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Abstract. Bodjanova, Kalina and Král’ recently introduced a construc-
tion method, called paving, which enables to define a new associative,
commutative and increasing operation from a given one and a discrete
representable partial operation. As a matter of fact, not every discrete
t-norm is representable, i.e. it can not always be generated by some addi-
tive generator, and this also holds for t-conorms and uninorms. Inspired
by this fact and the method of paving, we construct some new associa-
tive, commutative and increasing operations on the unit interval from
a t-norm on the unit interval and a discrete t-norm, t-superconorm,
t-conorm or uninorm. Because of the duality between t-norms and
t-conorms, we also define some operations from a t-conorm and a discrete
t-norm, t-subnorm, t-conorm or uninorm.

Keywords: Associative operations · Uninorms · T-norms · T-conorms ·
Paving

1 Introduction

The associativity models the independence of the aggregation on the grouping
of input values and it allows to investigate binary aggregation operators only
(as far as their n-ary extensions are then determined uniquely). It is needless to
emphasize the key role of associative operations (t-norms, t-conorms, uninorms,
nullnorms, etc.) not only in fuzzy set theory, but also in many areas of applica-
tion, especially in decision-making under uncertainty [5], image processing [1,6],
fuzzy neural networks [7] and so on. The most important classes of associative,
commutative, increasing operations in the framework of fuzzy sets is that of
uninorms ([4,5,18]), which includes t-norms [10,17] and t-conorms [10] as two
special classes. A large number of methods to construct uninorms (including
t-norms and t-conorms) are introduced: Klement et al. [10], Schweizer and Sklar
[17], Jenei [8], Ling [13], Maes and De Baets [11], Mas et al. [12], Mesiarová-
Zemánková [14–16] and so on.
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Kalina et al. [2,9] introduced a construction method called paving. The main
idea is as follows: the unit interval is split into countably many disjoint sub-
intervals (Ii)i∈Jn

with Jn an index-set and with the help of an appropriate
operation ∗′ on Jn and a family of increasing transformations ϕi : Ii → [0, 1], a
new operation ⊕ is defined by

x ⊕ y = ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), x ∈ Ii, y ∈ Ij . (1)

Unfortunately, Kalina et al. only consider discrete representable associative oper-
ations as operation ∗′, which is rather restrictive. For instance, not every dis-
crete t-norm can be generated by some additive generator, and this applies to
t-conorms and uninorms. Moreover, the operation ∗′ in [2] is not always inter-
nal on Jn. In this paper, we will consider a general discrete associative oper-
ation as operation ∗′ on Jn, to construct some new associative, commutative
and increasing operations. The graphical schema of paving is depicted in Fig. 1

Ii∗ j

Ii∗ (j+1) Ij∗ (j+1)

Ij∗ j

Ij∗ i

I(j+1)∗ (j+1)

I(j+1)∗ j

I(j+1)∗ i0

0 Ii Ij Ij+1

Ii

Ij

Ij+1

Fig. 1. The structure of ⊕, where the thick line is the boundary between {(i, j) |
i ∗′ j = 0} and {(i, j) | i ∗′ j > 0)}. Inside the blocks it is shown in which sub-interval
the operation ⊕ takes its values.
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Fig. 2. The structure of ⊕, where the thick line is the boundary between {(i, j) |
i ∗′ j = n} and {(i, j) | i ∗′ j < n)}. Inside the blocks it is shown in which sub-interval
the operation ⊕ takes its values.

(which depicts the construction of a conjunctive operation ⊕) and Fig. 2 (which
depicts the construction of a disjunctive operation ⊕).

The paper is organized as follows. In Sect. 2, we present some preliminary
notions and results that are necessary for the rest of the paper. Starting from
Eq. (1), when ∗ is a t-norm and ∗′ is a discrete t-norm, t-superconorm, t-conorm
or uninorm, we construct some new associative, commutative and increasing
operations in Sect. 3. At the same time, all the dual constructions when ∗ is a
t-conorm are also listed in Sect. 3.

2 Preliminaries

In this section we recall some basic notions and facts that are necessary for the
understanding of what follows.

Definition 1 [10]. A decreasing function N : [0, 1] → [0, 1] is called a fuzzy
negation if N(0) = 1 and N(1) = 0. Moreover, a fuzzy negation N is called
strong if it is involutive, i.e., if N(N(x)) = x for all x ∈ [0, 1].

Definition 2 [18]. A binary operation U : [0, 1]2 → [0, 1] is called a uninorm if
it is associative, commutative, increasing and has a neutral element e ∈ [0, 1],
i.e., U(x, e) = x for all x ∈ [0, 1].

A uninorm with neutral element e = 1 is a t-norm [10,17] and a uninorm
with neutral element e = 0 is a t-conorm [10]. We say that a uninorm U is proper
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if e ∈ ]0, 1[. If U(1, 0) = 0, then U is called conjunctive. If U(1, 0) = 1, then U is
called disjunctive. Conjunctive and disjunctive uninorms are dual to each other.
For an arbitrary disjunctive uninorm U and a strong negation N , its N -dual
conjunctive uninorm is given by

Ud
N (x, y) = N(U(N(x), N(y))). (2)

For an overview of basic properties of uninorms, we refer to [3].

Remark 1. Note that, for a strong negation N , the N -dual operation to a t-norm
T defined by S(x, y) = N(T (N(x), N(y))) is a t-conorm. For more information,
see, e.g., [10].

Definition 3 [8]. (i) A binary operation ˜T : [0, 1]2 → [0, 1] is called a triangular
subnorm (t-subnorm, for short), if it is associative, commutative, increasing and
fulfills the condition ˜T (x, y) ≤ min(x, y) for all (x, y) ∈ [0, 1]2.

(ii) A binary operation ˜S : [0, 1]2 → [0, 1] is called a triangular superconorm
(t-superconorm, for short), if it is associative, commutative, increasing and ful-
fills the condition ˜S(x, y) ≥ max(x, y) for all (x, y) ∈ [0, 1]2.

Definition 4. Let ∗ : [0, 1]2 → [0, 1] be a commutative operation. Fix a value
a ∈ [0, 1]. We say that x ∈ [0, 1], x �= a, is an a-divisor if there exists y ∈ [0, 1],
y �= a, such that

x ∗ y = a. (3)

3 Construction of New Operations

The main idea of our construction method is described in Eq. (1) with the help
of a discrete associative operation ∗′. For the rest of this paper, we adopt the
following notations.

Let N be the set of all positive integers. We consider an index-set

Jn = {0, 1, 2, . . . , n}
for some n ∈ N.

We will split the interval [0, 1] into n + 1 sub-intervals by choosing the end-
points of the system of sub-intervals

0 = a−1 < a0 < a1 < a2 < . . . < an−1 < an = 1.

Because of this partition, we will use half-open intervals, i.e., either left-open or
right-open. We will use indexing of the chosen sub-intervals in accordance with
the right end-point. For the case of left-open sub-intervals, Ii = ]ai−1, ai]; for
the case of right-open sub-intervals, Ii = [ai−1, ai[.

For a fixed system of right-open sub-intervals (Ii)ni=0, ϕi : Ii → [0, 1[ are
increasing bijections. For a fixed system of left-open sub-intervals (Ii)ni=0, χi :
Ii → ]0, 1] are increasing bijections.
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Remark 2 [2]. In order not to get out of the range of the transformations χi when
using left-open sub-intervals, the starting operation ∗ (the basic paving stone)
must be without zero-divisors. Similarly, when using right-open sub-intervals,
∗ must be without one-divisors.

Here, we consider to construct new associative, commutative and increasing
operations from a given one ∗, and two certain cases of associative, commutative
and increasing operations will be taken into account: the case that ∗ is a t-norm
and the case that ∗ is a t-conorm.

3.1 The Case that ∗ Is a T-Norm

In this subsection, we construct some new associative, commutative and increas-
ing operations on the unit interval from a t-norm on the unit interval and a
discrete t-norm/t-superconorm/t-conorm/uninorm.

Firstly, we construct a new operation ⊕ from a t-norm ∗ and a discrete
t-norm ∗′ in Eq. (1). Because of the partition of unit interval, we distinguish two
cases: when right-open sub-intervals of [0, 1[ and left-open sub-intervals of ]0, 1].

Proposition 1. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of
[0, 1[ consisting of right-open sub-intervals. Assume that ∗′ is a discrete t-norm
on Jn = {0, . . . , n} such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈
Jn, i ∗′ j > 0}. Then the operation ⊕1 defined by

x ⊕1 y =

⎧

⎨

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

min(x, y), if max(x, y) = 1,
0, otherwise,

(4)

is a t-norm.

In fact, ⊕1 is not always increasing without the condition that ∗′ is strictly
increasing on the domain {(i, j) | i, j ∈ J, i ∗′ j > 0}.
Example 1. Assume that J7 = {0, 1, 2, . . . , 7}, (Ii = [i/8, (i + 1)/8[)7i=0 is a
partition of [0, 1[. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the
discrete t-norm TM (i, j) = min(i, j) on J7, ϕi(x) = x−ai−1

ai−ai−1
. Define x ⊕ y as

follows:

x ⊕ y =

⎧

⎨

⎩

ϕ−1
min(i,j)(min( x−ai−1

ai−ai−1
,

y−aj−1
aj−aj−1

)), if x ∈ Ii, y ∈ Ij , and min(i, j) > 0,
min(x, y), if max(x, y) = 1,
0, otherwise.

Consider that x = 3
16 , y = 3

16 and z = 1
4 , then we have that

x ⊕ y = ϕ−1
1

(1
2
)

=
3
16

>
1
8
= ϕ−1

1 (0) = x ⊕ z. (5)

That is, ⊕ is not increasing.
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By (4), we can see that for any t-norm ∗, its values on the upper right
boundary of the unit square [0, 1]2 have no impact on the properties of ⊕1.
Moreover, It is obvious that associativity, commutativity and monotonicity of
⊕1 are determined by the corresponding properties of ∗, respectively. Thus, we
can easily obtain that Proposition 1 holds for t-subnorm instead of t-norm.

Example 2. Assume that Jn = {0, 1, 2, . . . , n}, (Ii)ni=0 is a partition of [0, 1[ con-
sisting of right-open sub-intervals. Let ∗ be the t-subnorm ˜T = max(min(x, 1

2 )+
min(y, 1

2 ) − 3
4 , 0) on [0, 1], ∗ be the discrete t-norm TL(i, j) = max(0, i + j − n)

on Jn, ϕi(x) =
x−ai−1
ai−ai−1

. Define x ⊕ y as follows:

x ⊕ y =

⎧

⎨

⎩

ϕ−1
i+j−n( ˜T ( x−ai−1

ai−ai−1
,

y−aj−1
aj−aj−1

)), if x ∈ Ii, y ∈ Ij and i + j > n,

min(x, y), if max(x, y) = 1,
0, otherwise,

(6)

is a t-norm.

As stated earlier, ∗ must be a t-norm without zero-divisors when left-open
sub-intervals are taken into account. Similar to Proposition 1, the following
proposition can be obtained:

Proposition 2. Let ∗ : [0, 1]2 → [0, 1] be a t-norm without zero-divisors, (Ii)ni=0

be a partition of ]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a
discrete t-norm on Jn such that ∗′ is strictly increasing on the domain {(i, j) |
i, j ∈ Jn, i ∗′ j > 0}. Then the operation ⊕2 defined by

x ⊕2 y =

⎧

⎨

⎩

min(x, y), if max(x, y) = 1,
χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii \ {1}, y ∈ Ij \ {1} and i ∗′ j > 0,

0, otherwise,
(7)

is a t-norm.

Next, we discuss the construction when ∗ is a t-norm and ∗′ is a discrete
t-superconorm. Analogously, two cases of right-open sub-intervals of [0, 1[ and
left-open sub-intervals of ]0, 1] are taken into account. We start with the case of
the right-open sub-intervals.

Proposition 3. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of [0, 1[
consisting of right-open sub-intervals. Assume that ∗′ is a discrete t-superconorm
on Jn such that ∗′ is strictly increasing and i ∗′ j > max(i, j) on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j < n}. Then the operation ⊕3 defined by

x ⊕3 y =
{

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

1, otherwise,
(8)

is a t-superconorm.

Without the condition that ∗′ is strictly increasing on the domain {(i, j) |
i, j ∈ Jn, i ∗′ j < n}, ⊕3 is not always increasing. We have the following
counterexample.
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Example 3. Assume that J7 = {0, 1, 2, . . . , 7}, (Ii = [i/8, (i + 1)/8[)7i=0 is a
partition of [0, 1[. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the
discrete t-superconorm ˜S = min(n,max(i, j)+4) on J7, ϕi(x) =

x−ai−1
ai−ai−1

. Define
x ⊕ y as follows:

x ⊕ y =

{

ϕ−1
˜S(i,j)

(min( x−ai−1
ai−ai−1

,
y−aj−1
aj−aj−1

)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

1, otherwise.

Consider that x = 1
16 , y = 1

8 and z = 3
16 , then we have that

x ⊕ z = ϕ−1
5

(1
2
)

=
11
16

>
5
8
= ϕ−1

5 (0) = y ⊕ z. (9)

Obviously, ⊕ is not increasing.

In Eq. (8), let x ⊕3 y = max(x, y) on the domain {(x, y) | x, y ∈ [0, 1],min
(x, y) = 0}. We can easily prove that the operation ⊕3 is a t-conorm by simple
calculations.

Similarly, when left-open sub-intervals are taken into account, ∗ must be a
t-norm without zero-divisors. Then, the following proposition can be obtained:

Proposition 4. Let ∗ : [0, 1]2 → [0, 1] be a t-norm without zero-divisors, (Ii)ni=0

be a partition of ]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is
a discrete t-superconorm on Jn such that ∗′ is strictly increasing and i ∗′ j >
max(i, j) on the domain {(i, j) | i, j ∈ Jn, i ∗′ j < n}. Then the operation ⊕4

defined by

x ⊕4 y =

⎧

⎨

⎩

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

max(x, y), if min(x, y) = 0,
1, otherwise,

(10)

is a t-conorm.

In what follows, we construct a new operation from a t-norm ∗ and a discrete
uninorm ∗′.

Proposition 5. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of
[0, 1[ consisting of right-open sub-intervals. Assume that ∗′ is a discrete uninorm
on Jn with neutral element h such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, max(i, j) ≤ h, i ∗′ j > 0} and {(i, j) | i, j ∈ Jn, min(i, j) ≥
h, i ∗′ j < n}. Then the operation ⊕5 defined by

x ⊕5 y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai, if min(x, y) < ah and ah ≤ ai ≤ max(x, y) < ai+1,
ϕ−1

i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij , max(i, j) ≤ h and i ∗′ j > 0,

or h < min(i, j) and i ∗′ j < n,
1, if x ∈ Ii, y ∈ Ij , h < min(i, j) and i ∗′ j = n,

or max(x, y) = 1,
0, otherwise,

(11)

is associative, commutative and increasing.
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In fact, the similar proposition does not hold when (Ii)ni=0 is a partition of
]0, 1] consisting of left-open sub-intervals. A counterexample is as follows:

Example 4. Assume that J4 = {0, 1, 2, 3, 4}, (Ii =]i/5, (i+1)/5])4i=0 is a partition
of ]0, 1]. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the discrete
uninorm U with neutral element 2:

U(i, j) =

⎧

⎨

⎩

TL(i, j), if 0 ≤ i, j ≤ 2,
SL(i, j), if 2 ≤ i, j ≤ 4,
min(i, j), otherwise,

where TL(i, j) = max(0, i + j − 2), SL(i, j) = min(4, i + j − 2).
Besides, ϕi(x) =

x−ai−1
ai−ai−1

. Define x ⊕ y as follows:

x ⊕ y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai+1, if 3
5

< max(x, y) and ai < min(x, y) ≤ ai+1 ≤ 3
5
,

ϕ−1
U(i,j)(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij , max(i, j) ≤ 2 and i ∗′ j > 0,

or 2 < min(i, j) and i ∗′ j < 4,
0, if x ∈ Ii, y ∈ Ij , max(i, j) ≤ 2 and i ∗′ j = 0,

or min(x, y) = 0,
1, otherwise.

Consider that x = 1
2 , y = 1

2 and z = 4
5 , then we have that

(x ⊕ y) ⊕ z = aU(2,2) = a2 =
3
5

�= 1
2
= x ⊕ a2 = x ⊕ (y ⊕ z). (12)

Obviously, ⊕ is not associative.

When ∗ is a t-norm and ∗′ is a discrete t-conorm, we can construct some
proper uninorms.

Proposition 6. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of [0, 1[
consisting of right-open sub-intervals. Assume that ∗′ is a discrete t-conorm on
Jn such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈ Jn, i∗′ j < n}.
Then the operation ⊕6 defined by

x ⊕6 y =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii \ {a0}, y ∈ Ij \ {a0} and i ∗′ j < n,

or min(x, y) ∈ I0, max(x, y) ∈ In,
y, if x = a0,
x, if y = a0,
1, otherwise,

(13)

is a proper disjunctive uninorm with neutral element a0 if and only if ∗ has no
zero-divisors.

In what follows, we give an example to illustrate that ∗′ must be strictly
increasing on the domain {(i, j) | i, j ∈ Jn, i ∗′ j < n}.
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Example 5. Assume that J4 = {0, 1, 2, 3, 4}, (Ii = [i/5, (i + 1)/5[)4i=0 is a parti-
tion of [0, 1[. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the discrete
t-conorm SM = max(i, j) on J4, ϕi(x) =

x−ai−1
ai−ai−1

. Define x ⊕ y as follows:

x ⊕ y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ−1
max(i,j)

(min(
x−ai−1
ai−ai−1

,
y−aj−1
aj−aj−1

)), if x∈Ii \ { 1
5
}, y ∈ Ij \ { 1

5
} and max(i, j) < 4,

or min(x, y) ∈ [0, 1
5
[, max(x, y) ∈ [ 4

5
, 1[,

y, if x = 1
5
,

x, if y = 1
5
,

1, otherwise.

Consider that x = 3
10 , y = 2

5 and z = 1
2 , then we have that

x ⊕ z = ϕ−1
2

(1
2
)

=
1
2

>
2
5
= ϕ−1

2 (0) = y ⊕ z. (14)

Obviously, ⊕ is not increasing.

Similar to Proposition 6, when the left-open sub-intervals are taken into
account, we have the following result:

Proposition 7. Let ∗ : [0, 1]2 → [0, 1] be a t-norm without zero-divisors, (Ii)ni=0

be a partition of ]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a
discrete t-conorm on Jn such that ∗′ is strictly increasing on the domain {(i, j) |
i, j ∈Jn, i ∗′ j <n}. Then the operation ⊕7 defined by

x ⊕7 y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

or min(x, y) ∈ I0, max(x, y) ∈ In,
0, if min(x, y) = 0,
1, otherwise,

(15)

is a proper conjunctive uninorm with neutral element a0.

3.2 The Case that ∗ Is a T-Conorm

Taking into account the duality between t-norms and t-conorms, the results in
the case that ∗ is a t-conorm are easily obtained.

Proposition 8. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm without one-divisors,
(Ii)ni=0 be a partition of [0, 1[ consisting of right-open sub-intervals. Assume that
∗′ is a discrete t-conorm on Jn such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j < n}. Then the operation ⊕1 defined by

x ⊕1 y =

⎧

⎨

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii \ {0}, y ∈ Ij \ {0} and i ∗′ j < n,

max(x, y), if min(x, y) = 0,
1, otherwise,

is a t-conorm.
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Similar to the case that ∗ is a t-norm, Proposition 8 holds for t-superconorm
instead of t-conorm.

Proposition 9. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete t-conorm
on Jn such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈Jn, i∗′j <n}.
Then the operation ⊕2 defined by

x ⊕2 y =

⎧

⎨

⎩

max(x, y), if min(x, y) = 0,
χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

1, otherwise,

is a t-conorm.

Proposition 10. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm without one-divisors,
(Ii)ni=0 be a partition of [0, 1[ consisting of right-open sub-intervals. Assume that
∗′ is a discrete t-subnorm on Jn such that ∗′ is strict increasing and i ∗′ j <
min(i, j) on the domain {(i, j) | i, j ∈ Jn, i ∗′ j > 0}. Then operation ⊕3

defined by

x ⊕3 y =

⎧

⎨

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

min(x, y), if max(x, y) = 1,
0, otherwise,

is a t-norm.

Proposition 11. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete t-subnorm
on Jn such that ∗′ is strictly increasing and i ∗′ j < min(i, j) on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j > 0}. Then the operation ⊕4 defined by

x ⊕4 y =
{

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

0, otherwise,

is a t-subnorm.

Proposition 12. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm without one-divisors,
(Ii)ni=0 be a partition of [0, 1[ consisting of right-open sub-intervals. Assume that
∗′ is a discrete t-norm on Jn such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j > 0}. Then the operation ⊕5 defined by

x ⊕5 y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

or min(x, y) ∈ I0, max(x, y) ∈ In,
1, if max(x, y) = 1,
0, otherwise,

is a proper disjunctive uninorm with neutral element an−1.
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Proposition 13. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete uninorm
on Jn with neutral element h such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, max(i, j) ≤ h, i ∗′ j > 0} and {(i, j) | i, j ∈ Jn, min(i, j) ≥ h,
i ∗′ j < n}. Then the operation ⊕6 defined by

x ⊕6 y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai+1, if max(x, y) > ah−1 and ai < min(x, y) ≤ ai+1 ≤ ah−1,
χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij , max(i, j) ≤ h − 1 and i ∗′ j > 0,

or h − 1 < min(i, j) and i ∗′ j < n,
0, if x ∈ Ii, y ∈ Ij , max(i, j) ≤ h − 1 and i ∗′ j = 0,

or min(x, y) = 0,
1, otherwise,

is associative, commutative and increasing.

Proposition 14. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete t-norm on
Jn such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈ Jn, i ∗′ j > 0}.
Then the operation ⊕7 defined by

x ⊕7 y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii \ {an−1}, y ∈ Ij \ {an−1} and i ∗′ j > 0,

or min(x, y) ∈ I0, max(x, y) ∈ In,
y, if x = an−1,
x, if y = an−1,
0, otherwise,

is a proper conjunctive uninorm with neutral element an−1 if and only if ∗ has
no one-divisors.

Results

Inspired by the construction method of paving, we construct some new associa-
tive, commutative and increasing operations on the unit interval from a t-norm
on the unit interval and a discrete t-norm/t-superconorm/t-conorm/uninorm.
Similarly, we present the dual constructions from a t-conorm and a discrete
t-norm/t-subnorm/t-conorm/uninorm.
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