
Tutorial: Asteroseismic Data Analysis
with DIAMONDS

Enrico Corsaro

Abstract Since the advent of the space-based photometric missions such as CoRoT
and NASA’s Kepler, asteroseismology has acquired a central role in our under-
standing about stellar physics. The Kepler spacecraft, especially, is still releasing
excellent photometric observations that contain a large amount of information
not yet investigated. For exploiting the full potential of these data, sophisticated
and robust analysis tools are now essential, so that further constraining of stellar
structure and evolutionary models can be obtained. In addition, extracting detailed
asteroseismic properties for many stars can yield new insights on their correlations
to fundamental stellar properties and dynamics. After a brief introduction to the
Bayesian notion of probability, I describe the code DIAMONDS for Bayesian
parameter estimation and model comparison by means of the nested sampling
Monte Carlo (NSMC) algorithm. NSMC constitutes an efficient and powerful
method, in replacement to standard Markov chain Monte Carlo, very suitable for
high-dimensional and multimodal problems that are typical of detailed asteroseis-
mic analyses, such as the fitting and mode identification of individual oscillation
modes in stars (known as peak-bagging). DIAMONDS is able to provide robust
results for statistical inferences involving tens of individual oscillation modes, while
at the same time preserving a considerable computational efficiency for identifying
the solution. In the tutorial, I will present the fitting of the stellar background signal
and the peak-bagging analysis of the oscillation modes in a red-giant star, providing
an example to use Bayesian evidence for assessing the peak significance of the fitted
oscillation peaks.
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1 Bayesian Statistics

Let us assume to consider a given physical problem, e.g., the fitting of an
observational dataset through the use of a predictive model. We term the dataset
D and the fitting model Mk, the latter having a number of k free parameters that we
represent with the k-dimensional parameter vector � D .�1; �2; : : : ; �k/. The number
of free parameters sets the dimensionality of the problem, to which a k-dimensional
parameter space ˝Mk is associated, representing the space of the solutions. Our aim
is to obtain optimal estimates of each free parameter and a corresponding statistical
weight of the model Mk that takes into account both the number of dimensions and
the fit quality. This statistical inference can be properly addressed through the means
of Bayesian statistics (Jeffreys 1961; Sivia and Skilling 2006; Trotta 2008; Bolstad
2013; Corsaro et al. 2013; Corsaro and De Ridder 2014). In particular, the core of
the statistical representation is given by Bayes’ theorem:

p.� j D;Mk/ D L .� j D;Mk/�.� j Mk/

p.D j Mk/
; (1)

where L .� j D;Mk/ (hereafter, L .�/ for simplicity) is the likelihood function,
which represents the way we sample the data, while �.� j Mk/ is the prior
probability density function (PDF) that reflects our knowledge about the model
parameters. The left-hand side of Eq. (1) is the posterior PDF, which has a key role
in the parameter estimation problem. Through a marginalization of the posterior
PDF, namely an integration over the uninteresting free parameters, we estimate the
free parameters of the model. Among the different estimators for each parameter,
in Bayesian statistics the median is usually preferred because it represents the most
resistant estimator, namely the least sensitive to possible outliers, and because it is
invariant for variable change.

The denominator on the right-hand side of Eq. (1) is instead a normalization
factor, generally known as the Bayesian evidence (or marginal likelihood), which
is defined as

E � p.D j Mk/ D
Z

˝Mk

L .� j D;Mk/�.� j Mk/d� : (2)

The Bayesian evidence is used for as a statistical weight for model comparison
because it encompasses the principle of the Occam’s razor, meaning that models are
favored if they provide a better fit to the data but are penalized if their number of
free parameters is larger than that of a competitor model. For our study, the model
comparison is performed by computation of the Bayes’ factor Bij D Ei=Ej (see
also Sect. 5), in which the model corresponding to a larger Bayesian evidence is
statistically more likely (Jeffreys 1961; Trotta 2008; Corsaro et al. 2013; Corsaro
and De Ridder 2014).
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2 Nested Sampling Monte Carlo

Since Eq. (2) is a multi-dimensional integral, with increasing number of dimensions
its evaluation becomes quickly unsolvable both analytically and by numerical
approximations. For overcoming this problem, a NSMC algorithm was developed
(Skilling 2004). This algorithm allows for an efficient evaluation of the Bayesian
evidence for any number of dimensions and provides the sampling of the posterior
probability distribution (PPD) for parameter estimation as a straightforward byprod-
uct. Detailed descriptions of the algorithm can be found in Skilling (2004), Sivia
and Skilling (2006), Feroz and Hobson (2008), Feroz et al. (2009), Corsaro and De
Ridder (2014).

In short, a prior mass X is defined such that

X.L �/ D
Z
L .�/>L �

�.� j M /d� ; (3)

with L � being some fixed value of the likelihood function. As a consequence, 0 �
X � 1 because �.� j M / is a PDF. Equation (3) is therefore the fraction of volume
under the prior PDF that is contained within the hard constraint L .�/ > L �. This
means that the higher is the constraining value L �, the smaller is the prior mass
considered. This is equivalent to considering a portion of parameter space delimited
by the iso-likelihood contour L .�/ D L �, in which also the maximum value Lmax

is contained.
In the NSMC, the sampling of the posterior PDF is performed by starting with

a prior mass X D 0 (thus considering the entire parameter space) and an initial
sampling of Nlive points that are distributed according to the prior, hence drawn
from the prior PDF itself. At each new iteration, a new sampling point is drawn
from the prior PDF with a corresponding likelihood value that satisfies the hard
constraint L > L �, with L � the worst likelihood value of the previous iteration.
The point associated to the worst likelihood value is then removed from the sample
and a new iteration starts. At the end, the prior mass reached corresponds to X D 1

and the sampling terminates in a region that is located around the maximum (or the
maxima) of the likelihood function.

2.1 The DIAMONDS Code

The high-DImensional And multi-MOdal NesteD Sampling (DIAMONDS) code1

is a C++11 software for Bayesian parameter estimation and model comparison that
uses a version of the NSMC algorithm. A major difficulty in implementing the

1DIAMONDS is publicly available at https://fys.kuleuven.be/ster/Software/Diamonds/ or through
its public GitHub repository at https://github.com/EnricoCorsaro/DIAMONDS.

https://fys.kuleuven.be/ster/Software/Diamonds/
https://github.com/EnricoCorsaro/DIAMONDS
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Fig. 1 Left panel: Three-dimensional ellipsoids containing two different clusters of sampling
points in the parameter space. Right panel: The enlargement of an ellipsoid used to optimize the
sampling efficiency throughout the nesting process

NSMC algorithm is the drawing from the prior PDF that satisfies the hard constraint
in the likelihood value of the drawn point. Following on the developments made
for other existing codes that implement NSMC (see, e.g., Shaw et al. 2007; Feroz
and Hobson 2008; Feroz et al. 2009), DIAMONDS overcomes this problem by
adopting a simultaneous ellipsoidal sampling algorithm (Corsaro and De Ridder
2014). This means that the posterior PDF is actually sampled by means of multi-
dimensional ellipsoids, which decompose the parameter space ˝Mk into small
hyper-volumes, as shown in the left panel of Fig. 1. Each ellipsoid can thus be used
to easily draw new points from, and it is reduced in its volume as the nested iteration
proceeds toward a termination condition. In particular, one crucial parameter to
control the behavior of the ellipsoids is the initial enlargement fraction, f0, which is
used to enlarge their axes along each direction for as many dimensions as imposed
by the number of free parameters. This parameter, whose effect is depicted in the
right panel of Fig. 1, tunes the efficiency of the sampling throughout the nested
iterations and therefore requires a careful calibration, which I show in Fig. 2 as a
function of the number of dimensions, k. A calibrated relation, already implemented
in DIAMONDS, reads

f0 D .0:267 ˙ 0:014/ k0:643˙0:017 (4)

and allows for using DIAMONDS for a wide range of applications without the
need to adjust the parameter f0 every time a new model or a different number of
parameters is involved in the analysis.

DIAMONDS includes a library of likelihood functions and prior PDFs that can
be used for a wide range of applications. As for any inference problem, the code
requires an input dataset, a model to be fit to the observations, and the adoption
of a given likelihood function and of prior PDFs for each free parameter of the
model. The termination condition that allows the code to finalize its computations
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Fig. 2 The initial enlargement fraction f0 as a function of the number of dimensions k involved in
the inference problem. The 152 independent computations provided by Corsaro et al. (2015) used
4 clusters each to sample the parameter space. The size of the circles is proportional to the number
of processes for which the same f0 was used. The colored band shows the 68.3% confidence region
for the power law fit (thick red line)

is based on the remaining Bayesian evidence, as described by Keeton (2011) (see
also Corsaro and De Ridder 2014 for additional details). Instructions on how to
configure the code and a description of its different parts can be found in the online
user guide.2 In the following examples, DIAMONDS is set up in different ways
depending on the specific inference problem that is considered.

3 Fitting the Background Signal

The first step in the asteroseismic analysis process is to estimate the background
signal in the power spectrum of a star.3 This is an important phase of the analysis
because if not properly performed it can introduce significant systematics in the
asteroseismic parameters that characterize individual oscillation modes (Corsaro
and De Ridder 2014). The first part of the tutorial is therefore focused on the
estimation of the background signal in the red giant KIC 12008916, observed by
NASA’s Kepler mission (Borucki et al. 2010; Koch et al. 2010) for more than 4

2A comprehensive user guide to DIAMONDS can be found at https://fys.kuleuven.be/ster/
Software/Diamonds/DIAMONDS_UserGuide.
3The power spectrum is usually converted into a power spectral density, PSD, to allow for
direct comparisons independently of the observing length of the data. Its units are expressed in
ppm2 �Hz�1.

https://fys.kuleuven.be/ster/Software/Diamonds/DIAMONDS_UserGuide
https://fys.kuleuven.be/ster/Software/Diamonds/DIAMONDS_UserGuide
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years. The dataset has been prepared following García et al. (2011, 2014), thus
optimized for asteroseismic analysis.

In order to run the tutorial, one needs to have the DIAMONDS code already
installed in a local machine. This procedure can be accomplished by following
the instructions provided in the installation guide section of the code website.4

Subsequently it is required to download the code extension for background fitting,5

containing the specific fitting model, priors, and dataset to be used in the tutorial.
The extension contains a library of Python routines that can be used to plot the
results obtained with DIAMONDS. We note that throughout this tutorial we will
adopt an exponential likelihood function, as appropriate for datasets deriving from a
Fourier transform of a time series (Duvall and Harvey 1986; Corsaro and De Ridder
2014).

The background model, considered as a function of the cyclic frequency in the
PSD of the star, reads

Pbkg .�/ D W C R .�/ ŒB .�/ C G .�/� ; (5)

where W is a flat noise level and R .�/ the response function that considers the
sampling rate of the observations for Kepler data,

R .�/ D sinc2

�
��

2�Nyq

�
; (6)

with �Nyq D 283:212 �Hz the Nyquist frequency in the case of long-cadence data
(Jenkins et al. 2010). We fit three Harvey-like profiles (Harvey 1985) given by

B .�/ D
3X

iD1

�a2
i =bi

1 C .�=bi/
4

; (7)

with ai the amplitude in ppm, bi the characteristic frequency in �Hz, and � D
2
p

2=� the normalization constant (Kallinger et al. 2014). The power excess
containing the oscillations is described as

G .�/ D Hosc exp

"
� .� � �max/2

2�2
env

#
(8)

4The installation guide of DIAMONDS can be found at https://fys.kuleuven.be/ster/Software/
Diamonds/installation-guide.
5The Background extension of DIAMONDS can be downloaded from https://fys.kuleuven.be/
ster/Software/Diamonds/package/AzoresSC16_background_extension.tar.gz. Further information
on how to run the tutorial can be found at http://www.iastro.pt/research/conferences/faial2016/
files/presentations/TA1.pdf.

https://fys.kuleuven.be/ster/Software/Diamonds/installation-guide
https://fys.kuleuven.be/ster/Software/Diamonds/installation-guide
https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_background_extension.tar.gz
https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_background_extension.tar.gz
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
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Fig. 3 Background fit of the star KIC12008916 by means of DIAMONDS. The original PSD is
shown in gray. The red thick line represents the background model without the Gaussian envelope.
The cyan dotted line accounts for the additional Gaussian component. The individual components
of the background model as given by Eq. (5) are shown by blue dot-dashed lines

and is only considered when fitting the background model to the overall PSD of the
star. The global model given by Eq. (5) therefore accounts for ten free parameters.
The resulting fit obtained with DIAMONDS is shown in Fig. 3.

Questions & Problems:

• For any of the estimated free parameters, which Bayesian parameter
estimator should be preferred among the mode, the median and the mean?
And why?

• What is the value of �max for this star?
• Could you guess what the evolutionary stage of this red-giant star is from

its �max value?
• Using your fitted �max, and assuming 	� D12:9 �Hz as the large frequency

separation (Ulrich 1986), Teff D 5100 K, and solar reference values
�max,ˇ D 3100 �Hz, 	�ˇ D 134:9 �Hz, and Teff,ˇ D 5777 K, estimate
the mass and radius of the star through scaling relations.



144 E. Corsaro

4 Fitting the Oscillation Modes

The second part of the tutorial is related to the fitting of the oscillation modes. For
this purpose it is necessary to download and install the extension of DIAMONDS
related to the peak-bagging analysis,6 similarly to what has been done for the
background.

The model that is taken into account is the one presented by Corsaro et al. (2015)
and includes a mixture of resolved and unresolved oscillation mode profiles. For
resolved modes, i.e., modes with lifetimes much shorter than the total observing
time, the typical profile is a Lorentzian expressed as

Pres;0 .�/ D A2
0= .�
0/

1 C 4
�

���0


0

�2
; (9)

where A0, 
0, and �0 are the amplitude in ppm, the linewidth in �Hz, and the
centroid frequency in �Hz, respectively, and represent the three free parameters to
be estimated during the fitting process. For the unresolved modes, i.e., modes with
a lifetime comparable or even longer than the total observing time, we consider the
profile

Punres;0 .�/ D H0 sinc2

�
� .� � �0/

ı�bin

�
; (10)

where H0 and �0 are the height in PSD units and the centroid frequency in �Hz of
the oscillation peak, respectively, and must be estimated during the fitting process,
while ı�bin is fixed as the frequency resolution of the dataset, here corresponding to
0:008 �Hz.

Following Corsaro and De Ridder (2014), Corsaro et al. (2015), we fix the
background parameters corresponding to the white noise, W D W , and the Harvey-
like profiles, B .�/ D B .�/, to the median values estimated in the tutorial in Sect. 3.
Then, the final peak-bagging model can be represented as

P .�/ D W C R .�/
�
B .�/ C Posc .�/

	
; (11)

where

Posc .�/ D
NresX
iD1

Pres;i .�/ C
NunresX
jD1

Punres; j .�/ ; (12)

6The PeakBagging extension of DIAMONDS can be downloaded from https://fys.kuleuven.be/
ster/Software/Diamonds/package/AzoresSC16_peakbagging_extension.tar.gz. The extension con-
tains a library of Python routines that can be used to plot the results obtained with DIAMONDS.
Further informations on how to run the tutorial can be found at http://www.iastro.pt/research/
conferences/faial2016/files/presentations/TA1.pdf.

https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_peakbagging_extension.tar.gz
https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_peakbagging_extension.tar.gz
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
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Fig. 4 Peak-bagging fit of the star KIC 12008916 by means of DIAMONDS. The original PSD
is shown in gray. The red thick line represents the estimated peak-bagging model [cf. Eq. (11)],
while the blue dashed lines mark the background signal and a scaled (by a factor of eight) version
of it

with Nres and Nunres the number of resolved and unresolved peaks to be fitted,
respectively. Clearly, any inference problem that takes into account this peak-
bagging model will involve a total number of 3Nres C 2Nunres free parameters. The
result of the fit for KIC 12008916 done with DIAMONDS is shown in Fig. 4.

Questions & Problems:

• In Fig. 4 spot the positions of the radial (` D 0), quadrupole (` D 2) and
octupole (` D 3) modes, as follows from the asymptotic relation of the
acoustic modes (Tassoul 1980).

• Which oscillation modes are the most p-dominated mixed modes?
• Compute the spacing (expressed in seconds) between the frequency

�`D1;mD0 D 165:178 �Hz and another frequency that has to be computed
as the average between the two frequency centroids of the unresolved
profiles having the largest frequency (in the range 166–168 �Hz). The
frequency centroids of the unresolved profiles must be those from the
fitting results obtained with DIAMONDS.

• Compare the derived period spacing in the 	P–	� diagram shown in
Fig. 8 of Corsaro et al. (2012) and determine the evolutionary stage of
the star assuming 	� D12:9 �Hz.
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5 Peak Significance Test

As shown by Corsaro and De Ridder (2014) and later on applied by Corsaro
et al. (2015) on red-giant stars, by means of the Bayesian evidence it is possible
to perform a direct model comparison aimed at assessing the significance of a
given oscillation peak. The final part of the tutorial with DIAMONDS foresees the
computation of the peak significance test for one oscillation mode fitted during the
peak-bagging analysis. In order to achieve this result, it is required that the peak-
bagging presented in Sect. 4 is performed with two different models. By selecting a
specific oscillation peak that we want to test, then the competing models to be fitted
to the PSD of the star have to be defined as follows: (1) the first model, M1, must
contain the entire set of oscillation peaks to be fitted, including the peak that we
intend to test; (2) the second model, M2, must contain the entire set of peaks to be
fitted, except the peak that we intend to test. This implies that the parameters that
configure the prior PDFs of the models M1 and M2 should be identical, except for
the peak to test. Using the set up of the PeakBagging extension of DIAMONDS,
this can easily be achieved by removing the prior parameters of the corresponding
peak when we have to fit model M2. Among the outputs of DIAMONDS, there
will be the Bayesian evidence.7 The best model, or statistically more likely, can be
identified by computing the Bayes’ factor (see Sect. 1) as lnB1;2 D ln E1 � ln E2. If,
for example, lnB1;2 > 5, according to Jeffreys’ scale of strength for the evidence
(Jeffreys 1961; Trotta 2008) we then conclude that the peak is significant and that it
should be considered as a real oscillation mode.

Questions & Problems:

• Why are two different models needed to test the significance of an
individual peak?

• How many models are required to test the significance of two peaks?
• Perform the peak significance test for the ` D 3 mode shown in Fig. 4 by

means of DIAMONDS.
• Provide the value of the natural logarithm of the Bayes’ factor for the

aforementioned oscillation mode and assess the strength of the evidence
according to Jeffreys’ scale.

Acknowledgements This work has been funded by the European Community’s Seventh Frame-
work Programme (FP7/2007–2013) under grant agreement no. 312844 (SPACEINN).

7More details can be found at http://www.iastro.pt/research/conferences/faial2016/files/
presentations/TA1.pdf.

http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
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