
On Avoiding Erroneous Synchronization
in BPMN Processes

Flavio Corradini, Fabrizio Fornari, Chiara Muzi(B), Andrea Polini,
Barbara Re, and Francesco Tiezzi

University of Camerino, 62032 Camerino, Italy
{flavio.corradini,fabrizio.fornari,chiara.muzi,

andrea.polini,barbara.re,francesco.tiezzi}@unicam.it

Abstract. BPMN has acquired a clear predominance in the modeling
of organization processes. Since it is a fairly complex modeling language,
in some cases it is important to clarify the behavior of a modeled process,
especially when concurrency comes into play. We consider unsafe process
models with arbitrary topology, and we focus on the effects of concurrent
control flows activated within single process instances. We use text anno-
tations to clarify the concurrent behavior, and tokens with identity to
regulate the synchronizations. We illustrate the benefits of our approach
by a simple, yet realistic, scenario about paper reviewing.

Keywords: Modeling · Concurrency · BPMN · Erroneous
synchronization.

1 Introduction

Concurrent issues in modeling and programming has been discussed for years [1].
With the growing number of distributed applications run by complex organiza-
tions, a proper management of concurrency became more and more important.
Focusing on enterprise architecture Zachman identified the different dimensions
to consider in order to reason on, and understand, the dynamics of a complex
organization [2]. Among the others process modeling describes how an organiza-
tion structures its activities in order to achieve its goals [3]. Concurrency results
to be an issue with regards to the arrangement of these activities. Indeed, some of
them “can be performed simultaneously by several autonomous workers that may
coordinate their work by means of communication” [4]. Resolving concurrency
issues positively impacts on the organization performance.

To describe a process, de facto standard is BPMN 2.0 [5] provided by OMG.
It adopts a semi-formal approach combining a precisely specified syntax with
a token-based semantics given in natural language. A semi-formal description
is useful to allow different stakeholders to easily communicate and share ideas
so that BPMN can play the role of a bridge between business analysts and IT
developers [6].

c© Springer International Publishing AG 2017
W. Abramowicz (Ed.): BIS 2017, LNBIP 288, pp. 106–119, 2017.
DOI: 10.1007/978-3-319-59336-4 8

On Avoiding Erroneous Synchronization in BPMN Processes 107

Concerning the management of concurrency in BPMN, it is worth noticing
that multiple process instances is explicitly addressed in the specification, while
the effects of concurrent control flows within a single instance is underspecified.
This can easily occur due to concurrent control flows initiated through the use of
AND-split and OR-split gateways. The relevance of such an issue is pointed out
also by studies stating that an increase in the level of concurrency for BPMN
models implies an increase in modeling error probability [7,8]. Here, we focus on
the management of concurrent behavior in a single process instance.

Imposing well-structured rules contributes to control and minimize the level
of this form of concurrency by guaranteeing some correctness properties [9,10].
However, such restrictions are not easily applicable by all model designers.
Indeed, on the one hand, designers with limited modeling experiences are prone
to model spaghetti processes. On the other hand, more expert designers should
be free to express their creativity in modeling the process according to the reality
they feel [4]. In addition, not all process models with an arbitrary topology can
be transformed into equivalent well-structured one [11,12]. Summing up, advan-
tages of the structured process modeling style over the unstructured one (and
vice versa) have been a topic of active debates for decades [4]. Hence, processes
with arbitrary topology are still very common in practice.

In this work we do not impose any restriction on the usage of the modeling
notation. We refer here to process models with an arbitrary topology including
concurrent behavior, which may lead to the occurrence of erroneous synchro-
nizations. Such a kind of processes generally include sequence flows that can be
activated more than once at the same time, referred as unsafe processes. These
processes are typically discarded by the modeling approaches proposed in the lit-
erature, as they are over suspected of carrying bugs. Unfortunately, this attitude
significantly limits the use of concurrency in business process modeling, which is
an important feature in modern systems and organizations. Instead, we believe
that in these cases the designer could keep the ‘offending’ model and solve the
issue by better clarifying the intended behavior. In fact, the problem typically
is not in the model itself but it is due to the underspecification of the BPMN
standard in dealing with concurrency issues within a single process instance.

Our work is thus mainly motivated by the need of achieving synchronization
correctness in unstructured processes, which is still an open challenge. More
specifically, the contribution of the paper is an advanced use of BPMN text
annotations to enrich the model with information suitable to deal with con-
current execution of control flows. We also contribute by refining the process
execution semantics by taking into account token identities to avoid erroneous
synchronizations. The major benefit of our contribution is having the possibil-
ity to fully explore the modeling potentialities of BPMN notation in case of
processes with arbitrary topology and concurrent behavior.

The rest of the paper is organized as follows. Section 2 introduces a motivating
scenario, while Sect. 3 discusses on unsafe processes. Section 4 provides details on
our methodology, and Sect. 5 reports the works found in literature that inspired
our work. Finally, Sect. 6 closes the paper with some conclusions and future work.

108 F. Corradini et al.

2 A Motivating Scenario

To better clarify the issues we want to address, we introduce a scenario concern-
ing the management of the paper reviewing process of a scientific conference. We
use this scenario to motivate our approach, and throughout the paper to illus-
trate its technicalities. We rely therefore on a simplified version of the scenario,
as in [3, Sect. 4.7.2].

Fig. 1. Paper review process collaboration.

This is modeled in BPMN as the collaboration in Fig. 1. The participants are:
Program Committee (PC) Chair, the organizer of the reviewing activities.
For the sake of presentation, we assume that the considered conference has only
one chair, whose behavior is represented by the process within the PC Chair pool;
Reviewer, a person with knowledge in some of the conference topics. This role
is modeled as a multi-instance pool. Each process instance describes the tasks
that a reviewer has to accomplish to complete her/his assignment. For the sake
of simplicity, we choose to assign only one paper to each reviewer; Author, who
submitted a paper to the conference and acts on behalf of the other authors
(contact author). This role is modeled as a multi-instance blackbox pool since
details on the author behavior are not relevant to our purposes.

The reviewing process is started by the chair, who assigns (via a parallel
multi-instance activity) each submitted paper to a reviewer. Then, the chair
receives the reviews and evaluates them. In particular, as soon as a review is
received, the chair starts its evaluation and is immediately ready to receive
and process another review. This behavior is rendered in BPMN by means of
a loop, realized via an OR split gateway and a XOR join gateway, whose sin-
gle iteration consists of receiving a paper review and starting its evaluation.
The evaluation of each review is modeled by the process fragment enclosed by

On Avoiding Erroneous Synchronization in BPMN Processes 109

the AND split gateway and the AND join one. Indeed, the evaluation proceeds
along two concurrent control flows: (bottom branch) the chair checks the qual-
ity of the received review and, if necessary, he/she revises it to improve and
(top branch), according to the reviewer decision, the chair prepares the accep-
tance/rejection letter or, if the paper requires further discussion, the decision
is postponed. In the last part of the process (after the AND join gateway), the
chair attaches the review to the notification letter, and sends it to the contact
author.

The model described so far represents in an intuitive and compact way the
paper reviewing scenario. However, despite its simplicity, it hides some subtleties
that may affect its correct enactment. For instance, it may happen that an author
of a paper will receive a notification with attached the review of another paper.
We describe below how this kind of situations may occur, by making use of the
concept of token, thought of as a means to indicate the process elements that
are active during the execution.

Let us consider the reception of the review for a paper, say paper1. This
event produces a token that activates the OR split; assuming that other reviews
are waited, the OR gateway produces in its own turn two tokens: one is used to
reactivate the receiving message intermediate event, while the other to activate
the evaluation of paper1’s review. This latter token is split into two tokens
for activating the two evaluation branches described above. Then, a review for
another paper, say paper2, is received and dealt with in a similar way. The
evaluations of the two reviews proceed, hence, along two concurrent control
flows. After some steps, we may have the current situation: (i) paper1’s review
has been revised by the chair and a corresponding token reached the AND join
gateway from the bottom incoming flow, while the other paper1 token is still
marking the Discuss task, as the paper received a borderline score; (ii) paper2
received a reject score, thus, while the chair is still checking the review quality,
a paper2 token reached the AND join gateway from the top incoming flow.

In this situation, the two incoming flows of the AND join carry a token.
Thus, according to the standard semantics of BPMN, the AND gateway triggers
the flow through its outgoing sequence flow. In fact, the semantics does not
distinguish tokens related to the evaluation of the paper1’s review from those
related to the paper2’s one. This erroneous synchronization of tokens allows
the process execution to continue with the notification task, using the revised
review of paper1 and the rejection letter of paper2.

To address this problem, we advocate the use of tokens with identity. This
enables the AND join gateway to distinguish the two incoming flows, hence
avoiding the erroneous synchronization. In fact, only tokens with the same iden-
tity, i.e. referring to the same paper review, synchronize. When synchronization
cannot take place, the incoming tokens just wait for the arrival of ‘brother’
tokens.

Notably, in order to have the situation described above, during the execution
of the considered process more than one token must concurrently transit along
the same sequence flow. In the reviewing scenario this happens each time a

110 F. Corradini et al.

review is assigned as result of the OR Join behavior specification. Moreover, the
other condition leading to situations of erroneous synchronization is the presence
of concurrent control flows, where the generated multiple tokens are split and
then have to be synchronized. In our scenario, we have that the concurrent
control flows correspond to the two evaluation activities performed by the chair.
We present in Sect. 4 our approach to avoid erroneous synchronizations to take
place when the above conditions are met.

Other possible solutions have been proposed in order to overcome the con-
currency issues addressed by our approach. With reference to the introduced
reviewing scenario, a first solution proposes to model the PC Chair by means of
two processes: one that assigns papers, collects reviews and instantiates the other
(multi-instance) process, whose instances separately deal with the evaluation of
paper reviews. As no interaction can take place among these instances, erroneous
synchronizations cannot emerge. A second solution suggests to put in sequence
the various evaluation activities performed by the chair. This avoids concurrent
flows and, hence, the possibility of erroneous synchronizations. Compared with
our solution, where the chair behavior is modeled as a single process instance,
the first alternative does not fit well with the reality, as the behavior of a single
human person is split into two separate processes, one of which is multi-instance.
Missing to represent concurrency aspects can be dangerous when the model is
intended to model activities to be automated by information systems. The sec-
ond one, instead, imposes to put in sequence a set of activities that originally
were parallel. Most of all, the two alternative solutions require an alteration of
the original structure, as well as of the semantics, of the designed process. This
requires the designer to be expert enough to identify the concurrency issue in
his model and, then, to solve it by properly restructuring the model. Moreover,
these are ad-hoc application-specific solutions. Instead, our approach provides a
general solution to the problem, without altering the structure of the process. In
fact, we acts on the level of abstraction, which is lowered in order to distinguish
token identities.

3 On Unsafe Processes

Unsafe processes emerge only when the control flow is organized in such a way
that tokens can be dynamically generated during the process instance execu-
tion. In this section, we clarify how multiple tokens are generated, and how to
recognize processes that do that and hence may be subject to erroneous syn-
chronization problems.

First, we set the scene by introducing the necessary background notions. The
first key concept is that of token. The BPMN specification states that “a token
is a theoretical concept that is used as an aid to define the behavior of a process
that is being performed” [5, Sect. 7.1.1]. A token is commonly generated by a
start event, traverses the sequence flows of the process and passes through its
elements (enabling in this way their execution), and is consumed by an end event
when the execution terminates. Besides, tokens can be generated and consumed

On Avoiding Erroneous Synchronization in BPMN Processes 111

by gateways. The distribution of tokens in the process elements, called mark-
ing, defines a state of the process, as it indicates which activities are enabled
and which sequence flows have been selected. The process execution is therefore
defined in terms of marking evolution (i.e., changes of state).

Now, by relying on the above notions, we define when a process is unsafe.

Definition 1 (Unsafeness). A process is unsafe if and only if during its execu-
tion it can reach a marking where more than one token marks the same sequence
flow.

.

. . .

.

. . .

Fig. 2. Token generator structures (bounded number of tokens).

Fig. 3. Token generator structures (unbounded number of tokens).

Intuitively, a process is unsafe if it contains either a process fragment capable
of generating a bounded number of tokens (Fig. 2), or an unbounded number of
tokens, by resorting to a loop (Fig. 3). Notably, it is evident that well-structured
processes do not contain token generator fragments [10]. Looking at the structure
of the process in Fig. 1 referring our running example, we can identify a pair of
gateways, namely the first XOR and the OR, that form a fragment corresponding
to the structure in Fig. 3. To establish if a process is unsafe, we can translate the
BPMN model into a Petri Net [10] and resort to techniques for verifying safeness
properties of Petri Nets. For an account of these techniques we refer to [13,14].

4 An Approach to Erroneous Synchronizations Avoidance

To manage unsafe BPMN models, we need a fine-grained view on the tokens
flow within process instances. This allows us to distinguish tokens referring to
different concurrent control flows; e.g., in our motivating scenario we want to
distinguish the tokens referring to concurrent evaluations of different papers.
We achieve this by relying on the use of tokens with identity. Such identity can
evolve during the process execution, as the token can have different meanings
in different parts of a process. Thus, the token can be identified by means of
different (unique) identifiers, whose scope can be limited to the part of interest
in the process. Such scope is application specific, hence it must be the designer
in charge of explicitly specifying this information on the process model.

The proposed approach includes ingredients allowing to: (i) enrich BPMN
models with additional information, via specific text annotations on sequence

112 F. Corradini et al.

flows, called check-in and check-out, that enclose the part of process defining the
scope of a token identifier; and (ii) refine the BPMN semantics by taking into
account token identities to control synchronizations. In particular, such ingre-
dients extend the modeling phase of a BPMN process with the following steps:
Step 1 - The designer controls if the designed process is unsafe (see Sect. 3). If
the process is unsafe, the designer goes to step 2, otherwise the model can be
safely implemented; Step 2 - The designer introduces check-in and check-out
annotations in the process; Step 3 - The designer analyzes the process execu-
tion by means of a refined semantics that takes into account token identities,
thus avoiding erroneous synchronizations between distinguished tokens. If the
desired behavior is achieved, the model can be safely implemented; otherwise
the designer either goes back to step 2 to revise the positions of check-in and
check-out annotations, or redesigns the process model and reapplies the approach
from step 1.

Our choice of using text annotations for defining the scopes of token identi-
fiers, rather than introducing new modeling elements, is due to the intention of
avoiding a syntactic extension of the BPMN notation. This allows us to easily
apply our approach to existing BPMN models and, most of all, to use the whole
plethora of tools already available for BPMN. These are indeed the usual ben-
efits of approaches based on annotations, which nowadays are very common in
the field of programming languages.

In the following, we describe the proposed use of annotations and how they
permit refining the BPMN semantics. Then, we show how the approach works
into practice.

4.1 Check-in and Check-out

Check-in and check-out annotations are used to explicitly specify the scope of
token identifiers. In particular, Check-in represents a point of the process from
where the identity of the traversing tokens is enriched with a fresh identifier;
Check-out represents a point of the process where the identifiers created by
the corresponding check-in are no longer needed and, hence, are removed from
the identity of the traversing tokens.

Check-ins and check-outs are identified by their names, ranged over by n.
Each check-out must be correlated with one check-in, i.e. there is a check-in
in the process model with the same name; on the other hand, each check-in is
correlated with zero or more check-outs. Graphically, see Fig. 4, a check-in (resp.
check-out) is a standard BPMN text annotation with the peculiarity of being
attached to a sequence flow and of enclosing a text of the form Check-in (n)
(resp. Check-out (n)).

Check-in (n) Check-out (n)

Fig. 4. Graphical notation of check-in and check-out annotations.

On Avoiding Erroneous Synchronization in BPMN Processes 113

As already mentioned, a token can have different meanings in the process.
This can be achieved by means of more check-ins. Notably, a check-in can occur
inside a check-in/check-out block. Therefore, the identity of a token is defined as
a set T of pairs of the form (n, id), where n is the name of a check-in traversed
by the token and id is an identifier freshly1 generated by the check-in n. When
a token is generated by the activation of a start event, it is initialized with a
default identity represented by the set {(init, 0)}, where init is a reserved check-
in name and 0 is an identifier. The identity of a token changes only when it
traverses check-in or check-out points, while its flow during the process execution
is regulated by the standard BPMN execution semantics unless when it meets a
synchronization point (i.e., an AND or an OR join gateway). We explain below
the resulting refined BPMN semantics.

When a token traverses a check-in point n, its identity is not altered if it
already contains an identifier generated by n, otherwise the token identity is
enriched with a new identifier pair. Formally, the token identity evolution deter-
mined by a check-in is defined by function TraverseCheckIn that, given as input
a check-in name and the identity set of an incoming token, it returns as output
the identity of the outgoing token

TraverseCheckIn(n, T) =

{
T if (n, id) ∈ T

T ∪ {(n, fresh(n))} otherwise

where fresh(n) is a function that returns a fresh identifier for the check-in n
(notably, this function can be straightforwardly implemented by relying on a
counter local to each check-in). As an example, consider that during the exe-
cution of a process a token with identity T0 = {(init, 0)} passes through the
check-in named first . The token identity set evolves to T1 = {(init, 0), (first , 3)},
assuming that at the time of the check-in crossing fresh(first) returns 3. Then,
the token identity does not change until another check-in is reached. In par-
ticular, if the token then passes through the check-in second, the identity set
becomes T2 = {(init, 0), (first , 3), (second, 7)}, as fresh(second) returns 7. If the
token passes through the same check-in more than once, nothing happens if the
identifier produced by such check-in is still considered in the identity set. In
the example, if the token passes again through check-in first , its identity set
remains T2.

Dually, when a token traverses a check-out point n, its identity is not altered
if it does not contain an identifier generated by n, otherwise the corresponding
identifier pair is removed from the identity set of the token. Formally, the token
identity evolution determined by a check-out is defined by the following function.

TraverseCheckOut(n, T) =

{
T\(n, id) if (n, id) ∈ T

T otherwise

1 An identifier, generated by a check-in n, is called fresh if it is different from all other
identifiers previously generated by the check-in n.

114 F. Corradini et al.

Let us consider again the example previously discussed, where the token cur-
rently has identity T2. Now, if during the execution of the process the check-
out second is reached, then the identity set T2 changes into T1. Instead, if
the token reaches a check-out named first, then the identity set T2 becomes
T3 = {(init, 0), (second, 7)}, while nothing happens if the token reaches a check-
out named third.

Finally, as already said, when a token with identity traverses any element
of the process model different from a check-in, a check-out or a synchroniza-
tion point, the effect on the token and on the process execution is the one
prescribed by the standard semantics of BPMN. For example, if a token with
identity set T1 traverses an AND split gateway, a token with the same identity
T1 is produced for each outgoing sequence flow. Instead, when a token with iden-
tity traverses a synchronization point, the BPMN semantics synchronizes tokens
with the same identity, i.e., tokens whose identity sets coincide. In this way,
erroneous synchronizations, which mix up different concurrent control flows, are
avoided. Notably, the synchronization requires a complete match of identities
among tokens, which means that the identity sets must have the same pairs;
thus, for example, {(init, 0), (third , 3)} and {(init, 0), (first , 5)} do not match
with T1. It is also worth noticing that, in case of synchronization of tokens
whose identity is given by the default value {(init, 0)}, our refined semantics
coincides with the one prescribed by the BPMN standard. In other words, our
semantics is conservative with respect to the standard one, i.e., if no check-in
and check-out annotations are introduced in the model then the two semantics
coincide.

To sum up, once the BPMN model under design is enriched with check-ins
and check-outs, during its execution we can observe the evolution of token iden-
tities. In this way we are able to track the behavior of the process considering the
paths traversed by the tokens and, most of all, their synchronizations (ensured
to be non-erroneous).

4.2 The Approach at Work

In this section we illustrate how our approach can be applied in practice. Figure 5
shows how check-ins and check-outs are used to specify in which part of the
process, within the PC Chair pool, tokens represent the control flows of the
paper evaluation. For the sake of presentation, we identified three relevant parts
of the process named A, B and C. Moreover, to show the flow of each token, we
mark the corresponding path in the process with token identities (curly brackets
and the default identifier are omitted).

At the beginning of the execution, the token placed on the start event has the
default identity, represented by the set {(init, 0)}. Then, the token enters into,
and hence activates, Part A of the process, which is a token generator. Thus, for
each received review, a new token identity has to be generated. To this aim, the
designer introduced a check-in named n so that, as soon as a token traverses the
check-in, its identity is enriched with the new identifier (n, 1), denoting that the
token is related to review of paper1. The OR split gateway then splits the token

On Avoiding Erroneous Synchronization in BPMN Processes 115

Fig. 5. Paper reviewing process collaboration simulation with tokens id.

into two tokens with the same identity {(init, 0), (n, 1)}. One of the generated
tokens will go back into the loop, traversing the check-out point n and hence
loosing its paper1 identity. This shows the usefulness of the check-out annotation
in our approach: sometimes it is necessary that a token looses its identity as, e.g.,
it enters in a path where it is merely used as a control flow signal. In our case, the
only purpose of the considered token is to activate a new iteration of the loop; in
fact, without loosing its identity the token would fail in doing this. Instead, the
other paper1 token will go into Part B of the process. This token will cross the
AND split gateway and the evaluation of the paper1’s review will start. From
this point, the execution proceeds as described in Sect. 2, thus a new token with
identity {(init, 0), (n, 2)} enters in the game, and the marking represented by
the tokens whose identity is written in bold in Fig. 5 is reached. Now, the AND
join gateway has two incoming tokens, one per each incoming edge, and thus
evaluates their synchronization. Anyway, according to the refined semantics, the
synchronization does not take place, as the two incoming tokens have different
identities. Therefore, they remain in the edges waiting for their brothers. In this
way, the appropriate synchronization will take place, the tokens will go through
Part C of the process, and a notification to the author with attached the review
of the corresponding paper will be sent.

Fig. 6. Process structure combining check-ins and check-outs.

116 F. Corradini et al.

Now, in order to explain the use of more than one check-in and check-out in
a process, we show also how the approach applies to another example. For the
sake of readability, we show just the structure of the process, i.e. we omit its
task elements. The process structure in Fig. 6 is divided in three parts: A is a
token generator that produces a token for each of the outgoing edges of the AND
split; B corresponds to a token identity scope2; and C is a sub-part of B where
tokens identity must be further specialized. The figure shows the flow of tokens
in the structure, and in particular how token identities evolve in case of nested
scopes. Let us consider now a variant of this process, shown in Fig. 7. In this
case the structure of the process is enriched with a path from the inner scope
to an element of the enclosing one. In particular, this path is then merged with
a path of the enclosing scope (AND join gateway in Part A). In order to allow
the synchronization of tokens coming from these two paths it is necessary to
remove the identifiers created by check-in n2. This is properly done via a second
check-out n2. This example thus shows why we may need to associate two or
more check-outs to a single check-in.

Fig. 7. A variant of the process structure in Fig. 6.

5 Related Works

Several techniques have been developed and applied to specify and reason on
issues introduced by concurrency in software systems [15,16]. Concurrency is
recognized as an important aspect of processes [4], in particular when processes
have to be simulated and/or executed [17]. With reference to processes, three
different kinds of concurrency have been highlighted [18]: concurrent processes,
concurrent control flows inside a single process, and concurrent events/tasks.

The issues observed in managing concurrent control flows and related syn-
chronizations have been already considered by some workflow patterns [19].
Among the others, the “And-join generalization” pattern corresponds to the
general notion of AND-join where several execution paths are synchronized and
merged together. The pattern supports situations, such as those non-safe, where
one or more incoming branches may receive multiple tokens for the same process
instance. The intended semantics for the pattern tends to be unclear in situ-
ations involving non-safe behavior. Our paper aims to contribute to close this
2 Notably, no check-out is defined for n1, meaning that identifiers of the form (n1, id)

must be keep on token identities until the end of the execution.

On Avoiding Erroneous Synchronization in BPMN Processes 117

gap. In the BPMN specification we can observe a similar issue. The BPMN
standard uses the concept of token to facilitate the discussion about a process
execution flow, however it does not impose conditions on how to keep track of
tokens propagation.

Tokens with identity have been used in other research works. Nevertheless,
they are mainly used to manage concurrent processes rather than, as we propose,
to manage concurrent control flows. For instance Börger et al. discuss about the
use of tokens identity represented as hierarchy sets for tracing the sequence flow
of a process instance [20]. The notion of token identity has been also discussed
with reference to the characterization of the OR-join behavior [21]. Also Colored
Petri Nets, where tokens have identity (colors), have been used to represent
concurrent processes [22]. Finally, token identifiers have been also used to control
process execution in the interaction with database transactions enabled by the
represented process [23].

Multiple instance management raises problems when passing from design
time to run-time [24]. The problem of the run-time synchronization evaluation
is also introduced with regard to the OR-join by Dumas et al. [25]. In this regard
we believe that postponing the issues from the design to the implementation is
not a general solution. On one side because it is well known the importance of
early defect detection to avoid loss of time and money. On the other side because
the implementation of BPMN processes needs a transformation to executable
languages that can introduce further issues (i.e. those introduced by BPEL
[26–28]).

6 Conclusions and Future Work

In this paper we presented an approach to solve issues caused by the inherent
underspecification of synchronizations statements in BPMN models, and that
can emerge when unsafe processes with an arbitrary topology and concurrent
control flows are considered. To solve the issue we rely on the introduction of text
annotations, which allows the model designer to clarify the intended behavior in
terms of tokens with identity.

As a future work, we plan to investigate on possible strategies to automatize
the placement of check-in and check-out annotations, which would help us to
resolve issues regarding practical usage and scalability. Currently, this step is
completely manual and requires some efforts from the model designer, who has
to carefully arrange the annotations in the BPMN model. This could also help
to evaluate our approach and make the proposed BPMN extension easy-to-use,
useful and less prone to errors. Moreover, we plan to extend our BPMN for-
malisation in [29] with the check-in and check-out notion. Finally, we plan to
develop a software tool exploiting the potentialities of the approach to automat-
ically generate code that is free from synchronization issues from (annotated)
BPMN models. This will also enable a systematic validation of the proposal.

118 F. Corradini et al.

References

1. Cleaveland, R., Smolka, S.A.: Strategic directions in concurrency research. ACM
Comput. Surv. 28(4), 607–625 (1996)

2. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J.
26(3), 276–292 (1987)

3. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer (2007)

4. Polyvyanyy, A., Bussler, C.: The structured phase of concurrency. In: Bubenko, J.,
Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Con-
tributions to Information Systems Engineering, pp. 257–263. Springer, Heidelberg
(2013)

5. OMG: Business Process Model and Notation (BPMN V 2.0). Technical report
(2011)

6. Henderson, J.C., Venkatraman, N.: Strategic alignment: leveraging information
technology for transforming organizations. IBM Syst. J. 32(1), 4–16 (1993)

7. Mendling, J., Sanchez-Gonzalez, L., Garcia, F., La Rosa, M.: Thresholds for error
probability measures of business process models. J. Syst. Softw. 85(5), 1188–1197
(2012)

8. Moreno-Montes de Oca, I., Snoeck, M.: Pragmatic guidelines for business process
modeling. Technical Report 2592983, KU Leuven, November 2014

9. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines
(7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

10. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

11. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. Inf. Syst. 37(6), 518–538 (2012)

12. Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M.: Maximal structuring
of acyclic process models. Comput. J. 57(1), 12–35 (2014)

13. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

14. Van Der Aalst, W.M.P.: Workflow verification: finding control-flow errors using
petri-net-based techniques. In: Aalst, W., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000).
doi:10.1007/3-540-45594-9 11

15. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed petri
nets. Massachusetts Institute of Technology, Cambridge (1974)

16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

17. Vasilecas, O., Smaižys, A., Rima, A.: Business process modelling and simulation:
hybrid method for concurrency aspect modelling. J. Mod. Comput. 1(3–4), 228–
243 (2013)

18. Sörensen, O.: Semantics of Joins in cyclic BPMN Workflows. Ph.D. thesis,
Christian-Albrechts-University Kiel, Department of Computer Science (2009)

19. Russell, N., Ter Hofstede, A.H., Mulyar, N.: Workflow controlflow patterns: a
revised view. Technical Report BPM-06-22, BPMcenter.org (2006)

20. Börger, E., Thalheim, B.: A method for verifiable and validatable business process
modeling. In: Börger, E., Cisternino, A. (eds.) Advances in Software Engineer-
ing. LNCS, vol. 5316, pp. 59–115. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89762-0 3

http://dx.doi.org/10.1007/3-540-45594-9_11
http://dx.doi.org/10.1007/978-3-540-89762-0_3
http://dx.doi.org/10.1007/978-3-540-89762-0_3

On Avoiding Erroneous Synchronization in BPMN Processes 119

21. Thalheim, B., Sorensen, O., Borger, E.: On defining the behavior of OR-joins in
business process models. J. UCS 15(1), 3–32 (2009)

22. van Hee, K.M., Sidorova, N., van der Werf, J.M.: Business process modeling using
petri nets. Trans. Petri Nets Other Models Concurrency VII, 116–161. Springer
(2013)

23. Van Hee, K.M., Sidorova, N., Voorhoeve, M., others: Generation of database trans-
actions with petri nets. Fundamenta Informaticae 93(1–3), 171–184 (2009)

24. Barros, A.P., Grosskopf, A.: Multiple instance management for workflow process
models. Google Patents US Patent 8,424,011, April 2013

25. Dumas, M.G., Grosskopf, A., Hettel, T., Wynn, M.T.: Evaluation of synchroniza-
tion gateways in process models. Google Patents US Patent 8,418,178, April 2013

26. Recker, J.C., Mendling, J.: On the translation between BPMN and BPEL: con-
ceptual mismatch between process modeling languages. In: CAISE, pp. 521–532
(2006)

27. Weidlich, M., Decker, G., Großkopf, A., Weske, M.: BPEL to BPMN: the myth of a
straight-forward mapping. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol.
5331, pp. 265–282. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88871-0 19

28. Lapadula, A., Pugliese, R., Tiezzi, F.: Using formal methods to develop WS-BPEL
applications. Sci. Comput. Program. 77(3), 189–213 (2012)

29. Corradini, F., Polini, A., Re, B., Tiezzi, F.: An operational semantics of BPMN
collaboration. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539,
pp. 161–180. Springer, Cham (2016). doi:10.1007/978-3-319-28934-2 9

http://dx.doi.org/10.1007/978-3-540-88871-0_19
http://dx.doi.org/10.1007/978-3-319-28934-2_9

	On Avoiding Erroneous Synchronization in BPMN Processes
	1 Introduction
	2 A Motivating Scenario
	3 On Unsafe Processes
	4 An Approach to Erroneous Synchronizations Avoidance
	4.1 Check-in and Check-out
	4.2 The Approach at Work

	5 Related Works
	6 Conclusions and Future Work
	References

