
Chapter 3
Software for an mHealth System

Abstract A description of software requirements for an mHealth system is pro-
vided. Several layers of software are required for proper system functioning: ECG
body sensor firmware, applications on smartphones, Cloud applications, and stand-
alone applications for personal computers. The main functionality requirements of
the mHealth software are described. Additionally, approaches for fulfilling those
requirements are proposed.

3.1 Hardware Infrastructure

An mHealth system is powered by a complex ICT system and comprised of heavily
inter-dependent functional modules. First of all, an mHealth system requires a device
with computing, storage and interconnection capabilities, which the user can carry
around at all times. So-called smart devices, such as tablets, smart watches and the
ubiquitous smartphones, can readily fulfill this role [1]. From here on, we shall refer
to smartphones only, because currently they are leaders among personal assistant
devices. In the future, smart devices of some alternative form could take over this
role.

Second, a sensing device that can measure one or more parameters related to the
user’s well-being is required. Smartphones could be used also for this purpose, but
the system becomes far more efficient if it relies on dedicated sensing devices. A
dedicated device can be tailored in design for accurate measurements of specific
parameters. For medical-grade ECG measurements, for example, constant electrical
contact of the measuring device with the chest is required.

A diagram of an mHealth system for ECG monitoring is given in Fig. 3.1. The
figure depicts the user’s view of the relevant ICT parts of the mHealth platform
and the communication between them. The central component of the system is the
user, interacting with the remaining components through a smartphone, a personal
computer (optional) and an ECG body sensor. The role of the remaining components
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Fig. 3.1 The ICT components in an mHealth system from the user’s point of view. The user interacts
with an ECG body sensor, a smartphone and a personal computer, while Cloud services take care
of data storage and processing. The smartphone acts as a hub for transferring data from the ECG
body sensor to the Cloud. The smartphone and the personal computer both serve as an interface
towards data stored on the Cloud

is twofold: to support the user in proactive health management and to collect data
for analysis by medical practitioners. The ECG body sensor is used for sensing, that
is, for measuring ECG, and for providing ambient and contextual information about
the measurement. The ambient and contextual information can additionally be used
to help in the analysis of the acquired ECG measurements. The user’s interaction
with the ECG body sensor is very limited—the user only wears the device. The
smartphone is used for additional sensing, processing, interfacing with the ECG
body sensor, visualization and alerting. It is the primary interface of the user towards
the rest of the mHealth system. A personal computer would be used if the user
wishes to analyze the acquired measurements beyond the scope of the real-time
analysis provided by the smartphone. The Cloud platform represents the data link
between the smartphone and the personal computer, and adds additional processing
power, storage options and means of communication between the user and medical
practitioners. The Cloud platform also enables access to the measured to the medical
practitioners for diagnostic purposes.



3.2 Software 39

3.2 Software

Several layers of software are required for proper system functioning. A coarse-grain
division of the software into parts, according to where these parts are executed, is
given below.

• Custom software, also termed firmware, on the micro-controller-based sensing
device. The firmware controls data sampling and the storage, the analysis and the
wireless transmission of sensor data to other modules.

• An application on the smartphone. The smartphone application acts as an inter-
face between the mHealth system and its users, providing a convenient way for
interaction with the sensing device. From the user’s point of view, the application
represents the core of the mHealth system. Thus, a user-friendly application design
should be seen as one of the most important goals in the implementation of an
mHealth system.

• Cloud services implemented on the top of a Cloud platform. Cloud services are
already an established technical solution for data storage and analysis. They can
provide custom views on the online measured health data for medical practitioners,
for the users of the system, and potentially also for their caregivers. These services
can also be seamlessly connected to the patient’s electronic health records, which
is crucial for making personalized diagnoses.

• A set of computer programs that run on personal computers or mobile devices,
able to process and visualize measurements off-line. These applications represent
an access interface to the Cloud services for medical practitioners and additional
means of interaction with the mHealth system for its users. They could be built
on the existing software used by the medical practitioners, by extending it with a
module for accessing the Cloud services of the mHealth service. New software,
which would be adapted to the type of the measurements gathered by the mHealth
system, could also be developed. An example of an existing software suit that was
modified to support measurements obtained from an mHealth system is described
in Sect. 6.2.1.

3.3 mHealth Requirements

The main difference between mHealth and classical state-of-the-art ambulatory ECG
recorders is in the user interface. A novel interface towards the user can transform
an ambulatory recorder from a burden to an indispensable equipment for every-day
life. On the other hand, the smartphone makes for a great platform for an mHealth
system—it has become almost ubiquitous, it offers ample computing capabilities,
and it provides means for communicating data along healthcare pathways.

http://dx.doi.org/10.1007/978-3-319-59340-1_6
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3.3.1 Healthcare Requirements

The implementation of an mHealth system is driven by the needs to cut healthcare
costs and promote “personal health systems” in the sense of higher levels of healthcare
personalization and a more active role of patients in their health management [2]. For
mHealth ECG monitoring, this can be achieved by ECG body sensors. With such
sensors, a part of the monitoring outcomes can be made available to the patients
themselves. Furthermore, patients can be given some control over the devices used
in the measurement. In other words, an appropriate user interface can make the
difference between a product used only by enthusiasts or a niche of professionals,
and a product intended for the general population.

Next, making the user interface user-friendly should be one of the primary goals.
For example, seniors are more likely to develop critical health conditions and would
benefit the most from the availability of healthcare services at home. Seniors are in
general less tech-savvy than the average population and therefore feel less comfort-
able when using modern technology, which they usually consider unintuitive. As a
result, as a recent study says, “Digital health is not reaching most seniors” [3]. There-
fore, an mHealth system should be designed with seniors in mind—to be simple and
intuitive also for them, and to be able to provide only relevant information or alerts
to specific users.

User friendliness should be the key goal in software development, since it could be
crucial for the acceptance of the mHealth solutions. Another software development
goal should be easy integration of the system into users’ everyday lives, which can
further increase user acceptance. The system should thus be smart, i.e., interconnected
into the network of existing devices and into the everyday routines of its users. Various
social networks and the existing ecosystems of healthcare devices, applications and
behaviors should also be considered. Finally, the option of future expansions should
be left open.

The smartphone application has already been identified as an important part of the
mHealth system, because it represents a user interface to the entire system. Nowadays,
it can be considered also a very convenient one, since smartphones are becoming an
increasingly large part of users’ lives, and because they can provide interconnection
with other services and applications, and means for automated upgrades and expan-
sions. Since the mobile application is such an important part of the mHealth system
and offers so many opportunities, it is described in more detail in the following
subsection.

3.3.2 Smartphone Application

We begin this section by describing the basic functionalities of the smartphone in an
mHealth system: data storage and visualization, data transmission to other parts of
the mHealth system, and user alerting. The description will be general and should
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Fig. 3.2 Schematic presentation of the basic smartphone functionality in an mHealth system for
ECG monitoring

hold for all mHealth application. Next, we shall focus on ECG monitoring. Figure 3.2
gives a schematic presentation of the basic smartphone functionality in an mHealth
system for ECG monitoring.

According to the mHealth requirements, the measured data on the smartphone
should be available to the patients themselves as well as to the medical practitioners.
A good way of sharing the data among involved parties is having the smartphone
process and display the data to the user in real time and in a user-friendly fashion,
while also forwarding the unprocessed data to the Cloud via an Internet connection.
How the data should be transferred to the Cloud is not well defined and there are
not many requirements regarding that functionality. The data could be sent either
in near real-time (with minimal delay) or in larger packets, for example once per
hour, once per day, etc. Data transmission could be fully automatic or under patient’s
control. The transmitted data could contain only manually approved segments of
measurement or all the gathered data. The data could also be processed prior to
transmission to the Cloud, to lower the data transmission and to limit the transfer
only to relevant statistics. It all largely depends on the purpose of the monitoring.

Some reasonable requirements for the mHealth mobile application for ECG mon-
itoring, also given in Fig. 3.2, are:

A familiar user interface. The software on the smartphone can use an interface
design that is familiar to the user, and will thus require very little effort from the
user to master it.
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Optional visualization of the measurements. Although patients are usually not
experienced in reading ECGs, it would be wrong to speculate that none of them
will be capable or willing to learn the basics. Even through simple observation,
the more tech-savvy users are able to quickly distinguish patterns in a single lead
ECG and a portion of users would definitely enjoy the option of seeing their ECG
in real time. On the other hand, the users who would not find it easy to discern
any useful information from the ECG on the screen would find it more reassuring
if they did not have to look at it and could replace it with some more meaningful
information, for starters, with the heart rate value.

Standard statistics should be shown. Heart rate (HR) is the most basic ECG statis-
tic and is already the norm in readily available heart monitors for recreational use.
Users would expect that a powerful measuring device that can record a medical-
grade ECG can also have the functionalities that cheaper and simpler heart moni-
tors have. Users would be more likely to find the use of an mHealth device in their
everyday lives and would use it more frequently if the HR and some statistics
based on it are provided. Consequently, the mHealth system would proliferate
better among the general public.

The mHealth system should use the Cloud. Data should be archived as much as
possible, in order to assist the medical practitioners in their analysis, to aid research
and to enable the extraction of new knowledge from the long-term measurements,
Cloud services seem perfect for data storage, since they also facilitate the sharing
of data. The archived data will become also an indispensable source of informa-
tion, once the fully automatic analyses reach maturity. Having the data readily
available on the Cloud will shorten the research time and enable faster integration
of newly developed algorithms and procedures into operational use.

The ambient data should be analyzed. The ECG measurements have limited value
if no additional information on the patient and its activity is available; e.g., the
absolute value of the HR is only slightly informative, unless the patient’s age
and the current physical activity are also known. Furthermore, when alerting is
provided, the ambient data should be included in the real-time analysis before
any kind of alerting takes place. For example, an alert “Your beat rate has been
150 BPM for 30 min, this could be a dangerous situation!” could be made much
smarter if an activity information is also provided: “You have been running for
half an hour, your beat rate is steady at 150 BPM, keep up the good work!”

The ECG body sensor should be fully controlled by the smartphone. The gen-
eral population is already familiar with the smartphone user interface and using it
would make the mHealth users more comfortable with the ECG body sensor. At
the same time, it would greatly simplify the ECG body sensor itself, as it would
relax its requirements for human inputs and outputs, such as buttons, switches,
LEDs and displays.

A configurable alerting system should be provided. If life-threatening conditions
are detected, the application should alert either the user, a nearby healthcare
provider, or lastly the emergency department. The software could also provide
an assistance in a situation of medical emergency, to any of the pre-mentioned
actors in the mHealth system. In the simplest case, the assistance could be in the
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form of instructions on how to handle the patient in the detected situation, while a
more sophisticated application could measure the patient’s vital signals and dis-
play them on the smartphone screen to aid the actors on the scene. Nevertheless,
each case would have to be tailored to the specific area of use and the specifics of
the mHealth device in question.

There are many other requirements and implementation details, related to the inter-
face design, the ability of tailoring for different technical skills, the local estimation
and graphic representation of the measured parameters, etc., that would differentiate
the future mHealth applications.

3.4 An Example of an ECG Monitoring System

In this section, a tentative design of an mHealth system for long-term ECG moni-
toring of patients or healthy and health-proactive individuals is presented. Several
options for the implementation of such a system using state-of-the-art technology
are considered. We pay attention to the fulfillment of the mHealth requirements and
making the system appealing both to its users and to medical practitioners. Finally,
we envision that such a system will have broader benefits and will ultimately help to
advance the science.

The design of the system takes into account the existing technical standards,
allowing easy connection of various ECG body sensors and their immediate replace-
ment if an improved version becomes available. Besides the ECG sensor, the system
architecture allows inclusion of additional sensors, on the same device or on addi-
tional devices, if such additions prove useful for monitoring the patient’s condition
in the future. For example, sensors for remote monitoring of respiratory acoustic
phenomena (cough, obstruction) or sensors for activity detection would complement
the ECG sensor nicely.

The immediate use of the mHealth system can be based on the visual observation of
selected critical vital parameters and their recent changes. Through such observation,
it is possible to evaluate the effectiveness of a treatment and to foresee a possible
deterioration in advance. In the future, after a thorough research of the area, automatic
analysis will be able to complement or even replace the visual inspection of the
vital parameters. We foresee that alarms will be implemented to alert the medical
practitioners on the high possibility of deterioration before the monitored parameter
will reach a critical value. Based on the simultaneous evaluation of multiple variables,
the automatic analysis will provide the threat level and its trend in the form of the
modified early warning score (MEWS) [4]. The analysis of the vital functions in
a longer time period will allow for the implementation of cognitive methods; for
example, fully personalized analysis of a cardiogram over a longer time period will
be used as an input for determining the patient’s threat level [5].

As described previously, the device that would act as a crucial link between the
mHealth system components should be carried around by the user, should have
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computing and communication capabilities, and should be unobtrusive to the user.
Today, such a device already exists, namely the smartphone. Smartphones are already
owned by more than 2 billion people and their number is still growing. The smart-
phone connects to the ECG body sensor via the low-power wireless Bluetooth Smart
protocol [6] and records everything that the ECG body sensor measures. Besides
being extremely low-power, this protocol offers sufficient bandwidth for ECG data
streams, concurrent communication with multiple sensors and data encryption.

For security, the measured data stored on the personal smartphone does not contain
any information that could facilitate identification of the user. The transfer of the
data to the Cloud is encrypted and largely depersonalized—no personal data other
than the measurement is ever transmitted to the Cloud. No other personal data is
actually required to be stored on the Cloud; aside from the users themselves, only
authorized medical practitioners possess additional personal information of the user,
such as the health record. The access to the data stored in the Cloud is handled
through accounts of varying permissions, which are managed with a safe and reliable
account management system. Customized interfaces can be provided for various
medical practitioner profiles, to aid them in using, viewing and analyzing the data.
These interfaces are managed by the same account management system as the data
permissions. Private users also get access to a custom interface for accessing their
own data, although they may prefer to use only their personal terminal, without ever
connecting to the Cloud.

Another important part of mHealth systems will be open interfaces for custom-
made applications and add-ons that communicate either with the Cloud or the smart-
phone. Such add-ons might end up with discovering a more suitable representation
of the measured data for the laymen, or increasing the options for the patients to
monitor their vital functions. The options for using the measured data are endless,
but interfaces for accessing it will have to be approached with due caution, since sen-
sitive personal data are at stake and should be protected with great care. For example,
it may be feasible to identify individuals based on an advanced analysis of the data
from the ECG sensor in the near future. When designing an mHealth system, such
options can be seen as both drawback and opportunity.

3.5 Smartphone Application Challenges

The ubiquitous smartphones (also tablets, soon-to-follow smart watches, and other
smart wearables) have well defined interfaces to which a large portion of the general
population is already familiar with. To be acceptable to users, the mHealth mobile
application should follow the guidelines set by existing and widely accepted smart-
phone applications; i.e., the guidelines set by the behavior of various popular software
applications, their integration with the smartphone hardware and other software, and
their ways of interfacing with the user. Therefore, to integrate better with the user’s
everyday activities, the following guidelines are recognized for the smartphone appli-
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cation used in an mHealth system, based on the feedback from volunteering users of
an early mHealth prototype system:

Ease of use. The users’ expectations for the applications on their smartphones are
increasingly strict. Applications must be installed in a standard and simple manner,
set-up in a few clicks (if at all), and then executed as the user would expect. That is,
if the user expects the application to start ECG measurement, then the application
should do just that, without requiring the user to go through a lot of menus, settings
or input boxes.

The ability to run in the background. That is, the ability to perform measure-
ments, analyze them in real time for the requirements of the user interface, and
transfer them to the Cloud to be stored, all while the smartphone screen is off.

Low-power requirements. The mobile application must respect the limitations of
the battery-powered smartphone, and must not significantly increase the need for
the smartphone to be charged.

Integration of the alerting system. The smartphone’s operating system implements
a built-in messaging, notification and alerting sub-system, which is familiar to the
users and allows for the alerts to be presented in a user-defined manner.

Adjustable level of user engagement. The mobile application should target a wide
range of people and their willingness to engage their time into the ECG mea-
surement. Besides using the adjustable notifications system familiar to the user,
the application should be able to adjust to the user’s wishes in other areas too.
Examples of adjustable features are: the level of the displayed details and the fre-
quency of the relevant information updates, or the way the synchronization with
the Cloud works (always, or only over WiFi, or only when charging, etc.).

A keen observer might notice that the last guideline seems to contradict the first
one. It does not need to, though, since applications can be made very adaptable to
their users. Therefore, to adhere to both guidelines, the default application behavior
is first tuned to the needs of a basic user with a limited desire for engagement with
the system. Then, through the provided settings, the application can be configured
to show more data and allow more details to be fine-tuned. Thus, the application is
made simple for the basic users, while allowing the more advanced users, who are
willing to fiddle with the settings, to enable more control for themselves.

Although a proper user interface design would take care of most of the mentioned
guidelines, some aspects remain to be tackled with the back-end logic. When design-
ing their own ECG monitoring system, the authors of this book have been presented
with four main challenges:

• transmission of the measured data from the ECG body sensor to a smartphone,
• synchronization of time clocks between the ECG body sensor and the smartphone,
• storage of measurements, and
• detection of heartbeats and heart rate calculation.

All of them are discussed in the following subsections.
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3.5.1 Transmission of Measured Data to the Smartphone

The most basic functionality of the mHealth-enabled ECG body sensor is the ability
to record ECG measurements. The design goals of the ECG body sensor dictate low
weight and extremely low power consumption, and thus constrain the ECG body
sensor capabilities. One of the several trade-offs that can be made in the ECG body
sensor design is the approach for storing the measurements. Measurements can be
either stored on-board, as done in [7], or they can be transferred in real time to another
device, such as the user’s smartphone, as done in [8].

While the use of on-board storage should be (if properly implemented) simpler,
more energy efficient, more error tolerant, and completely self-reliant, it is hard to
consolidate it with the requirements of an mHealth system. To empower the patient,
the measurements should be accessible to the patient in near real-time. In contrast,
transferring the measurement to the smartphone in real time, e.g., over a radio con-
nection, enables real-time access to the measurements and thus easier integration
into the mHealth system. The price for it, however, are higher power consumption,
a more complex overall system, the need to synchronize the ECG body sensor and
the smartphone, and the reliance of the ECG body sensor on the external hardware,
e.g., the smartphone or some other data gateway.

The radio transfer can also be arbitrarily complex. In the simplest form, it would
consist only of data sampling followed by broadcasting the samples through a radio
transmitter. A more elaborated form could comprise complex data sampling, data
caching on-board, transmission of compressed data packets with error correction
mechanisms, acknowledgment of all the received packets by the receiver, and retrans-
mission of lost data packets. A hybrid approach that would reap benefits while avoid-
ing the drawbacks of the on-board storage could also be used. This would increase
the system complexity, but any additional complexity in the system design that eases
the system use should be viewed as perfectly acceptable.

3.5.2 Synchronization of Clocks

The moment the data leaves the measuring device and enters another, the problem
of clock synchronization arises. Here we explain why multiple clocks in the system
make an issue, and discuss possible ways of alleviating it.

Time keeping is an old problem [9] that has been largely forgotten by the general
population in the last decades. The age of Internet has brought the endless manual
clock synchronization to a close end, by providing several very accurate clocks which
are accessible via the Internet (or via GPS) and enabling automatic software syn-
chronization of our computers with these precise clocks. The above sentence already
discloses the gist of the problem—clock synchronization did not go away, it merely
became automated on a large portion of machines that we interface with. The smart-
phone falls under the category of Internet-connected devices. For the time being, we
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shall, therefore, assume that it does not require any additional clock synchroniza-
tion. For devices that are not connected to the Internet or other large interconnection
networks with centralized time keeping, the clock synchronization remains an issue
that needs addressing. The ECG body sensor certainly represents an example of such
a device.

The electronic circuits most often use inexpensive quartz crystal oscillators to keep
time to a limited precision. The modern quartz oscillators are accurate to under 100
ppm [10], which translates into time keeping devices (clocks) with similar accuracy.
A clock that is stable to 100 ppm is also said to be accurate to 24 ∗ 60 ∗ 60/10−4 =
8.64 s per day. Under relatively steady temperature conditions, these oscillators can
perform at least an order of magnitude better, that is, they drift for less than 1 s per
day. One second is in the same order of magnitude as the length of a single heartbeat,
so quartz-based clocks could be considered precise enough for performing short
measurements without external clock synchronization. Even for measurements of
several days, such error could be considered acceptable if no synchronization with
other sensors and devices is required. However, as we describe in the Chap. 2, several
concurrent ECG measurements can be merged into even more descriptive forms of
ECG, which requires synchronization precise to a hundredth of a second.

ECG body sensors are also miniaturized for a lower weight, and as such usually do
not include a real-time clock circuitry with a dedicated battery for time keeping when
the device is turned off. They should be reminded of the current time on every start-
up or reset. Therefore, two arguments are in favor of synchronizing the ECG body
sensor’s clock with the smartphone: the need to perform long measurements (on the
timescale of several days) and the need to adjust the clock after start-up or reset. Since
the ECG body sensor and the smartphone constitute a simple distributed system, the
solution is to use one of the many clock synchronization techniques for distributed
systems [11]. In such a distributed system, the smartphone has a more accurate time
keeping. Therefore, one solution would be to consider its time as a reference, and
have the ECG body sensor synchronized to it at all times. This solution, however,
may still cause measurements performed on different smartphones to drift in time,
and is only appropriate if such drift is acceptable.

3.5.3 Storage of Measurements

One of the essential mHealth functionalities is the storage of measurements, which
can be regarded as a two-level process. The first level is implemented on the smart-
phone, where the measurements are stored until they are uploaded to the Cloud. The
second level is on the Cloud, where the measurements are stored as a part of the
patients’ medical record, knowledge databases, analytical Cloud services and simi-
lar. We shall not discuss much about the Cloud part of storage here, since it largely
depends on the goals of the particular mHealth system. We shall rather focus on the
storage of the measurements while they are stored on the user’s smartphone, which
makes them easily accessible to the user.

http://dx.doi.org/10.1007/978-3-319-59340-1_2
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There is a plethora of file formats for storing ECG to choose from, and one should
choose very wisely. The file storage should be implemented in a way that adheres
to the existing ISO standards of the 22077 family [12–15], related to the storage of
ECG measurements. In addition to standards, there are also some mHealth-specific
requirements for the storage of measurements, which are in line with the general
idea of mHealth—to help make patients more proactive and improve the integration
between medical services:

• The use of files for storing individual measurements and the use of standard file
formats whenever possible.

• Empowerment of patients, which can be accomplished by giving users the ability
to browse, copy, export and view the measurements with standard tools available.
Open file formats present a more rational choice compared to proprietary formats,
since the latter would severely limit the users in their access to the measurements,
and could cause vendor lock-ins and additional expenses for the developers of
mHealth system extensions. A recent review of open file formats has been done in
[16], and while a lot of them have been designed with very different ECG measure-
ments in mind, there are several that fulfill quite a lot of the listed requirements.

• The ability to store various meta data in the same file. Since the mHealth is in
its infancy, it is unreasonable to expect that the meta data structure adopted at the
design stage will pass the test of time and the increasing usage. Therefore, the
meta data should be at most weakly structured, to allow for future additions or
modifications.

• The ability to storemeasurement data other thanECG in the samefile.As explained
before, the additional measurements will in time be able to provide indispensable
information complementary to the ECG, allowing for a far more in-depth analysis
and a more precise diagnosis. Like in the case of meta data, trying to identify
all data types in advance would not be very prudent. Therefore, a flexible file
format supporting additional measurements of varying sample sizes and sampling
frequencies would be most welcome.

• The use of compact file formats to allow the storage of large data quantities on a
standard-size smartphone storage.

• Robustness of the storage procedures against abrupt and unanticipated interrup-
tions. The inclusion of personal smartphones into the mHealth hardware scheme is
followed by a specific set of problems, which are not inherent to medical devices.
The smartphones and the software running on them are not designed for the same
degree of reliability as are certified medical devices. Furthermore, they are under
full control of their users, who may want to abruptly pause, stop or interfere with
the ongoing measurement. While performing measurements, users may also use
other applications with a wide range of system resource requirements, which may
inadvertently affect these measurements. Therefore, the interruptions in measure-
ments, including those that occur while the mHealth application is in the middle
of a file-storing procedure, should be considered normal operation. Either the
chosen file formats should be robust enough to allow not-fully written files to
remain readable up to the point of corruption, or some other form of file repair
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should be available. The latter is less optimal, since it requires a more complex
file management system and adds new points of possible system failure.

However, an existing file format that would fully satisfy the listed requirements
is impossible to find. Since the novel mHealth systems are coming with their own
special requirements, modifying the existing file formats or even designing new ones
is a viable option. Here one should not forget the lesson learned from the existence
of a plethora of file formats for storing ECG: the design should not be too specific
and should allow for future changes and improvements.

3.5.4 Detection of Heartbeats

After a measurement is recorded and the time of individual samples well determined,
the processing of the ECG can start. The most basic processing of an ECG signal,
intended to derive some information of user interest, is the detection of heartbeats.
More precisely, it is the detection of the times when heartbeats occur. The application
can then use those times to calculate some basic heartbeat statistics, such as the heart
rate [17], or perform more complex processing, such as automatic classification of
beats [18]. The heartbeat information is even more useful if it can be accessed in
real time. The mobile application can use such data to advise or alert the user when
certain conditions are detected. In the cases when the detected conditions appear to
be alarming, the mobile application could be used to automatically alert the patient’s
caregivers or even the nearby emergency department. From an empowered patient’s
perspective, the heartbeat detection can be used by the patient directly for an easier
observation of the heart rhythm and the shape of characteristic ECG waves. For
example, proactive patients might be curious about how their heart reacts to changes
in their activity, their nutrition or emotional state. They might even learn to better
recognize their current condition after they inspect the current heartbeat rhythm and
shape.

Although the beat detection is a mature field in science, with plenty of known
algorithms to choose from [19], one should note that these algorithms were designed
for a different kind of ECG measurements. They were mostly designed to be used
on 12-lead ECG measurements made in a controlled environment. As discussed
in Chap. 2, the ECG body sensor delivers differential ECGs that differ from the
standard conventional ECGs in several details. Furthermore, the ECG body sensor
records far more noise than the standard 12-lead ECG apparatus. The additional
noise is produced because of the limited number of electrodes, the limited distance
between the electrodes, and most importantly, the difficult measurement conditions
under which the mHealth system is used. To reach full integration into patients’ lives,
mHealth devices are being used during everyday activities, in totally uncontrolled
environments. When patients are engaged in physical activities and exercise, the
amount of noise caused by the muscle activity and the physical strain on the electrode
contacts is very high. Moreover, the conditions vary during the measurement. The

http://dx.doi.org/10.1007/978-3-319-59340-1_2
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users are very likely to be partly at rest and partly active during the same measurement.
They are also moving in environments with variable electromagnetic interference,
ranging from practically zero (e.g. in nature, far from any human-made infrastructure)
up to the limits posed by the health standards. All in all, the difficult conditions should
be countered by making the algorithms more robust, lowering expectations on the
result accuracy, and additional statistics returned by the algorithms, e.g., noise levels.

Several modifications to the known beat detection algorithms should be imple-
mented to make them appropriate for body sensor ECGs:

• Aggressive input filtering aimed at removing all the noise in the measurement. The
input filtering can be performed as digital processing for the task of beat detection
only.

• Build-in adaptivity to the input signal orientation and to gradual changes in the
ECG shape because of baseline wandering, i.e., on a timescale of more than one
beat. For example, user’s posture will influence the ECG shape, while the varying
water content in the skin will influence its electrical conductance and consequently
change the amplitude of the ECG. Users might also modify the position of the ECG
body sensor during the measurement, and thus change the measured ECG shape
completely.

• A measure of signal noise, which can be first used as a help in beat detection, and
second, as an additional output information from the beat detector.

• If the ECG body sensor provides also other measurements, e.g. activity or EMG,
they can be used as additional information for beat detection.

An important question to think about is also where the beat detection takes place. It
should take place close to the user to make the results available for further processing
in near real time. It is worth noting though that several seconds of measurement may
need to pass before beats can be detected with sufficient probability.

Beat detection could theoretically be done on the Cloud if the measurement is
being transferred to the Cloud in real-time. However, this option comes with a severe
drawback. When the Cloud is not available, the beat detection will not occur. There-
fore, the reliance on the Cloud, which is equivalent to the reliance on a sufficiently
fast Internet connection, is unacceptable for the general mHealth application. It might
be acceptable for some special cases though, e.g., when monitoring is implemented
only within a single health institution.

A better alternative is to perform beat detection on the smartphone or on the ECG
body sensor. The smartphone is a device with increasingly large amount of com-
putational power at its disposal, with near real-time access to all the measurement
data required by the beat detection algorithm, and thus seems very fitting. The dis-
advantage of implementing the beat detection on the ECG body sensor, as opposed
to the smartphone, are the limited computational capabilities of the ECG body sen-
sor. Furthermore, running a computationally demanding algorithm on the ECG body
sensor could seriously increase the power consumption and thus decrease the device
autonomy and limit its use. The benefit of detecting the beats on the body sensor, on
the other hand, is in the possibility to lower the amount of the data to be sent to the
smartphone. Adaptive data compression algorithms may be used before the data is
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transmitted if beat locations are known; the ECG can be compressed with varying
compression ratios for different parts of the ECG signal. The noise level may also
be assessed better if beat locations are given, which again enables more control over
adaptive compression algorithms. Compressing the data to be sent is very welcome
and can be viewed from two different angles. First, it can be seen as a means of
lowering the power consumption of the ECG body sensor, since transmitting com-
pressed data usually requires less energy. Second, it can be viewed as an opportunity
for the ECG body sensor to gather and transmit more information to the smartphone,
since more of the available bandwidth remains accessible. Therefore, selecting the
device where the beat detection will be implemented requires deciding on a trade-off
between benefits and disadvantages, and may also include hybrid solutions. Never-
theless, getting the most out of the system will require at least some rudimentary
beat detection to be implemented on the ECG body sensor itself.

Furthermore, the beat detection can be partly done on the smartphone or body
sensor and partly extended to the Cloud, where all the patient’s measurement his-
tory and healthcare information is stored. Such a hybrid solution would make the
most precise beat detection available to medical practitioners through the Cloud ser-
vices, while also making the preliminary beat detection available to the user of the
mHealth system. Extending the hybrid solution from beat detection to complete ECG
processing would be a natural next step. At this point, one could even make a case
for distributed computing, where the processing workload of the Cloud service for
ECG processing is lowered on the account of the users’ smartphones performing the
bulk of the processing in advance. This, however, is a topic for further research and
experimentation.

3.6 Example Algorithms

In this section, the complex task of heart rate calculation is examined and an algorithm
for heart rate calculation is proposed. A schematic representation of the proposed
HR calculation algorithm is shown in Fig. 3.3. Starting with a raw ECG input (step
1), the first part is the beat detection composed of filtering, extraction of extrema,
estimation of spike likelihood and peak detection (steps 2 to 5). Then follows the
noise estimation—the noise in the vicinity of detected beats is estimated and beats
from noisy parts of the signal are discarded from further processing (step 6). Lastly,
beat-to-beat intervals are measured (step 7), outliers removed, and the remaining
intervals averaged to derive HR (step 8).

The first task—beat detection—is based on an algorithm [17] designed for use in
an mHealth system. The proposed beat detection algorithm is in many aspects similar
to previously known algorithms [19], but designed to work on differential ECGs with
a low sample rate and a low signal-to-noise ratio. Furthermore, it is not affected by the
orientation of the ECG features, since it searches only for rapid changes in the input
signal, ignoring their exact nature. It was designed to have a small memory footprint



52 3 Software for an mHealth System

Fig. 3.3 A schematic
representation of the HR
calculation algorithm

and to use as little processing power as possible, so that it could be implemented on
the ECG body sensor.

3.6.1 Filtering

The beat detection algorithm is tuned to detect only the QRS complex, because it is the
most prominent feature of almost any ECG and is far less sensitive to morphological
changes than the other ECG waves [20]. The frequency spectrum of the QRS is quite
limited. A narrow frequency band filter that would pass only the QRS frequencies,
e.g. 10–40 Hz [21], could be used to remove all noise in the frequency bands which
carry no ECG-related information. Filtering is performed using a digital filter only
in the beat detection phase. The filtered signal is later discarded. Therefore, the filter
used in this step does not deform the measurement and is used only to help the beat
detection task. For simpler and more efficient implementation, a low-pass filter is
used with the threshold set at 45 Hz. The filter is implemented as Brown’s exponential
smoothing [22], also called exponential moving average (EMA).

Brown’s exponential smoothing calculates the smoothed value s(tn) of a sampled
signal x(tn) for each time step tn as:

s(t0) = x(t0)

Δt = tn−1 − tn

α = 1 − e
Δt
τ

s(tn) = αx(tn) + (1 − α)s(tn−1), (3.1)

where α is a smoothing factor, derived from the time constant τ that specifies the time
in which the smoothed response to a unit step input would reach the value 1 − 1/e.
Δt is the time step, which does not need to be constant throughout the measurement.
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3.6.2 Extrema Extraction

The local extrema of the filtered ECG signal are extracted to lower the amount of the
data that has to be processed in the following steps and thus simplify further process-
ing. Local extrema, i.e. positive and negative peaks, are the positions in which the
derivative changes its sign. They appear in an alternate fashion, with each minimum
followed by a maximum, and vice-versa.

From the interval of a monotonic input signal between each pair of consecutive
extrema, a single extremum in the derivative is also extracted. Based on the deriva-
tive sign, the extracted extremum is either a minimum (negative sign) or a maximum
(positive sign). For example, from the interval between a minimum peak and a max-
imum peak in the input signal, the input signal is non-decreasing, the derivative is
non-negative and, therefore, a maximum in the derivative is extracted.

3.6.3 Spike Likelihood Estimation

The term spike will be used here to refer to a rapid change in the signal amplitude—
either up or down, followed by a rapid change in the other direction. For more
distinct changes in amplitude, the spike will be termed as strong. The QRS complex
contains at least one strong spike, regardless of where the ECG is measured and thus
independent of the ECG body sensor placement and orientation. Therefore the beat
detection can be implemented by spike detection.

A spike contains a local extremum as its peak. In this algorithm step, each local
extremum is tested to determine if it represents the peak of a strong spike. Spike
likelihood is introduced as a measure of spike strength in each local extremum. The
estimation takes three signal extrema and two signal derivative extrema as input, and
converts them into a unit-less number. For each signal extremum, the likelihood is
calculated as:

a · b · c · d,

where a is the difference in amplitudes of the given and the previous extremum, b
is the difference in amplitudes of the given and the next extremum, and c and d are
the derivative extrema to the left and to the right of the given extremum. A graphical
explanation of the likelihood estimation step is given in Fig. 3.4.

A part of an ECG input signal with a strong spike is shown in Fig. 3.4 with a
solid line. For every triplet of extrema in the input signal, extracted in the previous
algorithm step and marked with small circles, two pairs of parameters are calculated.
The first two parameters, a and b, marked with double-ended arrows, are obtained
as amplitude differences between two consecutive input signal extrema as follows:
a is the difference in amplitudes between the second and the first extremum, b is the
difference in amplitudes between the third and the second extremum. The other two
parameters, c and d, marked with single-ended arrows, are obtained as extrema of
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Fig. 3.4 Likelihood
estimation scheme on an
example of a strong spike

c d ba

corresponding positive and negative signal derivatives: c is the maximum derivative
of the input signal between the first and the second extremum of the input signal,
d is the minimum derivative of the input signal between the second and the third
extremum of the input signal.

3.6.4 Peak Detection

High likelihood values are assumed to be caused by strong spikes in the input signal,
which in turn are a sign of significant probability for a QRS complex in the signal.
Therefore, the spike likelihood could be taken by its absolute value; an absolute
threshold, with values high enough, could be applied as a filter. Nevertheless, to
achieve some adaptability, spike likelihood is rather observed relative to its previous
peak values.

First, modified exponential smoothing is applied on the likelihood and the result is
multiplied with a constant factor f . The result is called dynamic threshold d(tn). The
best values for f are in the interval from 1 to 10, which was confirmed by a preliminary
analysis on different ECG input signals. Second, as the input signal is processed in
real time, the local peaks of likelihood are compared with the dynamic threshold
value. When a likelihood value higher than the dynamic threshold is encountered, a
peak is detected and the following two procedures take place: the threshold value is
set to the value of the likelihood in the new peak and the detected heartbeat is the
output from the algorithm. Formally, the peak detection algorithm can be written as
follows:

d(tn) = f · s(tn−1)

s(tn) =
{

as calculated in Eq. 3.1, if
(
x(tn) ≤ d(tn)

)
x(tn), otherwise.

(3.2)
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Fig. 3.5 ECG signal from a significantly distorted body surface measurement (top), spike likelihood
estimated for the ECG signal (middle), dynamic threshold (bottom). The circles on the bottom plot
mark the detected beats. The Y axis is not marked, since its absolute values are not relevant

The described peak detection algorithm step is fully adaptable to the input signal
and detects only the highest peaks on a time scale that is controlled by the parameter
τ . An output of this step is also the result of the complete beat detection algorithm,
which is represented by the timing of QRS complexes in the input ECG signal.

Figure 3.5 shows an example of the likelihood estimation and dynamic thresh-
olding on a segment of a significantly distorted ECG signal. In the figure, it can be
seen that the peaks in spike likelihood correspond to the locations of QRS complexes
in the ECG signal. The QRS complex of the fourth beat is properly detected, even
though it is significantly distorted by noise. The performance of the described beat
detection algorithm is further confirmed by correct exclusion of the spike-shaped
noise between the fifth and the sixth beat of the ECG measurement.

3.6.5 Noise Estimator

In this section, we describe a crude noise estimator. The estimation is done by count-
ing the number of large first derivative extrema in the area close to a detected beat.
These are likely to be caused by noise and could disturb the beat detector. This esti-
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mator is thus able to estimate noise in the area around detected beats, in order to
discard the beats detected with low reliability on the noisy signal. The estimator has
two parameters: the time interval where derivatives are observed and the threshold
amplitude for derivative extrema.

The first parameter, i.e., the time interval in which derivative extrema are counted,
could be set dynamically for each beat—based on the heart rate, or statically—using
a fixed size time window. For example, if 200 BPM is considered the maximum
heart rate that the system should detect, then the static time window can be set to
the time of the detected QRS ± 300 ms, since this time window is guaranteed not to
overlap with another QRS complex. For the dynamic setting, the time window not
overlapping with another QRS complex is set to the time of the detected QRS ± 500
ms * (60/current BPM).

The second parameter, i.e., the threshold amplitude for derivative extrema (β), is
used to classify extrema as either large or small, where only large are likely to cause
problems in beat detection. To make this threshold adaptable, β is normalized by the
largest first derivative amplitude within the time interval of the located QRS. Thus
the β should be selected as a relative value from the interval [0...1]. Based on the
analysis of several experimental ECG measurements, we have determined that 0.5
is usually a good value for β. Nevertheless, the choice of β should depend on the
amount of the expected noise in the signal.

Some fine tuning of both parameters should be performed before implementing
the algorithm on a specific ECG body sensor and for a specific range of expected
ECG input signals.

3.6.6 Heart Rate Calculation

The frequency of heartbeats—the heart rate (HR)—is calculated on a short time
interval and reported as the number of beats per minute (BPM). Although it sounds
straightforward, robust calculation of heart rate is difficult when the measurement is
noisy. The presented real-time algorithm for HR calculation works by averaging the
intervals between successive beats. It is thus able to return a new heart rate value for
each newly detected beat.

A list of beats is maintained while the measurement is in progress, with the
following procedures applied to each detected beat:

1. The output of the noise estimator is taken to discard beats that were detected
while noise levels were above the threshold. If the estimated noise is above 5,
i.e., five spikes of comparative amplitude were identified near the QRS, then this
beat time is discarded due to high noise and the procedure ends here. Otherwise,
the beat time is added to the list of beats.

2. The list of beats is trimmed to contain only the beats from the last S seconds of
the measurement, by checking the age of each beat in the list and removing those
of an age more than S. The time window S is a parameter that should be adjusted
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to suit the system requirements. Since the unit of HR is in beats per minute, an
appropriate value for S is 60 (1 min). Lower values will make the calculation
more sensitive to changes in the HR, but also more susceptible to noise.

To enable reliable results when noisy data is used, only the most reliable beat-to-beat
intervals are used for averaging. For example, if a beat is not detected due to noise
(false negative), this creates a longer-than-average beat-to-beat interval. Similarly, if
the noise in the signal is falsely recognized as a beat (false positive), this creates two
shorter-than-average beat-to-beat intervals. Such intervals should be detected and
handled properly to eliminate their influence on the mean HR. The full procedure
for processing the list of beats is as follows:

1. The differences between all consecutive beats in the list are calculated, to obtain
a list of beat-to-beat intervals.

2. The mean beat-to-beat interval is calculated from the beat-to-beat interval list.
3. Those beat-to-beat interval outliers which deviate from the mean by more than

D are removed from the list. The value of D should be 50% or higher, otherwise
false positives might not be detected.

4. If less than N beat-to-beat intervals remain, the procedure is exited with an error
indication. This check enforces that at least N intervals are averaged for a more
accurate and more stable estimate. Higher values of N will result in a smoother
evolution of HR through time and should be preferred. Formally, N is down-
limited by 1 (at least one beat-to-beat interval is required to calculate the heart
rate) and up-limited by the minimal number of beats that can be detected in S
seconds. The upper limit is thus a function of the minimal heart rate and largely
depends on the intended use of the system.

5. The value of HR is calculated as (60/mean beat-to-beat interval).
6. The resulting HR value is then checked against the physical bounds for the human

HR. Very broad limits for HR, e.g. [20–250], can be selected, so that this last check
filters only the extreme periodic noise, such as the electric mains noise that can
appear on disconnected electrodes of the ECG body sensor.

If no error occurs, the calculated HR can be shown to the user (preferably rounded
to the nearest integer) or used for further analysis. Otherwise, an indication that the
HR cannot be reliably detected should be shown to the user.

The HR display should furthermore reflect the cases when no heartbeats have
been detected in some time (e.g., in 10 s). This should not be a cause for alarm,
since these cases are not necessarily caused by a cardiac arrest, but far more likely
by disconnected electrodes. At this point, the cause for absent beats can be further
analyzed, if measurements complementary to the ECG are also available from the
sensor. An indicator often used to discern whether the electrodes are attached or
not is the measurement of the electrical resistance between the electrodes; infinite
resistance implies that the electrodes are not attached, while near-zero resistance
implies a short circuit between the electrodes caused, for example, by submerging
the sensor in water. Both cases indicate an improper ECG body sensor usage.

Finally, the calculated HR could be written in a file, to complement the ECG
measurement. It could, however, be used only for providing an immediate information
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to the user; after all, a more advanced beat detection and heart rate calculation can
be performed off-line, when necessary. The choice whether to store HR information
or not is in the designer’s hands, because it represents a trade-off between additional
storage requirements and the ability to quickly visualize and search through the HR
values of past measurements.
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