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Abstract. We show several interesting examples of connection between
distribution of a positively valued random variable and an Archimedean
copula through Williamson’s transformation (and Laplace transform),
especially when arranged in a sequence. Naturally, there appears a ques-
tion: how can we use statistical properties of distance functions to draw
statistical properties of copulas, and vice versa? This question is formu-
lated in two open problems.
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1 Introduction

Copulas [5,14,17] are particular functions describing the dependence stucture of
random vectors. Not going into details, recall that one of the prominent copula
classes important for numerous applications is the class of Archimedean copulas.
Formally, for n ≥ 2, a function C : [0, 1]n → [0, 1] is an n-ary Archimedean cop-
ula whenever it is a Post associative n-ary copula (i.e., for any (x1, . . . , x2n−1) ∈
[0, 1]2n−1 it holds C (C(x1, . . . , xn), xn+1, . . . , x2n−1) = C (x1, C(x2, . . . , xn+1),
xn+2, . . . , x2n−1)= . . . =C (x1, . . . , xn−1, C(xn, . . . , x2n−1)) and C(x, . . . , x)<x
for any x ∈]0, 1[, see [18]. Due to [9] we have next representation of n-ary Archi-
medean copulas.

Theorem 1. Let f : [0, 1] → [0,∞] be a continuous strictly decreasing function
such that f(1) = 0 (i.e., f is an additive generator of a continuous Archimedean
t-norm, see [7]). Then the n-ary function C : [0, 1]n → [0, 1] given by

C(x1, . . . , xn) = f (−1)

(
n∑

i=1

f(xi)

)
. (1)

(where f (−1) : [0,∞] → [0, 1] given by f (−1)(u) = f−1
(
min(u, f(0))

)
is the

pseudo-inverse of f) is an n-ary copula if and only if the function g : [−∞, 0] →
[0, 1] given by g(u) = f (−1)(−u) is (n− 2)-times differentiable with non-negative
derivatives g′, . . . , g(n−2) on ] − ∞, 0[ (or equivalently, (−1)n(f (−1))(n)(u) ≥ 0),
and g(n−2) is a convex function (Fig. 1).
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Fig. 1. Illustration of a generator f and its corresponding function g

We denote by Fn the class of all additive generators that generate n-ary
copulas as characterized in Theorem 1.

Additive generators, which generate an n-ary copula for any n ≥ 2, are called
universal generators. Due to Theorem1, we have the next result, see [6,9].

Corollary 1. Let f : [0, 1] → [0,∞] be an additive generator of a binary copula
C : [0, 1]2 → [0, 1]. Then the n-ary extension C : [0, 1]n → [0, 1] given by (1) is an
n-ary copula for each n ≥ 2 if and only if the function g : [−∞, 0] → [0, 1] given
by g(u) = f (−1)(−u) is absolutely monotone, i.e., g(k) exists and is non-negative
for each k ∈ N = {1, 2, . . .}.

The class of all universal additive generators will be denoted by F∞. It is
not difficult to check that F2 ⊃ F3 ⊃ . . . ⊃ F∞.

For any n ≥ 2, there is an important link between the additive genera-
tors of n-ary Archimedean copulas and distance functions F : [0,∞[ → [0, 1],
i.e., distribution functions of positive random variables restricted to [0,∞[.
Observe that then F (0) = 0, F is monotone non-decreasing right-continuous
and limx→∞ F (x) = 1. We denote the class of all distance functions as D.

Based on the results of Williamson [19], we recall the next important result.

Theorem 2 (McNeil and Nešlehová [9], Corollary 3.1). The following
claims are equivalent for an arbitrary n ∈ {2, 3, . . .}:
(i) f ∈ Fn

(ii) Under the notation of Theorem1, the function F : [0,∞[→ [0, 1] given by
F (0) = 0 and for x > 0,

F (x) = 1 −
n−2∑
k=0

(−1)kxk(f (−1))(k)(x)
k!

− (−1)n−1xn−1(f (−1))(n−1)
+ (x)

(n − 1)!
, (2)
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is a distance function from D, where ·(n−1)
+ denotes the right-derivative of order

n − 1.

Note that due to [19], if F is a positive distance function, i.e., a distribution
function of a positive random variable X, then for a fixed n ∈ {2, 3, . . .} the
Williamson n-transform provides an inverse transformation to (2),

f (−1)(x) =
∫ ∞

x

(
1 − x

t

)n−1

dF (t) =

{
max

(
0, E

[
1 − x

X

]n−1
)

, x > 0

1 − F (0), x = 0,
(3)

where x ∈ [0,∞[ and f (−1)(∞) = 0.
Note that a similar relationship can be shown between additive generators

from F∞ and positive distance functions, based on the Laplace transform, i.e.

f (−1)(x) =
∫ ∞

0

e−xtdF (t). (4)

For more and interesting details we recommend [9].
Note that if FX ∈ D is a distance function linked to a positive random vector

X, then for any positive real constant c, also FcX ∈ D, and for the related
additive generators (independently of n ≥ 2), fcX(x) = cfX(x). However, both
fX and fcX generate the same (n-ary) Archimedean copula.

The aim of this paper is to discuss some applications of the introduced link
between additive generators and distance functions in the copula theory. The
paper is organised as follows. In Sect. 2, some examples are given. In Sect. 3,
we introduce and discuss particular sequences of additive generators (distance
functions) related to a fixed distance function (additive generator). In Sect. 4,
we open several interesting problems dealing with relations between classes Fn

and Fm for n �= m and between distance functions related to classes Fn and
Fm, respectively. Finally, some concluding remarks are given.

2 Examples

Example 1. Let F be equal to a Dirac function δa focused at point a > 0,

F (x) = δa(x) =

{
0 x < a

1 a ≤ x
,

then, as is also shown in [9], by the Williamson n-transform we get generator
fn(x) = a

(
1 − x

1
n−1

)
of the weakest n-dimensional Archimedean copula, i.e.,

the non-strict Clayton copula with parameter λ = −1
n−1 , see Fig. 2. By rescaling

generator to f̃n(x) = f(x)
f(1/2) , x ∈ [0, 1], the copula would not change, yet such a

generator is fixed to the value f̃n( 12 ) = 1.
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Fig. 2. Dirac function F , the corresponding generators fn for different n and rescaled
generators f̃n.

Example 2. Let F be a uniform probability distribution function

F (x) =

⎧⎪⎨
⎪⎩

0 x < 0
x 0 ≤ x < 1
1 1 ≤ x

.

Then for dimension n = 2 we get

f
(−1)
2 (x) =

∫ ∞

x

(
1 − x

t

)2−1

F ′(t)dt =

{∫ 1

x

(
1 − x

t

)
dt 0 ≤ x < 1∫ ∞

x

(
1 − x

t

)
0dt 1 ≤ x

=

=

{
[t − x log t]1x = 1 − x + x log(x) 0 ≤ x < 1
0 1 ≤ x

(where F ′ denotes the density related to F ) from which the corresponding gen-
erator can be obtained only numerically, and so is the case also with the higher
dimensions, e.g.,

f
(−1)
3 (x) =

{
1 + 2x log x − x2 0 ≤ x < 1
0 1 ≤ x

.

We continue with the examples of constructing generators of non-strict Archi-
medean copulas while restricting the support of univariate distribution in the
unit interval. By applying a suitable increasing transformation (such as power
function) to a positive distance function on [0, 1] we obtain a new distribution.

Example 3. Consider a positive distance function F (x) = min(1, x2) and the
corresponding density F ′(x) = 2x on [0, 1]. Then

f
(−1)
2 (x) =

∫ ∞

x

(
1 − x

t

)2−1

dF (t) =

{∫ 1

x
(t − x) 2t

t dt = (1 − x)2 0 ≤ x ≤ 1
0 1 < x

=

= max(1 − x, 0)2.
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Then the generator f2(x) = 1−√
x, x ∈ [0, 1], is the generator of Clayton copula

for parameter λ = − 1
2 . Nevertheless, in higher dimensions, n ≥ 3, the generator

has no closed form, e.g., f
(−1)
3 (x) = 1 − 4x + x2(3 − 2 log x) for x ∈ [0, 1] and 0

otherwise (Fig. 3).

Fig. 3. Illustration of Example 3 with a = 1

Example 4. For any distance function F ∈ D related to a random variable X
a shifted random variable a + X, a ≥ 0, generates a distance function Fa ∈ D
given by

Fa(x) =

{
0 x ≤ a

F (x − a) otherwise
.

This observation allows to introduce parametric families of n-ary Archimedean
copulas. Continuing in Example 2, distance functions Fa are just distribution
functions of random variables uniformly distributed on [a, a+1] and the related
pseudo-inverses of additive generators are given by

f
(−1)
2 (x) =

∫ ∞

x

(
1 − x

t

)2−1

F ′(t)dt =

⎧⎪⎨
⎪⎩

∫ a+1

a

(
1 − x

t

)
dt x < a∫ a+1

x

(
1 − x

t

)
dt a ≤ x < a + 1∫ ∞

x

(
1 − x

t

)
0dt a + 1 ≤ x

=

=

⎧⎪⎨
⎪⎩

[t − x log t]a+1
a = 1 − x log

(
a+1

a

)
x < a

[t − x log t]a+1
x = a + 1 − x − x log

(
a+1

x

)
a ≤ x < a + 1

0 a + 1 ≤ x
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and

f
(−1)
3 (x) =

⎧⎪⎨
⎪⎩

1 − 2x log
(

a+1
a

)
+ x2

a(a+1) x < a

a + 1 − 2x log
(

a+1
x

) − x2

a+1 a ≤ x < a + 1
0 a + 1 ≤ x

.

displayed in Fig. 4.

Remark 1. Note that considering a random variable X uniformly distributed
on [a, b] ∈ [0,∞[, the random variable Y = X

b−a is uniformly distributed on
[ a
b−a , b

b−a ] = [c, c + 1] with c = a
b−a . Hence the additive generators of Archi-

medean copulas discussed in Example 4 covers all cases related to uniformly
distributed random variables.

Fig. 4. Uniform U(a, a + 1) probability distribution function F and pseudo-inverses of
the corresponding generators fn.

Example 5. Generalizing Examples 2 and 3 such that F (x) = min(1, xp), p ∈
]0,∞[, we get

f
(−1)
2 (x) =

{
1 − px−xp

p−1 0 ≤ x ≤ 1
0 1 < x

for p �= 1,

(with special case for p = 1 given in Example 2) whose corresponding generator
for most values of p can be obtained only numerically, and the copulas Cp it
generates span from M (p → 0) to W (p → ∞) excluding Π. Kendall’s correla-
tion coefficient as a function of parameter p can be expressed in the closed form
τ2(p) = 1 − 4 p

2(p+1) . Higher order Williamson transforms, e.g.,

f
(−1)
3 (x) =

{
1 − 2xp−p(p−1)x2+2p(p−2)x

(p−1)(p−2) 0 ≤ x ≤ 1

0 1 < x
for p �= 1, 2,
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(with special cases for p = 1, 2 given in Examples 2 and 3, respectively) neither
provide convenience of generator in closed form, nor the full span of dependence
range, e.g. τ3(p) = 1 − 4 p(p+3)

3(p+1)(p+2) , see Fig. 5.

Fig. 5. Kendall’s tau τn related to copula family generated by Williamson’s transform
of F (x) = min(1, xp) distance function.

3 Williamson’s Transforms and Sequences of Additive
Generators/Distance Functions

Example 6. Take a generator of the product copula f(x) = − 1
p log x with con-

stant p > 0 and inverse f−1(x) = exp(−px). From (2) for n = 2 we get
F (x) = 1 − exp(−px)(1 − px). By comparing the density ∂F (x)

∂x = p2x exp(−px)
and the convolution of two exponential distribution Dp densities with para-
meter p > 0,

∫ x

0
p exp(−pt)p exp(−p(x − t))dt = p2x exp(−px) it becomes

clear that the resulting distribution is a distribution of the random variable
Y = X1 + X2, where X1,X2 ∼ Dp are independent (and identically distributed)
random variables. The relation holds for any n ≥ 2, thus (2) yields a cumulative
distribution function of the sum of i.i.d. random variables X1, . . . , Xn ∼ Dp,
FX1+...+Xn

(x) = 1− exp(−px)
∑n

i=1
(px)i−1

(i−1)! with p > 0 which defines the Erlang
distribution with rate parameter p and shape parameter n.

Summarizing, we see that the sequence (Fn)∞
n=1 of the Erlang distribution

functions (with either fixed or variable parameter p) is related via Williamson’s
transforms with the product copula. Observe that when considering the Laplace
transform (4), then the product copula is related to Dirac function δp, p ∈]0,∞[.

Similarly, one can consider any other Archimedean copula for which each
n-ary version is an n-ary copula, i.e., possessing a universal additive generator.
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Example 7. Consider the generator of the Ali-Mikhail-Haq copula f(x) = 1
x − 1

corresponding to the parameter λ = 1 and denote by Fn, n = 2, 3, . . ., a positive
distance function related to f through (2). Then Fn(x) = 1 − 1

1+x − x
(1+x)2 −

. . . − xn−1

(1+x)n =
(

x
1+x

)n

which can be viewed as a parametric subfamily of all
positive valued distribution functions Fp with any positive parameter p.

Observe that when considering the Laplace transform (4), then the discussed
Ali-Mikhail-Haq copula is related to the exponential distribution with the dis-
tance function F (x) = 1 − e−λx, λ > 0

On the other hand, fixing a distance function F , one can introduce related
n-ary copulas (universal copula) by means of (3) (of (4)).

Example 8. Starting with positive distance function of

– discrete random variable with probability mass concentrated in λ > 0, i.e.
Dirac function F (x) = 0 for x < λ and 1 otherwise, then the sequence
from Example 1 is completed by the Laplace transform (4) that leads through
f−1(x) = exp(λx) to the product copula Π.

– exponential distribution F (x) = 1−exp(−λx), λ > 0, by (4) we get f−1(x) =
λ

x+λ and f(x) = λ
(
1
x − 1

)
which generates the same copula (Clayton and Ali-

Mikhail-Haq copula, both with parameter equal to 1) regardless of the choice
of λ.

– distribution from Example 5, that is F (x) = min(1, xp), p ∈ ]0,∞[ with
Kendall’s tau for n = 1, 2, 3 shown on Fig. 5, although no explicit form
of universal generator inverse can be drawn, one can observe sequence of
the lower bounds for Kendall’s correlation coefficient, {inf [τn(p)]}∞

n=2 =

{−1,− 1
3 ,− 1

5 ,− 1
7 , . . .} =

{
− 1

2n−3

}∞

n=2
.

4 Some Open Problems

In Sect. 3 we have indicated some interesting consequences of the discussed links
between additive generators of Archimedean copulas (of dimension n = 2, 3, . . .
and universal) and distance functions via Williamson’s transforms. Now we for-
mulate some interesting arisen open problems explicitly.

Problem 1. Are there some statistical links between Archimedean copulas of
dimensions n and m, n �= m, related to the same distance function? Recall,
for example, that fixing F = δp for some p ∈]0,∞[, the corresponding n-ary
(universal) Archimedean copulas are the smallest n-ary (universal) Archimedean
copulas.

Problem 2. For any fixed n,m ≥ 2, n �= m, one can define a transform
ϕn,m : D → D on distance functions obtained as follows: for a fixed distance
function F ∈ D one can define by means of (3) a pseudo-inverse f

(−1)
n con-

sidering n in transform (3). Then, taking into account that f
(−1)
n generates an
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m-dimensional Archimedean copula for any 2 ≤ m < n, applying the transform
(2), a new distance function Fn,m is obtained. Now we put ϕn,m(F ) = Fn,m. It
is not difficult to check that if 2 ≤ k < m < n, then ϕm,k ◦ ϕn,m = ϕn,k. Are
there some interesting properties of transforms ϕn,m? For example, does this
transform preserve the expected value, E(F ) = E(Fn,m)?

5 Conclusion

We have shown several interesting examples of connection between distribu-
tions of positively valued random variables (represented by distance function)
and Archimedean copulas (represented by generator and it’s inverse) through
Williamson’s transformation and Laplace transform, especially when arranged in
a sequence. For instance, Williamson’s n-transform (n = 2, 3, . . .) links the prod-
uct copula with distribution of sum of n exponentially distributed independent
random variables while the Laplace transformation links it to the most elemen-
tary distance function, the Dirac function. Naturally there appears a question:
how can we use statistical properties of distance functions to draw statistical
properties of copulas, and vice versa? This question was itemized into two open
problems, but surely more such problems could be formulated.
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