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Abstract. Non-additive measures generalize additive measures, and
have been utilized in several applications. They are used to represent
different types of uncertainty and also to represent importance in data
aggregation. As non-additive measures are set functions, the number of
values to be considered grows exponentially. This makes difficult their
definition but also their interpretation and understanding. In order to
support understability, this paper explores the topic of visualizing dis-
crete non-additive measures using node-link diagram representations.

1 Introduction

Non-additive measures are monotonic set functions. They generalize additive
measures as e.g. probabilities and the Lebesgue measure. Several names are used
to represent this concept; they are also called fuzzy measures (name introduced
by Sugeno in 1972 [18,19]), capacities (see e.g. Choquet’s seminal work [7]) and
monotonic games (see e.g. [24]).

Non-additive measures can be used for representing uncertainty. In this case,
several families of measures have been defined, see e.g. probabilities, belief and
plausibility, as well as possibility and necessity. It is usual to use functions to
combine and aggregate these uncertainty measures. For instance, the Demspter-
Shafer rule of combination is used for belief measures.

Non-additive measures are also used to represent importance or relevance
of information sources in data aggregation [5,11,23]. This is the case when we
use the Choquet [7] and the Sugeno integral [19]. These integrals aggregate a
set of values proceeding from a set of information sources taking into account
the relevance of the sources. Non-additive measures are used to represent our
background knowledge on this relevance of the sources. The measures permit us
to have more flexibility than the one offered by additive measures. They do not
longer require that the measure of a set is the addition of the measure of its
components. This permits to represent positive and negative interaction of the
elements. That is, we can have for two disjoint sets A and B (i.e., A ∩ B = ∅)
that either μ(A∪B) > μ(A)+μ(B), μ(A∪B) < μ(A)+μ(B) or just μ(A∪B) =
μ(A) + μ(B) as it is the case for probabilities.

This additional flexibility is at the cost of a more complex definition. As
non-additive measures do not satisfy the additivity axiom, we need to supply
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values for each subset of the reference set. Being a set function, this means that
we need to supply O(2n) where n is the number of elements of the reference set.

In order to help in the definition of these measures, a few families of mea-
sures have been defined with reduced complexity. This is the case of Sugeno
λ-measures [19], ⊥-decomposable fuzzy measures, hierarchically decomposable
fuzzy measures [22], distorted and m-dimensional distorted probabilities [14],
k-additive measures [10]. There have also been approaches to learn these mea-
sures from data. This is the case of e.g. [1,16].

Due to the number of parameters needed to define these measures, it is also
difficult to understand what exactly represents a fuzzy measure. For this purpose,
several (mathematical) indices can be used. The Shapley [17] and Banzhaf [3]
indices are two of them.

In this paper we propose and explore an alternative way to understand these
type of measures using graphical representations of the measures. As we will
discuss later, our proposal is based on graph visualizations, in particular, node-
link diagram representations.

Node-link diagrams [4,13,20] (see e.g. Fig. 1) are widely used to draw rela-
tionships between elements in a model. They are used in social networks, process
models, and on hierarchical structures [6]. This type of graphs depict a collec-
tion of elements (vertices or nodes) and a set of relations between them (edges).
Edges may indicate a weight (such as the strength of the relationship), as well
as the direction of the relationship between the nodes. It is easier to read and
understand node-link diagrams when the underlying relations are simple and
sparse [8], however, they are less preferred with many overlapping links, that
can generate occlusion problems [4]. The interpretation of the nodes’ and links’
depends on the application. In fact, one prior user study depicting multivari-
ate data sets [2] gave weights to the links with selected visual cues to better

Fig. 1. Visualization of Example 1 where the difference between measures are repre-
sented by means of thickness.
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understand the relationships’ strength. Using similar principles, in this paper we
propose the use of brightness and width to better understand and emphasize the
relationships of discrete non-additive measures.

The problem of visualizing non-additive measures have also been considered
by Murofushi’s lab [15,21,25]. They have also used graphs to represent fuzzy
measures (Hasse diagrams). As we do here, nodes represent subsets A ⊆ X.
Then, [15] locates the nodes in the picture taking into account the measure of
the sets. In [15] they use a combinatorial optimization problem with exhaustive
search to determine the position of the nodes in the picture. In [25] they use a
branch and bound algorithm for the same purpose. Their approach is different
to our approach here where measures are represented by brightness and width
of the edges.

The structure of the paper is as follows. In Sect. 2 we review some basic
definitions that we need in this paper. Section 3 introduces our approach for
visualizing the measures and Sect. 4 provides visualization examples. The paper
finishes with a summary and lines for future work.

2 Preliminaries

In this section we review the definition of non-additive measures. We also give
the definition of the Choquet integral, one of the tools used to aggregate data
from a set of information sources with respect to the non-additive measure.

Definition 1. A non-additive (or fuzzy) measure μ on a set X is a set function
μ : ℘(X) → [0, 1] satisfying the following axioms:

(i) μ(∅) = 0, μ(X) = 1 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)

Here, ℘(X) represents the power set of X.
Note that in this definition the additivity axiom μ(A∪B) = μ(A)+μ(B) for

A ∩ B = ∅ is replaced by the monotonicity condition.
Given a set of information sources X (e.g., sensors or experts) we can rep-

resent the value supplied by each information source x in X by f(x). Then, μ
represents the importance of the sets A ⊆ X. That is, μ represents the impor-
tance of a set A of information sources.

When the additivity takes place, we have that the importance of a set
corresponds to the addition of the importance of its terms. That is μ(A) =∑

x∈A μ({x}). As this is no longer a requirement we may represent positive
interactions between elements and negative interactions. Note that we have a
positive interaction between A and B (with A ∩ B = ∅) when

μ(A ∪ B) > μ(A) + μ(B)

and that we have a negative interaction when

μ(A ∪ B) < μ(A) + μ(B).
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A well known example of a non-additive measure is the one introduced in [9].
This example is about the evaluation of students of a high school in terms of their
ratings in three subjects: mathematics, physics, and literature. The importance
of these subjects is expressed by means of a measure. We revise this example
below as we will use it for illustration in this paper. The formulation follows [23].

Example 1. The director of a high school has to evaluate the students according
to their level in mathematics (M), physics (P ), and literature (L). The evaluation
consists of obtaining a final rating as an average of the ratings of the three
subjects. For each student, the final rating depends on the importance given to
the subjects. To settle these importances, a non-additive measure is used. Here,
X is the set of all subjects (i.e., X = {M,P,L}), and μ(A) is the importance
of a particular set of subjects A. The definition of the measure considers the
following elements.

1. Boundary conditions:
μ(∅) = 0, μ({M,P,L}) = 1
The importance of the empty set is 0. The set consisting of all objects has
maximum importance.

2. Relative importance of scientific versus literary subjects:
μ({M}) = μ({P}) = 0.45, μ({L}) = 0.3
The importance of mathematics and physics is greater than the importance
of literature.

3. Redundancy between mathematics and physics:
μ({M,P}) = 0.5 < μ({M}) + μ({P})
Mathematics and physics are similar subjects. The importance of the set
containing both should not be larger than their addition.

4. Support between literature and scientific subjects:
μ({M,L}) = μ({P,L}) = 0.9 > μ({P}) + μ({L}) = 0.45 + 0.3 = 0.75
μ({M,L}) = μ({P,L}) = 0.9 > μ({M}) + μ({L}) = 0.45 + 0.3 = 0.75
Mathematics and literature are complementary subjects.

An outline of this fuzzy measure is given in Table 1.

In this example we have seen that mathematics and literature have positive
interaction while mathematics and physics have negative interaction. One of the
ways to observe the positive interaction is by means of the Möbius transform.

The Möbius transform of a non-additive measure on X is a set function
that assigns to each subset of X a value (either positive or negative). For each

Table 1. Non-additive measure of Example 1 based on [9].

µ(∅) = 0 µ({M,L}) = 0.9

µ({M}) = 0.45 µ({P,L}) = 0.9

µ({P}) = 0.45 µ({M,P}) = 0.5

µ({L}) = 0.3 µ({M,P,L}) = 1



204 J. Bae et al.

Table 2. Möbius transform of the measure given in Example 1 and summarized in
Table 1.

m(∅) = 0 m({M,L}) = 0.15

m({M}) = 0.45 m({P,L}) = 0.15

m({P}) = 0.45 m({M,P}) = −0.4

m({L}) = 0.3 m({M,P,L}) = −0.1

non-additive measure there is a unique Möbius transform, and for each Möbius
transform there is a unique measure. Formally, a Möbius transform is a function
m : ℘(X) → R such that m(∅) = 0,

∑
A⊆X m(A) = 1, and, if A ⊂ B, then∑

C⊆A m(C) ≤ ∑
C⊆B m(C). The following definition explains how to build the

Möbius transform from a measure.

Definition 2. Let μ be a fuzzy measure; then, its Möbius transform m is
defined as

mµ(A) :=
∑

B⊆A

(−1)|A|−|B|μ(B) (1)

for all A ⊂ X.

Note that the function m is not restricted to the [0, 1] interval.
Given a function m that is a Möbius transform, we can reconstruct the orig-

inal measure as follows:
μ(A) =

∑

B⊆A

m(B)

for all A ⊆ X.
Table 2 gives the Möbius transform of the measure in Example 1 and outlined

in Table 1.
Given an assignment f : X → R (that assigns a value to each information

source), and a non-additive measure μ we can aggregate the values f(x) for
x ∈ X by means of a Choquet integral. In Example 1 this means that given a
student and three marks one for mathematics, another for physics and a third
for literature, we can average them and obtain an aggregated value taking into
account the importances of these subjects according to the measure μ. For illus-
tration, we give the definition of the Choquet integral below.

Definition 3. Let μ be a non-additive measure on X = {x1, . . . , xN}; then, the
Choquet integral of a function f : X → R

+ with respect to the fuzzy measure μ
is defined by

(C)
∫

fdμ =
N∑

i=1

[f(xs(i)) − f(xs(i−1))]μ(As(i)), (2)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ · · · ≤ f(xs(N)) ≤ 1, and where f(xs(0)) = 0 and As(i) =
{xs(i), . . . , xs(N)}.
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An important property of the Choquet integral is that when the measure
is additive it corresponds to the Lebesgue integral. In other words, when the
measure is a probability, the Choquet integral corresponds to the weighted mean
of the values (where the weights corresponds to the probabilities).

3 Our Approach

In order to visualize graphically a non-additive measure, we first build a graph
from the measure, and then we use node-link diagrams to depict the graph. It
is well known that a graph consists of nodes or vertices – basic elements–, and
edges – relationships between these elements–. That is, a graph G is defined by
the pair G = (V,E) where V is the set of vertices and E ⊂ V × V is the set
of edges. In our case, we consider labeled graphs where both vertices and edges
have a label. So, in addition to V and E we have also two label functions lV
and lE .

The construction of a graph for a non-additive measure μ on the reference
set X is as follows.

• Define the set of vertices as the subsets of X excluding the empty set. That
is, V = ℘(X) \ ∅.

• Define the set of edges in terms of set inclusion on ℘(X) between sets that
only differ in one element. That is,

E = ∪a⊂X,c/∈a{(a, a ∪ c)}.

• Assign to each vertex the Möbius transform of the corresponding set. That
is, lV (A) = m(A).

• Assign to each edge (a, b) the difference between the measure on the largest
set and the measure on the smallest set. That is, for (a, b) with a ⊂ b define
lE((a, b)) = μ(b) − μ(a).

Then, we depict this graph using a node-link diagram, that is, we represent
each vertex (i.e., the corresponding subset of X and its Möbius transform) and
the edges (i.e., the difference between the values of the non-additive measures
lE((a, b))). We have considered two graphical representations for lE . In one case
this information is depicted by brightness. The values of brightness range from
0.0 to 0.9, where the value 0.0 represents the biggest difference (darker blue),
and 0.9 the smallest difference (brighter blue). Then, we transform the difference
between values (say d) into brightness using 1 − d. In the other case, we use the
thickness of the link between the nodes for depicting lE .

To illustrate this construction, we consider the non-additive measure in
Example 1. The graph contains 7 nodes corresponding to the subsets of X =
{M,L,P}. That is,

V = {{M}, {P}, {L}, {M,L}, {M,P}, {P,L}, {M,P,L}}.
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Table 3. Labelling function for the graph constructed for Example 1 and summarized
in Table 1.

(M,ML) = 0.45 (L,PL) = 0.60

(M,MP ) = 0.05 (ML,MPL) = 0.1

(P, PL) = 0.45 (PL,MPL) = 0.1

(P,MP ) = 0.05 (MP,MPL) = 0.5

(L,ML) = 0.60

Edges will be defined for (M,ML), (M,MP ), (P, PL), (P,MP ), (L,PL),
(L,MPL), (MP,MPL), (PL,MPL), (ML,MPL). Then, lV is defined for each
node according to Table 2. Finally, lE is defined according to Table 3. As an exam-
ple, we give the computation of lE((M,ML)) and lE((M,MP )). We use MP to
represent the set {M,L}.

lE((M,ML)) = μ(ML) − μ(M) = 0.9 − 0.45 = 0.45

lE((M,MP )) = μ(MP ) − μ(M) = 0.5 − 0.45 = 0.05

Figures 1 and 2 represent this graph. Figure 2 corresponds to the case of using
brightness. For instance, lE of the edge (L,PL) is 0.60 and thus a high value
(therefore, it is depicted by a dark edge), while the lE of the edge (PL,MPL) is
0.1 (therefore, it is shown with a brighter edge). The default value of the edge’s
width was 0.43px and hue valued 240 from the HSB model. So, the visualization
shows with dark arrows when the measure increase is significant. We can also
see that the measure of {M,P} is not changed much with respect to the one of
{M} and {P} (all inputs have arrows with light colours) and this causes that
the Möbius transformation is negative. In contrast, {M,L} and {P,L} receive
two dark arrows and the Möbius is positive.

Fig. 2. Visualization of Example 1 where the difference between measures are repre-
sented by means of brightness. (Color figure online)
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Figure 1 corresponds to the use of thickness to represent the difference
between measures. However, it may be perceptually challenging to differentiate
between edges with similar thickness values. Thus, we suggest to utilize bright-
ness to encode differences between measures in the next section. Brightness, as
well as hue and width, has been used previously for encoding correlation degree
in graphs, see e.g. [12].

4 Examples of Visualizations

In this section we present the visualization of another measure that contains five
elements, and thus, more relationships. It is a hierarchically decomposable fuzzy
measure (see [22] for details) that is based on the structure represented in Fig. 3.

T

Sa

SbSb

P M L G

Fig. 3. Graphical representation of a hierarchical decomposable fuzzy measure on the
reference set {T,M,P, L,G}. The reference set contains two subjects for humanities
(literature and classical greek) and three scientific subjects (topology, mathematics and
physics).

The measure is similar to the one of Example 1, but the reference set includes
five subjects instead of three. There are three scientific subjects: mathematics
(M), physics (P ) and topology (T – in fact, in the original example this is
mathematical logics but we use T here for convenience), and two humanistic
subjects: literature (L) and greek (G). The measure has some similarities to
Example 1 as scientific subjects have more weight than humanistic ones, and
interactions between scientific and humanistic are positive while interactions
between scientific subjects, and interactions between humanistic are negative.

In this sense note that the Möbius transform can be misleading as
m({T, P,M}) = 0.35 but μ({T, P,M}) = 0.50 with μ({T, P}) = μ({T,M}) =
μ({P,M}) = 0.47.

Two visualizations of this measure are given in Fig. 4. Both describe the
information by means of the brightness of the colour. One uses standard arrows
and the other uses tapered arrows. In this case, the nodes contain the value of
the measure for the set (instead of the Möbius transform). Again, we can see the
most significant changes.

Figure 5 gives another representation of the measure. In this case, only the
edges with a significant difference between measures are shown (i.e., a difference
larger than 0.1). The nodes include the Möbius transform. The brightness of
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Fig. 4. Visualization of the hierarchical decomposable fuzzy measure. (Color figure
online)
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Fig. 5. Visualization of the hierarchical decomposable fuzzy measure. (Color figure
online)

the edges is in relation to the difference. Finally, for each edge we have a label
corresponding to the element that we are adding. That is, in the edge between
{T, P,M} and {T, P,M,G} we have the label G.

5 Future Work

In this paper we have suggested and explored the visualization of non-additive
measures using node-link diagrams. Future work will focus on evaluating the ini-
tiatives presented here with users, as well as developing alternative ways for visu-
alizing discrete non-additive measures including, e.g., other indices. For instance,
the size of the nodes could encode the Möbius transformation. Moreover, we plan
to look at measures on larger sets, and use other tools to build the visualizations,
exploring, for example, the use of hypergraphs. We will also explore visualiza-
tion tools for measures on larger sets, and see if our approach scales well or
alternative tools are needed.
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