sin.j C 1
2
/�

sin �
2

; � WD cos�1 s; j 	 1:

The sequence . j/j�1 is an orthogonal basis of H! .
Let .�!;n/n�1 be the sequence of bounded finite rank orthogonal projections in

H! defined by

�!;nx WD
nX

jD1

˝
x;  j

˛
!
 j; x 2 H!:

Let be

Jx.s/ WD 1

�

I 1

�1
!.t/x.t/

t � s
dt; x 2 H!; �1 < s < 1;

Lx.s/ WD �
Z 1

�1
!.t/k.s; t/x.t/dt; x 2 H!; �1 < s < 1:

We assume that L is Hilbert-Schmidt operator from H! into H!�1 , that is,

Z 1

�1

Z 1

�1
!.t/

!.s/
jk.s; t/j2 dsdt < 1;

so L is compact.
Note that J: H! ! H!�1 is unitary, i;e; J�1 D J�, and hence

kJk D �
�J�1

�
� D 1:
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We approximate the solution of a first kind operator equation:

.J � L/x D f ;

using the orthogonal projections .�!;n/n�1 based on the Chebyshev polynomials.
For this purpose let us consider the following finite rank operator:

.J�L/K!;n WD �!;n.J
�L/C .J�L/�!;n � �!;n.J�L/�!;n:

18.2 Description of the Method

The approximate equation is

�
I � �!;n.J�L/ � .J�L/�!;n C �!;n.J

�L/�!;n



xK
n D J�f ;

Following Kulkarni, let

un WD �!;nxK
n :

Since �!;nun D un, there exist scalars cn;j such that

un D
nX

jD1
cn;j j:

Let Q!;n be defined by

Q!;n WD I � �!;n:

Following [Ku03, Me12],

un � �
�!;n.J

�L/�!;n C �!;n.J
�L/Q!;n.J�L/�!;n



un

D �!;nJ�f C �!;n.J
�L/Q!;nJ�f ;

so

nX

jD1
cn;j

�
 j � .�!;n.J�L/ j C �!;n.J

�L/Q!;n.J�L/ j/



D �!;nJ�f C �!;n.J
�L/Q!;nJ�f ;
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and

nX

jD1
cn;j

"

 j �
nX

kD1
.
˝
.J�L/ j;  k

˛
!

C ˝
.J�L/Q!;n.J�L/ j;  k

˛
!
/ k

#

D
nX

kD1
hJ�f ;  ki!  k C

nX

kD1
h.J�L/Q!;nJ�f ;  ki!  k:

Performing the inner product with  i, we obtain the linear system for any i in ŒŒ1; n ��,

cn;i �
nX

jD1
cn;j

�˝
J�L j;  i

˛
!

C ˝
J�LQ!;nJ�L j;  i

˛
!




D hJ�f ;  ii! C hJ�LQ!;nJ�f ;  ii! ; i 2 ŒŒ1; n ��;

which becomes

cn;i �
nX

jD1

"
˝
J�L j;  i

˛
!

C ˝
.J�L/2 j;  i

˛
!

�
nX

kD1

˝
J�L j;  k

˛
!

hJ�L k;  ii!
#

cn;j

D hJ�f ;  ii! C hJ�LJ�f ;  ii! �
nX

kD1
hJ�f ;  ki! hJ�L k;  ii! ; i 2 ŒŒ1; n ��:

(18.2)
Once the system (18.2) is solved, xK

n is built as

xK
n D un C Q!;nJ�Lun C Q!;nJ�f

D un C J�Lun � �!;nJ�Lun C J�f � �!;nJ�f :

18.3 Convergence Analysis

For r 	 0, consider the following inner product:

hf ; gi!;r WD
1X

iD0
.1C i/2r hf ;  ii! hg;  ii!;r :

We define the subspace H!;r of H! by

H!;r WD L2!;r..�1; 1/;�/ D ˚
' 2 H!; k'k!;r < 1�

:
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Its norm is given by

k'k!;r WD
q

h'; 'i!;r D
" 1X

iD0
.1C i/2r jb' ij2

# 1
2

;

whereb' i is the Fourier-Jacobi coefficient of ' W

b' i WD
Z 1

�1
!.t/'.t/ i.t/dt:

Following [BeEtAl92],

kx � �!;nxk! � cn�rkxk!;r for all x 2 H!;r: (18.3)

In this paper we assume that k.:; :/ 2 L2!;r..�1; 1/2;�/.
Proposition 1 For x 2 H!;r, the following estimate holds:

kJ�LQ!;nxk! � ˛

�
n�2rkxk!;r for some positive constant ˛:

Proof For all x 2 H!;r,

jJ�LQ!;nxj D
ˇ
ˇ
ˇ
ˇ
1

�

I 1

�1
LQ!;nx.t/

!.t/.s � t/
dt

ˇ
ˇ
ˇ
ˇ

D 1

�
hLQ!;nx; hsi!�1 ; �1 < s < 1;

where

hs.t/ WD 1

s � t
:

Hence

jJ�LQ!;nxj D 1

�
hQ!;nx;L�hsi!

D 1

�
hQ!;nx;Q!;nL�hsi! :

This leads to

kJ�LQ!;nxk! � 1

�
kQ!;nxk! kQ!;nL�hsk! :
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Hence, by (18.3),

kJ�LQ!;nxk! � 1

�
c0n
�2rkxk!;rkL�hsk!;r; for some positive constant c0;

which completes the proof.
The convergence order of Kulkarni method is given in the following theorem.

Theorem 1 The following estimate holds:

kxK
n � xk! � ˇ

�
n�3rkxk!;r for some positive constant ˇ:

Proof Since

xK
n � x D .f C .J�L/Kn xK

n / � .f C J�Lx/ D .J�L/Kn .xK
n � x/C ..J�L/Kn � J�L/x;

.I � .J�L/Kn /.xK
n � x/ D ..J�L/Kn � J�L/x;

and

xK
n � x D .I � .J�L/Kn /�1..J�L/Kn � J�L/x;

which lends to

�
�xK

n � x
�
�
!

� �
�.I � .J�L/Kn /�1

�
�
�
�..J�L/Kn � J�L/x

�
�
!
:

Since J�L is compact, [AhEtAl01] shows that .I � .J�L/K!;n/�1 exists and is
uniformly bounded for n large enough.

Hence

�
�xK

n � x
�
�
!

� C1
�
�..J�L/Kn � J�L/x

�
�
!

for some positive constant C1:

Also,

�
.J�L/Kn � J�L

�
x D �

�!;nJ�LQ!;n � J�LQ!;n



x D �Q!;nJ�LQ!;nx;

and using (18.3),

kxK
n � xk! � C1C2n

�r kJ�LQ!;nxk!;r for some positive constant C2:

The result follows.
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Table 18.1 Absolute errors n kx� xK
n k!

3 4.27e-5

5 5.52e-6

7 4.91e-6

8 4.75e-6

10 4.60e-6

15 4.39e-6

18.4 Numerical Example

In this example we consider the airfoil equation (18.1) with k.s; t/ D s C t and f
such that the exact solution be

x.s/ D .1 � s/

�
1

2
s3 C s

�

:

Table 18.1 shows the corresponding absolute errors for different values of n and
confirms the theoretical results.
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Chapter 19
Droplet Deposition and Coalescence
in Curved Pipes

H. Nguyen, R. Mohan, O. Shoham, and G. Kouba

19.1 Introduction

Wet gas separation is a process in which entrained liquid droplets are separated from
gas-liquid flow to ensure the gas quality for use. The separation process also aims
at eliminating liquid carryover, a phenomenon in which liquid droplets are carried
out in the gas outlet, in order to ensure no failure of downstream devices, such
as compressors, meters, and scrubbers. Installation of a piping system upstream of
separators, which are typically configured for layout convenience, can compromise
the separation efficiency.

Piping components can be utilized as flow conditioning devices upstream of
separators. Different configurations have been used in the field, such as short and
long elbow bends, cushion tee bends, and impact tee bends. These components
coalesce and remove droplets from a wet gas flow, before it enters separators,
resulting in improvement of the separator efficiency. Only a few studies have been
conducted on piping components utilized as flow conditioning devices. There is
a lack of data and predictive methods on the design and performance of piping
components used as flow conditioning devices. This is the gap that the present study
attempts to address.

Several investigators studied flow in curved pipes. These include a study on gas-
liquid two-phase flow in a helical coil conducted by Banerjee et al. [Ba61]. Shoham
et al. [ShBr87] conducted an experimental and theoretical study on gas-liquid two-
phase flow splitting in a horizontal regular pipe tee. Feng [Fe09] conducted an
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experimental study to investigate droplet deposition and coalescence in straight and
curved pipes under annular flow. No mechanistic modeling was attempted. A model
for predicting droplet size distribution in annular flow was proposed by Pereyra
[Pe11]. The model is based on log-normal distribution.

The aim of this study is to conduct experiments on droplet deposition and
coalescence in curved pipes and to provide guidelines for piping layouts upstream
of separators. Also, a model is developed for the prediction of droplet deposition
and coalescence in curved pipes.

19.2 Experimental Program

19.2.1 Test Facility

A schematic of the test facility is shown in Figure 19.1. The test facility consists of
four main sections. These include the storage and metering section, the flow loop,
the measurement section, and the data acquisition system. The air and water are
introduced at the inlet of the flow loop, forming a fully developed annular flow
before entering the test sections. A wet gas separator is installed downstream of the
test sections, where the air is vented to the atmosphere and the water is re-circulated.

19.2.1.1 Flow Loop

The flow loop is constructed of a Harvel
R�
2�inch clear schedule 80 pipe. It consists

of three sections, namely a long run inlet section and two test sections. It also
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ight pipe section

Water ta
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Air compressor
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FE 3
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gas
separator
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tank

Fig. 19.1 Overall facility schematic
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includes a wet gas cyclone separator at the end of the flow loop, and three liquid
film extractors: FE1, FE2, and FE3, which are designed to remove the liquid film of
the annular flow. The long run inlet section, from gas and liquid mixing tee at the
flow loop inlet to FE1, is 12.3 m long (2-inch ID) which promotes fully developed
annular flow before entering the test sections.

The two test sections include a straight pipe section (for generating baseline
data), which extends from FE1 to FE2, and the 180ı return curved pipe bend section
between FE2 and FE3. The former is horizontally fixed to the flow loop, whereas
the latter is interchangeable. These two sections have the same length of 2.215 m,
enabling comparison of the droplet deposition phenomenon in the straight pipe and
in the curved pipe.

Different curved bends can be installed including a standard short elbow bend,
long elbow bend, 180ı pipe bend, cushion tee bend, and impact tee bend. In the long
elbow bend, the radius of curvature is six times the diameter of the pipe (6D). The
curved pipe bends can be inclined downward to �10ı.

19.2.1.2 Film Extractor

A schematic of the film extractor is shown in Figure 19.2. It consists of an incoming
fixed pipe (#1) and outgoing pipe, which is movable (#2). The gap between the
incoming and outgoing pipes can be adjusted between 0 and 10 cm by moving the
latter. When the gap is 0 cm, the FE is fully closed, while for data acquisition, the
gap is kept at 1.75D (8̃ cm) ensuring that the liquid film is completely extracted.

The liquid film flow rate measurement section consists of three cyclonic cylinders
located downstream of the respective liquid film extractors. The removed film
accumulates in the respective cylinder, enabling measurement of the liquid film
flow rate.

Fig. 19.2 Schematic of Film Extractor in Operation



190 H. Nguyen et al.

Table 19.1 Test Matrix Liquid Loading vSL vSG�
m3=MMsm3

�
.cm/s/ .m/s/

1400 2.8 20

1400 3.5 25

1400 4.2 30

1400 4.9 35

1400 5.6 40

1400 6.3 45

700 1.4 20

700 1.75 25

700 2.1 30

700 2.45 35

700 2.8 40

700 3.15 45

19.2.1.3 Test Matrix

The test matrix is presented in Table 19.1. As can be seen in the table, six different
superficial gas velocities, vSG, of 20, 25, 30, 35, 40, and 45 m/s are used. Two
liquid loadings (LL) are utilized, namely 700 and 1400 m3=MMsm3 (cubic meter
per million standard cubic meter), resulting in corresponding superficial liquid
velocities, vSL, as given in Table 19.1, resulting in a total of 12 operational points
(pairs of vSG and vSL).

Experimental runs are conducted for 5 different curved pipe sections at 3
angles of 0ı, 5ı, and 10ı and 1 straight pipe section only at 0ı, leading to
16 .5 � 3C 1/ different geometrical configurations. Each configuration is run with
the 12 operational points, resulting in a total of 192 .12 � 16/ test runs.

Droplet deposition is investigated both in the straight pipe and the curved pipe,
which have the same length, under the same flow conditions making it possible to
compare the deposition rates in both sections.

19.2.2 Experimental Results

19.2.2.1 Measurement of Droplet Deposition in Straight Pipe

For this case, FE3 is closed, FE1 and FE2 are open (refer to Figure 19.3). The liquid
film is removed by FE1, providing the liquid film flow rate, q1. The droplets continue
flowing into the test section with the gas core and deposit on the pipe wall and form
a new liquid film. FE2 removes the new liquid film, designated by q2, which is the
droplet deposition flow rate in the straight pipe. The surviving droplets exit the test
section and flow with the gas core straight into the separator. The droplet deposition
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Fig. 19.3 Schematic of Flow Loop Experimental and Setup

percentage (DDP) in the straight pipe is defined as the ratio of the droplet deposition
rate in straight pipe to the total droplet flow rate, as given by

fD D q2
QL � q1

:100% (19.1)

19.2.2.2 Measurement of Droplet Deposition Percentage in Curved
Pipe Section

Following Figure 19.3, for this case, FE1 is closed, FE2 and FE3 are open. FE2
removes the liquid film from which the liquid film flow rate, q10 , can be determined.
Thus, only droplets flow into the curved pipe section, deposit on the pipe wall and
form a new liquid film. FE3 removes the new liquid film, which provides the droplet
deposition flow rate in the curved pipe, q20. The DDP in the curved pipe is defined

fD
0 D q20

QL � q10
:100% (19.2)

19.2.2.3 Experimental Results

Droplet Deposition Percentage (DDP) data are collected for LL of 700�
m3=MMsm3

�
and 1400

�
m3=MMsm3

�
, for the straight pipe section and all the

curved pipe sections. Please refer to Nguyen [Ng15] and Nguyen et al. [Ng14]
for the results of all the experimental runs. Presented next are typical results and
summaries of all data for the two different liquid loading runs.
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Fig. 19.4 Horizontal Long
Elbow Bend, LL D 700
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Figures 19.4 and 19.5 present the results for the long elbow bend for LL of
700 and 1400 m3=MMsm3, respectively. Figure 19.4 shows a comparison between
DDP in the horizontal long elbow bend and the straight pipe section. As can be
seen in the figure, the DDP for the long elbow bend is about 20% higher than that
of the straight pipe section. Similar results are presented in Figure 19.5 for LL of
1400

�
m3=MMsm3

�
.

Similar data were acquired in the case of the short elbow bend for LL of
700

�
m3=MMsm3

�
and 1400

�
m3=MMsm3

�
. When compared to the long elbow

bend, it can be observed that for the short elbow bend, the DDP improvement
over the straight pipe section is only around 10%, as compared to the long elbow
bend results of 20% improvement. Also, for the short elbow bend, at superficial
gas velocity higher than 35 m/s, the DDP improvement reduces and completely
diminishes at the highest velocities.
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A dimensionless number can be utilized for scale up and data presentation. A
velocity ratio is selected to account for changes in gas density and kinetic energy,
which is defined by:

vratio D vSG

vann
(19.3)

where vann is the gas velocity at the onset to liquid carryover, given by

vann D 2:3351




�We

L � 
G


2G

�0:25
(19.4)

The velocity ratio given in Equation (19.3) will be used to present a comprehensive
comparison of the results obtained for all the curved pipe bends, as given next.

A comprehensive performance comparison among all the curved bends used in
the horizontal configuration is presented in Figures 19.6 and 19.7. Including are
the long elbow bend, short elbow bend, 180ı pipe bend, cushion tee bend, impact
tee bend, and straight pipe section results for LL D 700 and 1400 m3=MMsm3,
respectively.

As can be seen in Figure 19.6, all the curved pipe bends have better DDP
than that of the straight pipe for the entire range of vratio between 2.1 to 4.5 for
LL D 700 m3=MMsm3. Among all the curved pipe bends, the short elbow bend and
cushion tee bend have the lowest performance, whereas for the 180ı pipe bend and
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Fig. 19.6 Comprehensive Comparison of Results, LL D 700
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long elbow bend the performance is the highest. Also note that the performances of
both the 180ı and the long elbow bends are similar. The impact tee bend shows an
intermediate performance, but it falls below the straight pipe section performance
for vratio > 4:5.

Similarly for liquid loading of 1400 m3=MMsm3 (see Figure 19.7, all the curved
pipe bends have better DDP than that of the straight pipe as long as vratio in between
2.1 to 3.9. Among all the curved pipe bends, the 180ı pipe bend and long elbow
bend performances have the highest and similar performance while the impact tee
bend and cushion tee bend have the lowest and they even falls below the straight
pipe as vratio > 3:9.

19.3 Modeling and Results

19.3.1 Physical Model

The physical model is presented schematically in Figure 19.8. The droplet is
subjected to several forces, which are indicated in the free body diagram. The forces
are the gravity (W), the buoyant force (FB), and the drag force (FD).

Carrying out a force balance on a droplet, the force vertical component and
horizontal component are given, respectively, by

FV D .
G � 
L/
�d3d
6

g (19.5)
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Fig. 19.8 Physical Model
Schematic
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In Equations (19.5), (19.6) 
L is the droplet density, 
G is the gas density, g is the
gravitational acceleration, vs is the slip velocity between gas and droplet, CD is the
drag coefficient, Vd is the droplet volume, dd is the droplet diameter, Ap is the droplet
projected area, v� is the droplet axial velocity.

The slip velocity, vs, can be determined by equating the drag force (Equa-
tion 19.6) to the centripetal force yielding

vs D
s

L


G

�d3d
3CDAp

v2�
R

(19.7)

where v� is the particle tangential velocity.

19.3.2 Conservation of Angular Momentum

The conservation of angular momentum of a droplet about O (refer to Figure 19.9)
which is the center of the curvature of the bend yields

EHO D ER � mEv D ER � m
� Evr C Ev�

� D ER � m Evr C ER � m Ev� D ER � m Ev� D constant
(19.8)
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Fig. 19.9 Conservation of
Angular Momentum
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Note that in Equation (19.8) ER � m Evr D E0. Thus, HO D R1mv�1 D R2mv�2 and the
relationship between the tangential velocities at A2 and A1 is

v�2 D R1
R2
v�1 (19.9)

19.3.3 Droplet Size Distribution

The droplet distribution at the bend inlet is predicted by Pereyra [Pe11] for annular
flow. The maximum droplet size is

dmax D WeCRIT

h
� C 2� 32 
L ."0dmax/

1
3

i 3
5



1
5

L 

2
5

G

"
� 25
0 (19.10)

For the droplet size distribution, expressions for SV and MV , are provided, namely

SV D �1:645C
p
1:6452 � 2 ln .0:5/ D 0:378 (19.11)
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and

MV D ln .dmax/ � 0:622 (19.12)

Solving for Sv and Mv and substituting into the log-normal volumetric distribution

fv .d/ D 1

dSv
p
2�

exp

 

� .ln .d/ � Mv/
2

2S2v

!

(19.13)

Equation (19.13) is the probability density function, which gives the droplet size
distribution in annular flow.

19.3.4 Droplet Deposition Criterion

In the droplet deposition process, it is assumed that all droplets are distributed evenly
over the pipe cross section. When the droplets entrained by gas enter the elbow,
part of them survive the bend exiting the bend with the gas core, while the rest of
the droplets hit the wall and deposit into the liquid film. Criteria are developed for
determination of whether or not a droplet deposits or survives. Figure 19.10 shows
schematically the movement of a droplet across the elbow cross section in a period
of time, �t, from t1 to t2, �t D t2 � t1.

The distance ri from a droplet at a point A .xi; yi/ to the center O is given by

ri D
q

x2i C y2i (19.14)

When the droplet moves from A1 to A2, it would hit the wall and deposit if the
condition below is met

r2 D
q

x22 C y22 	 D � d

2
(19.15)
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Fig. 19.10 Droplet movement in the cross section
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where D is the pipe diameter, r2 is the distance from A2 to O, and d is droplet
diameter.

A droplet moving in the elbow is assumed to be entrained by gas at an axial
velocity of v� D vSG. If the droplet does not hit the elbow wall, the residence time
it takes to go through the elbow is defined as follows:

tRes D �R

2v�
D �R

2vSG
(19.16)

The deposition criterion in Equation (19.15) is checked as long as the cumulative
droplet time in the elbow is less than the residence time.

19.3.5 Results and Discussion

This section presents a comparison between the developed model predictions
and the experimental data. Figure 19.11 presents a comparison between model
predictions and experimental data for droplet deposition at liquid loading of 700
m3=MMsm3 (LL D 700). As can be seen, a fair agreement is observed, whereby the
model consistently underpredicts the experimental data by 20%.

Similarly, a comparison between model predictions and experimental data for
liquid loading of 1400 m3=MMsm3 (LL D 1400) is shown in Figure 19.12 . For this
case, too, a good agreement occurs between the data and model predictions. Again,
a fair agreement is observed exhibiting a consistent underprediction of 20%.
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Fig. 19.11 Comparison between Model Predictions and Experimental Data for LL D 700
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Experimental Results LL=1400
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Fig. 19.12 Comparison between Model Predictions and Experimental Data for LL D 1400
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Chapter 20
Shifting Strategy in the Spectral Analysis for the
Spectral Green’s Function Nodal Method for
Slab-Geometry Adjoint Transport Problems in
the Discrete Ordinates Formulation

J.P. Curbelo, O.P. da Silva, C.R. García, and R.C. Barros

20.1 Introduction

It is well known that the adjoint angular flux, i.e., the solution of the equation which
is adjoint to the Boltzmann transport equation, can be viewed as a measure of the
importance of a particle to the objective function, e.g., a detector response [BeGl70,
PrLa10]. This physical interpretation makes the adjoint angular flux well suited for
use as an importance function in source-detector problems.

Reference [MiEtAl12] describes and tests a spectral nodal method for monoener-
getic slab-geometry adjoint problems in the discrete ordinates (SN) formulation with
isotropic scattering and a prescribed interior adjoint source. That method is based
on the standard spatially discretized SN balance adjoint equations and a nonstandard
adjoint auxiliary equation expressing the adjoint node-average angular flux, in each
discretization node, as a weighted combination of the adjoint node-edge outgoing
fluxes. The weights in the auxiliary equation act as Green’s functions for the adjoint
node-average angular fluxes and they are determined by a spectral analysis to yield
the local general solution of the SN equations within each node of the discretization
grid; therefore, that method, that we refer to as the adjoint spectral Green’s function
(Adjoint-SGF) method, converges numerical solutions that are completely free from
spatial truncation errors.

In this chapter, recent advances in the Adjoint-SGF method are presented. The
method is extended to SN problems considering arbitrary L0th order of scattering
anisotropy, provided L < N, and non-zero prescribed boundary conditions for the
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forward SN transport problem. In addition, we present the positive features in the
shifting strategy that we use in the homogeneous component of the general solution
of the monoenergetic, slab-geometry, adjoint SN equations inside each discretization
node for neutral particle source-detector transport problems. The shifting strategy
scales the N exponential functions of the local solution in the interval (0, 1). One
advantage is to avoid the overflow in computational finite arithmetic calculations in
high-order angular quadrature and/or coarse-mesh calculations.

20.2 The Adjoint SN Problem

First we consider a discretization grid on the slab of thickness H, as represented
in Figure 20.1. Each discretization node �j has width hj and constant material
parameters. Now we write the equations which are adjoint to the monoenergetic,
slab-geometry SN transport equations in �j with anisotropic scattering

�
m
d

dx
 �

m.x/C�Tj  
�
m.x/ D

NX

nD1
!n  

�
n .x/

LX

lD0

2l C 1

2
�
.l/
Sj

Pl.
m/Pl.
n/CQ�
j ;

xj�1=2 < x < xjC1=2 ; (20.1)

with boundary conditions

 �
m.0/ D 0; 
m < 0 and  �

m.H/ D 0; 
m > 0 :

In Equation (20.1) the angular quadrature is defined by the set f
m, !m, m D 1 W
Ng. The values of 
m represent the discrete directions and !m are the weights of
the angular quadrature. In this chapter we use even-order sets of Gauss-Legendre
quadratures [LeMi93].

The notation used in Equation (20.1) is standard [LeMi93]:  �
m.x/ is the adjoint

angular flux in the direction 
m, �T is the total macroscopic cross section, and �.l/S is
the l0th order component of the scattering macroscopic cross section. The quantity
Q�

j is the adjoint interior source, which is perfectly arbitrary [DuMa79].

Υ1 Υj ΥJ

. . . . . .

hj

0 = x1/2 xj−1/2 xj+1/2 H = xJ+1/2

Fig. 20.1 Spatial grid on slab D W 0 � x � H
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20.2.1 Detector Response for Adjoint Problems

According to [LeMi93] the detector response for monoenergetic problems can be
obtained by

R D h �;Qi �
Z

	

d	
Z

4�

d˝ bn ı b̋  �  ; (20.2)

where 	 is the contour surface of volume V , d˝ is the differential surface element
of the unit sphere and we have defined the integral operation

h�; �i D
Z

V
dV
Z

4�

d˝ :

Assuming prescribed boundary conditions for the forward problem and remark-
ing that we have considered, for the adjoint problem, boundary conditions of no
outgoing adjoint flux, in one-speed, slab-geometry SN models, Equation (20.2) can
be written as

R D h �;Qi C
N=2X

nD1

n !n  

�
n .0/

e 0 C
NX

nDN=2C1

n !n  

�
n .H/e H ; (20.3)

where magnitudes e 0 and e H are the forward flux values considering prescribed
isotropic boundary conditions at x D 0 and x D H, respectively.

20.3 Spectral Analysis

The general solution of the system of N ordinary differential equations shown in
Equation (20.1) can be written as

 �
m.x/ D  

�P
m ;j C  �H

m .x/ ;

where  �P
m ;j is a particular solution and  �H

m .x/ is the homogeneous component of

the local general solution of Equation (20.1). Substituting the spatially constant  �P
m ;j

into Equation (20.1) we obtain

 
�P
m ;j D Q�

j

�Tj � �
.0/
Sj

: (20.4)

To determine the homogeneous component we consider the expression

 �H
m .x/ D a�m.�/ e

�.x � �j/
� ; �j D

8
<

:

xjC1=2 ; � < 0

xj�1=2 ; � > 0
; x 2 �j : (20.5)
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Here we note that the shifting strategy used in the exponential term of Equa-
tion (20.5) bounds the N exponential functions of the local solution in the interval
(0, 1) and was proposed by [Pi04]. In the next sections we give more details of the
advantages of this strategy.

Substituting Equation (20.5) into the homogeneous equation corresponding
to (20.1), i.e., Q�

j D 0, after some algebraic manipulations, we obtain

NX

nD1

�T j


m

�

�ım;n C !n

LX

lD0

2l C 1

2
c.l/Sj

Pl.
m/Pl.
n/

�

a�n.�/ D 1

�
a�m.�/ ; (20.6)

where ım;n is the Kronecker delta and c.l/Sj


�
.l/
Sj

�Tj

is the anisotropic scattering ratio

of order l. For m D 1 W N, Equation (20.6) represents an eigenvalue problem. In
case 0 < c.l/Sj

< : : : < c.0/Sj
< 1, we obtain N real distinct eigenvalues which are

symmetric about the origin. Therefore, for x 2 �j we obtain a linearly independent
set of N eigenfunctions defined in Equation (20.5) and we write the general solution
for Equation (20.1) in node �j as

 �
m.x/ D

NX

kD1
ˇk a�m.�k/ e

�.x��j/
�k C  

�P
m ;j ; (20.7)

where a�m.�k/ is the m0th component of the eigenvector corresponding to eigenvalue
��1k ; ˇk are arbitrary constants, and �P

m ;j is calculated by Equation (20.4). We remark
here that for heterogeneous slabs, it is necessary to set such a general solution for
each region of the domain.

20.4 The Adjoint Spectral Green’s Function Method
(Adjoint-SGF)

Integrating Equation (20.1) within an arbitrary spatial node �j by using the operator

1

hj

Z xjC1=2

xj�1=2

.�/ dx ;

we obtain the discretized spatial balance SN adjoint equations
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; m D 1 W N ; (20.8)

where we have defined the node-average adjoint angular flux in node �j
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adjoint anisotropic scattering source
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Equation (20.8), within an arbitrary spatial node �j, represents a system of N
algebraic linear equations into 3N unknowns. In order to guarantee uniqueness of
the system solution, we need to use auxiliary equations. In the Adjoint-SGF method
we use an auxiliary equation, which relates the node-average adjoint angular flux to
the outgoing node-edge adjoint fluxes. This auxiliary equation has the form
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X
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X


n>0
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where �j
m;n plays the role of the Green’s function of the adjoint SN operator

discretized in space, and Bm.Q
�
j / is a function of the interior adjoint source to

be determined such that the particular solution is automatically preserved. The
quantities involved in the auxiliary equation (20.9) are illustrated in Figure 20.2
for an arbitrary node �j.

To determine the term Bm.Q
�
j /, we substitute Equation (20.4) into Equation (20.9)

and the result appears as

xj−1/2 xj+1/2

ψ†
n,j−1/2 ψ†

n,j+1/2ψ
†
m,j

Q†
j

Υj

μn < 0 μn > 0

Fig. 20.2 Arbitrary discretization node (�j) with outgoing node-edge adjoint fluxes ( �

n;j˙1=2
),

node-average adjoint angular flux ( 
�

m;j) in direction 
m, and interior adjoint source (Q�
j )
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:

To proceed further, we determine the parameters�j
m;n by requiring that the homo-

geneous component of the general solution be preserved by using Equation (20.5)
in Equation (20.9) and, after some algebraic manipulations, we obtain the following
linear systems:
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and
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(20.10b)

Requiring this to hold for m D 1 W N, we obtain a linear system of N2 equations in
the N2 unknowns�j

m;n. Each entry�j
m;n represents the node-average adjoint angular

flux in direction 
m due to a unit outgoing node-edge adjoint flux in direction 
n. It
should be noted that in heterogeneous domains, one must have a � matrix for each
region where the node thickness is constant.

We remark that with these choices, the exponential in Equations (20.10a)
and (20.10b) are always decreasing functions, and hence, are restricted to the
interval (0, 1). These convenient choices for the scaling parameters prevent from
possible overflow when solving the system (20.10) on a digital computer that
typically causes the computations to halt [Pi04, MeEtAl14]. The shifting strategy
allows solving problems with high-order angular quadratures and/or coarse spatial
grids.

In next section, we describe a sweeping algorithm for iteratively solving the
Adjoint-SGF equations, which consists of three steps: first a sweep from left to
right to calculate estimates for the adjoint angular fluxes in directions 
m < 0, then
a sweep from right to left to calculate estimates for the adjoint angular fluxes in
directions 
m > 0 and finally a check to see if the stopping criterion is satisfied.

20.5 The Partial One-Node Block Inversion Iterative Scheme

The iteration procedure for iteratively solving the Adjoint-SGF equations can be
described as an adjoint one-node block inversion (NBI) scheme. Partial NBI scheme
uses the most recent estimates for the node-edge adjoint angular fluxes outgoing
a given discretization node (dashed arrows in Figure 20.3), to solve the resulting
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Fig. 20.3 Sweeping scheme for adjoint partial NBI algorithm

adjoint SN problem in that node for all the incoming adjoint angular fluxes, which
constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping
direction (solid arrows in Figure 20.3).

In order to determine the sweeping equations, we first substitute the adjoint
auxiliary equation (20.9) into the terms which contain the average adjoint angular
fluxes in the spatially discretized adjoint SN balance equations (20.8). Then we
manipulate the scattering source terms so we obtain terms involving outgoing
adjoint fluxes from both node edges, and we group the terms containing the node-
interior adjoint source. At this point, we sweep from left to right to estimate the
incoming adjoint fluxes on the right node-edge due to all outgoing adjoint fluxes
and the interior adjoint source. Following this procedure, we obtain

�
� in
jC1=2 D G�C

j �
� out
j�1=2 C G��

j �
� out
jC1=2 C F�j ;

which is the sweeping equation for the adjoint partial NBI scheme from left to right,
represented in matrix form. Following analogous procedure we obtain the sweeping
equation in the opposite direction, i.e., from right to left, which appears as

�
� in
j�1=2 D G�C

j �
� out
jC1=2 C G��

j �
� out
j�1=2 C F�j :
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20.6 Numerical Examples

Let us consider a multilayer slab composed of seven regions and four different
material zones, as illustrated in Figure 20.4. Total (�T ) and scattering (�.l/S )
macroscopic cross sections for each material zone are displayed in Table 20.1. This
model problem simulates the detection of neutrons by a detector D1 (�A D 0:1 cm�1)
located in the fourth region (45 � x � 47 cm) of the 100 cm slab, due to two neutron
sources Q1 D 1 and Q2 D 2 located in the second region (30 � x � 35 cm) and
in the sixth region (57 � x � 60 cm), respectively. To solve the adjoint problem,
we set the adjoint source numerically equal to the detector absorption macroscopic
cross section (�A), i.e., Q� D 0:1, as illustrated in Figure 20.5.

To model the forward transport problem, represented in Figure 20.4, and the
adjoint transport problem, represented in Figure 20.5, we used the S32, S64, and S128
Gauss-Legendre angular quadrature set [LeMi93]. The stopping criterion for each
run required that the discrete maximum norm of the relative deviation between two
consecutive estimates for the node-average scalar fluxes (forward and adjoint) did
not exceed 10�6.

Table 20.2 displays the absorption rate density (absorption rate per unit cross
section area) RQ1, only due to the neutron source Q1 D 1, the absorption rate density
RQ2 only due to the source Q2 D 2, the absorption rate density Rbc only due to the
isotropic unit incident flux on the left boundary, and the total absorption rate density
R due to both sources and incoming flux (Figure 20.4). To generate these results, we

0 30 35 45 47 57 60 100

Q1 = 1 Q2 = 2

Z1 Z2 Z3 Z4 Z1

μm > 0
ψm(0) = 1 ψm(100) = 0

μm < 0

Fig. 20.4 Slab for the Model Problem (forward problem)

Table 20.1 Material parameters for the model problem

Cross sections

Material zones �T .cm�1) �.0/S .cm�1) �.1/S .cm�1) �.2/S .cm�1) �.3/S .cm�1) �.4/S .cm�1) �.5/S .cm�1)

Zone 1 1.0 0.97 0.6 0.3 0.1 0.07 0.02

Zone 2 0.9 0.8 0.4 0.2 0.08 0.02 0.01

Zone 3 0.95 0.9 0.45 0.3 0.1 0.05 0.01

Zone 4 0.8 0.7 0.3 0.1 0.07 0.01 0.05

0 30 35 45 47 57 60 100

D1 = 0.1

Z1 Z2 Z3 Z4 Z1

Non-outgoing
adjoint flux

Non-outgoing
adjoint flux

Fig. 20.5 Slab for the Model Problem (adjoint problem)
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Table 20.2 Neutron detection for the Model Problem (cm�2s�1)

Forward problem Adjoint problem

S32 S64 S128 S32 S64 S128
RQ1 0.1036401 0.1036399 0.1036394 R�Q1 0.1036400 0.1036398 0.1036393

RQ2 0.1717053 0.1717046 0.1717036 R�Q2 0.1717052 0.1717044 0.1717035

Rbc 8.244 �10�6 8.244�10�6 8.244 �10�6 R�bc 8.244 �10�6 8.244�10�6 8.244 �10�6

R 0.2753536 0.2753527 0.2753513 R� 0.2753534 0.2753525 0.2753510

ran four distinct forward fixed-source problems using the coarse-mesh SGF method.
On the other hand, the use of the adjoint technique to calculate the detector response
is very convenient as it is possible to run the adjoint problem just once, provided we
do not move the detector D1 or replace it by a different one. Absorption rate densities
R�Q1, R�Q2, R�bc, and R� are obtained, as defined in Equation (20.3), by running the
adjoint problem with Q� D 0:1, just once.

Here we remark that using S64 and S128 Gauss-Legendre angular quadrature sets,
for this model problem, required the application of the shifting strategy. This was
due to the fact that for the seventh region (h D 40 cm), the exponentials were out
of range and occurred overflow errors in the computational calculations. Table 20.2
shows the results for the detector response obtained by running both the forward
and adjoint methods. As we see, in all cases, the results generated with forward and
adjoint techniques do agree, at least, up to the sixth decimal place.

20.7 Conclusions and Perspectives

In this work we have extended the SGF method to adjoint one-speed, slab-geometry
SN problems considering anisotropic scattering and non-zero prescribed boundary
conditions for the forward problem. The shifting strategy is applied to the Adjoint-
SGF method in order to avoid the overflow in computational finite arithmetic
calculations in high-order angular quadrature and/or coarse-mesh calculations.

According to the model problem considered in this chapter, the numerical results
for the detector response, as generated by the forward and the adjoint techniques,
were identical up to the sixth decimal place. We note that the use of the adjoint
technique to calculate the detector response is convenient as it is possible to run the
adjoint problem just once for various interior source distributions and/or prescribed
incident flux of particles, provided we do not change the location or the type of the
detector.

A negative feature of the Adjoint-SGF method is that it requires more storage
than standard discretization methods. The Adjoint-SGF requires the storage of as
many matrices �j

m;n as sub-domains, and the iteration scheme requires the storage
of the adjoint node-edge angular fluxes in all discrete ordinates directions. This extra
storage requirement is compensated by the possibility to use coarse spatial meshes.
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We intend to apply the present method to an arbitrary order L of scattering
anisotropy in energy multigroup adjoint SN problems to account for the energy
transfer in scattering events. The present Adjoint-SGF method can be used to
improve the accuracy of multidimensional adjoint SN nodal methods, similarly to
the steps followed previously for forward SN problems [BaLa92]. However, this
must await future work.
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Chapter 21
A Metaheuristic Approach for an Optimized
Design of a Silicon Carbide Operational
Amplifier

M. Pourreza and S. Kargarrazi

21.1 Introduction

Emergence of wide bandgap semiconductor technologies such as Gallium Nitride
(GaN) and Silicon Carbide (SiC) has enabled electronics to operate in extreme
(e.g., high-temperature and high radiation) environments. Such electronics has been
promoted in down-hole drilling, automobile, aerospace, and also space applications
[CrMa12]. In particular, on high-temperature SiC electronics side, recent advances
in the fabrication process [ThEtAl11, LaEtAl13, SpEtAl16] have paved the way for
realization of integrated electronics that inherit the advantages that SiC material
can provide. In the last decades, a multitude of integrated circuits have been
demonstrated in SiC NMOS [VaEtAl14, XiEtAl94], CMOS [ChKo98, RyEtAl98,
RaEtAl16, HaEtAl16], JFET [PaEtAl09, SpEtAl16], MESFET [AlEtAl15], and BJT
[KEtAl15, KaEtAl16, KaEtAl15, KarEtAl15] technologies. Due to the fabrication
process uncertainties and incomplete models for the devices in such technologies
that can vary from batch-to-batch, wafer-to-wafer, and die-to-die, the integrated
circuit design encounters many challenges.

Compared to mature technologies such as Silicon CMOS processes, the lack
of process corner models and statistical data targeting the solution space limits
the integrated circuit designer to optimize the circuits for various objectives.
Considering constraints such as temperature range of operation which is 2–3x higher
than Silicon ICs and analog design trade-offs (such as voltage gain and power
consumption), a metaheuristic algorithm helps in finding a smart design solution in
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a reasonable time. These types of algorithms use special techniques to visit different
areas of the problem’s solution space and hence, can help the designer to find a near
optimal solution in a reasonable amount of time. Previous works have been focused
on using metaheuristics to optimize silicon analog integrated electronics, and
especially CMOS circuits [DeTl15, JoEtAl15, CoEtAl07, DeEtAl10, LoEtAl02].
However, this study is the first attempt to use metaheuristics for designing in
emerging technologies such as SiC ICs. It is worth mentioning that an operational
amplifier is an essential building block for analog electronics in which gain and
power consumption are the two most critical performance metrics. Therefore, this
circuit in SiC technology is analyzed along with its important performance metrics
throughout this paper. The optimization approach presented for this circuit can
be highly beneficial for the designer who faces the mentioned challenges in SiC
technology.

Thus, in this paper first the design of a SiC operational amplifier is introduced
along with its influential parameters. Next, the optimization problem is elaborated
formally and a Tabu Search algorithm is presented for finding a suboptimal solution
for the mentioned problem. Finally, the results obtained from using this algorithm
are substantiated and the conclusion is given in the last section.

21.2 Circuit Design

A high-temperature SiC operational amplifier (opamp) with two amplification
stages has been previously demonstrated in [KaEtAl16, KaEtAl15], fabricated and
tested in the temperature range of 25 ıC - 500 ıC. As previously mentioned, open-
loop gain and power consumption are the two critical performance metrics in this
circuit which need to be optimized. The open-loop gain is mainly determined by the
amplification of the first and second stage, as illustrated by the simplified schematics
of Figure 21.1 and can be approximated as:

AOL D gm1 � ŒRC1kr�2� � gm2 � RC2 (21.1)

where gm1 and gm2 are the trans-conductances of the first and second stage,
respectively.

Equation (21.1) can be expressed in terms of the semiconductor device
parameters:

AOL D ˇ � RC1 � RC2 � IC1

ŒRC1 C ˇVT=IC2� � VT

where ˇ is the forward current gain of the bipolar junction transistors (BJTs) and
VT is the thermal voltage which can be defined as:

VT D kT

q
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Fig. 21.1 The simplified opamp schematics highlighting the first and second amplification stages
(top) and a complete SiC bipolar opamp schematic, reproduced from [KaEtAl16] (bottom)

Table 21.1 Design
constraints and specifications

Biasing currents 1mA < IC1;C2 < 10 mA

Power supply 10V < VCC < 20 V

Node voltage I VCC � IC1 � RC1 > 6 V

Node voltage II VCC � IC2 � RC2 > 6 V

Open-loop gain AOL D ˇ�RC1�RC2�IC1

ŒRC1CˇVT=IC2��VT
> 1000 V=V

where k is the Boltzmann constant and q is the electron’s electrical charge.
Designing circuits in infant technologies such as SiC involves limitations such

as the availability of the device type in the technology which in turn limits the
choices of circuit topologies. In order to achieve high open-loop gain (>60 dB) with
reasonable power consumption, considering design specifications and technology
limitations, the constraints can be defined according to Table 21.1. In this regard,
and based on the previously shown results on the selection of biasing point
[KEtAl15, KaEtAl16] for having high enough current gain for the NPN devices,
a safe range for the biasing current of the gain stages (I1 and I2) is 1 mA - 10
mA. Moreover, with a single supply opamp, the power supply VCC has to be as
low as possible to reduce the power consumption of the circuit. A safe minimum
for this voltage is 10 V. Another important constraint is also the minimum voltage
needed to guarantee that the amplifying devices are in active region. Using the
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output characteristics of the BJTs, a safe biasing voltage at the output of the first
and second amplifying stages can be chosen. Table 21.1 summarizes the variables
and defined constraints.

Due to applications of this SiC opamp, this circuit must be designed for operation
in 300ıK < T < 773ıK . Moreover, the design must consider die-to-die and wafer-
to-wafer variations of the device parameters. Since the forward current gain (ˇ) of
the device plays an important role on the performance of the whole circuit, it has
been given a special attention. Thus, taking the previous fabrication processes into
account and with a glimpse on the future outlook for bipolar SiC technology, ˇ
should be in the range of 10 to 100, and the design targets to meet the optimum
performance at each selected current gain value.

21.3 Metaheuristic Optimization

In the previous section, gain and power consumption were introduced as two
important performance metrics for operational amplifiers. Based on the equations
provided, there is a trade-off between these two metrics which makes it difficult to
find an optimal solution for both of them in all temperatures. Thus, in this section we
first introduce an objective function for this optimization problem which considers
both of these performance metrics. Then, we introduce an algorithm for finding a
near optimal solution for the mentioned problem which also considers problem’s
constraints.

The optimization problem for getting the best gain and power consumption in
all temperatures is presented in (21.2). In this problem, � is the importance of
the circuit’s gain versus its power consumption. Therefore, in � D 1 the only
important metric is gain, while in � D 0 power consumption is the main goal of
the optimization. In (21.2), the constraints for specifying currents, resistors, and the
voltage are also presented.

max
773X

tD300;t2�
� � AOL C 1 � �

VCC.IC1 C IC2/

s:t 0:001 < IC1; IC2 < 0:01

VCC � IC1 � R1 > 6

VCC � IC2 � R2 > 6

10 < VCC < 20

(21.2)

In the above optimization problem, the circuit’s currents and also the voltage
have the resolution of 0.1 mA and 0.1 V, respectively. Therefore, the solution space
in this problem is very large which makes it impossible to search the whole space for
finding the optimal solution. It should also be mentioned that variations of resistance
have also been considered based on [Ka17] for different temperatures.
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Algorithm 1 Tabu Search Algorithm
function TABUALGM(Maximum Number of Iterations, Selection Probability)

Generate a random feasible solution
bestSolution ;
iterationNumber 0

while iterationNumber < maxIteration do
Generate neighbors of the current solution which are not in the tabu list
Find the best neighbor
if The best solution is better than the current solution then

currentSolution bestNeighbor
else

Update the currentSolution based on the selection probability
Update tabu list
if The currentSolution is better than the bestSolution then

Update the bestSolution
iterationNumber 0

else
iterationNumber iterationNumberC 1

return The best solution found

Metaheuristic algorithms [Ge09] search for the optimal solution based on a com-
bination of techniques for exploring the solution space. Most of these algorithms are
inspired by natural phenomena and provide a suboptimal solution in a reasonable
amount of time. Tabu Search algorithm is a widely used metaheuristic algorithm
which was created in 1986 by Fred W. Glover [Gl86]. This algorithm uses some
techniques called diversification and intensification for searching for the optimal
solution. In the former technique, the algorithm accepts worse solutions compared
with the current solution in order to explore various parts of the solution space.
However, the later technique helps the algorithm to find the best solution in a local
region.

It is worth mentioning that the Tabu Search algorithm maintains a list of
previously visited solutions in order to avoid visiting them again in the future. This
is the reason why this algorithm is called Tabu Search. Our proposed Tabu Search
algorithm for the optimization problem (21.2) is presented in Algorithm 1.

In the proposed algorithm, first a random feasible solution for the problem is
generated. Then in every iteration of the algorithm, neighbors of the current solution
are found. Neighbor of a solution in this algorithm is defined as a solution with the
same parameters except that one random parameter is changed to another feasible
value.

Among the computed neighbors in each iteration of the algorithm, the best one
is compared with the current solution. If this neighbor provides a better solution
based on the objective function of (21.2), then the current solution is replaced with
this neighbor. Else with a probability which is the input of the algorithm, the best
neighbor of the current solution is accepted as a new solution. This probability
gives the algorithm the opportunity to explore more in the solution space and this
mechanism is called Probabilistic Move Selection [WuHa13]. At the end of each
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iteration, the tabu list is updated and the current solution is also compared with the
best solution found so that it can be updated for a better solution. Finally, the best
solution found in the algorithm is returned.

21.4 Results

In this section, the results of running the algorithm presented in previous section are
introduced. The Tabu Search algorithm proposed for the optimization problem was
programmed in Java and used for different values of ˇ and � .

Different design scenarios were investigated: At �=1, all the algorithm’s effort
was spent to maximize the voltage gain, considering the power consumption as a
less significant spec of the design. On the contrary, �=0 describes a case where the
overall power efficiency is the main goal.
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Fig. 21.2 Average open-loop voltage gain and power consumption of the opamp for different
values of �
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Figure 21.2 illustrates the voltage gain and power consumption values found by
the algorithm in the mentioned scenarios. It can be seen that voltage gain of 10000–
30000 (80–90 dB), even at low ˇ values, is achievable when power consumption
is not the main concern. However, in this case the power consumption of the two
gain stages are � 200 � 270 mW. On the other hand, when power consumption is
the main goal, it is possible to reduce it as low as 40 mW at the voltage gain of
1350–1650 (62–64 dB). Table 21.2 also shows the optimized variables along with
their resulting average voltage gain and also power consumption for sample values
of ˇ and � .

The reported simulated voltage gain of [KaEtAl16, Ka14], when the power
consumption was not a concern, was around 70 dB. Comparing this with the results
of the proposed metaheuristic algorithm reveals that using metaheuristics provides
at least 10dB higher voltage gain than the designer’s choice for the circuit.

21.5 Conclusions

A circuit designer in emerging technologies such as SiC has to tackle numerous
challenges such as variations in the fabrication process and the device parameters.
Therefore, this paper aimed at optimizing voltage gain and power consumption of a
SiC operational amplifier. For solving this problem, a Tabu Search algorithm was
proposed as a metaheuristic for finding a near optimal solution in a reasonable
amount of time. The results of running this algorithm reveal that it can produce
at least 10dB higher voltage gain when compared with the designer’s simulation.
Therefore, the proposed metaheuristic can clearly aid designers to enhance the
voltage gain of their circuits, while considering their power consumption.

Table 21.2 Optimized variables for sample ˇ and � values along with the resulting average
voltage gains and also power consumptions

� ˇ RC1 RC2 IC1 IC2 VCC

Average
Voltage Gain

Power
Consumption

1 20 1390 1990 0.01 0.007 20 7870.814 0.34

1 40 1390 3880 0.01 0.0036 20 24625.35 0.272

1 60 1390 6990 0.01 0.002 20 46061.98 0.24

1 80 1390 3490 0.01 0.004 20 36606.19 0.28

1 100 4110 2410 0.0034 0.0058 20 14876.9 0.184

0 20 676 2879 0.002 0.0019 11.5 1463.113 0.04485

0 40 1476 2177 0.0011 0.0027 11.9 1423.884 0.04522

0 60 870 570 0.0044 0.0027 10 1517.695 0.071

0 80 1060 1243 0.0033 0.001 10.1 1637.682 0.04343

0 100 1360 460 0.0029 0.0036 10 1504.305 0.065
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In future works, optimizing other performance metrics of the SiC operational
amplifier can also be considered. Moreover, the proposed method can be extended
for other analog circuits in SiC and similar emerging semiconductor technologies.
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Chapter 22
Severe Precipitation in Brazil: Data Mining
Approach

H. Musetti Ruivo, H.F. de Campos Velho, and S.R. Freitas

22.1 Introduction

Heavy precipitation associated with severe weather systems has been one of the
largest economic and social impacts. On 6–7 April 2010, the city of Rio de Janeiro
and several neighboring municipalities were victims of extreme weather conditions.
More than 150 mm of accumulated rainfall in a 24-hour period was recorded,
and landslides occurred in the city. Many people died (233) in the Rio de Janeiro
and Niteroi cities, at least 14,000 people have been made homeless, and vast
stretches of road in various parts of the city and surrounding areas were partially
ruined [MoEtAl13]. Other episodes to be cited are a series of floods and mudslides
taking place on 12 January 2011 in the mountainous region of the State of Rio de
Janeiro. More than 900 people have died. Thousands of people have been made
homeless. In a 24-hour period between 11 and 12 January 2011, the local weather
service registered more rainfall than what is expected for the entire month. Around
2,960 people had their homes destroyed [G111]. Figure 22.1 illustrates the location
of the tragedies and destruction images.

Here is presented an innovative data mining (DM) approach to investigate the
climatic condition linked with the extreme precipitation events occurred in Rio de
Janeiro (Brazil), coupling two different techniques – one from statistical analysis
and another one from artificial intelligence.

Our data mining approach was employed in previous research [RuEtAl14,
RuEtAl15], applying a class-comparison technique also used as a tool to analyze
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Fig. 22.1 Extreme precipitation event location in the state of Rio de Janeiro and its consequences

large datasets of genome-wide studies. The result of the statistical analysis is
presented in a p-values map with the most relevant variables for the climate
analysis. The maps show the climatological variables with higher correlation to the
precipitation intensity.

The statistical analysis also serves as data reducing to apply a decision tree
(DT) during the learning algorithm. DTs are used as a predictive model. The DT
identifies the hierarchy of the influence of climatological variables associated with
extreme precipitation in the analyzed region. Section 22.2 presents the methodology
and datasets used in this investigation. Section 22.3 presents our results, and finally
Section 22.4 draws some conclusions and discusses further developments.

22.2 Methodology

This work employs the data mining approach that comprises two steps of knowledge
extraction: class-comparison and decision trees. Class-comparison uses a statistical
approach for reducing the complexity of the original dataset. In the sequence, the
DT method is applied as a severe weather predictor.



22 Severe Precipitation in Brazil 223

22.2.1 Class-Comparison

The class-comparison method is used for comparing two or more pre-defined classes
in a time series of climatic grid box values. The purpose is to determine which
variables in the dataset behave differently across pre-defined classes of precipitation.
The “no-difference” case corresponds to a null hypothesis. The null hypothesis is
the hypothesis of no effect, no correlation, or no association, whatever the case
may be. The classes are defined in such a way to capture in the correct class
the main episodes of extreme precipitation that occurred during the period being
evaluated. There are several methods for checking whether differences in variable
values are statistically significant [SiEtAl03]. The F-test is a generalization of the
well-known t-test, which measures the distance between two samples in units of
standard deviation. Large absolute values of the F-test suggest that the observed
differences among classes are not due to chance, and that the null hypothesis can
therefore be rejected. Supposing there are J1 data points of class 1 and J2 data points
of class 2, the t-test score is computed as:

t D x1 � x2
r

s2p
�
1
J1

C 1
J2

	 (22.1)

where:

s2p D .J1 � 1/s21 C .J2 � 1/s22
J1 C J2 � 2 ; and s2i D 1

Ji � 1
JiX

jD1
.xij � xi/

2 .i D 1; 2/ :

The used notation in the above equation is expressed as x1= mean of samples class
1, x2= mean of samples class 2, J1= quantity of samples class 1, J2= quantity of
samples class.

A F-test shall be computed for more than two classes. In this case, the alternative
to the null hypothesis is that at least one of the classes has a distribution that is
different from the others. The t-test and F-test computed are then converted into
probabilities, known as p-values. The p-value is the probability of obtaining a result
equal to or “more extreme” than what was actually observed, assuming that the
model is true. The p-value is a measure of statistical significance, meaning – under
the null hypothesis – the p-values are less than 0.01 only 1% of the realization.
Permutations methods, where Gaussianity is not assumed, are commonly used for
computing p-values [SiEtAl03, HaEtAl07]. After calculating t-test scores for each
variable, the class labels of the J1 and J2 are randomly permuted, so that a random J2
of the samples are temporarily labeled as class 1, and the remaining J2 samples are
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labeled as class 2. Using these temporarily labels, a new t-test score is calculated,
say t*. The labels are then reshuffle many times again, with a t* being computed at
each permutation. The p-value from the permutation t-test is given by:

p-value D 1C #random permutation where jt�j 	 jtj
1C #random permutation

:

22.2.2 Decision Tree

There are several decision tree (DT) algorithms available. The J4.8 algorithm
is available from the WEKA package [WiEtAl00]. DTs are tree-like recursive
structures made of leafs, labeled with a class value, and test nodes with two or more
outcomes, each linked to a sub-tree.

The DT algorithm construction consists of a collection of training cases, each
having a tuple of values for a fixed set of attributes (independent variables) and a
class attribute (dependent variable). The aim is to generate a map that relates an
attribute value to a given class. The classification task is performed following down
from the root the path dictated by the successive test nodes, placed along the tree,
until a leaf containing the predicted class.

The analyzed problem is successively divided into smaller subproblems until
each subgroup addresses only one class, or until one of the classes shows a clear
majority not justifying further divisions. Most algorithms attempt to build the
smallest trees without loss of predictive power. To this end, the J4.8 algorithm
relies on a partition heuristic that maximizes the information gain ratio, the amount
of information generated by testing a specific attribute. This approach permits to
identify the attributes with the greatest discrimination power among classes, and
select those that will generate a tree that is both simple and efficient.

The information gain is measured in terms Shannon’s entropy reduction. Given
a set A with two classes P and N, the information content (in bits) of a message that
identifies the class of a case in A is then

I.p; n/ D � p

p C n
log2

�
p

p C n

�

� n

p C n
log2

�
n

p C n

�

(22.2)

where p is the total number of objects belonging to class P, and n is the total number
of the objects into the class N. If A is partitioned into subsets A1; A2; : : : ;Am by a
given test T , the information gained is given by

G.AI T/ D I.A/ �
VX

iD1

pi C ni

p C n
I.Ai/ (22.3)
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where Ai has pi objects from the class P, and ni from the class N. The algorithm
chooses the test T that maximizes the information gain ratio G.AI T/=P.AI T/, with

P.AI T/ D �
VX

iD1

pi C ni

p C n
log2

pi C ni

p C n
(22.4)

being the information gain from the partition itself. The process is repeated
recursively to obtain the other nodes, structuring the decision tree with the rest of
the subsets [Qu93].

22.3 Results

The entire dataset used in this study comprises 8,398 time series. Gridded data cover
a region delimited by latitudes 21o S and 24o S, and longitudes 45o W and 41o W.
Pentad-averaged anomalies were used in the analysis. Anomalies were computed
relative to the mean values over the period 2000–2011 (12 years). Surface-
and pressure-level atmospheric fields have a spatial resolution of 0:25 � 0:25

degrees taken to 12 UTC and were extracted from the ECMWF climate reanalysis
(www.ecmwf.int/en/forecasts/datasets). ECMWF uses its forecast models and data
assimilation systems to “reanalyze” archived observations, creating global datasets
describing the recent history of the atmosphere, land surface, and oceans. The list
of the climatic variables is:

• Air temperature at the height level 2 m and pressure levels of 300, 500, 600, 700,
850, and 925 hPa;

• Geopotential, vertical velocity (Omega), specific humidity, zonal and meridional
wind components at pressure levels of 300, 500, 600, 700, 850, and 925 hPa;

• Sea Surface Temperature.

The goal of this study is to determine which variables in the dataset behave
differently across pre-defined classes of precipitation intensity. The “no-difference”
case corresponds to the null hypothesis for the applications considered here.

22.3.1 Extreme Rainfall Event Over the City of Rio de Janeiro

The focus here is to identify variables that might correlate with observed differences
among classes of precipitation in the region of Rio de Janeiro city (red dot in
Figure 22.2). The rainfall dataset was provided by Alerta Rio system implemented
by the Instituto de Geotecnica do municipio do Rio de Janeiro (GEORIO) (http://
www.sistema-alerta-rio.com.br) and its precipitation network has 32 several rain
gauges installed on different areas within the city.

www.ecmwf.int/en/forecasts/datasets
http://www.sistema-alerta-rio.com.br
http://www.sistema-alerta-rio.com.br
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Fig. 22.2 p-value field for specific humidity at 600 and 500 hPa (upper), and omega at 925 and
500 hPa (bottom)

For classification purposes, the pentads of this time series were divided into
three classes of precipitation intensity: “strong,” “moderate,” and “light” rainfall.
The standard t-test (22.1) was applied, as recommended for applications with
two classes: “strong” (precipitation greater than 8) and “moderate” (precipitation
between 0 and 8). Fields of p-values for eight gridded climatic variables are
presented in Figure 22.2. In this figure, the p-values at a given grid point can be
interpreted as the probability that the observed difference between classes for this
variable is the product of mere chance. Clearly, coherent patterns of low p-values
are identified by darker areas. A p-value < 0.01, for example, indicates probability
lower than 1 of being a false positive. The isolines in Figure 22.2 correspond to
Omega anomalies averaged over the pentad April 6th up to 10th, 2010, the period of
most intense precipitation in Rio de Janeiro. These results represent p-value fields,
where coherent spatial patterns of low p-values indicate the existence of a possible
links between specific humidity, Omega and zonal/meridional wind anomalies, at
different levels, and the precipitation intensity in the region of Rio de Janeiro
(Figure 22.2).
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In the upper part of Figure 22.2, there is a dense dark area of low p-values for
specific humidity coming from the ocean toward the continent to medium altitudes.
It is also observed a dense dark area for omega at 925 hPa on the ocean that spreads
to the mainland at 500 hPa. During the extreme rainfall episode, it was also observed
(see the isolines on the bottom of Figure. 22.2) that Omega values are negative over
the most affected region (red dot). It is well known that upward vertical motion over
the continent can result in precipitation, under certain conditions (moisture, pressure
field, for example). The low p-values in the fields of meridional wind appear in the
Southern of Rio de Janeiro state at low altitudes (not shown), on the other hand, for
the zonal wind it is observed low p-values at medium altitudes at the opposite side
(not shown)

According to the Center for Weather Forecasting and Climate Studies (CPTEC)
synoptic analysis1, there was the presence of a cyclone with high pressure over the
Atlantic, which was associated with a cold front acting primarily on the Atlantic
to the South of Rio de Janeiro and Southern Brazil. Linking the cyclone presence
and interaction with the unstable hot and wet mass air happening for days on the
Southeast of Brazil was sufficient to trigger intense prefrontal activity from the
ocean to the littoral of Rio de Janeiro.

The decision tree (DT) configured by using the J4.8 algorithm was created with
confidence factor used for pruning (0.25), with number of instances per leaf equal
to 2. The p-values were computed for all attributes – attribute here is considered
a meteorological variable for a given coordinate (x, y, z). Only the 45 smallest
p-vales were taken into account to feed the DT. Pentad anomaly was adopted for
DT configuration – see [Ru13]. The best result for the DT was obtained with the
9 different climatological variables, considering 5 different coordinates for each
variable. The designed DT classifies the Rio de Janeiro precipitation into two
classes: “light” (values below 5) and “strong” (values above 5).The training set
comprised annual data from 2000 up to 2006. The years of 2007 to 2010 were used
to evaluate the DT performance.

The resulting DT, displayed in Figure 22.3, has 11 leafs (5 “strong” and 6 “light”)
and 10 decision nodes. The variable with the highest information gain is omega
at 850 hPa (at coordinates 44:5o W and 23:5o S). Considering precipitation levels
above 5, number of 39 cases were expressed (between 2007 up to 2010), and the
DT hits in 13 cases (33.3%). For the considered period (2007 up to 2010), five
pentads have rainfall above 5. In these 5 cases, the DT (Figure 22.3) hits the extreme
rainfall.

1See the web-page: www.cptec.inpe.br/~rupload/arquivo/Notatec\RJ\060410.pdf~.

www.cptec.inpe.br/~rupload/arquivo/Notatec RJ 060410.pdf~.
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Fig. 22.3 DT using training set from 2000 up to 2006, and test set: from 2007 up to 2010

22.3.2 Extreme Rainfall Event Over Mountainous Region
of the State of Rio de Janeiro

Data was computed the average of eight measurement stations from the Brazilian
National Water Agency (ANA: Agencia Nacional de Águas), all placed on the
region most affected by flooding.

For classification purposes, the pentads of these time series were divided into
three classes of precipitation intensity: “strong,” “moderate,” and “light” rainfall.
The standard t-test (22.1) was applied, as recommended for applications with
two classes: “strong” (precipitation greater than 8) and “moderate” (precipitation
between 0 and 8). Fields of p-values for seven gridded climatic variables are
presented in Figure 22.4. The wind fields in Figure 22.4 are also anomalies averaged
over the same period.

The low p-values for specific humidity (not shown) are once again noticeable at
850 hPa at the ocean. The low p-values (Figure 22.4, upper) of Omega at 500 hPa are
highlighted on the continent, but at 300 hPa this dark area extends to whole region
of analysis. It is also observed that the isolines in the pentad of the event remained
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Fig. 22.4 p-value field for Omega at 500 hPa and 300 hPa (upper), meridional wind at 850 and
700 hPA (bottom)

negative. Different from the previous episode, Figure 22.4 bottom illustrates low
p-values of the meridional wind at 850 and 700 hPa in the Northern part of
the region, with winds blowing from the continent to the ocean. CPTEC’s report
(www.cptec.inpe.br/~rupload/arquivo/120111.pdf) mentions a strong divergent flow
at high altitude over the state of Rio de Janeiro, which favors the occurrence of this
event. Another determinant factor for the occurrence of this catastrophe was the
complex orography of the region.

Several tests were performed with smallest p-values and the decision tree
(confidence factor used for pruning =0.25, and number of instances per leaf =2) to
generate the decision tree. The tree was obtained with the 15 different climatological
variables, considering 5 different coordinates for each variable, with smallest p-
values (total 75 attributes). The precipitation anomaly time series over the area were
divided into two classes: “light” (values below 10) and “strong” (values above 10),
corresponding to episodes of low and high precipitation, respectively. The training
set comprised data from 2000 up to 2006. The years of 2007 to 2010 were used to
evaluate the tree performance. The resulting tree, displayed in Figure 22.5, has 13
leafs (6 “strong” and 7 “light”) and 12 decision nodes. The variable with the highest

www.cptec.inpe.br/~rupload/arquivo/120111.pdf
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information gain is omega at 300 hPa, and at coordinates 41o W and 23:75o S.
Analyzing only precipitation levels above 10, there was 21 cases (between 2007 up
to 2010), and the tree hits in 8 cases (38%).

22.4 Conclusion

In this study, two steps of knowledge discovery were used to reduce the size of
the input database. The aim was to investigate the climatic condition behind of
two extreme events of rainfall occurred in Rio de Janeiro, Brazil in April 2010 and
January 2011. The episode at 2011 was the most dangerous natural disaster recorded
in the Brazil, killing more than 900 people.
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The class-comparison applied methodology allows to mapping the influence
(probability to be associated with the event) of different attributes to the event under
study. The p-values maps become easier the interpretation for experts, pointing out
the climatological variables directly related to the extreme event. In addition, it was
able to promote a dramatic reduction on the size of the original dataset – for the
current case from the order of thousands of variables to a few tenths. The decision
trees generated from the results of the class-comparison step were able to correctly
classify/predict cases of extreme rainfall in Rio de Janeiro city, and mountain
region in Rio de Janeiro state. Overall, the data mining procedure has shown to
be a promising approach in the investigation of climatic extreme events from the
extraction of knowledge from large and complex datasets, with the potential of to
be applied in real time weather forecast in the operational centers like CPTEC.
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Chapter 23
Shifting the Boundary Conditions to the Middle
Surface in the Numerical Solution of Neumann
Boundary Value Problems Using Integral
Equations

A.V. Setukha

23.1 Introduction

The main idea of the boundary integral equation methods for boundary value
problems is based on an integral representation of the solution. The integral
equation for the unknown density of this integral representation appears as a result
of satisfaction of the boundary conditions in the boundary value problem. This
approach is the basis for many numerical methods.

In three-dimensional boundary value problems typical difficulties arise when the
boundary problem exterior to a body of small thickness is solved: degeneration of
the integral equation, when the thickness tends to zero; the need to use a small step
of partition for numerical solution (the partitioning step must be much less than
thickness of the body); there is a large error of numerical solution near the edges.

Replacing the object by a thin screen often simplifies the problem. But some of
the physical effects cannot be simulated in this way.

The 3-D Neumann boundary value problem for the Laplace equation exterior to
a body of small thickness is considered in this article. An approach is proposed to
solve the problem in which the boundary conditions are transferred to the middle
surface of the body. As a result, a new boundary value problem on the screen (the
middle surface) is solved. Note that for two-dimensional problems of aerodynamics
of the wing profiles such an idea has been developed in [LiEtAl92]. The idea from
article [LiEtAl92] is developed for the three-dimensional case in the present paper.
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23.2 Shifting the Boundary Conditions to the Middle Surface
and Numerical Method

The classical exterior Neumann boundary value problem for the Laplace equation
is considered:

�u D 0 ˝;
@u

@n
D f on ˙; u.x/ ! 0 as x ! 1; (23.1)

where˝ is a domain which lies outside its boundary˙ , where˙ is a closed surface.
Let’s assume that the surface has the following structure. Let ˙0 – some smooth

open oriented surface with an edge @˙0. Let ˙ D ˙C [˙� where

˙˙ D
�

z˙.z/ D z ˙ 1

2
�.z/n.z/; z 2 ˙0

�

;

�.z/ is some function on the surface ˙0 such that �.z/ 	 0; �.z/ D 0 at the edge
of ˙0, n.z/ is the unit normal vector to ˙0. Let n˙ D n˙.z/ are the unit outward
normals to the surface ˙ at the points z˙.z/, respectively. It is also assumed that
�.z/ is much smaller than the surface ˙0 size (see Figure 23.1).

It is proposed to consider a new boundary value problem outsize the screen ˙0

for the approximate solution of the problem (23.1):

�u D 0 in �0;
�
grad u;n˙

� D f˙ on †0; (23.2)

f˙.z/ D f .z˙.z//, z 2 ˙0, ˝0 D R3n˙0, with conditions grad u 2 Lloc
2 .˝0/, u is

bounded in R3n˙0, u.x/ ! 0 as jxj ! 1, 9u˙ on ˙0, and 9 .grad u/˙ on ˙0n@˙:
We use the representation of the solution of the problem (23.2) in the form of a

sum of single and double layer potentials:

u D VŒ˙0; 
�C UŒ˙0; g�; (23.3)

VŒ˙; 
�.x/ D
Z

˙


.y/F.x � y/d�y; UŒ˙; g�.x/ D
Z

˙

g.y/
@F.x � y/
@ny

d�y;

(23.4)

F.x � y/ D 1

4�

1

jx � yj

n nn+ S+
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Fig. 23.1 Shifting the boundary condition
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Let us recall some properties of the boundary values of potentials of simple and
double layer [CoKr84]. Let v D VŒ˙; 
�; u D UŒ˙; g�.

If the functions 
 and g are continuous on the surface ˙ , then the functions v
and u take the following boundary values on the surface ˙ :

vC D v� D v; uC D u C g

2
; u� D u � g

2
: (23.5)

If the function g is a Hölder continuous on the surface ˙ , then the boundary
values of the gradient of the function v on the surface ˙ satisfy the relations :

.grad v/˙ D grad v 
 


2
n; grad v.x/ D

Z

˙


.y/gradx F.x � y/dy; (23.6)

where the integral is treated in the sense of the principal value. If the function g
satisfies the condition g.x/ D 0 on the edge of the surface ˙ , and the surface
gradient Gradg is Hölder continuous on the surface ˙ , then the boundary values
of the gradient of the function u on the surface ˙ satisfy the relations:

.grad u/˙ D n
@u

@n
C
Z

˙

g.y/Gradx

�
@F.x � y/
@ny

�

d�y ˙ 1

2
Grad g; ; (23.7)

the integral is treated in the sense of the principal value. The boundary values of the
normal derivative of the function u satisfy the relations [LiEtAl04]:

�
@u

@n

�
˙

.x/ D
Z

˙

g.y/
@2F.x � y/
@nx@ny

d�y 
 lim
"!0

2

6
4

Z

˙=U.x;"/

g.y/
@2F.x � y/
@nx@ny

dy � g.x/
2"

3

7
5 :

(23.8)

The last expression is the definition of the integral in the sense of the Hadamard
finite value.

Formulas (23.5)–(23.8) are taken in the points of smoothness on the surface ˙ ,
excluding the edges of the surface.

Let’s return to the problem (23.2). Substituting the function u of the form (23.3)
into the boundary condition and by using relations (23.5)–(23.8), we obtain the
system of integral equations for the unknown functions 
 and g

q˙.x/
R
˙0

g.y/ @
2F.x�y/
@nx@ny

d�y C R
˙0

g.y/
�
�˙.x/; gradx

F.x�y/
@ny

	
d�yC

C R
˙0

.y/ @F.x�y/

@n˙

x
d�y 
 1

2
q˙.x/
.x/ ˙ 1

2

�
Grad g.x/; n˙.x/

	
D f ˙.x/; x 2 ˙0;

(23.9)
q˙ D �

n;n˙
�
;�˙ D n˙ � q˙n:

More detailed proof of these equations is described in [Se16]. In this article has
been proved the unique solvability of the boundary value problem (23.2) as well as
of the system of integral Equations (23.9) in a case where the surface ˙0 is plane
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Fig. 23.2 Partition of the surface ˙0

and under significant additional assumptions about the behavior of the vectors n˙.
Note that these additional restrictions are significant for the proof of solvability of
the problem, but not for the derivation of the Equations (23.9).

Integral Equations (23.9) are solved numerically using the methods of piecewise
constant approximations and collocation (see Figure 23.2). To construct the numer-
ical scheme let’s approximate surface ˙0 with sets of cells �j, j D 1; : : : ; n . Let
xj 2 �j, j D 1; : : : ; n – collocation points selected one for each cell, nj D n.xj/.
The cells in the form of quadrangles are used. The point xj on cell �j selected as
the crossing of the diagonals, the vector nj constructed as the normal vector to these
diagonals. Let also nCj D nC.xj/; n�j D n�.xj/ - the normal vectors to the surfaces
˙C and ˙� , respectively. Assuming that layers potentials density is constant on
each cell. The solution u of problem (23.2) and its gradient can be approximated by
expressions

u.x/ D
Xn

jD1 gj

Z

�j

@F.x � y/
@ny

d�y C
nX

iD1

j

Z

�j

F.x � y/d�y;

grad u.x/ D
nX

iD1
giV�;i.x/C

nX

iD1

iVq;i.x/; (23.10)

Vq;i.x/ D
Z

�i

gradxF.x � y/d�y ; V�;j.x/ D gradx

Z

�j

@F.x � y/
@ny

d�y:

The velocity field V�;j.x/ can be represented by Bio-Savart law and calculated
analytically [LiEtAl04].

For the approximation of the vector Grad g in the points xj, j D 1; : : : ; n, the
following representation is used Grad g D n � � , where � D Grad g � n. Further
formulas from the work [GuEtAl06] are used (see Figure 23.2):

Grad g.xi/ D ni � �i; �i � �	
i
1 C 	 i

2 C 	 i
3 C 	 i

4

si
; (23.11)
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	 i
l D � �gi � gj.l;i/

�
rl=2; j.l; i/ - cell number, which is bordered with the

considered cell along the segment number l, si – area of the cell �i. We assume
gj.l;i/ D 0 if there is no adjacent cell.

Writing the Equation (23.9) in the collocation points and using the representa-
tion (23.10), we obtain a system of linear algebraic equations for the unknowns gj ,

j , j D 1; : : : ; n

nCmX

jD1
ai̇j gj C

nX

jD1
bi̇j 
j C 1

2
Œ� i �ni�ni̇ � 1

2

inini̇ D fi̇ ; i D 1; : : : ; n ; (23.12)

ai̇j D V�;j.xi/ni̇ bi̇j D Vq;j.xi/ni̇ fi̇ D �w1ni̇ , where � i, i D 1; : : : ; n, are
expressed in terms gj using the formula (23.11), m D 0 for this problem.

23.3 Application to the Problem of the Flow Around a Wing
in the Model of an Ideal Incompressible Fluid

Let’s consider the flow around of a finite span a wing in the model of an ideal
incompressible fluid (see Figure 23.3). The mathematical model described in the
book [KaPl01] is used. It is assumed that the flow is potentially out of the wing and
vortex wake. Vortex wake is approximated as potential discontinuity surface with a
given shape in the plane. Note a wing surface as ˙ , a surface that approximates the
vortex wake as˙1, L D ˙ \˙1 - separated line,˝ - the flow domain outside of the
wing and vortex wake ˙1 . The next boundary value problem for the velocity field
w D w.x/, x 2 ˝, is considered:

div w D 0; rotw D 0 in �; wn D 0 on†; w.x/ � w1 ! 0 as 
.x; @�/ ! 1;

wCn D w�n; pC D p� on ˙1;

where 
.x; @˝/ - the distance between the point and the set,

p D p1 C 
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Fig. 23.3 Problem of the flow around a wing
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- fluid pressure, w1 and p1 - given the velocity and the pressure at infinity. It is
also assumed that w is bounded near the separation line L (except the ends).

Let us seek velocity field in the form w.x/ D w1 C grad u . Then the boundary
value problem for the potential appears:

�u D 0 in �;
@u

@n
D f on ˙; f D �w1n; (23.13)

@.uC � u�/
@x1

D 0;

�
@u

@x2

�C
D
�
@u

@x2

��
on †1; u.x/ ! 0 as 
.x; @�/ ! 1:

(23.14)
Assume that the surface of the wing ˙0 has the same structure as the surface

in the problem (23.1). Further the described method with shifting the boundary
condition to the middle surface ˙0 is used. Let ˝0 D R3n˙0n˙1 be a domain
outside the surfaces ˙0 and ˙1. New boundary problem in the domain ˝0 is stated:

�u D 0 in ˝0; .grad u/C nC D fC; .grad u/C nC D fC on ˙0: (23.15)

Conditions (23.14) are also required.
We seek a solution of the problem (23.14) in the form

u.x/ D UŒ˙0; g�.x/C VŒ˙0; 
�.x/C UŒ˙1; g1�.x/;

where the potentials U and V are defined by the formulas (23.4). Then the following
system of integral equations for the unknown potential density appears

R

˙0

g.y/ @
2F.x�y/
@n˙

x @ny
dy C R

˙1

g1.y/
@2F.x�y/
@n˙

x @ny
dy C R

˙0


.y/ @F.x�y/
@n˙

x
dy



 1
2

.x/.n;n˙/˙ 1

2

�
Grad g;n˙

� D f˙; x 2 ˙0

(23.16)

g1.x C �e1/ D g.x/ ; x 2 L; � > 0; (23.17)

n D n.x/; n˙ D n˙.x/; x 2 ˙0:

For the numerical solution of Equations (23.16) – (23.17) the partition of the
surface ˙0 is performed, as well as for the Equations (23.9). The surface ˙1 is
approximated using the cells in the form of long strips (see Figure 23.4). We assume
that the function g1 is a constant on the each such cell in accordance with the
condition (23.17). We use for the velocity field approximation

w.x/ D w1 C
nCmX

iD1
giV�;i.x/C

nX

iD1

iVq;i.x/;

where n is the number of cells on the surface ˙0, m is the number of cells on the
surface˙1. We obtain a system of linear algebraic Equations (23.13)–(23.14) for the
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Fig. 23.4 Discretization the wing and vortex wake

unknowns gj , j D 1; : : : ; n C m , 
j , j D 1; : : : ; n . In addition, we write conditions

gnCi D gjsep.i/; i D 1; : : : ;m:

These conditions follow from (23.17).

23.4 Numerical Results and Conclusions

The developed method is tested for solution of the problem of flow around of a rect-
angular wing (see Figure 23.5). For comparison we provided 3 variants of numerical
solutions of the considered problem. The first variant uses a standard panel method
for the original problem (23.13)–(23.14) - “volume wing” ([GuEtAl06, KaPl01]).
Second one uses the developed method with shifting the boundary conditions to the
middle surface (Equations (23.16)–(23.17) are solved numerically) - “thin wing with
shifting the boundary condition.” The third variant uses the standard panel method
for solving the problem of the flow around the middle surface (without shifting the
boundary conditions) - “thin wing” ([GuEtAl06, KaPl01]). Solutions using several
variants of the partition of the wing surface were obtained for each of the 3 methods.

The obtained distribution of the pressure coefficients on the upper and lower
surfaces of wings in the middle section are shown in Figure 23.6. The partition
upper and lower wing surfaces on the n1 � n2 cells used for the variant “volume
wing” (the first factor - the number of cells for the partition of the wing chord, the
second - along the wing span). A similar partition of the middle surface used for
variants “thin wing” and “thin wing with shifting the boundary condition.” Pressure
coefficient was introduced by the formula

Cp D p � p1

w21=2

D 1 � 1

2

w2

w21
:
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Fig. 23.5 The investigated wing
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Fig. 23.6 The dependence of the solution of the number of cells

In variants “thin wing” and “thin wing with shifting the boundary condition,” the
boundary values of pressure on upper and lower sides of the middle surface have
been considered as the values on upper and lower of the real wing surfaces. The
boundary values of the velocity vector w calculated using formulas (23.5) – (23.8).

Figure 23.7 shows the pressure distributions on upper and lower wing surfaces in
the middle section which were obtained using these three methods for comparison.
Normal force coefficient values obtained in these calculations are shown in the
table in Figure 23.7. Known experimental data are also shown (experiment TsAGI,
Russia).

The analysis of these results allows the following conclusions. We have a faster
convergence of numerical solutions for the scheme with shifting the boundary
conditions (as well as for the problem of flow around a thin surface) in comparison
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Fig. 23.7 Comparison of the numerical solutions

Fig. 23.8 The scheme of solving the problem of flow around a gliding parachute and the
calculation of its shape

with the case of the volume wing. Replacement of the volume wing to thin surface
allows to calculate the total force, but not the pressure distribution. The model
with shifting the boundary conditions allows to calculate correctly the pressure
distribution over the entire surface of the wing. In solving the original problem of
the flow around the volume wing we have significant errors near the trailing edge.

The proposed method is applied to the problem of flow around a gliding
parachute and the calculation of its shape. We used previously developed (jointly
with Aparinov V.A., Morozov V.I., and Kiryakin V.Yu.) method for this problem
based on panel methods. At first, we construct the initial form of the parachute. Then
the calculation of the flow around this initial form using panel method is performed.
Pressure difference distribution on the surface of the canopy of the parachute is
calculated. Next we solve the problem of elasticity theory for determining the shape
of a parachute under the load, which was calculated. Then aerodynamic calculation
is performed again. The iterations are repeated (see Figure 23.8).
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Fig. 23.9 The distribution of differential pressure coefficient in the median section

Within this model during solving the problem flow around the parachute the
method of shifting the boundary condition to the middle surface was used . The
Figure 23.9 (at the left) shows the initial form of a parachute and distribution of
difference pressure coefficient in middle section, obtained by use of the classical
panel method and of the new method. Classic panel method leads to a large error in
the neighborhood of the trailing edge. The surface of the canopy would be a wrong
bend, if these results will be used in solving the problem of calculating form.

The final canopy shape obtained by using the new method is shown in Figure 23.9
(at the right). This figure shows the distribution of differential pressure coefficient
obtained by a new method. Also, for this final form we solve the problem of
fluid flow past parachute with classical panel method. Author provide differential
pressure coefficient distribution obtained in this calculation for the comparison. The
aerodynamic loads obtained by the two methods are in good agreement. Thus, the
new method allows us to produce more stable results for the initial form of parachute
and for beginning the iterations.
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Chapter 24
Performance Assessment of a New FFT Based
High Impedance Fault Detection Scheme

A. Soheili and J. Sadeh

24.1 Introduction

Single-line to ground faults are of the most common problems the power system
distribution faces on a daily basis. A substantial proportion of these faults are
labeled with a high impedance nature. When the cable comes in contact with a
high impedance object, i.e., tree branch, asphalt, etc., current magnitudes have
shown sudden drop and erratic fluctuations, resulting in typical over-current (OC)
relays failure to effectively detect faulty conditions. Asymmetry, nonlinearity, and
randomness in nature are also additional features of HIFs, due to the presence of
electrical arcs. Fire hazards and electrical shocks are the main concern regarding
HIFs. It should be noted that HIF protection schemes are designed with a different
goal in mind. Common short circuit faults produce high rated currents where power
system equipment may face irreversible repercussions, hence, over-current relays
are addressed to prevent this situation. On the other hand, HIFs result in current
amplitudes below rated values and cannot harm the nearby installed equipment,
therefore, HIF detection schemes are engineered for different purposes.

Researchers have focused on finding unique HIF identifiers based on its char-
acteristics. Mechanical attempts on HIF detection involved the installation of low
resistance cables under distribution feeders, designed to create high current magni-
tudes upon contact. Extreme financial costs and low detection rates were the main
reasons for the downfall of this solution. Contrary to mechanical methods, electrical
applications showed promising future, due to the development of technology and
mathematical tools.
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Initial time-domain options employed the use of current and voltage amplitudes,
rate of change, etc., as means of detecting abnormality in power system distri-
bution. However, false detection against typical Switching Events (SEs) such as
Capacitor Bank Switching (CBS) has led to the distribution operator’s distrust in
available schemes. Mathematical Morphology (MM) has been proposed by Gautam
as a signal processing tool, being capable of distinguishing between HIF and
SE occurrences [GaEtAl12]. Russell et al. used various controlled experiments
and simulation to study the features of HIFs and accompanying electrical arcs
[KiEtAl88]. Based on his published findings, HIFs produce higher than average odd
harmonics with a noticeable elevation in the third harmonics, since they increase
system’s nonlinearity. Milioudis et al. have recently shown similarity between HIFs
and fluorescent lamps [MiEtAl15]. Based on studied waveforms, electrical arcs
have shown to have varying ignition and extinguishing times with an approximately
quarter-cycle life span. The use of odd, even, third, second, and inter-harmonics has
been proposed as methods of the frequency-domain detection schemes [MaEtAl15].
Fast Fourier Transform (FFT) and Short Time Fourier Transform (STFT) are the
main mathematical tools in this branch. The unavailability of infinite data and semi-
periodic conditions of waveforms raises some doubts. However, high detection rates,
lower computational burdens, and easy implementation compensate for its losses.

The Wavelet Transform (WT) has been proposed as a suitable tool for detecting
small deviations in current waveforms [MiEtAl06, SeEtAl05]. Among its known
benefits, the immunity in regard to unbalanced systems and the ability to detect
SE conditions have been emphasized. That being said, dependency towards the
selection of mother wavelet and network topology has created some concerns.
The Stackwell Transform (ST), as a superior time-frequency technique, has been
proposed to mask WT’s vulnerability towards noise [RoEtAl15]. Hybrid and
combinational solutions have also been presented as recent attempts for HIF
detection [BaEtAl16]. Furthermore, mathematical tools have been utilized as noise
reduction, feature selection, and extraction techniques. Heuristic approaches, such
as Artificial Neural Network (ANN) and Genetic Algorithm (GA), are used as
classification instruments [LiEtAl16, EbEtAl90]. The need for large reliable data
bank for learning and dependency towards network topology are the main setbacks
of these solutions. That being said, they uphold the highest detection rates among
presented schemes.

In this paper, the performance of a detection scheme, previously published by
authors, has been thoroughly investigated. The techniques use the combinational
behavior of even, odd, third, and second harmonics to successfully detect and
distinguish between HIF, CBS, and Motor Switching (MS) events. For comparison
purposes, representatives from time-domain, frequency-domain, and time-scale
domain approaches have been chosen. The remainder of this paper is organized
as follows. Section II briefly introduces the five considered detection schemes
with appropriate mathematical expressions. Subsequently, section III introduces the
designated scenarios, simulation results, and an introduction to the IEEE case study.
The paper concludes in section IV with a brief summary of the highlighted results.
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24.2 Introduction to HIF Detection Schemes

In order to fully assess the performance of the previously proposed STFT based
technique, the appointed scheme along with 4 competitors has been chosen for
comparison. In this section, a brief introduction to each method under surveillance
has been presented. It should be noted that since heuristic approaches tend to
be network specific and do not match the computation time-line of the proposed
method, they have been neglected from comparison.

1. Ratio Ground (RG)
The RG relay was designed as an electromechanical relay, where active and
restrain springs move about depending on the positive and zero sequence current.
According to the definition provided by [LeEtAl83], the ratio of the zero
sequence to the positive sequence has been set as the main criteria in this
approach. Researchers have reported a high detection rate and the most stable
output in its time. A value of 20% has been reported normal for distribution
systems with small levels of unbalance load distribution [LeEtAl83]. Therefore,
the algorithm will announce HIF conditions, provided that this criteria has been
breached.

2. Mathematical Morphology (MM)
Feature extraction, feature selection, and noise cancelation are the most fancied
applications of MM. The high sensitivity towards small and minute deviations in
waveforms makes this approach appealing for the detection of HIFs [GaEtAl12].
Gautam et al. proposed the difference between opening and closing operators
(CODO signal), as means of detecting HIFs (shown by (24.1)–(24.3)).

Yo.n/ D .f ı g/.n/ D ..f � g/˚ g/.n/ (24.1)

Yc.n/ D .f � g/.n/ D ..f ˚ g/� g/.n/ (24.2)

YCODO.n/ D Yc.n/ � Yo.n/ (24.3)

Due to the nonlinear and asymmetric behavior of HIF, the rapid ignition and
extinguishment of electric arcs result in small deviations in voltage and current
waveforms. Since measuring equipment is commonly installed at the beginning
of the main branch, current waveforms often witness damping if the distance
between fault and measuring equipment is noticeable or multiple CT and PTs
are present. That being said, voltage waveforms have shown little effect in this
matter; hence, the voltage waveform is used in this case. In the duration HIFs are
present, rapid close spikes with variations in magnitude have been recorded at
CODO output, whilst capacitor bank switching will only cause temporary spikes
at the inception time and nothing afterwards. Figure 24.1 illustrates an exemplary
CODO outputs for a HIF phenomenon.
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Fig. 24.1 Presence of HIF and corresponding CODO output signal

3. Combination of Odd and Even Harmonics (HA1)
The third chosen method employs the frequency spectrum and the even and
odd harmonics in specific to investigate the network condition in regard to the
presence of HIFs. The method proposed by Torres et al. has been considered
for this section [ToEtAl14]. According to the presented method, current THD is
compared with average 3phase THD, provided that the third harmonic is higher
than the sum of even harmonics and smaller than the odd harmonics for a specific
period of time. Subsequently, if the phase THD is higher than the 3phase average
THD, the algorithm will declare HIF as the feeder status. The main downside of
this method is that SEs are not designed to be noticed. For future references, this
method has been labeled as HA1.

4. Standard Deviation Criteria Wavelet Transform (WT)
As mentioned before, WT is widely used for feature extraction applications.
Chen et al. have shown that the order of magnitude changes for the standard
deviation of specific WT detail layers [ChEtAl14]. Hence, the criteria shown
by (24.4) was engineered for the purpose of detecting HIFs and SEs circum-
stances.

ıDi D ln.std.Di//C 14 (24.4)

where i denotes the chosen WT detail layer. The natural logarithm of the standard
deviation of the 2nd and 3rd detail layer has been set as suitable detection
criteria. According to the presented paper, provided that both criteria are below
5, between 5 and 10, and higher than 10, the appointed scheme will announce
Normal Conditions (NCs), SEs, and HIFs, respectively.
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5. STFT Based Detection Scheme
The STFT based method, proposed by authors [SoEtAl16], employs the unique
relation of combining various harmonic behaviors. “Analyzer of Abnormal
Conditions” and “HIF Signature Detector” are the two main sections of this
method, which work based on the even, second and third harmonic. Simulations
have shown immunity towards current magnitude and successful detection
of HIF, CBS, and MS events. Consequently, depending whether a HIF or
SE has occurred, the second or third harmonic is noticeably higher than the
other, respectively. By doing so, the proposed scheme is immune to current
magnitude oscillations and can effectively detect HIFs, MS, and CBS. Hence,
the implementation of this method will undoubtedly result in invaluable virtues.
Further information regarding detailed calculations are presented in [SoEtAl16].
In order to differentiate between the frequency-domain detection schemes, this
method has been labeled STFT.

24.3 Simulation Results

The performance evaluation process has been carried out via several scenarios
involving various fault conditions and switching events using PSCAD and MAT-
LAB programming software. For comparison purposes, all scenarios have been
maintained with identical conditions in regard to event parameters such as time
of occurrence and position at feeder. It should be mentioned that simulations have
been executed by a desktop computer powered by Intel©core i7 4570 with 16GB
of RAM. The IEEE 13-Node distribution system is a 4.16kV short and heavily
unbalanced standard test system, which offers suitable conditions for testing the
proposed method’s performance. The distribution grid contains various high current
3phase, low current 3phase extensions, and low current single phase extensions.
Additionally, these feeders are both underground and overhead type feeders. Further
information regarding the IEEE network can be found in [IEEEWeb]. Measuring
equipment is located at the primary node (650), in order to maximize the likelihood
to real world conditions. Figure 24.2 shows the IEEE 13-Node distribution test
system layout.
For simulation purposes, the output of each method has been designated with a value
in order to evaluate its performance in the considered duration of time. Therefore,
for all the five abovementioned methods, the values 1, 0.75, and 0 have been
assigned for statuses of HIF, SE, and NC, respectively. Also, the relays are designed
to show values of 0.5 in the “pickup” process. However, some methods, such as the
RG and WT, do not have this particular ability. Various HIF and switching events
have been studied in scenario I and II, respectively.

A. Scenario I
The first scenario focuses on the performance regarding the HIF detection. In
this section, both 3phase and single phase feeders have been considered for
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Fig. 24.2 IEEE 13-Node distribution system [IEEEWeb]
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Fig. 24.3 Performance evaluation regarding HIF at feeder 650–632

performance evaluation. The feeders 650–632 and 632–633 represent the 3phase
high current and low current extensions. Figures 24.3 and 24.4 illustrate the
recorded response from the previously five mentioned HIF detection schemes.
Putting aside the HA1 failed attempts and initial WT false detection, the
remaining 3 chosen methods have successfully detected the HIF fault conditions.
The 650–632 is a main branch feeder with rated current of about 400A, hence
the presence of HIF would exponentially decrease the current. The RG method
relies on this aspect which has led to a successful detection. The proposed
method by authors, similarly to the MM, has been able to effectively detect
HIF conditions.
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Fig. 24.5 Performance evaluation regarding HIF at feeder 684–652

Focusing on Figure 24.4, related to feeder 632–633 with rated current of 30A,
only STFT and WT have been able to detect the HIF conditions without any
doubts. On the contrary, since current amplitude has not decreased dramatically,
the ratio of sequences has not varied significantly and hence, RG was not been
able to detect any problems. Despite the short time resets, MM has been able to
show HIF circumstances for most portions of time. The small gaps in-between
is due to the relatively wider distance between spikes which in a window
based movement, the MM detection algorithm mistakes it for fault clearance.
The HA1 approach did acknowledge the presence of abnormal conditions by
rapidly showing values of 0.5, however, declaring the HIF state has only briefly
been shown. Generally, what concerns distribution operators is the occurrence
of HIF on single phase extensions where the low current magnitude hinders
the detection process. Figure 24.5 presents the detection results for feeder
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684–652. What stands out from this figure is that STFT and WT have been able
to effectively present definitive results of HIF conditions. RG and HA1 have
shown results similar to the 3phase low current extensions case. In addition,
MM has shown higher fluctuations between HIF and NC on feeders with lower
magnitudes.
According to the presented data in this section, the RG relay is solely able to
detect HIFs at the beginning of the distribution feeder and fails to show any
change while the fault is located at lower current feeders. HA1 has completely
failed to show acceptable detection rates. The MM algorithm presented accept-
able detection rates in low current amplitudes, but higher oscillations have been
witnessed at these states. Contrary to the MM, WT has shown higher detection
rates at low current magnitudes. The presented STFT based algorithm has been
able to successfully detect all HIF conditions, regardless of the current amplitude
and fault position.

B. Scenario II
Generally, SEs have shown similar transients to HIF, where some detection
schemes mistakenly react and hinder the distribution of power among con-
sumers. Distribution operators do not fancy these “trigger happy” detection
plans. Three of the chosen methods have been engineered to sense and distin-
guish SEs from HIFs, whereas RG and HA1 are only capable of detecting HIFs.
Capacitor bank has been modeled using a star connected 250kVAr capacitor
bank in order to rise power factor from 0.83 to 0.94, while a typical 700hp
synchronous squirrel cage motor has been selected for motor switching events.
Figure 24.6 demonstrates the performance of the selected five methods against
CBS at node 632.
It can be seen that MM and STFT have been successful in labeling the abnormal
conditions as SEs, whereas RG and HA1 failed to notice anything out of
the ordinary. Also, further investigation shown that WT presented acceptable
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Fig. 24.6 Performance comparison due to capacitor bank switching at node 632
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Fig. 24.7 Performance comparison due to motor switching at node 675

behavior during the transients of node 632, whilst at nodes at a farther distance,
i.e., 675, 692, outputs have oscillated between CBS and NCs. The increased
distance has led to moderate drop in the criterions and hence the output of NC
and HIF was presented. The study on MS has also been carried out on nodes 675.
Figure 24.7 illustrates the five responses gathered from the designated detection
schemes. Despite the majority of chosen methods being capable of detecting
switching event transients, it can be seen that only the proposed method is cable
of distinguishing between NC and MS events. Further investigations on the
presence of CBS and MS have shown the superiority of the proposed method
by authors.

24.4 Conclusion

In the presented paper, an in-depth performance evaluation of a previously intro-
duced STFT based HIF detection plan has been carried out via rigorous simulations.
For comparison purposes, four time, frequency, and wavelet based approaches
have been utilized in this process. Various HIF conditions including variation in
fault position and feeder current have been considered. In order to fully cover the
evaluation process, capacitor bank and motor switching have also been taken into
account. Simulation results have shown the highest detection rate for both HIF and
SE detection for the proposed STFT based technique. Dependability towards current
amplitude and fault position in regard to the measuring equipment are some of the
drawbacks among the four competition schemes. However, the proposed method
has shown immunity towards these conditions.
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Chapter 25
H2 Matrix and Integral Equation
for Electromagnetic Scattering by a Perfectly
Conducting Object

S.L. Stavtsev

25.1 Introduction

Hypersingular integral equations are applied in various areas of mathematics and
technology, such as aerodynamics, filtration, elasticity, diffraction, acoustics, and
electromagnetic waves. [LiEtAl04, LiEtAl02, LiEtAl04, St06]. To solve compli-
cated problems described by a large number of parameters using integral equations
one should use fine meshes, and the initial problem reduces to the solution of a
very large system of linear equations with a dense matrix. Such a matrix is likely to
exceed the computer memory capacity. To solve such kind of problems one can use
supercomputers with distributed memory, as well as special numerical methods for
dense matrix approximations. For example, [ApEtAl10, ApEtAl13, St12] tackle the
solution of aerodynamic problems using low-rank approximations of large matrices.

This paper presents parallel algorithms combined with low-rank approximations
of dense matrices to solve problems of the electromagnetic wave diffraction on
perfectly conducting objects with a complex shape. If the problem is solved on an
object with a high wave size, this yields a large dense matrix. A complex shape of
the object makes it impossible to apply high-order quadrature formulas, and since
the solution of the integral equation for a high frequency diffraction problem has
strong oscillations, very fine meshes should be applied to approximate the integral
operator with piecewise constant functions.

Short reviews of the matrix approximation methods can be found, for example,
in [YoEtAl16, TaEtAl13]. One of the most widely spread matrix approximation
methods is the multipole method [CoEtAl93, SoEtAl95]. Apart from the multipole
methods there are kernel-independent matrix approximation methods. Low-rank
approximation methods were already applied to diffraction problems. For example,

S.L. Stavtsev (�)
Institute of Numerical Mathematics Russian Academy of Sciences, Moscow, Russia
e-mail: sstass2000@mail.ru

© Springer International Publishing AG 2017
C. Constanda et al. (eds.), Integral Methods in Science and Engineering, Volume 2,
DOI 10.1007/978-3-319-59387-6_25

255

mailto:sstass2000@mail.ru


256 S.L. Stavtsev

see [CoEtAl93] for a multipole-based algorithm for the solution of a diffraction
problem. Kernel-independent methods (mosaic-skeleton approximations) were also
applied to this problem.

Low-rank approximation methods allow to approximate matrices of size N �
N and compute the matrix-vector multiplication in O.N log.N// instead of O.N2/

operations.
Iterative methods, for example, GMRES [SaEtAl86], are used routinely for the

solution of linear systems of algebraic equations with large dense matrices. GMRES
employs only multiplication of a low-rank matrix by a vector and does not involve
any other operations with the low-rank matrix. Since the parallel matrix-vector
multiplication with a matrix in the mosaic-skeleton format scales well, the whole
algorithm of the linear system solution with a matrix in the mosaic-skeleton format
is also well scalable.

However, the number of GMRES iterations increases rapidly with the wave size
of the object. Therefore, for large wave sizes GMRES requires a lot of memory.
Even more memory demanding is the problem of solving the linear system with
many right-hand sides, which arises in the computation of the inverse Radar Cross
Section (RCS) characteristic.

To reduce the number of GMRES iterations one can use preconditioners. For
example, in [St15] an effective preconditioner is constructed, but its parallel version
is poorly scalable. Moreover, experiments of applying this preconditioner to the
electrodynamics problem have shown that the number of iterations can be reduced
only if the inverse matrix is approximated very accurately. This means that direct
solvers must be used for this problem. An example of a direct solver can be found
in [CoEtAl15]. This method is well scalable, but unfortunately it cannot be applied
to the diffraction problem.

This paper constructs a parallel direct solver for a low-rank matrix that arises
from the electrodynamics problem. As a low-rank matrix format we use the H2

representation [Ha15], a kernel-independent MultiLevel Fast Multipole Algorithm
(MLFMA). Unfortunately, contrarily to the Fast Multipole Method (FMM), parallel
MLFMA and H2 matrix construction algorithms have poor scalability. In this paper
we develop well scalable parallel algorithms for calculating the H2 matrix and
solving the linear system with the H2 matrix by a direct parallel solver.

25.2 Electrodynamics Problem and Integral Equation

Let us consider the diffraction problem on a perfectly conducting surface ˙ , which
can be either closed or open.

A monochrome wave with a frequency ! satisfies the Maxwell equations,

r � EE D i

0! EHI r � EH D �i""0! EE:
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On a perfectly conducting surface the following boundary condition holds:

En � .EE0 C EE/ D 0;

where EE0 is a given function, defined by the incident wave (we assume that the
incident wave is planar), and En is a normal vector to the surface.

To find a unique solution it is necessary to pose additional conditions

EE 2 Lloc
2 .˝/

and

d

d�

 EE
EH

!

� ik

 EE
EH

!

D o

�
1

jExj
�

; � D jExj; � ! 1:

In accordance with [CoEtAl83], the problem can be reduced to the electric field
integral equation on the unknown Ej.y/:

En �
“

˙

Ej.y/
�

grad divF.x � y/C k2F.x � y/
	

d�y D �En � EE0.x/; x 2 ˙; (25.1)

where k D !
p
""0

0 is the wave number, and

F.R/ D exp .ikR/

R
; R D jx � yj:

In Equation (25.1) the integral can be understood in the sense of the Hadamard
finite part.

For the numerical solution of the Equation (25.1) we use a numerical scheme
presented in [LiEtAl02]. In this scheme the surface is uniformly divided into cells
�i; i D 1; n, and for each cell an orthonormal basis Eei1, Eei2 is introduced. For each
cell �i it is assumed that Eji D Ej.xi/, where xi is the center of mass of the cell. Each
cell is considered to be planar. Discretization of the integral operator produces a
matrix that consists of 2 � 2 blocks:

Aij D
 EE1j.xi/ � Ee1i EE2j.xi/ � Ee1i

EE1j.xi/ � Ee2i EE2j.xi/ � Ee2i

!

;

EE1j.xi/ D
Z

@�j

EQ.xi/de2 C k2Ee1j

Z

�j

exp .ikR/

R
d� I (25.2)

EE2j.xi/ D �
Z

@�j

EQ.xi/de1 C k2Ee2j

Z

�j

exp .ikR/

R
d�; EQ.x/ D ry

exp .ikjx � yj/
jx � yj :

In (25.2) the contour and surface integrals are calculated numerically.
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Fig. 25.1 RCS, 16GHz, vertical polarization, n D 192156

25.3 Mosaic-Skeleton Approximations

The problem reduces to the solution of the linear system of algebraic equations

A� D ˇ (25.3)

with a dense matrix A. To approximate the matrix we use the mosaic-skeleton
method [Ty00, StEtAl09]. It partitions the matrix hierarchically into blocks, and
the low-rank matrix blocks can be calculated independently using the incomplete
cross approximation algorithm.

Let us investigate the approximation algorithm. In all examples below the surface
˙ in Equation (25.1) is a round cylinder with the diameter 15cm and height 25cm.

In Figure 25.1 we present the inverse RCS for the frequency 16GHz. The � value
for different directions � of the wave vectors of the incident wave is calculated as

�.�/ D 4�

jEE0j2

ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD1

�Eji � � � .� � Eji/
	

k2 exp .�ik� � xi/�i

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (25.4)

Black points show the results of the experiment, the grey line shows the results
of the numerical simulation.

In all calculations the number of cells is 192156, the number of right-hand sides
is 2048, the approximation and solution accuracies are 10�3.
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Table 25.1 Number of
iterations for various
parameters of the
electrodynamics problem

n 2GHz 4GHz 8GHz 16GHz

7872 1862 2355 4390 9410

21760 2821 4261 6025 11237

30400 3651 4791 7285 12990

45784 4262 5689 8269 21103

In Table 25.1 one can see the number of iterations needed to solve the system
with 2048 right-hand sides up to the accuracy 5 � 10�3 for different frequencies and
numbers of cells n.

It can be seen from Table 25.1 that the number of iterations increases significantly
with the frequency, and it requires a lot of memory and computational time.

So, let us apply the H2 matrix representation [Ha15] to solve the system.

25.4 Algorithm for Calculation of a H2 Matrix

The mosaic-skeleton approximation algorithm is well scalable on multiprocessor
computing systems. The H2 matrix approach results in a better matrix com-
pression rate, but the algorithms for constructing an H2 matrix, presented in
[Ha15, MiEtAl16], have poorer scalability. We develop a parallel algorithm based
on the software package [Mi16].

Following the notation from [CoEtAl15], an H2 matrix can be represented as
follows:

A D D0 C L1
�

D1 C L2.D2 C � � � /R2
	

R1; (25.5)

where matrices Lk and Rk are

Lk D

0

B
B
B
B
B
@

Lk 1 0 0 : : : 0

0 Lk 2 0 : : : 0

0 0 Lk 3 : : : 0
:::

:::
:::
: : :

:::

0 0 0 : : : Lk m

1

C
C
C
C
C
A

I Rk D

0

B
B
B
B
B
@

Rk 1 0 0 : : : 0

0 Rk 2 0 : : : 0

0 0 Rk 3 : : : 0
:::

:::
:::
: : :

:::

0 0 0 : : : Rk n

1

C
C
C
C
C
A

; (25.6)

where the blocks Lk p are defined by the row factors of a node p at the level k of the
tree of splitting of the calculation points into blocks. In turn, Rk q are defined by the
column factors of q at the level k of the tree, defining the splitting of the array of
cells into blocks.

Example of an H2 matrix split into blocks (Figure 25.2) is presented in
Figure 25.3. Due to the low-rank approximation, the matrices D0, Dk, Lk, Rk,
k D 1; 2; : : : ; are represented by much less data than the original matrix A.
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Fig. 25.2 Matrix blocks

Fig. 25.3 a) matrix D0, b) matrices L1, R1, D1, c) matrices L2, R2, D2

We have modified the H2 matrix construction algorithm from [Mi16] as follows.
First, we construct all row basis factors, i.e., matrices Lk; k D 1; 2; : : : from
decomposition (25.5). Then we carry out interprocessor data communications using
MPI and calculate the column basis factors Rk; k D 1; 2; : : : and matrices Dk,
k D 1; 2; : : : . Second, if the number of processors exceeds significantly the number
of blocks on the root node of the tree, defining the splitting of the matrix into
blocks, then the blocks of the upper level are additionally partitioned into subblocks.
For example, in Figure 25.4 the number of blocks on the upper level is 4 for
both rows and columns (they marked with blue color). If there are more than 4
processors, for example, 8, then each block is partitioned into 4 subblocks, as shown
in Figure 25.4. This kind of additional splitting reduces the number of interprocessor
communications in the course of calculating the matrices Lk and Rk, k D 1; 2; : : : .
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Fig. 25.4 Additional partitioning of the blocks

Table 25.2 Scalability of different algorithms for low-rank approximation construction

np 1 2 4 8 16 32 64 128

MS 1 1.91 3.61 7.24 13.38 24.51 41.31 51.84

H2 1 1.88 3.51 7.15 10.26 16.27 23.17 32.86

The scalability results for the electrodynamics problem on a cylinder with
125594 cells, the frequency 8GHz, and the approximation accuracy 10�2 are shown
in Table 25.2. Here, np is the number of processors. Table 25.2 shows speedups of
calculation of a low-rank matrix in the mosaic-skeleton (MS) and H2 matrix formats
for various numbers of processors. All calculations have been run on Intel Xeon E5-
2670v3 2.30Ghz CPUs at the INM RAS (http://cluster2.inm.ras.ru/) cluster. The
code was compiled with the Intel Fortran Compiler 9.0 for Linux (9.0.033).

Let us now consider the parallel algorithm for solving a linear system with an
H2 matrix.

25.5 Direct Solver for Systems with H2 Matrices

Let us consider the solution of the system (25.3) with the matrix (25.5).
To construct a sparse extended system we introduce additional variables

'1 D R1�; 'k D Rk'k�1; k D 2; : : : ; p;
uk D Dk'k C LkC1ukC1; k D 1; : : : ; p � 1; up D Dp'p;

(25.7)

where p is the number of levels in (25.5).

http://cluster2.inm.ras.ru/
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From (25.5), (25.3), and (25.7) it follows that

D0� C L1u1 D ˇ: (25.8)

To solve the system (25.8) and find auxiliary variables uk; 'k we need to solve
the following system:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

D0 L1 0 0 0 0 : : : 0 0 0

�R1 0 I 0 0 0 : : : 0 0 0

0 �I D1 L2 0 0 : : : 0 0 0

0 0 �R2 0 I 0 : : : 0 0 0

0 0 0 �I D2 L3 : : : 0 0 0
:::

:::
:::

:::
:::
:::
: : :

:::
:::

:::

0 0 0 0 0 0 : : : Dp�1 Lp 0

0 0 0 0 0 0 : : : �Rp 0 I
0 0 0 0 0 0 : : : 0 �I Dp

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�

u1
'1
u2
'2
:::
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B
B
B
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ˇ
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0

0

0
:::

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (25.9)

where I is a square identity matrix. The matrix of the system (25.9) is block-
tridiagonal. Therefore, we suggest to use the following algorithm to find �:

Let OA1 D A�10
DO k D 1; : : : ; p

Sk WD Rk OAkLk

Qk WD .I C AkSk/
�1, k < p

OAkC1 WD SkQk, k < p
END DO
Pp WD .SpAp C I/�1, OHp WD ApPp

DO k D p � 1; : : : ; 1
Pk WD .SkAk C I/�1
OHk WD AkPk C QkLkC1 OHkC1RkC1PkOAkC1 WD SkQk, k < p

END DO
The solution of the system can be found as

� D Bˇ; B D OA1 � OA1L1 OH1R1 OA1: (25.10)

As the diagonal blocks of the matrices Lk and Rk (25.6) are stored on different
processors, it is easy to multiply Lk and Rk with other matrices. The main difficulty
of the algorithm is a parallel computation of the inverse matrices. When p is large,
the sizes of the matrices to be inverted are small. In this case we use ScaLapack to
calculate them. When p is small, in particular, in the computation of OA1, the matrices
subject to the inversion are sparse. In this case we use MUMPS [MUMPS]. Both
MUMPS and ScaLapack use the MPI library.

Table 25.3 shows the speedups of the parallel direct solver for various numbers
of processors. The matrix is of size 251904, the frequency is 8GHz.
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Table 25.3 Scalability of the
parallel direct solver

np 1 2 4 8 16 32 64

1 1.52 2.42 3.58 6.50 9.15 11.45

To solve the system with a matrix of size 251904 with the GMRES method
without a preconditioner required 157:8GB of additional memory. This additional
amount does not include the memory necessary to store a low-rank matrix in RAM.
Instead, 157:8GB is the memory that was needed to store the Krylov subspace basis
in the GMRES method. As the preconditioner construction algorithm does not work
on distributed memory computers, it was impossible to solve the same problem
with the preconditioned GMRES. The memory necessary to store the preconditioner
exceeds 64GB, so it could hardly be done on a single processor. The direct solver
with the H2 matrix needed only 13:42GB of extra memory. The H2 matrix of the
system occupies 3:28GB of memory. So, the developed direct solver based on H2

matrices requires significantly less memory than other known methods for solving
such kind of problems.
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Chapter 26
Fast Parameter Estimation for Cancer Cell
Progression and Response to Therapy

P. Stpiczyński and B. Zubik-Kowal

26.1 Introduction

Many factors can alter cancer cell growth, including the response of the immune
system. This continues to raise interest, as when stimulated, the immune system can
attack cancer cells and be efficiently used to administer cancer-targeting therapy
[AC15]. Consequently, mathematical modeling of tumor cell population growth
and the competition between tumor cells and the immune system has emerged as
an active area of research, and various mathematical models proposed throughout
the literature have addressed open questions concerning the uncontrolled growth
and spread of abnormal cells and its competition against the immune system.
However, the growth of cancer cells involves many nonlinear intra- and extra-
cellular phenomena that vary in time making it a complex multistep process
[BeEtAl04, BeEtAl08, BeCh14, DrEtAl10]. Of particular relevance to the immune
system, the competition between epithelial cells and immune cells that attempt to
prevent cancer progression at an early stage has been detailed by a mathematical
model proposed by Bellouquid and Delitala in the book [BeDe06]. The former of
these cell populations refer to cells that have lost their differentiation and progress
towards cancer competence [BeCh14]. The model is based on the mathematical
kinetic theory for active particles developed by various authors, including, for
example, the book [Be08] by Bellomo and the references found therein.
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Equations modeling the uncontrolled growth and spread of abnormal cells
depend on a variety of biological parameters that need to be computed in light
of available data, for example, through the use of global optimization techniques,
which have been used in [AfBe14] for an integro-differential model of the response
of the immune system against cancer growth. Various numerical studies validated
against clinical and laboratory data have been performed in the literature, including a
mouse model of breast cancer and laboratory data that have been used in [JoEtAl12]
to identify biological parameters for two adenocarcinoma cell lines of the mammary
gland in a female BALB/c mouse. Oncological data has been applied in [DrEtAl10]
to estimate parameter values for a cancer-immune system dynamics model in the
absence of treatment for a group of breast cancer patients, whereas the interaction of
therapy against lung cancer progression has been examined and tested against clin-
ical data for patients treated by chemotherapy and radiotherapy in [KoEtAl13]. The
population kinetics of human tumor cells in vitro and their response to chemotherapy
and/or radiotherapy have been examined in [BaEtAl03, JcEtAl09, Zu14]. The
suppression of tumor growth by oxygen has been investigated in [JaEtAl09] through
a mathematical model for brain cancer progression after therapy. Clinical data for
a sample of brain cancer patients undergoing radiation treatment are compared in
[NaZu15] to a macro-scale reaction-diffusion type model that accounts for large-
dose stereotactic radiotherapy, providing good agreement with data.

Human tumor growth is associated with four phases of the cell cycle, involving
DNA replication, mitosis, and cell division. As a result of variable phase-to-phase
transition times, the length of the cell cycle is generally seen to be highly variable
[BaEtAl03]. It has been reported that the median cycle time varies among individual
cancer patients from as low as two days to up to several weeks [WiEtAl88]. With
the underlying uncertainties associated with these highly variable quantities, it has
become important to be able to accurately estimate the intrinsic physical parameters
among individual patients and it is the goal of the present paper to provide a
framework for fast computation for a model of the human tumor cell cycle by
utilizing parallel computing environments. Conceptual aspects of the problem, not
involving simulations in a parallel computing environment, have been considered in
[Zu13, Zu14] for a simplified model.

Recently, multicore computer architectures have become very attractive for
achieving high performance execution of scientific applications at low costs.
Computer clusters are usually deployed to improve performance over that of a
single computer. Unfortunately, the process of adapting existing software to such
new architectures using OpenMP [ChEtAl01] and MPI (Message Passing Interface
[Pa96]) can be difficult. The MATLAB Parallel Computing Toolbox readily allows
to solve computationally and data-intensive problems using multicore processors
and computer clusters. In this paper we also demonstrate that the MATLAB
implementation of the proposed method can be easily and successfully adapted to
clusters of multicore processors using the Parallel Computing Toolbox. Numerical
experiments show that the parallel implementation achieves impressive speedup and
good efficiency of the algorithm.
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The paper is organized as follows. The model equations for the growth of
human tumor cells are presented in Section 26.2. Sections 26.3 and 26.4 present the
numerical algorithm, designed for the model as well as its extension, and results
of numerical experiments. The paper finishes with concluding remarks sketched in
Section 26.5.

26.2 Growth of Human Tumor Cells

The model equations developed in [BaEtAl03] are written in the form of delay
partial differential equations

@G1.x; t/

@t
D 4b M.2x; t/ � .k1 C 
G1 /G1.x; t/; (26.1)

@S.x; t/

@t
D "

@2S.x; t/

@x2
� 
S S.x; t/ � g

@S.x; t/

@x
(26.2)

C k1 G1.x; t/ � I.x; tI TS/;

@G2.x; t/

@t
D I.x; tI TS/ � .k2 C 
G2 /G2.x; t/; (26.3)

@M.x; t/

@t
D k2 G2.x; t/ � b M.x; t/ � 
M M.x; t/; (26.4)

where the solutions G1.x; t/, S.x; t/, G2.x; t/, M.x; t/ represent the densities of cells
in the G1, S, G2, and M-phases, respectively. The independent variable t represents
time and x corresponds to the dimensionless relative DNA content used as a measure
of cell size as the phase changes correspond to changes in DNA content. The delay
term I.x; tI TS/ is defined by

I.x; tI TS/ D
8
<

:

Z 1

0

k1 G1.y; t � TS/ �.TS; x; y/dy; for t 	 TS;

0; for t < TS;
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is the Gaussian distribution with variance 2�� and

�.�; x; y/ D x C y

g�

�
1C O.��1/

	
:

The parameter b represents the rate at which a cell in the M-phase divides into two
daughter cells, " represents the dispersion coefficient, and g is the average growth
rate of DNA. Furthermore, k1 is the transition rate from the G1-phase to the S-phase,
k2 is the transition rate from the G2-phase to the M-phase, and 
G1 , 
S, 
G2 , 
M are
the death rates of cells in the G1, S, G2, and M-phases, respectively.

It is necessary to carefully estimate the parameters of the model separately for
each subject’s human melanoma cell line exposed to anti-cancer drugs. However,
determining the parameters according to experimental data is a computationally
heavy task that can easily become lengthy to run when doing so by means of
sequential computations. On the other hand, it is important to keep required the
computational time feasibly low in order to efficiently predict and simulate the
growth of human tumor cells and their response to therapy. The goal of the paper
is to develop efficient strategies for computing fast numerical solutions to (26.1)–
(26.4) and an extension of it by invoking parallelization across independently
working processors and to examine the computational gain attained with the use
of parallel computing environments.

In the next section, we implement a time-domain decomposition that decouples
the problem into a collection of independent subproblems and assigns the resulting
separate tasks to independently working processors.

26.3 Parallelization Based on Time-Domain Decomposition

We apply pseudospectral differentiation matrices based on the Chebyshev-Gauss-
Lobatto points

xi D L

2

�
1 � cos

i�

I

	
;

with i D 0; 1; : : : ; I, to discretize in x 2 Œ0;L� and approximate the first and second
order spatial partial derivatives in (26.2). Pseudospectral semi-discretization leads
to the following discretized differential system:

8
<

:

du

dt
.t/ D Mu.t/C Q.t/; 0 < t � T;

u.0/ D s0;
(26.5)

that we wish to investigate henceforth. Here, M is a square matrix, u.t/ is a
vector function whose elements are approximations to S.xi; t/, s0 is an initial vector
corresponding to the initial values S.xi; 0/, and Q.t/ is a vector function including
the delay term computed from (26.1), (26.3), (26.4).
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We wish to apply parallelization in the time-domain for (26.5) with an arbitrary
number P of processors by choosing a positive integer P (representing any number
of available processors) and dividing the interval Œ0;T� into P equal subintervals
Œtj�1; tj�, where j D 1; : : : ;P, with tj D j�t and �t D T=P. The j-th processor is
assigned to solve the following initial value problem:

8
<

:

dv

dt
.t/ D Mv.t/C Q.t/; tj�1 � t � tj;

v.tj�1/ D 0;
(26.6)

where 0 is the zero vector. Even though the original system (26.5) is strongly
joint and the solution at one instant depends on the behavior of the solutions at
previous time points, the systems of equations given by the problem (26.6) are
fully independent across all j D 1; : : : ;P. As the solution vj.t/ to (26.6) is being
computed, each utilized processor works independently over its subinterval Œtj�1; tj�
without communicating with the remaining processors. Even though all processors
work over distinct subintervals, the length of each subinterval is uniformly�t. After
the P processors finish their separate tasks and all solutions vj.t/ for j D 1; : : : ;P,
are computed, they are collected and the following formula:

u.tj/ D vj.tj/C exp.�tM/u.tj�1/:

is applied to generate the solution to (26.5). Convergence properties are proved in
[Zu13].

The algorithm has been implemented in MATLAB using the Parallel Computing
ToolboxTM. The main part of the algorithm has been simply parallelized using the
parfor construct for running parallel tasks on multiple processors (or cores). Our
Matlab program has been tested on a cluster of four computers with two Intel(R)
Xeon(R) CPU E5-2670 v3 (12 cores each with hyper-threading, 2.30 GHz, 128
GB RAM), running under Linux with MATLAB version R2015b and MATLAB
Distributed Computing ServerTM, which allows to scale up programs developed with
the Parallel Computing Toolbox to multiple computers.

We have checked the efficiency of the algorithm by applying it with different
numbers of cores and different interval widths in a parallel computing environment.
The resulting execution times obtained using Matlab performance measurement
formalism are presented in Table 26.1. The values of P indicate the number
of MATLAB parallel workers. For P D 1; 2; 4; 8; 16, computations have been
performed on a single node, while for P D 32 and P D 64 we have used two
and four nodes, respectively. The last two columns of the table show speedup and
efficiency of the algorithm.

We can observe significant improvement as P increases illustrating the impres-
sive speedup and reasonable efficiency of the algorithm. We note that single-node
numerical simulations for the model equations have been obtained previously in
[Zu14]. The resulting numerical solutions are presented in Figures 26.1–26.2. The
top panels of Figure 26.1 present the evolution of S.x; t/ and G1.x; t/ as functions
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Table 26.1 Results of
numerical experiments

Interval Elapsed time
P width in seconds Speedup Efficiency

1 80.0 479.76 1.00 1.00

2 40.0 272.73 1.76 0.88

4 20.0 147.15 3.26 0.82

8 10.0 74.32 6.46 0.81

16 5.0 37.78 12.70 0.79

32 2.5 20.27 23.67 0.74

64 1.25 11.60 41.36 0.65

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

20

40

60

80

100

120

140

Relative DNA Content

C
el

l C
ou

nt

k1=0.005

k1=0.01

k1=0.02

k1=0.03

k1=0.04

k1=0.05

k1=0.06

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

50

100

150

200

250

Relative DNA Content

C
el

l C
ou

nt

k1=0.005

k1=0.01

k1=0.02

k1=0.03

k1=0.04

k1=0.05

k1=0.06

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

200

time

C
el

l C
ou

nt

x30

x40

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

time

C
el

l C
ou

nt

x27

x37

Fig. 26.1 S.x; t/ (top left) and G1.x; t/ (top right) for varying transition rates k1. S.x; t/ versus t at
varying x locations for k1 D 0:06 (bottom left) and k1 D 0:005 (bottom right)

of x at t D 80 for a variety of rates k1 of transition from the G1-phase to the S-
phase. The areas enclosed by the curves corresponding to larger values of k1 are
larger than the areas enclosed by the curves corresponding to smaller values of k1,
demonstrating an increase in the amount of cells in the S-phase with increasing k1, as
is naturally expected. The waveforms presented in the bottom panels of Figure 26.1
illustrate S.x; t/ as a function of time at varying values of the DNA content x ranging
from x27 to x40 demonstrating a slower response in cell migration at higher DNA
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Fig. 26.2 S.x; t/ versus x (top left) and versus t (top right) for varying death rates 
S. S.x; t/
(bottom left) and G1.x; t/ (bottom right) for varying TS

contents and low cell counts at low transition rates k1. The top panels of Figure 26.2
present S.x; t/ for varying death rates of cells in the S-phase, ranging from 
S D 0

to 
S D 0:06 with an increment of 0:01. The top left-hand panel of Figure 26.2
presents S.x; t/ versus x at t D 80, in which there is a rapid decrease in cell count
with increasing 
S for intermediate DNA contents of approximately 1:8 and a lower
rate of decrease for low DNA contents of approximately less than 1. The top right-
hand panel of Figure 26.2 presents S.x; t/ versus t at x30 and x35, illustrating the
delay in the response of the cell count as DNA content varies. The bottom panels of
Figure 26.2 present the evolution of S.x; t/ and G1.x; t/ as functions of x at t D 80

for a variety of values of TS ranging from TS D 1 to TS D 11 with the increment
1, depicting decreased migration from the S-phase to the G1-phase with increasing
values of the delay TS and the formation of a bimodal cell count distribution in the
G1-phase above a threshold delay.
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26.4 Parallelization for a Generalized Model of in vivo
Tumor Growth

In this section, we test our algorithm for a generalized model developed in
[BaEtAl03] that incorporates the effect of anti-cancer drug delivery and cell death
in vivo. The generalized model accounts for apoptosis triggered by the delivery
of anti-cancer drugs, which further induces cellular DNA loss and may provide
understanding as to why some subjects fail to respond to therapy [BaEtAl03].
Increased cell deaths induced by apoptosis and the tracking of cells in the removal
stage may aid in the analysis of drug-treated tumor development in vivo.

The generalized model is given in terms of more model parameters and a
higher dimensional system, thus more intensive computations are required. The
model involves G1, S, G2, M-phases together with an additional sub-population of
cells in the removal stage (apoptosis) denoted by R.x; t/. The governing equation
for the sub-population R.x; t/ introduced in [BaEtAl03] can be written in the
following form:

@R

@t
.x; t/ D DR

@2R

@x2
.x; t/ C @.gRR/

@x
.x; t/ C 
G1G1.x; t/ C 
SS.x; t/

C 
G2G2.x; t/ C 
MM.x; t/; (26.7)

where DR is the dispersion coefficient and gR is the average rate of decrease of DNA
content per unit time.

We apply the principles of the parallel algorithm of Section 26.3 to the general-
ized model including (26.7) and have tested its efficiency by applying it in a series
of numerical experiments involving different numbers of cores and different interval
widths in a parallel computing environment. Table 26.2 lists the resulting execution
times obtained using Matlab performance measurement functions and Figure 26.3
presents the solutions in the removal stage for varying dispersion coefficients and
average rates of decrease of DNA content. Computational speedup is seen to be
attained with increasing numbers of processors used. Higher dispersion coefficients
result in distributed cell populations and higher average rates of decrease of DNA
content yield advective drift towards unimodal distributions, with removal stage
concentrations commensurate with cell count distributions.

Table 26.2 Results of
numerical experiments

Interval Elapsed time
P width in seconds Speedup Efficiency

1 80.0 494.85 1.00 1.00

2 40.0 270.72 1.83 0.91

4 20.0 145.62 3.40 0.85

8 10.0 76.73 6.45 0.81

16 5.0 40.63 12.18 0.76

32 2.5 20.79 23.80 0.74

64 1.25 11.51 43.00 0.67
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Fig. 26.3 Sub-population of cells in the removal stage for varying dispersion coefficients (left)
and average rates of decrease of DNA content (right)

26.5 Conclusions and Future Work

This paper is devoted to fast simulations of two models of the human tumor
cell cycle in a parallel computing environment and to the testing of the speedup
gained. We have also extended our implementation to a generalized model of tumor
development that tracks cells in the removal stage followed by apoptosis induced by
the delivery of anti-cancer drugs in vivo.

We have shown that our MATLAB implementation can be easily and successfully
adapted to clusters of computers with multicore processors using the Parallel
Computing Toolbox.

It is clear that computationally intensive parts of the algorithm can be classified as
data-parallel, thus we plan to implement the algorithm in GPU-accelerated computer
architectures using CUDA [NV15] or OpenACC [Op13]. It should also be profitable
to implement the algorithm in the Intel Many Integrated Core Architecture.
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Chapter 27
Development of a Poroelastic Model of Spinal
Cord Cavities

J. Venton, P.J. Harris, and G. Phillips

27.1 Introduction

Syringomyelia is a rare medical condition characterised by large fluid filled cavities
(syrinxes) in the spinal cord (Figure 27.1). How these syrinxes form is not fully
understood, although it is thought to be influenced by pressure changes in the
cerebrospinal fluid (CSF) surrounding the cord [El13]. CSF bathes the brain and
spinal cord and actions such as coughing or bending along with physiological
processes such as pulse cause harmless CSF movement and pressure changes.

Certain neurological disorders or traumatic spinal cord injuries can affect the
size and shape of the CSF region around the cord, causing these fluid movements to
become exaggerated. Over a period of months or years this can damage the spinal
cord tissue, leading to a syrinx. It is impractical to observe this process in a patient,
and mathematical modelling is increasingly seen to be a valuable tool for validating
hypotheses of syrinx formation [El13].

To this end a mathematical model of the spinal cord tissue has been developed
and solved using the finite element method. Elasticity, permeability and porosity
parameters for spinal cord tissue have been obtained to improve the model’s
accuracy. Applied boundary conditions in the finite element model will simulate the
exaggerated CSF pressures that occur following disorders or injuries that commonly
precede syringomyelia. The results of these simulations will reveal the pressures
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Fig. 27.1 A syrinx (�) in the
spinal cord in the neck
(C Hardwidge, Hurstwood
Park Neurological Unit)

Fig. 27.2 Cross section of spinal cord anatomy [El13] (© 2016 Beth Croce)

and stresses that can occur within spinal cord tissue. This information can be used
to determine whether the stresses and pressures present within the cord are high
enough to cause damage and either start or worsen a syrinx.

27.2 Spinal Cord Model

The spinal cord is composed of grey and white matter and is enclosed by three
separate layers known as the pia, arachnoid and dura maters (Figure 27.2). The
subarachnoid space lies between the pia and arachnoid maters and contains the CSF
surrounding the cord. Grey and white matter consist of cells such as axons and
neurons, which are surrounded by a fluid similar to CSF known as the extracellular
fluid. To fully capture the fluid/tissue nature of the spinal cord, a poroelastic model is
used. Poroelasticity has the advantage of modelling both the solid part of a material
and the fluid contained within it; subsequently in a spinal cord model both the tissue
fibre stresses and the extracellular fluid pressures can be calculated when an external
CSF pressure is applied.
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27.2.1 Poroelastic model

A poroelastic material consists of a solid (known as the solid skeleton) containing
many small interconnected fluid filled spaces (pores). Poroelastic spinal cord models
have been used previously to study syringomyelia (see [Ha09, St16] for example),
and are increasingly thought to be an appropriate model for several biological
materials [Mo13]. A simplified poroelastic model of spinal cord tissue consists of a
linear elastic solid skeleton and an incompressible pore fluid.

In a linear poroelastic model, the effective stress � [Le98] is a combination of
the stress from the solid skeleton � s and the stress due to internal pore fluid pressure
� f , that is

� D .1 � �/� s � �� f :

The contribution of each of these stresses is determined by the porosity �, a
dimensionless parameter that describes what fraction of the material is occupied
by pore fluid. Stress in the solid skeleton is related to strain " by

�s D D"

where D is the elasticity matrix, which includes elasticity properties of the solid
skeleton such as Young’s modulus E and Poisson’s ratio � [Bo10]. The momentum
balance equation is given by

� r � � D ..1 � �/
s C �
f /
@2u
@t2

� Fs (27.1)

where the vector u represents displacements of the solid skeleton, Fs represents
external forces and 
f and 
s are the pore fluid and solid skeleton densities,
respectively.

Under the assumption that fluid movements are small [Le98], Darcy’s law is used
to approximate the movement of pore fluid

q D � �



rp

where q is the flux of fluid through a material, � is the intrinsic permeability and 

is the dynamic viscosity of the pore fluid. Conservation of mass of pore fluid in a
poroelastic material is given by

@p

@t
D �



r2p � ˛@"

@t
(27.2)
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Fig. 27.3 A coarse finite
element mesh of the spinal
cord cross section taken from
an image of the spinal cord
and meshed using ABAQUS

which is essentially a linear diffusion equation with an extra term to describe
how the solid skeleton displacements (strains) " affect the pore pressure p [Le98].
The extent of this effect is determined by the Biot-Willis coefficient ˛.

27.2.2 Finite element simulations

Initially a two-dimensional plane strain model is being built, to represent a cross
section of the spinal cord. This initial study allows the stresses and pressures across
the cord cross section to be calculated when external CSF forces are applied.
Equations (27.1) and (27.2) are solved using the finite element method, over a mesh
derived from anatomical data (Figure 27.3). Applying the finite element method
to (27.1) and (27.2) yields the following system of equations:

M Ru C Ku � Qp D �Fs

SPp C QTPu C Hp D �Ff

(27.3)

where M and K are the solid mass and stiffness matrices, S and H are the fluid
mass and permeability matrices, Fs and Ff are external solid and fluid forces and Q
is the coupling matrix. Vectors u and p represent solid skeleton displacements and
pore fluid pressures, respectively. The coupling matrix Q describes how the solid
skeleton displacements affect the pore fluid pressure (via the QTPu term) and how the
pore fluid pressure displaces the solid skeleton (via the Qp term).

To rewrite the system in Equation (27.3) in a solvable format (Ax D b), the
substitution Pu D v can be made and the system rewritten as

0

@
M 0 0

0 I 0

0 QT S

1

A

2

4
Pv
Pu
Pp

3

5 D
0

@
0 �K Q
I 0 0

0 0 �H

1

A

2

4
v

u
p

3

5 �
2

4
Fs

0
Ff

3

5

or

A0 Px D A1x C F (27.4)
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where

A0 D
0

@
M 0 0

0 I 0

0 QT S

1

A ; A1 D
0

@
0 �K Q
I 0 0

0 0 �H

1

A ; x D
2

4
v

u
p

3

5 :

This is now a linear equation, which can be solved using traditional methods.
To solve the system dynamically, the Crank-Nicolson method is used to approximate
the solution at the current (xn) and next (xnC1) time step using the following
approximations:

x � xnC1 C xn

2
; Px � xnC1 � xn

h
(27.5)

where h is the length of the time step. Substituting (27.5) into (27.4) and rearranging
yields:

.2A0 � hA1/xnC1 D .2A0 C hA1/xn C 2hF

which can be solved to find the solid skeleton displacements and pore fluid pressures
at the new time step.

27.3 Model Parameters

The properties of a linear poroelastic material such as that described by Equa-
tions (27.1) and (27.2) are defined by a set of material parameters, including Young’s
modulus, Poisson’s ratio, permeability and porosity. Values of these parameters for
spinal cord tissue are needed to increase the accuracy of the described model, as
interpretation of finite element simulation results will be based on how the model
behaves in particular disease and injury conditions. Certain parameters are being
calculated in a program of in-house experimental work (permeability, porosity)
whilst others are being taken from the literature (Young’s modulus, Poisson’s ratio).

27.3.1 Young’s modulus and Poisson’s ratio

Compared to permeability and porosity, more work has been undertaken to charac-
terise the Young’s modulus (YM) of spinal cord tissue. Several factors influence the
measured value of YM including the type of testing technique used [Mc11] and the
strain rate at which tissue was tested [Fr13]. As a consequence, values of YM for
spinal cord in the literature range from 48 Pa [Ko15] to 1 400 000 Pa [Ma03]. In
the present study, values obtained at strain rates similar to those exerted on the cord
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by disturbed CSF have been chosen. In addition, for a poroelastic model YM of the
solid skeleton (tissue fibres) will be different to that of the overall tissue. Studies
measuring YM for individual tissue fibres are less common but produce values at
the lower end of the scale [Ko15].

White matter is thought to be more anisotropic than grey matter and the direction
in which the tissue is tested affects the measured YM [Ko15]. However, the initial
model will represent both grey and white matter as isotropic with a single value
of YM each. Furthermore, spinal cord tissue is viscoelastic nor linear elastic, but
at lower strain rates a poroelastic model mimics spinal cord tissue behaviour well
[Ch07]. The tissue is presumed to be almost incompressible, and Poisson’s ratio is
taken to be � D 0:49.

27.3.2 Permeability and porosity

A diffusion weighted MRI (DW-MRI) technique, neurite orientation and dispersion
density indexing (NODDI) is being used to derive information regarding the
permeability and porosity of spinal cord tissue. NODDI was developed [Zh12]
to reveal the microstructure of central nervous system tissues, and DW-MRI data
analysed using the NODDI model (details in [Gr15]) yields a set of structural
parameters for the tissue. These parameters are used to derive permeability and
porosity.

In the present work, the definition of porosity � in spinal cord tissue is taken to
be the fraction of spinal cord tissue not occupied by axons or neurons. Porosity of
central nervous system tissue has been measured using tracers in tissue [Ni98] and
DW-MRI [Gr15], values found are in the region of � � 0:2.

The definition of permeability in spinal cord tissue for the present work is
the ease with which extracellular fluid can move through the extracellular space
when the tissue is subjected to pressure gradients. In the literature, spinal cord
permeability has been provisionally measured using three main techniques. Firstly,
cord tissue compression data has been fitted to a poroviscoelastic finite element
model and a permeability value derived in this way [Ch07]. Secondly DW-MRI
has been used to obtain the direction of permeability, although the magnitude
of permeability was not measured in this study [Sa06]. Finally the movement of
tracers through central nervous system tissues has been measured producing a
diffusion coefficient [Ni98] for spinal cord tissue. However, in unhealthy states such
as syringomyelia, bulk movement (as opposed to diffusive movement) of fluid is
thought to be present [Sy08].

Consequently it is the intrinsic permeability �, rather than a diffusion coefficient,
that is needed for the present model. NODDI structural parameters used to derive
permeability and porosity include the volume fraction �in, the orientation dispersion
index ODI and the mean orientation vector �.
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Fig. 27.4 Orientation dispersion index (ODI) values on example cross sections of a spinal cord
scan. The difference between grey matter (red) and white matter (blue) is clear

The volume fraction �in is a dimensionless number describing the fraction of
tissue occupied by tissue fibres such as axons and neurons. The porosity can be
calculated from this in a fairly straightforward fashion as � D 1 � �in.

The mean orientation � and orientation dispersion index ODI describe the
direction of tissue fibres and how spread out the fibres are, respectively. Using �

the directions of the spinal cord permeability tensor are calculated, and ODI is used
to calculate the magnitude of the permeability. This is achieved using equations that
calculate the permeability of a fibrous material with different fibre layouts. For full
details of the permeability and porosity derivation see [Ve17].

Grey and white matter have different permeabilities - grey matter is thought to
be almost isotropic whereas white matter is anisotropic due to the axon tracts that
run its length. This is reflected in the ODI values, where values near 0 indicate nearly
parallel fibres and values near 1 indicate randomly oriented fibres (see Figure 27.4).
As a consequence the permeability tensors for grey and white matter will take
different values.

27.4 Spinal Cord Simulations

Mathematical models of the spinal cord and surrounding tissue provide a useful
technique for examining the processes preceding syrinx formation. The time scales
over which a syrinx forms can be greatly accelerated and stresses within the spinal
cord tissue can be calculated. As described in Section 27.1, boundary conditions
applied to the model will simulate raised cerebrospinal fluid (CSF) pressures that
result from neurological disorders or injuries [Cl13]. It is thought that a syrinx is
often preceded by spinal cord tissue oedema [Fi00]; this hypothesis can be evaluated
with the model by introducing regions of increased porosity.
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A numerical simulation such as the one described is inevitably dependent on
the accuracy of the parameters entered into the model. Whilst there is a reasonable
amount of information in the literature regarding elastic properties of the spinal cord
and healthy versus irregular pressures in the surrounding CSF, information relating
to the permeability and porosity of spinal cord tissue is scarce. The preliminary data
described in Section 27.3 will be used to update the model.

The poroelastic model allows both the stresses within the tissue fibres and the
fluid pressure in the extracellular space to be calculated. If the internal spinal cord
pressure and stresses induced by irregular CSF pressures are sufficiently high that
they may damage the tissue, this indicates that irregular CSF pressures are at least
partially responsible for syrinx formation and growth.

The results of the present work will contribute to the understanding of syrinx
formation and growth via an improved spinal cord tissue model. This will be
beneficial to clinicians as at present it can be difficult to determine the best treatment
options when the exact cause of syrinx formation remains elusive.
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Chapter 28
A Semi-Analytical Solution for a Buildup Test
for a Horizontal Well in an Anisotropic Gas
Reservoir

B.J. Vicente, A.P. Pires, and A.M.M. Peres

28.1 Introduction

Well testing is a specialized area of petroleum reservoir engineering whose foun-
dations come from groundwater theory and its applications. Well tests are very
common field operations with the purpose of gathering dynamic data (i.e., bottom
hole pressure and flowrate x time) at a single well during a relative short period
of time. The data is subsequently analyzed using specialized techniques to provide
local (hundreds of meters) reservoir parameters estimates (such as permeability, well
impairment and distance to flow barriers near the well). Well test data is also used to
constrain large-scale reservoir numerical models to improve geological description
and parameters, which are built mostly from static data.

There are many well test types; the choice is driven by well testing objectives
and economics. Buildup tests are the most popular. In a buildup test, the well is
first brought to production at constant rate q for some time tp (the flow period) and
then the well is shut in (the buildup period) as shown in Figure 28.1. The wellbore
pressure response to such rate schedule is also shown in this figure.

For most cases, published well testing analytical solutions consider a slightly
compressible fluid only so that the governing flow equation in porous media is linear.
In this case, conventional mathematical tools as integral transforms are applicable
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Fig. 28.1 Flowrate schedule
and pressure behavior for a
typical buildup well test

wellbore
pressure

q

0

flowrate

tp timeDt

as well as the superposition principle; then solutions for a buildup test are easily
obtained by superimposing two flow period solutions. There are relatively few
attempts to approach nonlinear well testing problems by analytical means, most
research and application papers consider numerical solutions only. In this text, we
present an approximate analytical solution for nonlinear gas flow in porous media,
which is constructed by the Green’s Function technique. As an example application,
the approximate solution for a horizontal well buildup test in an anisotropic gas
reservoir is derived and compared to a finite-difference numerical solution.

28.2 Nonlinear Differential Equation Formulation

The diffusivity equation that governs the isothermal single phase flow of a real
gas with constant composition through a homogeneous anisotropic porous media
is given by

r �
�

p


.p/Z.p/
krp

�

C p

Z.p/
Qq .x; y; z; t/ D �ct .p/

p

Z.p/

@p

@t
: (28.1)

Equation 28.1 is a nonlinear partial differential equation for the dependent
variable p, which assumes that Darcy’s law is valid and gravity effects are negligible.
The terms p, Z, 
.p/, and ct .p/ denote pressure, the gas compressibility factor, gas
viscosity, and total compressibility (gas + pore compressibility), respectively. Also
in Equation 28.1, � and k represent porosity and the permeability tensor, whereas
the source term Qq represents the strength of a source/sink at coordinate (x,y,z) at a
time t, with units of volumetric rate per infinitesimal source volume. This term is
used to represent a single or several wells, either producer or injector, and handles
several wellbore geometries such as vertical, horizontal, or fractured wells. A source
(injector) well adds mass to the porous media, thus Qq > 0; consequently, for a
producer gas well (sink) we have Qq < 0.
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The nonlinear behavior of Equation 28.1 is reduced if the dependent variable p
is replaced by the so-called pseudo pressure function m.p/ [Hu66] defined by

m.p/ D 2

Z p

pref

p0


.p0/Z.p0/
dp0; (28.2)

where pref is an arbitrary reference pressure, usually the atmospheric pressure. In
heat conduction literature, Equation 28.2 is known as Kirchhoff transformation. This
function depends on gas properties only and is specific for a given gas reservoir. It
is also convenient to define a pseudo pressure change

�m.p/ D m.pi/ � m.p/ D 2

Z pi

p

p0


.p0/Z.p0/
dp0;

where pi stands for initial reservoir pressure. Using these definitions, and assuming
that Cartesian coordinates are aligned to permeability principal directions, one can
rewrite Equation 28.1 for Cartesian coordinates as

kx

@24m .p/

@x2
C ky

@24m .p/

@y2
C kz

@24m .p/

@z2
D

�
 .4m/ ct .4m/
@4m .p/

@t
C 2pscT

Tsc

Qqsc.x; y; z; t/;

where psc and Tsc denote pressure and temperature at standard conditions, kx,
ky, and kz represent permeability values in x, y, and z directions, T denote
reservoir temperature, and Qqsc represents a variable-strength point source at standard
conditions. Because m.p/ is a bijective function, we can write gas viscosity and
total compressibility as a function of m.p/ or 4m.p/. Note that, by introducing the
pseudo pressure function, the nonlinear partial differential equation becomes quasi-
linear.

Dimensionless coordinates, time, pseudo pressure, and source are defined by

xD D x

lc

s
kref

kx
; yD D y

lc

s
kref

ky

; zD D z

lc

s
kref

kz

I

tD D kref t

� .
ct/i l2c
I mD D �kref hTsc4m.p/

qref pscT

and

fD .xD; yD; zD; tD/ D 2�hl2c
qref

Qqsc .x; y; z; t/ :
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In the above equations, kref and qref denote reference values for permeability
and flowrate, .
ct/i the viscosity-total compressibility product at initial reservoir
pressure, and h the constant reservoir thickness. The parameter lc represents a
convenient characteristic length.

Then, the governing PDE in dimensionless variables is given by

@2mD

@x2D
C @2mD

@y2D
C @2mD

@z2D
� HD

@mD

@tD

D fD .xD; yD; zD; tD/ ; (28.3)

where HD is a variable coefficient that represents the ratio of the viscosity compress-
ibility product at a given pressure (or pseudo pressure) to its value at initial reservoir
pressure, that is,

HD D 
 .mD/ ct .mD/

.
ct/i

:

For typical well testing applications, it is often enough to consider the reservoir
being infinite in the x-y plane, with both top and bottom boundaries impermeable to
flow. Therefore, for a gas reservoir initially at equilibrium, the initial and boundary
conditions in dimensionless variables are given by

mD .xD; yD; zD; tD D 0/ D 0; (28.4)

lim
xD!˙1

mD .xD; yD; zD; tD/ D lim
yD!˙1

mD .xD; yD; zD; tD/ D 0

@mD .xD; yD; zD; tD/
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ˇ
ˇ
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zDD0

D @mD .xD; yD; zD; tD/

@zD

ˇ
ˇ
ˇ
ˇ
ˇ
zDDhD

D 0
: (28.5)

28.3 Reformulation as an Integral-Differential Equation

Introducing the auxiliary variable !.mD/ D HD � 1, which represents the relative
change of the 
ct product from its initial value, Equation 28.3 becomes

@2mD

@x2D
C @2mD

@y2D
C @2mD

@z2D
� @mD

@tD

D fD .xD; yD; zD; tD/ � ! .mD/
@mD

@tD

: (28.6)

Rewritten in this way, one may interpret that nonlinearity acts as a nonlinear
source term defined by the last term on the right-hand side of Equation 28.6.
[BaEtAl13] take this point of view to recast the pseudo pressure-diffusivity equation
as an integro-differential equation. Following their procedure, one gets
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0
D

�
dx0Ddt0D: (28.7)

Equation 28.7 is a Volterra integro-differential equation where GD denotes the
dimensionless Green’s function (GF) associated with the problem stated by Equa-
tions 28.3–28.5. Note that here xD and x0D are position vectors. Parameters x0D and t0D
of GD represent the position and time where and when the instantaneous impulse is
applied, whereas xD and tD denote the position and time where and when the effect
of such impulse is felt. The pertinent GFs associated with Equation 28.5 boundary
conditions are shown in the Appendix. Detailed derivation of Equation 28.7 is shown
by [MiEtAl16] and also by [Vi16].

We assume that the Integral-Differential Equation 28.7 is solvable by the
following point iteration scheme:
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where m.0/

D is the initial guess. The first integral on the right-hand side represents the
linear component of the solution that is identical to the mathematical solution for a
slightly compressible fluid (i.e., liquid). The second integral on the right accounts
for the viscosity-compressibility variation with pressure and thus, it represents the
deviation from the linear part of the solution. This term is referred here as the
“corrective term.”

We will take the result of the first iteration as an approximate solution for the
dimensionless pseudo pressure, that is

mD .xD; tD/ ' m.1/

D .xD; tD/ D m0D .xD; tD/ � m1D .xD; tD/ ; (28.8)
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Previous articles [BaEtAl13, SoEtAl15, MiEtAl16], that applied the same tech-
nique as in here, have shown that the above approximation is able to capture the
essence of the nonlinear behavior of a gas reservoir, being sufficiently accurate for
engineering applications to say the least.

28.4 Application: Buildup Test in a Horizontal Well

In this section, we apply the approximate solution presented before to a particular
case of a gas field being produced by a single horizontal well. Figure 28.2 shows the
horizontal well geometry and notation. The wellbore is represented by a segment
of a line source with length equals to Lw, running parallel at distance zw from the
formation bottom.

28.4.1 Formulation and Solution at the Wellbore

We assume a uniform flux wellbore model in which the well flowrate at standard
conditions qsc is uniformly distributed over the length Lw, thus

Qqsc .x; y; z; t/ D

8
<̂

:̂

�qsc .t/

Lw
ı .y � 0/ ı .z � zw/ ; 0 � x � Lw

0; x < 0; x > Lw

; (28.11)

where ı stands for the Dirac delta function. In order to conform to the well testing
literature in which qsc > 0 means production from a well, a negative sign appears
in Equation 28.11. Setting the characteristic length lc equal to Lw, the dimensionless
source term becomes

(0,0,0)

(0,0,zw) (Lw,0,zw)
Lw

zw

h

x

z

x

z y

Fig. 28.2 Reservoir and horizontal wellbore geometries
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fD .xD; yD; zD; tD/ D
(

�˛qD .tD/ ı .yD � 0/ ı .zD � zwD/ ; 0 � xD � LwD

0; xD < 0; xD > LwD

;

where ˛ D 2�hD

p
kref=ky, LwD D p

kref=kx and qD .tD/ D qsc .tD/=qref .
For the buildup test flowrate schedule shown in Figure 28.1, we have qsc.t/ D qsc

for t < tp and qsc D 0 for t > tp. Thus, by choosing qref D qsc, the dimensionless rate
schedule becomes

qD .tD/ D
(
1; tD < tpD

0; tD > tpD

: (28.12)

In well testing applications, only the pressure at the wellbore radius rw is relevant;
therefore, we will only consider the application of the approximate solution at the
wellbore. In here, the wellbore pressure (or pseudo pressure) is always evaluated at
coordinates xD D .LwD=2; rwD; zwD/, which will be denoted by xwD. The y-coordinate
rwD is

rwD D rw

2Lw

"�
kz

ky

� 1
4

C
�

ky

kz

� 1
4

# s
kref

ky

:

For dimensionless time such tD < tpD (that is, during the flow period at constant
flowrate), one obtains the dimensionless wellbore pseudo pressure solution mwD by
evaluating Equations 28.8–28.10 at xwD

mwD .tD/ D mw0D .tD/ � mw1D .tD/ : (28.13)

The term mw0D is the liquid-like part of the solution and is given by

mw0D .tD/ D ˛

Z tD

0

GyD .rwD; 0; �/GzD .zwD; zwD; �/ SD .LwD=2; �/ d�; (28.14)

where SD represents a source function defined below

SD .xD; �/ D
Z LwD

0

GxD

�
xD; x

0
D; �

�
dx0D D

D 1

2

"

erf

 
LwD � xD

2
p
�

!

C erf

 
xD

2
p
�

!#

:

The “corrective term” evaluated at the wellbore is

mw1D .tD/ D
Z tD

0

Z

�

! .m0D/
@m0D

�
x0D; t0D

�

@t0D
GD

�
xwD; x0D; tD; t

0
D

�
dx0Ddt0D; (28.15)
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where the m0D terms are calculated by

m0D .xD; tD/ D ˛

Z tD

0

GyD .yD; 0; �/GzD .zD; zwD; �/ SD .xD; �/ d�: (28.16)

For the buildup period, that is, when tD > tpD, the dimensionless buildup wellbore
pseudo pressure solution mwDV is obtained from Equations 28.8–28.10 evaluated at
xwD for the flowrate schedule defined by Equation 28.12, which yields

mwDV .tD/ ' mw0DC .tpD C 4tD/ � mw0DC .4tD/ � mw1DV .tpD C 4tD/ ; (28.17)

where the dimensionless shut-in time is defined by �tD D tD � tpD.
Note that C subscripts indicate a mathematical solution obtained under constant

unit rate qD D 1, while solutions which carry a subscript V represent solutions
under a variable-rate schedule. Thus, the first two terms in the right-hand side in
Equation 28.17 are obtained by simply evaluating Equation 28.14 at tpD C �tD and
�tD, respectively.

The corrective term at the wellbore for the buildup period is evaluated from

mw1DV .tD/ D
Z tpD

0

Z

˝

! .m0DV/
@m0DV

�
x0D; t0D

�

@t0D
GD

�
xwD; x0D; tD; t

0
D

�
dx0Ddt0D

C
Z tD

tpD

Z

˝

! .m0DV/
@m0DV

�
x0D; t0D

�

@t0D
GD

�
xwD; x0D; tD; t

0
D

�
dx0Ddt0D;

(28.18)

where the terms m0DV which appear in the integrands in Equation 28.18 are given by

m0DV .xD; tD/ D m0DC .xD; tpD C#tD/ � m0DC .xD; #tD/ ; when tD > tpDI

otherwise become simply

m0DV .xD; tD/ 
 m0DC .xD; tD/ :

Note that m0DC terms above are calculated directly from Equation 28.16 using the
proper dimensionless time value.

By examining the ! parameter in Equation 28.18, one sees that the corrective
buildup term mw1DV has two components: the first integral in the right-hand side is
associated with the variation of the gas properties that has occurred over the flow
period; the second is due to gas properties variation that occurs as the buildup period
progresses.
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28.4.2 Fluid and Rock Data

All results presented in this text are based on a synthetic rock and fluid dataset.
Gas viscosity and compressibility Z-factor vs. pressure, obtained from correlations,
are shown in Figure 28.3 and are identical to the ones presented by [SoEtAl15].
Relevant rock, fluid, and some other data appear in Table 28.1. In this table, cr,
cgi, and dg denote, respectively, rock (pore) compressibility, gas compressibility at
initial reservoir pressure (pi), and gas gravity for this specific gas. The results are
generated for cases where there is vertical anisotropy only, i.e., permeability field is
isotropic in the x-y plane, so we have kx D ky D kH . In this situation, it is convenient
to set the reference permeability kref equal to kH .

0 100 200 300 400
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0.04

Pressure, kgf/cm2

μ,
 c

p

0.8

0.9

1

1.1

Z

Viscosity, μ
Gas compressibility factor, Z

Fig. 28.3 Gas properties at reservoir temperature

Table 28.1 Basic rock and
fluid data

property value unit

h 50 m

� 0.1 �
cr 50� 10�6 cm2=kgf

pi 400 kgf=cm2

T 80 ıC

cgi 0.0013368 cm2=kgf


i 0.0300765 cP

dg 0.7 �
Lw 400 m

rw 0.1 m

qsc 2� 106 m3=day
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28.4.3 Comparison to Finite Difference

To assess the accuracy of the approximate solution at the wellbore presented in this
work, results are compared with a commercial finite-difference reservoir simulator
for the data shown in Table 28.1 and Figure 28.3 for both flow and buildup periods.
Finite-difference gridding, local refinement, time step selection, as well as additional
comparisons, can be found in [Vi16].

Evaluation of the wellbore pseudo pressure approximated solutions requires
single-time integration for the liquid-like terms m0D and mw0D, whereas the corrective
term mw1D requires a quadruple numerical integration. These integrations are accom-
plished by the multidimensional numerical-integration package CUBA [Ha05]. The
package presents several algorithms; see [Ha05] for details. Corrective term mw1D

values shown here are calculated by the Vegas algorithm from that package.
Figure 28.4a presents a log-log plot of the dimensionless wellbore pseudo

pressure mwD calculated from Equations 28.13–28.16 vs. the results obtained by
a finite-difference numerical simulator. The results shown are for the flow period
of an off-center horizontal well placed five meters distance from the formation
bottom (i.e., zw D 5m) with vertical anisotropy (kx D ky D kH D 2mD and
kz D 0:2mD). The finite-difference simulator output is pressure vs. time, thus, at the
end of each run, the numerical results are first converted to pseudo pressure using
the gas properties and Equation 28.2, and then the corresponding dimensionless
pseudo pressure are calculated from the dimensionless-variable definitions given
before in Section 28.2. In Figure 28.4a one sees that the approximate solution mwD

shows an excellent match to simulator results, except at very-short times. In all
solutions proposed in this work, a segment of a line source represents the wellbore,
whereas in the numerical simulator, the well has a finite wellbore radius equal to rw,
so the difference at short times observed in Figure 28.4a is expected. Anyhow, this
difference does not have any impact in engineering applications. See [SoEtAl15] for
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Fig. 28.4 Flow period comparison: (a) Pseudo pressure mwD log-log plot and (b) Corrective term
mw1D log-log plot
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the comparison of finite wellbore solution vs. line-source solution for vertical gas
wells.

Figure 28.4b shows the corrective term at the wellbore (mw1D) calculated from
Equation 28.15 compared with the corrective term obtained by the finite-difference
simulator. Simulator corrective-term results shown in this plot are obtained indi-
rectly from the subtraction of two different runs keeping the grid and time steps
unchanged. In the first run, the gas properties are allowed to vary according to gas
properties shown in Figure 28.2, whereas in the second simulator run, gas properties
are kept fixed at their values at initial reservoir pressure, so this run is equivalent
to a slightly compressible-liquid response. Even though the magnitude of mw1D is
very small compared to mwD values, Figure 28.4b shows an excellent agreement for
tD > 10

�4. For shorter times, finite difference and approximate-solution mw1D curves
do not match because the later represents the wellbore by a segment of a line source
as explained previously. One should recognize that simulator values mw1D represent
the total deviation of the compressible-gas solution from the slightly compressible-
liquid solution, whereas mw1D from Equation 28.15 is just an approximation obtained
by halting the successive substitution at the end of the first iteration. Thus, according
to the results shown in Figure 28.4, one sees that the proposed solution given by
Equation 28.13 is an accurate approximation. One also should note that, for gas
production, all terms that appear in the integrand of Equation 28.15 are positive, and
then we have mw1D > 0. Therefore, it follows from Equation 28.13 that mwD < mw0D,
that is, at a given time the pseudo pressure solution for a gas reservoir is always less
than the equivalent liquid-like solution.

Similar comparison for a buildup test after 48 hours (tpD D 2:5 � 10�2) of
gas production at constant flowrate is shown next. Rock, fluid properties, vertical
anisotropy, and horizontal well location are identical to those used in Figure 28.4.

In well testing practice, buildup data is always shown in terms of the difference
between the pseudo pressure at given shut-in time 4t to the pseudo pressure
value observed at end of the flow period (i.e., at tp). In dimensionless variables,
this difference is denoted by dimensionless pseudo pressure change (4mwD) and
given by

�mwD .�tD/ D mwD .tpD/ � mwDV .tpD C�tD/ : (28.19)

Using the dimensionless pseudo pressures defined by Equations 28.13 and 28.17
in the right-hand side of Equation 28.19, one gets

�mwD .�tD/ D �mw0D .�tD/C mw1DV .tpD C�tD/ � mw1D .tpD/ ; (28.20)

where 4mw0D represents the buildup change difference of the related slightly
compressible fluid solution, given by

�mw0D .�tD/ D mw0DC .tpD/ � mw0DC .tpD C�tD/C mw0DC .�tD/ :
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Fig. 28.5 Buildup period comparison: (a) Pseudo pressure change 4mwD log-log plot and (b)
Buildup corrective term mw1DV semilog plot

Comparison for the dimensionless pseudo pressure change 4mwD computed by
Equation 28.20 to numerical simulator results is shown in Figure 28.5a. A very good
agreement is achieved. The semilog plot in Figure 28.5b presents the corrective term
mw1DV calculated from Equation 28.18 compared to the finite-difference simulator.
As explained before, simulator mw1DV values shown in this figure come from two
simulator runs. A good match is achieved at short shut-in times, getting increasingly
better as shut-in time increases.

Two aspects of the buildup corrective term in Figure 28.5b deserve attention:
first, the corrective term mw1DV tends to zero as shut-in time goes to infinite; second,
mw1DV is negative. These two aspects appear in other cases considered by [Vi16] and
seem to be a general behavior. Also note that being mw1DV negative while mw1D at
tpD is positive, Equation 28.20 indicates that we have 4mwD.4tD/ < 4mw0D.4tD/.
In other words, at a given shut-in time the pseudo pressure change for a gas well
is always less than the equivalent slightly compressible-liquid solution. Thus, the
pseudo pressure recovery towards the equilibrium during a buildup test is slower
than for liquid-like behavior.

28.5 Conclusions

This article presents an analytical approach to the nonlinear flow of a real gas in
an anisotropic porous media. The technique first employs a Kirchhoff-like trans-
form to reach a quasi-linear partial differential equation. Then, the gas viscosity-
compressibility product nonlinear behavior is written as a nonlinear source term so
that the mathematical problem can be re-formed as a Volterra integral-differential
equation in terms of Green’s Functions. It is assumed that this integral equation can
be solved by a point iteration scheme. Here, the results obtained at the end of the
first iteration are taken as an approximate solution. The buildup test of a horizontal



28 A Semi-Analytical Solution for a Buildup Test 297

well in an infinite gas reservoir serves here as an example application. Results for a
synthetic dataset obtained by the approximate solution are shown to be very accurate
by comparison to a finite-difference commercial reservoir simulator. The analytical
approach presented here also provides useful insights about the solution behavior.
It seems that the technique described in this article can be extended to problems in
heat conduction in solids with temperature dependent physical properties.
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Appendix

The 3-D anisotropic GF which appears in Equation 28.7 can be obtained from one-
dimensional GF’s by Newman’s product rule [Ca59], that is

GD.xD; x0D; tD; t
0
D/ D GxD.xD; x

0
D; tD; t

0
D/GyD.yD; y

0
D; tD; t

0
D/GzD.zD; z

0
D; tD; t

0
D/:

Infinite space 1-D GF for the x and y directions is given by [CoEtAl11]

GlD
�
lD; l
0
D; tD; t

0
D

� D 1
q
4�
�
tD � t0D

� exp

"

�
�
lD � l0D

�2

4
�
tD � t0D

�

#

; tD � t0D > 0

with l D x or y.
The z-direction GF is a slab with Newmann boundary conditions at both ends

which has two equivalent expressions [CoEtAl11]

GzD.zD; z
0
D; tD; t

0
D/ D 1

p
4�.tD � t0D/

�
1X

nD�1

�

exp




� .2nhD C zD � z0D/2

4.tD � t0D/

�

C exp




� .2nhD C zD C z0D/2

4.tD � t0D/

��

(28.21)
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During calculations, it is important to observe that the series in Equation 28.21
converges faster for small values of .tD � t0D/, whereas Equation 28.22 evaluation is
faster for large .tD � t0D/ values.
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Chapter 29
Counter-Gradient Term Applied to the
Turbulence Parameterization in the BRAMS

M.E.S. Welter, H.F. de Campos Velho, S.R. Freitas, and R.S.R. Ruiz

29.1 Introduction

The atmospheric dynamics is simulated by solving the Navier-Stokes equation, con-
sidering several physical phenomena. Some atmospheric processes are expressed
by using parameterization: cloud formation, surface representation, turbulence,
precipitation. The turbulence parameterization is closed under different orders. For
zeroth order, the turbulent flux is represented by a function. In the first closure order,
Reynolds tensors are approximated as a product between an eddy diffusivity and the
gradient of the main property. The second order closure is parameterized with the
third order tensor expressed as a parameter multiplying the second order tensor.

On the top of the Planetary Boundary Layer (PBL), under convective regime,
a counter-gradient flux is verified from observations. Indeed, turbulent flow is a
part of physics strongly supported by experimental efforts. We are not going to
explain details on the structure of the convective PBL. But, we note that only the
second order closure is able to represent the latter flux. However, modifying the first
order approach by adding a counter-gradient term, it is possible to represent such
flow. The first studies for representing the latter issue were carried out by Deardorff
[De66, De72]. Here, the eddy diffusivity is formulated by Taylor’s statistical theory
of turbulence [DeEtAl00], and a new term is used – derived from the Large Eddy
Simulation (LES) [CuEtAl98]. This new turbulence scheme is applied to BRAMS,
a meso-scale meteorological model. The simulation is compared with experimental
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data from the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)
experiment (https://daac.ornl.gov/LBA/lba.shtml).

29.2 Turbulence Model

The turbulent flux for a property N' can be represented by a first order closure:

hv0i'0i D K˛˛
@h'i
@x

(29.1)

where v0i is the wind velocity components, K˛˛ is the eddy diffusivity, ˛ D x; y; z,
and the operator h'i denotes time average. From Taylor’s statistical theory on
turbulence [Ta22, Ta35], the eddy diffusivity can be expressed as product between
an average velocity and a characteristic length:

K˛˛ � hvi.t/ihx.t/i (29.2)

where the index-i indicates the wind components .u; v;w/. The velocity is defined as
v.t/ 
 x.t/ dt. Substituting the velocity definition in the above equation and taking
the average, the eddy diffusivity can be written as:

K˛˛ D d

dt

�hx2.t/i
 D 2hv2i .t/i
Z t

0

Z �

0


Li.�/ dt0d� (29.3)

where vi.t/ is the i-th Lagrangian wind component of a fluid particle, and x.t/ is
its displacement on the direction-i. The autocorrelation function is denoted by 
Li ,
normalized by the Lagrangian velocity:


Li.�/ D hvi.t C �/vi.t/i
hv2i .t/i

: (29.4)

Eulerian formulation can be computed from Lagrangian quantities by using Gifford-
Hay and Pasquill’s assumption, where Lagrangian and Eulerian autocorrelations (or
spectral) functions are the same, but shifted by a constant ˇ [DeEtAl92, DeEtAl97]:


i.�/ D 
Li.ˇi�/ ; ˇi D �i

U

p
�

4
; �i 


q
hv2i .t/i ; (29.5)

with U the wind intensity.
Applying Fourier transform to Equation (29.3), and noting that 
i.�/ is an even

function, Eulerian eddy diffusivity can be expressed by [DeEtAl92, DeEtAl97,
Ca10]

K˛˛ D �2i ˇi

2�

Z 1

0



FE

i .n/ sin .2�nt=ˇi/

n

�

dn (29.6)
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where FE
i .n/ 
 SE

i .n/=�
2
i , being SE

i .n/ the turbulent kinetic energy on direction i,
and n is a frequency. For large diffusion time (t ! 1), an asymptotic expression
for the K˛˛ can be derived [DeEtAl92, DeEtAl97, Ca10] as

K˛˛ D �2i ˇiFE
i .0/

4
: (29.7)

An explicit formulation for eddy diffusivities K˛˛ can be obtained by using
empirical relations and Obukhov’s similarity theory. A key issue is to derive an
analytical formulation to the spectrum. Degrazia et al. [DeEtAl00] have derived a
spectral formula for all atmospheric stability conditions:

nSE
i .n/ D 1:06cif  

2=3
� .z=h/2=3 w2�

Œ.f �m /ci �5=3
�
1C 1:5 Œf=.f �m /ci �

�5=3

C 1:5cif .˚�/2=3u2�
Œ.f �m /nCes

i �5=3
�
1C 1:5 Œf 5=3=.f �m /nCes

i �
�5=3 (29.8)

where ci are empirical constants, z is the level over the surface, h is the planetary
boundary layer height, w� is the velocity scale for the convective condition, u� is
the friction velocity, f D nU=z is the frequency in Hertz, U is the wind velocity,  �
and ˚� are non-dimensional dissipation functions for convective and stable/neutral
conditions, .f �m /ci and .f �m /nCes

i are the maximum frequencies for a convective and
stable/neutral conditions, respectively. The wind variances can be calculated by
integrating the spectra over all frequencies: �2i D R1

0
SE

i .n/ dn.

29.2.1 Counter-Gradient Model

As already mentioned, the first order closure is not able to represent a counter-
gradient flux. Therefore, a new term must be added in the parameterization scheme
for describing such flow:

u0̨ '0 D �K˛˛



@h'i
@x˛

� �'
�

(29.9)

being �' the counter-gradient. From experiments, Deardorff had estimated �� �
6:5 � 10�6 C cm�1 [De66], and he did a new evaluation to �� � 7 � 10�6 K cm�1
[De66].

The counter-gradient term is only applied under convective condition, i.e., it is
not used for neutral and stable boundary layers. The �' is employed for heat and
mass transport, but it is not used to the momentum due to the pressure effect. The
planetary boundary layer stability can be calculated from the Monin-Obukhov’s
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length L. In order to codify which parameterization should be applied for different
stability conditions to the atmosphere, we adopted jLj > 500 to characterize the
neutral boundary layer:

8
<

:

�500 � L < 0 W Convective
jLj > 500 W Neutral
0 < L � 500 W Stable

The Monin-Obukhov’s length is expressed by

L D �u3�
� .g=�v0/

�
w0� 0v

	

0

(29.10)

where � is the von Kármán’s constant, g is the gravity acceleration, �v virtual

potential temperature, and
�

w0� 0v
	

0
is the heat flux from the surface. Cuijpers and

Holtslag [CuEtAl98] have derived an expression to the counter-gradient from the
LES results:

�' D ˇg`w
w2�
�w

'�
h
; with: '� D 1

hw�

Z h

0

w0'0 dz : (29.11)

where ˇg is an experimental constant. The counter-gradient depends on the wind
variance parameterization �2w, the mixing length `w, and the quantity '�. The
expressions for wind variance �2i and mixing length (`i D K˛˛=�i) are calculated
from the Taylor’s theory [Ca10]:

�2i D 0:98ci

.fm/
2=3
i

�
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qi

�2=3 � z

h

	2=3
w2� (29.12)
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where ci D 0:3 for u and 0:4 for .v;w/, fm D 0:33 is the frequency for the spectral
peak, q D .fm/i .fm/

�1
n;i is a stability function. The dissipation function was derived

by Campos Velho et al. [CaEtAl96]:
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Different values are obtained in Equation (29.11) if different turbulence model
is used. Therefore, the constant ˇg is a parameter to be calibrated according to the
parameterization applied. Cuijpers and Holtslag [CuEtAl98] have used ˇg D 1:5,
and Roberti and co-authors [RoEtAl04] employed ˇg D 0:07. The value ˇg D 0:02

provides the better results for our approach using Taylor’s theory [We16].
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29.3 Meso-Scale Atmospheric Model: BRAMS

BRAMS is employed for CPTEC (Portuguese acronym for Center for Weather
Forecasting and Climate Studies), a division of INPE (National Institute for Space
Research, Brazil), as the operational system for numerical weather forecasting over
South America. The prediction system deals with 5 km of horizontal resolution,
executed on Cray XE6 massively parallel computer. Operational forecasting uses
9600 processing cores1. BRAMS can be also configured as the operational envi-
ronmental prediction system – the old version of the environmental system was
called as CCATT-BRAMS. The development for the BRAMS is a permanent feature
[FrEtAl17].

The model is coded with finite differences, where type-C Arakawa grid is
employed for solving the fully compressible non-hydrostatic equations. Other
interesting feature is the multiple grid nesting scheme, allowing the model equations
to be solved simultaneously on any number of two-way interacting computational
meshes of increasing spatial resolution. In the type-C grid, the variables temperature
(T), pressure (p), and density (
) are defined in the center of a computational cell,
and the wind components .u; v;w/ are described in center of the cell edge. BRAMS
features include an ensemble version of a deep and shallow cumulus scheme based
on the mass flux approach. The surface model is the LEAF (Land Ecosystem
Atmosphere Feedback) model, representing the surface-atmosphere interaction.

29.4 Simulation with BRAMS on the Amazon Region

The counter-gradient parameterization presented was codified in the BRAMS
version 3.2, the same version used in Barbosa’s studies [Ba07]. The simulation is
compared with the measurements obtained in the LBA experiment.

The simulation domain embraces the North part of Brazil – see Figure 29.1. The
LBA observations are collected inside the red box (left), and the experimental sites
are marked with the yellow points (right): Biological reserve Rebio Jaru and Farm
“Nossa senhora Aparecida” (Farm NSA) in the Rondonia state (Brazil).

Rebio Jaru (RJ): located at 100 km North to the Ji-Paraná city. This area is part
of the rain forest. There is a tower 60 m high, installed at the end of the year 1998
placed at 10 ı0404200S and 61 ı5600100W.

Farm Nossa senhora Aparecida (RA) – site ABRACOS (Anglo Brazilian
Amazonian Climate Observation Study): located at 50 km west direction from the
Ji-Paraná city. The site characterizes a deforestation area, and from 1991 it has a
pasture covering the surface. The farm has a tower placed at 10 ı4500S and 62 ı2200W.

1The Cray XE6 supercomputer installed CPTEC-INPE: 1280 processing nodes and 30,720 cores
(2 processors per node and 12-cores for each processor).
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Fig. 29.1 Satellite images: the red box indicates the region of measurements, and yellow points
indicate the location for LBA’s stations (Rebio Jaru and Abracos)

BRAMS was initiated with data from ECMWF re-analysis. The meteorological
variables in the latter dataset are: temperature, moisture, geopotential, zonal, and
meridional winds, with space resolution of 2:5 � 2:5 degrees. The LBA data are
also merged to the re-analysis for providing initial and boundary conditions. The
simulation covers the period without rainfall. The first day for the simulation started
at 00UTC February 10th up to 12th, 1999, performing 48 hours of simulation.

BRAMS was configured with 194 and 100 mesh points for Longitude and
Latitude, respectively. The horizontal resolution is 20 km over a stereograph polar
grid, with center at Latitude 10S and Longitude 61W. For vertical direction, 40 mesh
points were defined, with finer resolution close to the surface. Time discretization
�t D 30 seconds.

The boundary layer height h is determined by using different approaches
depending on the stability condition. For neutral/stable conditions, the formulation
presented by Zilitinkevich is applied [Zi72]:

h D Bv u3=2� (29.15)

where Bv D 2:4 � 103 m�1=2 s3=2. Under convective conditions, the approach
suggested by Vogelezang and Holtslag [VoEtAl96] is employed:

Rig D .g=�vs/ .�vh � �vs/ .h � zs/

.uh � us/2 C .vh � vs/2
(29.16)

being Rig D 0:4 the critical Richardson number, and zs D 0:1h the reference value
to express the values of the horizontal wind components and temperature.

Figure 29.2 shows the short wave radiation for the Taylor approach alone, the
same simulation with counter-gradient term, and observations, considering two days
of simulation for the Rebio Jaru experimental site. Figure 29.3 displaysthe vertical
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Fig. 29.2 Short wave radiation for Rebio Jaru station: Taylor’s theory (Taylor), TaylorC Counter-
Gradient (TaylorC CG), and observations

profiles for the potential temperature for different parameterizations for turbulence
at the end of the simulation. The comparison with the observation shows similar
results for all turbulent schemes.

Two snapshots for the wind field over the simulated region are shown in
Figure 29.4. It is important to consider the wind influence, just to understand
if the atmospheric dynamics response is due to the surface representation or an
effect associated with the wind drag. During the day 10/Feb/1999 at 00 UTC
(Figure 29.4a), sites RJ and RA are under forest influence. For the day 11/Feb/1999
at 00 UTC (Figure 29.4b), the sites have influence from the pasture covering.

29.5 Final Remarks

The paper describes a formulation for the counter-gradient term, where the Taylor’s
theory was applied. According to Figure 29.3, the simulation results were similar
for all parameterizations used. However, the Smagorinsky’s scheme requires the
calculation of the vertical/horizontal deformation tensors for each grid point and
the Brunt-Vaisäla frequency (depending on the temperature vertical gradient), and
the Mellor-Yamada’s method introduces more 12 new additional partial differential
equations and parameterizations for the third order Reynolds tensors. Therefore,
both latter approaches have a higher computational effort than Taylor’s schemes.

With addition to the new term, the Taylor’s parameterization can also simulate a
counter-gradient flow, and the described parameterization is already codified to the
BRAMS version 5.2 [FrEtAl17].
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Fig. 29.3 Vertical potential
temperature profiles for
Taylor’s theory (Taylor),
TaylorC Counter-Gradient
(TaylorC CG), Smagorinsky
(SMAG), Mellor-Yamada,
radiosonde data (OBS), day
12/Feb/1999 at 00UTC:
(a) ABRACOS, (b) Rebio
Jaru
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Considering the radiation for long (not shown) and short waves the counter-
gradient approach had a slightly better representation [We16]. But, more simulations
are needed in order to have a definitive conclusion.
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