
Chapter 4
Critical Current Anisotropy in Relation
to the Pinning Landscape

Nick J. Long

4.1 Introduction

Raising the critical currents of high-temperature superconductors has the desirable
outcome of lowering the barrier to widespread application of these materials. With
creative materials engineering, researchers have been successful in improving
critical currents over the field and temperature ranges relevant to applications [1–7].
Intrinsic thermodynamic properties and the interaction between the magnetic vor-
tices and the pinning landscape combine to determine how much current is sup-
ported. Due to both factors, the resultant critical currents generally vary with the
angle of the imposed external field. In this chapter, we will explore what is known
about this anisotropy.

The key to improved critical current performance has been optimizing the
density and morphology of pinning centers both for native crystal defects, such as
ion vacancies, stacking faults, and dislocations, and engineered additions such as
randomly distributed normal phase nanoparticles, columnar and transverse arrays of
nanoparticles. The improvements made in critical currents have been achieved by
trial and error guided by the understanding that it is desirable to have pinning
centers which are of similar dimension to the superconductor coherence length, and
that defects which are correlated in one direction will mostly enhance pinning when
the external magnetic field is also oriented in this direction. To go beyond trial and
error and more rationally improve nanoengineering of the pinning landscape, we
need to better understand the structure-property relationships between the pinning
microstructure and the critical current density.

But analyzing the critical current density to produce structure-property rela-
tionships has not proved straightforward or without controversy for the anisotropic
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superconductors. The difficulty stems partially from having two sources of aniso-
tropy, the anisotropy in the vortex cross section, arising from the intrinsic mass
anisotropy of the carriers of the vortex current, and the anisotropy of the pinning
centers themselves. The effects of these two factors are not easily separated. It is
never possible to have a fully isotropic pinning landscape in an anisotropic
superconductor. By definition, the modulation of the superconductor order
parameter in the c-axis direction gives some directional pinning. In addition, par-
ticularly for thin films, some correlated native defects in the c-axis or a/b axis
directions are inevitable. The other aspect of the difficulty lies in data analysis, as
we will describe in this chapter these two effects can produce similar outcomes.

A better understanding of the structure-property relations has technical value as
the anisotropy in critical currents complicates the use of these superconductors. In
most applications, wires and tapes will experience magnetic fields at many different
angles to the tape. If the critical current (Ic) varies strongly with angle, this presents
challenges for coil designers who must keep the coil within safe operating margins
of I/Ic everywhere within the coil. An unpredictable or only weakly predictable Ic
with field and temperature means exploiting the full capacity of these materials is
compromised.

Scientifically, the anisotropy of Ic(θ) highlights that for anisotropic supercon-
ductors or even superconductors in general, we do not understand well enough the
structure-property relationships between pinning and critical currents. The phe-
nomenon of pinning is not in dispute, but the understanding of how pinning is
aggregated across a complex pinning landscape, and the role played by carrier
anisotropy, is not complete.

Therefore, in this chapter, we will look at the common methods used to extract
information about the pinning landscape and the role of mass anisotropy from
measurements of the critical current density anisotropy Jc(θ). We define Jc = Ic/A as
the critical current density in the plane of the tape or thin film, or ab-plane in the
case of a crystal, and θ is the angle between the applied magnetic field and the
normal to the tape, usually the c-axis direction, with the current always perpen-
dicular to the field. This is often referred to as the maximum Lorentz force con-
figuration and is of most relevance to magnet and coil design.

Experimentally, we define the transport critical current as the current when an
electric field E0 =1 μV/cm is present in the current direction. The E(J) relation for
transport currents is found to be a power law E ̸E0 = J ̸Jcð Þn so strictly we have an
arbitrary engineering criterion rather than a value uniquely determined by experi-
ment. With magnetization measurements of Jc, the electric field criterion is effec-
tively much lower although this does not affect the analyses examined here.

Theoretically, the critical current is defined by J
!

c × Φ!0 + pm⃗ax =0 [8, 9], that is, the
sum of the forces on the vortex arising from the presence of the transport current is
in balance with the restoring force on the vortex due to its spatial position in a
potential minimum. Researchers commonly call the force due to the current the
Lorentz force although there are good reasons not to do this [9, 10]. We shall persist
with the mainstream nomenclature and refer to this as the Lorentz force.

110 N.J. Long



Common methods to analyze the critical current anisotropy are firstly scaling
methods, such as the Blatter scaling [8, 11] and other scaling approaches which are
a modification of this approach. Secondly, there are more direct methods of cal-
culating the expected response from defects, which examine the pinning forces on
vortices from defects under certain assumptions, and finally, we examine the vortex
path model or maximum entropy method, which is an information theory or sta-
tistical approach for extracting information from Jc(θ).

4.2 Mass Anisotropy Scaling

4.2.1 Theory

For high-temperature superconductors, taking account of the fundamental electronic
anisotropy of the materials is necessary to understand the thermodynamic and
electromagnetic properties. Hao and Clem [12] first discussed how the Gibbs
free-energy difference ΔG between the mixed and normal states can be expressed as
a function of the reduced field hðθÞ= H

Hc2 θð Þ∝HϵðθÞ for H≫Hc1, where

ϵðθÞ= cos2θ+ γ − 2sin2θð Þ1 ̸2 and γ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc ̸mab

p
is the mass anisotropy parameter.

They hypothesized that physical quantities derived from the Gibbs free energy
should obey the same scaling behavior. Hence, measurements of these properties
should be scalable with the magnetic field in the same way through the reduced
field h. These properties would include resistivity, critical current density, and
flux-line-lattice melting temperature. They thus proposed the scaling
JcðH, θÞ= JcðhðθÞÞ for the critical current.

Blatter et al. [8, 11] expanded on and generalized this idea by noting that the
conventional method for accommodating anisotropy into a phenomenological
model of superconductivity is to introduce an anisotropic effective mass tensor into
the Ginzburg–Landau or London equations and then proceed to repeat calculations
made for the isotropic case. Instead, they proposed to rescale the anisotropic
problem to a corresponding isotropic one at the level of the basic phenomenological
equations. The scaling rules can then be applied to the known results of the iso-
tropic model to obtain the anisotropic results with no great effort. This approach is
schematically represented in Fig. 4.1.

The primary result is then a scaling rule as given in (4.1), where the desired
quantity is Q and the known isotropic result is eQ.

Q θ,H, T , ξ, λ, ε, γBð Þ= sQeQ ϵθH,T ̸ε, ξ, λ, γB ̸εð Þ ð4:1Þ

Blatter et al. use different conventions from those now typical in critical current
research, so in (4.1), ε is the reciprocal of our anisotropy factor, i.e., γ =1 ̸ε=5− 7
for YBCO and γB is not anisotropy but is a measure of the disorder. Blatter et al.
derived these results in the context of weak collective pinning theory, where γB
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describes short-range disorder in Tc. This scaling rule leads Blatter et al. to also
predict for the planar critical currents in an anisotropic superconductor
JcðH, θÞ= JcðhðθÞÞ, for large magnetic fields, consistent with Hao and Clem [12].
At low fields in the single vortex regime, a direct substitution of the scaling rules in
the collective pinning theory gives a different result, JcðθÞ=const, [8].

4.2.2 Jcðh θð ÞÞ Scaling of YBCO

The JcðH, θÞ= JcðϵθHÞ scaling law was first applied to the critical currents in
YBCO films by Xu et al. [13] and Kumar et al. [14]. For Xu et al., the scaling
relationship worked reasonably well over the whole angular range, over a wide field
range at high temperature. They plotted their data in the form of flux pinning force
or ‘Kramer scaling’ with a driving force of Feff

p = JcϵθH =F0h θð Þp 1− hðθÞð Þq and
found a single scaling curve for Feff

p versus h with no further rescaling of Fp. This is
equivalent to finding a single curve for JcðϵθHÞ versus h as in the experiments
described over the next few paragraphs. Xu et al., who referenced Hao and Clem,
did not argue that the scaling implied any particular type of pinning structure, rather
they argued from the exponents of the Kramer scaling that planar pinning mech-
anisms were dominant with some point pinning. Kumar et al. referenced [8] and did
not discuss pinning mechanisms; they found γ = 3.4 gave the best overlap of data.

The technique was not applied more commonly until Civale et al. used it to
identify the effect of particular pinning structures [15, 16]. Civale et al. argued that
the JcðϵθHÞ scaling would apply to random defects (uncorrelated disorder) only,
and hence by identifying the component of critical current which followed the
scaling rule, the components which corresponded to correlated defects could be
separately identified. Figure 4.2 shows the process applied to make this assignment
given a set of Jc(θ) curves at various values of H. Firstly, the Jc(θ) is replotted as
JcðϵθHÞ with γ as the only adjustable parameter. The procedure is repeated with

Fig. 4.1 Scaling procedure to simplify the derivation of anisotropic models as proposed by Blatter
et al. There are two paths to go from the basic equations of superconductivity to a model of the
measured quantity Q, either via a direct calculation or via scaling rules, which transform the basic
equations from anisotropic to isotropic. (Figure reproduced from [11] with permission)
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every dataset for different H. If the correct value of γ is chosen, then the data
collapse onto a single curve, except for the regions where correlated pinning is
contributing to Jc. A single curve can then be fitted to JcðϵθHÞ which covers the
region of overlapping data. This fitting can then be mapped back to any single
dataset JcðθÞ to identify the portion of the curve attributable to random pinning, and
this contribution subtracted to quantitatively identify the correlated pinning. The
result shown in Fig. 4.2 is typical for many YBCO films which have correlated
pinning due to ab-plane pinning centers, either intrinsic pinning from the weakly
superconducting spacing layers or stacking faults, and c-axis pinning due to either
grain boundaries or twin plane boundaries.

This method can then be applied to investigate the temperature and field
dependence of particular pinning contributions. This was done in detail by
Gutierrez et al. [2] for a metal-organic deposited YBCO film with barium zirconate
(BZO) inclusions.

Fig. 4.2 Application of the scaling method to separate isotropic and anisotropic components.
a JcðθÞ for an YBCO film at B = 5 T, the solid line is the identified isotropic contribution to JcðθÞ
from the scaling approach, b A scaled JcðhðθÞÞ dataset, where A, B, C, D are data points for θ = 0,
15, 85, 90°, respectively. c scaled data for the full set of fields, the solid line is a fit to where the
data overlap and is identified as the random isotropic contribution to Jc d anisotropic contributions
to JcðθÞ at 5 T obtained by subtracting the isotropic JcðθÞ. (Figure reproduced from [15] with
permission)
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This paper reported the largest flux pinning forces in an HTS or LTS conductor
to that date, a value of ∼21 GN m−3 at 77 K, and ∼80 GN m−3 at 65 K. This was an
impressive 500% improvement over NbTi at 4 K.

The film incorporated a dense array of mostly randomly oriented BZO nanodots,
i.e., embedded particles of ∼15 − 30 nm diameter at a concentration of 10% mol.
The film was also dense with further defects such as stacking faults (single Y-124
layers) and intergrowths (blocks of YCuOx or BaCuOx). XRD analysis of the films
showed them to have an internal strain of 0.56%, which was twice that of pure
YBCO films prepared with the same technique.

The effect of these different pinning structures was resolved through the technique
of Fig. 4.2, collapsing the JcðH, θÞ curves onto a single-scaled JcðϵθHÞ. To achieve
an overlap of the data required setting γeff ∼ 1.5 compared to the usual γ ∼ 5 − 7 for
YBCO, that is, the effective anisotropy of this material is much lower than pure
YBCO. The authors then went a step further by assuming critical currents due
to weak collective pinning can be described by a temperature dependence
Jwkc Tð Þ= Jwkc 0ð Þexpð−T ̸T0Þ and those due to strong pinning can be described by
Jstrc Tð Þ= Jstrc 0ð Þexp½− 3ðT ̸T*Þ2�. The contributions to Jc can thus be further
decomposed by fitting the isotropic Jisoc ðTÞ or anisotropic Janisc ðTÞ with a mixture of
these expressions. Their results are shown in Fig. 4.3 for a range of temperatures and
fields. Figure 4.3a shows for H//c the isotropic contribution is dominant at all fields.
Figure 4.3b shows the full temperature dependence of the isotropic Jc and that this
can be fitted using the strong pinning model at high fields and a combination of weak
and strong at 1 T. The final plot, Fig. 4.3c, shows how the complete JcðTÞ can be
decomposed into weak and strong pinning components if we ignore the small ani-
sotropic contribution for H//c. This can be generalized to a pinning phase diagram
showing how strong pinning is dominant for higher fields and temperatures, and
weak pinning becomes significant only at temperatures < 15 K.

Following on from this work, the same authors and others have used JcðϵθHÞ
scaling to quantify the effects of nanostructuring on critical currents. Also using
metal-organic deposition (MOD) as the fabrication technique, self-assembled
nanowires of Ce0.9Gd0.1O2-y (CGO) or nanoislands of (La,Sr)Ox can be prepared on
single crystal substrates, [17]. Both surface modifications are shown to induce
extended c-axis defects leading to an increase in critical currents for H//c. Using the
JcðϵθHÞ scaling, the ratio of anisotropic pinning to total current over the (H,
T) region is shown in Fig. 4.4 for the sample with LSO nanodots. Of note is the
weak field dependence of the pinning. It appears the added c-axis pinning is quite
effective to high fields, and is most effective at high temperatures. This is borne out
by a direct comparison of the pinning engineered films with a pure YBCO reference
film [17].

An important follow-up to this work was the investigation on the effects of strain
in the MOD films [18]. It was found that nanocomposites of YBCO-BaZrO3 and
YBCO-Ba2YTaO6 enhanced the generation of strain—correlated with the interfa-
cial area of the nanodots. The strain itself is of such a magnitude as to suppress pair
formation and hence can be a source of vortex pinning. Through comparisons with
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Fig. 4.3 Separation of isotropic/anisotropic and weak/strong components of the critical current.
a Field dependence Jisoc ðBÞ and Janisc ðBÞ at different temperatures, b temperature dependence
Jisoc ðTÞ at two fields. 7 T data are fitted to the strong pinning expression, and 1 T data are fitted to a
mixed weak-strong expression. c Jc measured inductively (effectively the isotropic critical current
only) and a fit of the weak and strong contributions. d Pinning phase diagram showing the
contribution of strong pinning to the total critical current for H//c, as deduced from the fitting of
c. (Reproduced from [2] with permission.)

Fig. 4.4 Vortex pinning
phase diagram showing the
ratio of anisotropic to total
critical current Janisc ̸Jc for
H//c over a range of field and
temperature for a YBCO
sample prepared on a
substrate with a surface
preparation of LSO
nanoislands. (Reprinted from
Gutiérrez et al. [17] with
permission)
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different nanoparticle additions, they identify strain as a source of increased iso-
tropic pinning force. These samples also have high densities of Y124 stacking
faults. The result is samples with a low effective anisotropy of γeff ∼ 1.4, compared
to the confirmed mass anisotropy from Hc2(θ) of γ ∼ 5.9 − 6 [18].

Despite the success of these approaches in assessing the effects of nanostruc-
turing, we may harbor some reservations about the assignment of these components
vis-a-vis weak/strong and isotropic/anisotropic pinning. The weak collective pin-
ning theory on which Blatter et al. derived their formulation has an expression for
critical current of Jc ≈ J0 ξ ̸Lc½ �2 and only applies when the collective pinning
length is much larger than the coherence length, Lc ≫ ξ [8]. For REBCO films
which have critical currents on order of 10% of J0, we would have a collective
pinning length Lc ∼ ξ. This is an inconsistency—high-performance REBCO films
are not in the weak collective pinning limit. The use of anisotropy factors which are
substantially different from the electronic mass anisotropy also invites questions as
to what exactly this parameter represents. As confirmed by the authors themselves,
the intrinsic electronic mass anisotropy has not changed. To explore these issues
further we will take a brief look at similar scaling for other materials.

4.2.3 Jcðh θð ÞÞ Scaling of BSCCO

A scaling description can also be used on BSCCO (Bi, Pb)2Sr2Ca2Cu3O11 wires as
shown in Fig. 4.5 [19]. BSCCO is known to have a very complicated
microstructure, so that a combination of ab-plane defects and point defects will
exist. The material is also poorly textured compared with the YBCO thin films
discussed thus far, and will have a FWHM of the rocking curve of order 12° [20]. In
this plot, data for temperatures from 20–85 K have been combined by scaling the Ic
to the self-field value at each temperature. This data can be fitted with a
(temperature-independent) anisotropy parameter, γ ≈ 8, which is similar to results
from YBCO, although this bears no relation to the real mass anisotropy of the
material, which is conservatively estimated at γ ≈ 50. [8, 21]

This general ability of JcðϵθHÞ to produce a convenient parameterization of large
datasets has been exploited byHilton et al. [22] and Pardo et al. [23]who have used the
mass anisotropy expression to fit datasets of YBCO over wide ranges of temperature
and field, for samples with Ic maxima at perpendicular and/or parallel fields.

It is not clear exactly why this parameterization works so well. One reason is
undoubtedly that JcðϵθHÞ ≈ JcðHcosθÞ over much of the angular range, and this is
insensitive to the γ value. Hence, if critical current is proportional to the flux density
perpendicular to the layers, where the pinning may be less strong, then this fitting
will work reasonably well. It is only close to parallel field that the γ value has a
strong effect, but if the fitting is poor closer to parallel field, it is easy to invoke
correlated pinning as the reason. We should therefore be sensitive to the possibility
of misinterpretation using this technique.
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4.2.4 Fpðh θð ÞÞ Scaling of Ba-122

An interesting experimental exploration of the validity of scaling rules has recently been
published byMishev et al. [24]. They have studied JcðθÞ in BaFe2As2 (Ba-122)-based
superconducting single crystals, with three samples covering weak, intermediate, and
strong pinning regimes. Startingwith aK-dopedBa-122 crystalwith the lowest Jc, this
sample was shown to obey JcðϵθHÞ scaling. For an example of strong pinning, they
prepared a neutron-irradiated Co-doped Ba-122 sample, with isotropic defects which
are larger than the coherence lengths. For this sample, JcðϵθHÞ scaling does not
produce a collapsed curve, instead they found that an additional scaling factor is
required JcðH, θÞ= ϵθJcðϵθHÞwhich then produces a single curve for the data. As this
is equivalent to scaling the flux pinning force, i.e., JcðH, θÞμ0H = μ0ϵθHJcðϵθHÞ or in
the common Kramer form FpðH, θÞ=F0h θð Þm 1− hðθÞð Þn, we will refer to this as
FpðϵθHÞ or FpðhðθÞÞ scaling. Mishev et al. motivate this scaling using an argument
associated with Fig. 4.6 below.

Mishev et al. argue that the elementary pinning force, fp =Ep ̸d, where Ep is the
pinning energy and d is the relevant length scale, is for defects with a radius less
than the coherence length, rd < ξab, fp∝Ecr3d ̸ξabϵðθÞ, with Ec the condensation
energy, which retains an angular dependence. This is illustrated in Fig. 4.6e, f. In
contrast, for a large defect with rd ≥ ξab, fp∝EcrdξabϵðθÞ ̸ϵðθÞ=const. This is

Fig. 4.5 Scaling of BSCCO
wire for temperatures of
20 − 85 K, and fields up to 8
T. The field was scaled using
ϵ θð ÞB ̸Birr with γ = 8. The
Birr values used are shown in
the inset. The critical currents
are normalized to the
self-field value at each
temperature. Reprinted from
[19] with permission
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illustrated in Fig. 4.6b, e. This fundamental difference in the elementary pinning
force produces the difference in scaling of the macroscopic currents, that is,
between JcðϵθHÞ scaling and FpðϵθHÞ scaling.

This argument introduces some additional puzzles, however. If for the case of
rd ≥ ξab, the elementary pinning is angle independent, and these defects are
dominant, then how physically does the angular dependence of the critical currents

arise? From our definition of the critical current, J
!

c × Φ!0 + pm⃗ax =0, the angular
dependence in Jc must arise from pinning interactions of some description.

This FpðϵθHÞ scaling has been proposed previous to the Mishev et al. paper to
describe critical currents in an irradiated YBCO sample. Matsui et al. [25] prepared
YBCO films with an MOD method and then applied low-energy Au irradiation to
produce a large density of point like pins. Matsui et al. noticed that if they transform
their Jc data for the irradiated film into flux pinning force, the result is an interesting
‘capping’ of the magnitude of the flux pinning force, seemingly independent of
field. This is shown in Fig. 4.8d. In an inset of Fig. 4.8c are calculated values of
FpðH, θÞ=F0h θð Þm 1− hðθÞð Þn, with (m, n) = (0.5, 2), and the scaling used is
hðθÞ= ϵðθÞH ̸H0 with μ0H0 = 8.3 T. This function is shown to fit the data in

Fig. 4.6 Figure from Mishev [24] giving a microscopic explanation as to why critical currents
arising from larger defects would produce a different scaling rule from those arising from point
defects a isotropic vortex core b isotropic core pinned by large defect, rd ≥ ξab c core pinning by
small defect, rd < ξab, d the vortex core after a rotation by angle θ e pinning of the anisotropic core
by a large defect, f pinning of the anisotropic core by a small defect. Reprinted from [24] with
permission
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Fig. 4.7d reasonably well for the field range 2–5 T. This includes fitting the unusual
shoulder features which lie at approximately 75°.

Matsui et al. offer the following explanation for their results. The (m, n) = (0.5,
2) values coincide with the predictions of Kramer [26] for point pins, and given the
large increase in critical current with the irradiation and hence introduction of point

Fig. 4.7 a Critical current for as-grown YBCO. b Jc for irradiated YBCO, c flux pinning force for
as-grown YBCO, and inset showing Fp calculation as described in the text, d flux pinning force for
the irradiated sample. Reprinted from [25] with permission

4 Critical Current Anisotropy in Relation to the Pinning Landscape 119



pins, they naturally ascribe the Jc for B ≥ 2 T to strong point pinning. At lower
fields, the fitting does not account for a large angle-independent contribution to Jc,
and Matsui et al. modify the flux pinning expression with an offset and linear
scaling. They justify this with a statistical argument around how pinning may be
modified at lower vortex densities.

The FpðϵθHÞ scaling observed by Mishev et al. and Matsui et al. is indeed quite
striking. We have offered an alternative explanation to the Matsui et al. results in a
comment on their paper [27]. Our explanation centers on identifying the equation
f bð Þ= f0bmð1− bÞn as a beta distribution and an outcome of averaging. In both papers,
attempts are made to connect the scaling analysis to the microscopic physics. How-
ever, in both cases, this raises further questions. For example, in theMatsui et al. data,
we may ask why point pinning should lead to the striking shoulder structures.

To make further progress in the next section, we examine direct models which
connect the anisotropic critical currents to flux pinning.

4.3 Models of Pinning and Field Angle-Dependent
Currents

In view of the open questions about scaling, it is of interest to describe some
microscopic models of the critical current anisotropy. Rather than explaining the
results through scaling of fundamental equations derived from the Ginsburg-Landau
model or the London equations, these are more direct models which seek to link a
particular defect structure with the form of JcðθÞ by considering the forces which
are acting on flux lines. We describe the first model in some detail and the following
two only briefly.

4.3.1 The Tachiki and Takahashi Model

Tachiki and Takahashi [28] primarily focused on the pinning effect of the layer
structure of the superconducting copper oxides. In these materials, the CuO2 planes
are strongly superconductive with a high superfluid density, and the regions between
the CuO2 layers have low superfluid density. The weakly superconducting layers
therefore act as natural pinning centers, and when vortices are directed along these
layers, they will be strongly pinned against perpendicular motion. Figure 4.8 shows
the key idea of their papers. When the magnetic field is at an angle θ, then the vortex
forms a staircase structure in which it periodically lies along the ab-planes where it is
pinned by the intrinsic layers, and intermittently, the vortex is deformed perpen-
dicular to the layers where there is assumed to exist pinning parallel to the c-axis
through twin planes or other correlated pinning. The twin plane spacing is assumed
to be larger than the vortex lattice spacing and the intrinsic layer spacing.
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The authors then resolve the pinning force into Cartesian components, and
derive expressions for Jc when Jc is a result of the Lorentz force exceeding the
strength of the layered pinning and then a different expression for when the Lorentz
force exceeds the strength of the c-axis pinning. Since the flux density from the
parallel vortices is Bx =Bsinθ, the critical current is Jc = Jc∥ðBsinθÞ for the parallel
vortices, that is, their pinning forces will be exceeded at this current, where Jc∥ is
the critical current in the case of perfect alignment with the ab-planes. Tachiki and
Takahashi take the parallel field Jc∥ðBÞ as field independent due to the high
matching field for the intrinsic pinning, that is, Jc∥ðBsinθÞ= Jc∥ð0Þ. The flux density
for the c-axis oriented vortices is Bx =Bcosθ, and the critical current density for
these vortices is Jc = Jc⊥ðBcosθÞ when the force parallel to the c-axis exceeds the
pinning force in this direction. For this direction, they assume a functional
dependence Jc⊥ðBÞ∝B− α. The overall critical current then depends on which
component of pinning force is exceeded, thus

JcðB; θÞ=min Jc∥ð0Þ, Jc⊥ðBcosθÞ
� � ð4:2Þ

Assuming the power law dependence Jc⊥ðBÞ∝B− α, we will have at a fixed field
JcðθÞ∝ðcosθÞ− α for angles not too close to the parallel direction. Tachiki and
Takahashi compared (4.2) with data available at the time, and particularly for angles
away from parallel field, the fit was reasonably good. The main problem with (4.2)
is that it contains an unphysical discontinuity and predicts an angle-independent Jc
at parallel field, depending on the ratio of Jc∥ ̸Jc⊥, which is not consistent with
experiments.

Despite this flaw, this model is instructive and rewards careful consideration.
Firstly, it emphasizes that pinned vortices are immobilized in a plane. When they
move, it may not be because all pinning forces available are exceeded, but only the

0 30 60 90 120 150 180
0

1

2

3  Tachiki & Takahashi
 Mass anisotropy

J c/ J
c (

θ  
= 

0)

Angle θ (degrees)

(a)

(b)

Fig. 4.8 a Vortex at angle θ, being pinned in the ab-plane by the intrinsic insulating planes, and
pinned in the c-axis direction by correlated pinning such as twin planes. (Reproduced by
permission from [28]) b The angular dependence of critical current according to (4.2), for a sample

with Jc∥ ̸Jc⊥
� �2 = 5, and the mass anisotropy expression with γ = 5, and in both cases JcðBÞ∝B− 0.5
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forces necessary to prevent motion in a particular direction. Secondly, (4.2) again
returns us to a scaling relation, even though the intention has been to consider
pinning forces directly. It can be seen that this scaling relation is effectively the
same as the mass anisotropy scaling for field angles near perpendicular. In
Fig. 4.8b, we plot (4.2) and the JcðϵθBÞ expression assuming we have the power
law dependence for the perpendicular field Jc⊥ðBÞ∝B− 0.5 and γ = 5. We therefore
have reached similar outcomes for the angular dependence over much of the range,
although this scaling has been derived solely with reference to correlated pinning.

The assumption that the JcðϵθHÞ scaling can uniquely identify isotropic random
point pinning is therefore open to question. Note that this identification first made
by Civale et al. [15, 16] was never a logical necessity; if random point pins create a
scalable dataset, it does not logically follow that scaled data imply point pins must
be the source.

4.3.2 Models with Anisotropic Vortices

There have been relatively few attempts to construct microscopic models for ani-
sotropic superconductors and point pins. One detailed phenomenological treatment
has been made by van der Beek et al. [29]. In their paper, they focus on the
multiband iron-based superconductors so that the anisotropy of the coherence
length and the penetration depth may be different. They also generalize the isotropic
shape of the pins to include ellipsoidal defects. For the single vortex limit, they
show that either relatively sharp ab-plane peaks or broad c-axis peaks can result
from the interplay of the anisotropy and the defect size and shape.

The difficulty of constructing microscopic models of pinning was highlighted in
a couple of short papers by Mikitik and Brandt [30]. They show how in anisotropic
superconductors the force at which vortices move from a pin is not necessarily the
same as the pinning force. This is an extension of the idea included in the Tachiki
and Takahashi model, where at Jc vortices become unpinned in the direction in the
plane where the pinning force is lowest, not the direction of the Lorentz force.
Mikitik and Brandt extend this analysis to three dimensions and take account of the
fact that anisotropy will create an ellipsoidal pinning force profile in the plane
perpendicular to the vortex. Their idea is illustrated in Fig. 4.9. For any pinned
vortex, we construct a diagram showing the flux pinning force in any direction in
the plane perpendicular to the vortex—fp(Ψ). If the vortex experiences a force in the
direction Ψ, then for a critical force fc < fp(Ψ), the vortex will already move in the
direction Ψ1 as the projection of this force at the angle Ψ1 already exceeds fp(Ψ1).
We then have to define Jc relative to the critical force fc not the pinning force fp.

To construct a microscopic model which can make a credible prediction of the
macroscopic JcðθÞ is hence a daunting task. Reflection on the Tachiki-Takahashi
and Mikitik-Brandt models raises a further confounding factor. If we add a par-
ticular defect to our pinning landscape and see a significant increase in Jc, then it is
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natural to suppose this new defect dominates the pinning. But Tachiki-Takahashi
and Mikitik-Brandt show that this is not necessarily the case. The observed JcðθÞ
can be dominated by ineffective pinning in certain directions. Adding pinning
which prevents vortex motion in particular directions means that already existing
pinning structures may become more effective and relevant in determining JcðθÞ,
not less relevant.

Experimentally, the complexity of pinning at the individual vortex level is now
being explored through the novel use of scanning probe microscopes [31, 32].
These experiments confirm the complexity of vortex dynamics in response to forces
even in quite idealized experimental situations. Another favorable direction for
progress is to build computer models based on the Ginzburg–Landau equations
which can give a detailed picture of vortex dynamics [33, 34]. At present, the
complexity of these models and the computer resources required limit the physical
size of the model system. Hence, questions concerning a complex pinning land-
scape are only just being addressed. A proper summary of these efforts is beyond
the scope of this chapter.

In the next section, we will see how the Tachiki-Takahashi model can be
extended in a direction which leads us into a different mode of thinking about
critical current data, one that has the possibility of making sound inferences for the
structure-property relationships.

4.4 The Vortex Path Model or Maximum Entropy
Modeling

Rather than the vortex shown in Fig. 4.8a, imagine that the pinning landscape is
disordered, and the pinned vortices are more like those of Fig. 4.10. The ‘vortex
path’ through the material as depicted in Fig. 4.10 is a possible state of a pinned
vortex which is compatible with an external field at the macroscopic angle θ of this
path. The volume pinning strength, and hence Jc, is proportional to the density of
such pinning paths through the sample at the angle θ. A function for this density

Fig. 4.9 Diagram showing
how the critical force fc at
which a vortex will move in
the direction Ψ1 is below the
pinning force fp(Ψ) in the
direction of the applied force
for point pins in an
anisotropic superconductor.
Reproduced by permission
[30]
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with angle can then be constructed through probabilistic considerations. This leads
to a model referred to as the ‘vortex path model’ [35].

A probability density for the pinning paths, p(θ), is derived by assuming simple
rules for constructing such paths. Consider the vortex path as a directed random
walk, where y= nλ is the sum of n steps of average length λ in the y-direction. This
will dictate the center of a peak (though not necessarily a maximum density) in the
y-direction. Assuming there is no bias for steps in the z-direction and if the z steps
are chosen from any distribution of finite variance, then for z= ∑n

i=1 zi, the
probability for finding a particular z value is pðzÞ= ð1 ̸2πnσ2Þ1 ̸2 expð− z2 ̸2nσ2Þ,
that is, the distribution converges to a Gaussian according to the central limit
theorem. As z ̸y= tan θ, a transformation of random variables is required to go
from Jcðz ̸yÞ∝p zð Þ to JcðθÞ∝pðθÞ, with the result

JcðθÞ= J0ffiffiffiffiffi
2π

p
Γ sin2 θ

⋅ exp −
1

2Γ2 tan2 θ

� �
ð4:5Þ

where Γ= σ ̸
ffiffiffi
n

p
λ, and J0 is a proportionality constant. This equation is referred to

as an angular Gaussian. If instead of assuming the convergence to a Gaussian for
p(z), a heavy tailed Lorentzian distribution is chosen, pðzÞ= ð1 ̸πÞγ ̸ðγ2 + z2Þ, then
the result is

JcðθÞ= 1
π

J0Γ
cos2 θ+Γ2 sin2 θ

ð4:6Þ

where in this case Γ= γ ̸λ, and this is referred to as an angular Lorentzian.

Fig. 4.10 Representation of a vortex pinned both parallel and perpendicular to the xy plane and
forming a macroscopic angle θ to the z-axis. The dotted lines represent pinning defects in the
material. This vortex path and others existing in the material can be described as a directed random
walk of n steps of length yi in the y-direction and z-i in the z-direction. An alternative description is
to note the defects establish a mean value of z/y at which vortices will be pinned, and an associated
variance to this mean. Reprinted from [35] with permission
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It has been shown [35, 36] that these equations describe JcðθÞ for an incredibly
wide range of samples, for isotropic and anisotropic superconductors. It may
however seem that these equations have been derived using contrived rules. After
all, are the paths formed by pinned vortices really such a random walk? Won’t
pinned vortices at large angles from the center angle of such a Jc peak start to follow
different rules, dictated by vortex tension, vortex-vortex interactions, or geometric
effects of the sample?

Such questions become irrelevant if the distribution in the Cartesian coordinates
is taken directly as pðz ̸yÞ= ð1 ̸2π Γ2Þ1 ̸2 expð− ðz ̸yÞ2 ̸2Γ2Þ, that is, a Gaussian in
z / y. The model is now independent of the random walk description. A Gaussian is
a maximum entropy distribution in which the mean and variance are specified [37].
That is, it is a maximization of the Shannon information entropy with constraints on
the mean and variance of the distribution. This is now a maximum entropy model
which says the pinning landscape is determining a mean value of z / y at which
vortices are pinned in the zy plane (in this case, <z / y> = 0), and a variance to this
orientation < z ̸yð Þ2 > − < z ̸y> 2 =Γ2, but no further information is specified
[38]. The angular Lorentzian can likewise be described as a maximum entropy
distribution, where only the variance is specified. Any further effect of the physics
is ‘averaged out,’ and we are only left with this information in the data. Maximum
entropy can be loosely translated as ‘maximum missing information.’

Philosophically, the shift from the vortex path model as describing actual vortex
positions, to the maximum entropy description, is a shift from attempting to directly
model the microscopic physics, to concentrating on the information content of the
JcðθÞ data. Nonetheless, the vortex configurations described by the vortex path
model are a useful physical picture if not taken too literally. The use of maximum
entropy distributions to find structure-property relations is the methodology gen-
erally employed in spectroscopy, where Gaussian and Lorentzian functions are
used, and many other forms of signal processing. Firstly, if the distributions
describe the data, then the information content of the data is known with a high
degree of confidence. Secondly, the information from the data fitting, in our case
the parameters of the JcðθÞ fitting, can be correlated with information about the
microstructure, and hence the structure-property relations of the system determined.
We now give some examples from previously published work of applying this
process.

Figure 4.11 shows results from Wimbush and Long [36], where a Nb thin film
which has an array of vertical pores etched through the film at a spacing of 140 nm
and a diameter of 75 nm. The addition of the nanopores increases Jc by up to a
factor of 50 over films without nanostructuring. It is known that Nb films will give a
strong peak in JcðθÞ parallel to the plane of the film, so the authors conclude that the
vertical pores are contributing to the overall JcðθÞ but are not creating a peak normal
to the film surface. At the lower field, three maximum entropy components are
present, a high uniform background, a narrow peak and a broader in-plane peak,
both at ±90°. At the higher field, the narrow peak remains similar, but with an even
broader peak at 90°, and a broad angular Gaussian at 0°.
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The structure-property relations for the film are then elaborated as follows: The
origin of the means at ±90° is the strong in-plane pinning. The mean at 0° at 0.2 T
is due to the vertical pores. The origin of the variances is more speculative, but in
this system, there are few sources of pinning. The in-plane peaks may be broadened
slightly by surface roughness; this is posited as the source of the variance of the
narrow peak. Larger broadening of the in-plane peak is achieved by interaction with
the pores, that is, there is mixed pinning of the vortices by the in-plane pinning and
the pores to broaden these peaks. The angular Gaussian at 0°, 0.2 T, is also a result
of mixed pinning, this time with the pores as the dominant contribution and the
in-plane pinning as the source of broadening. The constant background at 0.1 T
must be due to a dominant contribution from the vertical pores in combination with
the in-plane pinning. The field of 0.1 T is approximately the matching field for the
pore density, and therefore, the effect of raising the field is to decrease the Jc at 0°
relative to the 90° value. The large region of constant JcðθÞ is easily accommodated
in the maximum entropy analysis. In the vortex path model picture, we can think of
the pores as fixing the density of possible pinning paths in a way which is angle
independent.

The continual search for strategies to increase the critical current of coated
conductors is leading to more complex pinning landscapes and resultant complex
JcðθÞ data. The data shown in Fig. 4.12 are from a PLD YBCO sample with
Ba2YNbO6 + Gd3TaO7 additions [36]. The resultant microstructure contains c-axis
oriented Ba2Y(Nb,Ta)O6 segmented nanorods, ab-plane oriented Y2O3 platelets,
and nanoparticles of YBa2Cu4O8 superconducting phase.

The maximum entropy fitting in the range of 1–3 T finds there are four com-
ponents with a mean of 0° (parallel to the c-axis). At 4 T, there is a crossover in

Fig. 4.11 JcðθÞ for a Nb thin
film which has been
nanostructured with an array
of vertical columnar pores:
experiment (●), full fit (▬),
fit components
( ). Reprinted by
permission from [36]
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behavior similar to the Nb sample of Fig. 4.11, and there is a ±90° Gaussian peak
replacing one of the 0° components. The narrowest of these peaks remains rela-
tively unchanged in width for all fields, in comparison with the other 0° peaks
which become broader. This behavior indicates it has a very high matching field,
also the unchanged width indicates the width may arise from the intrinsic angular
spread of the defect species itself; hence, this component is identified with the
segmented c-axis oriented nanorods. The next broadest of the components has a
similar magnitude at all fields but becomes much broader. Hence, it is associated
with the same defect species but additionally broadened with interactions with ab-
planar pinning such as the Y2O3 platelets. A description of the origins of other
components is given in [36].

The addition of BZO nanoparticles has been a common strategy to increase
critical currents in YBCO films. As a final example of the use of vortex path model
to find structure-property relations, we show in Fig. 4.13 data from Petrisor et al.
[39] who prepared films of YBCO and YBCO + 10 mol% BZO using
metal-organic deposition. The results from fitting JcðθÞ for the undoped and
BZO-doped films are shown in Fig. 4.13.

In combination with an analysis of the microstructure, for the pure YBCO,
Petrisor et al. assign the narrow ab Lorentzian to the intrinsic pinning broadened by
lattice disorder including CuO precipitates. The ab Gaussian is attributed to the
interaction between the intrinsic pinning and the orthogonal pinning by twin planes.
The twin planes are also the source of the c-axis Gaussian peak. With the addition

Fig. 4.12 JcðθÞ for a YBCO film with Ba2YNbO6 + Gd3TaO7 additions. Reprinted by permission
from [36]
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of the BZO, an additional high-intensity ab Gaussian peak is observed which they
attribute to the additional out of plane straining of the YBCO lattice due to the BZO
inclusions which broadens a peak fixed by the intrinsic pinning. The c-axis peak
under these conditions becomes extremely broadened by interaction with the
intrinsic ab-plane pinning giving rise to the shoulders around ±70°. The additional
strain of the BZO inclusions also gives rise to the very high isotropic component of
the Jc, consistent with the results of Llordés et al. [18].

Other groups who have shown the usefulness of the vortex path model include
the University of Turku group [40–42] who have used it to compare theoretical and
measured values of the peak widths of YBCO films [40]. They also introduced
using the pseudo-Voigt function which is a linear combination of (4.5) and (4.6) to
get a better fit of peak shapes. In [41], they showed how the method can determine
the contribution of c-axis aligned defects, even when a c-axis peak is not visible in

Fig. 4.13 Angle dependence
of critical currents for pure
YBCO and YBCO +10 mol%
BZO at 1 T. Reprinted with
permission from [39]
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the data. This group uses an explicit elliptical term in their fitting to account for the
effect of mass anisotropy on point defect pinning. We do not believe this is nec-
essary and would only consider adding this term if (4.5) and (4.6) could not account
for the data without modification.

Other noteworthy publications showing the ability of the vortex path model to
accurately fit data include Hänisch et al. [43] for iron arsenide superconductor films,
Mikheenko et al. [44] for YBCO with BZO nanocolumns, and Talantsev et al. [45]
used it to show a correlation between stacking fault density and ab-peak height,
showing the dominance of this defect at low fields and high temperatures in MOD
YBCO films.

4.5 Conclusions

Although a large literature exists of experimental data and a smaller literature of
relevant models, a satisfactory consensus does not yet exist on understanding the
structure-property relations of JcðθÞ data, and by extension critical currents gen-
erally. There is a consensus that samples in the regime of weak collective pinning
from point pins should obey JcðϵθHÞ scaling. This behavior has been observed
consistent with the mass anisotropy of the material. A JcðϵθHÞ scaling behavior has
also been shown for BSCCO and YBCO samples, where scaling parameters are not
consistent with the known electronic mass anisotropy. The origins of this scaling
are not clear, but such behavior can arise through pinning from correlated defects,
and it is not unreasonable to believe it can come from some kind of averaging over
both correlated and uncorrelated pinning.

Intriguingly, FpðϵθHÞ scaling has also been observed for samples with added
isotropic pinning centers. It has been proposed that this arises due to pinning from
defects larger than the coherence lengths, although the microscopic explanation of
this is not really convincing. It will be interesting to observe in the near future how
common this form of scaling is for samples with high levels of defect engineering.

There are few microscopic models which aid our understanding of JcðθÞ. This is
perhaps not surprising as there are serious obstacles to constructing such models,
particularly once mixed pinning is introduced. To accurately model pinning, vor-
tices need to be treated as three-dimensional objects moving in three-dimensional
space. We have presented the model of Tachiki and Takahashi and the key ideas of
Mikitik and Brandt as giving worthwhile insight into the difficulties.

The vortex path model or maximum entropy modeling provides an alternative
approach which avoids the difficulties of constructing or relying on the results from
microscopic models. It is a statistical-based approach similar to conventional
spectroscopy analysis which begins with determining the information content of the
data. Combined with microstructural analysis, this approach can be used to build up
knowledge of structure-property relations with a high degree of confidence.
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