
Astrophysics and Space Science Proceedings 49

Tiago L. Campante
Nuno C. Santos
Mário J. P. F. G. Monteiro    Editors 

Asteroseismology 
and Exoplanets: 
Listening to the 
Stars and Searching 
for New Worlds
IVth Azores International Advanced 
School in Space Sciences



Astrophysics and Space Science Proceedings

Volume 49



More information about this series at http://www.springer.com/series/7395

http://www.springer.com/series/7395


Tiago L. Campante • Nuno C. Santos •
Mário J.P.F.G. Monteiro
Editors

Asteroseismology
and Exoplanets: Listening
to the Stars and Searching
for New Worlds
IVth Azores International Advanced School
in Space Sciences

123



Editors
Tiago L. Campante
School of Physics and Astronomy
University of Birmingham
Birmingham, United Kingdom

Nuno C. Santos
Instituto de Astrofísica e Ciências do

Espaço
Universidade do Porto
Porto, Portugal

Mário J.P.F.G. Monteiro
Instituto de Astrofísica e CiOencias

do Espaço
Universidade do Porto
Porto, Portugal

ISSN 1570-6591 ISSN 1570-6605 (electronic)
Astrophysics and Space Science Proceedings
ISBN 978-3-319-59314-2 ISBN 978-3-319-59315-9 (eBook)
DOI 10.1007/978-3-319-59315-9

Library of Congress Control Number: 2017946182

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



As armas e os barões assinalados,
Que da ocidental praia Lusitana,
Por mares nunca de antes navegados,
Passaram ainda além da Taprobana,
Em perigos e guerras esforçados,
Mais do que prometia a força humana,
E entre gente remota edificaram
Novo Reino, que tanto sublimaram;

— Luís de Camões, in Os Lusíadas



Foreword to Part I

Vibrations of an object depend on the overall characteristics, such as size, of the
object and its more detailed internal properties. The sound of a violin is very
different from that of a double bass, but at a more subtle level there are also
differences between a violin built by Stradivarius and one bought in a cheap store.
This principle is the basis for the use of waves and vibrations to probe the properties
of objects, from machinery over seismic studies of the Earth to stars.

Stars may support a broad range of oscillations. Whether or not these are useful
as diagnostics of the stars depends on their excitation to observable levels. Here I
concentrate on the so-called solar-like oscillators where, as in the Sun, the modes are
intrinsically stable and would damp out if not excited by some external source. That
source is the vigorous near-surface convective motions, with speed approaching the
local speed of sound, found in relatively cool stars with outer convection zones.

Solar oscillations were first detected in the early 1960s, but it was only in 1975
that their nature as normal modes of the Sun was definitely established. The modes
initially identified had short horizontal wavelengths, but the presence of modes
in the 5-min range of very large scale including radial (spherically symmetric)
oscillations was established a few years later. The diagnostic potential of these
observations for the study of the solar interior was immediately obvious, and indeed
even the early observations led to interesting inferences on, for example, the depth
of the solar convective envelope. Also, early results strongly indicated that models
of the solar core were essentially correct, ruling out attempts to explain the low
observed flux of electron neutrinos from the Sun in terms of modifications to solar
modelling and supporting the idea of neutrino oscillations. As a result of these early
successes, several projects were developed to carry out detailed observations of solar
oscillations, culminating in the ground-based GONG network of observing stations
and instruments on the SOHO satellite, both starting operations in the middle of the
1990s.

Analysis of the helioseismic observations has resulted in remarkably detailed
inferences of structure and rotation in most of the solar interior. The latitudinal dif-
ferential rotation observed at the solar surface has been found to extend throughout
the convection zone, with a sharp transition to nearly solid-body rotation in the
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viii Foreword to Part I

radiative interior. The resulting rotational shear is believed to play an important
role in the generation of the solar magnetic activity. The sound speed in the solar
interior was determined with very high accuracy, agreeing within a fraction of a per
cent with existing models. Revised determinations of the solar surface composition
have, however, caused changes in solar models, greatly increasing the discrepancy.
The origin of this discrepancy is still to be found.

The solar excitation mechanism is expected to be active in all stars with
substantial outer convection zones. However, the very small amplitudes of these
modes make the observations challenging, and it was only in the late 1990s that
definite detections of solar-like oscillations in other stars were made. Subsequent
observing campaigns, in many cases using some of the largest telescopes in the
World to observe bright stars, resulted in analysis of the oscillations in a few
main-sequence and red-giant stars. However, a major breakthrough in the field of
solar-like asteroseismology came with space-based photometry from the CoRoT
and Kepler missions, launched in 2006 and 2009, respectively, with the combined
goals to search for exoplanets and carry out asteroseismology. These missions
have provided high-quality asteroseismic data for hundreds of main-sequence and
subgiant stars, and tens of thousands of red giants.

Early results have focused on the determination of overall stellar parameters,
such as mass, radius and age. This has been particularly important in the cases
where asteroseismic characterisation was possible for hosts of exoplanets. A
second important application of such asteroseismic surveys is the use in galactic
archaeology, i.e., the investigation of the structure and evolution of the Milky
Way Galaxy based on characterising the present distribution, ages and composition
of stars. Here asteroseismology of red giants plays a crucial role in providing
determinations of distances and ages of stars over a large part of the Galaxy.

From the point of view of stellar astrophysics the asteroseismic data provide
detailed tests of the internal structure and in many cases rotation of the stars.
An important example is the study of the rotation of subgiant and red-giant stars
which has demonstrated the need for so far unidentified mechanisms of angular-
momentum transport to explain the comparatively slow rotation of the stellar cores.
Detailed analysis of the data in terms of stellar internal structure is just starting.
Indeed, the already available data from CoRoT and Kepler will remain an invaluable
resource for stellar astrophysics for a long time to come. More data will come from
the NASA TESS mission scheduled for launch in 2017 and the ESA PLATO mission
with expected launch in 2025.

The fields of helio- and asteroseismology remain extremely rich in the potential
for further scientific investigations and breakthroughs, towards the goal of obtaining
a proper physically based understanding of stellar structure and evolution. I hope
that the school, and this volume, will inspire a new generation of young scientists to
work with the marvellous data now available and expected, and tackle these issues.
You will surely have fun!

Aarhus, Denmark Jørgen Christensen-Dalsgaard
January 2017



Foreword to Part II

Since the Copernican revolution, philosophers and astronomers have interpreted
the nearly circular and coplanar orbits of the Sun’s family of planets as clues to
their origins. The Sun contains over 99% of the solar system’s mass, but 98% of
its angular momentum resides in the planets. In the eighteenth century, Kant and
Laplace hypothesised that if the Sun had condensed from a contracting cloud of
gas, any residual angular momentum must necessarily result in the formation of a
flattened disc of nebular material. If planets condensed within such a nebular disc,
near-circular orbits and coplanarity would be assured. Others were less convinced.
In the following century, James Clerk Maxwell argued that Keplerian shear within
the disc would inhibit condensation of planetary bodies. Early in the twentieth
century, James Jeans proposed instead that planet formation was a rare process
occurring in tidal streams resulting from close stellar encounters. Planets were either
almost impossibly rare products of close stellar encounters or commonplace natural
by-products of the star formation process itself.

The advent of infrared astronomy in the 1980s produced the first indirect
evidence that protoplanetary systems might be common features of young stars
in star-forming regions like Taurus-Auriga. The spectral energy distributions of
T Tauri stars were found to have multiple components: the stellar spectrum
itself, an ultraviolet component arising from accretion-driven heating of the outer
stellar atmosphere, and an extended infrared tail emitted by circumstellar dust at
temperatures from 1000K down to a few tens of K. Links between emission-line
behaviour and the infrared luminosity suggested active disc accretion might be
present. These conclusions were vindicated spectacularly by early Hubble Telescope
images showing protoplanetary discs clearly silhouetted against the background of
the Orion Nebula.

The prospects of detecting mature planets remained bleak in the face of angular
separations smaller than the seeing limitations on ground-based observations, and
contrast ratios ranging from billions for reflected light to thousands for gas giants
viewed at thermal-infrared wavelengths. In the end, the breakthrough came not
from advances in direct imaging but from clever use of indirect dynamical effects.
As long ago as 1952, Otto Struve had proposed that if Jupiter-mass planets
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x Foreword to Part II

existed in close orbits about their parent stars, it should be possible to detect
the Doppler effect of the host star’s reflex motion about the system’s centre of
mass. Moreover, some 10% of planets in few-day orbits would transit the face
of the host star, yielding a periodic, temporary reduction in stellar flux of 1
or 2% for a Jupiter-like gas giant. The 1992 detection by Alex Wolczcan and
Dale Frail of a family of planets around pulsar PSR J1300+1240 was achieved
through modulation of the pulse period by reflex orbital motion. Three years later,
Michel Mayor and Didier Queloz detected the 4.2-day, 56 m s�1 reflex motion of a
normal Sun-like star, 51 Peg, around an unseen object with about half the mass of
Jupiter.

Encouraged by this result, other teams carrying out high-precision radial-velocity
searches announced further discoveries of Jupiter-mass planets in short-period orbits
around F, G and K main-sequence stars. Their gas-giant nature was confirmed
with the detection of transits in HD 209458b by David Charbonneau and Tim
Brown. Their instrument was the prototype for a new type of planet search: wide-
field transit surveys using small off-the-shelf camera lenses on robotic mounts,
backed by science-grade CCDs. Over the ensuing decade, transit surveys such as
TrES, WASP, HAT and XO eventually amassed hundreds of hot-Jupiter detections,
while high-precision, long-duration radial-velocity surveys pushed towards ever
longer orbital periods and lower planet masses. Space-based surveys such as
MOST, CoRoT and Kepler revealed dozens, then hundreds, then thousands of
transiting planets with radii too small to detect from the ground. The exquisite
photometric performance and uninterrupted observations of these missions also
made asteroseismic characterisation of exoplanet host stars possible for the first
time. Radial-velocity surveys reached the threshold of 1 Earth mass at about
the same time as Kepler detected the first transits of Earth-sized planets, in
2012.

We are now moving from an era of discovery into one of characterisation.
Many stars possess compact systems of multiple coplanar planets in orbits closer
than Mercury’s orbit about the Sun. Others possess hot Jupiters and little else;
others still have gas-giant planets in highly eccentric orbits. The orbital planes
of a significant fraction of hot Jupiters are strongly inclined with respect to their
stars’ rotation axes. Some are even retrograde. Although it is now clear that Kant
and Laplace were on the right track after all, we still have a long way to go in
understanding the detailed physical processes that take place in protoplanetary discs,
and the compositions and orbital properties of the planetary bodies that eventually
emerge.

In only 20 years, exoplanetary science has grown into one of the most challenging
and rewarding areas of research in observational and theoretical astrophysics. It
is a rich mix of superbly engineered instrumentation, large-scale data handling,
orbital dynamics, gas and dust chemistry, and stellar physics. The latter is vital: the
properties of the host star are intimately connected to the composition of a planetary
system, and its surface activity presents a challenge to our efforts to characterise
small planets. The techniques presented at the school and in this volume are the
foundations on which our explorations of worlds around other stars are based. I
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hope that it will prove useful and inspirational to all who read it. With the TESS,
CHEOPS and PLATO missions on the near horizon, the adventure is only just
beginning.

St Andrews, Scotland Andrew Collier Cameron
January 2017



Preface

This volume is a collection of original review articles resulting from the lectures
presented at the IVth Azores International Advanced School in Space Sciences on

ASTEROSEISMOLOGY AND EXOPLANETS:
LISTENING TO THE STARS AND SEARCHING FOR NEW WORLDS

17–27 July 2016, Horta, Faial, Azores Islands, Portugal
Website: http://www.iastro.pt/research/conferences/faial2016/

This Advanced School was jointly organised by the Instituto de Astrofísica e
Ciências do Espaço – Universidade do Porto, the Universidade dos Açores and the
University of Birmingham. Its main goal was to address the topics at the forefront of
scientific research being conducted in the fields of stellar physics and exoplanetary
science, being mainly aimed at PhD and MSc students in any field of Astrophysics.
The School was an excellent opportunity for the young researchers to network with
fellow students and lecturers, thereby promoting awareness of areas outside the
main specialisation of the student, and potential cross-fertilisation of techniques and
concepts.

The School covered two scientific topics that share many synergies and
resources: Asteroseismology and Exoplanets. Therefore, the program was defined
with a clear strategy of building opportunities for cooperation and sharing of
methods that will benefit both communities. This cooperation has experienced great
success in the context of past space missions such as CoRoT and Kepler. Upcoming
photometry and astrometry from space, as well as complementary data from ground-
based networks, will continue to foster this cooperation. Observations of bright stars
and clusters in the ecliptic plane are being made by the repurposed K2 mission,
and NASA’s TESS and ESA’s CHEOPS missions will soon start obtaining similar
data over the entire sky, thus allowing the detection and precise characterisation
of planets around nearby stars. ESA’s PLATO mission will then build upon these
successes by providing photometric light curves on a wealth of stars. Ground-
based spectroscopy from state-of-the-art instruments will complement the satellite
data for the brightest stars in the sky. This includes projects such as the Stellar
Observations Network Group (SONG) and a whole new generation of high-
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xiv Preface

precision spectrographs being developed for the ESO, like the Echelle SPectrograph
for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO).

Lectures at the School included both a teaching and hands-on component,
respectively consisting of a series of theoretical courses and tutorials. These were
presented by a group of young, dynamic lecturers, who have already established
themselves as leaders in their respective fields of research. This volume is then
the collection of these lectures, covering in detail several critical methods and
descriptions that are central to the School’s two main thematic lines. As such, this
volume constitutes a valuable and timely review that should prove useful to a new
generation of PhD students and young postdocs in the fields of Asteroseismology
and Exoplanets. We would like to thank all lecturers for accepting the challenge
to take part in this School and for submitting the manuscripts for inclusion in this
volume.

We are very grateful for the hard work and dedication invested by all participants
in the School, in particular by the students, who have contributed to a very pleasant
and friendly atmosphere (the evenings spent at Peter’s shall never be forgotten!). A
special thanks goes to the Chair of the Local Organising Committee, João Miguel
Ferreira (Universidade dos Açores), for his dedication and thorough planning, and
to Elsa Silva for her invaluable support over the entire duration of the School.

The organisation of the School and the publication of the present volume were
supported by the Instituto de Astrofísica e Ciências do Espaço – Universidade
do Porto (IA–U.Porto) through funds from European Commission’s SPACEINN
Project on ‘Exploitation of Space Data for Innovative Helio- and Asteroseismology’
(FP7-SPACE-2012-312844), as well as by the Fundação para a Ciência e a Tec-
nologia (FCT) through national funds (UID/FIS/04434/2013, PTDC/FIS-AST/1526/2014)
and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672, POCI-01-0145-

FEDER-016886). The School also received support from the Governo dos Açores
(81-9/168-1355), the Stellar Astrophysics Centre – Aarhus University through Grant
DNRF106 from the Danish National Research Foundation, the University of Birming-
ham through funds from the UK Science and Technology Facilities Council (STFC),
and from a private donation made by Eng.o Adelino Campante.

Birmingham, UK Tiago L. Campante
Porto, Portugal Mário J.P.F.G. Monteiro
Porto, Portugal Nuno C. Santos
March 2017
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Stellar Evolution and Modelling Stars

Víctor Silva Aguirre

Abstract In this chapter I give an overall description of the structure and evolution
of stars of different masses, and review the main ingredients included in state-of-
the-art calculations aiming at reproducing observational features. I give particular
emphasis to processes where large uncertainties still exist as they have strong impact
on stellar properties derived from large compilations of tracks and isochrones, and
are therefore of fundamental importance in many fields of astrophysics.

1 Stars, Why Bother?

A comprehensive view of how stars evolve and interact with their surrounding
medium is crucial for many fields in astrophysics. Stars are the main sources
of chemical evolution in the Universe (e.g., Matteucci 2016), and their physical,
chemical, and kinematic characteristics preserve information about their birth
environment and subsequent evolution to present age. For these reasons, the
integrated properties of stellar populations can be used as tools to understand the
evolution of distant galaxies (see, e.g., Conselice 2014, and references therein).
When individual stars can be resolved by observations, as is the case in our Galaxy,
accurately characterising them can help unveiling the main processes responsible
for the formation history and evolution of the Milky Way (for a review, see Bland-
Hawthorn and Gerhard 2016).

Stars are also the progenitors of objects and events of high astrophysical impor-
tance, such as supernovae, gamma-ray bursts, planetary nebulae, and stellar black
holes (e.g., Herwig 2005; Camenzind 2007; Smartt 2009; Maoz et al. 2014; Kumar
and Zhang 2015, and references therein). Last, and definitely not least, stars are the
hosts of exoplanets, and our ability to characterise planetary systems (from size and
mass to their atmospheric composition) depends critically on having an accurate rep-
resentation of the parent star’s properties (e.g., Winn and Fabrycky 2015). You only

V.S. Aguirre (�)
Department of Physics and Astronomy, Stellar Astrophysics Centre (SAC), Aarhus University,
Ny Munkegade 120, DK-8000 Aarhus C, Denmark
e-mail: victor@phys.au.dk

© Springer International Publishing AG 2018
T.L. Campante et al. (eds.), Asteroseismology and Exoplanets: Listening
to the Stars and Searching for New Worlds, Astrophysics and Space Science
Proceedings 49, DOI 10.1007/978-3-319-59315-9_1
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4 V.S. Aguirre

know your planet as well as you know your star. From these examples it is clear that
stars are the building blocks of astrophysics, and understanding them holds the key
to unveiling the relevant physical processes in many areas of astronomical research.
We must discover what are the main drivers of stellar evolution and the impact in
observable properties that can help us decoding the wonderful nature of stars.

The luminosity flux radiated from the surface of a star is a natural consequence
of the intricate processes taking place in the stellar interior. How this flux evolves
and changes with time, the field concerning with stellar structure and evolution, is
routinely described to a considerable extent as a ‘solved’ problem in astrophysics.
However, and although the main ingredients of the theory of stellar evolution are
well established, large uncertainties still remain in cases where empirical evidence is
lacking or the physical descriptions are not well constrained and thus parametrised
to a simpler form. How stars produce, transport, and emit their energy; how they
burn and mix chemical elements; how is the stellar matter constituted and what is its
state etc., are some of the many relevant topics where still many uncertainties exist.

There are several excellent textbooks on stellar structure and evolution written
by notable astronomers, and I encourage the reader to explore titles such as Cox and
Giuli (1968) (recently updated by Weiss et al. 2005), Clayton (1983), Hansen et al.
(2004), and Kippenhahn et al. (2012), just to name a few. Based on these references,
I will introduce the basic concepts of stellar structure and evolution emphasising
those relevant to asteroseismic studies, and refer the reader when necessary to
textbooks where the relevant (and interesting!) details can be found.

2 Modelling Stars

Stars owe their brightness to a delicate interplay between gravitational contraction
and thermonuclear reactions as energy generation sources, both mechanisms not
always acting simultaneously. This interaction produces changes in the star on
different timescales, which become relevant at different stages of stellar evolution.

When nuclear reactions are not efficient in producing energy, the physical
conditions in stellar interiors evolve with the rate of change of the gravitational
potential and internal energy. We can consider that the star contracts gradually while
maintaining sphericity and that this is the sole responsible for the stellar luminosity.
The corresponding timescale a star can shine through this mechanism is called the
Kelvin–Helmholtz timescale,

�kh ' GM2

2RL
; (1)

where G is the Newtonian constant of gravitation, M is the mass of the star, R its
radius, and L the associated luminosity produced by the contraction. For a 1 Mˇ
star, this is approximately 15 Myr.
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Stellar matter is naturally victim of interacting forces such as gravitation and
pressure, but if no acceleration of material takes place a stage of mechanical
equilibrium is maintained. This equilibrium in a star, referred to as hydrostatic
equilibrium, is one of the pillars of stellar structure studies. The shortest relevant
timescale describes the time a star needs to recover its equilibrium when the
balance between gravitational forces and pressure is disturbed by some dynamical
process, for instance a pressure wave. If a star is close to hydrostatic equilibrium, it
corresponds to the free-fall timescale of the star, or the dynamical timescale,

�dyn '
s

R3

GM
'
s

1

G h�i ; (2)

where h�i corresponds to the mean density of the star. In the case of the Sun, the
free-fall timescale is of the order of 20 min.

Finally, the longest relevant timescale involved is the nuclear timescale,

�nuc D �qMc2

L
; (3)

where c is the speed of light, q the fraction of the total stellar mass involved in the
nuclear burning, and � the amount of mass that is converted into energy as a result of
the nuclear reaction processes. Essentially, this timescale describes how long a star
can shine with nuclear fusion as its sole source of energy. If the Sun was made of
pure hydrogen and the central 10% of its mass would contribute to nuclear reactions,
it could shine through this mechanism for approximately 10 Gyr.

There are large differences between the relevant timescales for stellar evolution,
where �nuc � �kh � �dyn. If we intent on following a large portion of the evolution
of a star, the processes occurring in the shortest timescales must be consistently
parametrised over larger periods. Moreover, some processes are usually neglected
due to the lack of a consistent theory describing their effects in the overall stellar
evolution, such as rotation and magnetic fields. Therefore, many assumptions and
simplifications about the nature of stellar matter and complex physics must be used
when modelling stars.

2.1 The Main Equations

The vast majority of stars are currently in long-lasting phases of their evolution, in
which the timescales involved for appreciable change to occur are too large to be
observed. Thus, the evolutionary changes are described by the four basic differential
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equations of stellar structure which are dubbed the macrophysics in modern theory
of stellar studies:

@r

@m
D 1

4�r2�
; (4)

@P

@m
D � Gm

4�r4
; (5)

@L

@m
D � � �� C �g ; (6)

@T

@m
D � GmT

4�r4P
r ; (7)

where

r D @ ln T

@ ln P
: (8)

In these equations, r is the distance from the centre of the star, and m the mass
contained within this distance. P, T and � are the thermodynamic variables pressure,
temperature and density respectively, while L is the luminosity at the corresponding
position of r (or m). The � term corresponds to the energy rate per unit mass
generated by nuclear reactions, �� to the energy rate lost (in form of neutrinos), and
�g to the work that is performed on the gas during any expansion or contraction
of the star. These equations are, in order of appearance, the mass conservation
equation, the hydrostatic equilibrium equation, the energy conservation equation,
and the energy transport equation.

The solutions to the equations are not stationary but rather evolve with time as
a consequence of contraction and nuclear reactions taking place, and the resulting
changes in the chemical composition and mean molecular weight brought about by
them. The first two equations define the mass profile in the stellar interior, while the
latter two equations determine the thermal profile inside of the star. In fact, Eq. (8)
is simply the definition of r, whose value must be derived from a theory of energy
transport.

Under normal circumstances there is a steady flow of energy from the deep
stellar interior, where the nuclear reactions take place, to the outermost layers of
the star, where energy is radiated to the interstellar medium. Depending on the
thermodynamical properties of matter in the stellar interior, this energy transport
can occur via radiative transfer, convective motions, or conductive transfer. The
latter transport method becomes very efficient under degenerate matter conditions.
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2.1.1 Energy Transport by Radiation

In the time-independent, three-dimensional case, the equation of radiative transfer
can be written as:

�i
@I
@xi

D �.�ab C �sc/ �I C �ab �B C �sc �J ; (9)

where I.x;�; t/ is the specific intensity at x in direction �, �ab the mean absorption
opacity, �sc the scattering opacity, B D .ac=4�/T4 is the integrated Planck intensity
and J the mean intensity. In order to estimate the flux carried by radiation, it is
customary to use the Eddington approximation (e.g., Unno and Spiegel 1966).
Assuming the intensity to be isotropic, a relation between the zeroth- and first-order
moments of Eq. (9) can be obtained, that yields the radiation flux as

F D � 4�

3� .�ab C �sc/
rJ : (10)

The near-isotropy of the radiation intensity is usually associated with a short photon
mean free path, where radiation is efficiently trapped (i.e., ��ab ! 1). In this case,
also referred to as the optically thick case, a diffusive mechanism takes place for
radiative energy transport leading to the following expression for the energy flux:

F D � 4�

3��
rB D �4acT3

3��
rT ; (11)

where � D j�ab C �scj. This is known as the diffusion approximation.
The radiation flux then clearly depends on the opacities �, of which we have so

far neglected their natural frequency dependence. This comes from the idea that
we can replace the problem of frequency dependence (the non-grey atmosphere
problem) through some sort of mean opacities. In fact, one can show that a particular
average of the opacities can be found by imposing the Eddington approximation
in the equation of radiative transfer (Eq. (9)), thus making the problem frequency-
independent. These are called Rosseland mean opacities, and are defined as

��1
ross D

R1
0

1
��

@B�
@T d�R1

0
@B�
@T d�

D �

acT3

Z 1

0

1

��

@B�
@T

d� ; (12)

where a is the radiation constant, and B� is the monochromatic Planck function.
When essentially all energy is transported outwards by photons (condition of

radiative equilibrium), it can be shown that the temperature gradient in Eq. (8) takes
the form:

rrad D 3

16�acG

�LP

mT4
; (13)
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where � is the Rosseland mean opacity of the stellar matter. A very clear description
of the radiation theory in stellar interiors and its connection with stellar atmospheres
can be found in Mihalas (1970) (recently updated by Hubeny and Mihalas 2014).

2.1.2 Energy Transport by Convection

When the temperature gradient indicated in Eq. (13) is too steep, radiation is not
able to carry all the energy outwards and convective instabilities set in. A theory of
convective transport includes a stability criterion for convection to take place, and a
consistent description of how energy is transported outwards by convective motions.

Based on the displacement analysis of random bubbles inside of the star, a
criterion for the onset of convective stabilities can be derived. In a nutshell, let
us consider a slight temperature fluctuation in a gas element with respect to its
surroundings. Assuming that the element remains in pressure equilibrium with the
medium, a temperature increase translates into a density decrease if we consider
that the stellar matter obeys an ideal gas law. Thus, this lighter bubble will be lifted
upwards by the force of buoyancy. The gas element will travel until it becomes
unstable due to turbulence and dissolves into the surrounding gas. For adiabatic
motions of bubbles, it can be shown that a layer will remain stable if

rrad < rad C '

ı
r� ; (14)

where rad is the temperature gradient introduced in Eq. (8) when the displacement
of the bubble takes place adiabatically, and

' D
�
@ ln �

@ ln�

�
P;T

; ı D �
�
@ ln �

@ ln T

�
P;�

; r� D
�

d ln�

d ln P

�
: (15)

Equation (14) is the Ledoux criterion for convection (Ledoux 1947), which takes
into account variations in the molecular weight � to define the boundaries of
convective regions. However, in regions of homogeneous composition one has
simply the Schwarzschild criterion (Schwarzschild and Härm 1958), according to
which a region remains stable against convection as long as

rrad < rad : (16)

This is by far the most commonly used criterion when modelling stellar evolution.
One reason for this is that once convection sets in a given region of the star, the
chemical composition gradient is annihilated by convective mixing and Eq. (14)
simplifies to (Eq. (16)). However, the use of a different criterion can have large
effects in the size of the convective regions, with a subsequent impact on, e.g., the
resulting luminosity, effective temperature, and main-sequence lifetime of the star.
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In a radiative (dynamically stable) layer, a displaced element is pushed back by
buoyancy forces. This interaction imprints a certain momentum in the gas element,
which will overshoot from its original position when descending, becoming lighter
than its surroundings and thus ascending again. Such oscillations of gas elements
could occur in the form of thin needles, and when they take place adiabatically they
are characterised by the Brunt–Väisälä frequency:

N2 D gı

Hp

�
rad � r C '

ı
r�

�
; (17)

where Hp is the pressure scale height given by

Hp
�1 D �d ln P

dr
: (18)

For the displacement to be oscillatory the condition for the frequency N2 > 0

must be fulfilled, which is the case for convectively stable (radiative) regions
(cf. Eq. (14)). From this simple analysis of the stability of a fluid element against
local perturbations it transpires that internal gravity waves cannot occur in convec-
tive regions. It is interesting to note that, for stars in the subgiant and red-giant
phase of evolution, N2 reaches very high values in the core of the star due to
the strong central condensation and resulting high value of the local gravity (e.g.,
Christensen-Dalsgaard 2004). Stars in these evolutionary phases are expected to
show a rich spectrum of gravity-dominated pulsation frequencies, as beautifully
confirmed by asteroseismic observations (e.g., Kjeldsen et al. 2003; Bedding et al.
2010; Deheuvels and Michel 2011).

Once a region is found by any stability criterion to be convective, the temperature
gradient of that zone needs to be defined (Eq. (8)). The usual way to do this is by
using the mixing-length theory for convection (MLT) in any of its flavours, most
commonly the original formulation proposed by Böhm-Vitense (1958). The critical
free parameter involved in the formulation is the so-called mixing-length parameter
˛MLT D l=Hp, where l is the distance a bubble will traverse before dissolving into
the surrounding medium. Other formulations, such as the full spectrum of turbulent
eddies by Canuto and Mazzitelli (1991, 1992), also require the definition of a
convective efficiency to properly determine the temperature gradient in convective
regions. The most commonly adopted procedure to calibrate this free parameter is
using the solar properties, as described in Sect. 2.3.2.

2.2 Solving the Equations

Up to now, I have discussed the problem of stellar evolution calculations based on
the structure of stars and physical processes taking place inside of them. The correct
description of these processes depends critically on the properties of stellar matter,
which are termed the microphysics of stellar evolution.
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Inspection of the structure equations (Eqs. (4)–(7)) easily reveals that we are
trying to solve a problem for five explicitly shown unknowns (r, �, P, L, and T)
through a set of four equations. The missing relation is given by the Equation Of
State (EOS), which provides one of the thermodynamic quantities in terms of the
others (for instance, � D �.P;T; �/, where � is just an indicator of the general
chemical composition). It is customary to refer to the EOS as one of the constitutive
equations of stellar structure; the other quantities that enter the equations and need
to be defined form the set of constitutive equations. These can be written as:

� D � .P;T; �/ ; (19)

cP D cP .P;T; �/ ; (20)

�� D �� .P;T; �/ ; (21)

rjk D rjk .P;T; �/ ; (22)

�� D �� .P;T; �/ ; (23)

where cP is the specific heat at constant pressure, �� the monochromatic opacity
of stellar matter (a particular average of it was introduced in Sect. 2.1.1), rjk

the thermonuclear reaction rate transforming nuclei j into nuclei k, with the
corresponding energy generation rate �jk given by the product of rjk and the energy
released when the transformation takes place. Time evolution of a certain chemical
species Xi when only nuclear reactions create or destroy it is given by

@Xi

@t
D mi

�

0
@X

j

rji �
X

k

rik

1
A ; (24)

with the constraint that
P

i Xi D 1. If exchange of mass occurs between different
stellar layers, diffusive processes also affect the evolution of chemical species.

2.2.1 Nuclear Reactions

Thermonuclearly fuelled reactions in stellar interiors produce energy that is carried
out through radiation, convection or conduction (see Sect. 2.1). I briefly mention
here the main channels for burning hydrogen into helium, the longest evolutionary
phase in the lifetime of a star, and the reaction network to transform helium into
heavier elements.

There are two reaction chains that transform four protons into one 4He nucleus,
namely the p-p chain and the CNO cycle (see Table 1). Presence of C, N, or O
isotopes is necessary for the CNO cycle to begin, and since they are both destroyed
and produced during the cycle they act as catalysts for the reactions. The p-p chain
and the CNO cycle usually take place simultaneously in a star but with different
efficiencies depending on the total stellar mass.
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Table 1 Reaction networks involved in the p-p chain and the CNO cycle

p-p chain

pp I pp II pp III
1H + 1H ! 2D + eC +�e

3He + 4He ! 7Be + 	 3He + 4He ! 7Be + 	
2D + 1H ! 3He + 	 7Be + e� ! 7Li + �e

7Be + 1H ! 8B + 	
3He + 3He ! 4He + 1H + 1H 7Li + 1H ! 4He + 4He 8B ! 8Be + eC +�e

8Be ! 4He + 4He

CNO cycle

CN cycle NO cycle
12C + 1H ! 13N + 	 15N + 1H ! 16O + 	
13N ! 13C + eC +�e

16O + 1H ! 17F + 	
13C + 1H ! 14N + 	 17F ! 17O + eC +�e
14N + 1H ! 15O + 	 17O + 1H ! 14N + 4He
15O ! 15N + eC +�e
15N + 1H ! 12C + 4He

The nuclear energy generation rate (�) of these channels has different temperature
sensitivities, meaning that the conditions in the stellar interior will define the
efficiency with which each one of them operates. The p-p chain has an average
relation of the order of �pp / T4 at T � 15 � 106 K, while the CNO cycle has a
higher value of �CNO / T18 at T � 20 � 106 K. As an example, in the centre of
the Sun T � 15 � 106 K and more than 90% of the energy budget corresponds
to the p-p chain. An important consequence of the temperature sensitivities of the
nuclear reaction chains is that, if the H-burning process is dominated by the CNO
cycle, it will be confined towards the very central regions of the star. This results in
a larger energy flux arising from the innermost regions which favours the presence
of a convective core.

Following the exhaustion of hydrogen in the centre, stars begin burning helium
as soon as the central temperature increases enough to produce the triple alpha (3˛)
reaction:

4He C 4He ! 8Be

8Be C 4He ! 12C C 	 :

The temperature sensitivity is quite strong for the 3˛ reaction: �3˛ / T40 at T �
108 K. Thus, for the same physical reason as in the case of the CNO cycle, stars
burning helium via the 3˛ mechanism have extended convective cores. For the sake
of completeness, I mention the other important nuclear reactions involved in the
helium burning process:

12C C 4He ! 16O C 	

16O C 4He ! 20Ne C 	 :
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It is clear by looking at these reactions that helium burning transforms 4He
particles mainly into 12C, 16O and 20Ne. These elements have burning processes
in more advanced stages of stellar evolution. I refer the reader to the monograph
by Clayton (1983) for a detailed description of the above mentioned reactions, and
further explanations on the reaction networks of elements heavier than helium.

2.3 Choosing the Ingredients

Based on the descriptions of the previous section, we now turn our attention to
the practicalities of modelling a particular star or stellar population. The target(s)
in question will have some set of observed properties that we aim at reproducing
with our stellar evolution model, for example colour (or effective temperature),
magnitude (or gravity), surface chemical composition, and oscillation frequencies,
just to name a few. The task is to select the appropriate ingredients in our
evolutionary code that will produce the most realistic representation possible of the
star, and this requires some assumptions on the relevant physical processes to be
included in the modelling procedure.

We start by defining the microphysics applied in the calculation as described
in Sect. 2.2. In the case of the Equation Of State, several compilations relevant
for stellar calculations are available such as those computed by the OPAL group
(Rogers et al. 1996; Rogers and Nayfonov 2002) and the FreeEOS (Cassisi et al.
2003). These may need to be complemented at the low-temperature regime by other
compilations of EOS, such as the MHD EOS (Hummer and Mihalas 1988) or that
of Saumon et al. (1995).

Regarding the opacity of stellar matter, this requires different treatments for the
radiative and conductive cases. Compilations of Rosseland mean radiative opacities
(see Eq. (12)) from the OPAL group (Iglesias and Rogers 1996) and Opacity Project
(OP; Badnell et al. 2005) are available, normally complemented at low temperatures
by molecular opacities from Alexander and Ferguson (1994) and Ferguson et al.
(2005). For the conductive opacities, relevant in the cases of degenerate matter,
calculations by Itoh et al. (1983) or the more updated Cassisi et al. (2007) are
commonly adopted.

For the nuclear reaction rates, the most frequently used large compilations of
cross sections are those by the NACRE collaboration (Angulo et al. 1999) and
the Solar Fusion (Adelberger et al. 1998, 2011). We note in passing that the cross
sections of two important astrophysical factors (S34 and S1;14) have been updated by
Marta et al. (2008) and Costantini et al. (2008), and is highly recommended that the
chosen set of thermonuclear reactions includes these latest values. Energy losses via
neutrino emission (Eq. (23)) are determined following prescriptions by, e.g., Haft
et al. (1994) and Itoh et al. (1996).

Once the desired microphysics of the evolutionary calculation is defined, a few
more considerations must be made before we can model our targets. First, one
must select a criterion for defining the boundaries of convective regions in the
stellar interior, which as described in Sect. 2.1.2 is normally done using the Ledoux
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or Schwarzschild criterion. Second, we must define the value of an efficiency
parameter describing the gas motions in zones found to be convective to determine
the real temperature gradient (Eq. (8)). Then, we must define the initial chemical
composition used in our stellar modelling exercise based on some knowledge of the
surface abundances of the target. In the following I describe how these parameters
are normally obtained in evolutionary calculations, and mention some of the
additional mixing processes included in some evolutionary calculations depending
on type of star considered.

Before closing this section, I note in passing that not all the aforementioned sets
of opacities, EOS, nuclear reactions etc. are available in a given evolutionary code,
and each modeller should carefully ensure that the combination of microphysics is
consistent for each calculation (i.e., the used opacities are calculated for the adopted
solar mixture).

2.3.1 Chemical Composition

In stellar evolution calculations abundances are represented with the letters X,
Y, Z, defining the mass fractions of hydrogen, helium, and all elements heavier
than helium (‘metals’), respectively. These three quantities must be provided to
the evolutionary code performing the calculation, and I review in this section the
assumptions adopted in their determination.

First, we need the observed surface abundance of the star we aim at modelling as
obtained by, e.g., photometry or spectroscopy. In most cases the observed chemical
composition is given in terms of logarithmic abundance ratios with respect to the
solar value. For the species i and j, this is expressed as

log.i=j/� log.i=j/ˇ � Œi=j
 ; (25)

where the dependence of the observed abundances on the solar reference value
is clearly established. Normally, observations provide a measurement of the bulk
stellar metallicity in terms of the iron abundance [Fe/H], and to transform it into an
estimate of the mass fraction of heavy elements required in evolutionary calculations
it is assumed that

log.Z=X/� log.Z=X/ˇ ' ŒFe=H
 : (26)

As we mentioned above, Z in evolutionary calculations includes every element
heavier than helium and thus this transformation has two important consequences.
First it assumes that iron is by large the most abundant of the heavy elements in
a star, which is normally the case unless excess of ˛ elements is present (such as
in metal-poor stars; see, e.g., Sneden 1985). Second, since a solar reference value
log.Z=X/ˇ must be defined, it implies that the fraction of each element comprising
Z is distributed accordingly to the chosen set of solar abundance ratios (or solar
‘mixture’).
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The topic of the atmospheric chemical composition of the Sun has been one
of hot debate in the past years. The most recent determinations of the solar
individual abundances based on realistic 3D hydrodynamical simulations of stellar
atmospheres have considerably decreased the total metallicity of the Sun compared
to the older predictions based on simpler 1D atmospheric models. However, these
new sets of solar abundances are not yet completely accepted by the astrophysics
community mainly due to the discrepancy of the predicted internal sound speed
profile with the results of helioseismology (see, e.g., Serenelli et al. 2009), and
therefore both the old (Grevesse and Noels 1993; Grevesse and Sauval 1998)
and new (Asplund et al. 2009; Caffau et al. 2011) determinations are widely applied
according to personal preference. The reader is referred to Bahcall et al. (2005) and
Basu and Antia (2008) for further explanations on the topic and its implications for
helioseismology.

In terms of total metallicity determinations, the ratio .Z=X/ˇ varies from 0:0245

to 0:0183 among the different compilations, which according to Eq. (26) implies
that the value of [Fe/H] in a stellar model computed with the same Z and X
can vary by �0.13 dex just by the choice of solar mixture. This must be kept in
mind when comparing evolutionary calculations with spectroscopic or photometric
metallicities, which can quote uncertainties well below this level.

Equation (26) is not sufficient to estimate the three necessary components X,
Y, and Z, of the stellar composition. Moreover, it is not possible to directly
measure helium abundances in stars of temperatures lower than �104 K. Thus, a so-
called ‘galactic chemical evolution law’ is applied (Peimbert and Torres-Peimbert
1976), which basically relates the amount of fresh helium supplied by stars to the
interstellar medium relative to their supply of heavy elements:

�Y

�Z
D Y � Yref

Z � Zref
: (27)

The existence and value of the �Y=�Z relation is still a matter of debate, and it
is usually considered to lie in the range 1:0 � �Y=�Z � 3:0 (e.g., Pagel and
Portinari 1998; Jimenez 2003; Casagrande et al. 2007). In Eq. (27) one must provide
a reference point for Y and Z; big bang nucleosynthesis values can be considered
(Zref D 0 and Yref � 0:2488; Steigman 2010), or the initial Z and Y abundances
obtained in the Sun from a solar calibration (see Sect. 2.3.2 below). In the latter
case, the chosen set of today’s surface abundances in the Sun plays an important
role, although it has been suggested that the initial helium abundance of the Sun
could be independent of them (Serenelli and Basu 2010). Finally, the third equation
comes from the obvious fact that X C Y C Z D 1.

2.3.2 Convective Efficiency

As mentioned in Sect. 2.1.2 the value of the convective efficiency (i.e., ˛MLT under
the mixing-length formulation) ultimately defines the value of r in a convective
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region, but unfortunately it cannot be obtained from first principles. Instead it is
normally determined via a standard solar calibration, an iterative procedure in which
three input parameters are tuned to reproduce the properties of the Sun. This is an
optimisation process where the codes vary the initial composition (two parameters,
e.g., Y and Z) and the convective efficiency to reproduce the solar radius and
luminosity, at present solar age, for a chosen surface composition of the Sun. In
the case of the mixing-length theory, the resulting value usually ranges between
1:5 < ˛MLT < 2:5 depending on the input physics and evolutionary code employed.
There is a vast amount of literature devoted to the results of solar calibrations where
the interested reader can find more details (see, e.g., Christensen-Dalsgaard et al.
1996; Bahcall et al. 2001, and references therein).

In recent years, a new possibility has appeared for determining convective
efficiency values from 3D simulations of stellar envelopes. These simulations
solve the time-dependent hydrodynamic equations of mass, momentum, and energy
conservation and are by design free from adjustable parameters such as the ˛MLT

(e.g., Nordlund et al. 2009; Kupka and Muthsam 2017, and references therein).
Using suitable averages, it is possible to match the atmospheric stratification of
the 3D model with the equivalent from one-dimensional calculations and extract
a calibrated convective efficiency (e.g., Trampedach et al. 2014; Magic et al. 2015).
These results have been recently implemented in standard stellar evolution codes
at solar metallicity (Salaris and Cassisi 2015; Rørsted et al. 2016) and are being
extended to other chemical compositions.

2.3.3 Additional Mixing

The last layer of complications in the macrophysics of stellar evolution comes
from physical processes that are likely to take place in stars and are still poorly
understood. Among these we can mention the cases of atomic diffusion of helium
and heavier elements, radiative levitation, rotational mixing, the influence of
magnetic fields, stellar winds etc. (for a review, see Pinsonneault 1997). All these
processes require the inclusion of some additional free parameter controlling their
efficiency as a function of, e.g., mass, temperature, luminosity etc., and are relevant
in different regimes of stellar evolution to accurately reproduce the observational
results. As an example, the inclusion of atomic diffusion in standard solar models
greatly improved the agreement with helioseismic data via inversion techniques
(Christensen-Dalsgaard et al. 1993) and is now regarded as a necessary ingredient
to accurately reproduce the properties of the Sun. However, diffusion as it operates
in the solar case requires the inclusion of additional processes to counteract some
of its effects in late-type stars via radiative accelerations (e.g., Turcotte et al. 1998).
Similarly, overshoot from the convective core is necessary to reproduce the shape
of the colour-magnitude diagram of open clusters (e.g., Maeder and Meynet 1991),
but despite extensive theoretical studies there is still no firm verdict on the amount
of additional mixing required and its dependence on parameters such as mass or
metallicity (e.g., Zahn 1991).
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Asteroseismology is beginning to make substantial contributions to our under-
standing of such additional mixing processes, and among these we can mention
the first measurements of integrated mass loss in the red-giant branch (Miglio
et al. 2012), constraints on the amount of rotational mixing in subgiant and red-
giant stars (Eggenberger et al. 2012), detection of convective cores and constraints
on the overshoot efficiency during the core hydrogen- and helium-burning phases
(Silva Aguirre et al. 2013; Constantino et al. 2015; Deheuvels et al. 2016), as well
as the inversion of the rotation profile in Kepler targets (Deheuvels et al. 2014). It
is expected that these results will further our understanding of these fundamental
physical processes and allow us to produce even more realistic models of stellar
interiors.

3 Overview of Stellar Evolution

The ultimate fate of a star depends mostly on its initial mass and chemical
composition, properties that are related to the place and time where the star was born
and possible interactions with the medium surrounding it. It is customary to analyse
the main phases of stellar evolution following the path described by the surface
luminosity, L, and effective temperature, Teff, throughout the star’s lifetime. This
is the so-called Hertzsprung–Russell Diagram (HRD), shown for several masses
in Fig. 1 at a fixed chemical composition. I will mostly focus on the evolution
of stars with masses below �2.5–3.0 Mˇ, from the beginning of the hydrogen

Fig. 1 Hertzsprung–Russell Diagram plotted for different masses at a fixed chemical composition
of Y D 0:28 and Z D 0:02. The tracks cover the evolution from the beginning of the main sequence
to the red-giant phase or, for M � 3.0 Mˇ, also the helium burning phase
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Fig. 2 Hertzsprung–Russell Diagram for stars at the same metallicity as in Fig. 1. Left: Evolution
of a 1 Mˇ star from the pre-main sequence to the tip of the red-giant branch. Right: Similar
evolution of an 8.0 Mˇ star, where the pre-main sequence has been removed for better visualization

burning phase until helium is exhausted in the centre. Nevertheless, I will also
broadly describe the evolution of more massive stars. For better guidance through
the different evolutionary stages, Fig. 2 presents two HRDs of different evolutionary
phases for stars of the same metallicity as that of the tracks in Fig. 1. The left panel
shows a 1 Mˇ star evolving from the pre-main sequence until helium ignition, while
the right panel depicts an 8 Mˇ star in similar evolutionary phases.

3.1 Pre-main Sequence Phase

Protostars form through condensation of interstellar matter at low temperatures
in hydrostatic equilibrium. Giant molecular clouds with masses large enough to
undergo gravitational collapse fragment into smaller subunits due to the presence
of inhomogeneities. Each of these subregions forms a hydrostatic core and accretes
free-falling gas from its surroundings. Once this accretion process is complete, the
protostar collapses again until hydrostatic equilibrium is restored, giving birth to a
new star.

A star in this phase is fully convective, has a low temperature, a large radius
and a high luminosity. It evolves almost vertically in the HRD (at roughly constant
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temperature) along the so-called Hayashi track (see point ‘A’ in the left panel of
Fig. 2), its exact location depending on the initial mass and chemical composition.
Once a radiative core appears, the star leaves the Hayashi track and moves to
higher effective temperatures while its convective envelope slowly retreats. The star
contracts, increasing its central temperature and density, until fusion of hydrogen to
helium becomes efficient and releases enough energy to counteract the gravitational
force. At this point, the star has reached the Zero Age Main Sequence (ZAMS; point
‘B’ in both panels of Fig. 2).

Due to the temperature sensitivity of the reaction networks, stars of masses
M � 1.3 Mˇ burn hydrogen mainly through the p-p chain (see Table 1), the
exact transition mass value depending on the initial chemical composition (it is
M �1.3 Mˇ at solar metallicity). Before reaching the ZAMS, some nuclear burning
occurs in these stars, such as transforming deuterium into 3He. While this reaction
takes place and the abundance of 3He is not high enough as to complete the
pp I branch of the p-p chain, the star is forced to reach higher temperatures and
densities in order to satisfy its energy needs. This higher temperature also induces
the first three reactions of the CNO cycle, burning 12C into 14N. A small convective
core appears as a consequence of an energy generation more concentrated toward
the centre; it only survives until the 12C abundance decreases and the amount of 3He
increases enough for the p-p reactions to become more important and the energy
generation to be redistributed over a larger area.

3.2 Main Sequence Evolution

The main sequence corresponds to the phase in which a star transforms hydrogen
into helium at its centre, and it is the longest of the evolutionary phases in a star’s
lifetime (points ‘B’ to ‘C’ in Fig. 2). Its duration is mainly controlled by the mass
of the star, while in comparison the chemical composition and mixing processes
play a secondary role. From homology relations (see, e.g., Kippenhahn et al. 2012),
there exists a mass-luminosity relation that gives the dependence between these
parameters in different evolutionary stages. For stars on the main sequence, at a
given chemical composition, it is of the order of

�
L

Lˇ

�
/
�

M

Mˇ

�3:5
: (28)

Recalling the nuclear timescale given by Eq. (3), and replacing L with the mass-
luminosity relation, it is clear that the time a star can shine with nuclear burning
as its energy source decreases for increasing stellar mass. To give some numbers,
at solar metallicity, a 1.0 Mˇ star burns hydrogen for approximately 9 Gyr, while a
20 Mˇ star does it for 8 Myr only.

Stars more massive than �1.7 Mˇ have a convective core and a radiative
envelope, while their less massive counterparts have convective envelopes on top
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of their radiative interiors and can host either radiative or convective cores. The
presence of a convective envelope has important consequences for the pulsation
properties of stars, as it stochastically produces excitation of modes.

The main effect of a larger mass is a significant increase of the interior
temperature, resulting in different efficiencies of the H-burning reaction networks.
Depending on the resulting mechanism employed to burn hydrogen, stars are usually
classified in lower main-sequence stars (masses below �1.3 Mˇ where the p-p chain
is the main mechanism) and upper main-sequence stars (more massive stars where
the CNO cycle plays the leading role). When the CNO cycle is the dominant source
of energy production, the centre of the star becomes convective due to a very high
energy flux in the innermost regions. As the mass increases, convective core size
also grows as a consequence of the higher temperature in the interior leading to a
larger flux.

It is assumed that the convective core is homogeneously mixed, and its size
determines the amount of available fuel for hydrogen burning. For a star of a
given mass and chemical composition, this defines the total time it will spend
burning hydrogen, the size of its helium core once the hydrogen in the centre
is exhausted, and the exact position of the star in the HRD. If the star had a
convective core during its main-sequence evolution, its disappearance once the star
reaches the turn-off point leaves a characteristic hook-like feature in the HRD
(compare points ‘C’ in both panels of Fig. 2). The existence of this feature in the
Colour Magnitude Diagram (CMD) of clusters is used to calibrate the amount of
mixing beyond the convective core and directly impacts age determinations via
isochrone fitting (e.g., Vandenberg et al. 2007). Despite its importance, the exact
extension of the convective core is still an open problem due to the uncertainty in the
‘true’ convective boundary definition, and the contribution of the different physical
processes that mix material beyond this formal boundary (e.g., Silva Aguirre et al.
2011; Gabriel et al. 2014).

3.3 Subgiants, Giants, and Clump Giants

At the turn-off point (related to hydrogen exhaustion in the centre), hydrogen
burning ceases to be a central process and becomes a shell-burning process in a
layer outside of the He-rich core. At the same time, the stellar envelope expands
cooling down the star and moving it to the right in the HRD. This constitutes the
subgiant phase (point ‘D’ in Fig. 2), where stars evolve roughly at the pace set by
the Kelvin–Helmholtz timescale (Eq. (1)).

For masses above �2.5–3.0 Mˇ, the core contracts since it cannot counteract
the pressure exerted by the layers above it (the exact relation between core and
envelope mass is given by the Schönberg–Chandrasekhar limit; Schönberg and
Chandrasekhar 1942). A convective envelope develops due to the cooling down of
the outer layers, which marks the beginning of the red giant (RG) phase (point ‘E’
in Fig. 2b). From here onwards, the star evolves at a roughly constant temperature,
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burning hydrogen in a shell while increasing its luminosity and radius and further
contracting the core. Eventually, the central temperature reaches values high enough
as to ignite helium in the centre, marking the end of the RG phase (point ‘F’ in
Fig. 2b). This occurs under non-degenerate conditions, as the central density is low
enough to prevent the onset of electron degeneracy. For increasing stellar mass,
the time needed to reach He-burning central temperatures is very short and the RG
might even disappear.

The case of masses lower than �2.5 Mˇ is slightly different from their more
massive counterparts. The gas in the He-rich core is electron-degenerate, providing
enough pressure to support the envelope above it and at the same time grow from
the production of helium in the H-burning shell. During the subgiant phase, the
cooling down of the outer layers results in an inward penetration of the already
existing convective envelope, which drags partially processed nuclear material to
the surface. Point ‘E’ in Fig. 2a shows the position in the HRD where maximum
inward penetration of the envelope occurs, a phenomenon called the first dredge-up.
This is observationally witnessed by the change in CNO abundances due to mixing
of former nuclearly processed material dredged-up to the surface.

After this process, the convective envelope begins to retreat and the star continues
its vertical ascent along the red-giant branch (RGB; the portion of the HRD
populated by stars evolving through the RG phase). One must keep in mind that,
during the evolution up the RGB, stars lose some amount of mass through stellar
winds due to their increasingly larger envelopes. Nevertheless, the mass-loss rates
have not been tightly constrained by either observations or theory, and ad hoc
parameterizations are used to reproduce this phenomenon, such as the one given
by Reimers (1975, 1977).

Although helium ignition occurs quietly in massive stars, the case for stars below
�2.5 Mˇ is somewhat different. For better visualisation, Fig. 3 depicts the evolution
from the tip of the red-giant branch until centre helium exhaustion of a 1.0 Mˇ star at
solar metallicity. In the late stages of the RGB, stars lose large amounts of energy in
the form of neutrinos, this form of dissipation being most efficient where the stellar
matter is more dense (its centre). An inversion of the thermal profile occurs in the
He core, the hottest place being a layer located off-centre within the He-rich core.
When temperatures high enough to start helium burning are reached, the ignition
takes place off-centre in a sort of thermonuclear runaway, called the core helium
flash (point ‘F’ in Figs. 2a and 3).

The reason for this phenomenon has to do with a property of the electron-
degenerate gas, which is the decoupling of the temperature dependence from the P –
� relation (the EOS; see Sect. 2.2). For such a case, the energy input to the medium
due to the nuclear reactions when helium ignites increases the local temperature,
but no compensating increase of the pressure takes place. As a consequence, the
region where burning takes place does not expand to cool down the material,
leading to an increase in the thermonuclear reaction rates, which leads to a further
increase in the local temperature, and so forth. The thermodynamical runaway
is terminated once the increasing temperature removes degeneracy and the EOS
becomes temperature-dependent. During this phase, the large amounts of energy
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Fig. 3 Hertzsprung–Russell Diagram of a 1.0 Mˇ star from the tip of the red-giant branch until
centre helium exhaustion at low metallicity. The evolution during the helium flash is marked with
a dotted line in the main panel for clarity, and is also depicted in the inset (solid line)

produced by the ignition are used to lift up the degeneracy in the core, decreasing
considerably the luminosity; in fact, secondary flashes take place increasingly closer
to the centre until degeneracy has been lifted throughout the He core, producing
loops in the HRD (see inset in Fig. 3).

The star is now able to burn helium quiescently in a convective core and hydrogen
in a shell, marking the end of the RG phase. This evolutionary stage is called the
horizontal branch phase for stars in Globular Clusters (low-mass, metal-poor stars;
see point ‘G’ in Fig. 3), while it is usually known as the red clump for composite
populations since their location in the HRD can be closer to the RGB. In this latter
case, a secondary (and less luminous) red clump can also be present, comprising the
more massive stars that started the He-burning in non-degenerate conditions (Girardi
1999).

The horizontal branch or clump is the second longest evolutionary phase in the
life of a star, in which helium is burned in a homogeneously mixed convective
core through the 3˛ mechanism (see Sect. 2.2.1), surrounded by a H-burning shell.
Evolution until exhaustion of helium in the centre is shown in Fig. 3 (points ‘G’ to
‘H’), which for this case lasts approximately 80 Myr.
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3.4 Advanced Stages of Evolution

For the sake of completeness, I briefly mention the evolutionary phases beyond the
helium-burning stage. Once helium is exhausted in the core, stars with initial masses
. 8.0 Mˇ shine by helium- and hydrogen-shell burning. They are said to ascend
the asymptotic giant branch (AGB), a phase where extinction and re-ignition of
helium leads to the occurrence of thermal pulses. During this evolutionary stage,
stars undergo large amounts of mixing and complex nuclear reactions, such as slow-
neutron capture and carbon burning. Large amounts of mass are lost due to dust-
driven winds and large-amplitude pulsations. Once hydrogen is largely exhausted in
the burning shell, the remaining envelope is rapidly lost and shines due to ionisation
by the bare core of the star as a planetary nebula. This exposes the central star (a
white dwarf ), which consequently evolves down the white dwarf cooling curve over
a time scale of billions of years.

The value of �8.0 Mˇ given above is a very loose approximation of the
maximum initial mass a star should have to end its life as a white dwarf. Its ultimate
fate will depend on its capability of losing enough mass by stellar winds throughout
evolution to have a final mass smaller than the so-called Chandrasekhar limiting
mass. This limit gives the highest possible final core mass a star can have in order to
be a stable white dwarf, and it is usually considered to be approximately �1.45 Mˇ.

Naturally, there are stars that have core masses far higher than the Chandrasekhar
limiting mass once they have exhausted helium in the centre. These stars will
ignite carbon under non-degenerate conditions. As they go through several cycles
of nuclear burning, they produce shells of heavier elements in a so-called onion
skin model. At last, the core, consisting mostly of 56Fe (or a neighbouring nucleus),
becomes dynamically unstable and core collapse sets in, resulting in a supernova
explosion.

4 Closing Remarks

The picture of stellar structure and evolution sketched in this chapter is an
overwhelmingly simplified one and I encourage the reader to consult the extensive
available literature for all the interesting details about the birth, life, and fate of stars.
I have reviewed the main components and assumptions entering stellar evolution
calculations in different phases and regimes, highlighting the areas where large
uncertainties still remain and how additional tools such as asteroseismology can
help constraining these processes.

Ultimately, our knowledge of the formation and evolution of planetary systems
critically depends on our understanding of stars. Several compilations of stellar
tracks and isochrones including state-of-the-art macrophysics and microphysics
have been computed throughout the years by different groups, and are perfectly
suited for a wide range of applications in astrophysical research. Some of the most
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commonly used include the BASTI isochrones (Pietrinferni et al. 2004; Cordier
et al. 2007; Salaris et al. 2010), the Darthmouth stellar evolution database (Dotter
et al. 2008), and the MESA (Choi et al. 2016) and PARSEC stellar tracks and
isochrones (Bressan et al. 2012). These are routinely used in the characterisation
of exoplanet-host stars (e.g., Schlaufman 2010; Huber et al. 2013; Silva Aguirre
et al. 2015), and can be combined with sophisticated Bayesian schemes to extract
stellar properties given a set of observations (e.g., Da Silva et al. 2006; Serenelli
et al. 2013; Silva Aguirre et al. 2017).
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Theory of Stellar Oscillations

Margarida S. Cunha

Abstract In recent years, astronomers have witnessed major progresses in the field
of stellar physics. This was made possible thanks to the combination of a solid
theoretical understanding of the phenomena of stellar pulsations and the availability
of a tremendous amount of exquisite space-based asteroseismic data. In this context,
this chapter reviews the basic theory of stellar pulsations, considering small,
adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with
a brief discussion of the solar oscillation spectrum, followed by the setting of the
theoretical problem, including the presentation of the equations of hydrodynamics,
their perturbation, and a discussion of the functional form of the solutions. Emphasis
is put on the physical properties of the different types of modes, in particular
acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface
(f-) mode solutions are also discussed. While not attempting to be comprehensive,
it is hoped that the summary presented in this chapter addresses the most important
theoretical aspects that are required for a solid start in stellar pulsations research.

1 Introduction

The study of stellar pulsations is revolutionizing our knowledge of the internal
structure and dynamics of stars and, as a consequence, also our understanding
of stellar evolution. This is made possible through the combination of a solid
theoretical understanding of the phenomena of stellar pulsations and the availability
of a tremendous amount of high-quality data, in particular that acquired from space
with satellites such as SOHO (Domingo et al. 1995), observing the Sun for over 20
years, and CoRoT (Baglin et al. 2006) and Kepler (Gilliland et al. 2010; Koch et al.
2010).

In this chapter I review basic aspects of the theory of stellar pulsations. Given the
limited space available, options had to be made on what to discuss. A more detailed
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view of the aspects considered here, as well as discussions of the issues that have
been left out can be found, e.g., in published books (Unno et al. 1989; Aerts et al.
2010), lecture notes (Gough 1993), as well as in other long reviews (Cunha et al.
2007; Basu 2016).

While this chapter is dedicated to the theory of stellar pulsations, it is interesting
and motivating to start by inspecting one of the main observational results in
this context, namely, the oscillation power density spectrum of the Sun. This is
shown in the upper panel of Fig. 1. The first aspect that catches the eye is that
the oscillation spectrum is composed of a number of discrete frequencies, whose
power is modulated over frequency, showing a close to Gaussian shape. This is
typical of oscillation spectra of solar-like pulsators in which modes are intrinsically
stable (meaning that small perturbations are damped) and continuously excited

Fig. 1 Power density spectrum of the Sun obtained from data acquired with VIRGO/SPM onboard
the SOHO satellite (Fröhlich et al. 1995; Jiménez et al. 2002). Top: The red line shows the power
spectrum density smoothed by 3�� and multiplied by 50, used to estimate �max. Bottom: A zoom
of the upper panel illustrating a few modes, identified by mode degree. The large frequency
separation, ��, and the small frequency separations between pairs of modes with degrees l D 0; 2,
ı�0, and pairs of modes with degrees l D 1; 3, ı�1, are also shown (figure courtesy of A. Santos)
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stochastically by convection. Other stellar pulsators, in which oscillations are
intrinsically unstable, with small perturbations growing due to some sort of coherent
excitation mechanism, will still show oscillation spectra composed of discrete
frequencies, but often a less regular pattern as a consequence of not all possible
frequencies being excited or observed. An important observable for solar-like pul-
sators is the frequency of maximum power, �max, shown in Fig. 1. There are different
approaches to derive it (Verner et al. 2011, and references therein) that usually
involve considering a heavily-smoothed version of the oscillation power spectrum.

The lower panel of Fig. 1 shows a close-up of the regular peak structure seen in
the upper panel. Here each mode is identified by a positive integer, the mode degree,
which will be discussed in detail in Sect. 2.3. Two main separations are identified
in the figure, namely, the large separation, ��, between consecutive modes of the
same degree and the small separation, ı�, between modes of similar frequency and
degree differing by two.

The large separation has been shown to scale as �� / p
� (Tassoul 1980),

where � is the mean density of the star. Moreover, the frequency of maximum power
has been suggested to scale with the surface gravity and effective temperature as
�max / gT�1=2

eff (Brown et al. 1991; Kjeldsen and Bedding 1995). Together, these
scaling relations provide two equations that can be used for a first estimate of the
stellar mass and radius, once the effective temperature is known, namely,
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where the overbar stands for a suitable average taken over the different pairs of
modes and solar values are marked by the index ‘ˇ’.

Finally, the small separation depends strongly on the sound speed in the stellar
core and is, thus, very sensitive to stellar age. These quantities shall be discussed
further in Sect. 5. Before that, I will introduce the pulsation equations in Sect. 2, and
discuss the corresponding solutions in Sects. 3–4.

2 Equations for Linear, Adiabatic Stellar Pulsations

In this section I set the problem of linear, adiabatic stellar pulsations. I start from the
equations of hydrodynamics for an inviscid fluid and then consider small, adiabatic
perturbations about a spherically symmetric, static equilibrium. Finally, I discuss
the functional form of the solutions on the sphere and the boundary conditions.

Let us assume that a gas can be treated as a continuum with thermodynamic
properties well defined at each position in space, r. Let f be a scalar property of the
gas. There are two ways of looking at the time evolution of f : (1) at fixed position
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f
r0 

r

dr

Fig. 2 Eulerian versus Lagrangian descriptions. In the Eulerian description the evolution of the
property, f , of the gas is considered at fixed position, r0, by comparing f .r0; t0/ with f .r0; t1/,
while in the Lagrangian description the evolution is considered following the motion by comparing
f .r0; t0/ with f .r; t1/

r0 and (2) following the motion (see Fig. 2). The first corresponds to an Eulerian
description and the second to a Lagrangian description. Both perspectives are useful
and commonly used in the study of stellar pulsations. The two descriptions are
related by

df

dt
D @f

@t
C rf 	 dr

dt
� @f

@t
C v 	 rf ; (2)

where v is the velocity, d/dt is the time derivative following the motion (Lagrangian
description) and @=@t is the time derivative at fixed position (Eulerian description).
Likewise, for a vector quantity, F, the two derivatives are related by

dF
dt

D @F
@t

C .v 	 r/F : (3)

2.1 The Conservation Laws

The evolution of the properties of a fluid is described by a set of equations that
translate conservation laws. In what follows these equations are summarized under
particular conditions that will be discussed below. Conservation of mass, linear
momentum, and energy are expressed, respectively, by

d�

dt
D ��r 	 v ;

�
dv

dt
D �rp C �g C Foth ;

dq

dt
D dE

dt
C p

d .1=�/

dt
; (4)
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where � and p are, respectively, the fluid density and pressure, g is the acceleration
of gravity, Foth are other body forces, expressed per unit volume, that may act on
the fluid, besides gravity (e.g., the Lorentz force, if a magnetic field is present), and
E and q are, respectively, the internal energy and heat supplied to the system, both
per unit mass.

The first of these equations, known as the continuity equation, expresses that the
rate of change of the mass within a given volume must equal, with opposite sign,
the mass crossing the surface that encloses that volume, per unit time. The second,
the equation of motion, expresses that the change in linear momentum of an element
of fluid must equal the force acting on it by its surroundings. It is written under the
assumption that the fluid is inviscid, which is a good approximation under stellar
conditions. The third equation translates the first law of thermodynamics and it
states that the change in the internal energy of a system must equal the heat supplied
to the system minus the work done by the system on its surroundings. This equation
can be written in different forms. A useful one, adopted below, is

dq

dt
D 1

� .�3 � 1/

�
dp

dt
� �1p

�

d�

dt

�
; (5)

where �1 and �3 are adiabatic exponents defined by the adiabatic derivatives,

�1 D
�
@lnp

@ln�

�
ad

; �3 � 1 D
�
@lnT

@ln�

�
ad
; (6)

and T is the temperature of the fluid. From Eq. (5) one can further define the
adiabatic sound speed, c. Making the left-hand side equal to zero one finds:

c2 � dp

d�
D �1p

�
: (7)

Finally, it should be noted that the thermodynamic variables T, �, and p are not
all independent, but rather are related by the equation of state that can be expressed
as F .T; p; �/ D 0, where F is a function that depends on the conditions of the
fluid. Since in this chapter only adiabatic oscillations will be considered, the explicit
form of the equation of state will not be needed. However, this equation will still be
required if the reader is interested in deriving the temperature fluctuations associated
to the perturbations in the density and pressure.

2.2 Perturbative Analysis

Consider an equilibrium state that is: (1) static, meaning that there are no velocities
and all derivatives at fixed position are null (@=@t D 0) and (2) spherically
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symmetric, implying, e.g., that there is no rotation or magnetic fields. Then, in the
equilibrium, one has:

rp0 D �0g0 � ��0g0 Oar ; (8)

where the index ‘0’ is used to identify the equilibrium quantities and Oar is the unit
vector in the radial direction pointing outwardly from the centre of the star, making
the scalar g0 a positive quantity.

Now let us assume that the equilibrium is perturbed under the following
conditions: (1) the perturbations are adiabatic and (2) they are small, in the sense
that non-linear terms in the perturbations can be neglected.

The adiabatic condition implies the assumption that no heat is exchanged with
the element of fluid during the perturbation, a condition that is very closely satisfied
almost everywhere in the star. This can be seen by comparing the characteristic
timescales of pulsations, typically found in the range of minutes to a few days,
with the timescale for radiation that, except very close to the stellar surface, has
characteristic values many orders of magnitude larger than the pulsation period (e.g.,
exceeding a million years in the Sun, when the Sun is considered as a whole).

Under the above conditions, let f be a scalar property of the gas, and f 0 and ıf be,
respectively, the Eulerian and Lagrangian perturbations to it. Then f D f0 C f 0 and
ıf D f 0 C � 	 rf0, where � is the displacement vector (� r � r0). Moreover, since
the perturbations are linear, the velocity of a given element of fluid is

v � d�

dt
� @�

@t
: (9)

Perturbing the system of equations (4) [with energy conservation expressed as in
Eq. (5)], using Eqs. (8) and (9), and integrating in time the equations of continuity
and energy, one finds that linear adiabatic perturbations about a static spherically
symmetric equilibrium are described by the following set of equations:

�0 D �r 	 .�0�/ ;

�0
@2�

@t2
D �rp0 � �0r0 � �0r0 ;

r20 D 4�G�0 ;

p0 C � 	 rp0 D �1;0p0
�0

�
�0 C � 	 r�0

�
: (10)

To reach the system of equations above, I have further defined the acceleration of
gravity in terms of the gravitational potential , such that g D �r and, accord-
ingly, considered in addition the Poisson equation that relates the gravitational
potential to the fluid density.

Taking the equilibrium quantities as known, one can identify four variables in
the system above (three scalars and one vector), namely �0, p0, 0, and �. These four
equations thus form a closed system that can be solved, with adequate boundary
conditions.
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2.3 Solutions on a Sphere

Consider the spherical coordinate system .r; �; '/ such that the variables �0; p0; 0; �
are expressed as functions of r; �; ' and t.

It can be shown by substitution (or derived by the technique of separation of
variables) that the system of equations (10) admits solutions of the type

f 0 .r; �; '; t/ D < ˚
f 0 .r/ Ym

l .�; '/ e�i!t
�
; (11)

� .r; �; '; t/ D <
nh
�r .r/ Ym

l .�; '/ Oar C �h .r/
�
@Ym

l
@�

Oa� C 1
sin �

@Ym
l

@'
Oa'
�i

e�i!t
o
;

where f 0 stands for any of the scalar perturbations, �r and �h are, respectively,
the depth-dependent amplitudes of the radial and horizontal components of the
displacement and Oai are the components of the unit vectors of the spherical
coordinate system.

The time dependence of the solution is associated to the angular oscillation
frequency!. The sign in the exponential is arbitrary. Here it is chosen to be negative
to guarantee that in cases when ! is complex the growth rate (i.e., the imaginary
part of the frequency) is positive when the perturbation grows. The possible values
of ! are determined by imposing the boundary conditions that shall be discussed
later. In practice, since the equations were derived under the assumption that the
perturbations are adiabatic, so far as the boundary conditions are fully reflective (i.e.,
no energy is lost through the boundary), ! is real. That will be the only case
discussed in this chapter.

The angular dependence of the solutions is given by the spherical harmonic
functions Ym

l , characterized by the angular degree l (a non-negative integer), and
the azimuthal order m, an integer that takes values between �l and l. The angular
degree defines the number of surface nodes and the absolute value of the azimuthal
order defines the subset of those that cross the equator. This means that jmj defines
the orientation of that solution on the sphere, something that will be relevant for
the discussion below. An example of low-degree spherical harmonic functions with
identified values of l and jmj is shown in Fig. 3. Since Ym

l / Pm
l .cos �/eim' ,

where Pm
l are the associated Legendre functions, the sign of m defines whether the

associated solution is travelling eastwardly or westwardly in the chosen reference
frame. Given the negative sign adopted for the time-dependent part of the solution
the perturbations are found to vary as ei.m'�!t/. This means that in this case a
positive m corresponds to a solution travelling eastwardly. I note, however, that not
all literature adopts the same definition, since sometimes the opposite sign is chosen
for the exponent in the time-dependent exponential. Finally, from the properties of
the spherical harmonics, one has that

r2
h Ym

l D � l .l C 1/

r2
Ym

l � ��2h Ym
l ; (12)
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Fig. 3 Examples of spherical harmonic functions, Ym
l , for mode degrees in the range l D 0–3.

For each mode degree, all possible non-negative values of m are shown. Red and blue show
perturbations of opposite sign

where �h has been identified as the horizontal wavenumber of the perturbation when
the latter is interpreted, locally, as a plane wave.

The last part of the solutions in Eq. (11) are the radial-dependent amplitudes.
For simplicity, radial-dependent parts of scalar perturbations have been named with
the same symbol as the full solutions. Using the full solutions separated as in
Eq. (11) in the system of equations (10), one can derive a set of equations governing
these amplitude functions. After eliminating the horizontal component of the
displacement by combining the continuity equation and the horizontal divergence of
the perturbed momentum equation, and eliminating the Eulerian perturbation to the
density through the adiabatic relation, one finds that the radial-dependent amplitudes
p0.r/, 0.r/, and �r.r/, obey the following system of equations:

1

r2
d

dr

�
r2�r

�� g0
c20
�r �

�
S2l
!2

� 1

�
1

c20�0
p0 D l .l C 1/

r2!2
0 ;

dp0

dr
C g0

c20
p0 � �0

�
!2 � N2

0

�
�r D ��0 d0

dr
;

1

r2
d

dr

�
r2

d0

dr

�
� l .l C 1/

r2
0 D 4�G

�
p0

c20
C �0N2

0

g0
�r

�
; (13)
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Fig. 4 Lamb frequency, Sl (continuous lines), for l D 1 and l D 10, buoyancy frequency, N0
(dashed-dotted line), and critical frequency, !c (dotted line, displayed in the outer 50% of the stellar
radius only), for a model of the Sun, all divided by 2� . The left vertical axis shows dimensionless
values of these characteristic frequencies obtained by multiplying them by tdyn. The right vertical
axis indicates the true physical values

where two characteristic frequencies have been defined: the Lamb frequency, Sl; and
the buoyancy (or Brunt–Väisälä) frequency, N0. The squares of these quantities are
given, respectively, by

S2l D l .l C 1/ c20
r2

; N2
0 D g0

	
1

�1;0

d ln p0
dr

� d ln �0
dr



: (14)

Examples of the Lamb frequency and buoyancy frequency are shown in Figs. 4 and 5
for a model of the Sun and a model of a star in the red-giant branch, respectively.
The buoyancy frequency is seen only where N2 > 0, which marks stellar layers that
are stable to convection.

A significant difference is found in the characteristic values of the Lamb
frequency in the two stars, as seen by comparing the scales on the right-hand side
vertical axes in Figs. 4 and 5. This is because this frequency scales approximately
with the inverse of the dynamical timescale of the star, tdyn D .R3=GM/1=2, hence
depending significantly on stellar radii. The vertical scale on the left-hand side of
each figure shows the characteristic frequencies in units of 1=tdyn, illustrating the
similarity of the Lamb frequency in the two stars once the scaling is accounted
for. The second aspect that calls attention in these figures is that the buoyancy
frequency in the more evolved star shows a much more significant contrast,
increasing significantly towards the stellar centre. This is a consequence of the
increasing density gradient in the innermost layers as the star evolves and the core
contracts. These structural differences between main-sequence and red-giant stars
have significant impact on the properties of their oscillations, as will be discussed
in Sect. 4.
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Fig. 5 Same as Fig. 4 but for a model of a star in the red-giant branch

There are a number of points that should be stressed in relation to the system of
equations (13):

• First, the system only contains total derivatives, reminding us that the variables
are the depth-dependent parts of the solutions only. In fact, the system of
equations (13) forms a system of linear, total differential equations of fourth
order for four unknown functions, namely, the depth-dependent amplitude
functions, �r; p0; 0, and d0=dr. We have, thus, at this point, reduced the original
3-dimensional problem into a 1-dimensional problem.

• The second point is that in the case of spherically symmetric perturbations
(l D 0), the perturbed Poisson equation can be integrated, reducing the system
to second order for the variables p0 and �r . An important consequence, that will
not be explored here, is that it is then possible to combine the two first-order
differential equations to obtain a single second-order differential equation for the
displacement, that can then be cast in the form of a standard wave equation.
Moreover, Takata (2005, 2016) has shown that in the case of dipolar modes
(l D 1), momentum conservation can be used to derive an integral that again
reduces the system to second order. In the same work, the author has also argued
that integrals such as those found for the case of radial and dipolar modes do not
exist for any other mode degree.

• For other mode degrees, reduction of the system of equations (13) to a second
order system can be achieved by performing the Cowling approximation, which
consists in neglecting the perturbation to the gravitational potential. This approx-
imation is adequate for perturbations that vary on relatively short scales (much
smaller than the radius of the star). Since the integral solution of the Poisson
equation relates 0 to the integral of �0, the cancellation effect that results from
the integration when �0 varies on short scales, leads to 0 being small in that case.
While this reduction of the order of the system requires an approximation, it has
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proven to be extremely useful for the asymptotic analysis of the equations and, in
that way, a better understanding of the physical picture involved. I will get back
to this in Sect. 3.

• The fourth, and last point, that should be made is that while the coefficients in
the system of equations (13) depend on the mode degree, l, they are independent
of the mode azimuthal order, m. This is a consequence of our assumption that
the equilibrium state is spherically symmetric. In fact, under that assumption,
there is no preferential direction in the star and, so far as the boundary conditions
(to be discussed in Sect. 2.4) are also independent of m, the solutions must be
independent of the reference about which the spherical harmonic functions are
defined. Since m defines the orientation of the spherical harmonic on the sphere,
the equations and, hence, the solutions, must not depend on m. This means that
under this assumption the solutions will be degenerate in the azimuthal order.
That degeneracy, however, is broken (partially broken), in the presence of agents
that break (partially break) the spherical symmetry, such as, e.g., rotation or
magnetic fields.

2.4 Boundary Conditions

Of the four boundary conditions required to solve the problem set by the system of
equations (13), two will be defined at the stellar centre (r D 0) and two at the stellar
surface (r D R).

2.4.1 At the Stellar Centre

The boundary conditions at the stellar centre are derived by imposing that the
solutions are regular (do not diverge) there. By expanding the equations near r D 0

one finds that the regular solutions require p0 � O.rl/, 0 � O.rl/, and �r � O.r˛/,
where ˛ D 1 for l D 0 and ˛ D l � 1 for l > 0. This means that, as r ! 0,

d0

dr
� l

r
0 ! 0 ;

dp0

dr
� l

r
p0 ! 0 ;

d�r

dr
� ˛

r
�r ! 0 : (15)

The three conditions above are not all independent. In fact, the condition on the
displacement can be derived from the other two by first noting that the gradient
of the thermodynamic variables in the equilibrium structure must be zero at the
centre of the star and, then, applying that knowledge to the perturbed equations.
Moreover, in that process one also finds that for non-radial modes �r D l�h, at r D 0.
The regularity of the solutions thus provides us with two independent boundary
conditions to apply at r D 0. One interesting point to notice is that the displacement
at the centre of the star is non-zero only for dipolar modes (l D 1). In all other cases
the centre of the star does not move. That such is the case can also be seen from
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symmetry arguments, as only for l D 1modes one would recover the same non-zero
displacement vector at r D 0 independently from where the centre is approached.

2.4.2 At the Stellar Surface

As the density vanishes outside the star, at the surface the perturbation to the
gravitational potential must match continuously onto the physically-meaningful
solution of the Poisson equation for a vacuum field (vanishing at infinity). That
implies that 0 � O.r�l�1/ and thus, at r D R,

d0

dr
D � l C 1

r
0 : (16)

The second boundary condition to be applied at the surface depends on how
one treats the atmosphere of the star. If one assumes a free boundary, then one must
consider that the pressure at the boundary is constant and, hence, that the Lagrangian
pressure perturbation there is zero. In that case, a second boundary condition at
r D R is found in the form:

p0 C dp0
dr
�r D 0 : (17)

This condition is reasonable for low-frequency waves, as will be seen later. How-
ever, as the frequency of the waves increases, the details of the atmosphere become
more important for the solution. It is therefore common, when solving the pulsation
equations, to adopt a more adequate boundary condition, such as that derived from
the matching of the radial displacement solution onto the physically meaningful
analytical solution derived for an isothermal atmosphere. The analytical solution
can be derived assuming a plane-parallel isothermal equilibrium composed of an
ideal gas and with constant adiabatic exponent and mean molecular weight. Under
these assumptions, the sound speed is constant and so are the density and pressure
scale heights, i.e., the characteristic lengths associated with the variations of density
and pressure, given respectively by H D �dr=d log�0 and Hp D �dr=d log p0.
Moreover, in this case, the equilibrium pressure and density decrease exponentially
with height in the atmosphere �; p / expŒ.R � r/=H/
. Then, considering the system
of equations (13) under the Cowling approximation, the displacement is found to
have the form �r / exp.�r/, where, for all cases that will be of interest to us,1

� D 1

2H

"
1˙

�
1 � 4!2H2

c20

�1=2#
� 1

2H

"
1˙

�
1 � !2

!2c

�1=2#
: (18)

1Here the term that would dominate in the case of atmospheric gravity waves is being neglected,
as those will not be discussed in these lectures.
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Combining the perturbed equation of mass conservation and the adiabatic condition
(first and fourth equations in the system of Eqs. (10)) with the solution for �r, and
noting that in the isothermal atmosphere H D Hp, one finds an alternative boundary
condition to be applied at r D R [replacing Eq. (17)], namely,

p0 � �
�
�1;0p0� C dp0

dr

�
�r D p0

H
.1 � �1;0�H/ �r ; (19)

where r 	 � has been approximated by d�r=dr, implicitly assuming that the
perturbation varies much more rapidly in the radial than in the horizontal direction.

In Eq. (18) the critical frequency, !c, has been introduced, which in the isother-
mal atmosphere is constant and equal to c0=.2H/. It is important to note that when
! < !c, � is real and the physically meaningful solution corresponds to choosing
the negative sign, ensuring that the energy density, / ��2r , decreases outwardly.
When ! > !c, � is complex and assuming no waves are being sent into the
atmosphere from outside, the imaginary part must be chosen to guarantee that
the wave travels outwardly. Considering the time-dependent part of the solution,
one finds that the radial component of the displacement goes as expŒi.˙�ir � !t/
,
where �i D .!2=!2c � 1/1=2. The outwardly travelling solution is thus obtained by
taking the positive sign in Eq. (18).

Under this boundary condition, waves with ! > !c will simply propagate away,
loosing their energy through the boundary.2 Here I am interested only in waves
that are fully trapped inside the star, loosing no energy through the boundary,
hence I will consider only the case when ! < !c. In the particular case when
! 
 !c the expression for � can be expanded and the boundary condition [Eq. (19)]
approximated by

p0 D p0
H

�
1 � �1

!2

4!2c

�
�r : (20)

Finally, I note that as the frequency decreases, the second term inside the brackets on
the right-hand side of Eq. (20) gets smaller and this boundary condition approaches
the one defined in Eq. (17), justifying the adequacy of the latter in the case of
sufficiently low frequencies.

2.5 Eigenvalues

The system of equations (13) and associated boundary conditions constitute an
eigenvalue problem that needs to be solved numerically. The system admits non-
trivial solutions only for discrete values of the eigenvalues !. The discrete solutions

2In a real stellar atmosphere there can be partial reflection of the wave energy even when ! > !c.
Accounting for that would require modifying the atmospheric model and, thus, the outer boundary
condition accordingly.
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can be associated to an integer number n, denominated by radial order. Once the
depth-dependent amplitudes of the perturbations are computed, the full solutions
can be derived from Eq. (11).

In summary, the eigenvalues, ! D !.n; l;m/, of the 3-dimensional problem set
by the pulsation equations (10) (after separation of time) are characterized by three
quantum numbers, n, l, and m, where the absolute value of the first, jnj, is related to
the number of nodes of the perturbation along the radial direction, while the other
two, introduced in Sect. 2.3, are related to the angular dependence of the solutions,
in particular to the horizontal scale of the perturbation and its orientation on the
stellar surface. The discrete nature of the eigenvalues is clearly seen in the power
density spectrum of the Sun shown in Fig. 1.

As discussed before, in the absence of physical agents that break the spherical
symmetry of the problem, the solutions must be degenerate in m. Hence, in that
case one has ! D !.n; l/ and any linear combination of the 2l C 1 independent
solutions associated with the spherical harmonic of degree l, and different m values,
is still an eigensolution for that eigenvalue.

A discussion of the full solutions obtained from numerical integration of the
pulsation equations will be presented in Sect. 4. First, however, it is useful to analyse
the second-order equation that is derived from the system of equations (13) under
particular approximations. That will be discussed in the next section.

3 Trapping of the Oscillations

The full solutions of the linear, adiabatic pulsation equations must be computed
numerically. Nevertheless, under the Cowling approximation, valid for large abso-
lute values of the radial order, jnj, or for large degree l, the system of equations (13)
reduces to second order on the variables p0 and �r , namely,

1

r2
d

dr

�
r2�r

�� g0
c20
�r �

�
S2l
!2

� 1

�
1

c20�0
p0 D 0 ;

dp0

dr
C g0

c20
p0 � �0

�
!2 � N2

0

�
�r D 0 : (21)

These equations can be combined to find a second-order wave equation for a single
variable. To do so, I follow the work of Deubner and Gough (1984), which, in
addition to the Cowling approximation, assumes that locally the oscillations can
be treated as in a plane-parallel layer under constant gravity, hence neglecting3 the
derivatives of r and g0. Let us introduce a new variable,

� D �
1=2
0 c20r 	 � ; (22)

3For a more general case in which these assumptions are not made, see Gough (1993).
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which through the adiabatic condition and the continuity equation can be seen
to be directly related to the Lagrangian pressure perturbation (ıp D ��1=20 � ).
The second-order system (21), under the approximations mentioned above, can be
manipulated to derive a wave equation for � ,

d2�

dr2
C �2r� D 0 ; (23)

where �r is the local radial wavenumber given by

�2r D 1

c20

	
S2l

�
N2
0

!2
� 1

�
C !2 � !2c



; (24)

and the critical frequency is now given by

!2c D c20
4H2

�
1 � 2

dH

dr

�
: (25)

Notably, kr depends critically on the three characteristic frequencies introduced
before, namely, Sl, N0 and !c. Examples of !c for a solar model and a red-giant
model are shown in Figs. 4 and 5, respectively. It is small in the stellar interior,
where the density varies on large scales, but it becomes large near the surface, where
structural variations take place on a much shorter scale.

3.1 Mode Propagation Cavities

If �2r were constant and positive, the solution would be oscillatory everywhere.
However, in a star �2r is a function of r, and one may generally expect it to be
positive in some region(s) and negative in others. Where it is positive, the solution is
locally wave-like (oscillatory in r) while where it is negative it is locally exponential.
Because �2r depends on !, the regions where wave-like solutions are found will
depend on the mode under consideration. When there is only one region of the
star where �2r > 0, the mode is said to be trapped there and that region is often
called the mode propagation cavity. Away from that cavity, where the energy of
the mode decreases exponentially, the mode is said to be evanescent. When �2r is
positive in more that one region of the star, separated by regions where it is negative,
the mode propagates in more than one cavity. However, often most of its energy is
concentrated in one of these cavities whose structure, in turn, is the most determinant
for the properties of the mode.

The radii at which �2r D 0 are called the turning points and define the edges of
the propagation cavities. Setting the left-hand side of Eq. (24) to zero, one finds a
second-order algebraic equation for !2, whose roots, !2l;˙, are given by

!2l;˙ D 1

2

�
S2l C !2c

�˙ 1

2

q�
S2l C !2c

�2 � 4S2l N2
0 ; (26)
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where the index l was used to recall that the roots depend on the mode degree
through their dependence on the Lamb frequency. Rewriting Eq. (24) as

�2r D 1

c20

�
!2 � !2l;C

� �
!2 � !2l;�

�
; (27)

one sees that modes propagate if

! > !l;C or ! < !l;� ; (28)

and modes are evanescent if

!l;� < ! < !l;C : (29)

Figure 6 shows the frequencies !l;˙ for a model of the Sun in what is usually
called a propagation diagram. Comparison with Fig. 4 shows the resemblance
between N0 and !l;�. The frequency !l;C, on the other hand, resembles Sl in the
deeper layers of the stellar model, but it is clearly dominated by !c in the outer
layers. Three modes, two at high frequency and one at low frequency, are illustrated
by the horizontal lines in Fig. 6. For each of these modes, the propagation cavity

Fig. 6 Propagation diagram for model S of the Sun (Christensen-Dalsgaard et al. 1996). The
frequencies !C (continuous thick lines) and !� (shaded-dotted thick lines) are shown for three
different values of mode degree, l. Note that in the outer layers (right-hand section of the plot),
the horizontal axis varies much slower than in the inner layers (left-hand section of the plot).
The arrow at the top marks r=R D 1. The horizontal lines mark four different frequencies
and are continuous where the mode is trapped. At the lowest end, we have a characteristic g-
mode frequency for this model, with � � 45�Hz. At the highest end we have a frequency
� � 6000�Hz that is too high to be trapped inside the star. In between, we have two p-modes,
one with l D 1; � � 1613�Hz, and one with l D 30; � � 2936�Hz. The left-hand side vertical
axis shows the range of values taken by these frequencies when they are scaled according to their
dependence on the dynamical timescale, while the right-hand side axis shows their true physical
values
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corresponds to the section in which the horizontal line is continuous. A fourth
frequency is marked, with � � 6000�Hz, which is too high to correspond to a
trapped mode.

3.2 Acoustic Versus Internal Gravity Waves

Inspection of the propagation diagram shown in Fig. 6 points towards the existence
of two families of solutions, one at lower frequencies, where the mode cavity is
essentially determined by the buoyancy frequency, and one at higher frequencies,
where the propagation cavity is determined by the combination of the Lamb
frequency, in the deeper regions, and the critical frequency, near the surface. This
can also be seen by considering the lower and higher frequency limits of �2r in the
propagation region, as discussed below.

3.2.1 Acoustic Waves

Let us consider first the higher frequency limit, namely, the case when !2 � N2
0 ,

in regions where �2r > 0. Except near the surface, where !c becomes large, Eq. (24)
then gives

�2r � !2

c20
� l .l C 1/

r2
: (30)

Recalling that the last term on the right-hand side is �2h [cf. Eq. (12)], one finds that

j�j2 � �2r C �2h � !2

c20
: (31)

One thus has, for !2 � N2
0 , a dispersion relation of the type:

! � c0j�j ; (32)

which is characteristic of acoustic waves. These waves are maintained by the
gradient of the pressure perturbation, i.e., the first term on the right-hand side of
the perturbed momentum equation. Note that in this case the frequency of the mode
increases as � increases. Taking the radial order for this family of solutions as being
positive integers, n, one thus finds that the frequency of acoustic modes increases
both with increasing radial order, n, and with increasing degree, l.

Looking back at Eq. (30), one can further establish the lower turning point for the
acoustic modes, that defines the lower boundary of their propagation cavity. Setting
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�2r to zero implies !2 D S2l , from which the lower turning point is found to be
defined by

r1;l D
p

l .l C 1/c0.r1;l/

!
; (33)

where the subscript l has been used to emphasize that the lower turning point
depends on the mode degree and it has been explicitly indicated that the value
of c0 is to be taken at the turning point. From Eq. (33), we see that the lower
turning point of acoustic modes depends strongly on the mode degree. As the mode
degree increases, the lower turning point gets closer to the surface, implying that the
propagation cavity of the mode becomes shallower. That is also evident in Fig. 6,
where one can see that the depth at which a horizontal line in the high-frequency
regime crosses lines of !l;C for different degrees, becomes smaller as the degree
increases. In addition, we see from Eq. (33), and also form inspection of Fig. 6, that
for a fixed mode degree, the lower turning point decreases as the mode frequency
increases. That means that higher frequency acoustic modes propagate deeper, for
fixed mode degree.

The upper turning point of the acoustic modes is, in turn, determined by
comparing the oscillation frequency with the critical frequency, which near the
surface is much greater than Sl. There, one may approximate,

�2r � !2 � !2c
c20

: (34)

Thus, one finds that �r D 0 in the outer layers if

c0
2H

	
1 � 2

dH

dr


1=2
� ! ; (35)

which provides an implicit condition for the upper turning point of acoustic modes,
r2. Note that unlike the case of the lower turning point, to this approximation the
upper turning point of acoustic modes is independent of the mode degree.

The upper turning point of acoustic modes in a solar-like model is best seen
in the right-hand section of Fig. 6. For the lowest of the three frequencies in the
high-frequency regime (� � 1613�Hz), the upper turning point is below the
photosphere, while for the second lowest (� � 2936�Hz) it is at the photosphere.
For that reason, the former is significantly less sensitive to the details of the outer
layers than the latter. This is relevant because these layers are particularly difficult
to model. The oscillation frequencies derived from models are therefore affected
by the incomplete modelling of the outer layers and, as a result, show systematic
differences when compared with the observations. This is less so for the lower
frequency acoustic modes, which may, in that case, serve as an anchor with which to
get a handle on the systematic errors (assuming some kind of frequency dependence
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of these errors). The other point to notice is that there is a frequency above which
no trapping is possible. This has been discussed in Sect. 2.4.2, where the critical
frequency for a plane-parallel, ideal, isothermal atmosphere has been introduced.
Independently of taking the latter, or the more realistic critical frequency shown in
Fig. 6, it is clear that above �5:3mHz full trapping of the modes no longer occurs.
Since !c also scales with the inverse of the dynamical timescale (as seen when
comparing Figs. 4 and 5), the maximum expected observed frequency is strongly
dependent on the evolutionary state of the star.

3.2.2 Internal Gravity Waves

Let us now turn our attention to the low frequency limit of Eq. (24) in regions where
�2r > 0. Let us consider that !2 
 S2l throughout that propagation region and, in
addition, that !2c 
 S2l there. In that case k2r is given approximately by

�2r � S2l
c20!

2

�
N2
0 � !2� : (36)

Recalling that �2h D l.l C 1/=r2 D S2l =c20, we then find the dispersion relation

!2 � N2
0

1C k2r=�
2
h

; (37)

which is characteristic of internal gravity waves. Internal gravity waves are main-
tained by the gravity acting on the perturbation to the density. If one considers
a slow upwards displacement of an element of fluid whose pressure is kept in
equilibrium with the surrounding, buoyancy will respond to restore the fluid towards
the equilibrium position if its density is larger than that of the surroundings. That,
in turn, can lead to the oscillatory motion associated to gravity waves. Because
an element of fluid cannot move strictly vertically, there is always an horizontal
component of the motion, which, in turn, means that gravity waves can never be
associated to spherically symmetric perturbations, i.e., there are no gravity waves
of degree l D 0. Moreover, since buoyancy will only oppose to the motion of the
element of fluid where N2

0 > 0, i.e., in convectively stable regions, the gravity waves
will only propagate where there is no convection.

Looking back at the dispersion relation in Eq. (37), there are additional points
that should be noted. First, the frequency of gravity waves is always smaller than
N0. This just confirms the role of buoyancy in maintaining the dynamics of gravity
waves. The second point is that the frequency of gravity waves depends critically
on the shape of the perturbation. In fact, when the perturbation is “needle-like”,
meaning that K2

r =K2
h 
 1, the frequency is higher, tending to N0 as that ratio tends

to zero. In the other limit, for wide perturbations with K2
r =K2

h � 1, the oscillation
frequency is smaller, tending to zero as the ratio becomes increasingly higher. This
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can be understood if we recall that the amount of material displaced horizontally
is larger in the latter case than in the former. This horizontal displacement, and
the horizontal pressure gradient that it originates, increases the effective inertia of
the element of fluid on which the buoyancy force is acting. The result is a smaller
acceleration of the element of fluid and, consequently, a smaller mode frequency.

It is worth emphasizing that the aspects discussed above are in striking contrast
with what was previously found for acoustic waves. Indeed, for acoustic waves
the frequency is found to depend essentially on the characteristic scale of the
perturbation, determined by the total wavenumber j�j, while for gravity waves
the frequency depends in addition, and very critically, on the relation between
the horizontal and vertical scales. Moreover, considering modes of a given degree
(hence fixing the horizontal scale), we find that the frequency of gravity waves
decreases with increasing �r. Taking the radial orders n as negative integers, as
is commonly done for gravity waves, we see that their frequencies decrease with
increasing jnj, again in contrast with what was found earlier for acoustic waves.

Finally, from Eq. (36) we find that under the conditions assumed, gravity waves
propagate between the radii at which N0 D !. The latter thus provides an implicit
condition for the lower and upper turning points of these modes which to this
approximation are independent of the mode degree, l. This is, again, in contrast with
the case of acoustic modes, for which the lower turning point, and, hence, the extent
of the propagation cavity, was found to be strongly dependent on the mode degree.
For the case of a star like the Sun, we see from Fig. 6 that the lower frequency
gravity modes are essentially trapped between the centre of the star and the base of
the convective region. For the highest frequency gravity modes the upper turning
point gets smaller and the modes are trapped in deeper layers. For main-sequence
stars more massive than the Sun, the innermost layers are convectively unstable
and, thus, the cavity of gravity waves is bounded on the inner side by the edge of
the convectively unstable core. On the other hand, since the convective envelope
gets shallower for more massive stars, gravity waves there can propagate almost to
the stellar surface. In more evolved stars, the trapping region again depends on the
existence, or not, of convection in the core, as well as on the extent of the convective
envelope, which can get very deep, as happens, for instance, along the red-giant
branch. Moreover, the steep increase of the buoyancy frequency in the core of
evolved stars, such as that shown in Fig. 5, can lead to several cavities of propagation
for the same mode, in which case the analysis becomes more complex than in the
cases discussed above. I will get back to that case in the next section, where the full
numerical results of the pulsation equations shall be discussed. Table 1 provides a
summary of the properties of acoustic and gravity waves.

3.3 The Surface Gravity Waves

For completeness, in this section I will consider the case of perturbations obeying
ıp D 0, hence,� D 0. Going back to the system of equations (21), and considering,
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Table 1 Summary of the properties of acoustic and gravity waves discussed in this chapter

Acoustic waves Gravity waves

Maintained by the gradient of pressure
fluctuation

Maintained by gravity acting on density
fluctuation

Radial or non-radial Always non-radial

Propagate in convectively stable or unstable
regions

Propagate in convectively stable regions only

Propagation cavity strongly dependent on l Propagation cavity largely independent of l

Frequency increases with increasing n and
increasing l

Frequency always < max.N0/. It increases
with increasing l, and decreases with
increasing jnj

as before, that locally the oscillations can be treated as in a plane-parallel layer under
constant gravity, we find:

d�r

dr
� g0�2h

!2
�r C 1

�0c20

�
1 � c20�

2
h

!2

�
ıp D 0 ;

dıp

dr
C g0�2h

!2
ıp � �0g0

�
!2

g0
� g0�2h

!2

�
�r D 0 : (38)

For ıp D 0, the system above is satisfied by an exponential solution of the
type �r D exp Œ�h .r � r0/
, where �h D !2=g0. Here, r0 is a fiducial depth in
the vicinity of which the plane-parallel approximation is being made and g0 is the
gravitational acceleration at r D r0. Thus, the depth-dependent amplitude of the
solution in this case decays exponentially with depth and the dispersion relation is
! D p

g0�h. Moreover, under the approximations considered here, it is independent
of the stratification of the star. Since the characteristic scale of the amplitude decay
is ��1

h , the plane-parallel approximation is particularly adequate when �h, hence the
degree l of the mode, is not too small and the mode is concentrated near the surface
of the star.

This solution can be identified as a surface gravity wave, similar to a wave
propagating at the surface of a deep ocean. Since ıp D 0, r 	 � D 0 and the
fluid is not compressed during the perturbation.

4 Numerical Solutions to the Pulsation Equations

The full solutions to the pulsation equations and associated boundary conditions
must be computed numerically. In this section, I briefly discuss the range of
solutions obtained for a model of the Sun and discuss also a specific example for a
star in a different evolutionary state.
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Fig. 7 Left: Cyclic frequencies computed for a model of the Sun, as function of mode degree,
l. The discrete eigenvalues for each radial order have been joined by continuous lines with a
few examples of the radial order identified on the right-hand side and top of the figure. Right:
Frequencies of the Sun derived from 144 days of observations with the instrument MDI on board
the SOHO spacecraft. The depicted error bars correspond to 1000� . The dotted lines show the
model results, for comparison. Figure adapted from Christensen-Dalsgaard (2008c) and Aerts et al.
(2010)

The left panel of Fig. 7, adapted from Aerts et al. (2010), shows the cyclic
frequencies (=!=2�/ computed with the Aarhus adiabatic oscillation package
(ADIPLS; Christensen-Dalsgaard 2008a) for a solar model obtained with the Aarhus
STellar Evolution Code (ASTEC; Christensen-Dalsgaard 2008b). The discrete eigen-
values for each radial order have been joined by continuous lines with a few
examples of the radial order identified on the right-hand side and top of the
figure. Three families of solutions are identified in the figure: (1) The acoustic
(or p-) modes, at higher frequencies; (2) the gravity (or g-) modes, at lower
frequencies, and; (3) the f-mode, at intermediate frequencies. These correspond to
the cases discussed in the previous section, based on the analysis under the Cowling
approximation. For comparison, the eigenfrequencies of the real Sun, derived from
data acquired with the instrument MDI on board of the SOHO spacecraft are shown
on the right panel of the same figure, where the model results are overplotted
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as dotted curves. Only the p- and f-modes are seen in the real data. In fact, the
observation of gravity modes in the Sun has been a long-standing goal, but despite
all efforts and some claims of detection of signatures of g-modes and, possibly,
individual g-modes in the Sun (García et al. 2007; García 2010), the matter is still
not settled (Appourchaux et al. 2010).

A closer look at the different families of solutions displayed in Fig. 7 shows that
the behaviour of the solutions with changing radial order and mode degree also
follows what was found from the analysis in Sect. 3. For the p-modes, at fixed
degree, l, we can see an increase of the frequency with radial order. Likewise,
following a single line of fixed radial roder, n, we also see an increase of the
frequency with increasing degree. Both of these dependencies were expected from
the dispersion relation for acoustic waves derived earlier. Regarding the g-modes,
we can identify an upper bound to the frequency, which corresponds to the
maximum value of the buoyancy frequency in that model. In addition, I note that
there are no results for spherically symmetric modes, l D 0, as expected given that
the displacement associated with these waves can never be purely radial (always
involves a horizontal displacement of the fluid). Moreover, it is seen that at fixed
degree the frequency decreases with increasing absolute value of the radial order,
jnj, while at fixed radial order, the frequency increases with increasing degree. I
also note that the fact that the lines of g-mode solutions are very close to each other
implies that at fixed frequency the radial order increases very rapidly with increasing
mode degree. As for the case of p-modes, the numerical results discussed here are
in agreement with the dispersion relation for g-modes derived in Sect. 3. Finally,
the f-mode eigenfrequencies for moderate to high mode degrees (the ones for which
the plane-parallel approximation used in Sect. 3 is adequate), are found between the
p-mode and g-mode eigenfrequencies. Despite the resemblance of the high degree
f-mode solutions and the p-mode solutions I wish to recall that these modes obey
ıp D 0. Thus, the perturbation takes place without compression or refraction of the
fluid, reminding us that f-modes are not acoustic waves.

The trapping of the modes discussed in Sect. 3 can also be verified by inspection
of the numerical eigenfunctions. In Fig. 8 three examples of p-mode (left panel)
and g-mode (right panel) eigenfunctions are shown, for the solar model discussed
above. The quantity plotted, r3ıp, has the dimensions of energy and, in each case, it
is normalized to its maximum value. Inspection of the p-mode solutions shows that
the spherically symmetric pulsation (l D 0; top panel) propagates from the centre
to the stellar surface. One may then expected it to carry average information about
the entire star. In contrast, a p-mode of similar frequency but much higher degree
(l D 60; bottom panel) has its energy concentrated in the outer layers of the star.
This was expected from the analysis performed in Sect. 3, where it was found that
the propagation cavity of p-modes becomes shallower as the mode degree increases.
Looking now at the right panel we see that, in contrast with the p-modes, the energy
of the g-modes is concentrated towards the innermost layers of the star. The modes
are trapped below the convective envelope (marked by the vertical dotted line), in a
cavity that is mostly independent of mode degree. The modes shown have similar
frequency, so as anticipated from Fig. 7, even a small increase in mode degree results



50 M.S. Cunha

Fig. 8 Normalized eigenfunctions for a model of the Sun, as function of fractional radius. The
chosen eigenfunction, r3ıp, has the dimensions of energy and is normalized to its maximum value.
Left: Results for three p-modes: (a) (l D 0; n D 21; � D 3038:0�Hz), (b) (l D 20; n D 14; � D
2939:2�Hz), and (c) (l D 60; n D 9; � D 3043:2�Hz). Right: Results for three g-modes: (a)
(l D 1; n D �5; � D 109:2�Hz), (b) (l D 2; n D �10; � D 102:6�Hz), and (c) (l D 3; n D
�14; � D 104:1�Hz). The dotted line marks the base of the convective envelope (figure courtesy
of J. Christensen-Dalsgaard)

is a significant increase in the radial order, as seen from the increase in the number
of nodes when comparing the upper and lower panels on the right-hand side.

The regions where modes propagate depend directly on the stellar structure and,
hence, are different for stars of different masses or different evolutionary states.
In Sect. 2.3 I have pointed out that as the star evolves beyond the main sequence,
and the core contracts, the buoyancy frequency increases significantly towards
the centre. This results in the appearance of mixed modes, i.e., modes that are
maintained by gravity acting on density perturbations in the deep interior, and by
the gradient of the pressure perturbation in the outer layers. An example of such
a mode computed for the model shown in Fig. 5 is shown in Fig. 9. Two mode
cavities can be identified, in the inner and outer layers of the star, respectively,
separated by an evanescent region where the solution is not oscillatory. Despite
the latter, coupling does exist between the two cavities and in a general case the
solution is different from what would be found if the two cavities were considered
independently of each other.
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Fig. 9 Same as Fig. 8, for a dipole mode with frequency � D 51:20�Hz, in a model of a star
in the red-giant branch. The vertical, dashed lines show the position of the two turning points
bounding the evanescent region, namely, r2 and r3. The outermost turning point, r4 , is also shown,
while the innermost turning point, r1, is outside the plotted range. The g-mode cavity is located
between the unseen r1 and r2, and the p-mode cavity is located between r3 and r4. Figure adapted
from Cunha et al. (2015)

5 Discussion

As mentioned from the outset, a number of aspects of the theory of stellar pulsations
had to be left out of these notes in the interest of space. In what follows, I identify
issues that I find particularly important and that are discussed in detail in the books
and lecture notes mentioned in the introduction.

To start with, it should be pointed out that it is possible to perform an asymp-
totic analysis of the second-order pulsation equations derived under the Cowling
approximation to find approximate eigenvalues and eigenfunctions for modes of
high radial orders and low degree. That has been performed in different ways by
different authors (Vandakurov 1968; Tassoul 1980; Unno et al. 1989; Gough 1993).
In the case of p-modes, the eigenfrequencies in this limit are found to be well
approximated by

�nl '
�

n C l

2
C 1

4
C ˛

�
��0 � ŒAl.l C 1/� ı


��20
�nl

; (39)
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where

��0 D
�
2

Z R

0

dr

c

��1
(40)

is the inverse sound travel time across a stellar diameter, and

A D 1

4�2��0

	
c.R/

R
�
Z R

0

dc

dr

dr

r



: (41)

Here, ˛ is a slowly varying function of frequency determined by the reflection
properties near the surface and ı is a small correction term predominantly related
to the near-surface region. To leading order, Eq. (39) predicts the uniform spacing
between frequencies of consecutive modes of the same degree, corresponding to the
large frequency separation, ��, observed in Fig. 1. Also, we see that modes of odd
degree fall halfway between modes of even degree. The first term in Eq. (39) cancels
out when subtracting the frequencies of modes of consecutive orders and degrees
differing by two. That combination then gives the small frequency separation, ı�,
also seen in Fig. 1, and which is found to be

ı�nl D �n l � �n�1 lC2 ' �.4l C 6/
��0

4�2�nl

Z R

0

dc

dr

dr

r
; (42)

where the small term c.R/ in Eq. (41) has been neglected. From Eq. (42) we see that
the small separation is particularly sensitive to the innermost layers, as a result of
the r�1 dependence of the integrand. Other small separations and ratios of small to
large separations are often considered in asteroseismology. In particular, the ratios
(Roxburgh and Vorontsov 2003; Cunha and Metcalfe 2007) have the advantage
that they are essentially independent of the inadequately modelled surface layers
of the stars.

In the case of high radial order, low-degree g-modes, the first-order term of the
asymptotic analysis predicts a uniform spacing in mode period, ˘nl, rather than in
frequency. In this case, we have (e.g., Tassoul 1980; Smeyers and Moya 2007):

˘nl ' ˘0p
l.l C 1/

�
n C ˛l;g

�
; (43)

where

˘0 D 2�2
�Z r2

r1

N
dr

r

��1
: (44)

The phase ˛l;g depends on whether the core of the star is radiative or convective,
depending on mode degree in the first case but not in the latter. In the case of a
radiative core one can write ˛l;g D l=2 C ˛g, where ˛g is independent of mode
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degree. Note, however, that in both cases there is a strong dependence on mode
degree of the period spacings between modes of the same degree and consecutive
orders, due to the term Œl.l C 1/
�1=2 in Eq. (43). This is in contrast with the case of
p-modes for which the asymptotic large separation is, to first order, independent of
mode degree.

Another important aspect that has been left out of this chapter is the impact on
the oscillation spectrum of rotation and magnetic fields. A perturbative analysis
of the impact of rotation on pulsations can be found, e.g., in Aerts et al. (2010),
while the impact of an internal magnetic field can be found, e.g., in Gough (1993).
Non-perturbative analyses of these phenomena, required in the cases of fast rotation
or magnetic fields that permeate the stellar surface, are discussed by Lignières
et al. (2006), Reese et al. (2006) and Cunha and Gough (2000), Cunha (2006),
respectively.

The ultimate goal of stellar pulsations studies is to infer information about
the physics and dynamics of stellar interiors from the asteroseismic data. That
is commonly achieved through forward modelling, a method that is intrinsically
model-dependent, or, in optimal cases, through inverse techniques, in which the
solutions are not restricted to those of a set of models.

Finally, I note that no word has been said about the driving of the pulsations,
with the exception of a brief reference, in Sect. 1, to the fact that modes can be
intrinsically stable, as in solar-like pulsators, or unstable, as in classical pulsators.
This topic is, however, well out of the scope of the present notes and I, thus, refer
the interested reader to the literature listed in Sect. 1, and references therein.
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An Introduction to Data Analysis
in Asteroseismology

Tiago L. Campante

Abstract A practical guide is presented to some of the main data analysis concepts
and techniques employed contemporarily in the asteroseismic study of stars exhibit-
ing solar-like oscillations. The subjects of digital signal processing and spectral
analysis are introduced first. These concern the acquisition of continuous physical
signals to be subsequently digitally analyzed. A number of specific concepts and
techniques relevant to asteroseismology are then presented as we follow the typical
workflow of the data analysis process, namely, the extraction of global asteroseismic
parameters and individual mode parameters (also known as peak-bagging) from the
oscillation spectrum.

1 Introduction

Solar-like oscillations are excited by turbulent convection in the outer layers of stars
(see, e.g., Christensen-Dalsgaard 2004, and references therein). Consequently, all
stars cool enough to harbor an outer convective envelope may be expected to exhibit
solar-like oscillations. Among several other classes of pulsating stars, solar-like
oscillations are detectable in main-sequence core, and post-main-sequence shell,
hydrogen-burning stars residing on the cool side of the Cepheid instability strip.
The NASA Kepler mission (Borucki et al. 2010) has led to a revolution in the field
of cool-star asteroseismology by allowing the detection of solar-like oscillations
in several hundred solar-type stars (i.e., low-mass, main-sequence stars and cool
subgiants) and in over ten thousand red giants (for a review, see Chaplin and
Miglio 2013). Of all these stars displaying solar-like oscillations about one hundred
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are Kepler Objects of Interest (KOIs), i.e., candidate exoplanet-host stars (e.g.,
Campante et al. 2015; Lundkvist et al. 2016).

The present chapter is intended as a practical guide to some of the main data
analysis concepts and techniques employed contemporarily in the asteroseismic
study of stars exhibiting solar-like oscillations. The contents of this chapter strongly
reflect the author’s own experience as a data analyst. For that reason, special care
has been taken to provide references to the work conducted by others, so that the
reader can easily expand on the material presented herein.

Pre-processing of light curves, although an integrant part of the data analysis
process, is beyond the scope of this contribution. I therefore start by introducing the
subjects of digital signal processing and spectral analysis in Sect. 2. These concern
the acquisition of continuous physical signals to be subsequently digitally analyzed.
A number of specific concepts and techniques relevant to asteroseismology are
then presented as we follow the typical workflow of the data analysis process
(see Fig. 1). One must first establish whether signatures of solar-like oscillations

Analysis-ready
lightcurve

Input lightcurve &
compute spectrum;

Detectable
oscillations?

Other high-level
input as priors

no

no

yes

yes

First-guesses &
priors

Fix fitting strategy
and fit spectrum

poor fit

good fit

Output quality
control

Report outputs
and END

Fit spectrum?
Fit

granulation?

Report
and END

Report
and END

Fig. 1 Typical workflow of the data analysis process
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are detectable in the power spectrum of the light curve. If they are, an attempt
is made at extracting global asteroseismic parameters from the data (Sect. 3).
One then establishes whether the oscillation spectrum is of sufficient quality to
allow extraction of individual frequencies. If the answer is yes, individual mode
parameters are then extracted by fitting a multiparameter model to the oscillation
spectrum, i.e., by peak-bagging the oscillation spectrum (Sect. 4).

2 Digital Signal Processing and Spectral Analysis

Whereas some temporal phenomena can be understood through models in the time
domain involving deterministic trends and/or stochastic autoregressive behavior,
others are dominated by periodic behavior that is most effectively modeled in
the frequency domain. The functional form of solar-like oscillations is that of a
stochastically-excited harmonic oscillator. This being a periodic functional form,
the Fourier transform becomes the obvious choice for performing data analysis.

2.1 Nyquist Sampling Theorem and Aliasing

Let us consider the idealized case of a continuous signal x.t/ sampled by a set of
impulse functions regularly spaced by�t. Since the Fourier transform of such a set
of impulse functions is another set of impulse functions with separation 1=�t in the
frequency domain, one can use the convolution theorem to show that the transform
of the sampled signal is periodic:

x.t/
C1X

nD�1
ı .t � n�t/ ” X.�/ � 1

�t

C1X
nD�1

ı
�
� � n

�t

�
; (1)

where X.�/ is the Fourier transform of x.t/, the symbol ‘”’ indicates a Fourier
pair and the symbol ‘�’ denotes convolution.

The Nyquist sampling theorem (Nyquist 1928; Shannon 1949) states that if the
Fourier transform of a continuous signal is band-limited, i.e., is zero for all j�j��lim,
then x.t/ can be uniquely reconstructed from a knowledge of its sampled values at
uniform intervals of �t � 1=.2 �lim/. For a given uniform sampling interval �t, the
Nyquist frequency is defined as �Nyq D1=.2�t/. In case the continuous signal being
sampled contains frequency components above the Nyquist frequency, these will
give rise to an effect known as aliasing, whereby the transform of the continuous
signal is distorted due to spectral leakage. The signal is then said to be undersampled
and can no longer be uniquely recovered.

The Nyquist frequency can be thought of as the highest useful frequency to
search for in the power spectrum. However, based on astrophysical arguments, one
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can also accept frequencies above �Nyq (Murphy et al. 2013; Chaplin et al. 2014).
Prospects for detecting solar-like oscillations in the super-Nyquist regime of Kepler
long-cadence data, i.e., above the associated Nyquist frequency of � 283�Hz, are
now being explored (Yu et al. 2016). Targets of interest are cool subgiants and stars
lying at the base of the red-giant branch.

Regular gaps in the light curve due to diurnal interruptions and, for data sets
spanning more than a year, caused by the annual motion of the Earth, are usually
present in observations carried out from the ground, giving rise also to frequency
aliasing. Daily aliases, appearing at splittings of ˙1 cycle=day (or, equivalently,
˙11:57 �Hz), are particularly problematic when observing solar-like oscillations,
since frequency separations of that same magnitude are common (e.g., Arentoft et al.
2008; Bedding et al. 2010).

2.2 Filtering

Asteroseismic time series are often affected by low-frequency drifts, which can be
either of instrumental origin or else intrinsic to the star. These low-frequency drifts
introduce a background in the Fourier domain that ultimately leads to a degradation
of the signal-to-noise ratio (SNR) in the oscillation modes. High-pass filters are
widely used to reduce this effect while preserving the relevant signals.

Let us start by shedding some light on the process of smoothing of a time series.
Smoothing consists in convolving a signal x.t/ with a weighting function w.t/:

xlow.t/ D x.t/ � w.t/ ” Xlow.�/ D X.�/W.�/ ; (2)

where X.�/ and W.�/ are the transforms of x.t/ and w.t/, respectively. Conversely,
a high-pass filter can be implemented by simply computing xhigh.t/Dx.t/ � xlow.t/:

xhigh.t/ ” Xhigh.�/ D X.�/ Œ1 � W.�/
 : (3)

A commonly used high-pass filter in helioseismology is the backwards-
difference filter (García and Ballot 2008):

xbd.t/ D x.t/ � x.t � t0/ D x.t/ � Œx.t/ � ı.t � t0/
 ; (4)

where a time shift t0 has been considered. It becomes immediately obvious that
w.t/Dı.t�t0/ in Eq. (2). Using Eq. (3), one can then determine the transfer function
of the backwards-difference filter:

j1 � W.�/j2 D
	
2 sin

�
�

2

�

�c

�
2
; (5)

where the cut-off frequency, �c D1=.2 t0/, has been introduced.
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Typical examples of the weighting function w.t/ are a boxcar function, a
triangular function (equivalent to the convolution of two boxcar functions) and
a bell-shaped function (equivalent to the convolution of four boxcar functions or
two triangular functions). The transform of the boxcar function is the sinc function
and thus leads to an excessive ringing (or Gibbs-like) effect in the Fourier domain.
Multiple-boxcar smoothing is therefore advisable.

2.3 Power Spectral Density Estimation

Attention is first drawn to the estimation of the Fourier transform of x.t/ based on
a finite number of samples. Suppose there are N evenly spaced samples x.tn/ D
x.n�t/, with nD0; 1; : : : ;N�1. The Discrete Fourier Transform1 (DFT) is defined
as:

XDFT.�p/ D
N�1X
nD0

x.tn/ ei 2��ptn for �p D p=.N�t/ ; p D 0; 1; : : : ;N � 1 : (6)

XDFT.�p/ is the truncated transform of the sampled signal, which has periodicity
1=�t or twice the Nyquist frequency. Then p D 0 corresponds to the transform at
zero frequency and pDN=2 to the value at ˙�Nyq. Values of p between N=2C1 and
N�1 correspond to the transform for negative frequencies.

Finally, I introduce the one-sided power density spectrum or power spectrum,
P.�q/, defined only for nonnegative frequencies (with qD0; 1; : : : ;N=2):

P.�0/ D �t

N
jXDFT.�0/j2 ;

P.�q/ D �t

N

hˇ̌
XDFT.�p/

ˇ̌2 C ˇ̌
XDFT.�N�p/

ˇ̌2i
; (7)

P.�N=2/ D �t

N

ˇ̌
XDFT.�N=2/

ˇ̌2
;

where �N=2 D 1=.2�t/ (i.e., the Nyquist frequency). Based on Parseval’s theorem
(Parseval des Chênes 1806), we may then normalize P.�q/ according to

N=2X
qD0

P.�q/�� D 1

N

N�1X
nD0

x2.tn/ : (8)

1Cooley and Tukey (1965) have introduced the Fast Fourier Transform (FFT), an efficient method
of implementing the DFT.
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According to the Wiener–Khintchine theorem (Wiener 1930; Khintchine 1934),
the power spectrum and the autocorrelation function, .�/, are a Fourier pair:

.�/ D
Z C1

�1
P.�/ e�i 2��� d� ” P.�/ D

Z C1

�1
.�/ ei 2��� d� ; (9)

where

.�/ D lim
T!1

1

T

Z T=2

�T=2
x.t/x.t C �/ dt : (10)

The Wiener–Khintchine theorem is absolutely crucial to understanding the spectral
analysis of random processes. It straightforwardly explains, for instance, why white
noise, whose autocorrelation function is the Dirac delta function, has constant power
spectral density.

2.4 Power Spectrum Statistics and Hypothesis Testing

In the following I consider the statistics of the power spectrum of a pure noise
signal (see also Appourchaux 2013). Let x.t/ represent a random process from
which a finite number of samples x.tn/ are drawn. The samples are assumed to be
independent and identically distributed (i.i.d.), and the process is further assumed
to be stationary, with E Œx.tn/
D 0 and E

�
x2.tn/

�D�20 for all n. The DFT of the set
x.tn/ may be decomposed into its real and imaginary parts as:

XDFT.�p/ D XRe
DFT.�p/C i XIm

DFT.�p/

D
N�1X
nD0

x.tn/ cos.2��ptn/C i
N�1X
nD0

x.tn/ sin.2��ptn/ : (11)

It follows from the Central Limit theorem that, for large N, both XRe
DFT and XIm

DFT are
normally distributed with

E
�
XRe

DFT.�p/
� D E

�
XIm

DFT.�p/
� D 0 ; (12)

E
h�

XRe
DFT.�p/

�2i D E
h�

XIm
DFT.�p/

�2i D N

2
�20 : (13)

Finally, since XRe
DFT and XIm

DFT are independent and have the same normal distribution,
the power spectrum, jXDFTj2, then has by definition a chi-squared distribution with
2 degrees of freedom (i.e., �22).
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Adopting jXDFTj2 �t=N as our normalization of the power spectrum yields
a constant power spectral density for the noise of �20�t and variance .�20�t/2.
Consequently, as N tends to infinity by sampling a longer stretch of data, the
variance in the power spectrum remains unchanged. Furthermore, the probability
density, p.z/, that the observed power spectrum takes a particular value z at a fixed
frequency bin is given by

p.z/ D 1

hzi exp

�
� z

hzi
�
; (14)

where hziD�20�t. Equation (14) enables one to derive the probability that the power
in one bin is greater than m times the mean level of the continuum, hzi:

F.m/ D e�m : (15)

For instance, a confidence level of 99% or, equivalently, a false alarm probability of
1%, leads to m � 4:6. For a frequency band containing M bins, the probability that
at least one bin has a normalized power greater than m is then:

FM.m/ D 1 � .1 � e�m/M ; (16)

which approximates to FM.m/DMe�m for e�m 
1.
In astrophysics it is very common to deal with unevenly sampled time series.

In that event, an existing frequentist statistic known as the Lomb–Scargle peri-
odogram2 is widely used as an estimator of the power spectral density. The
Lomb–Scargle periodogram can be formulated either as a modified Fourier analysis
or as a least-squares regression of the data set to sine waves with a range of
frequencies. It has the attractive property of retaining the �22 statistics.

2.5 Non-Fourier Periodograms

Astronomers have developed and extensively used a variety of non-Fourier peri-
odograms for period searches in unevenly spaced data sets (e.g., Clarke 2002). The
most common strategy involves folding the data modulo a trial period, computing
a statistic on the folded time series (now a function of phase rather than time), and
plotting the statistic for all independent periods. These methods measure the strength
of signals that are strictly periodic, but not necessarily sinusoidal in shape. They are
also relatively insensitive to the duration and uneven spacing of the data set, and

2Fast computation of the periodogram is achieved using the algorithm presented in Press and
Rybicki (1989), whose trick is to carry out “extirpolation” of the data onto a regular mesh and
subsequently employ the FFT.
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some methods readily permit heteroscedastic weighting from measurement errors.
An overview of the application of non-Fourier periodograms to asteroseismic data
sets is given in Sect. 5.2 of the book by Aerts et al. (2010).

3 Extracting Global Asteroseismic Parameters

In order to fully characterize a star using asteroseismology, it is desirable that
we obtain precise estimates of individual mode parameters (e.g., frequencies,
amplitudes and linewidths). However, this is only possible for data above a certain
SNR. Global asteroseismic parameters, indicative of the overall stellar structure,
are on the other hand readily extractable using automated pipelines that are able to
incorporate data with a lower SNR and for which a full peak-bagging analysis is not
always possible. Furthermore, the automated nature of these pipelines is required if
we are to efficiently exploit the large volumes of data made available by current and
future space-based missions (Rauer et al. 2014; Campante et al. 2016b).

In this section I introduce an automated pipeline3 which has been originally
designed to extract global asteroseismic parameters of main-sequence and subgiant
stars from Kepler power spectra (Campante et al. 2010; Campante 2012). This
pipeline allows extracting the following information from the power spectrum
(points 1–4 are covered below):

1. Frequency range of the oscillations;
2. Parameterization of the stellar background signal;
3. Average large frequency separation,��;
4. Frequency of maximum amplitude, �max;
5. Maximum mode amplitude, Amax.

3.1 Detectability of Oscillations

We want to look for a frequency range in the power spectrum in which peaks appear
at nearly regular intervals, one of the main signatures of the presence of solar-like
oscillations. I note that the assumption of quasi-regularity may, however, be too
strong in the case of evolved stars due to the presence of mixed modes. We start by
partitioning the power spectrum into overlapping windows of variable width, w. The
width w depends on the central frequency of the window, �central, used as a proxy for
�max. We make use of the fact that the width of the p-mode bump approximately
scales with �max (e.g., Stello et al. 2007; Mosser et al. 2010), and so w is defined as
wD.�central=�max;ˇ/wˇ.

3A comparison of different pipelines used to extract global asteroseismic parameters is presented
in Verner et al. (2011).
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The next step consists in computing the power spectrum of the power spectrum,
PS˝PS, for each of these frequency windows. The presence of prominent features
in the PS˝PS around the predicted4 values of ��=2, ��=4, and ��=6 (the first,
second, and third harmonics, respectively) is then examined. An hypothesis test is
subsequently applied, whereby the presence of oscillations in a given window is
established if the probability of the three above features being due to noise is less
than 1%. Finally, the frequency range of the oscillations is determined based on the
overall span of the windows with detected oscillations.

Figure 2 shows the detection of oscillations in the K2 power spectrum of a solar-
type star vertical gray solid and dashed lines are separated by the estimated ��,
and mark the spacing on which we would expect to see modes. The inset shows the
PS˝PS, computed from the region around �max. The significant peak in the PS˝PS
lies at ��=2 and is a signature of the near-regular spacing of solar-like oscillations.

Fig. 2 K2 power spectrum (slightly smoothed) of a solar-type star with detected oscillations. Inset
shows the PS˝PS, computed from the region around �max. Adapted From Chaplin et al. (2015)

4The predicted value of �� is computed according to the relation ��/�0:77central (Stello et al. 2009).
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3.2 Background Signal

The model of the stellar background signal is kept simple, merely containing a
granulation component and photon shot noise. We fit this model to a smoothed
version of the power spectrum employing a nonlinear least-squares fitting algorithm.

The frequency range of the oscillations (if detected) is excluded from the fitting
window. The fitting window starts at 100�Hz to allow for the decay of any possible
activity component, characterized by considerably longer timescales, and extends
all the way up to the Nyquist frequency of Kepler short-cadence data (�8300�Hz).

The granulation component is represented by a Harvey-like profile (e.g.,
Kallinger et al. 2014 and references therein) to which an offset is added to account
for the shot noise component:

B.�/ D B0 C �2.�/

	
Bgran

1C .2�� �gran/a



; (17)

where Bgran is the height at � D 0 of the granulation component, �gran is the
characteristic turnover timescale and a calibrates the amount of memory in the
process. Such a functional form is representative of a random non-harmonic
field whose autocorrelation decays exponentially with time. The attenuation factor
�2.�/ takes into account the apodization of the oscillation signal due to the finite
integration time.

The top panel of Fig. 3 displays the smoothed power spectrum of 16 Cyg A (dark
red) overlaid on the original power spectrum (black). The fit to the background
signal (red solid line) and both its components (red dashed lines) are also shown.
The bottom panel displays the PS˝PS over the frequency range of the oscillations.
The features at ��=2 (�52�Hz), ��=4 (�26�Hz) and ��=6 (�17�Hz) are
conspicuous.

3.3 Large Frequency Separation (��)

In order to estimate the average large frequency separation, ��, we compute the
PS˝PS over the frequency range of the oscillations. The feature at ��=2 (first
harmonic) in the PS˝PS is then located and its power-weighted centroid computed
to provide an estimate of ��. The standard deviation of grouped data, given byp
Œ
P

hx2 � .
P

hx/2=
P

h
 = .
P

h � 1/, is adopted as the error on ��, meaning
that the feature in the PS˝PS is interpreted as an assembly of spectral heights (h)
over a number of bins (with midpoint x).



An Introduction to Data Analysis in Asteroseismology 65

102

100

10–2

10–4

10–6

100

100806040200
0

50

N
or

m
al

iz
ed

 P
ow

er
P

ow
er

 S
pe

ct
ra

l D
en

si
ty

 (
pp

m
2 m

H
z–1

)

100

150

200

1000

Frequency (mHz)

Frequency (mHz)

Fig. 3 Output from the analysis of the Kepler light curve of the bright G-type dwarf 16 Cyg A.
Top panel: Modeling the stellar background signal. Bottom panel: Detection of oscillations in the
PS˝PS. From Campante (2012)

3.4 Frequency of Maximum Amplitude (�max)

In order to estimate the frequency of maximum amplitude, �max, we average the p-
mode power (after subtraction of the background fit) over contiguous rectangular
windows of width 2�� and convert to power per radial mode by multiplying by
��=c, where c measures the effective number of modes per order (see Kjeldsen
et al. 2008). An estimate of �max is then given by the power-weighted centroid, with
the associated uncertainty derived from the standard deviation of grouped data (see
Sect. 3.3).
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4 Peak-Bagging

In this section I introduce a Bayesian peak-bagging tool that employs Markov
chain Monte Carlo (MCMC) techniques (e.g., Campante et al. 2011; Handberg
and Campante 2011; Campante 2012; Campante et al. 2016a). Besides making it
possible to incorporate relevant prior information through Bayes’ theorem, this tool
also allows obtaining the marginal probability density function (pdf) for each of the
model parameters. Such techniques are in many ways an extension of the Maximum
Likelihood Estimation (MLE) methods originally introduced in helioseismology
(Duvall and Harvey 1986; Anderson et al. 1990).

4.1 Power Spectrum of a Solar-Like Oscillator

Understanding the characteristics of the power spectrum of a solar-like oscillator
is fundamental in order to extract information on the physics of the modes. The
stochastic driving of a damped oscillator can be described by

d2

dt2
y.t/C 2�

d

dt
y.t/C !20 y.t/ D f .t/ ; (18)

where y.t/ is the amplitude of the oscillator, � is the linear damping rate, !0 is the
frequency of the undamped oscillator and f .t/ is a random forcing function. The
Fourier transform of Eq. (18) is then expressed as

� !2 Y.!/ � i 2�! Y.!/C !20 Y.!/ D F.!/: (19)

When a realization of y.t/ is observed for a finite amount of time, an estimate of
the power spectrum is then given by

P.!/ D jY.!/j2 D jF.!/j2
.!20 � !2/2 C 4 �2!2

: (20)

In the limit of taking the average of an infinite number of realizations, and assuming
the damping rate to be very small compared to the frequency of oscillation, one
obtains near the resonance the following expression for the limit spectrum:

hP.!/i ' 1

4 !20

hPf .!/i
.! � !0/2 C �2

: (21)

The average power spectrum of the random forcing function, hPf .!/i, is a slowly-
varying function of frequency. The result is thus a Lorentzian profile, characterized
by the central frequency !0 and a width determined by the linear damping rate �.
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Fig. 4 Lorentzian profile (limit spectrum) and the erratic behavior of the power spectrum. From
Anderson et al. (1990)

Panels (a) and (b) in Fig. 4 display two realizations of the same limit spec-
trum. Both power spectra appear as an erratic function concealing the underlying
Lorentzian profile. Panel (c) displays a realization of the same limit spectrum,
although with a resolution twenty times higher. Increasing the total observational
span, hence the resolution, did nothing to reduce the variance in the power spectrum
(cf. Sect. 2.4). Panel (d) displays the average of a large number of realizations with
the same resolution as in (c), thus converging to the limit spectrum.

4.2 Modeling the Power Spectrum

We are primarily interested in performing a global fit to the power spectrum,
whereby the observed modes are fitted simultaneously over a broad frequency range.
We thus model the limit oscillation spectrum as a sum of standard Lorentzian
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profiles, O.�/, which sit atop a background signal described by B.�/:

P.�I �/ D O.�/C B.�/

D
X
n0;l

lX
mD�l

Elm.is/Hn0l

1C
h
2.���n0 l0�m�s/

�n0 lm

i2 C B.�/ ; (22)

where � represents the set of model parameters. The inner sum in the above equation
runs over the azimuthal components fmg of each multiplet fn0; lg, while the outer
sum runs over the selection of observed modes. Figure 5 shows the power spectrum
of HD 49933 (blue) based on 180 days of CoRoT photometry. The best-fitting model
(red) is overlaid, with the shaded areas indicating the ranges of the uniform priors
(see Sect. 4.3.1) on the mode frequencies.

At a given frequency bin j, the probability density, f .PjI �/, that the observed
power spectrum takes a particular value Pj is related to the limit spectrum, P.�jI �/,
by (cf. Eq. (14))

f .PjI �/ D 1

P.�jI �/
exp

	
� Pj

P.�jI �/



: (23)

We now want to specify the likelihood function, i.e., the joint pdf of the data sample
fPjg. Assuming the frequency bins to be uncorrelated, the joint pdf is simply given
by the product of f .PjI �/ over some frequency interval of interest spanned by j:

L.�/ D
Y

j

f .PjI �/ : (24)

4.3 Bayesian Parameter Estimation Using MCMC

I now describe the formalism of a Bayesian approach to parameter estimation
and model comparison that employs an MCMC algorithm. Let us consider a set
of competing hypotheses, fHig, assumed to be mutually exclusive. One should be
able to assign a probability, p.HijD; I/, to each hypothesis taking into account the
observed data, D, and any available prior information, I. This is done through Bayes’
theorem (Bayes and Price 1763):

p.HijD; I/ D p.HijI/p.DjHi; I/

p.DjI/ : (25)

The probability of the hypothesis Hi in the absence of D is called the prior
probability, p.HijI/, whereas the probability including D is called the posterior
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probability, p.HijD; I/. The quantity p.DjHi; I/ is called the likelihood of Hi. The
denominator p.DjI/ is the global likelihood for the entire class of hypotheses. The
sum of the posterior probabilities over the hypothesis space of interest is unity, hence
one has:

p.DjI/ D
X

i

p.HijI/p.DjHi; I/ : (26)

4.3.1 Parameter Estimation

If a particular hypothesis, i.e., a given model M describing the physical process,
is assumed true, then the hypothesis space of interest concerns the values taken
by the model parameters, �. These parameters are continuous and one will be
interested in obtaining their pdf. The global likelihood of model M is then given
by the continuous counterpart of Eq. (26):

p.DjI/ D
Z

p.�jI/p.Dj�; I/d� : (27)

We restate Bayes’ theorem to account for this new formalism:

p.�jD; I/ D p.�jI/p.Dj�; I/
p.DjI/ ; (28)

where p.DjI/ plays the role of a normalization constant. Ultimately, we are
interested in using MCMC techniques to map the posterior pdf, p.�jD; I/. The
procedure of marginalization allows computation of the posterior pdf for a subset
of parameters �A by integrating over the remaining parameters (or nuisance
parameters) �B:

p.�AjD; I/ D
Z

p.�A;�BjD; I/d�B : (29)

4.3.2 Model Comparison

The problem of model comparison is analogous to that of parameter estimation.
When facing a situation in which several parameterized models are available for
describing the same physical process, one expects Bayes’ theorem to allow for
a statistical comparison between such models. Bayesian model comparison has a
built-in Occam’s razor by which a complex model is automatically penalized, unless
the available data justify its additional complexity. Competing models may be either
intrinsically different models or else similar but with varying number of parameters
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(i.e., nested models), or even the same model with different priors affecting its
parameters.

Given two or more competing models and our prior information, I, being in the
present context that one and only one of the models is true, we can assign individual
probabilities similarly to what has been done in Eq. (25), after replacing Hi by Mi:

p.MijD; I/ D p.MijI/p.DjMi; I/

p.DjI/ ; (30)

where the global likelihood of model Mi, p.DjMi; I/, also called the evidence of the
model, is given by Eq. (27). We are often interested in computing the ratio of the
probabilities of two competing models:

Oij � p.MijD; I/
p.MjjD; I/ D p.MijI/p.DjMi; I/

p.MjjI/p.DjMj; I/
D p.MijI/

p.MjjI/Bij ; (31)

where Oij is the odds ratio in favor of model Mi over model Mj, Bij is the so-called
Bayes’ factor and p.MijI/=p.MjjI/ is the prior odds ratio. The Bayesian odds ratio
is the product of the ratio of the prior probabilities of the models and the ratio of
their global likelihoods.

4.3.3 Markov Chain Monte Carlo

The need becomes clear for a mathematical tool that is able to efficiently eval-
uate the multidimensional integrals required in the computation of the marginal
distributions. The aim is to draw samples from the target distribution, p.�jD; I/,
by constructing a pseudo-random walk in parameter space such that the number
of samples drawn from a particular region is proportional to its posterior density.
This is achieved by generating a Markov chain, whereby a new sample, �tC1,
depends on the previous sample, �t, according to a time-independent quantity
called the transition kernel, p.�tC1j�t/. After a burn-in phase, p.�tC1j�t/ should
be able to generate samples of � with a probability density converging on the target
distribution.

We generate a Markov chain by using the Metropolis–Hastings algorithm
(Metropolis et al. 1953; Hastings 1970). Let us denote the current sample by �t.
We would like to steer the Markov chain toward the next sampling state, �tC1, by
first proposing a new sample, �, to be drawn from a proposal distribution, q.�j�t/,
which can have almost any form. The proposed sample is then accepted with a
probability given by:

˛.�t; �/ D min.1; r/ D min

	
1;

p.�jD; I/
p.�tjD; I/

q.�tj�/
q.�j�t/



; (32)
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Fig. 6 Two-dimensional MCMC simulations of a triple-peaked posterior. The same target dis-
tribution is sampled by three chains, each characterized by a different set f�g of step sizes in
parameter space. From Handberg and Campante (2011)

where ˛.�t; �/ is the acceptance probability and r is called the Metropolis ratio. If
� is not accepted, then the chain will keep the current sampling state, i.e., �tC1D�t.
Figure 6 shows the output from three two-dimensional MCMC simulations of the
same triple-peaked posterior.

Once the posterior pdf, p.�jD; I/, has been mapped, the procedure of marginal-
ization becomes trivial. The marginal posterior distribution of a given parameter
�, p.�jD; I/, is then simply obtained by collecting its samples in a normalized
histogram. An estimate of the k-th moment of � about the origin is then given by

h�ki �
Z
�kp.�jD; I/d� � 1

N

X
�k

t ; (33)

where N is the total number of samples.
The basic Metropolis–Hastings algorithm runs the risk of becoming stuck in

a local mode of the target distribution. A way of overcoming this is to employ
parallel tempering, whereby a discrete set of progressively flatter versions of the
target distribution is created by introducing a tempering parameter, 	 . We modify
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Eq. (28) to generate the tempered distributions:

p.�jD; 	; I/ / p.�jI/p.Dj�; I/	 ; 0 < 	 � 1 : (34)

For 	 D 1, we retrieve the target distribution, while distributions with 	 < 1 are
effectively flatter versions of the target distribution. By running such a set of chains
in parallel and allowing their parameter states to swap, we increase the mixing
properties of the Markov chain.

Furthermore, the Metropolis–Hastings algorithm can be refined by implementing
a statistical control system (e.g., Gregory 2005) allowing to automatically fine-tune
the proposal distribution during the burn-in phase (see Fig. 6).
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Stellar Inversion Techniques

Daniel R. Reese

Abstract Stellar seismic inversions have proved to be a powerful technique for
probing the internal structure of stars, and paving the way for a better understanding
of the underlying physics by revealing some of the shortcomings in current stellar
models. In this lecture, we provide an introduction to this topic by explaining
kernel-based inversion techniques. Specifically, we explain how various kernels are
obtained from the pulsation equations, and describe inversion techniques such as
the Regularised Least-Squares (RLS) and Optimally Localised Averages (OLA)
methods.

1 Introduction

Many of the problems which intervene in physics can be described in terms of
forward and inverse problems. Generally speaking, a forward problem focuses on
predicting the effects which result from a set of physical causes, such as deducing
the gravitational field of an object from its distribution of matter. In an inverse
problem, one typically tries to deduce the physical causes which led to a given set
of results or effects (which are typically observations). Hence, trying to deduce the
distribution of matter from the gravitational field of an object is an inverse problem.

The field of asteroseismology, i.e., the study of stellar pulsations, also fits this
description. Trying to predict stellar pulsation frequencies for a given stellar model
constitutes a forward problem. Likewise, trying to deduce the stellar structure which
led to a given set of pulsation frequencies is an inverse problem. This inverse
problem turns out to be quite difficult because, in general, the relation between
stellar structure and oscillation frequencies is non-linear. Nonetheless, given the
wealth of information on the internal structure of stars provided by pulsation
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frequencies, a variety of approaches have been devised to tackle this problem, as
expressed by Gough (1985) in the context of helioseismology:

Inversions can conveniently be divided into three categories. The simplest consists of the
execution of the forward problem using solar models with a few adjustable parameters, and
the calibration of those parameters by fitting theory to observation. The second is the use of
analytical methods. [. . . ] Thirdly, there are the formal inversion techniques borrowed from
geophysics that have been used on real and artificial solar data.

The first category of inversions is usually named “forward modelling” (not to be
confused with the “forward problem”) and corresponds to searching for an optimal
model in a restricted parameter space. It typically includes methods such as grid
searches (e.g., Silva Aguirre et al. 2015), MCMC methods (e.g., Bazot et al. 2012),
or genetic algorithms (Metcalfe and Charbonneau 2003; Charpinet et al. 2005). The
advantages of this approach is its obvious simplicity, and the fact that it produces
physically coherent models. However, the parameter space is restricted and does not
allow for hitherto unknown physical ingredients not included in the stellar models.
Furthermore, such methods can be costly, especially if models are calculated on-
the-fly. The second approach includes methods such as asymptotic methods or
glitch fitting. These methods can provide a great deal of physical insight into stellar
physics but are beyond the scope of the present lecture. Finally, formal inversion
techniques typically consist in adjusting the structure of a reference stellar model
so as to match a set of observed frequencies. The advantage of this approach is
that it can potentially extract more information from the pulsation frequencies,
and is therefore open to new physics. However, this method may lead to models
which are not physically coherent, and can be more difficult to implement. These
approaches are in fact complementary. Indeed, the forward approach typically
provides a reference model, which can then be further refined via formal inversion
techniques.

The present lecture focuses on the third category, i.e., formal inversion tech-
niques. However, before tackling inversions, it is necessary to spend a bit of time on
the forward problem in order to bring out some of the properties which apply in the
context of inverse problems. This will be the subject of the next section. Then stellar
inversion techniques will be described in Sect. 3. A short conclusion including a list
of relevant references and available inversion codes will follow.

2 The Forward Problem

2.1 Adiabatic Pulsation Equations

Stellar pulsations, the periodic motion of gas or plasma within a star, are described
by the Lagrangian displacement and the Eulerian perturbations to density, pressure,
and gravitational potential, denoted �, �0, p0 and 0, respectively. When applying
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the adiabatic approximation (i.e., when neglecting heat transfers during the periodic
motions), these quantities are determined by Euler’s equation, the continuity equa-
tion, and the adiabatic relation, which express the conservation of momentum, mass,
and energy, as well as Poisson’s equation. Through various analytical manipulations,
and the use of Green’s function and suitable boundary conditions for Poisson’s
equation, it is possible to express �0, p0 and 0 as a function of � alone. When
inserted into Euler’s equation, this leads to the following schematic equation:

!2� D F .�/ ; (1)

where F is an integro-differential operator, and where we have assumed a time
dependence1 of the form exp.�i!t/. Equation (1), along with appropriate boundary
conditions, is an eigenvalue problem, the solutions of which are known as “eigen-
solutions”. Specifically, !2 is an eigenvalue and corresponds to the square of the
pulsation frequency, whereas � is the eigenmode or eigenfunction, and specifies the
geometric characteristics of the stellar pulsation.

The forward problem in this case, then corresponds to finding the above eigenso-
lutions for a given stellar structure, i.e., for a given F operator. The inverse problem
corresponds to finding the stellar structure (and hence F ) from a set of pulsation
frequencies and some sort of mode identification, i.e., a partial characterisation
of the structure of the pulsation modes. In the case of solar-like oscillators, a
mode identification typically includes the harmonic degrees ` of the pulsations, and
possibly the radial orders n (this is usually obtained from comparisons with models)
and azimuthal orders m (only if frequency multiplets, typically caused by stellar
rotation, can be resolved). Given that the forward problem is non-linear, the inverse
problem will also be non-linear. However, to make the problem more tractable, one
typically linearises it. Linearising Eq. (1) leads to the following equation2:

.ı!2/� C !2.ı�/ D ıF .�/C F .ı�/ : (2)

This equation simply expresses how a small modification to the stellar structure
leads to small modifications of the pulsation modes, in particular frequency
differences ı!. Hence, in order to solve the inverse problem, one needs to find a
reference stellar model (typically using some form of forward modelling) which
is sufficiently close to the true stellar model so that the linear approximation
applies, and invert the frequency differences, in order to find how to correct the

1If one assumes that modes are proportional to exp.im'/, ' being the longitude, such a time
dependence will lead to m > 0 modes being prograde, where m is the azimuthal order. If one
uses, instead, a time dependence of the form exp.i!t/, then m > 0 modes will be retrograde.
2Throughout these lectures, the ı notation will be used to indicate a modification of the equilibrium
stellar structure and associated pulsations rather than a Lagrangian perturbation.
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stellar model so that it more closely matches the actual star. However, Eq. (2) is
not straightforward to use as it contains terms with ı�, the perturbation of the
eigenmode. The next section shows how to remove these terms by exploiting an
important property of the adiabatic pulsation equations, namely their symmetry.

2.2 Symmetry of the Adiabatic Pulsation Equations

Before explaining in what sense the pulsation equations are symmetric, it is
necessary to introduce the following dot product:

h�; �i D
Z

V
�0�

� 	 �dV ; (3)

where �� is the complex conjugate of �, and V the stellar volume. We note that this
is a complex dot product, hence: h�; �i D h�;�i�.

The adiabatic pulsation equations are symmetric with respect to the above dot
product:

h�;F .�/i D hF .�/; �i ; (4)

where � and � are any displacement fields, which need not necessarily be eigen-
functions at this point. In order to prove this symmetry, we start by introducing
the associated pressure and gravitational potential perturbations as deduced from
the relevant equations: .�; p0; 0/ and .�; � 0;  0/. We then calculate the dot product
between � and Euler’s equation (applied to �). After various manipulations (inte-
gration by parts etc.), this leads to the following formula (e.g., Unno et al. 1989):

h�;F .�/i D
Z

V

.� 0/�p0

�0c20
dV C

Z
V
�0N

2
0 .�

� 	 er/.� 	 er/dV

C
Z

S
�0g0.�

� 	 er/.� 	 er/dS � 1

4�G

Z
V1

r . 0/� 	 r0dV ; (5)

where V is the star’s volume, S its surface, V1 infinite space, er the unit vector in
the radial direction, and N2

0 the square of the Brunt–Väisälä frequency. In deriving
the surface term, we assumed, as a boundary condition, that the Lagrangian pressure
perturbation vanishes at the surface. Appendix C of Reese (2006) explains how
to obtain the last term (integrated over V1). It is very clear from this explicit
formulation that the pulsation equations are symmetric. More general forms of
this equation have been derived, for instance, in the case of differentially rotating
physical bodies (Lynden-Bell and Ostriker 1967).
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This symmetry leads to a number of consequences. Firstly, the eigenvalues, !2,
are real (meaning that the ! are either real or purely imaginary). Secondly, the
eigenfunctions of distinct eigenvalues are orthogonal with respect to the above dot
product. The third consequence is known as the “variational principle”. According
to this principle, the variational frequency, defined by !2var D h�;F .�/i = h�; �i,
differs from the true eigenfrequency by an amount which is of second order or higher
in terms of the error on the eigenfunction, i.e., !2 � !2var D O

�k��k2�. This is
useful as !2var provides an independent and potentially more accurate estimate of
the eigenvalue than the numerical value and is therefore used as an accuracy test in
various pulsation codes such as ADIPLS (Christensen-Dalsgaard 2008).

2.3 Kernels

We now return to our original problem, i.e., calculating the frequency variation
caused by a small modification of the stellar structure. Taking the dot product
between Eq. (2) and �, and grouping terms with ı� yields:

ı!2 h�; �i � h�; ıF .�/i D ˝�!2� C F .�/; ı�
˛
; (6)

where we have made use of the symmetry of F . The right-hand side vanishes
because � is an eigenmode, and !2 the corresponding eigenvalue. Isolating ı!2

then yields:

ı!2 D 2!ı! D h�; ıF .�/i
h�; �i : (7)

This last form is extremely useful because it relates modifications of the pulsation
frequency directly to changes in the stellar model, without needing ı�.

The next obvious question is what types of perturbations can we expect in stars?
A first type of perturbation, which in fact is ubiquitous, is stellar rotation. One can
distinguish the 1D case, where the rotation profile, ˝ , only depends on the radial
coordinate r (also known as “shellular” rotation) from the 2D case where it depends
on r and � , the colatitude. A second type of perturbation is modifications to the
stellar structure, as defined, for instance, by the �0, �1;0, c20 etc., profiles. So far,
structural modifications have only been envisaged in a 1D setting.

Rotation leads to two inertial accelerations: the centrifugal and the Coriolis
acceleration. The former distorts the shape of the star but is a second order effect, so
will be neglected. The latter intervenes in the oscillatory motions and leads to first
order effects on the frequencies. To first order, Euler’s equation takes on the form:

!2� D 2!m˝� � 2i!˝ � � C rp0

�0
� �0g0

�0
C r0 ; (8)
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where˝ is the rotation profile, and ˝ D ˝ez. From this we deduce:

ıF .�/ D 2!m˝� � 2i!˝ � � : (9)

In the 1D case, the frequency shift is given by

ı!n; `;m D !n; `;m � !n; `; 0 D m
Z R

0

Kn`
˝ .r/˝.r/dR ; (10)

where

Kn`
˝ D �0r2

�
�2r C `.`C 1/�2h � 2�r�h � �2h

�
R R
0
�0.r/

�
�2r C `.`C 1/�2h

�
r2dr

(11)

and where �r and �h are the radial and horizontal components of the Lagrangian
displacement, respectively. Kn`

˝ is known as the “rotation kernel”. As can be seen
from this expression, frequencies with the same .n; `/ values are uniformly split as
a function of m thanks to rotation. Figure 1 shows some examples of 1D rotation
kernels.

If ˝ is constant, then Eq. (10) simplifies to ı! D m.1� C /˝ , where

C D
R R
0
�0
�
2�r�h C �2h

�
r2drR R

0
�0.r/

�
�2r C `.`C 1/�2h

�
r2dr

: (12)

C is known as the Ledoux constant and represents the effects of the Coriolis force
(see Ledoux 1951).

Fig. 1 Examples of 1D rotation kernels
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In the 2D case, the rotational splitting is given by

ı!n; `;m D
Z R

0

Z �

0

Kn; `;m.r; �/˝.r; �/rdrd� ; (13)

where Kn; ` m.r; �/ is the 2D rotation kernel (expressions for such kernels may be
found in Schou et al. 1994). This time, the splitting as a function of m may be non-
uniform.

The acoustic structure of stars is typically determined by two variables, e.g.,
.�0; �1;0/ and possibly some surface quantities such as the surface pressure.
Accordingly, when modifying the structure of a star, the modifications to two
structural quantities need to be specified, e.g., .ı�0; ı�1;0/ (although in some cases,
3 functions need to be specified, e.g., Buldgen et al. 2017). As was the case for
rotation, it is possible to relate changes in frequency to structural modifications of
stars using kernels. The easiest structural kernels to derive are those for the variables
.�; c2/. After a (very) lengthy derivation, one can show that

ı!

!
D
Z R

0

	
Kc2;�.r/

ıc20.r/

c20.r/
C K�;c2 .r/

ı�0.r/

�0.r/



dr ; (14)

where:

Kc2;� D �0c20�
2r2

2I!2
; (15)

K�;c2 D �0r2

2I!2


c20�

2 � !2
�
�2r C `.`C 1/�2h

� � 4�G
Z R

sDr

�
2�0�r�C d�0

ds
�2r

�
ds

�2g0�r�C 2g0�r
d�r

dr
C 4�G�0�

2
r C 2

�
�r

d0

dr
C `.`C 1/�h

0

r

��
; (16)

I D
Z R

0

�0
�
�2r C `.`C 1/�2h

�
r2dr ; � D r 	 �

Y`m
D d�r

dr
C 2�r

r
� `.`C 1/�h

r
:

Figure 2 gives an example of .�; c2/ kernels. We note that in deriving Eq. (14), we
neglected various surface terms which result from integration by parts. Also, the
modelling of surface layers in stars tends to be inaccurate. Accordingly, Eq. (14)
typically includes an extra ad hoc adjustable surface term.

Besides these kernels, other structural kernels can also be obtained: .�; �1/,
.P; �1/, .u � P

�
; �1/, .g; �1/, .u;Y/, .A; �1/, .N2; c2/ etc. (see Masters 1979;

Gough and Thompson 1991; Elliott 1996; Basu and Christensen-Dalsgaard 1997;
Kosovichev 1999; Buldgen et al. 2017). Some of these require using the equation of
state and its derivatives. Figure 2 shows an example of .�; �1/ kernels.
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Fig. 2 Kernels for the .n; `/ D .13; 1/ pulsation mode, for the structural pairs .�0; c20/ and
.�0; �1;0/

3 The Inverse Problem

As described at the beginning of this lecture, the seismic inverse problem consists
in deducing the stellar structure from a set of identified pulsation frequencies, i.e.,
with known quantum numbers. Inverse methods have proved to be a powerful way
of solving such a problem. These typically involve correcting a reference stellar
model so as to obtain a new model which reproduces the pulsation frequencies
more accurately. Inverse methods come into two broad categories, namely linear and
non-linear methods. The linear methods are further subdivided into the Regularised
Least-Squares (RLS) and Optimally Localised Averages (OLA) methods. For the
non-linear inversions, there are iterated versions of the RLS method, as well as a
method which adjusts the internal phases of the eigenmodes. In what follows, we
will focus on linear inverse methods, beginning with rotation inversions, as these
provide a good starting point to illustrate the different methods.
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3.1 Rotation Inversions

The rotation inverse problem can be expressed by the following set of equations:

Snl;`l D !nl;`l ;ml � !nl;`l ;0

ml
D
Z R

0

Knl;`l
˝ .r/˝.r/dr C "nl;`l ; 1 � l � L ; (17)

where the Snl;`l are the “rotational splittings” (i.e., the observations), ˝.r/ the
unknown rotation profile, and "nl;`l the errors on the splittings, characterised by a
standard deviation of �nl;`l D h"nl;`l i. In what follows, we will use the index “l” as
shorthand for .nl; `l/.

The goal of the inverse problem is to recover ˝.r/ from the set of available
rotational splittings. At first, this problem looks impossible. Indeed, the unknown
is a function, whereas there is a finite number of observational constraints. Further-
more, the problem is ill-conditioned, i.e., it is highly sensitive to noise. In order to
address these issues, it is necessary to inject a priori assumptions when solving the
inverse problem. Accordingly, we should always bear in mind these assumptions
when looking at and interpreting the results.

3.1.1 Regularised Least Squares (RLS)

A first approach to tackling this problem involves decomposing the rotation profile
over a set of basis functions:

˝inv.r/ D
X

k

ak fk.r/ ; (18)

where the ak are unknown coefficients, and the fk basis functions. In general, the
number of unknown coefficients should be equal to or less than the number of
observed splittings. Typical choices for the fk include b-spline functions of various
degrees. For instance, zeroth degree b-splines produce step-wise functions, whereas
cubic splines produce functions with a continuous second derivative (which can be
useful for regularisation terms).

When substituted into Eq. (17), this leads to the following theoretical rotational
splittings, QSl, for the above rotation profile:

QSl D
Z R

0

Kl
˝.r/˝inv.r/dr : (19)

An obvious way of choosing the ak is by minimising (typically in a least-squares
sense) the distance between the observed splittings, Sl, and the theoretical ones.
However, a naive application of such a procedure leads to poor results as illustrated
by the dotted grey curve in the top panel of Fig. 3. Indeed, the problem is
ill-conditioned, and any errors in the observations will be strongly amplified.
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Fig. 3 Top: Inverted rotation
profiles based on the RLS
method for different values of
the regularisation parameter.
Bottom: L-curve which shows
the two components of the
RLS cost function as a
function of �

A standard remedy to this problem is to include a supplementary regularisation
term to obtain a smooth solution when carrying out the minimisation, hence the
name “Regularised Least-Squares” (RLS) method. This leads to the following
typical cost function:

J.ak/ D
LX

lD1

�
Sl � QSl

�2
�2l

C�

�
1

�2

� Z R

0

�
d2˝inv

dr2

�2
dr ; (20)

where
˝
1
�2

˛ D 1
L

PL
lD1 1

�2l
, and� is a regularisation parameter which can be adjusted.

The cost function is minimised by numerically finding the ak coefficients for which
the gradient of J is zero.

Figure 3 shows various solutions obtained for the rotation inverse problem based
on a set of rotational splittings from Christensen-Dalsgaard et al. (1990). As can be
seen in the top panel, larger values of � lead to solutions that are smoother. The
bottom panel shows that such solutions are a worse fit to the Sl. Hence, there is a
trade-off between obtaining smooth solutions and fitting the data. The best solutions
are obtained for intermediate values of� as can be seen by comparing the solutions
in Fig. 3 to the true solution given in Figs. 3 and 11 of Christensen-Dalsgaard et al.
(1990).
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3.1.2 Various Error Measurements

It is also possible to calculate error bars around the inverted solution. To demonstrate
this, we start with a given grid point, r0. The relationship between ˝inv.r0/ and
the ak coefficients is linear. Likewise, the relationship between the ak and the Sl is
also linear. Hence the relationship between ˝inv.r0/ and the Sl is linear and can be
expressed as follows:

˝inv.r0/ D
X

l

cl.r0/Sl : (21)

Assuming the errors on the splittings are uncorrelated, the 1� error bar on the
inverted value of the rotation rate will simply be

�˝.r0/ D
sX

l

.cl.r0/�l/
2 : (22)

In the specific case where the errors are uniform, the error is amplified by the

quantity
qP

l .cl.r0//
2 which is known as the “error magnification”. It is important

to bear in mind that these error bars only take into account how the observational
errors propagate through the inversion. They do not actually measure the quality of
the inversion, which could, for example, be poor due to over-regularisation.

In order to evaluate the quality of the inversion at a given point, it is useful to
look at the “averaging kernel”. If we replace the Sl in Eq. (21) by the expressions
given in Eq. (17), then it is possible to establish a relationship between ˝.r/ and
˝inv.r0/:

˝inv.r0/ D
Z R

0

X
l

cl.r0/K
l
˝.r/„ ƒ‚ …

Kavg.r0;r/

˝.r/dr C
X

l

cl.r0/"l : (23)

This expression shows that ˝inv.r0/ is in fact an average of the true rotation profile
˝.r/. The corresponding weight function, Kavg.r0; r/, is the averaging kernel.
Ideally, this function should have a strong amplitude at r0 and be close to zero
elsewhere. Figure 4 shows a few examples of averaging kernels for the RLS method.

3.1.3 Optimally Localised Averages (OLA)

The notion of averaging kernels naturally leads to the Optimally Localised Averages
(OLA) methods. The basic idea in these methods is to optimise the coefficients cl so
as to obtain optimal averaging kernels. Two variants include the Multiplicative and
the Subtractive OLA, abbreviated MOLA and SOLA, respectively.
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Fig. 4 Averaging kernels for the RLS method at various positions

The MOLA method comes from Backus and Gilbert (1968). In this method, the
averaging kernel is multiplied by a penalty function that increases in amplitude
as you move away from the target position r0. Hence, the coefficients cl.r0/ are
obtained by minimising the following cost function:

J.cl/ D
Z R

0

P.r0; r/
�
Kavg.r0; r/

�2
dr„ ƒ‚ …

fit data

C tan �

h�2i
LX

lD1
.cl�l/

2

„ ƒ‚ …
regularisation

C�


1 �

Z R

0

Kavg

�
„ ƒ‚ …

Kavgunimodular

;

(24)

where
˝
�2
˛ D 1

L

PL
lD1 �2l , � is a trade-off parameter between fitting data and

reducing error (i.e., a regularisation parameter), P.r0; r/ the penalty function
(usually 12.r � r0/2), and � a Lagrange multiplier used to ensure that the averaging
kernel is “unimodular”, i.e.,

R R
0
Kavg.r0; r/dr D 1. This last condition is important

for ensuring that the inverted value, ˝inv.r0/ D P
l cl.r0/Sl is a proper average of

the underlying rotation profile.
The SOLA method was first described in Pijpers and Thompson (1992). In this

method, the difference between the averaging kernel and a suitable target function is
minimised. Hence, the coefficients cl.r0/ are obtained by minimising the following
cost function:

J.cl/ D
Z R

0

�
T .r0; r/ � Kavg.r0; r/

�2
dr C tan �

h�2i
LX

lD1
.cl�l/

2 C �


1 �

Z R

0

Kavg

�
;

(25)

where T .r0; r/ is the target function. Ideally, T should be a Dirac function centred
on r0. However, given the finite number of rotational splittings and hence rotation
kernels to work with, trying to achieve such a target is impossible and would lead to
poor numerical results. Generally, Gaussian or similar functions are used as targets:

T .r0; r/ D 1

A
exp

�
� .r � r0/2

2�.r0/2

�
; (26)
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Fig. 5 Top: Inversion results and error bars for the RLS, MOLA and SOLA methods. Bottom:
Averaging kernels at r0 D 0:5578R for these three methods

where A is a normalisation constant to ensure that
R R
0
T .r0; r/dr D 1 (it is not

simply 1=
p
2��.r0/ since the integration interval is not from �1 to 1), and�.r0/

the width of the target function. A good choice for�.r0/when dealing with acoustic
modes is �.r0/ / c0.r0/ (e.g., Thompson 1993).

Figure 5 shows inversion results for the RLS, MOLA and SOLA methods as
well as some averaging kernels. The advantages of the MOLA method compared to
the SOLA method is that it has fewer free parameters and tends to produce slightly
better results. Conversely, the SOLA method has a much smaller computational
cost. Indeed, minimising the SOLA cost function for different values of r0 leads to
systems of equations where only the right-hand side changes. Accordingly, only one
matrix inversion (or factorisation) is needed for the entire inversion.

3.1.4 Applications

The first and most spectacular examples of rotation profile inversions are those done
for the Sun. Indeed, the Sun’s close proximity has enabled the detection of countless
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nH
z

Fig. 6 2D solar rotation profile from Thompson et al. (2003) (see also Schou et al. 1998) based
on a SOLA inversion technique. Figure courtesy of M.J. Thompson and J. Christensen-Dalsgaard

rotational splittings going to high ` values. This, in turn, has enabled 2D inversions
of the solar rotation profile such as the one shown in Fig. 6, taken from Thompson
et al. (2003) (see also Schou et al. 1998). Such profiles were not in agreement with
the theoretical predictions at the time and have accordingly led to various theoretical
investigations and numerical simulations to gain a better understanding of the Sun
and its internal rotation (e.g., Thompson et al. 2003; Brun et al. 2004).

A more recent example of stellar rotation inversions are those in subgiants and
red giants (Deheuvels et al. 2012, 2014). These results as well as results from
ensemble asteroseismology have shown that although the core of these stars rotate
much faster than the envelope, the difference in rotation speeds is orders of
magnitude smaller than what is expected theoretically (Eggenberger et al. 2012;
Ceillier et al. 2013; Marques et al. 2013). It is still an open question what transport
mechanisms are involved in these stars and could solve this discrepancy.

3.2 Structural Inversions

We now turn our attention to structural inversions. In contrast to rotation inversions,
there are two functions to invert simultaneously. As was derived in Sect. 2.3, the
linearised relationship between modifications of the stellar structure and shifts in
the frequency can be expressed as follows:

ı!l

!l„ƒ‚…
obs.

D
Z R

0

Kl
a;b.r/„ƒ‚…

known

ıa

a„ƒ‚…
unknown

dr C
Z R

0

Kl
b;a.r/„ƒ‚…

known

ıb

b„ƒ‚…
unknown

dr C Fsurf:.!l/

El
C "l ; (27)
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where we have added an ad hoc surface correction term (i.e., the term with Fsurf:)
as well as the observational error, "l. The variables .a; b/ represent two structural
profiles (e.g., .�; �1/). The structural inverse problem then consists in deducing the
profiles ıa=a and ıb=b from the frequency shifts ı!l=!l. The fact that there are two
functions to invert leads to modifications of the RLS and OLA methods, as well as
the introduction of “cross-term kernels”, Kcross.

3.2.1 Regularised Least Squares (RLS)

In the regularised least squares method, both functions (ıa=a and ıb=b) are
discretised over a set of basis functions, and the unknown coefficients are obtained
by minimising a cost function of the form:

J

�
ıa

a
;
ıb

b

�
D
X

l

1

�2l

�
ı!l

!l
�
Z R

0

Kl
a;b

ıa

a
dr �

Z R

0

Kl
b;a

ıb

b
dr

�2

C�
�
1

�2

� Z R

0

"�
d2

dr2
ıa

a

�2
C
�

d2

dr2
ıb

b

�2#
dr : (28)

Additional terms may be included to model surface effects.
In much the same way as for rotation inversions, the inverted functions are related

in a linear way to the observables .ı!=!/l:�
ıa

a

�
inv

D
X

l

cl.r0/

�
ı!

!

�
l

;

�
ıb

b

�
inv

D
X

l

c0
l.r0/

�
ı!

!

�
l

: (29)

These inversion coefficients can then be used to define the averaging and cross-term
kernels:

Kavg.r0; r/ D
LX

lD1
cl.r0/K

l
a;b.r/ ; Kcross.r0; r/ D

LX
lD1

cl.r0/K
l
b;a.r/ ; (30)

K 0
avg.r0; r/ D

LX
lD1

c0
l.r0/K

l
b;a.r/ ; K 0

cross.r0; r/ D
LX

lD1
c0

l.r0/K
l
a;b.r/ ; (31)

which help to relate the inverted structural functions at r0 to the true structural
functions:�

ıa

a

�
inv
.r0/ D

Z R

0

	
Kavg.r0; r/

ıa.r/

a.r/
C Kcross.r0; r/

ıb.r/

b.r/



dr ; (32)

�
ıb

b

�
inv
.r0/ D

Z R

0

	
K 0

cross.r0; r/
ıa.r/

a.r/
C K 0

avg.r0; r/
ıb.r/

b.r/



dr ; (33)
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where we have neglected the contribution from surface effects and observational
errors. As can be seen from these equations, the cross-term kernels help to quantify
the amount of cross-talk between the two functions in the inversion.

In the particular case of solar inversions, where the mass is known through
independent considerations, it is possible to constrain the inversion to preserve the
mass by introducing a supplementary Lagrange multiplier, provided one of the
structural variables being inverted is the density variation, ı�0=�0. Indeed, if
the mass is constant, then ı�0=�0 obeys the following relation:

0 D 4�

Z R

0

�0.r/
ı�0

�0
r2dr : (34)

3.2.2 Optimally Localised Averages (OLA)

The OLA methods will also be modified due to the presence of two functions
which are being inverted. Given that the modifications to the MOLA and SOLA
variants are similar, we will focus on the SOLA method in what follows. First of all,
there will be two separate inversions, one for each of the functions being inverted.
Secondly, not only do the averaging kernels need to be optimised, but the cross-term
kernels need to be reduced as much as possible. These considerations lead to cost
functions of the following form:

J.cl.r0// D
Z R

0

˚
T .r0; r/� Kavg.r0; r/

�2
dr C ˇ

Z R

0

fKcross.r0; r/g2 dr

C tan �
PL

lD1 .cl.r0/�l/
2

h�2i C �


1 �

Z R

0

Kavg.r0; r/dr

�
: (35)

For each inversion, there is a regularisation parameter (�), a supplementary param-
eter to adjust the trade-off between optimising the averaging kernel or minimising
the cross-term kernel (ˇ), a Lagrange multiplier to ensure the averaging kernel is
unimodular (�), and optionally some supplementary Lagrange multipliers used to
suppress surface effects (Däppen et al. 1991). The target functions (T ) for each of
the inverted functions can be adjusted independently.

In order to preserve the mass, for instance in the case of solar inversions, one
can treat Eq. (34) as a supplementary observed relation. Specifically, 0 will play
the role of ı!=! and the function f .r/ D 4��r2 will be the kernel associated with
the structural variable ı�0=�0.

3.2.3 Applications

Up to now, structural inversions have been applied primarily to the Sun. Figure 7,
which is based on the results of Basu et al. (2009), shows an example of such an
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Fig. 7 .c; �/ structural inversion for the Sun based on the results of Basu et al. (2009). Figure
courtesy of S. Basu

inversion for the structural variables .c; �/. In recent years, the downward revision
of the solar metal abundances (e.g., Asplund et al. 2009) has led to a significant
discrepancy between the results from solar structural inversions and models based
on these new abundances (e.g., Basu et al. 2015). Indeed, helioseismic inversions led
to a lower depth for the base of the convection zone compared to what is obtained
from models with the revised abundances. Currently, it is not entirely clear how to
solve this problem but different solutions are being investigated.

3.3 Integrated Quantities

In the case of stars other than the Sun, it is very difficult to carry out structural
inversions due to the limited number of available modes (e.g., Basu et al. 2002).
Indeed, because of cancellation effects in disc-integrated observations, only modes
for which ` � 3 are detected (Dziembowski 1977). One strategy in such a situation
is to invert stellar parameters rather than structural profiles. Indeed, since structural
inversions at a given grid point actually give a weighted average of the true
underlying profile, one can use a SOLA inversion to directly target the appropriate
weight function which yields the desired stellar parameter. The quantities which
may be inverted by such a procedure include the total angular momentum (Pijpers
1998), the mean density (Reese et al. 2012), the acoustic radius and various core or
internal mixing indicators (Buldgen et al. 2015b,a, 2017). Figure 8 shows inversions
of the acoustic radius and mean density, as described in Buldgen et al. (2015b).
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Fig. 8 Acoustic radius inversion (top) and mean density inversion (bottom) based on Buldgen
et al. (2015b). Figure courtesy of G. Buldgen

4 Conclusion

As illustrated in this course, inversions can be used to probe stellar rotation
profiles, probe the internal structure of stars, estimate various stellar parameters,
and indirectly test new physics outside a given grid of stellar models. Nonetheless,
one must not forget the limitations of seismic inversions, namely, the use of a
priori assumptions about the smoothness of rotation or structural profiles and the
linearisation of the relationship between frequencies and stellar structure (except in
the case of non-linear inversions). Furthermore, it is important to keep in mind that
inversions cannot yield more information than what is intrinsically contained in the
observed pulsation modes.

In order to get a more in-depth understanding of inversions, we recommend the
following articles or publications:

• Lynden-Bell and Ostriker (1967) and Christensen-Dalsgaard (2003): the varia-
tional principle

• Gough and Thompson (1991): structural kernels
• Christensen-Dalsgaard et al. (1990): error propagation and magnification, aver-

aging kernels
• Rabello-Soares et al. (1999): adjusting the free parameters in inversions
• Reese et al. (2012) and Buldgen et al. (2015b): inversions of integrated quantities

We also note that the recent monograph by Pijpers (2006) contains several chapters
on helioseismic and asteroseismic inversions.
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Various seismic inversion software packages have also become freely available
in recent years:

• INVERSIONKIT3: 1D inversions on individual stars
• INVERSIONPIPELINE4: inversions of stellar parameters using a grid of models
• NONLINEARKIT5: non-linear 1D inversion tool still under development
• SOLA PACK6: 2D rotation inversions in the Sun
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Asteroseismology of Red Giants and Galactic
Archaeology

Saskia Hekker

Abstract From the oscillations in red-giant stars measured in time-series data it
is possible to derive more accurate stellar parameters (e.g., mass, radius and age)
as can be done using only single-epoch spectroscopy or photometry. These stellar
parameters combined with chemical composition and the position, distance and
velocity of the stars play an important role in studying the formation and evolution
of the Milky Way. In this chapter we discuss some key physical phenomena that are
at play in (red-giant) stars as well as some important phases in red-giant evolution.
Subsequently, oscillation characteristics that are of importance for the determination
of stellar parameters (as indicated above) of red-giant stars are introduced followed
by a description of the main components of the Milky Way. Finally, the role red
giants can play in creating a detailed observational picture of the Milky Way and
deciphering the formation and evolution of the Milky Way is discussed.

1 Introduction

Red-giant stars are low- to intermediate-mass (M . 10Mˇ) stars that have
exhausted hydrogen in the core. These extended, cool and hence red stars are key
targets for stellar evolution studies as well as galactic studies for several reasons:
(a) many stars go through a red-giant phase; (b) red giants are intrinsically bright;
(c) large stellar internal structure changes as well as changes in surface chemical
abundances take place over relatively short time; (d) red-giant stars exhibit global
intrinsic oscillations.

Due to their large number and intrinsic brightness it is possible to observe many
of these stars up to large distances. Furthermore, the global intrinsic oscillations
provide a means to discern red-giant stars in the pre-helium core burning from the
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ones in the helium core burning phase and provide an estimate of stellar ages, a key
ingredient for galactic studies.

In this lecture I will first discuss some physical phenomena that play a role
in red-giant stars and several phases of red-giant evolution. Then, I will provide
some details about asteroseismology—the study of the internal structure of stars
through their intrinsic oscillations—of red-giant stars. I will conclude by discussing
galactic archaeology—the study of the formation and evolution of the Milky Way
by reconstructing its past from its current constituents—and the role red-giant stars
can play in that.

The red-giant and asteroseismology parts of this lecture are based on the lecture
notes by Onno Pols,1 the book by Kippenhahn et al. (2012) and a review by Hekker
and Christensen-Dalsgaard (2017). For more details I refer the reader to these
sources.

2 Red-Giant Stars

In this section, I will provide a brief overview of some physical phenomena that
are important in red-giant stars followed by a description of the different stages in
stellar evolution of red-giant stars.

2.1 Physical Phenomena

2.1.1 Convection

There is a physical limit to the energy flux that can be transported by radiation
through a specific medium. If the temperature gradient becomes too steep con-
vection takes over as the primary means of energy transport (cf. Schwarzschild
criterion; Schwarzschild 1906). The Schwarzschild criterion states that convection
is activated once the radiative temperature gradient (rrad) exceeds the adiabatic
temperature gradient (rad), so the criterion for stability is:

rrad < rad ; (1)

with

rrad D
�
@ log T

@ log P

�
rad

D 3

16 � a c G

� l P

m T4
(2)

1https://www.astro.ru.nl/~onnop/education/stev_utrecht_notes/.

https://www.astro.ru.nl/~onnop/education/stev_utrecht_notes/
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describing the logarithmic variation of temperature T with depth (expressed in
pressure P) for a star in hydrostatic equilibrium in case energy is transported
by radiation. Here, a is the radiation constant, c is the speed of light, G is the
gravitational constant, � is the opacity, l is the local luminosity and m is the mass
coordinate, i.e., represents the mass contained inside a spherical shell of radius r.
The adiabatic temperature gradient is defined as:

rad D
�
@ log T

@ log P

�
ad
: (3)

An alternative to the Schwarzschild criterion is the Ledoux criterion (Ledoux
1947), which, in addition to the temperature gradients, takes into account the spatial
variation of the mean molecular weight, �. For an ideal gas this takes the form:

rrad < rad C r� ; (4)

with

r� D
�
@ log�

@ log P

�
: (5)

Note that rrad and r� are spatial gradients, while rad represents the temperature
gradient in a gas element that undergoes a pressure variation.

Due to the nuclear reactions in the deep regions of a star, r� is generally positive
throughout the star. Hence the right-hand side of Eq. (4) takes larger values than the
right-hand side of Eq. (1) and thus the mean molecular weight gradient incorporated
in the Ledoux criterion has a stabilising effect.

Semi-convection

In the regions that are convective according to the Schwarzschild criterion and stable
according to the Ledoux criterion, the true behaviour of the material remains unclear
(Gabriel et al. 2014). However, in stellar evolution codes some form of ‘semi-
convection’ is often applied at the edge of a convective core. Semi-convection is
a form of slow convection in which mixing takes place that is necessary to match
observational constraints (e.g., Lattanzio 1983; Langer et al. 1985).

Mixing Length Parametrisation

Convection takes place over a large range of length scales which makes it com-
plicated and expensive to model. To include convection in stellar modelling the
mixing-length approximation is often used. The mixing length model was first
proposed in 1925 by Ludwig Prandtl as a rough approximation of the distance or
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characteristic length a fluid parcel can travel before mixing with the surrounding
fluid. In stellar structure the most commonly used implementation of the mixing
length, lm, is from Böhm-Vitense (1958):

lm D ˛MLT HP ; (6)

with HP the pressure scale height, which is the radial distance over which the
pressure changes by an e-folding factor,

HP D
ˇ̌̌
ˇ dr

d ln P

ˇ̌̌
ˇ D P

�g
; (7)

where � represents density and g represents gravity. Note that the mixing length
parameter, ˛MLT, is ordinarily calibrated to the Sun taking on a value between 1.2
and 2.2 depending on the stellar evolution code and choice of included physics.
Although the solar value is often used as a fixed value in models of other stars there
are indications that the value of ˛MLT should change as a function of evolution (e.g.,
Trampedach et al. 2014). An alternative to the mixing-length formalism, described
here, is the approach by, e.g., Canuto et al. (1996), whom devised a full spectrum of
turbulence which considers convection on different length scales.

Convective Overshoot

The border between a radiative and convective layer may be soft in the sense
that material on the convective side that approaches the boundary of stability with
momentum penetrates into the radiative layer. This process, that is referred to as
convective overshoot, extends the convective region. In case of a convective core,
convective overshoot can bring fresh fuel into the core prolonging the ongoing
core burning phase. The extent of convective overshoot, lov, can be expressed as
a fraction, ˛ov, of a local pressure scale height (Eq. (7)):

lov D ˛ov HP ; (8)

where ˛ov is a free parameter that can be calibrated against observations; typically
˛ov < 0:25.

2.1.2 Electron Degeneracy

In very dense regions, such as the cores of low-mass (sub)giant stars (M . 1:1Mˇ)
or white dwarfs, the electron density is high enough to become degenerate. The
density of electrons is described by Fermi–Dirac statistics as electrons are fermions
with two spin states. Due to the Pauli exclusion principle that states that ‘two
identical fermions cannot occupy the same quantum state’, fermions will be forced
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to higher momentum states when the fermion density increases above the number of
quantum states. The maximum number density of electrons ne;max with momentum
p allowed by quantum mechanics is:

ne;max. p/ D 8�p2

h3
; (9)

with h the Planck constant. Hence, in very dense regions electrons have high
momenta. The velocities of these electrons exerts a higher pressure than inferred
from classical physics. This is called degeneracy pressure which is nearly indepen-
dent of temperature.

The transition between the classical ideal gas situation and a state of strong
degeneracy occurs smoothly, and is known as partial degeneracy. Partial degeneracy
has to be taken into account when

ne &
2.2 � me k T/3=2

h3
; (10)

with me the electron mass and k the Boltzmann constant. The limit of strong (almost
complete) degeneracy is reached when the electron density ne is roughly a factor 10
higher than the right-hand side of Eq. (10).

2.1.3 Mirror Principle

At shell-burning regions, such as the hydrogen-shell burning region in red-giant
stars, it is commonly seen that the region enclosed by the burning shell contracts,
while at the same time the region outside the shell expands and vice versa. This is
referred to as the mirror principle. This is not a physical law as such, but an empirical
observation, supported by the results of numerical simulations.

The core contraction and envelope expansion of a star ascending the red-giant
branch (i.e., evolve from D to G along the evolutionary track in Fig. 1) as well as
the core expansion and envelope contraction while descending the red-giant branch
(i.e., evolve from G to H along the evolutionary track in Fig. 1) are examples of the
mirror principle.

2.2 Different Stages of Evolution of Red-Giant Stars

Evolutionary tracks of both a 1 and a 3 Mˇ stellar model with solar composition
are shown in Fig. 1. Red-giant stars burn hydrogen in a shell around an inert helium
core during the subgiant phase (B–D in Fig. 1) and while ascending the red-giant
branch (RGB; D–G in Fig. 1) along which their radius increases and their surface
temperature decreases. After the onset of helium-core burning the stars reduce their
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Fig. 1 Hertzsprung–Russell diagram of a 1 and a 3 Mˇ evolutionary track. The inset shows the
luminosity bump (see Sect. 2.2.4) of the 1 Mˇ track. The stellar model tracks are computed using
the MESA stellar evolution code (Paxton et al. 2011) with solar metallicity. The letters indicate
different phases of evolution: A = zero-age main sequence; B0 = core hydrogen mass fraction
� 0:05, B = start of thick shell burning; C = maximum extent of thick shell burning (in mass); D
= start of thin shell burning; E = maximum bump luminosity; F = minimum bump luminosity; G =
tip of the red-giant branch; H = helium-core burning. The dashed-dotted lines provide a schematic
indication of the location of the Hayashi lines for the two models. The phases B–D, D–G and G–H
are referred to as subgiant, ascending red-giant and descending red-giant branches, respectively

size and increase their surface temperature (G–H in Fig. 1) while they reside in the
so-called red-clump or secondary-clump phase where helium burning takes place in
the core surrounded by a hydrogen-burning shell (CHeB stars; H in Fig. 1). Here,
I discuss different stages of the evolution of red-giant stars indicated with different
letters in Fig. 1 occurring in both low- and intermediate-mass stars.

Low- vs. Intermediate-Mass Stars

The distinction whether a star is a low-mass star or an intermediate-mass star is
based on the onset of helium-core burning. For low-mass stars the inert helium
core is degenerate on the RGB and helium ignition takes place under degenerate
conditions (see Sect. 2.1.2 for more details about electron degeneracy). This occurs
in stars with total masses between �0.48 and �2 Mˇ. These limits are defined by
the lower limit of the critical mass needed to ignite helium and by the chemical
composition of the star. The mass of the degenerate helium core is the same at
ignition for these stars irrespective of the total mass (see Fig. 2).
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Fig. 2 Helium-core mass at ignition vs. stellar mass for stellar models of solar metallicity
computed with the MESA stellar evolution code (Paxton et al. 2011). The vertical dashed lines
are to guide the eye to the transitions in stellar mass of degenerate cores (left) to partially
degenerate cores (centre) and non-degenerate cores (right). See Sect. 2.1.2 for a description of
electron degeneracy

Intermediate-mass stars do not develop a degenerate core and have a more gentle
onset of helium burning. Hence, for these stars the helium-core mass at ignition
is a function of the total mass of the star. Figure 2 shows the helium-core mass at
ignition as a function of total stellar mass.

2.2.1 Hook

In main-sequence stars (A–B in Fig. 1) above �1.1 Mˇ the conditions in the core
are such that a convective core is established. When hydrogen is nearly depleted
(Xcore � 0.05; B0 in Fig. 1) the star contracts to maintain the energy production.
This contraction leads to an increase in effective temperature and luminosity until
hydrogen is completely depleted in the centre. This results in a so-called ‘hook’ in
the Hertzsprung–Russell diagram at the end of the main sequence indicated with
B0–B in the 3 Mˇ track in Fig. 1. Note that for stars with masses below �1.1 Mˇ
no convective core develops on the main sequence and no ‘hook’ is visible in the
Hertzsprung–Russell diagram.
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2.2.2 Bottom of Red-Giant Branch

During the subgiant phase (B–D in Fig. 1) the stellar envelope expands and cools
while a star evolves from the main sequence towards the Hayashi line. The Hayashi
line is the locus in the Hertzsprung–Russell diagram of fully convective stars, where
a star cannot decrease its temperature further while maintaining hydrostatic equi-
librium. The exact location of the Hayashi line is mass and metallicity dependent.
The schematic locations of the Hayashi lines for a 1 and a 3 Mˇ models with solar
metallicity are indicated by the dashed-dotted lines in Fig. 1. When approaching the
Hayashi line a further increase of the radius causes an increase in luminosity (bottom
of red-giant branch; D in Fig. 1), such that the star stays on the hot side of the
Hayashi line with an extended convective envelope (see Sect. 2.1.1 for a description
of convection).

2.2.3 First Dredge-Up

While the outer layers of the star expand after the exhaustion of hydrogen in the
core, the convective envelope penetrates deep into the star to regions where the
chemical composition has been altered by nuclear processes earlier in its evolution.
The convection transports the chemical elements of these deep layers to the surface.
This so-called first dredge-up changes the surface chemical abundances, for instance
the 12C/13C ratios are lowered. The use of ‘first’ refers to the fact that more dredge-
up episodes take place at later stages of stellar evolution.

The first dredge-up occurs at the end of the subgiant phase and in the early red-
giant phase, i.e., it starts on the 1 Mˇ evolutionary track in Fig. 1 between C and
D and ends before E. For an intermediate-mass star the evolution between B and D
is very fast (Hertzsprung gap) and the first dredge-up takes place in the early phase
of the RGB (D–G in Fig. 1). The end of the first dredge-up is when the convective
region reaches a maximum depth in mass. Due to the advance of the hydrogen-
burning shell the convection recedes, leaving behind a chemical (mean molecular
weight) discontinuity. The mean molecular weight in the mixed region is due to the
combination of the pristine stellar abundance and the products of partial hydrogen
burning. Therefore the mean molecular weight in this region is lower than in the
synthesised interior.

2.2.4 Luminosity Bump

Along the red-giant branch (D–G in Fig. 1) there is a clear zig-zag in the evolution
path (E–F in Fig. 1): this is the so-called RGB luminosity bump. This temporal shift
in luminosity and temperature happens when the hydrogen shell burning reaches
the chemical discontinuity left behind by the first dredge-up at the deepest extent of
the convective envelope. Naively, the decrease in the mean molecular weight at the
chemical discontinuity causes the luminosity L to decrease following L / �7M7

core
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(Refsdal and Weigert 1970), where Mcore is the core mass. However, Christensen-
Dalsgaard (2015) showed that the situation is more complex with the luminosity
beginning to decrease prior to the shell burning through the discontinuity. This
is most likely caused by the fact that the decrease in � outside the discontinuity
starts affecting the hydrostatic structure just below the discontinuity, and hence
the temperature, within and above the hydrogen-burning shell before it reaches the
discontinuity. The RGB luminosity bump is visible in stars up to a mass of about
2.2 Mˇ as for more massive stars the hydrogen burning shell does not reach the
chemical composition discontinuity before the onset of helium-core burning.

2.2.5 Onset of Helium-Core Burning

For low-mass stars with a degenerate core the onset of helium burning happens
in a very short episode: the so-called He-flash (G in the 1 Mˇ track in Fig. 1). In
the highly degenerate core the pressure does not depend on the temperature and
therefore there is no thermostatic control (see Sect. 2.1.2) to expand and cool the
core. Therefore, at a temperature of about 108 K the onset of helium burning in
degenerate conditions results in a thermal runaway process creating an enormous
overproduction of nuclear energy during a very short time of order a few hours. This
energy does not reach the stellar surface due to its absorption in non-degenerate
layers. The onset of helium burning takes place at the location of maximum
temperature that is generally not in the centre but in a concentric shell around the
centre of the degenerate core. The temperature maximum is off centre because of
extremely efficient neutrino losses in the core of electron degenerate material. Due
to the off-centre ignition, it is predicted that the first main He-flash is followed by a
series of subflashes till the degeneracy of the core is completely lifted and is back in
equilibrium with helium burning in a convective core. Due to the degenerate state of
the core prior to the He-flash the core mass at ignition does not depend on the total
stellar mass (see Fig. 2).

For intermediate-mass stars with non-degenerate cores the pressure and temper-
ature in the core are related. This thermostatic feedback allows for gentle ignition of
helium in the core of these stars. In this case the luminosity at which helium ignites
is a function of the stellar mass (see Fig. 2).

2.2.6 Helium-Core Burning

After the onset of helium burning the luminosity decreases and the surface
temperature increases, i.e., the star descends the red-giant branch (G–H in Fig. 1).
The drop in luminosity is due to the lower energy generation in the hydrogen shell
burning layer due to its decreased density and temperature, while the increased
surface temperature is caused by the mirror principle increasing the core radius
and decreasing the total stellar radius. The descend of the red-giant branch is
rapid, while returning to central fusion results in a quiescent long-lived phase (the
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helium-core-burning phase; H in Fig. 1). In this phase a star has two energy sources:
helium burning in the core (producing carbon and oxygen) and hydrogen burning
(producing helium) in a shell around the core.

Low-mass stars of different total masses have very similar helium-core masses
upon ignition of helium in the core. Therefore, these stars occupy a small region
in a Hertzsprung–Russell diagram and stay at this position for a relatively long
time: the red clump, i.e., at this position in a Hertzsprung–Russell diagram stars
‘clump’ together when a whole population is observed. Within the red clump the
luminosity is very tightly constraint by the helium-core mass, while there exists
some temperature dependence on the total stellar mass and composition.

For intermediate-mass stars the helium-core mass at ignition is a function of
stellar mass and therefore these stars do not reside in the red clump. Instead they
form a secondary clump at lower luminosities and effective temperatures (Girardi
1999).

3 Asteroseismology of Red-Giant Stars

Asteroseismology is the study of the internal structure of stars through their intrinsic
oscillations. In the outer layers of red-giant stars oscillations can be stochastically
excited by the turbulent convection (e.g., Goldreich and Keeley 1977; Goldreich
and Kumar 1988). Effectively, some of the convective energy is transferred into
energy of global oscillations. These type of oscillations are referred to as solar-like
oscillations as they also occur in the Sun. For an extensive overview of solar-like
oscillators I refer the reader to the review by Chaplin and Miglio (2013). In this
lecture I focus on asteroseismic inferences of red giants that are of importance
for galactic archaeology. For more details on asteroseismic inferences and the
underlying theory I refer the reader to Aerts et al. (2010) and the review by Hekker
and Christensen-Dalsgaard (2017).

In stochastic oscillators essentially all modes are excited albeit with different
amplitudes. This results in a clear oscillation power excess in the Fourier spectrum
(see Fig. 3). Individual modes of oscillation in this power excess are described
in terms of spherical harmonics. Hence the oscillations are described by their
frequency � and three quantum numbers: the radial order n indicating the number of
nodes in the radial direction, the spherical degree l indicating the number of nodal
lines on the surface, and the azimuthal order m indicating the number of nodal lines
that pass through the rotation axis.

3.1 Oscillation Pattern in Fourier Space

From the Fourier power spectrum in Fig. 3 it is clear that oscillations reach
observable amplitudes in a limited range in frequency with amplitudes that roughly
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Fig. 3 Fourier spectrum normalised by the background signal of the red giant KIC 9145955. The
red dashed curve is a heavily (triangular) smoothed power spectrum showing the power excess
envelope of the oscillations. The amplitude of the smoothed power spectrum is enhanced for visual
purposes

follow a Gaussian shape. The centre of the oscillation power excess is referred
to as �max, which is empirically found to be tightly related to the acoustic cut-off
frequency, �ac (Lamb 1932, using the approximation for an isothermal atmosphere),

�ac D c

4 � HP
; (11)

with �max � 0:6�ac. The acoustic cut-off frequency is the maximum frequency of
an acoustic eigenmode. At higher frequencies the waves are no longer trapped but
travelling waves. It can be shown that �max provides a direct measure of the surface
gravity (g) when the effective temperature (Teff) is known (e.g., Brown et al. 1991;
Kjeldsen and Bedding 1995):

�max / gp
Teff

/ M

R2
p

Teff
; (12)

where M and R indicate the stellar mass and radius, respectively. Belkacem et al.
(2011) investigated the theoretical basis for this relation but a full explanation has
not yet been found.

3.1.1 Acoustic Modes

Following asymptotic theory (Tassoul 1980), high-order acoustic oscillation modes
of solar-like oscillators with pressure as restoring force follow a near-regular pattern
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Fig. 4 Top: Fourier spectrum normalised by the background signal in the frequency range in which
oscillations of the red giant KIC 9145955 are visible. The numbers indicate the degree l of the
modes. The large frequency between two consecutive radial (l D 0) modes is indicated in red.
Bottom: Same as top panel but now with period ˘ in seconds on the x-axis and the observed
period spacing �˘ between two mixed dipole (l D 1) modes indicated in red

in frequency:

�n l ' ��.n C l

2
C �/ � dn l ; (13)

with �� the large frequency separation between modes of the same degree and
consecutive radial order (see top panel of Fig. 4), � an offset and dn l a small
correction to the leading order asymptotics, which is zero for l D 0.
�� is proportional to the inverse of the acoustic diameter, i.e., the sound travel

time across a stellar diameter. Therefore, it can be shown that �� is a direct probe
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of the mean density (�) of the star (Ulrich 1986):

�� D �n l � �n�1 l D
�
2

Z R

0

dr

c

��1
/ p

� /
r

M

R3
; (14)

with r the distance to the centre of the star.

3.1.2 Gravity Modes

Following asymptotic theory (Tassoul 1980), high-order gravity modes with buoy-
ancy as restoring force follow a near-regular pattern in period˘n l,

˘n l ' �˘l .n C �g C 1=2/ ; (15)

with �g a phase term and�˘l the period spacing (see bottom panel of Fig. 4) defined
as

�˘l D 2 �2p
l.l C 1/

�Z r2

r1

N
dr

r

��1
; (16)

with r1 and r2 the turning points of the gravity mode cavity and N the Brunt–Väisälä
frequency:

N2 D g

�
1

�1

d ln P

dr
� d ln �

dr

�
; (17)

where g is the local gravitational acceleration, P is pressure and �1 D
.@ ln P=@ ln �/ad. Note that N2 is negative, and hence N imaginary, in convectively
unstable regions.

In red-giant stars pure gravity modes cannot be observed due to the extended
convective envelope. However, in red giants the frequencies of the gravity modes
in the core and the frequencies of the acoustic modes in the envelope have similar
values such that resonant interactions between the modes allow for mixed acoustic-
gravity nature to occur. Or put differently: in red giants essentially all non-radial
(l > 0) modes are mixed with different behaviour in different regions. The mixed
mode frequencies are shifted by an amount depending on the coupling strength
between the gravity and acoustic cavity. Due to these shifts the directly observed
period spacing between consecutive mixed modes is smaller than the asymptotic
value (Eq. (16)). The asymptotic �˘ can be inferred from the observed period
spacing (e.g., Mosser et al. 2015).

In practice mixed modes are mostly observed in dipole (l D 1) modes as for
these modes the coupling between the pressure and gravity mode cavity is stronger
and also because the period spacings are larger due to the dependence on

p
l.l C 1/

(see Eq. (16)), and thus better resolved.
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3.2 Evolutionary State

Red-giant stars on the red-giant branch and in the helium-core-burning phase
can occupy the same region in the Hertzsprung–Russell diagram. Their surface
properties can be very similar and hence it is difficult to distinguish between
them based on classical observations such as surface temperature and brightness.
However, mixed oscillation modes (Sect. 3.1.2) provide a means to probe the stellar
cores where the difference between RGB and CHeB stars are significant. Stars on
the RGB do not have convective cores while stars in the CHeB phase do have
convective cores. Hence, the real part of the Brunt–Väisälä frequency (Eq. (17)) is
zero in the convective core of CHeB stars and has a finite value in the core of RGB
stars (see Fig. 5). According to Eq. (16) this results in a significantly larger value of
�˘ for CHeB stars compared to RGB stars (e.g., Bedding et al. 2011; Christensen-
Dalsgaard 2014; Mosser et al. 2014, and references therein). Thus, asteroseismology
provides a direct measure of the evolutionary phase of red-giant stars.

Alternatively it has been shown by Kallinger et al. (2012) and Christensen-
Dalsgaard et al. (2014) that the differences in the core between RGB and CHeB stars
also cause differences in the thermodynamic state of the envelope. This results in a
different location of the second helium-ionisation zone for RGB and CHeB stars.
This causes a difference in the ‘local’ phase term (� in Eq. (13) when measured
locally in a 2�� interval around �max) for stars in different evolutionary phases.

Fig. 5 Real part of the Brunt–Väisälä frequency N of a 1 Mˇ RGB model (solid line; model 1 of
Datta et al. 2015) and of a 1 Mˇ CHeB model (dashed line; black model in Fig. 10 of Constantino
et al. 2015)
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3.3 Scaling Relations

Equations (12) and (14) are often referred to as asteroseismic scaling relations:

�max D �max,ref
M

R2
p

Teff=Teff, ref

(18)

and

�� D ��ref

r
M

R3
; (19)

with M and R expressed in solar values and ‘ref’ referring to reference values.
These scaling relations can be used to derive the stellar mass and radius. To do so a
scaling with solar values as references has commonly been applied. This implicitly
assumes that the Sun and the observed star have the same internal structure and
only vary in size. From knowledge of stellar evolution it is known that this is not the
case. Indeed, the high-quality observations of the CoRoT (Baglin et al. 2009) and
Kepler (Borucki et al. 2010) space telescopes as well as detailed analysis of models
have shown that for Eq. (19) this assumption is not entirely correct for stars with
different properties, such as a different metallicity, or stars in different evolution
phases. White et al. (2011), Miglio et al. (2012), Hekker et al. (2013), Mosser et al.
(2013), Guggenberger et al. (2016) and Sharma et al. (2016) have investigated the
reference for the�� scaling relation (Eq. (19)) in detail and generally propose either
a correction to solar reference values (White et al. 2011) or new reference values
(Hekker et al. 2013; Mosser et al. 2013; Guggenberger et al. 2016; Sharma et al.
2016). The correction by Mosser et al. (2013) is based on the expanded asymptotic
relation (Eq. (13)) known as the universal pattern (Mosser et al. 2011). Sharma
et al. (2016) performed an interpolation in a model grid to find a reference value
for each model from individual frequencies, while Guggenberger et al. (2016) used
individual frequencies of models to derive a temperature- and metallicity-dependent
reference function. Although there is consensus in the community that for red-giant
stars scaling to reference values that take the evolutionary phase, mass, metallicity
and effective temperature into account is preferred over scaling to solar values, the
exact reference value or function to be used is still a matter of debate.

Note that for Eq. (12) a solar reference value is still commonly used as theoretical
understanding of this relation is still insufficient to perform rigorous tests. Results
for two red-giant binary stars show, however, that log.g/ derived from the binary
orbit and Eq. (12) are consistent (Themeßl et al. submitted), while stellar masses and
radii derived using the orbits and asteroseismic scaling relations show discrepancies
(e.g., Gaulme et al. 2016, Themeßl, Hekker, Southworth et al. submitted to
MNRAS).
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3.4 Comparison with Stellar Models

The scaling relations themselves do not account for any knowledge we have about
stellar evolution. To include this knowledge, it is also possible to compare observ-
ables of individual stars, e.g., {��, �max, Teff, [Fe=H]} or individual frequencies
with models. This can be done in a grid-based modelling approach in which the
observables are compared with a grid of stellar evolution models for which �� and
�max are computed using scaling relations (or alternatively, in case of ��, using
individual frequencies). In this approach one does account for knowledge of stellar
structure and evolution, as well as metallicity (e.g., Gai et al. 2011). An additional
advantage is that it is possible in this way to obtain stellar ages in addition to stellar
mass and radius, which is of importance for galactic archaeology. Note that the
results of grid-based modelling for red giants are generally more accurate when the
evolutionary state, i.e., RGB or CHeB (see Sect. 3.2), is known a priori.

In addition to grid-based modelling one can perform optimisation on a star-by-
star basis (e.g., Creevey et al. 2017), although that is currently not feasible for
large numbers of stars as required for galactic studies. Alternatively, one can use
machine learning to obtain stellar parameters (including ages) in a fast and robust
way (Bellinger et al. 2016; Angelou et al. 2017).

4 Galactic Archaeology

Galactic archaeology is the study of the formation and evolution of the Milky
Way galaxy by reconstructing its past from its current constituents. To this end it
is important to know and understand the properties of the current constituents of
the Milky Way, in terms of position, kinematics, chemical composition and age.
These quantities contain information on how and where the stars were formed and
hence provide the possibility to reconstruct the past. As red-giant stars are common,
intrinsically bright and show oscillations, these are prime targets to study the Milky
Way.

I will first provide a brief overview of the main components of the Milky Way
galaxy and their formation scenarios followed by a discussion of some recent
insights on the Milky Way obtained from red-giant stars. For more details on the
Galaxy structure and its formation I refer the reader to reviews by Freeman and
Bland-Hawthorn (2002), Rix and Bovy (2013) and Bland-Hawthorn and Gerhard
(2016) on which parts of this lecture are based.
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4.1 Milky Way Galaxy

In this section I give brief descriptions of the main components of the Milky Way
galaxy, i.e., the disc, the bulge, the halo and the dark matter halo. Star formation
in the Milky Way has likely proceeded in phases, with limited overlap. Yet, the
connection between the different components of the galaxy is far from understood
(Allende Prieto 2010). However, N-body simulations such as the ones by, e.g.,
Athanassoula (2016) are very promising and are currently able to simulate galaxies
that have quantitatively the same components and shape as observed for the Milky
Way.

4.1.1 Disc

The disc is a flat rotating radially extended part of the galaxy containing spiral
arms. Commonly the disc is thought to consist of a thin and thick component.
Different definitions can be used to separate these components: by looking only
at the dynamical properties of stars or only at the chemical properties of stars.
The properties of the resulting populations are however not identical. Nevertheless,
in general the thick disc is more extended and contains old (>10 Gyr), more
metal-poor stars ([Fe=H] between �0:5 and �1 dex) with larger enhancement of
˛-elements compared to the thin disc (a chemically defined thick disc is therefore
also commonly refer to as ˛-rich disc). The ˛-elements are elements for which
the most abundant isotopes are integer multiples of four (the mass of the helium
nucleus or ˛-particle): stable ˛-elements are carbon, oxygen, neon, magnesium,
silicon, sulfur, argon and calcium. The enhancement in [˛=Fe] is usually interpreted
as evidence that the thick disc formed predominantly at times that were dominated
by type II supernovae (SNe), which have short-lived progenitors (� few 10 Myr)
and are the main source of ˛-elements. Additionally, thick disc stars show slow
Galactic rotation and lag behind the thin disc rotation by roughly 50 km s�1 with a
dependence on the distance from the plane (Allende Prieto 2010).

The thin disc stars are generally considered to be significantly younger than
the thick disc stars and do not show enhancement in [˛=Fe]. The thin disc is less
extended than the thick disc and shows a dependence on age with younger stars more
confined to the mid-plane. Additionally, the velocity dispersions (random motions in
three dimensions) increase with age. This is often referred to as ‘disk-heating’. This
heating can occur due to gravitational scattering by objects (giant molecular clouds)
or spiral density waves, or by collisions of satellite galaxies (Merrifield et al. 2001).

Several authors (e.g., Bovy et al. 2012; Kawata and Chiappini 2016) have argued
that there is actually no thin disc/thick disc dichotomy and that the transition
between thin and thick disc is rather a continuum of discs with (an abundance-
dependent) scale length.

A relation between the stellar age and the mean metallicity or between stellar age
and velocity dispersion, i.e., age-metallicity relation (AMR) or age-velocity relation
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(AVR), would be fundamental observational input that could constrain the chemical
and dynamical evolution of the galactic disc. However, there is much discussion
about the existence of such relations (e.g., Freeman 2012; Bergemann et al. 2014;
Kumamoto et al. 2017) and it may be that such relations can only be measured for
young stars in the solar neighbourhood.

4.1.2 Bulge

The bulge is a densely populated part in the centre of the Milky Way with a
boxy/peanut morphology and an X-shaped structure (Ness and Lang 2016, and
Fig. 6), with its appearance depending on the angle it is viewed from and the stellar
population that is looked at. A bulge can form naturally from the dynamics of a flat
rotating disk of stars. If this is indeed happening the bulge formation takes 2–3 Gyr
to act after the disc has been formed. Hence in this scenario the bulge structure is
younger than the bulge stars that were originally part of the inner disc (Freeman
2012).

Another scenario could be that the bulge is formed out of mergers early in the
formation of the galaxy. This is called a classical bulge and it is currently unclear
whether the Milky Way contains such a bulge (Bland-Hawthorn and Gerhard 2016).

Fig. 6 WISE image of the Milky Way in W1 (3.4�m) and W2 (4.6�m) colour bands. An arcsinh
stretch is used to allow the full dynamic range to be shown. Additionally, the median of each row
of the image is subtracted to provide a better contrast which reveals the X-shaped structure in better
detail. Figure taken from Ness and Lang (2016)
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4.1.3 Halo

The halo is a sparsely populated extended (up to �100 kpc) part of the galaxy
containing old metal-poor stars. The halo stars have typically [Fe=H] < �1 dex and
ages greater than 12 Gyr. The stellar density distribution of the halo follows a power
law: � / r�3:5 (Freeman and Bland-Hawthorn 2002). The angular momentum of the
halo is close to zero, while the velocity dispersion of the stars in three dimensions
is large.

The galactic halo is formed at least partly through the accretion of small satellite
galaxies that each carry their own signatures. Although accretion of dwarf galaxies
is still taking place the most active accretion phase has probably ended about 12 Gyr
ago before the disc formation. Some (dynamical) traces of past accretion events are
still present in the structure of the halo (e.g., Helmi et al. 1999; Grillmair and Carlin
2016).

Globular clusters are collections of hundreds to thousands to millions of gravita-
tionally bound stars that are an integral part of the stellar halo and orbit the galactic
centre, both in the Milky Way and in other galaxies in the Local Group—the group
of galaxies to which the Milky Way belongs. Globular clusters may contain some
of the first stars produced in the galaxy, although the origin and role of globular
clusters in galactic evolution are still unclear.

4.1.4 Dark Matter Halo

The dark matter halo is only detected by its gravitational field and its existence
is inferred through the effects on the motions of the stars and the gas in the galaxy.
The mass of the dark matter halo is generally larger than the total mass of the visible
components of a galaxy and extends well beyond the edge of the visible galaxy with
a density that decreases farther from the galactic centre. Furthermore, dark matter
does not seem to interact with other matter present in the galaxy. I note here that Erik
Verlinde proposed a theory that shows that dark energy can explain the emerging
gravity and that dark matter does not exist as a particle, but that dark matter is a
phenomenon that emerges from dark energy (Verlinde 2016).

4.2 Chemodynamic Model of the Milky Way

State of the art models of the Milky Way are computed in the cosmological context
and take the kinematics, chemistry and ages of stars into account in a self-consistent
way (e.g., Minchev et al. 2013, 2014). From these models it emerges naturally that
stars can migrate in the radial direction of the disc. This causes difficulties for
galactic archaeology in that stars can migrate significantly away from their place
of birth (e.g., Loebman et al. 2016, and references therein). This migration has to be
taken into account in retracing the history of the stars in the Milky Way.
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4.3 Galactic Archaeology and Asteroseismology

A key ingredient for galactic archaeology is stellar age. Stellar ages are difficult to
derive as there is no observable that is sensitive to age and age only (Soderblom
2010). The classical way to derive stellar ages is by isochrone fitting using effective
temperature (Teff), logarithmic surface gravity (log.g/) and metallicity ([Fe=H]).
This technique is very powerful for stars that belong to a cluster, but is limited
in use for single field stars, due to degeneracies.

To determine stellar ages, spectroscopic information (mostly Teff and [Fe=H])
can be combined with asteroseismic information (�� and �max; see Sect. 3.1) and
stellar models in a grid-based modelling approach (see Sect. 3.4). The asteroseismic
input (including the evolutionary phase information for red giants; see Sect. 3.2)
provides further constraints on the models and therefore more precise age estimates.
Further improvements could be made when individual oscillation frequencies are
considered, but this is currently not feasible for a large number of stars as would be
required for studies of the Milky Way.

The number of stars for which spectroscopic data and future parallaxes from
Gaia (Perryman et al. 2001; Lindegren et al. 2016) are and will be available is much
larger than the number of stars with asteroseismic parameters as the latter require
time-series data. Ideally, the asteroseismic subsample can serve as a calibration set
to determine ages of the larger set of stars. Indeed this seems possible as discussed
in Sect. 4.3.1.

4.3.1 Asteroseismic Calibration for Spectroscopic Samples

In case there are features in stellar spectra that change as a function of age it is
possible to transfer knowledge of stellar spectra of stars that have asteroseismic ages
(or other information known accurately) to spectra that do not have asteroseismic
information. Such a data-driven transfer is made by ‘The Cannon’ (Ness et al. 2015)
and allows to improve the scientific information obtained from spectra even if we
do not understand the underlying reason of the correlation.

An example of age-dependent spectroscopic features are the carbon (C) and
nitrogen (N) abundances. The first dredge-up (Sect. 2.2.3) causes a change in surface
abundance as the stellar surface becomes mixed with material enriched in nitrogen
and depleted in carbon, which causes a change in the ratio [C=N]. The value of the
[C=N] abundance ratio depends on the CNO-processed material in the core at the
end of the main sequence, and on the depth reached by the base of the convection
zone, both depending on the stellar mass: higher-mass stars are comparatively richer
in N and poorer in C with respect to lower-mass stars. Additional mixing processes
can subsequently act to change the [C=N] ratio at the upper red-giant branch.

Martig et al. (2016) and Ness et al. (2016) have used the chemical abundances
and ratio as mentioned above together with asteroseismic masses and ages for
a subset of stars to obtain an empirical link between mass and age on the one
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hand and C, N and [C=N] and [Fe=H] ratios on the other hand. Such an approach
can potentially be used to calibrate relations that can be used on stars for which
spectroscopic, but no asteroseismic data are available.

4.3.2 ˛-Rich Young Stars

Here, I provide an example where stellar ages derived using asteroseismology
played an important role in studies of populations of stars in the Milky Way.

As described in Sect. 4.1.1 generally stars rich in ˛-elements are formed at early
times when the Milky way was dominated by type II SNe. Hence, ˛-rich stars are
expected to be old. Chiappini et al. (2015) and Martig et al. (2015) did however
detect a subsample of stars that are rich in ˛-elements and at the same time are
young based on asteroseismic age determinations.

First studies by Jofré et al. (2016) and Yong et al. (2016) show that these
stars could be evolved blue stragglers, suggesting that the apparent young age is
a consequence of a merger or mass transfer.

5 Summary

In this lecture I have focussed on red-giant stars and the role they can play in
studying the Milky Way galaxy. These common, intrinsically bright oscillating
stars allow us to probe the Milky Way up to relatively large distances, and
provide in specific fields improved precision on stellar parameters (e.g., ages) via
asteroseismology. The lack of accurate stellar age determinations for large numbers
of stars is currently a limiting factor in galactic archaeology.

As it is technically feasible to take a spectrum for more stars than it is to
take a time series as required for asteroseismology, techniques have been and are
being developed to use the more accurate and precise asteroseismic information and
calibrate larger sets with these. One example of this is ‘The Cannon’ (Ness et al.
2015).

Additionally, the K2 mission (Howell et al. 2014) is currently still taking time-
series data for thousands of stars for the purpose of galactic archaeology (Stello
et al. 2017). In the near future the TESS (Ricker et al. 2014) and PLATO (Rauer et al.
2014) missions will also be launched. Although the prime aim of these missions is
exo-planets and asteroseismology, the all-sky view of TESS and the step-and-stare
mode of PLATO provide excellent prospects for galactic archaeology. These data
combined with parallaxes from Gaia (Perryman et al. 2001; Lindegren et al. 2016)
and data from ground-based spectrographs will allow to improve our current picture
of the Milky Way and from that provide clues about the formation and evolution of
the Milky Way.
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Synergies Between Asteroseismology
and Exoplanetary Science

Daniel Huber

Abstract Over the past decade asteroseismology has become a powerful method
to systematically characterize host stars and dynamical architectures of exoplanet
systems. In this contribution I review current key synergies between asteroseis-
mology and exoplanetary science such as the precise determination of planet radii
and ages, the measurement of orbital eccentricities, stellar obliquities and their
impact on hot Jupiter formation theories, and the importance of asteroseismology on
spectroscopic analyses of exoplanet hosts. I also give an outlook on future synergies
such as the characterization of sub-Neptune-size planets orbiting solar-type stars,
the study of planet populations orbiting evolved stars, and the determination of ages
of intermediate-mass stars hosting directly imaged planets.

1 Introduction: Know the Star, Know the Planet

Exoplanetary science has undergone a revolution over the past two decades, driven
by ground-based Doppler surveys and high-precision, space-based photometry from
missions such as CoRoT (Baglin et al. 2009) and Kepler (Borucki et al. 2010). At
the time of writing nearly 3500 confirmed exoplanets are known, and future space-
based missions such as TESS (Ricker et al. 2014) in combination with ground-based
efforts are expected to continue this revolution over the coming decades.

The wealth of exoplanet discoveries has uncovered several important questions:
How did gas-giant planets in close-in orbits (hot Jupiters) form? What are the origin
and compositions of sub-Neptune-size planets, for which we have no equivalent
in the solar system? What are the occurrence rates of exoplanets as a function of
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their size, mass, orbital architecture, as well as their host star spectral type and
evolutionary state? Do habitable planets exist outside our solar system?

Our ability to answer these questions depends strongly on our understanding
of the host stars. This is primarily due to the fact that the majority of exoplanet
detections are indirect—more than 98% of all exoplanets known to date were
discovered using transits, the Doppler method, or microlensing, all of which
measure properties of planets relative to the host star. Thus, constraining the physical
properties of planets is often limited by the characterization of stars. Indeed, for 99%
of all planet candidates detected by Kepler the uncertainty in the planet radius is
currently dominated by the uncertainty in the radius of the host star. In addition
to placing planet properties on an absolute scale, host star characteristics are also
crucial to understand the planetary environments such as the extent of the habitable
zone (Kane 2014).

The requirement for continuous high-precision monitoring has enabled a fortu-
itous synergy between asteroseismology and exoplanetary science, since the data
can be simultaneously used to detect exoplanets and study stellar oscillations (see
Fig. 1). In this review I will discuss some key synergies between both fields, and
conclude with an outlook of what future synergies we can expect from current and
future ground- and space-based facilities such as SONG, K2, TESS, PLATO and
WFIRST.
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Fig. 1 Kepler short-cadence light curve showing a single transit of Kepler-36c. The red solid line
is the transit model from Carter et al. (2012), and the inset shows the oscillations of the host star.
The transit depth ı yields the size of the planet relative to the star, and the oscillation periods (Posc)
can be used to independently measure the size of the star
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2 Characterization of Exoplanets

2.1 The Connection Between Transits and Mean
Stellar Density

The primary observable for exoplanet transits is the transit depth,1 �F, which for
the simplified case of a uniformly bright stellar disk is related to the size of the
planet (RP) and the size of the star (R?) as:

�F D
�

RP

R?

�2
: (1)

Accurate measurements of RP=R?, however, are typically complicated by degen-
eracies between the transit depth, transit duration, impact parameter, limb darkening,
and the size of the star (see Fig. 2). For example, for fixed RP=R? a larger impact
parameter will lead to a shallower transit (due to limb darkening) with shorter
duration. The same transit duration and depth, however, could likewise be caused
by a smaller planet orbiting a smaller star with a lower impact parameter.

Fig. 2 Schematic transit
light curves (solid and dotted
lines on the bottom) and
corresponding star-planet
geometry (top). The four
transit contact points are
shown for both transits. The
transit depth, �F, total transit
duration, tT , and transit
duration between ingress and
egress, tF , are shown for the
solid transit light curve. Also
defined is the impact
parameter, b. From Seager
and Mallén-Ornelas (2003)
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1The notation �F will be used hereafter to denote transit depth.
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This degeneracy can be broken with independent knowledge of the host star
density. Assuming RP 
 R? 
 a (where a is the orbit semi-major axis) and circular
orbits, it can be shown that (Winn et al. 2010):

a

R?
D 2�F1=4

�

Pq
t2T � t2F

: (2)

Here, P is the orbital period, tT is the total transit duration and tF is the transit
duration between ingress and egress, as illustrated in Fig. 2. Using Kepler’s third
law, a=R? can be expressed as

a

R?
D
�

P2 G

4�2
M?

R3?

�1=3
; (3)

and hence:

�? D 3�

G P2

�
a

R?

�3
: (4)

The mean stellar density is therefore directly related to quantities which can be
measured from a transit light curve (Seager and Mallén-Ornelas 2003).

Equation (4) is of key importance for the synergy between asteroseismology and
exoplanetary science. Since asteroseismology measures the mean stellar density
with a typical precision of a few percent or less, the combination of stellar
oscillations and transits can be used to remove degeneracies when fitting exoplanet
transits and accurately measure transit parameters. This is particularly important for
small planets with low-SNR transits, for which ingress and egress durations often
cannot be accurately measured and hence constraining a=R? independently of �? is
difficult.

2.2 The Importance of Precise Exoplanet Radii

Precise host star radius measurements are important for understanding the com-
position of planets. Composition models depend sensitively on radius, especially
in the regime of sub-Neptune-size planets, and density measurements from transit
and Doppler surveys have indicated a threshold between mostly rocky and gaseous
planet compositions of � 1.6 R˚ (Weiss and Marcy 2014; Rogers 2015). Uncer-
tainties in planet radii due to indirect stellar characterization methods, however,
have often led to ambiguities when interpreting exoplanet detections. For example,
the � 20% radius uncertainty for Kepler-452b prevented firm conclusions about
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whether the planet, which orbits a G-type host star within the habitable zone, is
indeed rocky (Jenkins et al. 2015).

Asteroseismology has provided some of the most precise characterizations of
exoplanets to date. The first asteroseismic studies of exoplanet-host stars were
performed using ground-based, radial-velocity observations of �Ara (Bazot et al.
2005; Bouchy et al. 2005), space-based photometry using the Hubble Space
Telescope of HD 17156 (Gilliland et al. 2011) and CoRoT photometry of HD 52265
(Ballot et al. 2011; Lebreton and Goupil 2014). The launch of Kepler led to
a revolution in the synergy between asteroseismology and exoplanetary science,
with over 70 confirmed Kepler exoplanet-host stars (see Fig. 3). This large sample
allowed the first systematic precise characterization of planets in the Kepler sample
(Huber et al. 2013a), including planet radii measured to � 1% (Ballard et al.
2014), as well as investigations of the effects of stellar incident flux on the radius
distribution of close-in planets (Lundkvist et al. 2016).

More recent studies have focused not only on measuring global asteroseismic
quantities (which are sensitive to densities, masses and radii) but also systematic
modeling of individual oscillation frequencies, which allows precise constraints
on stellar ages (Silva Aguirre et al. 2015; Davies et al. 2016). One of the most
remarkable discoveries so far is Kepler-444, which consists of a K dwarf of age
11:2˙1:0Gyr hosting five sub-Earth-size planets with orbital periods of less than 10
days (Campante et al. 2015). Kepler-444 demonstrated that sub-Earth-size planets
have existed for most of the history of our Universe, and the discovery of a pair
of low-mass companions in a highly eccentric orbit furthermore showed that the
formation of small planets appears to be robust against early truncation of the
protoplanetary disk (Dupuy et al. 2016).
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Fig. 3 Surface gravity versus effective temperature for exoplanet-host stars with asteroseismic
detections before (left panel) and after (right panel) the launch of Kepler/K2. Gray lines show
solar-metallicity evolutionary tracks from the BASTI database (Pietrinferni et al. 2004)
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3 Orbital Eccentricities of Exoplanets

Orbital eccentricities play a key role in many areas of exoplanetary science,
ranging from studies of the dynamics of multiplanet systems to the determination
of the fraction of time a planet spends within the habitable zone. Traditionally,
eccentricities can be measured through Doppler velocities, secondary transits, or
transit-timing variations. However, these methods are either only applicable for
relatively large gas-giant planets, or a small subset of multiplanet systems for which
effects of eccentricity and mass can be successfully disentangled (e.g., Lithwick
et al. 2012; Hadden and Lithwick 2014).

The combination of transit photometry and asteroseismology has opened up
a powerful method to systematically measure orbital eccentricities of transiting
planets. Since the eccentricity and orientation of the orbit to the observer control
the transit duration (see Fig. 4), the ratio of the mean stellar density assuming a
circular orbit [Eq. (4)] and true mean stellar density are related as (e.g., Kipping
2010):

�?

�?;transit
D .1 � e2/3=2

.1C e sin!/3
: (5)

Here, e is the eccentricity and ! is the argument of periastron. Equations (4) and (5)
demonstrate that if an independent measurement of �? is available (for example,
from asteroseismology), transits can be used to directly constrain the eccentricity of
a planet without radial-velocity observations. Importantly, an accurate measurement
of �?;transit requires an accurate estimate of the ingress and egress times.

Fig. 4 Planetary orbit of eccentricity 0.6 with two different angles of periastron (top panels) and
the corresponding observed transits (bottom panels). Red and blue colors correspond to the fast and
slow part of the orbit, respectively. Observed transit durations are longer (left panels) or shorter
(right panels) compared to circular orbits (gray) depending on the eccentricity and argument of
periastron of the orbit. From Van Eylen and Albrecht (2015)
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Fig. 5 Ratio of the asteroseismic mean stellar density and the density measured from transits
assuming a circular orbit for 28 Kepler multiplanet host stars (gray). Corresponding distributions
of solar system planets and planets detected by radial-velocity surveys are shown as blue and black
dashed histograms, respectively. From Van Eylen and Albrecht (2015)

The first systematic study of eccentricities using asteroseismic densities con-
centrated on the identification of false positives in the Kepler planet candidate
sample by comparing �? and �?;transit, yielding a significantly higher false-positive
rate for red-giant-host stars (Sliski and Kipping 2014). A subsequent study by
Van Eylen and Albrecht (2015) focused on 28 multiplanet systems, which are
expected to have a small false-positive rate (Lissauer et al. 2012). Figure 5 shows a
histogram of the derived ratios between transit and seismic density [left hand side of
Eq. (5)] for their sample compared to the solar system and a sample of planets with
eccentricities from radial-velocity surveys. The asteroseismic sample (red solid line)
is consistent with circular orbits, similar to the solar system (blue dashed histogram),
but in stark contrast to the radial-velocity sample (black dashed line). Since Kepler
multiplanet systems include mostly small, low-mass planets compared to the more
massive planets probed by Doppler surveys, this indicates that low-mass planets
are preferentially on circular orbits. This conclusion is of great importance since
circular orbits are frequently assumed when modeling exoplanets in the habitable
zone (Barclay et al. 2013; Borucki et al. 2013; Quintana et al. 2014; Jenkins et al.
2015) or when estimating the detection completeness for planet occurrence studies
(e.g., Howard et al. 2012; Dong and Zhu 2013; Petigura et al. 2013; Burke et al.
2015).

Expanding such studies holds promise to further constrain the dynamics of exo-
planet systems using asteroseismology. For example, Xie et al. (2016) recently used
stellar densities derived from spectroscopy to show that while multiplanet systems
are indeed preferentially circular, single systems appear to show significantly higher
eccentricities even for small (sub-Neptune-size) planets. Asteroseismic studies of
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Fig. 6 Comparison of the mean stellar density from independent methods and as calculated from
the asteroseismic scaling relation for the large frequency separation (��). Transit-derived densities
account for more than half of the comparison values for subgiant and main-sequence stars

systems with single planets would be valuable to independently confirm this result
with a smaller, but higher precision sample.

Transiting exoplanets for which the eccentricity can be measured independently
(for example through radial velocities) can also be used as an independent test of
asteroseismic densities calculated from the scaling relation for the large frequency
separation (��). This is particularly valuable since the �� scaling relation has
found widespread use for calculating stellar properties for thousands of stars in the
era of “ensemble asteroseismology” (Kallinger et al. 2010; Chaplin et al. 2014).
Figure 6 shows a comparison of the mean stellar density calculated from the
�� scaling relation and from dynamically measured densities from double-lined
eclipsing binaries (Frandsen et al. 2013; Gaulme et al. 2016), interferometric orbits
(Procyon and ˛Cen A+B; see Bruntt et al. 2010; and references therein), as well
as transiting exoplanets with known eccentricities: HD 17156 (Gilliland et al. 2011;
Nutzman et al. 2011), TrES-2 (Southworth 2011; Barclay et al. 2012), HAT-P-7
(Christensen-Dalsgaard et al. 2010; Southworth 2011), and Kepler-14 (Southworth
2012; Huber et al. 2013a). Transit-derived densities account for more than half of
the currently available comparison values for subgiant and main-sequence stars, and
empirically demonstrate that the �� scaling relation is accurate to about � 3% (see
also Huber 2015a).
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4 Obliquities of Exoplanet Systems

The obliquity  is the angle between the host star rotation axis and the planetary
orbital axis, and can be calculated as (Fabrycky and Winn 2009):

cos D sin i? cos� sin ip C cos i? cos ip : (6)

Here, � is the sky-projected spin-orbit angle, ip is the angle between the line of sight
and the orbital axis of the planet, and i? is the inclination of the rotation axis to the
line of sight of the observer. Figure 7 shows a graphical illustration of these angles
for the HAT-P-7 system following Lund et al. (2014).

For transiting exoplanets, ip can be typically constrained from the transit light
curve, while � can be measured through spectroscopic in-transit observations (the
Rossiter–McLaughlin effect). Asteroseismic observations of the relative heights of
rotationally split multiplets can be used to provide the measurement of the line-
of-sight inclination of the stellar rotation i? (Gizon and Solanki 2003). Thus, the
combination of transits, Doppler velocities, and asteroseismology allow to uniquely
measure the obliquity of exoplanet systems (Benomar et al. 2014; Lund et al. 2014).
Importantly, the measurement of i? using asteroseismology is independent of planet
size, and hence can be used to constrain the obliquity even for systems with small
planets in which Rossiter–McLaughlin measurements are typically not feasible. For
transiting planets, a low stellar inclination in most cases automatically yields a
misalignment of the orbital plane and the stellar equatorial plane (a high obliquity),
while a value of near 90ı for i? implies that the star and the planets are likely (but
not necessarily) aligned.

Obliquities have played a key role in constraining the formation mechanism for
hot Jupiters, one of the longest standing problems in exoplanetary science. Hot
Jupiters are typically thought to form at large orbital distances beyond the snow line,
and subsequently migrate to the close-in orbits where they are currently observed
(although in-situ formation has also been suggested; see Batygin et al. 2016). Two
possible mechanisms have been proposed: migration of the planet through the
protoplanetary disk (Lin et al. 1996) or dynamical perturbations such as planet-
planet scattering (Chatterjee et al. 2008) or Kozai–Lidov oscillations (Fabrycky and
Tremaine 2007) which cause the planet to attain a high orbital eccentricity, followed
by shrinking and circularization of the orbit through tidal interactions (often referred
to as high-eccentricity migration).

The observation that hot Jupiters show a wide range of obliquities (Johnson et al.
2009; Winn et al. 2010) has been interpreted as evidence for a dynamically violent
formation scenario, thus favoring high-eccentricity migration as the dominant
formation mechanism. However, this conclusion relies on the assumption that the
stellar equator and the protoplanetary disk are initially aligned, and thus that the high
obliquity observed today is indeed a consequence of dynamical interactions during
the migration process. Key tests for this assumption are multiplanet systems which,
if primordial alignments are common, should predominantly show low obliquities.
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Fig. 7 Graphical illustration
of the obliquity  , the
sky-projected spin-orbit angle
�, the line-of-sight stellar
inclination i?, and the
line-of-sight orbit inclination
ip. Note that the top panel
shows � D 155ı, while the
middle panel shows
� D 180ı. From Lund et al.
(2014)

Observer’s (front) view

Side view

Top view
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Fig. 8 Projected obliquity (left ordinate) and stellar inclination (right ordinate) versus relative
tidal dissipation timescale for exoplanet systems. Systems with short dissipation timescales are
expected to have been realigned even if they were misaligned by the formation process, while
systems with long dissipation timescales are expected to preserve their configuration. Multiplanet
systems without hot Jupiters are highlighted by red circles, and systems with inclinations measured
using asteroseismology are highlighted with green squares. Positions for Kepler-56, Kepler-410
and Kepler-432 are approximate only. Adapted from Albrecht et al. (2013)

Asteroseismology has played an important role for testing this assumption since
seismic inclination measurements are independent of planet size, and hence can be
applied to multiplanet systems with small planets. Figure 8 shows the projected
obliquity or stellar inclination for exoplanet systems as a function of relative
tidal dissipation timescale, which is a proxy for how quickly a system can be
realigned by tidal interactions if it was initially misaligned by the formation process
(Albrecht et al. 2012). In line with expectations from high-eccentricity migration,
hot-Jupiter systems with intermediate dissipation timescales are frequently observed
to have high obliquities, while coplanar multiplanet systems without hot Jupiters
have mostly low obliquities (e.g., Sanchis-Ojeda et al. 2013) despite long tidal
dissipation timescales. Over half of the constraints for multiplanet systems come
from asteroseismology (Chaplin et al. 2013; Van Eylen et al. 2014; Quinn et al.
2015).

Asteroseismology has also yielded the first intriguing counterexample for the
observed trend of well-aligned multiplanet systems. Kepler-56, a red giant hosting
two transiting planets confirmed through transit-timing variations (Steffen et al.
2012), revealed an inclination of i? D 47ı ˙ 6ı, demonstrating the first spin-orbit
misalignment in a multiplanet system (Huber et al. 2013b). Subsequent follow-up
studies have confirmed that the misalignment is likely caused by the torque of a third
planet on a wide orbit (Li et al. 2014; Otor et al. 2016; Gratia and Fabrycky 2017),
and that such a configuration could be consistent with a primordial misalignment
(Matsakos and Königl 2017). Future asteroseismic inclination measurements will
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be needed to determine whether spin-orbit misalignments in multiplanet systems
are common, and whether high obliquities are indeed tracers of dynamical formation
history of hot Jupiters.

5 Chemical Abundances of Exoplanet-Host Stars

Chemical abundances of exoplanet-host stars are tracers of the primordial com-
position of protoplanetary disks, and hence provide valuable clues about which
conditions favor planet formation. For example, it is well established that gas-giant
planets predominantly form around metal-rich stars (Gonzalez 1997; Fischer and
Valenti 2005), whereas small planets form independently of host star metallicity
(Buchhave et al. 2012). Going beyond metallicities, intriguing abundance differ-
ences in volatile and refractory elements between the Sun and solar twins with
and without planets have been observed (Meléndez et al. 2009; Ramírez et al.
2009), although the link of these patterns to terrestrial planet formation is still being
debated (e.g., Adibekyan et al. 2014).

Asteroseismology does not directly probe atmospheric abundances, but the
combination of asteroseismology and spectroscopy can significantly improve our
understanding of host star compositions. This is mainly due to the fact that bulk
atmospheric parameters (Teff, log g, [Fe/H], microturbulence) are often heavily
correlated, which can lead to systematic errors in particular for spectral synthesis
methods (Torres et al. 2012; Huber et al. 2013a), while spectral line analysis
methods are typically less affected (Mortier et al. 2014). Recent efforts have shown
that using log g from asteroseismology to inform spectroscopic modeling methods
can significantly increase the accuracy of spectroscopic surface gravities without
external constraints (see Fig. 9), thus also leading to more accurate abundances.
Using stars with asteroseismology (ideally in combination with interferometry,
which also yields an external constraint on Teff) as spectroscopic benchmarks
promises to extend high-precision abundance work from solar twins to stars in
different evolutionary states.

6 Future Prospects

The asteroseismology revolution initiated by CoRoT and Kepler is set to continue
over the coming decades with the launch of TESS (Ricker et al. 2014), PLATO
(Rauer et al. 2014) and WFIRST (Spergel et al. 2013). Each of these missions
will provide high-precision, space-based photometry suitable for asteroseismology,
with the expected number of detections of solar-like oscillations exceeding several
million stars (see Fig. 10). Combined with ground-based efforts such as the SONG
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Fig. 9 Difference between asteroseismic and spectroscopic surface gravities before (red) and after
(blue) improving the spectroscopic modeling procedure based on asteroseismic constraints on
surface gravity. From Brewer et al. (2015)

Fig. 10 Number of stars with detected solar-like oscillations as a function of time. The approx-
imate projected yield for current and future missions is 5 � 104 for K2 (based on extrapolating
classifications by Huber et al. 2016), 3� 105 for TESS (assuming detections in all red-clump stars
down to I � 10mag with 27 days of data), 2 � 105 for PLATO (assuming a similar red-giant
fraction to Kepler), and 106 for WFIRST (Gould et al. 2015). Note that > 90% of all detections are
expected to be evolved stars, and PLATO will by far contribute the most detections for dwarfs and
subgiants (� 80,000 stars; Rauer et al. 2014)
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network (Grundahl et al. 2008), the key synergies between asteroseismology and
exoplanet science are expected to be:

• Densities and ages of sub-Neptune-size planets transiting asteroseismic
solar-type stars: In addition to TESS, ground-based radial velocities obtained
by SONG will play an important role in characterizing stars hosting small exo-
planets using asteroseismology. Such systems will provide the best opportunity to
precisely study the composition diversity of sub-Neptunes by constraining host
star radii and masses to a few percent. Importantly, Gaia parallaxes alone will
not reach comparable precision due to model-dependent uncertainties such as
bolometric corrections and reddening. The asteroseismology-exoplanet synergy
is a core component of the PLATO mission, which will extend the reach of
asteroseismology to characterize radii, masses and ages of solar-type stars with
small, transiting planets in the habitable zone.

• Gas-giant planets orbiting asteroseismic evolved stars: Evolved stars provide
an evolutionary “sweet spot” in which light curves with moderate cadence (such
as the 30-min sampling provided by Kepler/K2 long-cadence data) can be used
to detect transits and stellar oscillations simultaneously. Detections by Kepler
and the “Giants Orbiting Giants Program” with the K2 Mission (see Fig. 11;
Huber 2015b) have demonstrated that these planets can be used to address key
questions in exoplanetary science such as the effects of host star evolution on the
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radius inflation of hot Jupiters (Grunblatt et al. 2016). A particularly promising
possibility to extend this synergy are full-frame images obtained by the TESS
mission, which are expected to yield several hundred asteroseismic exoplanet-
host stars (Campante et al. 2016). Preliminary simulations have shown that
low-luminosity RGB stars in the ecliptic poles with 1 year coverage can also
be used to measure rotational splittings, and hence extend the study of exoplanet
obliquities of systems similar to Kepler-56 (see Sect. 4).

• Planets orbiting pulsating A stars: Near-diffraction-limited, infrared adaptive-
optics imaging instruments such as GPI (Macintosh et al. 2008), SPHERE
(Beuzit et al. 2008) and SCExAO (Guyon et al. 2010) will soon provide an
increasing number of directly imaged planets orbiting young stars, including
pulsating A stars such as HR 8799 (Zerbi et al. 1999; Marois et al. 2008).
A common limitation for interpreting these discoveries is their unknown age,
which is needed to determine whether the detected substellar companions are
indeed planets. While mode identification in ı Scuti and 	 Doradus stars is still
challenging, the extension of the asteroseismology-exoplanet synergy to these
systems will undoubtably become more important over the coming decades.
Extended photometric monitoring provided over several years by PLATO may
also provide future opportunities to detect planets in wide orbits around A stars
using pulsation frequency shifts induced by the planet (Murphy et al. 2016).

The above list is by no means complete, and further synergies beyond those
discussed here will certainly be explored. With the wealth of data from ground-
based and space-based facilities there is little doubt that the exciting and fruitful
synergy between asteroseismology and exoplanetary science will continue to grow
over the coming decades.
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Tutorial: Asteroseismic Data Analysis
with DIAMONDS

Enrico Corsaro

Abstract Since the advent of the space-based photometric missions such as CoRoT
and NASA’s Kepler, asteroseismology has acquired a central role in our under-
standing about stellar physics. The Kepler spacecraft, especially, is still releasing
excellent photometric observations that contain a large amount of information
not yet investigated. For exploiting the full potential of these data, sophisticated
and robust analysis tools are now essential, so that further constraining of stellar
structure and evolutionary models can be obtained. In addition, extracting detailed
asteroseismic properties for many stars can yield new insights on their correlations
to fundamental stellar properties and dynamics. After a brief introduction to the
Bayesian notion of probability, I describe the code DIAMONDS for Bayesian
parameter estimation and model comparison by means of the nested sampling
Monte Carlo (NSMC) algorithm. NSMC constitutes an efficient and powerful
method, in replacement to standard Markov chain Monte Carlo, very suitable for
high-dimensional and multimodal problems that are typical of detailed asteroseis-
mic analyses, such as the fitting and mode identification of individual oscillation
modes in stars (known as peak-bagging). DIAMONDS is able to provide robust
results for statistical inferences involving tens of individual oscillation modes, while
at the same time preserving a considerable computational efficiency for identifying
the solution. In the tutorial, I will present the fitting of the stellar background signal
and the peak-bagging analysis of the oscillation modes in a red-giant star, providing
an example to use Bayesian evidence for assessing the peak significance of the fitted
oscillation peaks.
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1 Bayesian Statistics

Let us assume to consider a given physical problem, e.g., the fitting of an
observational dataset through the use of a predictive model. We term the dataset
D and the fitting model Mk, the latter having a number of k free parameters that we
represent with the k-dimensional parameter vector 	 D .�1; �2; : : : ; �k/. The number
of free parameters sets the dimensionality of the problem, to which a k-dimensional
parameter space˝Mk is associated, representing the space of the solutions. Our aim
is to obtain optimal estimates of each free parameter and a corresponding statistical
weight of the model Mk that takes into account both the number of dimensions and
the fit quality. This statistical inference can be properly addressed through the means
of Bayesian statistics (Jeffreys 1961; Sivia and Skilling 2006; Trotta 2008; Bolstad
2013; Corsaro et al. 2013; Corsaro and De Ridder 2014). In particular, the core of
the statistical representation is given by Bayes’ theorem:

p.	 j D;Mk/ D L .	 j D;Mk/�.	 j Mk/

p.D j Mk/
; (1)

where L .	 j D;Mk/ (hereafter, L .	/ for simplicity) is the likelihood function,
which represents the way we sample the data, while �.	 j Mk/ is the prior
probability density function (PDF) that reflects our knowledge about the model
parameters. The left-hand side of Eq. (1) is the posterior PDF, which has a key role
in the parameter estimation problem. Through a marginalization of the posterior
PDF, namely an integration over the uninteresting free parameters, we estimate the
free parameters of the model. Among the different estimators for each parameter,
in Bayesian statistics the median is usually preferred because it represents the most
resistant estimator, namely the least sensitive to possible outliers, and because it is
invariant for variable change.

The denominator on the right-hand side of Eq. (1) is instead a normalization
factor, generally known as the Bayesian evidence (or marginal likelihood), which
is defined as

E � p.D j Mk/ D
Z
˝Mk

L .	 j D;Mk/�.	 j Mk/d	 : (2)

The Bayesian evidence is used for as a statistical weight for model comparison
because it encompasses the principle of the Occam’s razor, meaning that models are
favored if they provide a better fit to the data but are penalized if their number of
free parameters is larger than that of a competitor model. For our study, the model
comparison is performed by computation of the Bayes’ factor Bij D Ei=Ej (see
also Sect. 5), in which the model corresponding to a larger Bayesian evidence is
statistically more likely (Jeffreys 1961; Trotta 2008; Corsaro et al. 2013; Corsaro
and De Ridder 2014).
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2 Nested Sampling Monte Carlo

Since Eq. (2) is a multi-dimensional integral, with increasing number of dimensions
its evaluation becomes quickly unsolvable both analytically and by numerical
approximations. For overcoming this problem, a NSMC algorithm was developed
(Skilling 2004). This algorithm allows for an efficient evaluation of the Bayesian
evidence for any number of dimensions and provides the sampling of the posterior
probability distribution (PPD) for parameter estimation as a straightforward byprod-
uct. Detailed descriptions of the algorithm can be found in Skilling (2004), Sivia
and Skilling (2006), Feroz and Hobson (2008), Feroz et al. (2009), Corsaro and De
Ridder (2014).

In short, a prior mass X is defined such that

X.L �/ D
Z
L .	/>L �

�.	 j M /d	 ; (3)

with L � being some fixed value of the likelihood function. As a consequence, 0 �
X � 1 because �.	 j M / is a PDF. Equation (3) is therefore the fraction of volume
under the prior PDF that is contained within the hard constraint L .	/ > L �. This
means that the higher is the constraining value L �, the smaller is the prior mass
considered. This is equivalent to considering a portion of parameter space delimited
by the iso-likelihood contour L .	/ D L �, in which also the maximum value Lmax

is contained.
In the NSMC, the sampling of the posterior PDF is performed by starting with

a prior mass X D 0 (thus considering the entire parameter space) and an initial
sampling of Nlive points that are distributed according to the prior, hence drawn
from the prior PDF itself. At each new iteration, a new sampling point is drawn
from the prior PDF with a corresponding likelihood value that satisfies the hard
constraint L > L �, with L � the worst likelihood value of the previous iteration.
The point associated to the worst likelihood value is then removed from the sample
and a new iteration starts. At the end, the prior mass reached corresponds to X D 1

and the sampling terminates in a region that is located around the maximum (or the
maxima) of the likelihood function.

2.1 The DIAMONDS Code

The high-DImensional And multi-MOdal NesteD Sampling (DIAMONDS) code1

is a C++11 software for Bayesian parameter estimation and model comparison that
uses a version of the NSMC algorithm. A major difficulty in implementing the

1DIAMONDS is publicly available at https://fys.kuleuven.be/ster/Software/Diamonds/ or through
its public GitHub repository at https://github.com/EnricoCorsaro/DIAMONDS.

https://fys.kuleuven.be/ster/Software/Diamonds/
https://github.com/EnricoCorsaro/DIAMONDS
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Fig. 1 Left panel: Three-dimensional ellipsoids containing two different clusters of sampling
points in the parameter space. Right panel: The enlargement of an ellipsoid used to optimize the
sampling efficiency throughout the nesting process

NSMC algorithm is the drawing from the prior PDF that satisfies the hard constraint
in the likelihood value of the drawn point. Following on the developments made
for other existing codes that implement NSMC (see, e.g., Shaw et al. 2007; Feroz
and Hobson 2008; Feroz et al. 2009), DIAMONDS overcomes this problem by
adopting a simultaneous ellipsoidal sampling algorithm (Corsaro and De Ridder
2014). This means that the posterior PDF is actually sampled by means of multi-
dimensional ellipsoids, which decompose the parameter space ˝Mk into small
hyper-volumes, as shown in the left panel of Fig. 1. Each ellipsoid can thus be used
to easily draw new points from, and it is reduced in its volume as the nested iteration
proceeds toward a termination condition. In particular, one crucial parameter to
control the behavior of the ellipsoids is the initial enlargement fraction, f0, which is
used to enlarge their axes along each direction for as many dimensions as imposed
by the number of free parameters. This parameter, whose effect is depicted in the
right panel of Fig. 1, tunes the efficiency of the sampling throughout the nested
iterations and therefore requires a careful calibration, which I show in Fig. 2 as a
function of the number of dimensions, k. A calibrated relation, already implemented
in DIAMONDS, reads

f0 D .0:267˙ 0:014/ k0:643˙0:017 (4)

and allows for using DIAMONDS for a wide range of applications without the
need to adjust the parameter f0 every time a new model or a different number of
parameters is involved in the analysis.

DIAMONDS includes a library of likelihood functions and prior PDFs that can
be used for a wide range of applications. As for any inference problem, the code
requires an input dataset, a model to be fit to the observations, and the adoption
of a given likelihood function and of prior PDFs for each free parameter of the
model. The termination condition that allows the code to finalize its computations
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Fig. 2 The initial enlargement fraction f0 as a function of the number of dimensions k involved in
the inference problem. The 152 independent computations provided by Corsaro et al. (2015) used
4 clusters each to sample the parameter space. The size of the circles is proportional to the number
of processes for which the same f0 was used. The colored band shows the 68.3% confidence region
for the power law fit (thick red line)

is based on the remaining Bayesian evidence, as described by Keeton (2011) (see
also Corsaro and De Ridder 2014 for additional details). Instructions on how to
configure the code and a description of its different parts can be found in the online
user guide.2 In the following examples, DIAMONDS is set up in different ways
depending on the specific inference problem that is considered.

3 Fitting the Background Signal

The first step in the asteroseismic analysis process is to estimate the background
signal in the power spectrum of a star.3 This is an important phase of the analysis
because if not properly performed it can introduce significant systematics in the
asteroseismic parameters that characterize individual oscillation modes (Corsaro
and De Ridder 2014). The first part of the tutorial is therefore focused on the
estimation of the background signal in the red giant KIC 12008916, observed by
NASA’s Kepler mission (Borucki et al. 2010; Koch et al. 2010) for more than 4

2A comprehensive user guide to DIAMONDS can be found at https://fys.kuleuven.be/ster/
Software/Diamonds/DIAMONDS_UserGuide.
3The power spectrum is usually converted into a power spectral density, PSD, to allow for
direct comparisons independently of the observing length of the data. Its units are expressed in
ppm2 �Hz�1.

https://fys.kuleuven.be/ster/Software/Diamonds/DIAMONDS_UserGuide
https://fys.kuleuven.be/ster/Software/Diamonds/DIAMONDS_UserGuide
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years. The dataset has been prepared following García et al. (2011, 2014), thus
optimized for asteroseismic analysis.

In order to run the tutorial, one needs to have the DIAMONDS code already
installed in a local machine. This procedure can be accomplished by following
the instructions provided in the installation guide section of the code website.4

Subsequently it is required to download the code extension for background fitting,5

containing the specific fitting model, priors, and dataset to be used in the tutorial.
The extension contains a library of Python routines that can be used to plot the
results obtained with DIAMONDS. We note that throughout this tutorial we will
adopt an exponential likelihood function, as appropriate for datasets deriving from a
Fourier transform of a time series (Duvall and Harvey 1986; Corsaro and De Ridder
2014).

The background model, considered as a function of the cyclic frequency in the
PSD of the star, reads

Pbkg .�/ D W C R .�/ ŒB .�/C G .�/
 ; (5)

where W is a flat noise level and R .�/ the response function that considers the
sampling rate of the observations for Kepler data,

R .�/ D sinc2
�
��

2�Nyq

�
; (6)

with �Nyq D 283:212�Hz the Nyquist frequency in the case of long-cadence data
(Jenkins et al. 2010). We fit three Harvey-like profiles (Harvey 1985) given by

B .�/ D
3X

iD1

�a2i =bi

1C .�=bi/
4
; (7)

with ai the amplitude in ppm, bi the characteristic frequency in �Hz, and � D
2
p
2=� the normalization constant (Kallinger et al. 2014). The power excess

containing the oscillations is described as

G .�/ D Hosc exp

"
� .� � �max/

2

2�2env

#
(8)

4The installation guide of DIAMONDS can be found at https://fys.kuleuven.be/ster/Software/
Diamonds/installation-guide.
5The Background extension of DIAMONDS can be downloaded from https://fys.kuleuven.be/
ster/Software/Diamonds/package/AzoresSC16_background_extension.tar.gz. Further information
on how to run the tutorial can be found at http://www.iastro.pt/research/conferences/faial2016/
files/presentations/TA1.pdf.

https://fys.kuleuven.be/ster/Software/Diamonds/installation-guide
https://fys.kuleuven.be/ster/Software/Diamonds/installation-guide
https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_background_extension.tar.gz
https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_background_extension.tar.gz
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
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Fig. 3 Background fit of the star KIC12008916 by means of DIAMONDS. The original PSD is
shown in gray. The red thick line represents the background model without the Gaussian envelope.
The cyan dotted line accounts for the additional Gaussian component. The individual components
of the background model as given by Eq. (5) are shown by blue dot-dashed lines

and is only considered when fitting the background model to the overall PSD of the
star. The global model given by Eq. (5) therefore accounts for ten free parameters.
The resulting fit obtained with DIAMONDS is shown in Fig. 3.

Questions & Problems:

• For any of the estimated free parameters, which Bayesian parameter
estimator should be preferred among the mode, the median and the mean?
And why?

• What is the value of �max for this star?
• Could you guess what the evolutionary stage of this red-giant star is from

its �max value?
• Using your fitted �max, and assuming��D12:9 �Hz as the large frequency

separation (Ulrich 1986), Teff D 5100K, and solar reference values
�max,ˇ D 3100�Hz, ��ˇ D 134:9 �Hz, and Teff,ˇ D 5777K, estimate
the mass and radius of the star through scaling relations.
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4 Fitting the Oscillation Modes

The second part of the tutorial is related to the fitting of the oscillation modes. For
this purpose it is necessary to download and install the extension of DIAMONDS
related to the peak-bagging analysis,6 similarly to what has been done for the
background.

The model that is taken into account is the one presented by Corsaro et al. (2015)
and includes a mixture of resolved and unresolved oscillation mode profiles. For
resolved modes, i.e., modes with lifetimes much shorter than the total observing
time, the typical profile is a Lorentzian expressed as

Pres;0 .�/ D A20= .��0/

1C 4
�
���0
�0

�2 ; (9)

where A0, �0, and �0 are the amplitude in ppm, the linewidth in �Hz, and the
centroid frequency in �Hz, respectively, and represent the three free parameters to
be estimated during the fitting process. For the unresolved modes, i.e., modes with
a lifetime comparable or even longer than the total observing time, we consider the
profile

Punres;0 .�/ D H0 sinc2
	
� .� � �0/

ı�bin



; (10)

where H0 and �0 are the height in PSD units and the centroid frequency in �Hz of
the oscillation peak, respectively, and must be estimated during the fitting process,
while ı�bin is fixed as the frequency resolution of the dataset, here corresponding to
0:008�Hz.

Following Corsaro and De Ridder (2014), Corsaro et al. (2015), we fix the
background parameters corresponding to the white noise, W D W , and the Harvey-
like profiles, B .�/ D B .�/, to the median values estimated in the tutorial in Sect. 3.
Then, the final peak-bagging model can be represented as

P .�/ D W C R .�/
�
B .�/C Posc .�/

�
; (11)

where

Posc .�/ D
NresX
iD1

Pres;i .�/C
NunresX
jD1

Punres; j .�/ ; (12)

6The PeakBagging extension of DIAMONDS can be downloaded from https://fys.kuleuven.be/
ster/Software/Diamonds/package/AzoresSC16_peakbagging_extension.tar.gz. The extension con-
tains a library of Python routines that can be used to plot the results obtained with DIAMONDS.
Further informations on how to run the tutorial can be found at http://www.iastro.pt/research/
conferences/faial2016/files/presentations/TA1.pdf.

https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_peakbagging_extension.tar.gz
https://fys.kuleuven.be/ster/Software/Diamonds/package/AzoresSC16_peakbagging_extension.tar.gz
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
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Fig. 4 Peak-bagging fit of the star KIC 12008916 by means of DIAMONDS. The original PSD
is shown in gray. The red thick line represents the estimated peak-bagging model [cf. Eq. (11)],
while the blue dashed lines mark the background signal and a scaled (by a factor of eight) version
of it

with Nres and Nunres the number of resolved and unresolved peaks to be fitted,
respectively. Clearly, any inference problem that takes into account this peak-
bagging model will involve a total number of 3Nres C 2Nunres free parameters. The
result of the fit for KIC 12008916 done with DIAMONDS is shown in Fig. 4.

Questions & Problems:

• In Fig. 4 spot the positions of the radial (` D 0), quadrupole (` D 2) and
octupole (` D 3) modes, as follows from the asymptotic relation of the
acoustic modes (Tassoul 1980).

• Which oscillation modes are the most p-dominated mixed modes?
• Compute the spacing (expressed in seconds) between the frequency
�`D1;mD0 D 165:178�Hz and another frequency that has to be computed
as the average between the two frequency centroids of the unresolved
profiles having the largest frequency (in the range 166–168�Hz). The
frequency centroids of the unresolved profiles must be those from the
fitting results obtained with DIAMONDS.

• Compare the derived period spacing in the �P–�� diagram shown in
Fig. 8 of Corsaro et al. (2012) and determine the evolutionary stage of
the star assuming��D12:9 �Hz.
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5 Peak Significance Test

As shown by Corsaro and De Ridder (2014) and later on applied by Corsaro
et al. (2015) on red-giant stars, by means of the Bayesian evidence it is possible
to perform a direct model comparison aimed at assessing the significance of a
given oscillation peak. The final part of the tutorial with DIAMONDS foresees the
computation of the peak significance test for one oscillation mode fitted during the
peak-bagging analysis. In order to achieve this result, it is required that the peak-
bagging presented in Sect. 4 is performed with two different models. By selecting a
specific oscillation peak that we want to test, then the competing models to be fitted
to the PSD of the star have to be defined as follows: (1) the first model, M1, must
contain the entire set of oscillation peaks to be fitted, including the peak that we
intend to test; (2) the second model, M2, must contain the entire set of peaks to be
fitted, except the peak that we intend to test. This implies that the parameters that
configure the prior PDFs of the models M1 and M2 should be identical, except for
the peak to test. Using the set up of the PeakBagging extension of DIAMONDS,
this can easily be achieved by removing the prior parameters of the corresponding
peak when we have to fit model M2. Among the outputs of DIAMONDS, there
will be the Bayesian evidence.7 The best model, or statistically more likely, can be
identified by computing the Bayes’ factor (see Sect. 1) as lnB1;2 D ln E1� ln E2. If,
for example, lnB1;2 > 5, according to Jeffreys’ scale of strength for the evidence
(Jeffreys 1961; Trotta 2008) we then conclude that the peak is significant and that it
should be considered as a real oscillation mode.

Questions & Problems:

• Why are two different models needed to test the significance of an
individual peak?

• How many models are required to test the significance of two peaks?
• Perform the peak significance test for the ` D 3 mode shown in Fig. 4 by

means of DIAMONDS.
• Provide the value of the natural logarithm of the Bayes’ factor for the

aforementioned oscillation mode and assess the strength of the evidence
according to Jeffreys’ scale.

Acknowledgements This work has been funded by the European Community’s Seventh Frame-
work Programme (FP7/2007–2013) under grant agreement no. 312844 (SPACEINN).

7More details can be found at http://www.iastro.pt/research/conferences/faial2016/files/
presentations/TA1.pdf.

http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
http://www.iastro.pt/research/conferences/faial2016/files/presentations/TA1.pdf
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Tutorial: Asteroseismic Stellar Modelling
with AIMS

Mikkel N. Lund and Daniel R. Reese

Abstract The goal of AIMS (Asteroseismic Inference on a Massive Scale) is to esti-
mate stellar parameters and credible intervals/error bars in a Bayesian manner from
a set of asteroseismic frequency data and so-called classical constraints. To achieve
reliable parameter estimates and computational efficiency, it searches through a grid
of pre-computed models using an MCMC algorithm—interpolation within the grid
of models is performed by first tessellating the grid using a Delaunay triangulation
and then doing a linear barycentric interpolation on matching simplexes. Inputs for
the modelling consist of individual frequencies from peak-bagging, which can be
complemented with classical spectroscopic constraints. AIMS is mostly written in
Python with a modular structure to facilitate contributions from the community.
Only a few computationally intensive parts have been rewritten in Fortran in
order to speed up calculations.

1 Introduction

The AIMS (Asteroseismic Inference on a Massive Scale) software was developed
by D. R. Reese as one of the deliverables for the SPACEINN network, a European
project specialised in helio- and asteroseismology. The goal of this software is to
estimate stellar parameters and reliable error bars for a given set of asteroseismic and
classical constraints. The present tutorial explains how to use this software through
various simple examples. Specifically, it explains how to find stellar parameters and
error bars for a given set of constraints, generate a binary grid file usable by AIMS,
and test the accuracy of the interpolation for a given grid. The necessary files and
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data to run the examples in this tutorial are available at the following website: http://
bison.ph.bham.ac.uk/spaceinn/aims/tutorial/.

2 Getting Started

2.1 Prerequisites and Downloads for the Tutorial

The following will be needed to run the examples in this tutorial:

• Python modules. The following Python modules and utilities are needed by
AIMS: emcee, corner, dill, Scipy, Numpy, f2py, Matplotlib. The
last four are included in most distributions.

• A grid of models. AIMS works by comparing observational data to a grid of pre-
computed models. The tutorial website provides two binary grids (data_mesa
and data_cestam), which will be used for finding model fits to a set of
observed stars, as well as a folder containing a non-binary subset of one of
the grids, which we shall use when trying to generate a binary grid. When
“unpacked” by AIMS, some of the grids take up a lot of live memory1 (RAM).
Accordingly, a “light” version of the CESTAM grid, data_cestam_reduced,
has been provided.

• File(s) with observational data. The tutorial website provides files with obser-
vational data for three stars (Stars 1–3). The mode frequencies were obtained
from peak-bagging of Kepler data for the so-called LEGACY project (Lund
et al. 2017). Spectroscopic data were obtained from the Stellar Parameters
Classification tool (SPC; Buchhave et al. 2012).

2.2 Downloading and Installing AIMS

The latest version of the AIMS package, currently version 1.2, can be downloaded
from the following site: http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/index.
html. This file is unpacked as follows:

1 t a r �zxv f AIMS . t g z

The AIMS program itself is contained within the AIMS folder.
As mentioned earlier, the latest version of AIMS contains some Fortran

subroutines which need to be compiled before running AIMS. This is done via
the f2py program. A Makefile has been provided for convenience. Please edit

1In some cases, this problem can further be compounded by the use of parallelisation, which is
activated by setting parallel=True in AIMS_configure.py.

http://bison.ph.bham.ac.uk/spaceinn/aims/tutorial/
http://bison.ph.bham.ac.uk/spaceinn/aims/tutorial/
http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/index.html
http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/index.html


Tutorial: Asteroseismic Stellar Modelling with AIMS 151

the Makefile by inserting the appropriate Fortran compiler and compilation
options. Then run the following command:

1 make

This will produce a file called aims_fortran.so which can be used by AIMS.

3 Running AIMS: Model Fit

We shall first consider running AIMS with the goal of optimising the fit to a given
set of observational constraints, such as mode frequencies, ratios, and spectroscopic
parameters. In Sect. 5 we will look into testing the interpolation scheme in AIMS.
Figure 1.1 of the overview document2 provides a simple schematic flowchart with
the basic working components of AIMS.

3.1 Setting Up the Configuration File

Before running the AIMS program, a binary file with the grid must first be created—
we will come to this in Sect. 4. Assuming in the mean time that has been done, the
most important concern is to set up the configuration file: AIMS_configure.py.

Most parameters in the configuration file are well documented and should be
self-explanatory—for instance, you can choose which asteroseismic parameters to
fit3 (individual frequencies, ratios, or average asteroseismic parameters), the name
of the binary grid to use, which parameters should be output from the optimisation,
control parameters for the MCMC, which grid parameters to use in the optimisation
and which priors to set on these etc.

Two parameters are of special relevance:

• write_data should be set to False (see Sect. 4 for when this should be
True).

• test_interpolation should be set to False (see Sect. 5 for when this
should be True).

It is also very important to put the correct values for the grid_params and
user_params parameters. These values will depend on the binary grid being
used. They are provided on the tutorial website and can also be obtained with the
analyse_grid.py utility,4 which should be run in the AIMS folder.

2 http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/_downloads/Overview.pdf.
3The user should be careful not to choose a set of asteroseismic parameters which are redundant,
as this would lead to a singular covariance matrix and poor numerical results.
4http://bison.ph.bham.ac.uk/spaceinn/aims/tutorial/download/analyse_grid.py.

http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/_downloads/Overview.pdf
http://bison.ph.bham.ac.uk/spaceinn/aims/tutorial/download/analyse_grid.py
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3.2 Observational Constraints

The file with observational constraints follows a very similar format to the one
used with the Asteroseismic Modeling Portal5 (AMP), apart from a few minor
differences.6 This format is described as follows:

• Characters following a “#” are ignored, and the ordering of the lines is
unimportant.

• A set of lines, one per individual mode, describe the asteroseismic observables.
If the keyword read_n is set to True, then four columns should be given,
namely, the degree of the mode (l), the radial order (n), the frequency in
cyclic �Hz ( f ), and its associated error bar (ıf ). If read_n is False, then
only l, f , and ıf should be given. Note that in AIMS, even if you choose to
work with frequency combinations such as ratios, the asteroseismic inputs are
still individual frequencies—AIMS will use these to calculate the frequency
combinations, associated error bars, and correlations.

• Optionally, non-asteroseismic constraints may be included in addition to the
asteroseismic observables. The first column must consist of a character or
a keyword, e.g., “T or Teff” (Teff), “L or Luminosity” (L=Lˇ), “R or
Radius” (R=Rˇ), “M, Fe_H or M_H” ([M/H]), “g or log_g” (log g), or “Rho”
(�). This is followed by a central value and an error.

• If a non-asteroseismic constraint is included, e.g., “Teff 5777 50”,
then it is assumed that this parameter follows a Gaussian distribution.
Alternatively, you may explicitly define the distribution to be used, e.g.,
“Teff Uniform 5727 5837” meaning a uniform distribution from 5727
to 5837 K. You can adopt either a “Uniform”, “Gaussian” (the default), or
“Truncated_gaussian” probability distribution.

• The average asteroseismic parameters �max (“numax”) and�� (“Dnu”) can also
be supplied here as a constraint.7

The following gives an example of how the constraints file may look like:

1 0 1847.63576435 0.76075810437
2 1 1904.67149676 0.827874359443
3 2 1954.85689326 0.751669075869
4 0 1968.18957034 0.212209047899
5 . . .
6 T 6120 80
7 Fe_H �0.06 0 . 12
8 numax 2763 100

5See https://amp.phys.au.dk/guide/fileformat.
6See http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/formats.html#format-of-a-file-with-
observational-constraints.
7We note that this is not the preferred way of supplying ��, as it does not correctly take into
account correlations with other asteroseismic constraints. A better approach is to introduce the
large separation via the seismic_constraints variable in AIMS_configure.py.

https://amp.phys.au.dk/guide/fileformat
http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/formats.html#format-of-a-file-with-observational-constraints
http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/formats.html#format-of-a-file-with-observational-constraints
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3.3 Running AIMS

Once the grid and configuration file are set up, one simply runs the program as
follows:

1 . / AIMS . py o b s e r v a t i o n a l _ c o n s t r a i n t s _ f i l e

AIMS will then import the Python configuration file, AIMS_configure.py, so
make sure you do not modify the name of this file. Output generated from AIMS will
then be saved to a run folder with the same name as your constraints file, so give your
constraints file a sensible name so that you can distinguish the results from several
runs for the same star. The variable output_dir in AIMS_configure.py
specifies the path to the root folder which contains all of the run folders.

3.4 Understanding the Results

The results from AIMS are obtained from the posterior distributions of the MCMC
run on the model grid, as illustrated in the bottom panel of Fig. 1. Inside the file
AIMS_configure.py, you can define the set of stellar parameters for which you
want an output, as well as which plots to create. For computational reasons, such
parameters are only calculated for a subset of the MCMC samples, except for those
parameters actively used in the MCMC optimisation. Accordingly, AIMS produces
two files with the samples: samples.txt with all of the MCMC samples but
only the parameters involved in the optimisation, and samples_big.txt with
a subset of the samples but all of the stellar parameters. The corresponding files
results.txt and results_big.txt provide summary statistics for the
above samples, namely, the distribution averages and standard deviations, along
with correlations between different model parameters. The samples files may, of
course, be used to extract different summary statistics (e.g., median or mode) for
the parameters. The file best_MCMC_model.txt gives the stellar parameters
and computed mode frequencies for the best model from the MCMC, whereas
best_grid_model.txt gives the best model from the initial grid search used
to initialise the MCMC (i.e., prior to interpolation within the grid). The top panel of
Fig. 1 shows the échelle diagram produced from the observations and from the best
MCMC model.

4 Creating Your Own Binary Grid Files with AIMS

To compute a binary grid file, you first need to calculate a grid of models with
your favourite stellar evolution code, as well as oscillation modes for each model.
Information for each model should then be entered into a “model list” file. The
first line of this file should contain a prefix which is typically the root folder of the
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Fig. 1 Example of output plots from an AIMS run. Top: Échelle diagram for the best MCMC
model showing the observed frequencies, theoretical frequencies, and surface-corrected theoretical
frequencies. Bottom: Triangle plot with correlation maps between different stellar parameters for
the MCMC samples. The blue lines indicate the results obtained from the initial full-grid search
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Table 1 Columns in “model list” file

Column # 1 2 3 4 5 6 7 8 9, 10 . . .

Parameter Model name Mass Rad. Lum. Z0 X0 Age Teff user_params

Unit – g cm g cm2 s�3 – – Myr K –

grid of models and, optionally, a postfix giving the end part of the filenames with
the mode frequencies, the default value being “.freq”. The following lines then
contain multiple columns with the information for each model in the grid. Below
we show an example of a model list file (see column description in Table 1):

1 / home / d r e e s e / m o d e l s _ i n v e r s i o n s / Gr id_6819 / m1 . 6 . ovh0 . 0 . ovhe0 . 0 0 . z0
. 0 1 7 5 6 . y0 . 2 6 /

2 m1 . 6 . z0 . 0 1 7 5 6 . y0 . 2 6 _n2026 .FGONG 3.18272 E+33 9.411631 E+11
2.689504 E+35 0.01756 0.72244 2.402848 E+03 4543.38696

3 m1 . 6 . z0 . 0 1 7 5 6 . y0 . 2 6 _n2093 .FGONG 3.18272 E+33 9.645173 E+11
2.811105 E+35 0.01756 0.72244 2.402920 E+03 4537.93601

4 m1 . 6 . z0 . 0 1 7 5 6 . y0 . 2 6 _n1986 .FGONG 3.18272 E+33 9.010663 E+11
2.513558 E+35 0.01756 0.72244 2.402825 E+03 4565.49605

5 m1 . 6 . z0 . 0 1 7 5 6 . y0 . 2 6 _n1575 .FGONG 3.18272 E+33 1.166064 E+12
3.745062 E+35 0.01756 0.72244 2.402670 E+03 4434.01896

The prefix plus each model name in the first column, plus the postfix gives the
name of a file that contains the oscillation parameters of the model. These files
can come in one of two formats, as specified by the mode_format variable in
AIMS_configure.py. One of the formats is a Fortran binary format known
as the “grand summary” file from the ADIPLS8 code (Christensen-Dalsgaard 2008)
and is described on pages 32–33 of the ADIPLS documentation.9 The other format
is a text format (described below) and which is what is used in this tutorial.

The text version of the oscillation parameter files begins with a one-line header
followed by five columns which correspond to l, n, frequency, dfreq_var, and
mode inertia. Note that the dfreq_var column is currently discarded, as are
frequencies above the estimated cut-off frequency times the value of the cutoff
variable in AIMS_configure.py.

To generate a binary grid you should specify to following relevant parameters in
AIMS_configure.py:

• write_data should be set to True.
• list_grid gives the filename of the model list file (see above).
• binary_grid gives the filename of the binary file that will be generated. If

write_data is set to False, this is the binary grid that will be loaded.
• grid_params specifies the parameters relevant to the grid you want to

generate (excluding age, which will be dealt with separately). It is extremely
important that each set of values for these parameters corresponds to a unique

8http://astro.phys.au.dk/~jcd/adipack.n/.
9http://astro.phys.au.dk/~jcd/adipack.n/notes/adiab_prog.ps.gz.

http://astro.phys.au.dk/~jcd/adipack.n/
http://astro.phys.au.dk/~jcd/adipack.n/notes/adiab_prog.ps.gz
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evolutionary track, since AIMS reconstructs these tracks based on these values.
For instance, if mass and Z are the parameters which describe your grid, then
pairs of values such as .mass D 1Mˇ;Z D 0:02/ should correspond to a unique
track.

• user_params specifies supplementary parameters which describe your grid.
This variable should contain a pair of strings for each supplementary parameter.
The first string should give the parameter’s name.10 The second string should be
a nice LATEXversion of the name to be used in plot titles.

• npositive should be set to True if you only want to save n � 0 modes (i.e.,
acoustic modes) in the binary file.

• cutoff: frequencies above this value times the estimated cut-off frequency (as
based on a scaling law) will be discarded. For example, if cutoff=1.1 then
only frequencies below 1:1�c are kept.

• agsm_cutoff: this only applies to binary “grand summary” files from ADIPLS.
If set to True, then only frequencies for which icase=10010 (i.e., which are
below the cut-off frequency when using an isothermal boundary condition) are
kept.

The binary file is then simply generated by running:

1 . / AIMS . py

5 Testing Interpolation Accuracy

5.1 Calculating Interpolation Errors

Since AIMS works by interpolating in a pre-computed grid of stellar models, it also
includes a way of testing the accuracy of the interpolation. To test the interpolation
you should specify to following options in AIMS_configure.py:

• write_data should be set to False.
• test_interpolation should be set to True.
• interpolation_file gives the name of the binary file that will contain

the output of the test. The results saved in this file can then be plotted using
plot_interpolation_test.py.

The interpolation test is then simply run as:

1 . / AIMS . py

10The names “Xs” and “Zs” should be used for the surface hydrogen and metallicity content, as
some of the functions in AIMS specifically look for these variables.
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5.2 Various Interpolation Errors

There are two basic components to model interpolation in AIMS, each of which
contributes to interpolation error:

• Age interpolation: this is interpolation along a given evolutionary track.
• Track interpolation: this is interpolation as a function of the other model

parameters, such as mass, metallicity, mixing length parameter, or whatever
parameters are relevant to your grid.

The first type of interpolation is dealt with through a simple linear interpolation
between two adjacent models on the evolutionary track. The second uses Delaunay
tessellation before calculating linear barycentric weights. For a more detailed
description of interpolation in AIMS, we refer the reader to Chap. 4 of the overview
document (see footnote 2).

The interpolation tests carried out in AIMS allow the user to estimate the error
from both types of interpolation. For the age interpolation, we number the models
on a given evolutionary track, starting at n D 0. As schematically illustrated in
Fig. 2, the age interpolation tests involve combining models n � nincr and n C nincr,
and seeing how well the interpolated frequencies reproduce the frequencies of model
n. This test is carried out throughout the entire track except for the nincr models at
either end. Figure 2 schematically illustrates these interpolation tests for nincr D 2.
AIMS carries out tests for nincr D 1 and 2 in order to assess the impact of the time
step on the age interpolation.

Testing track interpolation (see Figs. 3 and 4) is more complicated because it is
based on a Delaunay tessellation. The approach used in AIMS involves randomly
selecting half of the evolutionary tracks, creating a new tessellation from these,
and using this to interpolate to the remaining tracks. Figure 4 illustrates such a
partitioning of the evolutionary tracks.

Fig. 2 Schematic plot showing how the age interpolation tests are calculated for nincr=2.
Successive models along the track are not necessarily equally spaced in age
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Fig. 3 Average track interpolation errors for radial modes as a function of stellar parameters

When comparing frequencies from an interpolated model with those from the
original model, AIMS calculates different types of error bars. First of all, separate
error bars are obtained for radial (l D 0) and for non-radial modes. These are further
subdivided into the following categories:

• the maximum error;
• a root-mean square (RMS) error;
• an RMS error only based on the modes between 0:8�max and 1:2�max, where
�max is the frequency at maximum power (this is obtained from the models via a
scaling relation).

5.3 Analysing the Results

The results in the generated interpolation_file can be visualised with
plot_interpolation_test.py by running:

1 p l o t _ i n t e r p o l a t i o n _ t e s t . py i n t e r p o l a t i o n _ f i l e

Currently, this program only works for 3D model grids (including the age
dimension).

Running this program will generate a series of plots that can be used to assess
the errors introduced by the interpolation. The first 9 plots are 3D plots which show
various errors as a function of the grid parameters, excluding age. These plots come
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Fig. 4 Testing interpolation accuracy. Top: Interactive plot with the positions of the evolutionary
tracks in parameter space. The yellow dots correspond to the tracks with which a new tessellation
is created, as represented by the connecting lines. The blue dots represent tracks where the
interpolation is tested. Bottom: Clicking on a blue dot produces plots with the track interpolation
errors as a function of stellar age
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in groups of three: the first two plots in a group show age interpolation errors for
nincr D 1 and 2, and the third shows track interpolation errors. The groups of plots
correspond to the following:

• Plots 1–3: Maximum interpolation errors for radial modes as a function of stellar
parameters. For each model along a track, the maximum error is obtained. Then
the maximum along the entire track is calculated.

• Plots 4–6: Average interpolation errors for radial modes as a function of stellar
parameters. The RMS average is calculated along the entire track. Figure 3 shows
such a plot for track interpolation errors.

• Plots 7–9: Average interpolation errors for radial modes restricted to the interval
0:8�max to 1:2�max as a function of stellar parameters. The RMS average is
calculated along the entire track.

These plots are displayed in individual windows. Thanks to Python’s interactive
capabilities, it is possible to rotate the plots and to zoom in or out.

Two additional 2D interactive plots display the positions of the evolutionary
tracks in the stellar parameter space. The first of these shows all of the evolutionary
tracks as blue dots. Clicking on a blue dot opens up a new window with two new
plots which show how the age interpolation errors, for both radial and non-radial
modes, vary as a function of stellar age. The second plot shows a partitioning of
the evolutionary tracks used in the track interpolation tests as described above. An
example of such a plot is shown in the top panel of Fig. 4. Clicking on a blue dot on
this plot opens up a new window with two new plots with track interpolation errors
as a function of age, like the ones shown in the bottom panel of Fig. 4.

More information on the individual plotting functions can be found in the
comments within the plot_interpolation_test.py file as well as at
the following website: http://bison.ph.bham.ac.uk/spaceinn/aims/version1.2/plot_
interpolation_test.html.

6 Recommended Reading

For more information on the use of Bayesian inference in model optimisation, we
recommend Bazot et al. (2012) and Gruberbauer et al. (2013). For details on the
affine-invariant MCMC optimisation scheme used (emcee), we refer the reader
to Goodman and Weare (2010) and Foreman-Mackey et al. (2013). For details on
asteroseismic grid-based analysis in general, we refer to Gai et al. (e.g., 2011).
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Exoplanetary Science: An Overview

Nuno C. Santos and João P. Faria

Abstract Two decades ago, the first exoplanet was found orbiting a solar-type star.
Since then, many surprising discoveries have been made. We now know that the
architecture and properties of the Solar System’s planets are more an exception than
a rule. In this paper we review the main planet detection methods and present some
of the most interesting discoveries as well as their connection to the study of planet-
host stars.

1 Introduction

The number of known extrasolar planets is rising on an almost daily basis, with more
than 3500 currently listed at The Extrasolar Planets Encyclopaedia1 (Schneider
et al. 2011). The impact of these discoveries is considerable, both scientifically
and socially. They represent the first firm steps of humankind towards the detection
and characterization of other planets similar to our Earth. This domain is opening
new bridges between different fields in Astrophysics (e.g., stellar astrophysics, solar
system research) and other areas of knowledge such as geophysics (e.g., Valencia
et al. 2006) and biology (Kaltenegger and Sasselov 2011). Together these bring new
hopes of finding an Earth-like planet where life may have evolved.

1http://exoplanet.eu.
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The diversity of discovered planets is raising new questions and opening new
pathways. The community presently agrees that planets, in particular rocky planets
like our Earth, are very common around solar-type stars (FGK and M dwarfs;
e.g., Udry et al. 2007; Howard et al. 2012; Mayor et al. 2014). This conclusion
is fully supported by state-of-the-art planet formation models based on the core-
accretion paradigm, that predict low-mass/small-radius planets to largely surmount
the number of their Jovian or Neptune-like counterparts (Ida and Lin 2004;
Mordasini et al. 2012).

While the number and variety of discovered planets are still important assets for
exoplanet research (e.g., with an impact for the models), the focus of extrasolar
planet researchers is now moving towards three main lines: (1) the detection of
progressively lower-mass planets, with the goal of finding an Earth sibling, (2) the
detailed characterization of known exoplanets, including their interior structures
and atmospheres, and (3) the understanding of the planet formation processes, by
comparing the properties of the detected worlds with expectations from theoretical
models.

All these lines of research have already seen their own success. Radial-velocity
(RV) and transit surveys have found an increasing number of low-mass/small-radius
planets orbiting other suns (Borucki et al. 2011; Dumusque et al. 2012; Mayor et al.
2014). Some of these may even be in the habitable zone (Pepe et al. 2011; Quintana
et al. 2014; Anglada-Escudé et al. 2016). The precision of the transit measurements,
in combination with mass determinations from RV measurements and planet interior
models, also allowed to determine the bulk composition of several planets (Léger
et al. 2009; Howard 2013; Pepe et al. 2013). For the most favorable cases, exquisite
measurements further allowed to detect both the emitted (infrared) and reflected
(optical) light of exoplanets, as well as the presence of specific atmospheric lines
(Brogi et al. 2012; Rodler et al. 2012; Martins et al. 2015). These measurements are
providing a first insight into the physics of exoplanet atmospheres.

New hopes are now coming from new instruments, including ground-based
optical spectrographs such as ESPRESSO (Pepe et al. 2014), capable of achieving
down to sub-m/s precision in RV. A whole new generation of infrared (IR)
spectrographs is also on its way, as well as a new optical and near-infrared (NIR)
high-resolution spectrograph for ESO’s E-ELT. To these we should add a whole new
generation of ground- and space-based projects that will search and characterize
transiting low-mass/small-radius planets. Many of these projects are meant to start
operating in no more than 1 or 2 years, opening for the first time the possibility
to address in a comprehensive way the detection and characterization of Earth-like
planets orbiting nearby stars.

In this chapter we will briefly review some of the most relevant points inherent
to exoplanet research. We will start by reviewing the main detection methods, their
potential and limitations. The challenges imposed by astrophysical noise will then
be presented, including the problems produced by stellar activity. We then briefly
review the main results from exoplanet research. We will concentrate on the Doppler
and transit methods, with a stronger accent on the former. The information provided
by the analysis of the planet-host stars will further be discussed. We will conclude
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with the prospects from future missions and projects in the field. More details can
be found in the cited papers.

2 Planet Detection Methods

At a moment when thousands of planets are known, we may wonder that exoplanet
detection has always been an easy task. However, we must be reminded that a
long way has been covered from the early frustrating efforts using the astrometric
methods (e.g., van de Kamp 1983) until the detection of the first exoplanet orbiting
a solar-type star (51 Peg b; Mayor and Queloz 1995). The enthusiasm that followed
this first detection precipitated the discovery of other worlds. The numbers slowly
started rising, but in the end of the twentieth century only a dozen or so planets were
known to orbit other solar-type stars.

The detection of the first transiting planet was only due 5 years after 51 Peg b
(Charbonneau et al. 2000). This detection was not only the first allowing to
derive the radius of an exoplanet, but also a confirmation that the “strange” hot
Jupiters (short-period giant planets, previously not expected to exist based on
planet formation models) were indeed planetary in nature (see below). The years
that followed were of great success: planets with lower and lower masses were being
found using the RV method (Butler et al. 2004; McArthur et al. 2004; Santos et al.
2004). Several transit surveys also started to provide the first results. But only in the
last few years we could finally start probing in more detail the smaller mass/radius
end of the planet population. This was largely due to the launch of the Kepler
mission (Borucki et al. 2011) and to the improvement of the methods used to extract
information from the radial-velocity data (e.g., Fischer et al. 2016).

Indeed, although the present day success of the exoplanet detection and charac-
terization efforts is based on the development of a number of different techniques
and methods, the radial-velocity and transit methods are certainly the most prolific
so far. In this review we will thus concentrate on a basic description of the most used
or successful methods, or those that will, from our perspective, be more fruitful in
the years to come. In particular, we will focus on the radial-velocity, transit, and
astrometric methods, as well as on a review of their stronger aspects and challenges.
For more details and a description of other methods, we point the reader to some
recent reviews (Seager et al. 2010; Perryman 2014) and to some of the chapters in
this book.

2.1 Radial Velocities

The method behind the detection of the first exoplanet orbiting a solar-type star is
the radial-velocity technique. This method is based on the detection of the stellar
motion (or wobble) of the star around the center of mass of the star-planet system.
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The velocity semi-amplitude expected for a star of mass M1 orbited by a planet of
mass M2 can be shown to be:

K1 D 212:9

�
M1

P

�1=3 q

.1C q/2=3
sin ip
1 � e2

�
km s�1� ; (1)

where q D M2=M1, and i is the inclination of the orbital axis with respect to the line
of sight. In this equation, the masses (M1 and M2) are expressed in solar masses, and
the orbital period (P) in days (for details, see, e.g., Hilditch 2001). This equation
shows that the higher the planet mass and the shorter the orbital period, the stronger
will be the RV signal. RVs are thus more sensitive to short-period, massive planets.
It is thus with no surprise that the first detected planets orbiting Sun-like stars were
short-period giants, the so called hot Jupiters2 (Mayor et al. 2014).

The RV of the star can be measured from the Doppler shift with high-resolution
spectroscopic measurements, using the Doppler equation ��

�
D v

c , where c is the
speed of light, � is the reference wavelength (at zero velocity; typically the reference
wavelength of an absorption spectral line),�� is the wavelength shift observed, and
v is the radial velocity. The biggest challenge of this technique is that one needs to
measure the stellar velocity with a very high precision. In optical wavelengths these
small amplitudes translate to values of �� � 10�4Å. For comparison, a typical
high-resolution spectrograph (with a resolution R D �=�� D 100;000) is able to
resolve two adjacent wavelengths separated by �0.1Å.

From Eq. (1) we can derive that the semi-amplitude K1 of a star induced by the
presence of a Jupiter-like planet (with a mass of 318M˚ and an orbital period of
�12 years) is only �13 m/s, while for an Earth-like planet this value decreases to a
mere �8 cm/s.

To circumvent the difficulties involved in the detection of such low-amplitude
signals, two main aspects must be taken into account. First, the typical spectrum
of a solar-type star has thousands of well-defined absorption lines. Using this
information in a statistical way we will be able to achieve the necessary precision.
But this is not enough if the spectrograph itself is not stable, or if we cannot
control the instrument drifts as a function of time. An accurate way to measure and
control the wavelength-to-pixel calibration is thus needed. This is usually achieved
using the spectrum of a calibration lamp that is obtained simultaneously with the
target spectrum (e.g., Baranne et al. 1996), or using a gas cell whose spectrum is
superposed on the spectrum of our star (e.g., Campbell et al. 1988).

For reference, currently the most accurate RV instruments for planet searches
are able to measure long-term RVs with a precision better than 1 m/s (for a review,
see Fischer et al. 2016). Future instruments such as ESPRESSO, for the ESO-VLT,
will achieve the 10 cm/s level, allowing to detect Earth-like planets in the habitable
zones of solar-type stars.

2Even if they are not the most prevalent kind of planets.
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One immediate limitation of the RV technique is that we are only able to
measure the projected radial velocity, i.e., the component of the radial-velocity
in the direction of the line of sight. This implies that we can only estimate the
“projected mass” of the companion responsible for the observed stellar wobble, i.e.,
its minimum mass (M2 sin i). Fortunately, it can be shown that for orbits randomly
oriented in space it is much more likely to have sin i close to unity. This means that
the minimum masses obtained are statistically very close to the real masses. The
unambiguous determination of the true mass is, however, only possible if a value
for the orbital inclination is obtained (e.g., through an astrometric detection or a
transit measurement).

2.2 Photometric Transits

When a planet crosses the stellar disk as seen from us, it will occult part of it. This
phenomenon, called a transit, can be observed if the orbital axis of the planet is
closely perpendicular to our line of sight. For a given system, we can compute that
the geometric probability ( p) that a full transit will occur can be expressed by (to a
good approximation):

p D Rstar

a
; (2)

where Rstar and a are the stellar and orbital radius, respectively. This formula is
valid for the case of a circular orbit. From this equation we can see that the transit
technique is more sensitive to short-period planets. While for a 3-day orbit hot
Jupiter p is close to 10%, for a planet at 1 AU from its parent star (orbital period
close to 1 year) p goes down to only 0.5%.

If a transit event is observed, the expected luminosity variation can be derived to
be of the order of:

� L

L
D
�

Rplanet

Rstar

�2
: (3)

For a Jupiter-like planet, Rplanet � 0:1Rstar, inducing thus a photometric variation
of the order of 1%. A value of the order of 100 parts per million (ppm) is expected
for an Earth-radius object. Large planets around small stars are thus easier to detect
using the transit method.

Transits have shown to be an excellent way to detect planets orbiting other
stars. At first used to complement the detections of radial-velocity planets (e.g.,
Charbonneau et al. 2000), large ground- and space-based surveys like WASP, HAT,
CoRoT and Kepler revealed the presence of thousands of candidates, some with
radii smaller than that of Earth. However, one point that is clear from above is the
fact that the transit method only provides information about the radius of the planet
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(provided that the stellar radius is known). Except in a few cases where multi-planet
systems are detected and, e.g., planet-planet interactions are strong (e.g., Ford et al.
2012), there is no information on the planet mass.

In other words, given the large diversity of planet densities already discovered, if
we want to characterize the planet in more detail, we need to use a method (e.g.,
radial velocities) that enables us to derive the planet mass. Having both radius
and mass allows one to estimate the planet density, and thus have a first idea
about the planetary composition. Further to this, it is well known that different
“non-planetary” phenomena can produce signals that almost perfectly mimic a
photometric transit. These are responsible for the large false positive rates that
affect especially the higher-mass planets (Santerne et al. 2016). Complementary
observations are thus usually needed once a transit signature is detected, even if a
statistical confirmation is done (Torres et al. 2011; Díaz et al. 2014).

2.3 Astrometry

Astronomers have long tried to use the dynamical effect that a planet has on the
stellar motion to measure the small astrometric periodic shift of a star as it moves
about the center of mass of the star-planet system. The astrometric detection of an
extrasolar planet can be described, in a very basic approach, by simple physics.
The semi-major axis of the orbital motion of a star around the center of mass of a
two-body system can be described by:

M1 a1 D M2 a2 ; (4)

where M1 and M2 are the masses of the two bodies, and a1 and a2 the semi-major
axes of their orbits. The distance a D a1 C a2 (the semi-major axis of the relative
orbit) is also related to the orbital period P through Kepler’s third law,

P2 D a3

M1 C M2

: (5)

In principle, if we measure a1, a2, and P, we can solve the system above and
derive the mass of the two bodies. This is the case for some visual binary stars.
In practice, the measurement of the astrometric motion of the star in a star-planet
system is far more complex. For instance, we can only hope to measure a1 and the
period P, since we are not able to directly observe the planet. To solve the above
system we need, for example, to estimate the mass of the star (M1) using stellar
evolution models.
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Given the small expected astrometric motions3 (of the order of 1 microarcsecond
for the best cases), current technology still did not allow to unambiguously detect
from scratch a planet orbiting another star using the astrometric method. The only
existing detections are of planets or brown dwarfs firstly detected using the radial-
velocity technique (e.g., Benedict et al. 2006). More hopes come from the analysis
of data from the ESA Gaia mission, whose exquisite astrometric precision is
expected to allow the detection of thousands of giant planets (Sozzetti et al. 2001).

As we can see from Eqs. (4) and (5), the semi-major axis of the astrometric
motion of the star around the center of mass of the star-planet system is proportional
both to the mass of the companion and to its orbital period. This means that the
astrometric technique is most sensitive to long-period companions. This makes
this method complementary to the radial-velocity technique. Similarly to the latter,
however, it is mostly sensitive to the detection of planets around lower-mass stars.

3 Challenges

Adding to the technical challenges mentioned above, the detection and charac-
terization of other planets also has to deal with the “noise” induced by different
astrophysical sources. Phenomena related to stellar activity, stellar granulation,
and oscillations are particularly nasty for exoplanet detection and characterization
efforts using the radial-velocity method. They can prevent us from finding planets,
if the perturbation is larger than the orbital RV variation, or even give us false
candidates, if they produce a periodic and stable signal over a few rotational periods
(e.g., Figueira et al. 2010). Furthermore, these physical phenomena produce signals
with different timescales: from several years (related with the long-term magnetic
cycles; Santos et al. 2010) down to a few minutes (the oscillation modes of stars, that
allow one to apply asteroseismic methods to probe the stellar interiors; Dumusque
et al. 2011).

The acoustic modes of solar-type stars as well as the atmospheric granulation
motions can induce RV amplitudes of the order of a few m/s. To circumvent
this effect, long exposures (longer than the timescale of the oscillation modes)
are usually taken to average out the solar-type acoustic modes. These modes
have typical periods of the order of 5 min in a solar-type star. The granulation
noise has longer timescales (from hours to a few days), that are more difficult to
handle. Specific observational strategies are often used to minimize the problem
(e.g., Dumusque et al. 2012).

The phenomena related to stellar activity, induced by strong magnetic fields in
the stellar surface (e.g., spots, faculae, convective changes), also strongly affect both
the photometric and RV signals, in timescales typical of the rotational period of the

3For example, a Jupiter-like planet in a 10-year orbit around a solar-mass star located 10 pc away
from us, induces an astrometric motion of only 440 microarcseconds.
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star. In RVs, measurements of different activity indicators, such as line asymmetries,
through bisector analysis (e.g., Queloz et al. 2001) are often used to diagnose these
effects. However, recent examples show that the effects of stellar activity features are
not fully understood, leading to signals that almost perfectly mimic the signature of
planets (even for non-active stars; Santos et al. 2014). Recent developments of data
analysis techniques promise to solve part of these problems (e.g., Faria et al. 2016).

Stellar activity is also particularly relevant when dealing with transit searches.
Not only it induces strong photometric modulations (that need to be filtered), but
also they induce in-transit fluctuations that prevent us from having precise values
for the transit depth, and hence the planet radius (e.g., Oshagh et al. 2013). More
details about these and other effects are discussed in the chapter by M. Oshagh in
this book.

In brief, different sources of noise are a strong challenge in planet detection and
characterization efforts. The understanding of the different physical phenomena as
well as ways to model or subtract them are now one of the most important avenues
to guarantee the success of future ground- and space-based exoplanet projects.

4 Population Statistics

The explosion of exoplanet discoveries in the 1990s was soon followed by studies
of the overall population of exoplanets. These studies rely on dedicated surveys that
allow for the detection efficiencies to be quantified as a function of planet parameters
such as orbital period, mass and eccentricity. In this section we summarize the main
results of the ensemble study of the planet population, focusing on radial-velocity
surveys.

The minimum masses and orbital periods of the known exoplanets detected with
radial velocities are shown in Fig. 1. We can identify three main groups: massive
giant planets at short and long periods, and lower-mass planets at short periods.

4.1 Gas-Giant Planets

51 Peg b (Mayor and Queloz 1995) and other short-period planets discovered soon
after (e.g., Butler et al. 1997) were the first examples of a new family of planets with
circular orbits, Jupiter-like masses, and orbital periods less than 10 days (upper left
quadrant of Fig. 1). These so-called hot Jupiters are now known to be relatively rare,
with an occurrence rate close to 1% (Marcy et al. 2005; Mayor et al. 2011; Wright
et al. 2012), but the fact that they exist as well as their orbital properties provide
important clues to their formation process (e.g., Batygin et al. 2016; and references
therein).

Radial-velocity surveys also revealed a population of gas giants at orbital
distances between 1 and 5 AU (upper right quadrant of Fig. 1) with an overall
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Fig. 1 Distribution of periods and minimum masses for the extrasolar planets detected with the
radial-velocity method. The color code reflects the eccentricity of each planet. Obtained from
http://exoplanet.eu

occurrence rate of about 15% for minimum masses larger than 50 M˚ (0.15 MJup)
and orbital periods less than 10 years (e.g., Udry and Santos 2007).

The mass distribution of the giant planets is shown in Fig. 2. The distribution
peaks around 1–2 MJup and presents a long tail toward masses larger than 10 MJup.
Within the brown-dwarf regime (masses between �15 MJup and �60 MJup) the
number of detections is very small, in what has been called the “brown-dwarf
desert”. The number of objects with larger masses (stars) then rises again (not shown
in Fig. 2). The bimodality of this mass distribution is taken as evidence of different
formation mechanisms for stellar binaries and planetary systems (Sahlmann et al.
2010).

The population of giant planets shows a wide distribution of orbital eccentricities
(noticeable in Fig. 1), unlike the low eccentricities seen in the Solar System. The
eccentricity distribution is closer to that of binary stars (Udry and Santos 2007; their
Fig. 6). This can be a signature of planet-planet scattering or interactions with bound
or passing stellar companions. Many giant planets are also found in systems with
various dynamical configurations (e.g., Correia et al. 2009; Wright et al. 2009). In
some multi-planet systems, the gravitational interactions between planets are strong
enough to be detectable in radial-velocity measurements, allowing for the orbital
inclination angles and the true masses of the planets to be measured (e.g., Correia
et al. 2010).

http://exoplanet.eu
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Fig. 2 Mass distribution of the population of giant planets detected with the RV method. Obtained
from http://exoplanet.eu

4.2 Neptunes and Super-Earths

Some radial-velocity instruments, such as HARPS (Mayor et al. 2003; Lovis et al.
2006) or APF (Vogt et al. 2014), were built to achieve consistent precisions of 1 m/s.
This opens the possibility for RV surveys to search for lower-mass planets. But since
the detection of low-mass planets requires a large observational effort, only a few
surveys gathered enough detections to allow for statistical studies. Results from the
HARPS survey of FGK stars (Mayor et al. 2011), the HARPS survey of M dwarfs
(Bonfils et al. 2013), and the HIRES survey of FGK stars (Howard et al. 2010),
suggest a large population of Neptunes and super-Earths in short-period orbits. The
occurrence rate of these planets, with M sin i < 30M˚ and P < 50 days, is about
30% around FGK stars and 40% around M dwarfs.

The left panel of Fig. 3 shows the mass distribution of the planets detected in
the HARPS survey (Mayor et al. 2011). After correcting the distribution for the
detection biases (red histogram), we clearly see the importance of the population of
low-mass planets, with a strong decrease of the number of planets between a few
Earth masses and about 40 M˚. Planet population synthesis models (e.g., Mordasini
et al. 2009) predicted these features of the mass distribution to be detectable when
the RV measurement precision reached 1 m/s (see Fig. 3, right panel).

The high occurrence rates tell us that systems of multiple planets with masses
between 1 M˚ and 20 M˚, orbiting within 0.5–1 AU, are the most common type of

http://exoplanet.eu
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Fig. 3 Left: Planetary mass distributions from the HARPS planet survey, before (black) and after
(red) correction for the detection bias (from Mayor et al. 2011). Right: Planetary initial mass
function from a population synthesis model (from Mordasini et al. 2009)

planetary systems in the Galaxy. This remarkable result has been confirmed with
transit surveys (see, e.g., Lissauer et al. 2014) and is in agreement with planet
population synthesis models (Ida and Lin 2004; Mordasini et al. 2012, 2015).

4.3 Benchmark Planetary Systems

From the pool of exoplanet discoveries, a few systems have intrinsic interest as
historical landmarks or as examples of the diversity of planetary properties. We
briefly describe three such discoveries, which also showcase the interplay between
the transit and radial-velocity methods.

Kepler-78 Kepler-78b was found transiting its G-type host star, with an unusually
short orbital period of just 8.5 h (Sanchis-Ojeda et al. 2013). Radial-velocity follow-
up observations provided, for the first time, a mass measurement for an Earth-sized
planet (Pepe et al. 2013). The planet has a radius of 1.16 R˚ and a mass of 1.86 M˚,
resulting in a density 5.57 g cm�3, which is similar to that of the Earth (5.51 g cm�3).
This suggests that Kepler-78b is also made primarily of rock and iron. This is one of
many examples where combined RV and photometric observations provide strong
constraints on the internal constitution of the planets.

Even though Kepler-78 is an active star, the RV detection was possible because
of the short orbital period. The separation between activity-induced and planetary
signals is much easier when the orbital period of the planet is much smaller than the
rotation period of the star (e.g., Hatzes 2014).
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HD 10180 Lovis et al. (2011) reported on the discovery of one of the most
populated exoplanet systems known to date. Up to seven planets were found orbiting
the solar-type star HD 10180 (but see Tuomi 2012; who find evidence for nine
planets). This system is interesting because of its complex orbital configuration,
showing significant secular interactions but no mean-motion resonances.

By the time this system was discovered, it became clear that several low-
mass planetary systems exhibit a “packed” orbital architecture with little or no
(dynamical) space left for additional planets. These architectures can be interpreted
as the signature of planet formation scenarios in which type-I migration plays a
major role.

GJ 667C Located at about 22 light years away in the constellation of Scorpius,
GJ 667C is the smallest member of its triple star system. This star is an M1.5V
red dwarf with an estimated mass of 0.33 times that of the Sun. The discovery
history of the planetary system orbiting GJ 667C is complicated (Anglada-Escudé
et al. 2012, 2013; Bonfils et al. 2013; Delfosse et al. 2013), mainly because of the
presence of a few candidate planets orbiting well inside the habitable zone. Some of
these planets have since been put into question (Feroz and Hobson 2014; Robertson
and Mahadevan 2014) as being due to the magnetic activity of the star. Finding
exoplanets in the habitable zones of M dwarfs is easier than in solar-type stars, but
the rotation periods are also closer to the orbital periods of such planets. Additional
data for this star and more refined analysis techniques are required to definitively
explain the observed variations in the radial velocity of GJ 667C.

5 Know the Stars, Know the Planets

The study of planet-host stars is paramount to the understanding of the properties
and formation mechanisms of exoplanets. For example, when a planet is found
transiting, the measurement precision on the planetary radius depends directly
on a precise knowledge of the stellar radius (cf. Sect. 2.2; see also Torres et al.
2008; Mortier et al. 2013) In addition, the chemical compositions of the planet
(both interior and atmospheric), the protostellar disk and the stellar atmosphere are
linked. Therefore, precise stellar chemical abundances can provide important clues
in understanding the planets and their observed properties.

The metallicity-giant planet correlation is one example of this connection: it is
one of the most striking and best established results for the population of giant
planets that their host stars have a higher average metallicity when compared with
field stars (e.g., Gonzalez 1997; Santos et al. 2001; Fischer and Valenti 2005). The
clear correlation between the presence of giant planets and metallicity is visible in
the left panel of Fig. 4. This correlation is key in constraining the planet formation
process and its existence provides strong evidence for core-accretion being the
main process of formation of giant planets. In protoplanetary disks with higher
metallicity, rocky or icy cores are able to form in time for runaway accretion before
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Fig. 4 The metallicity distribution of stars hosting giant planets (left) and Neptunes or super-
Earths (right). There is a clear correlation between the presence of giant planets and the metallicity
of the star, but this trend is not present for stars hosting lower-mass planets (Sousa et al. 2011).
Adapted from Mayor et al. (2014)

disk dissipation occurs, while in lower-metallicity disks the cores do not grow fast
enough to accrete gas in large quantities before disk dissipation, which results in a
lower fraction of giant planets (Mordasini et al. 2009).

For the lower-mass planets (Fig. 4, right panel), there is no strong metallicity
dependence of the occurrence rate (Sousa et al. 2011), indicating that these planets
can form around stars with a wide range of metallicities (Buchhave et al. 2012).
However, more recent results suggest that Neptunes (between 10 and 40 M˚) may
indeed show a (weak) metallicity correlation, while super-Earths (< 10M˚) do not
(Adibekyan et al. 2012; Courcol et al. 2016; Mulders et al. 2016).

The study of specific elemental abundances gives further insight into the planet-
formation process. The abundance of ˛ elements, for example, plays an important
role in the formation of planetary systems, especially in metal-poor environments
(Adibekyan et al. 2012). Abundances of other chemical elements, such as lithium
(Reddy et al. 2002; Israelian et al. 2009; Baumann et al. 2010) and refractory
elements, are also possible signatures of planet engulfment or terrestrial planet
formation (González Hernández et al. 2010; Ramírez et al. 2010).

Stellar metallicity also plays an important role in the architectures of planetary
systems: planets around metal-poor stars show longer periods and lower eccen-
tricities than those with metal-rich hosts (Adibekyan et al. 2013; Dawson and
Murray-Clay 2013). These trends point to the importance of planet-disk interaction
and orbital migration, and provide constraints for the models and numerical
simulations of planet formation and evolution.
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6 A Bright Future Ahead

The diversity of exoplanet worlds is overwhelming. What else can the future bring?
In the next few years we will have access to an array of instruments that will allow
the study of entire planetary systems around nearby bright stars. This will mean
precise measurements of both stellar and planetary parameters, from a combination
of different observational techniques.

The legacy of Kepler in the search for transits of small planets will be in the hands
of the Next Generation Transit Search (NGTS; Wheatley et al. 2013), the MEarth
project (Irwin et al. 2009), and the TESS (Ricker et al. 2016), CHEOPS (Broeg et al.
2013) and PLATO (Rauer et al. 2014) space missions.

Radial-velocity surveys will continue to explore planetary systems in the solar
neighborhood, with high-precision spectrographs like HARPS, HARPS-N, HIRES
and APF. The cm/s level is now on sight with ESPRESSO (Pepe et al. 2014), and
the NIR domain is open for exploration with CARMENES/Calar Alto (Quirrenbach
et al. 2010), SPiROU/CFHT (Artigau et al. 2014), HPF/HET (Mahadevan et al.
2010) and GIANO/TNG (Oliva et al. 2004). Follow-up of transit detections with
these instruments will provide precise densities and internal compositions for a large
number of planets.

The Gaia mission already started delivering high-accuracy fundamental stellar
parameters for all of the planet-host stars (Lindegren et al. 2016) and will also detect
giant planets at intermediate semi-major axes. The James Webb Space Telescope
(Gardner et al. 2006) and the future ground-based extremely large telescopes
will study the atmospheric composition of the planets with both transmission and
emission spectroscopy.

In summary, the instrumentation of the next few years will answer many of the
most important questions about exoplanets. Many other new surprises will come as
new discoveries arise. No one can tell with certainty if one of these instruments or
missions will not discover the first Earth orbiting another Sun.
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Deriving High-Precision Radial Velocities

Pedro Figueira

Abstract This chapter describes briefly the key aspects behind the derivation of
precise radial velocities. I start by defining radial velocity precision in the context
of astrophysics in general and exoplanet searches in particular. Next I discuss the
different basic elements that constitute a spectrograph, and how these elements and
overall technical choices impact on the derived radial velocity precision. Then I go
on to discuss the different wavelength calibration and radial velocity calculation
techniques, and how these are intimately related to the spectrograph’s properties. I
conclude by presenting some interesting examples of planets detected through radial
velocity, and some of the new-generation instruments that will push the precision
limit further.

1 Precise Radial Velocities

Radial velocities are, by definition, the velocities measured along a given line of
sight, and often refer to a velocity calculated through the measurement of the
Doppler shift of a given spectral line. In its non-relativistic form, the well-known
Doppler shift formula,

��

�
D v

c
; (1)

relates the displacement�� of a line of wavelength � to a radial velocity v, with c
being the speed of light in vacuum. Measuring a radial velocity (henceforth RV) is
fundamentally different from measuring directly a velocity on the plane of the sky,
in the sense that the error on the RV does not depend geometrically on the distance
to the source as it does for physical velocities measured on the plane of the sky.
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Instead, the error on the RV depends only on the noise present in the spectrum, and
how this noise translates to an uncertainty on the line shift value.

At this point, it is extremely important to clarify what we mean by precision,
and to characterize the associated type of error. The precision of a measurement
system, also called reproducibility or repeatability, is the degree to which repeated
measurements performed under unchanged conditions lead to the same results. This
repeatability error can be associated to a value measured by the system, becoming
the precision of the value. This is conceptually different from the accuracy of a
measurement system or value, which is how close a measurement of a quantity is
to its real—true—value. In several astronomical studies, one is concerned about
accurate RVs; here we are only concerned with precise RVs.

Precise RVs have been used to calculate the velocities of stars and study,
for instance, Galactic kinematics, stellar binarity, and determine stellar masses.
For these scientific objectives, an overall precision of the order of the km/s was
enough. More recently, the presence and characterization of exoplanets was possible
when the precision threshold crossed the level of 50–100 m/s. On the other hand,
to measure stellar oscillations, differential line shifts, and line profile variations,
the asteroseismic studies routinely require a precision on the order of 1–100 m/s,
often measured in individual lines as opposed to the whole spectrum, as has been
done for exoplanetary searches or binary characterization. These examples serve
to illustrate how different scientific objectives require different precision level.
But to understand how to derive precise RVs, we will have to understand how a
spectrograph works.

2 Breaking Down a Spectrograph

A spectrograph is a scientific instrument that receives the light collected by a
telescope, disperses it, forming a spectrum, and records this spectrum on a detector.
But what is inside it? In a conceptual way, a spectrograph is composed of four types
of components:

• The light interface/feeding with the telescope—a slit or a fiber;
• The dispersive elements (main and secondary)—like prisms, grisms;
• The detector (usually a CCD or CMOS) and its camera;
• The optics.

The light interface or light feed of the spectrograph has a double function. The
first one is to select the target (or targets) of interest in the field of view of the
telescope, so that only the selected target’s light is fed into the spectrograph. The
second one is to define spatially the spectrograph’s resolution element: it is the
image fed to the spectrograph that will be dispersed as a function of wavelength,
and ultimately projected onto the detector. The first element of the spectrograph
defines this first (crucial) image. The light interface can be a slit or a fiber.
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A slit is a mechanical aperture with two parallel jaws, allowing one to select
a rectangular image from the field of view of the telescope to feed into the
spectrograph. This rectangular image is often longer than wider, and its dimensions
can be adjusted mechanically; for instance, often one of the slit jaws is fixed and the
position of the second one is adjustable, allowing one to change the slit width on the
fly. The rectangular image created by the slit will be dispersed along the direction
of the slit width—named dispersion direction. Importantly, this setup preserves one
direction of the image, the direction perpendicular to the dispersion—named spatial
direction. This opens an interesting set of possibilities, allowing one to position the
slit in creative ways to feed several different objects and thus record simultaneously
different spectra with the spectrograph. However, it is important to remember that
the same target (or ensemble of targets), when positioned in different ways on
the slit, will lead to different light distributions on the rectangular image of the
slit. These different images will then by dispersed by the spectrograph, leading to
different spectra as recorded on the detector. As such, it is important to bear in mind
that different illumination and light collection patterns of the same targets on the slit
will lead to different recorded spectra.

The fiber addresses this illumination aspect directly. A fiber is simply a wave-
guide that works based on the total internal reflection principle (see, e.g., Avila and
Singh 2008; Chazelas et al. 2010). It is usually composed of a fused silica core
and a protective cladding. One end of the fiber is placed at the image created on
the focal plane of the telescope. The other end of the fiber will feed the light to
the spectrograph. In this setup, it is the image formed at the exit of the fiber that
will be dispersed by the spectrograph. As the light rays undergo several reflections
inside the fiber, the light distribution is scrambled, losing the memory of its initial
distribution (for a circular fiber this scrambling is more efficient in the azimuthal
direction, being rather imperfect in the radial one). This scrambling is quantified
by the scrambling gain, one of the main properties of the fibers, the others being
their spectral transmission window and efficiency, the attenuation as a function of
fiber length and the focal ratio degradation. Other than the reduction of the impact
of illumination variation on the recorded spectra, by using a fiber one can move the
spectrograph away from the telescope focus. This allows one to develop heavier,
larger, and more stable spectrographs, as done in recent years. Also, by using
different fibers one can inject light from several sources onto the same spectrograph
simultaneously, exploring interesting concepts like that of UVES+Flames (e.g.,
Pasquini et al. 2002), or simply allowing to use a calibration cell at the same time as
we observe our target star. This said, the main disadvantage of using a fiber follows
from its ability to scramble light efficiently: all the light sources inside the field of
view of the fiber are scrambled and fed to the spectrograph simultaneously, creating
a composite spectrum. One loses the ability to identify the spectra associated to each
of the targets. Moreover, when adding an extra optical element, there is a fraction of
light that is lost at the fiber interface due to reflection from it. This is minimized by
using anti-reflection coatings, but a small loss is always present.
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The second type of components that exist in all spectrographs are, very naturally,
the dispersive elements. These dispersive elements can be prisms or gratings. A
prism is the simplest dispersive element one can conceive. It is a refracting optical
element that, through Snell’s law and the fact that the refraction index n = n(�),
disperses the light that strikes one of its faces. For a detailed description on how
the angle of dispersion depends on the wavelength �(�), the reader is referred to,
e.g., Schroeder (1987). Unfortunately, the angle of dispersion that can be achieved
with such optical devices is very low, and as a consequence the ability to disperse
light into different wavelengths is rather limited. As such, one has to resort to more
complex optical devices to create spectrographs with the ability to disperse light to
resolve fine-scale spectra.

The most efficient dispersive element is arguably the diffraction grating. As
written in the Newport Diffraction Grating Handbook1 (one of the most renowned
gratings manufacturers):

A diffraction grating is a collection of reflecting (or transmitting) elements separated by
a distance comparable to the wavelength of light under study. It may be thought of as a
collection of diffracting elements, such as a pattern of transparent slits (. . . ) or reflecting
grooves (. . . ).

This device allows for much larger separation angles than prisms, and from the
diffraction equation for gratings we have that

m� D d.sin˛ C sinˇ/ ; (2)

from which it follows

ˇ.�/ D arcsin
m�

d
� sin ˛ ; (3)

where ˛ and ˇ are the incident and diffracted rays’ angles as measured relative to
the vertical of the grating, � the wavelength of the light, m the order of interference,
and d the separation between groves. The angular dispersion can be found by
differentiating the last equation:

dˇ

d�
D m

d cosˇ
D sinˇ C sin ˛

� cosˇ
: (4)

Equation (4) shows that for a given � the angular dispersion depends only on ˛
and on ˇ. It is clear, however, that Eq. (2) and those derived from it have multiple
solutions. One is of particular interest for us, called Littrow, for which ˛ =ˇ, i.e., the
light is dispersed along the same direction as that of incoming rays. However, the
existence of solutions with different m leads to a superposition of different orders
along a given ˇ. One can get around this issue and select the order of interest (for

1Which can be found, e.g., at http://optics.hanyang.ac.kr/~shsong/Grating%20handbook.pdf.

http://optics.hanyang.ac.kr/~shsong/Grating%20handbook.pdf
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instance, through the usage of filters, or by making the grating much more efficient
for a given m than for others), but a more efficient and elegant solution can be
achieved by using a second dispersive element. One can cross-disperse the orders,
dispersing the overlapping orders in a direction perpendicular to the first dispersion
(done by the grating). The first dispersion is called main dispersion and the second
the secondary dispersion. The secondary dispersion has the objective of separating
physically the already dispersed orders, and as such a less powerful dispersive
element can be used. By applying the two dispersions and focusing the image of the
dispersed orders on the spectrograph, one obtains a “ladder-like” pattern, in which
the orders are (approximately) parallel to each other. The wavelengths increase
along each order, but also from order to order. This pattern gave the name to one of
the most used types of high-dispersion gratings in the market, the echelle grating.

For a grating for which the grooves are perfectly aligned on a plane, and applying
some simple ray-tracing geometry to Eq. (2) and the configuration behind it, one
gets that the maximum efficiency of the grating occurs for m = 0 (i.e., reflection),
decreasing fast as jmj increases (i.e., the interference with high orders). Since we are
often interested in working in Littrow or quasi-Littrow condition (i.e., the refracted
angle is only slightly different for the incident angle, for practical purposes), this
forces us to work at high m. To avoid working in a very low-efficiency regime of
the grating, one can change the geometry of the grooves, by adjusting their angle
relative to the grating surface. To make the Littrow condition angle the angle with
the highest transmission, we can introduce a so-called Blaze angle ı between the
grooves and the grating surface. The efficiency is maximized for the Littrow angle
when ˛ =ˇ = ı, and this is called the Littrow Blaze condition.

A third and very important part of the spectrograph—and any astronomical
instrument, for that matter—is the detector. The detector is very simply a device
that transforms the incident light into electric charge, usually by photoelectric effect.
They are often 2-dimensional, being plane or approximately so, and thus allowing
one to record the 2-dimensional image focused by the convergence of the dispersed
light. The detectors work by photoelectric effect, through which the arrival of a
photon at a given pixel will lead to the production of an electric charge. The
measurement of the electric charge as a function of position allows one to map
the incident photons, and create an electronic image. The main property to take
into account is then, very naturally, the photosensitive material. Different elements
and mixtures of elements will have different valence gaps and valence energies, i.e.,
they will have minimum energies by which they are sensitive to photoelectric effect.
For a long while Silicon-based architectures dominated the market of detectors. The
ability to create homogeneous grids of photosensitive Silicon (often with Boron),
along with the ability to store and transfer the charge generated, opened the way
to the Charge-Coupled Device (CCD) architecture. In this architecture the charge
generated in the pixels is transferred to a common amplifier and register, where it
is amplified and read. The usage of a single reading port greatly homogeneizes the
detector, allowing the characterization with a single gain value (ability to transform
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electric charge in readable digital units), readout noise (error introduced by the
reading process), along with other key properties. However, the Silicon atom is only
sensitive to photons with wavelengths shorter than 1:1 �m (and detectors made of it
are often of very low efficiency for � > 1�m). To observe at longer wavelengths one
must then go for different photosensitive materials. The first and obvious drawback
is that these detectors have to be operated at a much lower temperature, for they
are more sensitive to their own thermal radiation, and low-energy photons and
electrons in general. The second much less obvious feature is that there is no
equivalent of Silicon for these longer wavelengths, i.e., there is no material that
can be manipulated electronically to transfer the charge to a common amplifier
and reader. This means that near-infrared detectors have to perform the charge
amplification and reading in-pixel. This leads to much more complex electronics,
and the architecture behind it is called Composite Metal Oxide Semiconductors
(CMOS). While significantly more complex, the fact that the charge is manipulated
in-pixel provides very interesting options. For instance, the charge can be read
multiple times to reduce readout noise, or one can read only specific parts of the
detector, two options that are unavailable when reading implies a clocked transfer
of charge, as for CCDs. The price for the local conversion of charge into voltage
is a lower degree of homogeneity in the gain and error, and the more complex
electronics often conduce to higher readout noise and spurious currents. However,
the increasing demand of CMOS led to a fast development of the technology
associated to it, and in several situations CMOS, when available, are already being
preferred over the CCD technology. A common example is that of acquisition or
guiding cameras, in which the readout time is a critical aspect; one can easily accept
a noisy detector if it can be read much faster (through customized window reading,
for instance) than its less noisy counterpart.

The last important part of a spectrograph is its optics. The optics accomplish
different functions:

• to transform the convergent rays of light, focused at the entrance of the
spectrograph by the telescope optics, into collimated light;

• to transform the dispersed (but still collimated) light into focused light that can
be recorded in the detector;

• to create a spectral format such that all the orders and wavelengths can be
recorded on the detector.

These correspond, basically, to the collimation of the light after it enters the
spectrograph, and the transformation of the dispersed light into a focused image
on the camera. These tasks have to be performed in such a way that the recording of
the light is practical and eases data analysis, while maintaining the most desirable
properties of the spectrograph and spectra. And this is exactly the point we will
address next.
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3 Spectrograph’s Properties

The spectrograph’s design will define its properties, which in turn will be translated
directly to the spectra it forms. The most important spectrograph properties, that can
be considered as properties of the associated spectra, are:

• Wavelength range;
• Transmission (or efficiency);
• Resolution;
• Sampling;
• Instrumental Profile Characteristics (especially shape and stability).

The first two properties are rather self-explanatory. The wavelength range is
the wavelength domain in which the spectrograph operates, and the domain of the
formed spectra. The choice of wavelength has very important consequences not
only on the detectors, as seen before, but on all optical and dispersive elements
(requiring different coatings to reduce unwanted reflections and scattered light, for
instance). Associated to this first property is the transmission of the spectrograph or
its efficiency, which can be defined in terms of total energy or photon number. The
transmission is the fraction of energy or photons that traverses the spectrograph and
is recorded by the detector.2

The property that follows is a key one: the resolution. The resolution, defined as
R � ��=�, relies on the Rayleigh criterion to establish �� for a given �: it is the
smallest difference in wavelength between two lines of equal intensity that can be
discernible using the spectrograph, i.e., it is the smallest difference in wavelength for
which two lines of equal intensity are resolved. Fortunately, there is a different way
of understanding the resolution of a spectrograph. A spectrograph can be thought of
as a device that convolves an infinite-resolution spectrum, coming from the source,
with the instrumental profile (IP) that characterizes the spectrograph. The width��
of this instrumental profile, as measured at a given �, defines its resolution R. This
means that, in practice, to measure the resolution of a spectrograph we can use a
line with a full width at half maximum FWHM such that FWHM/� 
 1/R. In other
words, we are feeding into the spectrograph a line with a width much smaller than
the spectrograph’s IP. As a consequence the width of the line that results from the
convolution, is defined by the spectrograph’s IP only, and its FWHM defines the
resolution. It is never too much to stress the impact of the resolution on the final
spectra, and the reader is invited to look at several examples by him/herself.

A point which is often overlooked is that of sampling (also referred to as numer-
ical resolution or numerical sampling, or even more obscure names). Sampling is
the number of pixels used to record the wavelength interval covering one resolution
element of the spectrograph. An application of the Nyquist theorem to this situation

2Importantly, spectrographs with variable slit width separate the transmission of the spectrograph
into transmission of the spectrograph � transmission of the slit, and detail the transmission of the
latter as a function of its (tunable) properties.
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informs us that the sampling should be larger than 2 pixels in order to avoid losing
a significant fraction of the information. Most modern spectrographs opt for a
sampling value of 3 or similar.

The final point in our list is the most intricate one. The instrumental profile
(IP) is the profile that represents the broadening introduced by the spectrograph
relative to a conceptual infinite-resolution spectrum emitted by the source. By
construction, all elements that constitute the spectrograph have an impact on the IP.
An ideal spectrograph should introduce a broadening that depends on its resolution,
but no other deformation to the spectrum; from that it follows that the IP should
be as symmetric as possible, maintaining the original profile of the lines. It is
often conceptualized as a positive-definite Gaussian function of unit area. The
IP shape should also be independent of wavelength, a condition which is not
respected to some degree due to the presence of optical aberrations. Finally, and
very importantly, this IP should be as stable as possible, being virtually independent
of time. Any variation on the IP will be imprinted on the observed lines, and as
such will have an impact on the measurement of the characteristics of the lines, like
the RV. This IP stability is arguably the most difficult condition to characterize and
ensure, and has a significant impact on the RV, as we will soon see.

4 Radial-Velocity Precision

We finally arrive at the issue of RV precision. What are the instrumental factors
and stellar parameters that have an impact on it? And how can we design both
a spectrograph and observations for the best achievable RV? These are the two
questions that we ask ourselves in this chapter.

4.1 Precision Achievable on a Given Spectrum

The first and most fundamental question to ask is what is the ultimate precision
one can achieve when calculating the RV on a given spectrum. This “floor level” of
precision is the value one achieves when one considers as the only source of error
the noise present in the spectrum; for high-SNR spectra, this is the stellar photon
noise. The spectrograph measuring the RV is considered as perfect, and the act of
measurement introduces no noise.

Based on the work of Connes (1985), and assuming that a spectrum experiences
a differential shift ı� relative to its own noise-free reference copy, Bouchy et al.
(2001) calculated that the optimal weight W.i/ to be given to a pixel i when
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calculating the RV is

W.i/ D �2.i/.ıA0.i/=ı�/2

A0.i/C �2D
; (5)

where the spectrum (perceived simply as a group of consecutive pixels) is repre-
sented by the function (x.i/, y.i/) = (�.i/, A0.i/), and �D represents the readout
error.3 It is important to notice that the denominator of Eq. (5) is the variance of the
flux A0 at a given pixel, when considering both photon noise and readout noise. The
error (or scatter) on the measured RV, ıv, can then be calculated as

ıv D cpP
i W.i/

: (6)

Arguably, the most striking aspect about these equations is that the weight of
a pixel, for a given �, depends on the absolute value of the slope of the spectrum
(ıA=ı�). A larger slope value leads to a larger weight, or to put it differently, the RV
information content in a spectrum is contained in the slope of its lines. Our ability
to measure the position of a spectrum relative to its own copy depends on the slope
of its lines. The sharper the lines, the higher our precision.

However, this is just one way of measuring the ultimate precision achievable
on a given spectrum. Hatzes and Cochran (1992) took a rather different approach:
assuming that the noise on the spectrum is photon noise only, and that the spectrum
is characterized by an uniform density of lines, the authors concluded that the RV
error �RV is given by

�RV / 1p
F

p
�� R1:5

; (7)

where F is the average flux level, �� is the wavelength coverage and R the
resolution. The term

p
F represents the photon noise error calculated from the

flux, and the
p
�� represents the increase in statistics represented by including

independent measurements of lines. The error on the average RV calculated from N
different lines can be thought of � / p

N and as such / p
��. The new insight

from this formula comes from the term R1:5: the RV precision depends more steeply
on the resolution of the spectrograph than on any of the other mentioned factors.
This brings us back to the concept of RV information content and how it is contained
in the slope of the lines. When one increases the resolution, the slope of the spectral
lines is increased due to an increase in both the line’s contrast and a reduction of the
line’s width.

3This error can be represented as a function of pixel i, becoming �i and even characterize other
sources of error, without loss of generality.



190 P. Figueira

These dependencies on key parameters are very informative, but it is also
interesting to understand how precision changes for a given spectral line, and the
simplest assumption one can make about a spectral line is to approximate it by a
Gaussian function. Assuming a Gaussian-shaped line and applying the formalism
of Bouchy et al. (2001), one can calculate that the RV precision is given by

�RV D .� ln 2/�1=4

2

p
FWHM

SNR

p
PXLSC

C
F.Ceff/

�
m s�1� ; (8)

where C is the contrast of the Gaussian line, SNR the signal-to-noise ratio of the
spectrum at hand, and PXLSC the pixel scale of the spectrograph (i.e., the dimension
of the pixel as measured in velocity). F.Ceff/ is a polynomial function of the effective
contrast Ceff D C=.1 C �2D=A0/. This equation shows us very important basic
properties, namely:

• The RV precision increases linearly with the SNR with which we measure the
spectrum;

• The RV precision is proportional to the contrast C of a line, and inversely
proportional to the square root of the FWHM of the line.

These two aspects were already represented in Eq. (7). Yet, now the SNR depen-
dence is written explicitly (and one can consider noise contributions other than
photon noise), and the impact of resolution is broken down into the two char-
acteristics of the lines that it changes: FWHM and C. And of course these two
characteristics are exactly the key parameters that regulate the slope present in a line.
We have made full circle, coming back to the first conclusion brought by Bouchy
et al. (2001).

We have been looking at the impact of the spectrograph’s resolution on the
achievable RV. As said before, the line shape associated to observing with a given
resolution can be seen as the result of the convolution of the stellar spectrum with
the IP. This said, another effect has exactly the same impact on the line shape, and as
such on the RV: stellar rotation. Stellar rotation, and the line broadening associated
to it, is often modeled through the convolution of (non-rotating) stellar spectra with
a rotational kernel, a function depending solely on the projected rotational velocity,
v sin i, of the star. As such, it comes as no surprise that �RV / .v sin i/1:5, when
other line broadening mechanisms are negligible. And this is the reason why on fast
rotators we always obtain very poor RV precision.

4.2 Spectrographs for Precise Radial Velocities

We have seen how the properties of a spectrograph define the properties of the
spectra acquired with it. Of all these properties, we discussed at length the non-
trivial impact of the resolution on the recorded line shape, and in turn the impact of
the final line shape on the achievable RV. We saw how the impact of resolution
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results or can be understood as the convolution with an IP that represents a
spectrograph. We also stressed a key point: Any change in the IP will lead to
a change in line shape, which can translate into a measured RV variation. The
realization of this key aspect of the spectrograph’s operation led to two schools of
thought on how to handle IP-induced RV:

1. Control the IP as much as possible, reducing to a minimum its variations as a
function of time so that one can reduce its impact on the RV;

2. Allow the IP to vary but model its variation and remove its effect on the measured
spectrum.

The two approaches lead to completely different technical choices, and we discuss
each one of them in detail.

4.2.1 IP Control

When trying to control the IP variation, one has to act across the whole spectrograph.
As seen in Sect. 2, the first important aspect is that of light injection. Instruments
aiming at controlling their IP should use light-scrambling devices, such as fibers, to
reduce the spatial effects of variable illumination on RV precision. These variable
illumination effects can come from imperfect centering, guiding problems, or
simply variable seeing.

On top of the special care taken with illumination and light-feeding aspects, the
whole instrument is designed to ensure its IP is as stable as a function of time
as possible. This translates into building instruments that operate under vacuum,
and are pressure- and temperature-controlled. For reference, HARPS is stabilized in
pressure and temperature at 0.01 mbar and 0.01 K, respectively.

While the whole instrument is carefully monitored to reduce the IP changes,
very subtle profile variations can occur, especially over long timescales, over which
the physical parameters control can exert a smaller leverage. To monitor these
comparatively small IP variations, the instruments are often built so that one can
record the spectrum of a calibration source simultaneously with the scientific target.
This simultaneous calibration is obtained through two sets of orders, recorded
interweaved on the detector. One of the two sets is fed by light collected by the
telescope on a science target, and the other set comes from a calibration lamp or
device located in a calibration unit. The reference spectrum coming from this second
fiber allows one to define on real time a wavelength calibration on the detector, and
evaluate how this calibration changes with time. If one assumes that the two sets of
orders (or fibers, as one prefers) experience the same IP changes, one can evaluate
the wavelength calibration changes in the reference and apply them to the scientific
channel. In its simplest form, this corresponds to using the reference to measure an
RV drift that can be applied to each exposure to correct the wavelength calibration
relative to wavelength solution obtained at the beginning of the night, on the first
fiber.
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If we have the spectrum recorded in our spectrograph with a wavelength
calibration adjusted to correct for IP variations, then to calculate the RV of the star
we simply need to find a way of calculating the RV from all the lines in the spectrum,
and of averaging them in an optimal way (in the statistical sense). While one could
in principle model each line independently, extract the wavelength corresponding to
the center of each line from the model and calculate its RV relative to the theoretical
wavelength, since there are 3000–4000 sharp lines per spectrum, this would be a
computationally-heavy procedure. Instead, one condenses the information from all
stellar lines present in the spectrum in an average stellar line, which is representative
of the star. This is done by calculating the Cross-Correlation function (CCF)
between the spectra and a line list containing all lines selected for the RV calculation
(Baranne et al. 1996). In practice, the cross-correlation function is the convolution
between the recorded spectra and a binary mask containing the wavelengths of the
lines of interest, performed in the RV space (i.e., after shifting the mask over a range
of RV). The binary mask can be upgraded to a mask containing the depth of each
line so that the contribution of the depth on the precision is considered in the optimal
construction of the average line (Pepe et al. 2002); when doing so we are assuming
that all lines have very similar FWHM. The resulting average line is also called
CCF in what is an obvious abuse on nomenclature. For a slowly-rotating G- or K-
type star (as are often the stars considered for high-precision RV searches), the CCF
has a Gaussian shape, and the fit of a Gaussian function can efficiently deliver the
center of the line in RV. At this point it is important to remember that a mismatch
between the stellar line and the fitting function will not introduce an error on the
value of the measured center, as long as the spectral line shape remains the same,
i.e., as long as the IP does not change with time. Any mismatch or systematic error
introduced by the line shape in the calculation of the RV will be present in exactly
the same way on every RV measurement, and will not impact our study of the RV
variation, and of the RV precision.

As one moves to later spectral types, i.e., to M dwarfs, the spectra become
overpopulated with lines to the point the average distance between lines becomes
smaller than the resolution of the spectrograph. The lines become blended and the
recorded spectra show a dense forest of overlapping lines, often creating regions
of strong absorption and even a pseudo-continuum (see, e.g., Figueira et al. 2016).
An analysis of the spectra will still reveal that the information is in the slope of the
spectra, naturally; however, cross-matching it with a mask will create an average
line polluted by blends, with deep wings; more importantly, the procedure will not
deliver the best precision. For M stars it is preferable to cross-correlate the recorded
spectrum with a template derived either from a theoretical model or from an average
spectrum calculated iteratively from the observations (e.g., Astudillo-Defru et al.
2015; Anglada-Escudé et al. 2016).
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4.2.2 IP Modeling

The IP control is a conceptually straightforward approach, but with its requirements
on light injection stability and environmental control, it is impossible to apply on a
general-purpose spectrograph, which is seldom built with these constraints in mind.
The impossibility of implementation on typical slit spectrographs motivated the
development of an alternative approach: to use a spectrograph that allows the IP
to vary, but to devise observations and data analysis so that one can characterize
the IP variation and correct for it. For this one needs a wavelength calibration
device called a gas-cell. A gas-cell is a container with a gas species (or group of
species) with a well-characterized, high-resolution absorption spectrum, and that
can be mechanically inserted before the slit of the spectrograph. This cell will
then superimpose a wavelength reference on the stellar spectrum, and the product
of the two will be registered by the spectrograph. The objective is to use the
gas-cell spectrum to define the wavelength scale on top of the science spectrum,
defining a wavelength calibration for each observation. This is possible because our
gas-cell spectrum will be subject to the IP variations, and by comparing our gas-
cell observations with the cell high-resolution wavelength spectrum, one can fully
characterize the IP. One can then deconvolve the IP from the measured spectrum to
recover the stellar spectrum and measure its position relative to the reference. For a
detailed description of the procedure the reader is referred to Butler et al. (1996).

The equation that represents the observed spectrum A.�/ is

A.�/ D
Z
ŒI2.�

0/ S.�C ı�/
 IP.�� �0/ d�0 ; (9)

where A.�/ is the relative intensity of the final spectrum as measured by the
spectrograph, I2.�/ is the iodine cell spectrum, S.�/ is the source spectrum and
IP.�/ is the instrumental profile, all as a function of wavelength �. ı� is the relative
wavelength shift between the science and reference spectra. This equation represents
how the observed spectrum is the product of the scientific/source spectrum by the
reference spectrum, convolved with the spectrograph’s instrumental profile. Our
final scientific objective is to determine ı�. However, with the exception of I2.�/,
all elements on the right-hand side of Eq. (9) are unknown. As such, we will have
to devise a clever observational scheme to determine each one of these unknowns,
or spectra. The most common used recipe is as follows:

1. Measure the I2.�/ with a Fourier Transform Spectrograph (FTS) to obtain a
spectrum with a much higher resolution than that recorded with our spectrograph
(usually R D 500;000 or larger).

2. Observe a line-less emission spectrum (e.g., lamp or bright hot star) with the
spectrograph + cell and deconvolve the I2.�/ to obtain the IP.�/.

3. Observe the science target with a very high SNR and without the I2 cell, to
deconvolve the IP.�/ from these observations and get S.�/.

4. Observe the science target with the I2 cell, and recover ı� from the evaluation of
Eq. (9).
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Deriving RV through this method is clearly a complex process. It is subject
to the fidelity with which each of the intermediate data products is obtained or
determined. In particular the IP reconstruction is a very delicate process; a careful
parameterization should characterize the IP as both a function of time and �,
with particular attention on how it depends on the position of the spectrum on
the detector. Labour-intensive as it is, this methodology has been widely used to
transform general-purpose spectrographs into efficient planet-hunting machines.

We can summarize the previous two sections in the following way:

• The IP control technique requires a stable spectrograph, both in light injection
and thermo-mechanical stability. One can get the best of it by using a second
channel to simultaneously record the spectrum of a reference calibration. It
minimizes the presence of instrumental RV shifts.

• The IP modeling technique can be used on a general-purpose slit spectrograph,
and models and subtracts the IP variations that induce an RV shift. It requires
several on-sky calibrations and as such it is observationally expensive.

When we are talking of the RV precision required to detect planets, of m/s (or
no larger than 10 times that), we have to remember that these correspond to shifts
of spectral lines at 1/1000 of the pixel size. This type of precision is incredible,
and both techniques are undoubtedly successful by reaching this mark. Also, before
comparing the two techniques it is important to note that many instruments can only
use one of the methodologies due to the practical requirements they impose on the
instrumentation.

It is impossible to state which technique is capable of delivering the most precise
RV without resorting to observational data. One technique minimizes the RV shifts
without characterizing them, while the other characterizes them but through a
complex process that has its own practical limitations. Probably the only way to
settle this argument is to look at the best precision achieved on the two instruments
that best embody the two techniques described here: HARPS (Mayor et al. 2003)
and HIRES (Vogt et al. 1994). While HARPS reached a precision of 1 m/s and better,
HIRES floored at 2–3 m/s of precision. These results were the subject of hot debates
for a long time, but it is now solidly established the IP control technique is the only
one able to deliver sub-m/s precision.

So far we have been debating how to achieve the best precision on very general
terms, but we have not mentioned that our own Earth is traveling in space, and the
projection of our own RV along the line of sight of our stellar observations will shift
the recorded spectra of the target. In order to correct the measured RV for this effect,
one has to use the ephemerides of our own solar system to calculate the position of
the Earth with great accuracy (e.g., Bretagnon and Francou 1988).
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5 Current and Future Planet-Hunting Machines

The great motivation for the development of precise RV spectrographs was the
detection of extrasolar planets. Today the most precise planet-hunting machines
are the spectrograph HARPS (Mayor et al. 2003), installed at the 3.6-m telescope
located at La Silla, and its northern twin HARPS-N (Cosentino et al. 2012), installed
at the TNG telescope at La Palma. These two spectrographs were developed to
minimize the IP variation at an extreme level, and today yield a precision of 50–
60 cm/s. The main dispersive element is an echelle grating R4, with 31.6 gr/mm,
operating at a blaze angle of 75ı, and the cross dispersing is done with a grism.
The spectrographs are fed by octagonal fibers, which have shown to have improved
scrambling properties over the typical circular ones.

Until recently, the simultaneous reference and wavelength calibration on HARPS
and HARPS-N was provided by a ThAr emission lamp. However, these are far
from being ideal calibrators. The large dynamics and very different spatial density
of the lines led to very different wavelength calibration stability as a function of
wavelength, which translated ultimately in a different RV precision as a function of
wavelength. Moreover, with the increased rarity of these lamps, there has been an
active search for wavelength reference alternatives.

The characteristics of the perfect wavelength reference are very clear:

• should cover the whole spectral range of the spectrograph;
• the lines used in the calibration should have a FWHM smaller than the spectro-

graph’s resolution;
• the source should provide a high density of lines, up to one per 2–3 times the

resolution element, and at a constant spacing;
• the wavelength of the lines should be precisely known and stable;
• the line intensities should be homogeneous, being close to the saturation but with

a high dynamic range.

It is easy to conclude that neither the ThAr lamp nor the I2 cell get even close to
these specifications, and nature cares not to provide such a level of homogeneity and
fine-tuning in the form of atomic or molecular transitions. As such, the most recent
advances focus on the development of back-illuminated Fabry–Perot cavities (e.g.,
Wildi et al. 2011; Halverson et al. 2014; Reiners et al. 2014), or of laser-frequency
combs, in which a femtosecond laser is stabilized with an atomic clock to produce
a series of modes that are subsequently filtered by a Fabry–Perot cavity (e.g., Lo
Curto et al. 2012).

With the current instrumentation, remarkable discoveries were made, like the
Earth-mass planet in the habitable zone around our neighbor Proxima Centauri
(Anglada-Escudé et al. 2016). The rocky Earth-mass planets around Kepler-78
(Pepe et al. 2013) and HD 219134 (Motalebi et al. 2015) show how precise RV
can be used in transiting planets to help determine a planet’s bulk composition. Very
importantly, the sub-m/s RV precision allowed us to start to uncover and characterize
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the population of Earth-mass planets, and we have already located stars that contain
systems of exoplanets with up to 7 planets, like HD 10800 (e.g., Lovis et al. 2011).

When several planets are present around a star and with orbital semi-amplitudes
at the level of instrumental precision, it is very difficult to characterize their orbits,
due to the large number of parameters to fit. This leads to the need of a large
number of RV points per system, and motivated the development of more precise
instruments. The forthcoming planet-hunter ESPRESSO (Pepe et al. 2010, 2014)
spearheads this quest, and will be able to reach an intrinsic RV precision of 10 cm/s;
along with the improved collecting capability of the VLT and associated photon
noise contribution, ESPRESSO will be able to detect an Earth-mass planet inside
the habitable zone around a solar-type star. This corresponds to a significant jump
relative to the current 50 cm/s precision that allows us to detect Earth-mass planets
in orbits of only a couple of days, at most.

A different way of looking at the challenge of detecting Earth-mass planets inside
the habitable zone of their host stars is to turn to M dwarfs. The lightest stars
experience a reflex motion �3 times larger than their GK companions, and their
lower energy output draws the habitable zone roughly 3 times closer. This means
that in order to detect an Earth-mass planet orbiting inside the habitable zone around
an M dwarf, one needs only a precision of roughly 1 m/s. However, since M dwarfs
are faint in optical wavelengths, this scientific objective spurred the development of
near-infrared instruments like SPIRou (Artigau et al. 2014), NIRPS (Conod et al.
2016), and CARMENES (Quirrenbach et al. 2014), just to cite a few among the
many spectrographs of this category. With these spectrographs we will be able to
extend our studies of planetary frequency from the first 100 M dwarfs surveyed with
HARPS to a more complete sample in terms of stars and precision. Last but not
least, in a more distant future, the European Extremely Large Telescope (E-ELT)
will have at least an instrument—HIRES—capable of delivering precise RV at a
10 cm/s precision or better, and will enable RV studies on stars that are otherwise
discarded due to photon noise limitations.

This contributions tries to cover the main aspects behind RV precision and its
association to planetary studies. However, with the number of developments in the
latest couple of decades, with 3 h of lectures we could only skim the surface of all
the topics that are there to discuss. And after the derivation of precise RVs comes its
interpretation, for which the points discussed here will be of great use. But that’s a
story for another time.
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Modelling Light and Velocity Curves
of Exoplanet Hosts

Rodrigo F. Díaz

Abstract Research in extrasolar-planet science is data-driven. With the advent of
radial-velocity instruments like HARPS and HARPS-N, and transit space missions
like Kepler, our ability to discover and characterise extrasolar planets is no longer
limited by instrumental precision but by our ability to model the data accurately.
This chapter presents the models that describe radial-velocity measurements and
transit light curves. I begin by deriving the solution of the two-body problem
and from there, the equations describing the radial velocity of a planet-host star
and the distance between star and planet centres, necessary to model transit light
curves. Stochastic models are then presented and I delineate how they are used
to model complex physical phenomena affecting the exoplanet data sets, such
as stellar activity. Finally, I give a brief overview of the processes of Bayesian
inference, focussing on the construction of likelihood functions and prior probability
distributions. In particular, I describe different methods to specify ignorance priors.

1 Introduction

In the scientist dialogue with Nature data play a crucial role. It is the language
by which we receive information from our experiments and observations. Nature
communicates with scientists exclusively through data. Without data, there is no
science. To be able to interpret the messages encoded in the language of physical
observations, we use mathematical models. It is probably useless to stare at a series
of data points or samples from a distribution without an underlying idea, however
vague, of what the mechanism producing them could be. This idea can be flexible
and allow for modifications, but it is an unavoidable step in translating data to
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knowledge. Roughly speaking, the idea of how data are produced by Nature is a
model. More precisely, when the model is expressed using mathematical concepts
and terminology it becomes a mathematical model.

Mathematical models consist of one or more equations relating independent
to dependent variables, for example time and the radial velocity of a star at that
time. Both of these can be measured in an experiment or by an astronomical
observation. These equations have constants that represent properties of the system
being described, and are usually referred to as the model parameters. The basic
task of data analysis is to obtain information on model parameters from a set of
observations or measurements.

Here we are interested in studying mathematical models of extrasolar-planet data.
In particular, we will focus on radial-velocity data and transit light curves. To fully
describe these data sets, one needs not only to consider the physics describing the
movement of the planets and stars, as well as the geometry of the occultation of
a fraction of the stellar disc by the planet, but also the mechanisms producing the
actual observed data and their uncertainties, plus all sources of additional radial
velocity or photometric variability not of primary interest to us. Actually, at the
present stage of exoplanet research, the data are of good enough quality to permit
the detection and characterisation of planets of very small mass and size, similar
to Earth. However, the signals produced by this type of planetary companions are
usually comparable or even smaller than the effects produced by other sources, such
as stellar activity, which in addition are usually much more difficult to model. As
we will see, the signals we are interested in are relatively simple to model but the
determination of the parameters can be hindered or biased by the more complicated
effects. Our ability to detect and characterise extrasolar planets is no longer limited
by the precision of our instruments but by our ability to model and analyse the data.

Generally speaking, the mathematical model of datum di (which we assume taken
at time ti, although this is not fundamental to our formulation) consists of two parts:
a prediction of the value the datum di should take, mi, and an error term, ei, that
accounts for the uncertainties in the data and quantifies the possible discrepancies
between the mi and the datum di. In general, we can write:

di D mi C ei : (1)

As we will describe in detail in Sect. 3, the mathematical formulation leading
to mi can be deterministic or statistical. In the deterministic case, for a certain
set of parameters on which the model depends there is no uncertainty in the
predicted value mi. The second term, ei, will be assumed to come exclusively from
a statistical model of the data. This model can be as simple as the mathematical
model corresponding to a series of independent Gaussian variables, but it can be as
complicated as one needs to correctly represent the data. This includes models with
correlation between the measurements, mixture models etc. (see Sect. 3.2).

In this chapter, I will discuss the mathematical models describing the production
of two of the most important data types in exoplanet science: radial-velocity
measurements and transit light curves (although the focus will be mostly on the
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radial-velocity models). In Sect. 2, I describe the physical models of the orbiting
planetary companions, focussing in the case of single-planet systems, that permit
an exact analytical description (under certain assumptions). I discuss in Sect. 3
the stochastic models needed to describe the error term ei and more complicated
phenomena not easily amenable to an analytical description. Finally, Sect. 4 presents
a brief introduction to Bayesian inference and the processes involved in obtaining
information on the model parameters from a set of observations.

2 Physical Models

In this section, I describe physical models used to reproduce the radial-velocity
time series and light-curve data of a star hosting a planetary companion. In both
cases, to reach an analytical expression we need to make a series of assumptions
and approximations. Those common to both types of data are:

1. that the movement of the bodies follows the laws of Newtonian dynamics, and
2. that the bodies do not have electrical charge or any other property besides mass

that allows them to interact with each other.

These approximations are usually good in the range of velocities, masses, and
distances we will be dealing with.

2.1 Radial Velocities

To model radial-velocity data we make one additional assumption: the bodies are
dimensionless point particles. This means that the bodies have no internal structure
and therefore do not experiment any kind of tidal force. Although this is of course
wrong, as we know stars and planets have interiors and processes may occur inside
them, the resulting forces are usually much weaker than the gravitational attraction
between the bodies and therefore in most cases only produce observable effects over
very long time scales (e.g., Zahn 1977; Hut 1981).

Under these assumptions, the movement of the planet and the star reduces to the
two-body problem, a traditional problem in classical mechanics. In particular, to
obtain a model for the observed radial velocities, we need to obtain the position of
the bodies in time. This is known as the Kepler problem. In this section, I follow
closely the presentation of the two-body problem by Murray and Dermott (2000)
and Murray and Correia (2010). An approach using Lagrangian mechanics is given
by Goldstein (1980).
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2.1.1 Elliptical Motion

Let us consider two objects of masses m1 (the star) and m2 (the planet) interacting
gravitationally. Their equations of motion are described in an inertial frame S with
origin at O:

EF1 D m1
REr1 D CG

m1m2

r3
Er ; (2)

EF2 D m2
REr2 D �G

m1m2

r3
Er ; (3)

where G is the Universal gravitational constant and Er D Er2� Er1 is the relative position
vector, pointing from the star to the planet (see Fig. 1). Dividing Eq. (2) by m1 and
Eq. (3) by m2, these equations can be combined to produce the equation of relative
motion:

REr C G.m1 C m2/
Er
r3

D 0 : (4)

Taking the vector product of Eq. (4) with the relative position vector Er, and using
the fact that Er � Er D 0, we find the first conserved magnitude of the two-body
problem: Er � REr D 0, which is promptly integrated to give

Er � PEr D Eh : (5)

The vector Eh is constant and, because it is the vector product of Er and PEr, it is
perpendicular both to the position and velocity vectors. This means that the motion
of the system happens in a plane perpendicular to the constant vector Eh, known as
the orbital plane. It is then practical to express the position and velocity vector in
polar coordinates on this plane: Er D rOr, PEr D PrOr C r P� O� , where Or is the unit vector
pointing from the star to the planet and O� is a unit vector perpendicular to Or. We then

Fig. 1 Schematic view of the
forces and positions in the
two-body problem

m1

m2

r

O
r2

r1 R

CM
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find that

Eh D r2 P� Oz ; (6)

where Oz is a unit vector forming a right-handed triad with Or and O� . This is a good
approximation of angular momentum of the system when1 m2 
 m1. From the
conservation of Eh, one can deduce the second law of planetary motion discovered
by Kepler (see Murray and Dermott 2000; Sect. 2.2), which states that equal areas
are swept out by the position vector in equal times. Additionally, it can be shown
that the area swept by unit time is

dA

dt
D h

2
: (7)

With this conserved quantity, we can express the general solution of Eq. (4):

r D p

1C e cos.� �$/ ; (8)

where

p D h2

G.m1 C m2/
(9)

and e and $ are two constants of integration. Equation (8) is the general equation
of a conic section in polar coordinates. In particular, whenever 0 < e < 1 and
p D a.1 � e2/, the equation describes an ellipse of eccentricity e and semi-major
axis a:

r D a.1 � e2/

1C e cos.� �$/
:

This is one possible solution for the movement of a planet around a star. The two
extreme distances, called periapsis and apoapsis occur when the � D $ and � D
�C$ , respectively, and are equal to a.1�e/ and a.1Ce/ (see Fig. 2). We can define
a new polar angle, �, such that � D � � $ , i.e., we measure the angles starting at
the periapsis. This angle usually receives the name of true anomaly. Then,

r D a.1 � e2/

1C e cos �
: (10)

1As we are describing the relative motions of the bodies, the actual angular momentum of the
system contains a term related to the motion of the star. Whenever m2 � m1, this term can be
neglected and h is equal to the total angular momentum of the system per unit mass of the body
m2.
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Fig. 2 Schematic view of the
trajectory of an orbiting
companion to the central star
(at the origin of coordinates),
as seen vertically from above
the orbital plane. The
pericentre, apocentre, and
their corresponding distances
are indicated

rperi = a(1 − e)

rapo = a(1+ e)

θ =

θ = + π

pericentre

apocentre

The area enclosed by the ellipse, �ab, where b is the semi-minor axis of the
ellipse, b D a.1� e2/, is swept by the position vector in one orbital period, P. From
Kepler’s second law, and the fact that h2 D G.m1 C m2/a.1 � e2/ (cf. Eq. 9), we
arrive at Kepler’s third law of planetary motion:

P2 D 4�2

G.m1 C m2/
a3 : (11)

2.1.2 Barycentric Orbits

Combining Eqs. (2) and (3), one obtains the equation of motion for the centre of
mass (CM) of the system:

m1
REr1 C m2

REr2 D 0 ; (12)

which can be easily integrated to obtain the equation describing the position of the
CM in time:

ER.t/ D ˛t C ˇ

m1 C m2

; (13)

where ER D .m1 Er1 C m2 Er2/=.m1 C m2/ is the position of the CM of the system
(Fig. 1). As expected from the conservation of momentum, the CM of the system
moves with a constant velocity with respect to the origin O. Since the original frame
of reference S was assumed inertial, this means that a reference frame with origin in
the CM is also inertial. We will find it useful to describe the motions of the planet
and the star in this reference frame. We can then write the positions of the masses
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with respect to the CM as

ER1 D � m2

m1 C m2

Er ; (14)

ER2 D C m1

m1 C m2

Er : (15)

This means that ER1 and ER2 always have opposite directions and that the CM is in
the line joining the two vectors. Besides, it implies that the trajectories of the star
and the planet with respect to the barycentre of the system are simply scaled down
versions of the conic section describing the relative motion of the bodies (Eq. 10). In
the case of the ellipse, the semi-major axis of the star and planet orbital trajectories
are scaled down by a factor m2=.m1 C m2/ and m1=.m1 C m2/, respectively. Note
that in the typical case where m2 
 m1, the stellar orbit with respect to the CM
becomes very small while the planet orbit resembles the relative orbit.

2.1.3 Projection and Radial Velocity

The orientation of the orbit in three-dimensional space can be described by three
angles. The angle of the orbital plane with respect to the plane of the sky is the
orbital inclination I. The intersection between the plane of the sky and the orbital
plane is called the line of nodes. The longitude of the ascending node, ˝ , is the
angle between a reference direction in the plane of the sky and the radius vector
at the ascending node, where the planet crosses the plane of the sky from below to
above. Finally, the argument of periapsis, !, is the angle between that same radius
vector and the orbital periapsis measured on the orbital plane. For I � 0, we have
$ D ! C˝ , where $ is the two-body constant already found in Eq. (8).

To obtain the expected radial velocity of the star in the system, let us project
the expression of the orbit to a cartesian coordinate system centred in the CM of
the system and oriented so that the positive z axis points towards an observer on
Earth and the xy plane corresponds to the plane of the sky. To simplify the resulting
expressions, we further assume that the reference direction defined by the positive
x axis coincides with the line of nodes (i.e., ˝ D 0). Under these conditions, the
cartesian components of the barycentric movement of the stellar body are:

x D r1 cos.! C �/ ; (16)

y D r1 sin.! C �/ cos I ; (17)

z D r1 sin.! C �/ sin I ; (18)

with

r1 D a
m2

m1 C m2

.1 � e2/

1C e cos �
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the distance between the star and the CM of the system. Deriving Eq. (18) with
respect to time and using the fact that

P� D P� D h=r2 D 2�

P

a2
p
1 � e2

r2
;

we get the expression of the stellar radial velocity V as a function of the true
anomaly:

V D V0 C K Œcos .� C !/C e cos!
 ; (19)

with

K D
�
2�G

P

�1=3
1p
1 � e2

m2 sin I

.m1 C m2/
2=3

; (20)

and V0 and integration constant corresponding to the velocity of the CM with respect
to the observer on Earth.

If we neglect m2 with respect to m1 in the denominator of Eq. (20), which is
reasonable in the typical case m2 
 m1, we see that the radial-velocity signal scales
linearly with the mass m2 of the orbiting companion, and inversely with P1=3. These
two facts introduce strong biases in the sample of detected planets and in the shapes
of the distributions of their orbital parameters. Note that the RV amplitude depends
on the combination of m2 and sin I. Using RV data alone it is therefore not possible
to measure the real mass of the planets, but only the so-called “minimum mass”,
m2 sin I.

2.1.4 Kepler Problem

Up to this point we have obtained a description of the trajectories followed by the
bodies of a star-planet system and have reached an expression for the radial velocity
of the star as a function of the position of the planet in the orbit, �. What remains
to be done to link this expression (Eq. 19) with the observations is to describe the
motion of the bodies in time as they traverse their orbits. In other words, we need to
find the function � D �.t/. This is known as the Kepler problem and is much more
involved than obtaining the equation of the orbit or the radial-velocity expression.
We give here a summarised description of the solution to the Kepler problem and
refer the interested reader to specialised literature (e.g., Goldstein 1980; Murray and
Dermott 2000).

The integrals involved in finding �.t/ are more easily solved using two auxiliary
variables: the eccentric anomaly,  , defined through the expression

r D a.1 � e cos / ; (21)
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and the mean anomaly, �,

� D 2�

P
.t � �/ ;

where � is the time of passage through the periapsis.2 Note that the time t enters
explicitly in the definition of �.

It can be shown that � and  are related through the Kepler equation:

� D  � e sin ; (22)

which is transcendental and requires iterative methods to solve it.3 By inverting the
Kepler equation, one can find  and the radial distance r as a function of time
(Eq. 21). Furthermore, comparing the defining equation (Eq. 21) with the equation
of the elliptical orbit (Eq. 10) one can find, after some algebra, an expression for �
as a function of  :

tan
��
2

�
D
r
1C e

1 � e
tan

�
 

2

�
: (23)

We have shown how to obtain the time dependence of the true anomaly �, and
therefore of the radial-velocity expression (Eq. 19), which can be promptly used to
compare the model with the observations (see Sect. 4).

2.2 Transits

When the orbital inclination I is close to 90ı, the orbiting planet, as seen from Earth,
passes in front of the stellar disk, causing a slight dimming of the star known as a
transit. This event is extremely rich in information about the star-planet system. In
particular, it allows lifting the m2 sin I degeneracy and measure the real planet mass.

Under certain assumptions, the model of the light curve of a transiting planet can
be written analytically. We need to abandon the assumption of point masses used
for the radial-velocity model, but assume both the planet and the star are perfectly
spherical with radii Rp and Rs, respectively. Additionally, we assume that the planet
is completely opaque and emits no radiation.

2Of course, exactly as we have redefined the polar angle so that � is 0 at periapsis, we could also
measure time starting at the moment of periastron passage, and get rid of � in the definition of the
mean anomaly. However, usually � is unknown and including it as a model parameter allows us to
measure it.
3A Python code to compute the true anomaly from the mean anomaly and eccentricity has been
made available at https://github.com/exord/faial/blob/master/trueanomaly.py.

https://github.com/exord/faial/blob/master/trueanomaly.py
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2.2.1 Uniform Source

Further assuming that the star is a uniform source, we can write the expression of
the ratio between obscured to unobscured flux, F.k; ı/ D 1��.k; ı/, where � is the
flux loss as a function of the radius ratio k D Rp=Rs and ı D d=Rs is the projected
centre-to-centre distance between the star and the planet, normalised by the radius
of the star. Following Mandel and Agol (2002), and assuming k < 1, we find:

�.k; ı/ D

8̂̂̂
<̂
ˆ̂̂̂:

0; ı > 1C k ;

1
�

"
k2�0 C �1 �

r
4ı2�.1Cı2�k2/

2

4

#
; 1 � k < ı � 1C k ;

k2; ı � 1 � k ;

(24)

where

�0 D cos�1
	

k2 C ı2 � 1

2kı



; �1 D cos�1

	
1 � k2 C ı2

2ı



: (25)

In other words, there is no flux loss as long as d > Rp C Rs, and the loss is constant
and equal to .Rp=Rs/

2 when the planet disc is completely inside the stellar disc (see
Fig. 3).

If the planet is on a circular orbit, Seager and Mallén-Ornelas (2003) showed
there is a unique relation between the four parameters describing the model (see
Fig. 3) and some combinations of the physical parameters of the system. This allows
obtaining, in this simple case, information about the planetary system by measuring

Fig. 3 Schematic view of a flat-bottomed transit. Three of the four parameters describing the
model are indicated: the transit depth �F, the total transit duration, tT , and the duration of the flat
part, tF. The remaining parameter is the orbital period P
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the transit properties:

Rp

Rs
D p

�F ; (26)

b D a

Rs
cos I D

2
64sin2 !T

�
1� p

�F
�2 � sin2 !F

�
1C p

�F
�2

sin2 !T � sin2 !F

3
75
1=2

; (27)

a

Rs
D

2
64
�
1C p

�F
�2 � b2

�
1 � sin2 !T

�
sin2 !T

3
75
1=2

; (28)

where !F D tF�=P and !T D tT�=P. Note that, combining Eqs. (27) and (28),
one can measure the orbital inclination I. Combining this information with RV data
providing m2 sin I one can measure the true planet mass m2. Interestingly, using
Kepler’s third law, we can write an expression involving the mean densities of the
planet and the star:

�s C k3�p D 3�

G

1

P2

�
a

Rs

�3
; (29)

where the mean density is �s D Ms
�
4�R3s=3

��1
, and an equivalent expression for

�p. In the usual case in which k 
 1 and Mp 
 Ms, the mean density of the star
can be approximately obtained using Eq. (28):

�s � 3�

GP2

2
64
�
1C p

�F
�2 � b2

�
1 � sin2 !T

�
sin2 !T

3
75
3=2

; (30)

valid only in the case of circular orbits.
The transit duration is usually measured in hours while the orbital period P is

usually of the order of days. Therefore, we see that the parameters !T and !F are
necessarily small. In this case the sine function can be approximated sin2 x � x2,
and Eqs. (27) and (28) can be simplified:

b �

2
64 t2T

�
1 � p

�F
�2 � t2F

�
1C p

�F
�2

t2T � t2F

3
75
1=2

; (31)

a

Rs
� 2P

�

�F1=4q
t2T � t2F

: (32)
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In the case of non-circular orbits, complicated algebra arises and it is no
longer possible to find exact analytical expressions for the physical system param-
eters. Winn (2010) gives approximate expressions valid when Rp 
 Rs 

a. The expression for the radius ratio (Eq. 26) and for the impact parameter
(Eq. 27) remain the same, but the normalised semi-major axis is scaled by a factorp
1 � e2= .1C e sin!/:

a

Rs
� 2P

�

�F1=4q
t2T � t2F

 p
1 � e2

1C e sin!

!
: (33)

Depending on the orientation of the orbit in the sky, the semi-major axis can be
smaller or larger than the one measured in the circular case. As a consequence, the
mean stellar density computed by means of Eq. (30) can be under- or overestimated
if the orbit is incorrectly assumed circular. Further analysis in the case of eccentric
orbits is presented by Kipping (2008).

2.2.2 Non-Uniform Source

In reality, stars are not observed as uniform disks of light. Instead, their brightness
appears to decrease from the centre to the limb of the disc, an effect known as limb
darkening. Mandel and Agol (2002) provide analytical equations of the flux drop,
F, as a function of the normalised star-to-planet centre separation, ı, for a quadratic
and non-linear limb-darkening laws, which most accurately describe the observed
darkening effect (Claret 2000). Their codes are available to the community and are
widely used by researchers in the field.

When limb darkening is included in the transit model, the physical parameters
become strongly covariate and the model is degenerate, which complicates the
process of inferring the system parameters from data (see Sect. 4).

2.2.3 Projected Distance as a Function of Time

The model of the drop in flux produced by the transit of a planetary object is given as
a function of the projected centre-to-centre normalised distance, ı D d=Rs, where
d is the sky-projected distance between the centres of the planet and the star. To
obtain a model that we can compare directly4 to a time series of flux measurements,
we need to express ı as a function of time.

This is promptly achieved by considering the projection of the relative orbit into
cartesian coordinates described in Sect. 2.1.3. Recalling that we had chosen the axes

4Special care must be taken when the timescale of the variability is comparable to the integration
time of individual points (Kipping 2010).
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so that the xy plane coincided with the plane of the sky, we can write:

ı D 1

Rs

�
x2 C y2

� D a

Rs

1 � e2

1C e cos �

q
1 � sin2 .! C �/ sin2 I ; (34)

where we have replaced the distance r2 by the relative distance r (a is the semi-major
axis of the relative orbit). Substituting this expression in the models for the drop of
flux, and using the dependence of the true anomaly � with time we can compute a
model transit light curve to compare with the data time series.

2.3 Non-Keplerian Models

Up to here, we have assumed the modelled planetary companion moves in a
Keplerian orbit around its host star. This is a good approximation when tidal forces
originating in the interior of the objects can be neglected, which is often the case, as
discussed above. However, the assumption of Keplerian motion is invalidated by the
presence of additional objects in the system. Indeed, if the star is orbited by multiple
planets, their mutual gravitational interactions will make their motion depart from
the Keplerian orbit. The effect of the planet-planet interactions is usually very
small on the radial-velocity data. It requires measurements with extreme precision
spanning a long time for these effects to be detectable (see Correia et al. 2010).
If detected, planet-planet interactions can lift the degeneracy between the RV-
measured minimum masses and the orbital inclination I.

Gravitational interactions between the planets are more easily detected in transit
light curves through the measurement of the timing of the transits, and their depar-
ture from perfect periodicity. This effect, known as transit timing variations (TTV)
was predicted and studied for years (e.g., Agol et al. 2005; Holman and Murray
2005) before the detection of the first transit system with clear TTV (Holman et al.
2010). Besides, planet-planet interactions can change the duration of the transits,
as the planets cross the stellar discs at different latitudes at different times. This
gives rise to transit duration variations or TDV. Timing methods have been used to
measure the mass of transiting planets for which no radial velocity measurement
was possible (e.g., Jontof-Hutter et al. 2015) and to accurately measure the physical
parameters of systems independently of stellar models (Almenara et al. 2015;
Almenara et al. 2016). TTV of a transiting planet can also be employed to detect
non-transiting planets (e.g., Ballard et al. 2011). However, unless TDV are also
present (see Nesvorný et al. 2013; Barros et al. 2014), the parameters of the unseen
planet are usually degenerate (Ballard et al. 2011).

Most of the analysis on TTV and TDV rely on the measurement of timings
and durations of individual transits, and are limited by the precision obtained in
these measurements. A way to dramatically improve the precision obtained in
the parameters of systems analysed through transit timing is to perform a full
photodynamical model (e.g., Carter et al. 2011; Doyle et al. 2011; Almenara et al.
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2015; Almenara et al. 2016). The full photodynamical model uses a dynamical
N-body simulation to compute distances between all the planets and the star at
each time step. This is then input in the light curve models discussed above. In
this way, the timing of each individual transit is constrained by the data from the
entire light curve and not just by the points taken during that particular transit. As a
consequence, analyses using photodynamical models produce superior results than
those using measurements from individual transits (Almenara et al. 2016), but at
the expense of the increased computational time required to perform the dynamical
simulation.

3 Statistical Models

Let us go back to Eq. (1):

di D mi C ei : (35)

Last section was dedicated to obtaining deterministic physical models for the term
mi. To do this we made a series of simplifying assumptions to render the problem
tractable and arrived at deterministic expressions for the radial velocity or light
curve of a star with an orbiting planetary companion. In other words, for each set of
model parameters at a given time, the models from the previous sections provide a
precise value for the radial velocity or flux drop.

In this section we describe a second type of models used to describe (exoplanet)
data: statistical models. In a statistical (or stochastic) model there is not a single
model output value for a given set of input parameters and independent variables
(time), but rather a probability distribution of values. Stochastic models are strictly
necessary when the system being modelled is probabilistic in nature. This is of
course the case of quantum mechanics, but also of all problems involving uncertain
measurements.

In Eq. (35), the error term ei represents the discrepancy between the model mi and
the observed data. For data with non-zero uncertainty (real data) this term exhibits
a stochastic behaviour. Its probabilistic nature comes from a combination of actual
probabilistic processes—such as the emission of radiation by the atoms in the stellar
atmosphere—with very complex, but in principle deterministic, systems—such as
the detailed behaviour of the telescope and instruments used to acquire the data or
weather conditions at the time of observation. These complex systems are better
described in probabilistic terms instead of using complicated deterministic models
with a large number of parameters.

Besides the probabilistic nature of the error term, ei, a second source of
randomness comes from uncertainties in the physical model term mi. We have
already mentioned that mi is not necessarily deterministic. Indeed, mi may contain
a probabilistic part related either to uncertainty in the model itself or in the
independent variable used to compute it. The latter is discussed in some detail in
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Gregory (2005; Sect. 4.8.2). Here, we will deal exclusively with the former, and
will break down the model term as

mi D md
i C ms

i ; (36)

where the d and s indices stand for deterministic and stochastic, respectively.
In general, the term ms

i can include complicated processes affecting the data and
on which we are not primarily interested. A prime example of this is stellar activity.
As we will describe in this section, it is possible to produce a relatively simple model
of the effects of stellar activity using statistical models. As we are not primarily
interested in studying stellar activity, the parameters of this part of the model can be
marginalised out to fully account for their effect on the uncertainty of the remaining
model parameters. A deterministic alternative would require producing a model that
provides the precise effect of stellar activity on the data for a given time. This usually
requires a large number of parameters to describe, for example, the position, size,
temperature and spectrum of active regions in time. Although this type of models
exist and have been successfully put to practice (Boisse et al. 2012; Kipping 2012;
Dumusque et al. 2014), they are plagued with degeneracies, because the available
data are usually not sufficient to determine all model parameters independently.
Besides, these models tend to require a substantial amount of computing time,
which renders them impractical for iterative algorithms such as Markov chain
Monte Carlo (MCMC). Another typical case where statistical models provide a
simpler description than their deterministic counterparts is instrument systematics.
In summary, the term ms

i includes all “complex physics”, defined here as all
processes or systems too complicated to be described by a deterministic model with
a reasonable number of parameters.

3.1 Uncorrelated Errors

The simplest possible model for the error term ei arises when the observed data
points are assumed uncorrelated and their errors are normally distributed with
known variance �2i , not necessarily the same for all measurements. The expression
for the distribution function of the error term, f .ei/ is then simply:

f�i.ei/ D N.0; �i/ D 1q
2��2i

exp

	
� e2i
2�2i



; (37)

where N.�; �/ is a Gaussian distribution with mean value � and variance �2.
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A slightly more sophisticated model consists in assuming the errors are over- or
underestimated, and therefore introducing a multiplicative correction factor ˛:

f�i;˛.ei/ D N.0; ˛�i/ D 1p
2�˛�i

exp

	
� e2i
2˛2�2i



: (38)

Note that this model already has an additional nuisance parameter ˛, which in
principle is not of primary interest. The ˛ term can be assumed to be the same for all
measurements (for all i), or depend on subindex i, with the subsequent multiplication
of nuisance parameters.

3.2 Gaussian Processes

A stochastic process can be roughly described as a generalisation of a probability
distribution to functions (Rasmussen and Williams 2005). In other words, it is
the probability distribution of an infinite-dimensional random variable, one that
describes the values of the function in all possible points in input space. A Gaussian
process (GP) can be seen as a collection of such random variables, any finite
number of which have a joint multivariate normal distribution (Rasmussen and
Williams 2005). Because of their great flexibility, attractive mathematical properties
and computational tractability, GPs have been used as models by the machine
learning community. Only recently GP regression has made its way to the exoplanet
community. A thorough treatment of GPs is outside the scope of this chapter and we
therefore give only a brief introduction to the subject in the context of exoplanetary
science.

In general, GP regression is used in exoplanetary science to model complicated
signals that are difficult to describe analytically. These include, but are not limited
to, systematic effects originating in the instruments and signals produced by stellar
activity. Sometimes GPs are said to model the covariate noise of a given dataset.
This is equivalent, but means the GP is included in the error term ei instead of in the
stochastic model term ms

i .
A GP is completely specified by its mean function and covariance function,

which we denote m.Ex/ and k.Ex; Ex0/, respectively, where Ex and Ex0 are input vectors of
the process. An input vector can have any number of dimensions, as the process can
have any number of input variables. For example, when modelling stellar activity
signals, one would naturally include time as an input variable, but may also find it
useful to include activity proxies, such as the Ca II H & K lines index, log R0

HK. For
any real process f .Ex/, the mean and covariance functions are defined as

m.Ex/ D EŒ f .Ex/
 and k.Ex; Ex0/ D EŒ. f .Ex/ � m.Ex//. f .Ex0 � m.Ex0/
 :
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The mean function is usually the physical model included in addition to the GP
model (i.e., md

i ). For a pure GP model, the mean function can be considered as

zero. We need, then, to specify only the covariance function k.Ex; Ex0/, which needs to
produce a valid covariance (i.e., a positive semi-definite symmetric) matrix.

One very popular example of covariance function is the squared-exponential:

k.ti; tj/ D �2f exp

	
� .ti � tj/2

2�2



: (39)

For simplicity we assumed time is the only input variable and changed the notation
accordingly. The function has two free parameters, �f and � , called hyperparame-
ters. We can sample from the GP defined by the covariance function in Eq. (39),
and without including yet any data point. We call this the prior GP. The obtained
sample is shown in Fig. 4 for three different values of the length scale parameter � .
In fact, to draw the functions in Fig. 4 we have evaluated the covariance at a finite
time vector Et� of length n�, known as the input vector. The corresponding matrix of
covariance values is denoted K.t�; t�/, where for simplicity we left out the vector
notation for the input vector.

The functions drawn in Fig. 4 are samples from the prior GP. Usually, we are
interested in knowing how these functions change when we condition the GP to
some data. For example, let us assume we have obtained a number of observations
at times ti, for i D 1; 2; : : : ; n. At these points we know the values of the function,
fi, with some noise, which we assume normally distributed with variance �2i , for
i D 1; 2; : : : ; n, i.e., the observation at time ti is yi D fi C �i, where �i is distributed
as N.0; �i/. This data set is called the training set. We want to incorporate the new
information and see how our process changes. Rasmussen and Williams (2005)
explain that one way to do this is to produce a large number of samples from

Fig. 4 Functions drawn from a GP with a squared-exponential covariance. The length scale
parameter changes from 0.5 (a) to 1.0 (b) to 2.0 (c). As the length scale increases, the typical
functions generated by the GP vary more slowly. In other words, the distance between two points
in time that differ significantly increases with length scale
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the prior GP and reject those that do not agree with the data. Of course, this is
very inefficient computationally. Fortunately, the properties of GPs permit giving
analytical formulae for the mean and covariance function of the posterior GP, f�,
conditioned to the data (see Eqs. 2.22–2.24 from Rasmussen and Williams 2005):

EŒ f�jEt; Ey
 D K.X�;X/
�
K.X;X/C �2n I

��1 Ey ; (40)

cov. f�/ D K.X�;X�/ � K.X�;X/
�
K.X;X/C �2n I

��1
K.X;X�/ ; (41)

where the symbol K.X;X�/ represents the n � x� matrix of covariances evaluated at
all pairs of training and input points.

Figure 5 shows three draws from the posterior GP conditioned to two observa-
tions, separated by 3.3 “time units”. When the decay time is much smaller than this
separation (panel (a)), the GP has a large variance between the observations, while
its variance is much smaller when the separation of the training points is comparable
with the decay time (panel (c)). In other words, if the covariance function falls off
rapidly, having observed at one point in time gives little information about the rest
of the points. Note that independently of the chosen hyperparameter values, the
posterior GPs always manage to produce functions that accurately reproduce the
training points. This attests the flexibility of the GPs, and warns us about their ability
to potentially absorb coherent signals such as the signature of planets.

Another function widely used to model the effect of stellar activity is the quasi-
periodic covariance,

k.ti; tj/ D �2f exp

"
� .ti � tj/2

2�2
� 2 sin2

�
�.ti � tj/=P

�
�2

#
; (42)

Fig. 5 Three draws from a GP obtained by conditioning the processes from Fig. 4 with two
training points, with time coordinates, t1 D �2:2, t2 D 1:1, and observed values y1 D 1:98,
y2 D 0:74. The variance of the noise term � is 0.01 for both points. As the distance between
the point becomes comparable with the decay time scale, the variance of the GP becomes smaller
between the points
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Fig. 6 Functions drawn from a GP with a pseudoperiodic covariance function, with amplitude
�2f D 1, decay time scale � D 3, pseudo period P D 1:75. The structure parameter is
� D 0:75 (a), � D 1:0 (b), and � D 2:0 (c). We can see that as the structure (hyper)parameter
increases, the functions resemble a sinusoidal function more closely, and can more accurately
describe a light curve dominated by a single long-lived spot. Functions with smaller structure
parameter have a larger number of contributions and resemble more closely stars with more than
one active region. For example, in panel (b) functions clearly have two periodic components that
evolve independently

with four hyperparameters: the covariance amplitude �2f , the decay timescale � ,
the pseudo-period P and the structure parameter �. We present samples from this
process in Fig. 6.

The quasi-periodic covariance produces functions which resemble remarkably
the light curve of spotted stars, and has been used to model both light curves and
RV variations of active stars (e.g., Haywood et al. 2014; Rajpaul et al. 2015). The
pseudo-period, or recurrence timescale, P , can be identified with the stellar rotation
period, which is often known from the light curve and in some situations from
the radial-velocity time series. The decay time is associated with the time of the
evolution of the active regions, which is harder to measure, but has been calibrated
for solar-type stars using Kepler photometry. Additionally, as shown in Fig. 6, the
structure parameter can be tuned to describe stars with a varying number of active
regions. This covariance function allows therefore to describe a large variety of
activity signals, making it very useful.

4 Bayesian Inference

This chapter on data modelling would not be complete without a description,
however brief and summarised, of the techniques and methods used to obtain
information on the model parameters from the data. The models presented so
far are relatively simple and can in most cases be expressed by closed analytical
formulae. However, the non-linear dependence on the model parameters and strong
covariances between them makes the task of statistical inference challenging. In this
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section, we present a brief overview of the concepts involved in Bayesian statistical
inference and provide a necessarily short introduction to a family of widely used
algorithms: Markov chain Monte Carlo.

Statistical inference is the process by which we recover quantities of interest from
available data, which are noisy or otherwise uncertain (see, e.g., Gregory 2005 and
Trotta 2017 for an introduction addressed at astrophysicists and astronomers). The
notion of probability is central in statistical inference. Statistics, sometimes called
“inverse probability”, is focussed on learning about the underlying probabilistic
processes that give rise to the observed data. This is done by learning about the
numerical values of the model parameters. Unlike the classical (frequentist) concept
of probability, which is related to the number of times an event occurs, and is
therefore defined only for random variables, the Bayesian theory allows us to define
the probability of any proposition. Indeed, the Bayesian concept of probability is
related to the degree of belief in a given proposition, with the extremes being the
concepts of True or False used in classical Aristotelian logic. Actually, Bayesian
probability theory can be seen as an extension of logic allowing us to reason in the
face of uncertainty. A wonderful description of the concepts underlying Bayesian
probability theory and the process leading to considering it an extension of logic is
given by Jaynes (2003). Many other advantages of the Bayesian approach have been
identified and are usually quoted (see, e.g., Trotta 2017).

In Bayesian inference the prior knowledge of any proposition—such as “the
orbital period of this planet is between 3.5 and 3.51 days”, or “this star is orbited by
six planetary companions”—is encoded in the prior probability distribution, p.� jI/,
where � represents a proposition, which can represent a given hypothesis or be
related to the value of the model parameters for a given hypothesis. In any case,
I represents the knowledge available before taking into consideration the data. In
what follows, we assume for simplicity that � represents the parameter vector of a
given model.

Once the data are incorporated in the analysis, the prior distribution transforms
into the posterior distribution, p.� jD; I/. All the information provided by the data
is encoded in this distribution. In general, the knowledge on � changes when (new)
data are incorporated. The way in which this change takes place is described by
Bayes’ theorem:

p.� jD; I/ D p.Dj�; I/p.� jI/
p.DjI/ ; (43)

where D represents the data. The function p.Dj�; I/ � L .�/ is called the likelihood
function and describes how probable the current data are given a certain value of the
model parameters, � . In the denominator, we find the marginal likelihood, p.DjI/,
which is a constant term with respect to � and ensures the correct normalisation of
the posterior distribution. For the purpose of parameter inference, this can be safely
ignored in most cases. On the other hand, the marginal likelihood has a central
role in model comparison problems, which we do not cover here. The posterior
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distribution is therefore proportional to the likelihood times the prior:

p.� jD; I/ / p.Dj�; I/ p.� jI/ :

4.1 Likelihood Function

The likelihood function has therefore an important role in the inference process.
A detailed description on how to construct likelihood functions is presented by
Gregory (2005; Sect. 4.8). In particular, readers are referred to this book for a
description on how to construct likelihoods with stochastic models.

Here we describe the simple case where the model is deterministic and the data
errors are uncorrelated. Under these assumptions, one can deduce from Eq. (1)
that the probability distribution of a given datum, di, is equal to that of the error
term5 ei. Proposition D is simply the logical conjunction of propositions concerning
individual data points: D D d1; d2; 	 	 	 ; dN . Therefore, for independent errors, we
have:

L .�/ D p.Dj�; I/ D p.d1; d2; 	 	 	 ; dN j�; I/
D p.e1; e2; 	 	 	 ; eN j�; I/

D
NY

iD1
p.eij�; I/ : (44)

In the case of normally distributed errors (Eq. 37), the likelihood function has the
form:

L .�/ D
NY

iD1

1p
2��i

exp � .di � m.ti; �//
2

2�2i
; (45)

where m.ti; �/ is the model function, where we have explicitly indicated its
dependence on the independent variable (time), ti, and the model parameter vector,
� . Because of the large dynamical range of this likelihood function, it is usual to use
its natural logarithm instead:

logL .�/ D �N

2
log.2�/ � 1

2

NX
iD1

log �2i � 1

2

NX
iD1

.di � m.ti; �//
2

�2i
: (46)

5The derivation is not as trivial as one may think from considering Eq. (1).
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The first term on the right-hand side of Eq. (47) is a constant and is usually irrelevant
for inference problems. The last term is proportional to the usual �2 statistics. Note
that if no model parameters appear in the data uncertainties, �i, maximising the
likelihood function is equivalent to minimising the �2 statistics. However, if data
errors risk being underestimated, one might wish to include an additional (nuisance)
parameter in the model to account for this (see Eq. 38). In that case the second
term on the right-hand side acts as a counterbalance impeding the likelihood from
becoming artificially large by increasing the size of the error bars.

When the uncertainties are correlated, or when a GP is included as part of the
model, the log-likelihood function is:

logL .�/ D �N

2
log.2�/ � 1

2
log jKj � 1

2
ErT 	 K 	 Er ; (47)

where K is the covariance matrix, jKj is its determinant and Er is the vector of
residuals obtained by subtracting the model prediction from the observed data
points.

4.2 Priors

The prior distribution of � is the second element needed to compute the posterior
distribution. Prior distributions (or simply “priors”) are a controversial feature of
Bayesian statistics. While some see in them a way to naturally include relevant
prior information in the analysis others deem prior distributions as an inherently
subjective element of the theory. In any case, defining the priors of a given problem
is usually difficult and tricky. Priors need to include all relevant information
on a problem, which can range from the results of a previous analysis to the
educated guess of a renown scientific figure. As priors need to have the form of
probability distributions, a non-trivial problem of codification arises. While there is
no universally accepted method to assign priors that convey information, there is a
vast body of literature on ways to define ignorance priors.

Ignorance priors are intended to convey the least possible information about � .
One could argue that absolute ignorance is an abstract concept and that some degree
of information on a given parameter value is always available. To this Jaynes (2003)
replies that ignorance priors play the role of the “zero” in Bayesian statistics, i.e.,
no information, and as such have an important theoretical role. In more practical
terms, ignorance priors are usually handy when one needs to specify the priors for
parameters for which little can be said before considering the data.

The literature contains a large number of digressions on how ignorance priors
should be defined. We give a brief description of the most popular of them here:

1. Principle of indifference. Laplace (1812) introduced a principle for assigning
probabilities to a set of n discrete hypotheses H1;H2; : : : ;Hn when nothing
allows to prefer one over the others. If the set is complete (i.e., they cover the
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entire set of possible outcomes), we have p.HijI/ D 1=n, for all i. Although this
method seems intuitive, it is not easily extended to continuous variables, besides
lacking invariance to transformation.

2. Invariance rules. For a certain type of parameters, “total ignorance” can be
represented as invariance under certain transformations (Gregory 2005). For
example, when the parameter represents a location, as for example the position
X of the largest tree along a river, total ignorance requires that the problem be
invariant under a translation: X0 D X C c, for any constant c. This leads to the
uniform prior:

p.XjI/ D constant : (48)

For scale parameters, such as the Poisson rate of an unknown source or the
lifetime of new bacteria, ignorance is reflected by a lack of information on the
order of magnitude of the parameter (the bacteria can live from a few minutes
to a few days or weeks). This can be translated to invariance under rescaling,
X0 D ˛X, which leads to a log-flat prior:

p.XjI/ D constant

X
: (49)

Although these rules are useful, not all parameters can be classified in any of
these two categories. Besides, the invariance under transformations gives us the
functional form of the prior distribution, but not its boundaries (normalisation).
One needs still to define the extrema of the distributions, if proper priors are
needed.

3. Jeffreys-rule prior. The rule advocated by Jeffreys (1946, 1961) uses the expected
Fisher information for a given problem:

I.�/ D ED

	
� @2

@�i@�j
logL .�/



; (50)

where the expectation is over the data.6 Jeffreys’s rule defines the prior for � as

p.� jI/ D p
I.�/ : (51)

Jeffreys’s rule produces the optimal prior for one-dimensional models. Besides,
it reproduces the results from the invariance rules. For example, the prior for the
mean value of a normal model with known variance is a flat prior, and that of the
scale of a normal with known mean value is a log-flat prior. However, Jeffreys-
rule priors run into serious issues when applied to multi-dimensional parameters
(Berger et al. 2015), reducing drastically their applicability.

6Real data D are not available at the moment of specifying priors for the model parameters.
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Other methods involve the principle of maximum entropy (Jaynes 1957, 1968).
More recent developments include reference priors (Berger et al. 2009, 2015),
where the Kullback–Leibler divergence between prior and posterior is maximised
seeking a prior that maximises the expected difference between posterior and prior
distributions. In one-dimensional problems, reference priors reduce to Jeffreys-rule
priors, but their properties in multi-dimensional problems are better.

In any case, sensitivity analyses are warranted and should be performed system-
atically. However, as expressed by Trotta (2017; Sect. 3.3):

A sensitivity analysis should always be performed, i.e., change the prior in a reasonable
way and assess how robust the ensuing posterior is. Unfortunately, this is seldom done in
the astrophysics and cosmology literature.

4.3 Sampling the Posterior: Markov Chain Monte Carlo

Once the prior distribution is specified and the likelihood function is constructed,
the posterior probability distribution (or simply the “posterior”) can be obtained.
In most practical cases it is not possible to perform inference on the posterior
distribution analytically. For this reason, a series of algorithms to explore the
posterior exist. Chief among them, Markov chain Monte Carlo (MCMC) is a family
of algorithms that can be employed to produce a sample of arbitrary size from the
posterior. With a sample at hand, one can make inferences on the model parameters,
define credible intervals, explore the marginalised distributions, etc. An introduction
to MCMC can be found in Gregory (2005). Another useful reading is the appendix
of Tegmark et al. (2004). A vast body of literature and online resources exist on the
subject and are promptly available.

The basic idea behind MCMC is to construct a Markov chain starting at a given
point in parameter space. New links are added to the chain following some stochastic
algorithm. Under quite general conditions it can be shown that after some steps,
the links of the chain are samples from the posterior distribution (e.g., Gregory
2005). MCMC algorithms differ in the way the new chain links are produced. Many
algorithms use a random walk process to generate a candidate link which is later
accepted as part of the chain or not following some criterion.

The most popular Random Walk MCMC algorithm in exoplanetary science is
the Metropolis–Hastings (MH) algorithm (Metropolis et al. 1953; Hastings 1970).
In this algorithm, new steps for the chain are proposed by means of a random
walk, usually the addition of a multivariate normal random variable to the current
parameter vector, � , to produce a candidate link, � 0. The proposed new state, � 0, is
then accepted with probability

r D min

�
1;

p.� 0jD; I/
p.� jD; I/

q.� j� 0/
q.� 0j�/

�
;
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where q.yjx/ is the probability of proposing state y from state x. In the case of
the normal proposal distribution, the ratio q.�; � 0/=q.� 0; �/ cancels out. In other
words, if at the proposed step the posterior density increases with respect to � ,
it is accepted automatically. Otherwise, the algorithm accepts � 0 with probability
p.� 0jD; I/=p.� jD; I/ < 1.

The efficiency of the MH algorithm is often given by the choice of the proposal
distribution q.	j	/. A naïve choice as the one described above usually makes the
algorithm very inefficient for sampling correlated parameter space. More sophisti-
cated adaptive algorithms are described in the literature (e.g., Haario et al. 2001;
Goodman and Weare 2010; Díaz et al. 2014). Another well-known issue of this
MCMC algorithm is its inefficiency for sampling from multi-modal distributions.
Readers are advised to consult the vast literature on this subject before developing
their own MCMC code or using those available online.
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Characterization of Exoplanet-Host Stars

Vardan Adibekyan, Sérgio G. Sousa, and Nuno C. Santos

Abstract Precise and, if possible, accurate characterization of exoplanets cannot
be dissociated from the characterization of their host stars. In this chapter we
discuss different methods and techniques used to derive fundamental properties and
atmospheric parameters of exoplanet-host stars. The main limitations, advantages
and disadvantages, as well as corresponding typical measurement uncertainties of
each method are presented.

1 Introduction

The discovery of the first1 extrasolar planet orbiting a main-sequence star, 51
Peg b (Mayor and Queloz 1995), marks the start of observational exoplanetology.
Exoplanet research experienced huge progress during the last two decades and has
surely become a solid research field in contemporary astrophysics. Thanks to the
fast progress in the development of instrumentation and observational techniques
during the past decades, as of today (January 2017) there are more than 3500 planets
detected, while several thousand candidates still await validation (Coughlin et al.
2016).

1The detection of two terrestrial-mass companions around the pulsar PSR1257+12 had already
been announced in 1992 (Wolszczan and Frail 1992).
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Today, the main efforts in exoplanet research are moving towards the precise
characterization of detected planets, including their statistical properties, as well
as the detection of planets with progressively lower masses. Despite the aforemen-
tioned progress, the study of extrasolar planets’ properties via direct observations
is still a very difficult task, and their precise study and characterization cannot
be dissociated from the study of the host stars. For example, we should be aware
that transit measurements only provide us with the planet-to-star radius ratio, and
the mass provided by radial-velocity measurements is dependent on the stellar
mass. Thus, the characterization of planets (e.g., mass, radius, density, and age)
requires characterization of their hosts, and the accuracy of the planets’ properties
fundamentally depends on the achieved accuracy of the hosts’ properties.

It is very clear for the exoplanet scientific community that poor characterization
of planet hosts and planets themselves is an important limitation, which cannot
be always compensated even with large number statistics. A good example is
the Kepler mission, which provided thousands of stars with exoplanet candidates
and an extremely large sample of stars with no detected planets that can be used
for comparison analyses. However, the vast majority of these stars are poorly
characterized, which obviously decelerates the—though still revolutionary—fast
advance in the field. The example of Kepler and that of other ongoing (e.g., Gaia,
K2; Perryman et al. 2001; Howell et al. 2014) and upcoming (e.g., TESS, PLATO;
Ricker 2014; Rauer et al. 2014) space missions motivated the community to start
coordinating efforts to characterize the planet hosts. The importance of coordinating
the exoplanet follow-up efforts has been addressed and intensively discussed in sev-
eral recent meetings,2 and during the past few years several dedicated communities3

and web interfaces4 have been created with the goal of optimizing and coordinating
the resources in exoplanet follow-up studies and characterization of their host stars.

Regarding the accuracy of the characterization of exoplanet hosts, many groups
all over the world are intensively working on pushing down the precision limits and
on developing methods that are less model-dependent and are most time-efficient.
Unfortunately, direct measurements of physical properties of stars—including
exoplanet hosts—are very rare and are possible for only specific targets. The
physical properties of the host stars are usually derived by using theoretical stellar
evolutionary models and/or models of atmospheres. The uncertainties in the stellar
model parameters can highly influence the final accuracy with which properties of
the stars and their planets are measured (e.g., Soderblom 2010; Basu et al. 2012).
Asteroseismology is the tool that comes to help on improving our knowledge of
fundamental properties of stars. It can provide properties for bright exoplanet-host
stars (solar-type and red-giant stars, but not the cool dwarfs) with very high accu-
racy. PLATO will take full advantage of asteroseismic analyses to characterize all the

2For example, during ExoPAG 11 (https://exoplanets.nasa.gov/exep/events/14/) and the K2 meet-
ing that took place in Porto in 2016 (http://www.iastro.pt/research/conferences/k2meeting/).
3SAG-14 (https://exoplanets.nasa.gov/exep/exopag/sag/).
4ExoFOP (https://exofop.ipac.caltech.edu/).

https://exoplanets.nasa.gov/exep/events/14/
http://www.iastro.pt/research/conferences/k2meeting/
https://exoplanets.nasa.gov/exep/exopag/sag/
https://exofop.ipac.caltech.edu/
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planet hosts brighter than 11th magnitude (Rauer et al. 2014). Few dozen exoplanet
hosts detected by TESS will also benefit from asteroseismology (Campante et al.
2016). One should also not underestimate the importance of the Gaia mission in the
characterization of exoplanet hosts. Combined with ground-based, high-resolution
spectroscopy, Gaia will provide precise fundamental properties (radii, luminosities,
distances, and surface gravities) of exoplanet hosts.

We should also note that, in exceptional cases, planetary properties can be
derived without using stellar models. For example, the surface gravity of transiting
exoplanets can be directly determined from the spectroscopic orbit of the parent
star and the parameters measured directly from the transit light curve (Southworth
et al. 2007). Absolute masses and radii of planets can be also determined with
very high precision (down to 1–2%) for multi-planet systems—with detectable
gravitational interactions between planets—when precise light curves of transits and
radial-velocity (RV) data are available (Almenara et al. 2015). Interestingly, it was
proposed that the masses of transiting planets can be estimated based solely on the
transmission spectrum (de Wit and Seager 2013).

It is very interesting to realize that not only knowledge about the host star helps
to better understand the planet, but also sometimes observations of exoplanets help
characterizing the stars. For example, the stellar density can be directly derived from
the transit light curve alone (Seager and Mallén-Ornelas 2003, but see Kipping
2014), and spatially-resolved stellar photospheres can be studied in detail when
transiting planets are observed spectroscopically (e.g., Collier Cameron et al. 2010;
Cegla et al. 2016).

In this manuscript we present the main methods and techniques that are widely
used to characterize exoplanet-host stars. Together with the description of different
methods and techniques we will also discuss the main limitations and achievable
precision.

2 Fundamental Properties of Stars: Mass, Radius and Age

The mass of RV-detected planets scales as M2=3, where M is the mass of the stellar
host, while the radius of transiting planets is derived from the depth of the transit
event and the radius of the parent star. Since planet formation is a relatively fast
process compared to the lifetime or age of most of the planet hosts, stellar age can
be used as a proxy for the age of planetary systems. Thus, basic characterization of
exoplanets implies basic characterization of their hosts.

Stellar Masses Very precise dynamical masses can be derived for double-lined
and single-lined (if the RV is derived for each component) eclipsing binaries, and
for non-eclipsing double-lined spectroscopic binaries if astrometric orbits of the
stars are known (usually through long-baseline interferometry). These techniques
are quite well known (for a recent comprehensive review, see Torres et al. 2010) and
can provide masses with an accuracy of better than 3%.
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Unfortunately, direct determinations are usually impractical for most stars and
indirect methods have to be used. Different empirical and theoretical indirect
methods are commonly used to determine the mass of single field stars. The stellar
masses can be estimated by using the spectroscopic surface gravity and luminosity
of the star, provided the Teff is known. This method can give masses with a
precision of 10–20% depending on the precision on log g and distance (parallax)
of stars (Sousa et al. 2011). The masses can be empirically estimated by using
mass-luminosity relations with a precision below 10% (e.g., Xia and Fu 2010).
Empirical relations between stellar mass and stellar parameters (Teff, log g, and
[Fe/H]) by Torres et al. (2010) give a scatter of only �6% for main-sequence stars
with masses above 0.6Mˇ. Finally, stellar masses can be determined by comparing
stellar observed properties with stellar evolutionary tracks (e.g., Johnson et al. 2010;
Sousa et al. 2015) or by using the power of asteroseismology (e.g., Huber et al.
2012; Chaplin et al. 2014). The latter method can lead to mass uncertainties below
5% (e.g., Chaplin et al. 2014).

We should note that several studies suggested that the masses of planet-hosting
evolved stars derived from evolutionary tracks can be largely overestimated (e.g.,
Lloyd 2011, 2013; Takeda and Tajitsu 2015). However, Ghezzi and Johnson (2015)
recently found very good agreement between model-independent masses and the
masses estimated using PARSEC evolutionary tracks (Bressan et al. 2012) for a
sample of 59 benchmark evolved stars.

Stellar Radii One of the most accurate ways of determining stellar radii is to
measure the angular size of stars using interferometry. When precise distances
(parallaxes) of these stars are known this method provides a practically direct
measurement the radius that reaches 1–3% precision on the angular diameter (e.g.,
Boyajian et al. 2013, 2014). Until now, distances (parallaxes) of only nearby
stars were known with high precision thanks to the Hipparcos satellite. However,
Gaia will improve the situation, providing very precise distances for stars with
much larger distances than Hipparcos could reach. We note that angular sizes and,
consequently, linear radii of stars can also be determined using lunar occultations.
This method has clear limitations (e.g., the Moon does not cover all the stars in the
sky), but can provide radii with a precision of down to 3% (e.g., Richichi 1997).

Another direct technique to derive accurate stellar radii is to use double-lined
eclipsing binary systems. The measured light curve and derived radial velocities
of the two components can be used to estimate the radii of the two stars with
accuracies of better than �1% (e.g., Lacy et al. 2005; Southworth et al. 2007). A
catalog of about 170 detached eclipsing binary systems with precise mass and radius
measurements is presented in Southworth (2015).

Accurate direct measurements of stellar radii with interferometry and/or using
eclipsing binaries can be used to develop empirical relations between radius and
photometric colors (Boyajian et al. 2014), or else radius and stellar parameters
(Torres et al. 2010). These empirical relations can be used to predict radii of stars
with errors less than 5%.
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Finally, distant stars are inaccessible for direct angular diameter measurements
and so indirect methods are necessary to estimate their radii. Stellar radii can
be derived from stellar evolution models by using the luminosity and effective
temperature of the stars (e.g., Santos et al. 2004b; Torres et al. 2006) or, for transiting
systems, by using the stellar density5 (directly derived from the light curve) and Teff

(e.g., Sozzetti et al. 2007). Radii of exoplanet hosts can also be derived by using
asteroseismic quantities combined with Teff and stellar metallicity. This technique
provides stellar radii with a typical precision of 2–4% (e.g., Chaplin et al. 2014).

Stellar Ages Determination of accurate stellar ages is not an easy task, especially
for field stars. Unlike stellar mass and radius, stellar age cannot be directly measured
and the use of stellar models is usually necessary to estimate ages. In exceptional
cases, stellar ages can be determined without involving stellar models, namely, for
young groups of stars through their kinematics (e.g., Makarov 2007) and for old
metal-poor stars by using nucleocosmochronometry (e.g., Ludwig et al. 2010).

The most common ways of estimating ages of exoplanet hosts are isochrone
placement (e.g., Pont and Eyer 2004; Takeda et al. 2007) and asteroseismology
(e.g., Silva Aguirre et al. 2013; Campante et al. 2015). We note that both methods
require a knowledge of stellar atmospheric parameters. Whereas the uncertainties
on ages derived from stellar isochrones are typically not better than �20–30% (e.g.,
Jørgensen and Lindegren 2005; Maxted et al. 2015), asteroseismology can provide
ages with a relative precision of about 10–20% (e.g., Kjeldsen et al. 2009; Silva
Aguirre et al. 2016).

Alternatively, stellar ages can be derived by using empirical relations, calibrated
between age and rotation period (e.g., Barnes 2007), age and chromospheric activity
(e.g., Lyra and Porto de Mello 2005; Mamajek and Hillenbrand 2008), as well as age
and chemical abundance ratios (e.g., Nissen 2015). While these empirical relations
can provide relative high precision (depending on the calibration), their absolute
values are difficult to establish. For an excellent review on stellar age derivation
with different techniques we refer the reader to Soderblom (2010).

Summarizing, we can state that, when direct measurements are possible,
masses and radii of individual stars can be derived with a precision of better
than 1–3%, whereas stellar ages can be estimated with an accuracy of better
than a few percent. For large numbers of exoplanet hosts, stellar fundamental
properties can be derived with a precision of �10–20% for mass and radius,
and with a precision of 20–30% for ages, assuming stellar atmospheric
parameters are derived with high precision (see sections below).

5Note that the derivation of this parameter also depends on the limb-darkening coefficient and
orbital eccentricity of the transiting planet (e.g., Mortier et al. 2013).
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3 Stellar Atmospheric Parameters

Accurate derivation of stellar atmospheric parameters (Teff, log g, and metallicity/-
chemical abundances) is very important to fully characterize exoplanet-host stars.
We need only to remember that the first interesting hint observed for exoplanet hosts
was the correlation between giant-planet occurrence and stellar metallicity (e.g.,
Gonzalez 1997; Santos et al. 2001), which had crucial importance for the advance
of exoplanet formation theories. For individual stars, direct measurements of stellar
sizes and masses can be used to determine effective temperature and surface gravity
without using stellar models. Stellar metallicity and chemical abundances of stars
cannot be directly measured and stellar atmospheric models need to be used.

As discussed in the previous section, the direct determination of radii and
masses, and hence Teff and log g, is not possible for most stars. Hence, indirect
methods need to be used. Stellar atmospheric parameters (Teff, log g, and [Fe/H]
as a proxy for overall metallicity) can be derived with different methods and
techniques. Photometric calibrations (e.g., Önehag et al. 2009; Casagrande et al.
2010; Brown et al. 2011), depending on the photometric systems, can provide stellar
parameters with reasonably high precision (Smalley 2014). Profiles of individual
lines (e.g., Catanzaro et al. 2004, 2013; Cayrel et al. 2011) and spectral line
depth/equivalent width (EW) ratios (e.g., Gray and Johanson 1991; Sousa et al.
2012) can also be used to determine different stellar parameters. Some of these
methods can provide parameters with very high precision (e.g., �2K in Teff; Gray
and Livingston 1997), but with significantly less accuracy. Nevertheless, the most
used and accurate techniques of deriving stellar parameters are provided by stellar
spectroscopy. For a comprehensive description of different methods for atmospheric
parameter derivation we refer the reader to Gray (2005) and Niemczura et al. (2014).

The main spectral analysis techniques for the determination of stellar parameters
can be divided into two main groups: the EW method and the spectral synthesis
method. In classical EW methods, measurements of EWs of isolated individual
metallic lines are used to derive stellar parameters assuming excitation equilibrium
and ionization balance (e.g., Santos et al. 2004a; Sousa 2014). Spectral synthesis
methods yield stellar parameters by fitting the observed spectrum—all, selected
parts of the spectrum, or even a selection of lines—with a synthetic one (Valenti
and Piskunov 1996; Malavolta et al. 2014), with a library of pre-computed synthetic
spectra (Recio-Blanco et al. 2006), or a library of EWs (Boeche and Grebel 2016).
Today there are many automatic tools designed to derive stellar parameters with the
EW method (e.g., Magrini et al. 2013; Tabernero et al. 2013; Sousa 2014), spectral
synthesis techniques (e.g., Allende Prieto et al. 2006; Sbordone et al. 2014), as well
as tools that integrate different techniques, models of atmospheres and radiative
transfer codes (Blanco-Cuaresma et al. 2014). For further details about these
techniques we refer the reader to Niemczura et al. (2014) and Allende Prieto (2016).

Both EW and spectral synthesis techniques have their advantages, disadvantages
and limitations. The EW method is usually fast and relies on well selected lines.
However, this method cannot be applied to fast-rotating stars or to stars with
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severe line-blended spectra. For these stars, spectral synthesis methods should
be used. Synthesis techniques typically require more complicated computations
for the generation of synthetic spectra and heavily depend on the line list and
atomic/molecular data. A common limitation of spectroscopic methods is that they
cannot constrain stellar surface gravity well (e.g., Sozzetti et al. 2007; Mortier et al.
2013; Tsantaki et al. 2014). The impact of an unconstrained log g on the derivation
of other stellar parameters (Teff and [Fe/H]) is minimal for the EW-based curve-
of-growth approach, while it has a significant impact for spectral-synthesis-based
methods (Torres et al. 2012; Mortier et al. 2013). Luckily, surface gravity can be
derived with high precision using asteroseismology (e.g., Huber et al. 2013), as
well as for transiting systems from their light curves combined with spectroscopic
Teff and metallicity (e.g., Seager and Mallén-Ornelas 2003). From these two
estimates, asteroseismic log g ’s are preferable, since transit-based log g’s might
be less accurate when the eccentricity or the impact parameter of the transiting
planet is not well constrained (Huber et al. 2013). Mortier et al. (2014) proposed an
empirical correction—based on the comparison of spectroscopic and asteroseismic
log g’s—for the spectroscopic surface gravity that depends only on the effective
temperature. A word of caution should be voiced here. It is not advisable to fix
the surface gravity—derived from other, non-spectroscopic method—when doing
spectral analyses (Mortier et al. 2014; Smalley 2014). Fixing the log g can bias the
results and derivation of other atmospheric parameters.

The spectroscopic determination of stellar parameters is affected by different
factors, many of which are briefly discussed in Smalley (2014). The influence
of many of these factors (e.g., model atmosphere physics and input data) can be
minimized when the spectral analysis is done in a homogeneous way. Consequently,
when homogeneous and high-quality data are used, an extremely high precision in
stellar parameters can be achieved. For example, the latest works on solar twins
that are based on differential line-by-line analysis report a precision (internal error)
in atmospheric parameters of �10 K for Teff, �0.02 dex for log g, and �0.01
dex for [Fe/H] (e.g., Ramírez et al. 2014; Adibekyan et al. 2016b). However, one
should note that when analyzing spectra of the same star obtained with different
instruments and at different epochs, dispersion of stellar parameters larger than
the aforementioned precision can be obtained (e.g., Bensby et al. 2014; Adibekyan
et al. 2016b). Systematic errors, due to the model atmospheres, analysis method
and atomic data are much larger than the random errors. Comparison of the results
obtained with different methods for very large numbers of stars (e.g., Bensby
et al. 2014; Smiljanic et al. 2014), as well as comparison of results with model-
independent values for benchmark stars (Jofré et al. 2014; Heiter et al. 2015) show
that realistic typical errors on stellar parameters are not less than 50–100 K for Teff,
0.1–0.2 dex for log g, and 0.05–0.1 dex for metallicity. Further discussion on the
impact of using different atmosphere models and different analysis strategies on the
derivation of stellar parameters is presented in Lebzelter et al. (2012).
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Homogeneous derivation of stellar parameters is crucial for characterizing
exoplanet-host stars. The internal (relative) precision of atmospheric param-
eters can be as good as �10 K for Teff, �0.02 dex for log g, and �0.01 dex
for [Fe/H], but the overall precision of these parameters will be considerably
smaller.

4 Chemical Abundances of Exoplanet-Host Stars

Exoplanet-related research always requires high precision and accuracy. If very
high-precision measurements are needed to detect planets, likewise, finding possible
abundance differences between stars with and without planets also requires accurate
and homogeneous abundance determinations. Many studies aimed at clarifying
whether the planet-hosting stars are different from stars without planets in their
content of individual heavy elements other than iron (e.g., Fischer and Valenti 2005;
Robinson et al. 2006; Delgado Mena et al. 2010; Adibekyan et al. 2012b, 2015a;
Suárez-Andrés et al. 2016). In particular, it was shown that metal-poor hosts tend
to show systematic enhancement in ˛ elements (Haywood 2009; Adibekyan et al.
2012a,c). Accurate knowledge of abundances of individual heavy elements and
specific elemental ratios (e.g., Mg/Si and C/O) in stars with planets are also very
important because they are expected to control the structure and composition of
terrestrial planets (e.g., Grasset et al. 2009; Thiabaud et al. 2014; Dorn et al. 2015).

Once the atmospheric parameters of stars are known, chemical abundances of
individual elements can be derived spectroscopically by EW or spectral synthesis
techniques. Many research groups are intensively working on the derivation of
chemical abundances in stellar atmospheres of stars with and without planets.
The derivation of chemical abundances may seem very trivial, however, a simple
comparison of the (discrepant) results obtained for the same elements from the same
data in the same stars, but with different methods, shows that there are important
factors (e.g., line list and atomic data, continuum normalization, hyperfine structure,
damping, microturbulence, NLTE effects, atmospheric model) that need to be deeply
investigated. Intensive and comprehensive discussion about the possible issues can
be found in several recent articles (e.g., Smiljanic et al. 2014; Jofré et al. 2015;
Hinkel et al. 2016) that had as a common goal to open the black box of stellar
element abundance determination (Jofré et al. 2016).

As for the stellar parameters, when studying solar twins and solar analogs (i.e.,
stars that are very similar to our Sun in terms of stellar parameters) extremely
precise—accuracy still can be an issue—chemical abundances at the level of �0.01
dex can be obtained (e.g., Ramírez et al. 2010; González Hernández et al. 2013;
Adibekyan et al. 2016a; Saffe et al. 2016). High-precision abundances (at the level of
�0.05–0.10 dex) can be also obtained for large samples of cool stars if high-quality
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data are used and, importantly, if the spectral analysis is done in a homogeneous way
(e.g., Adibekyan et al. 2012b; Bensby et al. 2014; Adibekyan et al. 2015b; Mikolaitis
et al. 2016). However, if the data are compiled from different sources, or different
methods were used to derive abundances, then the results should be taken with
caution. Method-to-method or study-to-study dispersion of chemical abundances
can be larger than 0.10–0.20 dex (e.g., Hinkel et al. 2014; Smiljanic et al. 2014).

As for the atmospheric parameters, homogeneous derivation of chemical
abundances is important to achieve high precision. Elemental abundances for
large samples of cool stars can be derived with a typical internal (relative)
precision of �0.05 dex, but the accuracy of these derivations will be smaller.

5 Other Properties of Exoplanet-Host Stars

Kinematics Kinematics, or Galactic space-velocity components of stars, can be
computed when a star’s proper motion, radial velocity and parallax are known (e.g.,
Johnson and Soderblom 1987). The kinematics of exoplanet-host stars and their
relation to different stellar populations and moving groups have been discussed
in several works (e.g., Barbieri and Gratton 2002; Reid 2002; Ecuvillon et al.
2007; Adibekyan et al. 2012c; Gaidos et al. 2017). Most papers have not reported
any significant kinematic peculiarity of planet-hosting stars (e.g., Gonzalez 1999;
Barbieri and Gratton 2002). Conversely, Haywood (2008, 2009), combining the
chemical and kinematic properties of exoplanet hosts, concluded that most metal-
rich stars that host giant planets originate from the inner Galactic disk. The same
scenario for the origin of metal-rich planet hosts is explored in a few other works
(e.g., Ecuvillon et al. 2007; Santos et al. 2008; Adibekyan et al. 2014).

Activity Understanding stellar magnetic activity phenomena (such as spots, facu-
lae, plages) is very important for different fields of stellar physics and exoplanetary
science, as well as for planetary climate studies. Studying magnetic activity in
stars of different stellar parameters and activity levels provides an opportunity
for detailed tests of stellar/solar dynamo models. From the exoplanetary side, it
is well known that stellar active regions, combined with the stellar rotation, can
induce signals in high-precision photometric and radial-velocity observations. These
activity-induced signals may lead to masking or mimicking of exoplanet signals
(e.g., Queloz et al. 2001; Dumusque et al. 2012; Oshagh et al. 2013; Santos et al.
2014). Moreover, these signals constitute one of the main obstacles to the detection
and precise characterization of low-mass/small-radius planets, the major goal of
future instruments. Several indices (re-emission in the Ca II H and K lines, Mg
II h and k lines, Ca infrared triplet, Na I D doublet, H˛) exist to characterize
the activity of stars (e.g., Baliunas et al. 1995; Kürster et al. 2003; Mamajek and
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Hillenbrand 2008; Gomes da Silva et al. 2011; Haswell et al. 2012; Mathur et al.
2014). The applicability of these indices is restricted, as it depends on the spectral
type of the stars and spectral coverage of the used spectrograph. The dependence of
stellar activity on the planet-star interaction was discussed in several observational
and theoretical studies (e.g., Figueira et al. 2016; and references therein) yielding
contradictory results.

Rotation The most common ways of measuring stellar rotation are through
spectroscopy (e.g., Benz and Mayor 1981; Donati et al. 1997) and photometry
(e.g., Irwin et al. 2009; McQuillan et al. 2013). These techniques—depending on
the quality of the data and properties of the stars—can provide rotation velocities6

with a precision of better than �10% (for the limitations and advantages of either
technique, see Bouvier 2013). Recent studies show that the stars with planets (or
with planet candidates in the case of Kepler) rotate more slowly than stars without
known planets (e.g., Takeda et al. 2010; Gonzalez 2015). Moreover, it appears
that only slow-rotating stars host close-in planets. The slow rotation of exoplanet
host stars—if not a selection and/or detection bias—can be caused by early star-
disk interactions (Bouvier 2008).

6 Conclusion

Precise and accurate characterization of exoplanet-host stars is crucial to the detailed
investigation of exoplanets themselves. Moreover, precise determination of stellar
parameters is important to study the star-planet connection. There are different
ways of characterizing stars with and without planets. Some of these methods
are independent of stellar models, hence fundamental, although most are not. The
combination of different methods can provide precise, and even accurate, stellar
parameters and chemical abundances of exoplanet hosts.

When studying statistical properties of exoplanets or of their hosts it is very
important to use information (parameters) as homogeneous as possible. A catalog of
exoplanet hosts with stellar parameters derived and compiled in a homogeneous way
is presented in Santos et al. (2013) and, for transiting systems, in Southworth (2012).
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Noise Sources in Photometry and Radial
Velocities

Mahmoudreza Oshagh

Abstract The quest for Earth-like, extrasolar planets (exoplanets), especially those
located inside the habitable zone of their host stars, requires techniques sensitive
enough to detect the faint signals produced by those planets. The radial velocity
(RV) and photometric transit methods are the most widely used and also the most
efficient methods for detecting and characterizing exoplanets. However, presence
of astrophysical “noise” makes it difficult to detect and accurately characterize
exoplanets. It is important to note that the amplitude of such astrophysical noise is
larger than both the signal of Earth-like exoplanets and state-of-the-art instrumen-
tation limit precision, making this a pressing topic that needs to be addressed. In
this chapter, I present a general review of the main sources of noise in photometric
and RV observations, namely, stellar oscillations, granulation, and magnetic activity.
Moreover, for each noise source I discuss the techniques and observational strategies
which allow us to mitigate their impact.

1 Introduction

Exoplanetology is a vigorous and exciting new area of astrophysics. Since the
revolutionary discovery of a planet orbiting the solar-like star 51 Peg (Mayor
and Queloz 1995), over 3500 exoplanets have been discovered in about 2600
planetary systems,1 which places our unique Solar System into context through the
new field of comparative planetology. The radial velocity (RV) and photometric

1http://exoplanet.eu.
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transit methods are the most widely used—and most successful techniques—in the
detection and characterization of exoplanets.

Exoplanet-host stars are also the source of astrophysical “noise” with different
amplitudes and timescales that can hamper the detection of accurate numbers of
planets in a system and the accurate characterization of the detected planets. In
this chapter, I provide a general review of the different sources of noise which are
present in high-precision photometric and RV observations. Since the timescales of
these noise signals are diverse, I have thus organized this chapter in such a way that
the timescales of the noise signals increase as we move along. Moreover, for each
noise source I discuss several proposed observational strategies and data analysis
techniques which could help eliminate their impact.

2 Stellar Oscillations

Due to the presence of pressure waves in the interiors of stars, stellar surfaces
often exhibit oscillations. The typical amplitude and timescale of oscillation modes
increase with stellar mass along the main sequence. For that reason, the mea-
surement of stellar oscillations has been used to extract crucial information about
the interior structure of stars as part of a field of stellar astrophysics known as
asteroseismology. As a consequence, asteroseismology has enabled us to character-
ize stellar properties with extremely high precision (Christensen-Dalsgaard 2016).
Nevertheless, in the field of exoplanets the stellar oscillation signal is regarded as a
source of noise that can hamper the detection of weak exoplanet-induced signals.

2.1 Radial Velocities

Several studies have attempted to estimate the exact timescale and amplitude of
RV signals induced by stellar oscillations. For example, Bazot et al. (2007) used
the HARPS spectrograph to perform extensive high-precision RV measurements
of ˛ Cen A during five consecutive nights with very short exposure times. Their
observations revealed the timescale of the oscillations to be of the order of 5–15
min and the RV amplitude to be in the range 0.2–3m s�1.

2.1.1 Eliminating Stellar Oscillation Noise in RV

Santos et al. (2007) explored various observing strategies to reduce the induced RV
signal due to stellar oscillations. They reached to the conclusion that the appropriate
strategy is to use long exposure times (minimum of 15 min per exposure) so as
to significantly average out the stellar oscillation noise. Subsequently, this strategy
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has been used in performing RV measurements using stable spectrographs such as
HARPS.

2.2 Photometry

Short-cadence and high-precision photometric observations obtained with the
Kepler space telescope (Borucki et al. 2010) allowed us to estimate the timescale
and amplitude of the stellar oscillation noise in photometry. The range of timescales
closely matches the values obtained from RV observations (5–15 min). The
amplitude of photometric variations due to stellar oscillations was seen to lie in
the range 100–300 parts-per-million (ppm) (e.g., Carter et al. 2012).

2.2.1 Eliminating Stellar Oscillation Noise in Photometry

Similarly to the RV case, long-exposure photometric observations would mitigate
the impact of stellar oscillations. However, since transits can have durations of only
a few hours, a long-exposure strategy would negatively impact on the detection of
transiting exoplanets. Consequently, large surveys such as Kepler and CoRoT have
provided high-precision photometric measurements at short cadences (60 s cadence
in the case of Kepler) in order to enable the detection of transits by Earth-size
planets. Moreover, short-cadence observations provide more data points during the
transit, and hence facilitate accurate estimation of a planet’s parameters through the
analysis of the transit light curve. Note that it is not uncommon to bin the transit
light curve (with bin sizes of 15–30 min) in order to cancel out the effect of stellar
oscillations (e.g., Barclay et al. 2013).

3 Granulation

Stars with convective envelopes exhibit a granulation pattern at their surfaces. The
granulation pattern2 manifests itself as the upward flow of bright and hot material
from deeper layers followed by a downward flow of darker material after being
cooled off at the surface. Stellar granulation adds substantial correlated noise to
RV and photometric time-series observations, with larger amplitudes and longer
timescales than the noise due to stellar oscillations.

2Granulation patterns at the surfaces of stars can only be observed through the analysis of spatially-
resolved images, which are currently only possible for the Sun.
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3.1 Radial Velocities

Dumusque et al. (2011) used HARPS to obtain long-term, continuous and high-
precision RV measurements for five stars of different spectral types. They modeled
the resulting RV power density spectra using a functional form that had been
previously introduced to describe the granulation signal in the Sun (the so-called
Harvey-like profile; Harvey 1985). As a result, Dumusque et al. (2011) estimated
the timescale of the granulation noise to lie in the range from 15 min to 24 h, and the
amplitude to be in the range 1–30 m s�1, depending on the spectral type of the star.

3.1.1 Eliminating Granulation Noise in RV

Dumusque et al. (2011) also evaluated several observational strategies to reduce the
RV noise due to granulation. They established that the best observational strategy
is to obtain three RV measurements per night for each star separated by 1–2 h.
They demonstrated that this approach can significantly reduce the granulation noise.
This strategy has ever since been used when performing RV observations with
spectrographs such as HARPS, HARPS-N, and SOPHIE.

3.2 Photometry

Based on solar observations obtained with the SOHO spacecraft, Jenkins (2002)
demonstrated that the granulation of the quiet Sun can produce photometric
variability of up to 50 ppm. More recently, several studies have used short-cadence
photometric observations obtained with space telescopes such as Kepler and CoRoT
and proceeded with the analysis of the corresponding power density spectra. The
amplitude and timescale of the granulation noise in photometric observations across
different spectral types and evolutionary states have been constrained as a result.
Gilliland et al. (2011) provide scaling relations for the estimation of the amplitude
and timescale of the granulation noise in photometric observations:
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�
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Rˇ
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The granulation noise amplitude is close to the expected amplitude of a transit signal
of an Earth-size planet, hence it could become a serious obstacle for the detection
and characterization of small planets via the transit method.

3.2.1 Eliminating Granulation Noise in Photometry

Just as in Sect. 2.2.1, averaging photometric observations in order to reduce the
impact of granulation will directly hamper the detection of a transiting planet’s
signal. Therefore, light curves are ideally obtained with short cadence to ensure
that no transit signals are missed. Once the transit signal has been detected, the light
curve is then binned to average out the granulation noise.

4 Stellar Magnetic Activity

Stellar magnetic activity manifests itself in the form of various contrasting structures
at the stellar surface (e.g., dark spots and bright faculae), commonly known as stellar
active regions. The combination of active regions present at the stellar surface and
stellar rotation generates RV and photometric signals with amplitudes and periods
commensurate with those of exoplanet-induced signals. Basri et al. (2013) found
that more than 30% of the 150;000 stars observed by Kepler possess significantly
higher levels of magnetic activity than the Sun. Therefore, one realizes how crucial
it is to estimate the impact of stellar activity on exoplanet-induced signals as well as
to mitigate its effect.

4.1 Radial Velocities

Stellar active regions, due to their temperature contrast, affect the shape of spectral
lines and as a consequence deform the cross-correlation function (CCF) profile.
Since radial velocities are measured by fitting a Gaussian function to the CCF, a
deformation of the CCF profile may be compensated by an offset in the mean of the
fitted Gaussian. Therefore, presence of active regions may lead to inaccurate and
incorrect RV measurements. Due to stellar rotation, this incorrect RV estimate will
exhibit a variation with a period close3 to the stellar rotation period.

Convective motion at the stellar surface generates a net blueshifted RV signal.
In active regions, however, convective motion is significantly reduced due to the
presence of strong magnetic fields. The inhibition of convective blueshifts in these

3Depending on the latitude of active regions and the stellar differential rotation, different active
regions would induce different periodicities.
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Table 1 Mass estimates of planets in the CoRoT-7 system

CoRoT-7b CoRoT-7c References

4:8˙ 0:8ML 8:4˙ 0:9ML Queloz et al. (2009)

6:9˙ 1:4ML 12:4˙ 0:42ML Hatzes et al. (2010)

7:42˙ 1:21ML . . . Hatzes et al. (2011)

2:3˙ 1:8ML . . . Pont et al. (2011)

5:7˙ 2:5ML 13:2˙ 4:1ML Boisse et al. (2011)

8:0˙ 1:2ML 13:6˙ 1:4ML Ferraz-Mello et al. (2011)

4:8˙ 2:4ML 11:8˙ 3:4ML Tuomi et al. (2014)

4:73˙ 0:95ML 13:56˙ 1:08ML Haywood et al. (2014)

5:52˙ 0:78ML . . . Barros et al. (2014)

5:53˙ 0:86ML 12:62˙ 0:77ML Faria et al. (2016)

regions thus leads to extra RV variations (Meunier et al. 2010; Dumusque et al.
2014).

Consequently, it is a challenging task to assure that the observed RV variations
are purely due to the Doppler reflex motion caused by the presence of exoplanets.
The presence of activity-induced RV noise has been known since the very beginning
of Doppler exoplanet searches (Saar and Donahue 1997; Hatzes and Cochran 1999;
Santos et al. 2000; Queloz et al. 2001). Later on, with the emergence of high-
precision RV measurements,4 it became clearer how crucial it is to correct for
the activity-induced noise in order to be able to detect the signal due to low-
mass planets in the habitable zones of solar-like stars (Boisse et al. 2009, 2011;
Dumusque et al. 2012). Moreover, determining the exact number of planets in a
system and estimating their masses has been a challenging task whenever in the
presence of stellar magnetic activity. The CoRoT-7 system best demonstrates this.
Depending on the methods used to model the stellar activity noise as well as on the
techniques employed to disentangle the activity and exoplanet signals, several teams
have obtained conflicting results on the number of planets in the system and on their
masses. In Table 1, I summarize the number of planets and their mass estimates as
obtained in different studies.

4.1.1 Eliminating the Activity-Induced Signal in RV

There are two steps in the elimination process of activity-induced signals in RV
(also known as RV jitter). The first, and main, step is to assess the presence of RV
jitter. The second step is to predict its signal profile and to attempt its removal from
the RV measurements.

4A precision of 0:5 m s�1 was achieved by the HARPS spectrograph, which enabled the detection
of signals due to low-mass/Earth-size planets.
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Activity Indicators: The first type of stellar activity indicators aim at quantifying
the spectral line (or the CCF) asymmetry, e.g., the full width at half maximum
(FWHM) of the CCF (Queloz et al. 2009), the bisector span5 (BIS; Queloz et al.
2001; Santos et al. 2002), Vspan

6 (Boisse et al. 2011), Vasy
7 (Figueira et al. 2013),

and the bi-Gaussian method8 (Figueira et al. 2013).
The second type of stellar activity indicators carry information directly about

the magnetic activity of the star, e.g., the average magnetic field (B) estimated by
measuring the Zeeman splitting of spectral lines (Reiners 2012; e.g.,), the Mount
Wilson S-index9 (Wilson 1978), and the log.R0

HK/ index10 (Noyes et al. 1984).
To assess whether the observed RV signal is contaminated by RV jitter,

researchers usually look for a correlation between any of the above activity
indicators and the RV measurements. Presence of strong correlation means that
the RV measurements need to be corrected for the RV jitter, which I describe next.

Modeling Activity: Two main approaches have been used to model RV jitter. One
approach is based on using the information provided by the activity indicators and
to employ empirical proxies to predict the RV jitter. This approach has been used in
detecting low-mass planets around active stars, e.g., CoRoT-7 (Queloz et al. 2009;
Hatzes et al. 2010; Boisse et al. 2011; Pont et al. 2011; Haywood et al. 2014; Faria
et al. 2016), GJ 674 (Bonfils et al. 2007), and HD 189733 (Boisse et al. 2009;
Aigrain et al. 2012).

Another approach is based on the numerical simulation of active regions at the
stellar surface, including computation of all observables (e.g., activity indicators).
The synthetic RVs are then simultaneously fitted to the observed RVs and to
any activity indicator measurements. There are several numerical tools available
to the community capable of performing this analysis, e.g., SOAP (Boisse et al.
2012), SOAP2.0 (Dumusque et al. 2014), and STARSIM (Herrero et al. 2016). This
approach has been used in correcting RV observations of, e.g., HD 189733 (Boisse
et al. 2012) and ˛ Cen B (Dumusque et al. 2012, 2014). Although the use of
numerical simulations has been shown to be the more robust and accurate of the
two approaches described, it is also the more time-consuming from a computational
perspective.

5BIS D Vhigh � Vlow, where Vhigh and Vlow are the velocity average of the points at the top and
bottom of the CCF profile, respectively.
6Vspan D RVhigh � RVlow, where RVhigh and RVlow are Gaussian fits to the upper and lower parts of
the CCF, respectively.
7Vasy estimates the unbalance between the red and blue wings of the CCF.
8This approach consists in fitting a Gaussian with wings characterized by two different values of
the HWHM (half width at half maximum) to the CCF.
9The S-index is based on the measurement of the emission in the cores of the Ca II H and K lines,
and reflects the non-thermal chromospheric heating associated with the magnetic field.
10log.R0

HK/ is closely related to the S-index, giving the emission in the narrow bands normalized
by the bolometric brightness of the star.
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I would like to note that stellar active regions vary spatially and temporally,
further evolving over several stellar rotation periods, which makes RV jitter not a
strictly periodic and stable signal. Therefore, most of the correction techniques fail
to explain the real observed RV jitter, which points to the necessity of developing
models that take into account physical processes related to the active regions’
formation and evolution. For instance, a recent effort by Dumusque et al. (2015)
aimed at observing the Sun as a star with the HARPS-N spectrograph and trying
to model the solar RV variation using observables that could be obtained through
analysis of the resolved images of the Sun from solar satellites.

4.2 Photometry

The temperature contrast of active regions also produces photometric variations,
which can be periodic due to the stellar rotation. This noise signal influences
the detection and characterization of planets via the transit method. One can split
activity-induced photometric noise into two main types depending on their source,
i.e., active regions unocculted by the transiting planet during transit and occulted
regions. These two types of active regions affect the transit light curve in different
ways.

4.2.1 Unocculted Stellar Active Regions

Unocculted stellar active regions lead to periodic photometric modulation due to
stellar rotation. The influence of such light-curve modulation on the planetary
parameter estimates has been explored in several observational and simulation
studies. For instance, Czesla et al. (2009) demonstrated that the planet radius can
be overestimated by up to 4%.

4.2.2 Occulted Stellar Active Regions

In case the transiting planet occults the stellar active regions, this produces
anomalies in the transit light curve that may lead to an inaccurate estimation of
the planetary parameters, e.g., the planet radius and orbital inclination. Through
simulations, Oshagh et al. (2013b, 2015b) showed that the planet radius can be
underestimated by 5% due to stellar active region occultation. Moreover, Oshagh
et al. (2014) demonstrated that the planet radius underestimation can be as large as
10% if the light curve is obtained at short wavelengths.

Analysis of high-precision, transit light curves allows us to accurately measure
the transit times. The variation of transit times—known as transit-timing variation
or TTV—may indicate the presence of other non-transiting planets in the system,
which perturb the orbit of the transiting planet. As shown by Oshagh et al. (2013a),



Noise Sources in Photometry and Radial Velocities 247

however, the anomalies caused by occulted active regions can mimic a TTV signal
with an amplitude of 200 s, similar to the TTV signal induced by an Earth-mass
planet in a mean-motion resonance with a Jovian body transiting a solar-mass star
in a 3-day orbit (Boué et al. 2012).

A study by Oshagh et al. (2015a) also showed that the occultation by a transiting
planet of a large, polar stellar spot can smear out the transit light curve. It
should be noted that large, cool (dark) and long-lived stellar spots located near
the stellar rotational axis are common features in stars regardless of the stellar
rotational velocity and spectral type (e.g., Strassmeier et al. 1991). Furthermore, the
occultation of active regions can affect the estimation of the spin-orbit angle based
on measurements of the Rossiter–McLaughlin effect (e.g., Oshagh et al. 2016; and
references therein).

4.2.3 Eliminating the Activity-Induced Signal in Photometry

The most promising strategy for estimating and eliminating the impact of stellar
active regions is to use state-of-the-art models—e.g., SOAP-T (Oshagh et al. 2013a),
MACULA (Kipping 2012), and SPOTROD (Béky et al. 2014)—to reproduce the
noise signal generated by these regions and to subsequently remove it from the
observational data. However, this approach faces several issues. First, the models
require that assumptions be made concerning the values taken by their parameters,
and there exists strong degeneracy11 in determining the properties of the stellar
active regions. Second, running numerical models is a time-consuming process
from a computational perspective. Similarly to the RV jitter correction (Sect. 4.1.1),
the evolution of stellar active regions makes accurate modeling of the photometric
variation a challenging and difficult task. In this regard, MACULA is the only tool
which takes the evolution of stellar active regions into account by implementing a
linear stellar-active region evolution model.

5 Conclusion

In this chapter, I reviewed the sources and characteristics of astrophysical “noise”
signals that contaminate RV and photometric observations in exoplanet searches.
These noise signals have distinct timescales and amplitudes and, therefore, the
strategies and techniques used to eliminate them will differ. In Table 2, I present
a summary of the timescales and amplitudes of the several noise signals described
above, as well as the most efficient way of eliminating them from our observations.

11For instance, a stellar spot’s temperature contrast and filling factor are strongly degenerate, and
cannot thus be estimated independently.
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Table 2 Characteristics of astrophysical “noise” signals in RV and photometric exoplanet
searches

RV Photometry

Noise source Timescale (m s�1) (ppm) Treatment

Oscillations 5–15 min 0.2–3 100–300 RV: at least 15 min exposure
Photometry: binning the light
curve into 15-min bins after
detection of transit signal

Granulation 15 min to 24 hr 1–30 50–500 RV: three measurements per
night with 1–2 h separation and
averaging them

Photometry: binning the light
curve into 1-h bins after detec-
tion of transit signal

Magnetic activity Several days 1–200 50–10;000 RV: finding correlation between
measured RVs and activity indi-
cators; if any correlation found,
remove RV jitter by modeling
Photometry: model out-of- and
in-transit portions of light curve

More details can be obtained from the slides presented at the School (available at
http://www.iastro.pt/research/conferences/faial2016/files/presentations/CE6.pdf).
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Atmospheres of Exoplanets

David Ehrenreich

Abstract Atmospheres of exoplanets are our only window into the physical and
chemical processes occurring in these distant worlds. These processes are important
tracers of the origins and evolution of planetary systems, including our Solar
System. In this broader context, we could better understand how common (or
unique) are the conditions leading to the emergence of life, which could leave its
spectroscopic imprints precisely into planetary atmospheres. This lecture is focused
on one of the available techniques to study exoplanetary atmospheres: transit
transmission spectroscopy. After describing some basics about this technique, I
will illustrate through some case studies how it can practically bring observational
constraints on these remote and exotic atmospheres.

1 Our Observation Window into (Exo)Planets

Except from being slightly closer to the Sun than our Earth, how much different
from Earth could Venus be? With similar mass and size, hence density and surface
gravity, surely Venus would make for a great and exotic, if not a tad too warm,
destination for tourists. Its atmosphere, revealed as it refracted sunlight during
observations of the 1761 transit of Venus by Mikhaïl Lomonosov, is known to be
covered by thick clouds, casting doubts about how sunny the cytherean weather
really is (and adding to the surface mystery). Apart form this, what could possibly go
wrong (except wildlife; Fig. 1)? The previous text summons the popular view, before
the 1950s, that Venus could be habitable; but there was no way to tell. Only from the
moment radio observations determined an apparent black-body temperature>500K
(Mayer et al. 1958), did it become clear that Venus was utterly different and harsher
than the Earth.
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Fig. 1 An artist’s impression of Venus in the late 1940s. Before the surface temperature of Venus
was measured, science-fiction writers and artists could base their stories on the then-reasonable
belief that the planet could host advanced life forms. Extract from Planet Comics #51 (1947)

Exoplanets with masses and sizes, hence bulk densities, similar to Earth’s or
Venus’s are being discovered at an accelerating pace, including near the habitable
zones of their systems. How can we find out whether these worlds are hospitable or
hellish? The answer lies in their atmospheres. The reader interested in the theoretical
foundations of (exo)planetary atmospheres is referred to Heng (2017).
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Fig. 2 Sketch of the different techniques for characterising exoplanetary atmospheres

Different techniques exist for characterising exoplanet atmospheres. These tech-
niques, sketched in Fig. 2, can be separated into two broad categories, depending
on whether the planet is spatially resolved from the star or not. The earlier category
involves high-contrast imaging coupled to spectroscopy or spectrophotometry. It can
provide the emission spectra of young giant planets at large separations around early
main-sequence stars. Spatially unresolved techniques use temporal or spectroscopic
differentiation to separate the planetary contribution from the (overwhelming)
stellar contribution. Transit spectroscopy reveals the transmission spectrum of the
atmospheric limb, at the day-night terminator of the transiting planet. Eclipse
spectroscopy yields the emission spectrum of the planet’s illuminated dayside.
Photometric observations of the planet phase curve in the optical or in the infrared
provide us with longitudinal maps of reflected or emitted light, respectively.
Although challenging because of the small signals that are sought after, all these
techniques have produced spectacular results (for a review, see, e.g., Crossfield
2015); importantly, they are also complementary to each other. Addressing all of
them in depth is beyond the scope of this single lecture. Here, I will focus on transit
spectroscopy.
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2 Transit Spectroscopy of Exoplanet Atmospheres

2.1 Basics

2.1.1 Method

The method consists in retrieving the spectroscopic imprint of the planetary
atmosphere on the star light that filters through it during a transit. As illustrated
in Fig. 3, the transit depth ı is the normalised difference of the stellar fluxes out of
transit (Fout) and in-transit (Fin) . It does also simply correspond (when neglecting
the limb-darkening effect) to the surface ratio between the planet and the star, i.e.,
.Rp=R?/2, where Rp and R? are the planet and star radii, respectively. Different
chemical species within the planetary atmosphere extinct (absorb or scatter) star
light as a function of wavelength � and also depending at what altitude z they are
concentrated. Consequently, it is possible to build the transmission spectrum of the
planetary atmosphere by measuring the planet radius at different wavelengths. The
opacity � along the light of sight crossing the planetary limb can be expressed as:

�.z; �/ D
Z

n.z/�.�/dl : (1)

The number density n.z/ (units of cm�3) denotes the dependence on the atmospheric
structure, whereas the extinction cross-section �.�/ (units of cm2) represents the

Fig. 3 Transit light curve and transit spectroscopy geometric parameters
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dependence on the atmospheric composition. Assuming that (i) the planet is small
with respect to the star and (ii) the atmosphere of the planet is isothermal, allows one
to approximate this integral as the length of the chord throughout the limb (Fortney
2005):

�.z; �/ � n.z/�.�/
p
2�RpH ; (2)

where H is an important quantity called the atmospheric scale height, which I will
formally introduce below.

2.1.2 Radiative Transfer

Following the notation from Fig. 3, the in-transit flux can be expressed as the
solution of the simplified (no source term) radiative transfer equation:

Fin.�/ D Fout.�/ exp.��/ : (3)

This allows relating the transit depth to the opacity as:

ı.�/ D exp
�
�n�

p
2�RpH

�
� 1 : (4)

The two physically interesting ingredients in this equation, regarding the planetary
atmosphere, are the extinction cross-section, � , and atmospheric density profile, n.
The extinction term includes:

• the photo-absorption by atoms and molecules,
• the scattering of light by atoms, molecules and small particles (Rayleigh

scattering),
• the scattering of light by large particles such as dust grains or droplets in hazes

or clouds (Mie scattering).

Some examples of these different extinction components are plotted as cross-
sections in Fig. 4. It is worth noticing that despite the extinction properties of
atoms and molecules (in particular their photo-absorption cross-sections) can be
measured in the lab, it is only recently that substantial efforts have been started
in order to complete line lists for important molecules such as water or methane, at
temperatures relevant to irradiated exoplanets. Also relevant to these atmospheres or
those of brown dwarfs, the pressure-broadened wings of prominent resonant lines
from alkaline metals (sodium and potassium) are still not well known (Burrows et al.
2000).
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Fig. 4 Absorption cross-sections of different atmospheric gases present on Venus, including CO2

(red), for which the Rayleigh scattering cross-section is also plotted (thick, dashed red line). The
Mie scattering cross-sections of haze particles with two different size distributions are shown by
the thick violet and blue lines. After Ehrenreich et al. (2012)

2.1.3 Atmospheric Structure

The density (�) structure of a planetary atmosphere pertains to its pressure-
temperature (p-T) profile. A good description for well mixed, lower atmospheres
of planets is that of a perfect gas in hydrostatic equilibrium. Hence, the continuity
equation and the microscopic perfect gas law below are extremely useful:

dp

dz
D ��g ; (5)

p D n kBT ; (6)

where g is the acceleration of gravity and kB is Boltzmann’s constant. Introducing
�, the mean molecular mass of the atmosphere (units of g molecule�1—this is not
the molar mass!) to relate the mass and number densities as � D n�, playing with
the two equations above leads to express the pressure as:

p D �dp

dz
H ; (7)

H D kBT

�g
: (8)

The atmospheric scale height, H, measures the ‘compacity’ of an atmosphere. Val-
ues of H for different planets are provided in Table 1. More precisely, it represents
the height above which the pressure decreases by a factor of e. The exponential
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Table 1 Atmospheric scale height, transit depth and atmospheric signal for different typical
objects

Radius Temperature Gravity Molar mass H Transit Atmospheric

(R˚) (K) (m s�2) (g mol�1) (km) depth signala (H�1)

Earth 1 300 10 29 8 80 ppm 0.2 ppm

Venus 1 740 9 44 16 80 ppm 0.4 ppm

Jupiter 11 110 25 2:2 16 1% 5 ppm

Titan 0:4 90 1:4 29 20 14 ppm 0.2 ppm

Hot Jupiter 17 1100 25 2:2 160 2.5% 70 ppm
aThe atmospheric signal is for absorption by one atmospheric scale height during transit

decrease of the pressure with altitude can be easily seen when integrating Eq. (7):

p.z/ D p0 exp

�
�
Z z

z0

dz0

H.z0/

�
; (9)

where p0 D p.z0/. Because T depends on z, H should stay within the integral. Only
when the temperature is constant with altitude (isothermal profile), could we take H
out and use the well-known expression p D p0 exp Œ�.z � z0/=H
.

2.2 Amplitude of the Expected Atmospheric Signal

With the scale height, it is now possible to approximate ıH , the magnitude of the
absorption signal due to the planet atmosphere during a transit: for this, let us simply
assume that the atmospheric absorption is equivalent to that caused by an optically-
thick annulus, of thickness H, around the planet. This is represented in Fig. 5, and
from this one can write:

ıH D
�

Rp C H

R?

�2
�
�

Rp

R?

�2
: (10)

After some manipulations and assuming that the scale height is small with respect
to the radius of the planet (H 
 Rp, hence .H=Rp/

2 � 0), this simply expresses as:

ıH � 2

�
Rp

R?

�2 H

Rp
; (11)

where .Rp=R?/2 is the transit depth ı (see some examples in Table 1). While this
expression would leave one thinking that the planetary radius is an important factor,
developing H, then g, surprisingly leads to Rp being eliminated from the equation!
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Fig. 5 How to approximate the transit transmission signal of a planetary atmosphere

In fact,

ıH � 2�
�R2p

R2?

kBT
4
3
�G����R

2
p

; (12)

ıH / .R?/
�2.�/�1.�/�1.T/C1 : (13)

The only relevant bulk parameter of the planet is its mean density, �. Thus, hot
planets mainly made of gas or ices (low densities), with primordial atmospheres rich
in hydrogen and helium (low �) in transit across red dwarfs (small R?) are the best
targets for transmission spectroscopy. This quantity can guide the selection of targets
for surveys dedicated to compare the atmospheric properties of exoplanets. The
other critical quantity is the stellar magnitude; in fact, transmission spectroscopy
is a photon-starved technique relying on the stellar flux, hence the brighter, the
better. The stellar magnitude of planet-host stars is plotted as a function of the
planet ıH in Fig. 6. Around bright stars, the signal-to-noise ratio of atmospheric
signatures increases. Transitioning from the exoplanet detection census (e.g., from
the Kepler space telescope) to exoplanet characterisation surveys, it is thus essential
to collect more exoplanets amenable to atmospheric characterisation, hence in
transit across bright (or small) stars. This is the objective of the refurbishment of
the Kepler mission into K2 and the goal of the three next space missions dedicated
to exoplanets:

• The Transiting Exoplanet Survey Satellite (TESS) is a medium-class explorer
(MIDEX) NASA mission that will be launched in 2018 (Ricker et al. 2015).

• The CHaracterising ExOPlanet Satellite (CHEOPS) is a small (S) ESA mission
developed jointly with a consortium of European countries led by Switzerland,
that will also be launched in 2018 (Broeg et al. 2013).

• PLATO (PLAnetary Transits and Oscillations of stars) is a medium (M) ESA
mission that will be launched in 2025 (Rauer et al. 2014).
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Fig. 6 Detectability of exoplanet atmospheres. The signal of one atmospheric scale height seen
in transmission during transit is plotted against the stellar J magnitude. The signal is calculated in
ppm following Eq. (11). The size of the circles scales with the planet bulk density. Approximate
HST and JWST 3� detection limits (orange and red lines, respectively) are shown. After Pepe et al.
(2014)

3 Case Studies

In order to illustrate how the technique of transit spectroscopy works, three case
studies of atmospheric signatures are presented and discussed below. These are:

• The detection of sodium at optical wavelengths and high-spectral resolution in
the upper atmosphere of the hot gas giant HD 189733b, observed from the ground
with the HARPS instrument at the ESO 3.6-m telescope (Wyttenbach et al. 2015).

• The detection of hydrogen atoms escaping from the warm Neptune GJ 436b,
observed in the UV with the Space Telescope Imaging Spectrograph on the
Hubble Space Telescope (Ehrenreich et al. 2015).

• The multiple detections and non-detections of water from several exoplanets,
observed in the near-IR with the Wide-Field Camera 3 (WFC3) on the Hubble
Space Telescope (Deming et al. 2013; Ehrenreich et al. 2014; Fraine et al. 2014;
Knutson et al. 2014).

For each case, I present below (Figs. 7, 8 and 9) what the raw data and the ‘end
product’ (i.e., the transmission spectrum) look like.
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Fig. 7 Top panel: A raw 2D echelle spectrum of HD 189733 (the star) from HARPS. Spectral
orders appear as vertical stripes and the dispersion for each order is along the y-axis. Obtaining a
time series of such spectra over the planetary transit allows calculating the transit transmission
spectrum of the planet, which is shown in the bottom panel. Bottom panel: The transmission
spectrum of HD 189733b (the planet) is shown unbinned (grey) and binned (black dots). A
Gaussian fit to both sodium lines (indicated by the vertical blue dashed lines) is shown in red.
The lower panel shows the residuals after subtracting this Gaussian fit. After Wyttenbach et al.
(2015)

3.1 Sodium Sky of a Hot Jupiter

The signature of atomic sodium was the first atmospheric signal revealed in an
exoplanet (Charbonneau et al. 2002) with the Space Telescope Imaging Spectro-
graph (STIS) on board HST. It has since then been found in other hot gas giants,
thanks not only to HST, but also with high-resolution spectrographs installed at
ground-based observatories. As two, easy-to-identify resonant transitions, the line
cores of the sodium doublet at 589 nm represent a powerful probe: they are so
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Fig. 8 Top panel: Four raw 2D spectra obtained after 50-min exposures of M dwarf GJ 436 in the
far-UV. Each spectrum is obtained within 40 min of the previous one. The dispersion direction
is along the x-axis. The vertical stripe crossing all exposures is the geocoronal emission line
(airglow). The wings of the stellar Ly˛ emission line are visible on both sides of the airglow.
Exposure (c) is obtained during the optical transit of the Neptune-size planet GJ 436b: the blue
wing (left) appears fainter than in out-of-transit exposures (a) and (b). Bottom panel: Reduced and
averaged 1D spectrum of GJ 436. The different colours refer to exposures obtained �3h (black; a),
�1:5h (blue; b), 0h (green; c), and C2h (red; d) with respect to the mid-transit time. The hatched
region indicates the extent of the airglow-contaminated region

intense that, observed at high-spectral resolution, they can be detected very high
up in the planetary atmospheres, typically above the cloud layers that damp spectral
signatures from the lower parts of the atmosphere.

Planet-hunting spectrographs like HARPS at the ESO 3.6-m telescope in La
Silla, Chile, acquire high-resolution spectra (�=�� D 115;000) from which radial-
velocity measurements are produced. It turns out that these spectra could also be
used to search for atmospheric signatures during transits. In Wyttenbach et al.
(2015), we searched existing HARPS spectra of the prototypical hot gas giant
HD 189733b for signs of sodium. Figure 7 shows a raw stellar spectrum obtained
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Fig. 9 Top panel: A raw WFC3/G141 stare-mode spectral image of GJ 3470 (including orders
0—the undispersed image—and C1). A direct image of the star, obtained with a narrow-band
filter (F130N) is superimposed. Bottom panels: Reduced WFC3/G141 transmission spectra of (a)
HD 209458b (Deming et al. 2013), (b) HAT-P-11b (Fraine et al. 2014), (c) GJ 436b (Knutson et al.
2014), and (d) GJ 3470b (Ehrenreich et al. 2014). Water is detected in the leftmost panels (a,b),
not in the rightmost ones (c,d)

with HARPS on this target. As there are no reference stars, the idea is to perform
differential spectroscopy to retrieve the transit spectrum and light curve of the
planet, implementing corrections for telluric contamination and planetary orbital
motion. Only then, the normalised spectra obtained out of transit and in-transit are
compared. In the final transit spectrum obtained, each line of the sodium doublet
arising from absorption in the planetary atmosphere is resolved, and large line
contrasts are measured: 0:64˙ 0:07% (D2) and 0:40˙ 0:07% (D1) for full widths
at half maximum (FWHMs) of 0:52 ˙ 0:08 Å. Comparing the data to synthetic
atmospheric models, Wyttenbach et al. (2015) measure temperatures of �3000K in
the upper atmosphere and derive a temperature gradient �0:2K km�1. Hot and high-
altitude winds blowing from the hot dayside to the cooler nightside of the planet
could also be detected as a blueshift in the line position. This result demonstrates
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the relevance of studying exoplanet atmospheres with high-resolution spectrographs
mounted on 4-m-class telescopes and paves the way for an in-depth characterisation
of physical conditions in the atmospheres of many exoplanetary systems with future
spectrographs such as ESPRESSO on the VLT or HiReS and METIS on the E-ELT.

3.2 Hydrogen Corona Evaporating from a Warm Neptune

Exoplanets orbiting close to their parent stars may lose some fraction of their
atmospheres because of the extreme irradiation. Atmospheric mass loss primarily
affects low-mass exoplanets, leading to the suggestion that hot rocky planets might
have begun as Neptune-like, but subsequently lost all of their atmospheres; however,
no confident measurements have hitherto been available. The signature of this loss
could be observed as absorption signatures in the Lyman-˛ line (121 nm) of neutral
hydrogen in the ultraviolet, when the planet and its escaping atmosphere transit the
star, giving rise to deeper and longer transit signatures than the ones detected in the
optical spectrum.

The hydrogen Ly˛ line is the only source of stellar flux at these far-UV
wavelengths, where there is no black-body continuum but only chromospheric and
coronal stellar emission lines. The hydrogen Ly˛ line can only be observed from
space with HST because Ly˛ photons are readily absorbed by the Earth atmosphere.
Further difficulties involve the contamination of the line centre by the emission
from atomic hydrogen of the Earth geocorona, within which HST orbits. This
contamination can be subtracted; however, the core of the stellar Ly˛ line remains
inaccessible: neutral hydrogen in the interstellar medium on the line of sight absorbs
all the flux, even for the closest stars. Transit signatures are thus sought after in the
remaining wings of the Ly˛ line.

Figure 8 shows what the raw HST/STIS UV data look like. There are four raw
spectra of the M dwarf GJ 436, which is host to a transiting Neptune-mass planet.
The planet is fully transiting in one of these spectra, causing the blue wing of the
stellar emission line to become perceptibly fainter by eye, even in these raw data.
Ehrenreich et al. (2015) indeed report that the ultraviolet transit of this Neptune-
mass exoplanet GJ 436b has a depth of 56:3˙ 3:5%, far beyond the 0:69% optical
transit depth. It is inferred from this that the planet is surrounded and trailed by a
large exospheric cloud composed mainly of hydrogen atoms. With this information,
it is possible to estimate the mass-loss rate of the planet atmosphere in the range of
about 108–109 g s�1, which is far too small to deplete the atmosphere of a Neptune-
like planet in the lifetime of the parent star, but would have been much greater in
the past.
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3.3 Water Vapour in (More-or-Less) Cloudy Planets

Water vapour has been firmly detected in the atmosphere of an exoplanet
(HD 209458b) by Deming et al. (2013), who used the Wide-Field Camera 3 on
board HST to observe planetary transits and spot the signatures of the water band
centred at 1.38�m (see Fig. 9a). This led to a flurry of observations and observation
surveys using similar settings, sometimes devoting large amounts of telescope
time (�50 HST orbits) for a promising planet (Kreidberg et al. 2014). While
spectroscopic signatures have been identified in several hot giant planets (Sing
et al. 2016), the atmospheres of lower-mass planets turned out to be more tricky
to explore. The atmospheric composition of super-Earths and Neptunes is, indeed,
the object of intense observational and theoretical investigations. Meanwhile, the
transmission spectra obtained for many such exoplanets are featureless as seen
with HST/WFC3 (Ehrenreich et al. 2014; Knutson et al. 2014; Kreidberg et al.
2014). This flat signature is attributed to the presence of optically-thick clouds or
translucent hazes. A noticeable exception is the warm-Neptune HAT-P-11b, for
which the 1.38�m water band has been detected (Fraine et al. 2014).

The planet GJ 3470b is a warm Neptune detected in transit across a bright,
late-type star (Bonfils et al. 2012). The transit of this planet has already been
observed in several band passes from the ground and space, allowing observers to
draw an intriguing yet incomplete transmission spectrum of the planet atmospheric
limb (see Chen et al. 2017; and references therein for an update). In particular,
published data in the visible suggest the existence of a Rayleigh scattering slope
making GJ 3470b a unique case among the known Neptunes, while data obtained
beyond 2�m are consistent with a flat infrared spectrum. The unexplored near-
infrared spectral region between 1 and 2�m is thus the key to understanding the
atmospheric nature of GJ 3470b. Ehrenreich et al. (2014) report on the first space-
borne spectrum of GJ 3470, obtained during one transit of the planet with the
Wide-Field Camera 3 (WFC3) on board HST, operated in stare mode. An example of
a raw spectral image, superimposed over a direct image, is presented in Fig. 9 (upper
panel). Because WFC3 was not initially designed to observe bright objects such as
exoplanet-host stars, this kind of observations have poor duty cycles. However, a
more efficient observation mode called ‘scanning mode’ is now the standard for
exoplanet observations. It consists in scanning the detector with the stellar spectrum
to allow for increased exposure times, better duty cycles, and eventually better
measurement precision. This precision increase can be critical for detecting the
water feature, as in another warm Neptune, HAT-P-11b (Fraine et al. 2014) (see
Fig. 9b); yet it may not be sufficient in other cases, such as GJ 436b (Knutson et al.
2014) (see Fig. 9c), which we met in the previous section.

As for GJ 436b, the reduced transmission spectrum of GJ 3470b, shown in
Fig. 9d, appears flat within the uncertainties: the WFC3 spectrum obtained with
the G141 grism covers the 1.1–1.7�m region with a resolution of �300. The
transmission spectrum of GJ 3470b is retrieved with a chromatic planet-to-star
radius ratio precision of 0.09% (about half a scale height) per 40 nm bins. At
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this precision, the spectrum indeed appears featureless. This is actually in good
agreement with ground-based and Spitzer infrared data at longer wavelengths,
pointing to a flat transmission spectrum from 1 to 5�m. Simulations of possible
theoretical transmission spectra for GJ 3470b allow showing that the HST/WFC3
observations rule out cloudless hydrogen-rich atmospheres (>10�) as well as
hydrogen-rich atmospheres with tholin haze (>5�). Considering the full set of
available measurements as of 2014 in 0.3–5 �m supports a cloudy, hydrogen-rich
atmosphere (Ehrenreich et al. 2014). The tentative Rayleigh slope in the visible
has since been confirmed from the ground, hinting at a low-metallicity atmosphere
(Chen et al. 2017).

4 Future Landscape

Atmospheric characterisation of exoplanets will benefit from a combination of
powerful instruments located in space and on the ground. Figure 10 synthesises
all relevant and accepted experiments. Capturing the most amenable targets for
atmospheric characterisation will be performed as a continuous observational effort,

Fig. 10 Timeline of current and future instruments and missions relevant to exoplanets and
characterising exoplanetary atmospheres
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already started (K2) and which will be pursued throughout the 2020 decade with
TESS, CHEOPS, and PLATO. It is mesmerising to imagine that after PLATO, the
exoplanet on which traces of life could eventually be found will be among our
known sample.

A strong emphasis on infrared characterisation will result from the exploitation
of the James Webb Space Telescope. Because the UV window will close with the
end of HST, an overlap with JWST as long as possible will be strategic.

High-resolution spectroscopy from the ground in the optical and near-infrared
will not only complement, but also possibly exceed space-borne observations, in
particular when the instruments are coupled to a large collecting area. This is for
instance the case of ESPRESSO and CRIRES+ at the 8-m VLT, or by the end of the
2020s, HIRES or METIS at the 39-m European Extremely Large Telescope.

There will not be enough telescope time on the most powerful facilities to
characterise all interesting objects. Therefore, a reconnaissance or triage approach
will be essential to down-select the top candidates. This could be accomplished with
high-resolution spectrographs on intermediate-size ground-based telescopes (4-m
class now and 8-m class in the ELT era) and by dedicated space-borne surveys.

References

Bonfils, X., Gillon, M., Udry, S., et al.: Astron. Astrophys. 546, A27 (2012)
Broeg, C., Fortier, A., Ehrenreich, D., et al.: EPJ Web Conf. 47, 03005 (2013)
Burrows, A., Marley, M.S., Sharp, C.M.: Astrophys. J. 531, 438 (2000)
Charbonneau, D., Brown, T.M., Noyes, R.W., Gilliland, R.L.: Astrophys. J. 568, 377 (2002)
Chen, G., Guenther, E.W., Palle, E., et al.: ArXiv e-prints, arXiv:1703.01817 (2017)
Crossfield, I.J.M.: Publ. Astron. Soc. Pac. 127, 941 (2015)
Deming, D., Wilkins, A., McCullough, P., et al.: Astrophys. J. 774, 95 (2013)
Ehrenreich, D., Vidal-Madjar, A., Widemann, T., et al.: Astron. Astrophys. 537, L2 (2012)
Ehrenreich, D., Bonfils, X., Lovis, C., et al.: Astron. Astrophys. 570, A89 (2014)
Ehrenreich, D., Bourrier, V., Wheatley, P.J., et al.: Nature 522, 459 (2015)
Fortney, J.J.: Mon. Not. R. Astron. Soc. 364, 649 (2005)
Fraine, J., Deming, D., Benneke, B., et al.: Nature 513, 526 (2014)
Heng, K.: Exoplanetary Atmospheres: Theoretical Concepts and Foundations. Princeton Univer-

sity Press, Princeton (2017)
Knutson, H.A., Benneke, B., Deming, D., Homeier, D.: Nature 505, 66 (2014)
Kreidberg, L., Bean, J.L., Désert, J.-M., et al.: Nature 505, 69 (2014)
Mayer, C.H., McCullough, T.P., Sloanaker, R.M.: Astrophys. J. 127, 1 (1958)
Pepe, F., Ehrenreich, D., Meyer, M.R.: Nature 513, 358 (2014)
Rauer, H., Catala, C., Aerts, C., et al.: Exp. Astron. 38, 249 (2014)
Ricker, G.R., Winn, J.N., Vanderspek, R., et al.: J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015)
Sing, D.K., Fortney, J.J., Nikolov, N., et al.: Nature 529, 59 (2016)
Wyttenbach, A., Ehrenreich, D., Lovis, C., Udry, S., Pepe, F.: Astron. Astrophys. 577, A62 (2015)



Tutorial: Detecting Planetary Transits
and Radial-Velocity Signals

Susana Barros and João P. Faria

Abstract Since the discovery of the first exoplanet orbiting a main-sequence star
in 1995, more than 3500 planets have been discovered. Most of these were detected
and characterized by means of radial-velocity and/or photometric observations. In
this tutorial we present examples of exoplanet detection and characterization using
these two methods. We start by showing an application of the Box-fitting Least
Squares (BLS) algorithm to search for a transiting planet signal in the photometric
light curve of EPIC 211089792 recorded by K2. Once the transits are detected
we then show how to fit a model to the transit light curve and derive the transit
parameters using a least-squares minimization algorithm. In a second exercise
we show how to detect the same planet based on radial-velocity data and using
the Lomb–Scargle periodogram. Finally, we exemplify how to combine the radial
velocities and transits of the exoplanet EPIC 211089792b using a Bayesian approach
to derive the planetary parameters. This tutorial hence covers some of the state-of-
the-art methods of exoplanet search and characterization.

1 Introduction

The radial-velocity (RV) and transit methods are the workhorses of exoplanet
discovery, with a combined yield of more than 90% of all the planets discovered
up to now. The presence of an orbiting planet imprints a periodic signal in the two
observables: the RV and brightness of the host star. Analyzing these data to search
for planets therefore requires searching for periodicities in unevenly-spaced time
series and the further characterization of the detected signals.

In this hands-on tutorial we describe and implement a collection of methods to
perform this search and to fit the relevant models to observed data. To that end,
we use K2 data of EPIC 211089792 (K2–29, WASP-152), which has also been
observed with the SOPHIE spectrograph and is known to host a hot Jupiter with
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an orbital period of 3.25 days (Santerne et al. 2016). The tutorial is presented in a
very straightforward manner here, where we have decided to list the same exercises
that were presented to the students during the School. The first task is to search for
periodic, transit-like signals with the BLS algorithm, after which we fit a full transit
model to the K2 data. We then use the Lomb–Scargle periodogram to search for
sinusoidal signals in the RV measurements. Finally, we perform a joint Bayesian
analysis of both data sets. We cite all necessary software packages and make the
data and code available online at https://github.com/iastro-pt/AzoresTE1.

2 Transit Search

The methods used to estimate periodicities in time-series data can be broadly
divided into two types: Fourier analysis (e.g., Deeming 1975; Lomb 1976; Scargle
1982; van der Klis 1988; Press and Rybicki 1989) and epoch-folding techniques
(e.g., Stellingwerf 1978; Leahy et al. 1983; Schwarzenberg-Czerny 1989; Davies
1990). Fourier methods are based on the decomposition of the signal into sinusoidal
functions of a given frequency, i.e., the calculation of Fourier transforms. They are
useful when we want to detect a sinusoidal signal, even in data of low signal-to-
noise ratio. Folding techniques consist in folding the data over trial periods and
then analyzing the scatter of the resulting profile with an appropriate statistic. These
methods can perform better than Fourier transforms for non-sinusoidal periodic
signals, but may fail in the presence of multiple periods.

When searching for transit signals in stellar light curves, one deals with non-
sinusoidal signals that are further localized in time. A large number of harmonics
is needed to describe the signal, which can lead to leakage of the Fourier power to
higher harmonics. To avoid this problem, Kovács et al. (2002) proposed the Box-
fitting Least Squares (BLS) algorithm that uses box-shaped functions to fit the signal
instead of sinusoids. The box shape is the superposition of two step functions with
opposite signs representing a low and a high state, with the low state lasting much
less time. The algorithm works as a folding technique, calculating the power for
a defined set of frequencies with frequency separation df, a minimum frequency
fmin and a number nf of frequency bins to test. The light curve is folded at each
trial frequency and binned in phase into nb bins. Then the algorithm searches for the
low state within a fractional duration range (qmi-qma) and fits the depth, duration
and start/end of the transit, with the power corresponding to the goodness of fit. The
result is a periodogram (power as a function of each trial frequency or period) and
estimation of the parameters for the best period.

Problem 1 Search for transits in the K2 Campaign 4 light curve of EPIC 211089792
using a Python implementation of the BLS algorithm.1 Consider periods in the

1The package is available at https://github.com/dfm/python-bls.

https://github.com/iastro-pt/AzoresTE1
https://github.com/dfm/python-bls
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Fig. 1 Partial solution to Problem 1: K2 light curve (top), the BLS periodogram (bottom left) and
the folded light curve at the period of maximum power (bottom right)

range from 0.5 days to 70% of the full duration of the observations with a frequency
resolution of 0.001, and choose the values for the remaining parameters nb, qmi
and qma. Plot the resulting BLS periodogram. Identify the frequency of the highest
peak and its corresponding parameters: power, depth, duration and epoch. Phase
fold the light curve using the period found. Try out different input parameters and
compare your results with the panels in Fig. 1. Take note of all the parameters you
obtained.

3 Transit Fitting

A transit event occurs when a planet passes in front of its parent star as seen by
the observer. In its simplest form, a transit is a geometrical effect and has five
observables: the orbital period P, mid-transit time T0, depth d, transit duration, and
duration of ingress/egress as the planet crosses the stellar limb.
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For circular orbits it was shown by Seager and Mallén-Ornelas (2003) that these
observables lead to a unique solution of the transit parameters: rp=r�, a=r� and
inclination, where rp and r� are the radius of the planet and star, respectively, and a
is the semi-major axis of the orbit. For eccentric orbits, two more parameters affect
the transit shape: the eccentricity, e, and the longitude of periastron, !. These affect
both the velocity of the planet and the distance between the star and planet at the
time of transit. Here we will be assuming circular orbits. This corresponds to setting
e D 0 and ! D 90ı (any ! would be valid, but this choice guarantees that the
reference time will coincide with the transit moment).

Real stars show a limb-darkening effect, which also changes the transit shape.
Here we will be using a quadratic limb-darkening law, setting u1 D 0:4983 and
u2 D 0:2042 (cf. Santerne et al. 2016). You will also need to use the following
relations (e.g., Seager and Mallén-Ornelas 2003):

d D
�

rp

r�

�2
(1)

and

�� D 4�2

G P2

�
a

r�

�3
; (2)

where �� is the stellar density.

Problem 2 Plot the light curve of EPIC 211089792. Make an initial guess for the
transit parameters using the equations above and the parameters obtained from the
BLS output. You can also assume that the star has the same density as the Sun.
Use these initial guesses of the transit parameters to obtain a transit model with the
batman package.2 Overplot the transit model.

Problem 3 Fit the transits using the batman transit models and the lmfit
package,3 which implements non-linear least-squares fitting routines. Assume a
circular orbit and the limb-darkening parameters given above. Hint: start by creating
a function that calls the transit model given the model parameters and returns the
difference between the model and the data points. The parameters need to be defined
according to the lmfit requirements. Call the minimise function from lmfit
that will minimize the above function and estimate the best-fit transit parameters.
Plot the phase-folded data using the new derived parameters and overplot the best
transit model. Cut the out-of-transit parts in order to have a total of three transit
durations for each transit, centered at the mid-transit time. Save the resulting time
series.

2The package is available from https://www.cfa.harvard.edu/~lkreidberg/batman and is described
in Kreidberg (2015).
3Available from https://lmfit.github.io/lmfit-py.

https://www.cfa.harvard.edu/~lkreidberg/batman
https://lmfit.github.io/lmfit-py
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4 The (Generalized) Lomb–Scargle Periodogram

The Lomb–Scargle periodogram is commonly used for period search and frequency
analysis of time series. It is equivalent to fitting sine waves of the form

y D a cos! t C b sin! t (3)

for a range of frequencies. This method has an analytical solution and is thus both
convenient to use and efficient. A formula for the periodogram was given by Barning
(1963). Lomb (1976) and Scargle (1982) further investigated its statistical behavior,
especially the statistical significance of the detection of a signal.

Because the detection of periodicities in time-series data is such a common
problem, many generalizations of the Lomb–Scargle periodogram have been pro-
posed. These take into account individual measurement errors, the inclusion of a
constant offset, or other types of periodic signals (Ferraz-Mello 1981; Cumming
et al. 1999; Zechmeister and Kürster 2009; Mortier et al. 2015). Implementations of
these algorithms are also common and mature in many programming languages.

Problem 4 Use the astropy implementation of the Lomb–Scargle periodogram
to search for periodic variations in the radial velocities of EPIC 211089792 (see
Fig. 2). Take into account each individual RV uncertainty. Plot the periodogram
and calculate the period of maximum power. Fold the RV observations at the best
period.

Fig. 2 Partial solution to Problem 4: RV observations (left) and their generalized Lomb–Scargle
periodogram (right)
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5 Transit and RV Fit: Bayesian Approach

Sometimes the fit of non-linear models by least-squares minimization can lead to
wrong results because the minimization algorithm gets trapped in local minima.
In the Bayesian context, the problem becomes that of sampling from the posterior
distribution for the model parameters. Markov chain Monte Carlo (MCMC) is an
efficient technique to solve this sampling problem.

Almost every Bayesian analysis has at least two ingredients: the likelihood,
p.Dj	/, and the prior distribution, p.	/. They are related through Bayes’ theorem:

p.	jD/ / p.	/ p.Dj	/ ; (4)

where 	 represents the set of model parameters and D the data. The term p.	jD/ is
the posterior distribution for the parameters, i.e., the distribution we want to sample
from.

Problem 5 What is the least informative likelihood we can come up with?
In this tutorial we actually make use of two datasets, D1 and D2, respectively

coming from transit and RV observations. The two should be combined in order to
obtain an orbital solution which agrees with both sets of observations.

Problem 6 What is the combined likelihood of the two datasets? How does it
depend on the individual likelihoods of D1 and D2?

We can use a Gaussian likelihood and include in our model an extra source
of noise, s, which accounts for effects that are not included in the measurement
uncertainties:

p.Dj	/ D
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so that the log-likelihood is
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Problem 7 Write a function that computes the combined log-likelihood given in
Eq. (6).

Problem 8 Using the distributions included in scipy, define priors for each
parameter and write a function to produce random samples from those prior
distributions and/or from the joint prior distribution. Create also a function that
calculates the value of the log-prior.

Problem 9 Write a function that computes the posterior and use the emcee
package4 to sample from this posterior.

Problem 10 Make a corner plot to check the correlations between parameters and
the posterior distributions of the model parameters. Plot your MCMC chains to
check if they have converged.

Problem 11 Important: You should oversample the model light curve. What
happens when you do not? Run your code using different priors and check if the
results change. Fix the orbital period of the planet and see what happens (you can use
the values from the BLS or the generalized Lomb–Scargle periodogram). Assume
you know the stellar density and consider using the Gaussian prior

a

r�
D N .10:51; 0:15/ : (7)

Calculate the mass and radius of the planet.
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Tutorial: Measuring Stellar Atmospheric
Parameters with ARES+MOOG

Sérgio G. Sousa and Daniel T. Andreasen

Abstract The technical aspects of using an Equivalent Width (EW) method for
the derivation of spectroscopic stellar parameters with ARES+MOOG are described
herein. While the science background to this method can be found in numerous
references, the goal here is to provide a user-friendly guide to the several codes
and scripts used in the tutorial presented at the School. All the required data have
been made available online at the following repository: https://github.com/sousasag/
school_codes.

1 Introduction

Several methods are used for the derivation of stellar spectroscopic parameters.
These can be divided into two main groups. One set of methods is based on
spectral synthesis, for which synthetic spectra are created and compared with
the observed spectrum to find the best fit. The second group adopts a line-by-
line analysis strategy, measuring the strength of observed spectral lines, and then
estimating abundances and applying relevant criteria—such as the ionization and
excitation balance—to find the best spectroscopic stellar parameters that match the
observations. The description of the physics behind both groups of methods can be
found in several textbooks (e.g., Gray 2008).

The workflow of the EW method can be briefly described as follows: For
a high-quality, observed stellar spectrum, we start by measuring the strength
of several spectral lines (e.g., with ARES). These measurements are then con-
verted into individual line abundances, which are computed (e.g., with MOOG)
using stellar atmospheric models, normally assuming a Local Thermodynami-
cal Equilibrium (LTE) approximation. The model parameters are then adjusted
until the individual line abundances show evidence of excitation and ionization
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balance. This step can be made automatic if a proper minimization method is
adopted.

The rest of the document will focus on the technical aspects of the codes provided
for the tutorial and on how a student can use them to actually derive spectroscopic
stellar parameters. A more in-depth description of ARES+MOOG can be found in
Sousa (2014). The next sections are based on the codes and test data made available
online.

2 Requirements

The tutorial was implemented so as to be executed on a Linux machine. Note that
even without access to a Linux machine, today it is very easy to emulate one by
using virtual machines (e.g., VirtualBox). All the instructions provided both in this
document and in the repository are compatible for Debian/Ubuntu systems, but can
be easily adapted for other Linux flavors.

2.1 Main Codes

ARES ARES is a C code that allows a fast and automatic measurement of EWs
of spectral absorption lines. The ARES code is a submodule in the repository
and therefore easily updated via the root ARES repository,1 which contains more
information. For a more detailed description of the code please see the ARES

papers (Sousa et al. 2007, 2015). Note that the latest version of ARES is already
able to deal with in-situ radial-velocity correction and automatic parameterization
for the continuum level, which makes the spectral analysis easier and more
consistent. In order to compile ARES, some external libraries (e.g., CFITSIO,
GSL etc.) are required, which can be easily installed in Linux machines. The
compilation of the code is then handled by the Makefile provided in the
repository.

MOOG MOOG is a code that performs a variety of LTE spectral analyses. The
original code can be found in its own website.2 The code available in the repository
is an adapted version of MOOG2014, modified to neglect its (nonfree) plot library
dependency. In the tutorial only the silent version of the code is used when making
abundance computations for our EW method. The compilation of the code is also
handled by the Makefile.

1https://github.com/sousasag/ARES.
2http://www.as.utexas.edu/~chris/moog.html.

https://github.com/sousasag/ARES
http://www.as.utexas.edu/~chris/moog.html
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2.2 Spectral Test Data

Observed Spectra The spectra available for analysis should be of good quality
in terms of resolution (R > 30;000) and signal-to-noise ratio (S=N > 100).
Three HARPS spectra are provided for the tutorial, having R � 110;000 and
S=N > 300. These are standard FITS 1D spectra. In order to be compatible
with ARES, they need to have the standard keywords CDELTA1 and CRVAL1,
and wavelengths should be given in angstroms. Alternatively, ARES can also
read ASCII spectra containing two columns, the first with the wavelengths and
the second with the flux. In this tutorial only the standard FITS 1D files are
used.

Line List The strength of specific absorption spectral lines should be measured
during the analysis. As in most EW methods, iron lines are mostly used because
they strongly populate the solar-type spectrum and because iron can be used
as a proxy for the stellar metallicity. The line list provided in the repository
(ironlines_parameters.dat) compiles 263 Fe I and 36 Fe II lines. These
lines were carefully selected (cf. Sousa et al. 2008) and their atomic data were
revised using a solar spectrum as reference, thus making it possible to perform
a differential analysis (Sousa 2014). This line list is used both for ARES and
MOOG. For ARES the important information is only the wavelength of the lines.
The format should be such that wavelengths (in angstroms) are provided in
the first column. For the individual abundance computations, MOOG needs the
atomic data, Excitation Potential (E.P.), and oscillator strength, log.gf /. The
format of this file should be kept fixed so that the scripts work without a
problem.

2.3 Scripts

Input Line List for MOOG The EW measurements and the atomic data in the line
list require a special format to be used by MOOG. To facilitate this task, a Python
script is provided (make_moog_lines.py) that reads the atomic data from the
line list as well as the output file from ARES, and compiles the input file to MOOG

in the required format.

Creating a Stellar Atmospheric Model For the computation of the individual
line abundances, the use of an atmospheric stellar model is required. MARCS

models3 are used in the tutorial. For this task a script is provided that inter-

3http://marcs.astro.uu.se.

http://marcs.astro.uu.se
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Fig. 1 Result of the first iteration of the analysis of the TestA.fits spectrum

polates a grid of MARCS models for specific stellar parameters. The folder in
the repository named interpol_models_marcs includes a script for this
task. In order to make it work, it is first required to follow the instructions
to download and extract the grid of MARCS models. The use of the script
to get a specific atmospheric stellar model is straightforward and is described
below.

Excitation and Ionization Correlation To understand how the individual
line abundances depend on the stellar atmospheric parameters and how to
find the best stellar parameters, a plotting script is provided that allows the
visualization of the correlations/indicators needed to constrain the parameters.
These include the abundance vs. E.P., abundance vs. reduced EW, the information
on jhFe Ii � hFe IIij and the average [Fe/H] compared with the model [M/H].
For more details about these indicators see Sect. 4 and Sousa (2014). The
Python script running_dir/read_moog_plot.py allows to plot these
correlations as well as to display the information of these indicators (see Figs. 1
and 2).
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Fig. 2 An optimized model derived for the TestA.fits spectrum

3 Step-by-Step Tutorial

The criteria to derive good spectroscopic parameters with this method rely on the
model that enforces the excitation and ionization balance for the line abundances.
Therefore, the final step of this iterative occurs when the same abundance for all the
lines is found, which will translate into null slopes for abundance vs. E.P., abundance
vs. reduced EW, and hFe Ii D hFe IIi. How to reach this? The steps to derive stellar
parameters—where the spectrum TestA.fits is used for this example—are as
follows:

1. Location: To start the process let us first define a reference folder. Let the folder
running_dir be our reference folder. To confirm this, when displaying the
spectra available in the repository the result should be:

running_dir$ ls ../spectra/
TestA.fits TestB.fits TestC.fits

2. Measuring EWs: The required ARES input file (mine.opt) is already present in
the reference folder and contains the recommended parameters for the analysis of
high-quality spectra. Details about these parameters can be found in Sousa (2007,
2014). Running ARES will display plenty of information in the terminal. An
output file (TestA.ares) will be created as well as a log file (logARES.txt)
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containing all the relevant information. To run ARES for the TestA.fits
spectrum simply type4:

running_dir$ ../ARES/./ARES

3. MOOG input line list: To create the line list with the EWs in the correct format,
the ARES output file (TestA.ares) as well as the line list with the reference
atomic data (ironlines_parameters.dat) should be provided:

running_dir$ .././make_moog_lines.py TestA.ares ../ironlines_p
arameters.dat
Saved in: lines.TestA.ares

4. Loop start: The iteration loop starts with the creation of a specific MARCS model.
We initialize the loop with parameters that represent an average Sun-like star (i.e.,
Teff D 5500 K, log g D 4:40 dex, ŒM=H
 D 0:0 dex, vtur D 1:0 km s�1) in order
to generate this model (creating the file out_marcs.atm):

running_dir$ ../interpol_models_marcs/./make_model_marcs.bash
5500 4.4 0.0 1.0

5. MOOG: The next iterative step is to compute the individual line abundances
assuming the stellar atmospheric model. In this step, MOOG will use a predefined
input file (batch.par) and will then create an output file with the computed
line abundances (output.moog). To run MOOG in its silent mode:

running_dir$ ../MOOG2014/./MOOGSILENT

6. Control check: This is the crucial step where the stellar parameters in the
model are validated. Again, optimized parameters are found when the same
abundance is derived for all the lines. The slopes should therefore be negligible
(all indicators having values < 0:005 is a sensible criterion). If significant
correlations are found in these indicators, these can be used to adjust the
parameters back in step 4. To check the status of these indicators the Python
plotting script can be used:

running_dir$ python read_moog_plot.py output.moog
Model Parameters: Teff logg vtur [M/H]

5500 4.4 1.00 0.00
-----------------------------
| Slope E.P. :0.053
| Slope R.W. :-0.111
| Fe I - Fe II:-0.326
| [Fe/H] :0.018
| [Fe/H] - [M/H]:0.018

Figure 1 shows the plots generated during this last step. The indicators’ values
for this first iteration are far from zero. Therefore, it is required to go back to step

4Note that mine.opt should be adapted for the analysis of the other test spectra.
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4 and try different parameters. The strategy to minimize these indicators and
change the parameters in the correct direction is discussed in the next section.

4 Finding the Best Parameters

In this section the strategy used to find the best parameters is briefly described.
A complete description of this strategy can be found in Sousa (2014). From Fig. 1
the four indicators’ values provide the necessary hints to obtaining a better model
during the next iteration:

• Slope of E.P.: This indicator strongly depends on the temperature of the model.
Negative values of the slope mean that the correct temperature should be lower.
This indicator also controls the excitation balance. Given the very high number
of iron lines, the temperature is one of the best constrained parameters using this
method.

• Slope of reduced EW: This indicator is connected to the microturbulence param-
eter, which basically controls the abundance determination for the stronger lines
where saturation becomes especially significant in the wings of the absorption
lines (Gray 2008). Positive values of the slope mean the microturbulence is being
overestimated.

• hFe Ii–hFe IIi: Since Fe II lines are more sensitive to surface gravity than Fe I
lines (Gray 2008), this indicator can be used to control the log g of the model.
For negative values, log g should decrease during the next iteration, while for
positive values log g should increase.

• ŒFe=H
–ŒM=H
: More than an indicator, this is actually a logical constraint for the
model, meaning that the input metallicity should lead to a compatible global iron
abundance. Here it is assumed that the iron abundance is a proxy for the stellar
metallicity. Therefore, if the iron abundance is larger than the model metallicity
(positive indicator), then it should be increased during the next iteration. If
the indicator is negative, then this means that the metallicity of the model is
overestimated.

These indicators can be used to find an optimized model for the TestA.fits
spectrum. Figure 2 shows such a model with Teff D 5838 K, log g D 4:34 dex,
ŒM=H
 D 0:25 dex, and vtur D 1:08 km s�1. With this model all the indicators
are close to zero (i.e., all obey the < 0:005 criterion). These results can still be
improved given the clear presence of outliers in Fig. 2. In the present case most of
these outliers are overestimating the iron abundance (compared to the average). The
cause for this may be related to less reliable, and overestimated, EW measurements
for those specific spectral lines and hence removing such outliers will improve the
result.

The stars used in the tutorial are identified in Table 1. The table also summarizes
the stellar parameters derived after the removal of outliers. For the TestA.fits
spectrum, corresponding to HD 128620 (˛ Cen A), the results presented in Fig. 2
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Table 1 Parameters derived with ARES+MOOG for test spectra

File Star Teff (K) log g (dex) ŒFe=H
 (dex) vtur (km s�1)

TestA.fits HD 128620 5832 4.33 0.23 1.11

TestB.fits HD 128621 5234 4.40 0.16 0.90

TestC.fits HD 179949 6287 4.54 0.21 1.36

are quite close to the ones in Table 1. Note that the temperature is within 10 K,
whereas the metallicity should be slightly lower, as expected, given that the outliers
overestimate the iron abundance. Although no error analysis is discussed here for
this method, it is clear from the results that the precision of the method is quite
high, by simply considering the very low spread of the derived parameters when
disregarding lines with problematic EW measurements.

5 Summary

The technical aspects concerning the ARES+MOOG EW method for deriving spec-
troscopic stellar parameters were presented in the form of a tutorial. The strategy
for finding an optimized model based on a set of indicators provided during each
iteration is briefly described. This document acts as a complement to the material
provided online. For a more complete understanding of the ARES+MOOG method
we direct the reader to Sousa (2007, 2014, 2015).
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